diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 7 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 16 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 16 | ||||
-rw-r--r-- | src/algebra/data.spad.pamphlet | 23 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 1 | ||||
-rw-r--r-- | src/algebra/java.spad.pamphlet | 135 | ||||
-rw-r--r-- | src/interp/buildom.boot | 6 | ||||
-rw-r--r-- | src/interp/sys-utility.boot | 9 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 2598 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 3423 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1305 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9558 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 33569 |
13 files changed, 25426 insertions, 25240 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index b96a41a9..b7a77e15 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,12 @@ 2008-05-08 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/java.spad.pamphlet: New. Implement JavaBytecode. + * algebra/data.spad.pamphlet (bitand$Byte): New. + (bitior$Byte): Likewwise. + (byte$Byte): Likewise. + * algebra/Makefile.pamphlet (axiom_algebra_layer_15): Include + JAVACODE. + * boot/translator.boot (translateToplevel): Split out of bpOutItem. (maybeExportDecl): New. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 168617e9..361f341b 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -485,7 +485,7 @@ axiom_algebra_layer_9 = \ PTFUNC2 RADCAT RADCAT- RATRET RADUTIL UPXS2 \ XFALG ZLINDEP BBTREE LSAGG LSAGG- SRAGG \ SRAGG- STRICAT ODEIFTBL NIPROB ODEPROB OPTPROB \ - PDEPROB + PDEPROB axiom_algebra_layer_9_nrlibs = \ @@ -541,7 +541,7 @@ axiom_algebra_layer_11 = \ TS TUPLE UPSCAT UPSCAT- \ VECTCAT VECTCAT- XDPOLY XEXPPKG \ XF XF- XPBWPOLY XPOLY \ - XRPOLY + XRPOLY axiom_algebra_layer_11_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_11)) @@ -648,11 +648,11 @@ axiom_algebra_layer_14_objects = \ $(addprefix $(OUT)/, \ $(addsuffix .$(FASLEXT),$(axiom_algebra_layer_14))) axiom_algebra_layer_15 = \ - DSMP EXPUPXS \ - FRAMALG FRAMALG- MDAGG ODPOL \ - PLOT RMCAT2 ROIRC SDPOL \ - SMATCAT SMATCAT- TUBETOOL UPXSCCA \ - UPXSCCA- + DSMP EXPUPXS \ + FRAMALG FRAMALG- MDAGG ODPOL \ + PLOT RMCAT2 ROIRC SDPOL \ + SMATCAT SMATCAT- TUBETOOL UPXSCCA \ + UPXSCCA- JAVACODE axiom_algebra_layer_15_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_15)) @@ -769,7 +769,7 @@ axiom_algebra_layer_20 = \ SFORT SOLVESER SUMFS SUTS \ TOOLSIGN TRIGMNIP TRMANIP ULSCCAT \ ULSCCAT- UPXSSING UTSODE UTSODETL \ - UTS2 WUTSET + UTS2 WUTSET axiom_algebra_layer_20_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_20)) diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 129123b8..417a0713 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -412,7 +412,7 @@ axiom_algebra_layer_9 = \ PTFUNC2 RADCAT RADCAT- RATRET RADUTIL UPXS2 \ XFALG ZLINDEP BBTREE LSAGG LSAGG- SRAGG \ SRAGG- STRICAT ODEIFTBL NIPROB ODEPROB OPTPROB \ - PDEPROB + PDEPROB axiom_algebra_layer_9_nrlibs = \ @@ -523,7 +523,7 @@ axiom_algebra_layer_11 = \ TS TUPLE UPSCAT UPSCAT- \ VECTCAT VECTCAT- XDPOLY XEXPPKG \ XF XF- XPBWPOLY XPOLY \ - XRPOLY + XRPOLY axiom_algebra_layer_11_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_11)) @@ -781,11 +781,11 @@ plot.spad.pamphlet (PLOT PLOT1) <<layer15>>= axiom_algebra_layer_15 = \ - DSMP EXPUPXS \ - FRAMALG FRAMALG- MDAGG ODPOL \ - PLOT RMCAT2 ROIRC SDPOL \ - SMATCAT SMATCAT- TUBETOOL UPXSCCA \ - UPXSCCA- + DSMP EXPUPXS \ + FRAMALG FRAMALG- MDAGG ODPOL \ + PLOT RMCAT2 ROIRC SDPOL \ + SMATCAT SMATCAT- TUBETOOL UPXSCCA \ + UPXSCCA- JAVACODE axiom_algebra_layer_15_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_15)) @@ -1107,7 +1107,7 @@ axiom_algebra_layer_20 = \ SFORT SOLVESER SUMFS SUTS \ TOOLSIGN TRIGMNIP TRMANIP ULSCCAT \ ULSCCAT- UPXSSING UTSODE UTSODETL \ - UTS2 WUTSET + UTS2 WUTSET axiom_algebra_layer_20_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_20)) diff --git a/src/algebra/data.spad.pamphlet b/src/algebra/data.spad.pamphlet index b67fca76..8e8d8ca2 100644 --- a/src/algebra/data.spad.pamphlet +++ b/src/algebra/data.spad.pamphlet @@ -24,16 +24,25 @@ import OutputForm ++ Byte is the datatype of 8-bit sized unsigned integer values. Byte(): Public == Private where Public ==> Join(OrderedSet, CoercibleTo NonNegativeInteger) with - coerce: NonNegativeInteger -> % - ++ coerce(x) injects the unsigned integer value `v' into + byte: NonNegativeInteger -> % + ++ byte(x) injects the unsigned integer value `v' into ++ the Byte algebra. `v' must be non-negative and less than 256. + coerce: NonNegativeInteger -> % + ++ coerce(x) has the same effect as byte(x). + bitand: (%,%) -> % + ++ bitand(x,y) returns the bitwise `and' of `x' and `y'. + bitior: (%,%) -> % + ++ bitor(x,y) returns the bitwise `inclusive or' of `x' and `y'. Private ==> add - coerce(x: NonNegativeInteger): % == + byte(x: NonNegativeInteger): % == byteGreaterEqual(x,256$Lisp)$Lisp => userError "integer value cannot be represented by a byte" x : % + coerce(x: NonNegativeInteger): % == + byte x + coerce(x: %): NonNegativeInteger == x : NonNegativeInteger @@ -42,6 +51,12 @@ Byte(): Public == Private where x < y == byteLessThan(x,y)$Lisp + + bitand(x,y) == + bitand(x,y)$Lisp + + bitior(x,y) == + bitior(x,y)$Lisp @ @@ -100,3 +115,5 @@ ByteArray() == PrimitiveArray Byte <<domain BYTE Byte>> <<domain BYTEARY ByteArray>> @ + +\end{document} diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index ed69e324..b2037c58 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -195,6 +195,7 @@ (|InventorRenderPackage| . IVREND) (|InverseLaplaceTransform| . INVLAPLA) (|IrrRepSymNatPackage| . IRSN) + (|JavaBytecode| . JAVACODE) (|KernelFunctions2| . KERNEL2) (|KeyedAccessFile| . KAFILE) (|LaplaceTransform| . LAPLACE) diff --git a/src/algebra/java.spad.pamphlet b/src/algebra/java.spad.pamphlet new file mode 100644 index 00000000..c0624228 --- /dev/null +++ b/src/algebra/java.spad.pamphlet @@ -0,0 +1,135 @@ +\documentclass{article} +\usepackage{axiom} + +\author{Gabriel Dos~Reis} + +\begin{document} + +\begin{abstract} +\end{abstract} + +\tableofcontents +\eject + +\section{The JavaBytecode domain} +<<domain JAVACODE JavaBytecode>>= +)abbrev domain JAVACODE JavaBytecode +++ Author: Gabriel Dos Reis +++ Date Created: May 08, 2008 +++ Description: This domain defines the datatype for the Java +++ Virtual Machine byte codes. +JavaBytecode(): Public == Private where + Public ==> Join(CoercibleTo OutputForm, CoercibleTo Byte) with + coerce: Byte -> % + ++ coerce(x) the numerical byte value into a JVM bytecode. + + Private ==> add + -- mnemonics equivalent of bytecodes. + mnemonics : PrimitiveArray Symbol := + [['nop, 'aconst__null, 'iconst__m1, 'iconst__0, 'iconst__1, _ + 'iconst__2, 'iconst__3, 'iconst__4, 'iconst__5, 'lconst__0, _ + 'lconst__1, 'fconst__0, 'fconst__1, 'fconst__2, 'dconst__0, _ + 'dconst__1, 'bipush, 'sipush, 'ldc, ldc__w, 'ldc2__w, _ + 'iload, 'lload, 'fload, 'dload, 'aload, 'iload__0, _ + 'iload__1, 'iload__2, 'iload__3, 'lload_0, 'lload__1, _ + 'lload__2, 'lload__3, 'fload__0, 'fload__1, 'fload__2, _ + 'fload__3, 'dload__0, 'dload__1, 'dload__2, 'dload__3, _ + 'aload__0, 'aload__1, 'aload__2, 'aload__3, 'iaload, _ + 'laload, 'faload, 'daload, 'aaload, 'baload, 'caload, _ + 'saload, 'istore, 'lstore, 'fstore, 'dstore, 'atore, _ + 'istore__0, 'istore__1, 'istore__2, 'istore__3, 'lstore__0, _ + 'lstore__1, 'lstore__2, 'lstore__3, 'fstore__0, 'fstore__1, _ + 'fstore__2, 'fstore__3, 'dstore__0, 'dstore__1, 'dstore__2, _ + 'dstore__3, 'astore__0, 'astore__1, 'astore__2, 'astore__3, _ + 'iastore, 'lastore, 'fastore, 'dastore, 'aastore, 'bastore, _ + 'castore, 'sastore, 'pop, 'pop2, 'dup, 'dup__x1, 'dup__x2, _ + 'dup2, 'dup2__x1, 'dup2__x2, 'swap, 'iadd, 'ladd, 'fadd, _ + 'dadd, 'isub, 'lsub, 'fsub, 'dsub, 'imul, 'lmul, 'fmul, _ + 'dmul, 'idiv, 'ldiv, 'fdiv, 'ddiv, 'irem, 'lrem, 'frem, _ + 'drem, 'ineg, 'lneg, 'fneg, 'dneg, 'ishl, 'lshl, 'ishr, _ + 'lshr, 'iushr, 'lushr, 'iand, 'land, 'ior, 'lor, 'ixor, _ + 'lxor, 'iinc, 'i2l, 'i2f, 'i2d, 'l2i, 'l2f, 'l2d, 'f2i, _ + 'f2l, 'f2d, 'd2i, 'd2l, 'd2f, 'i2b, 'i2c, 'i2s, 'lcmp, _ + 'fcmpl, 'fcmpg, 'dcmpl, 'dcompg, 'ifeq, 'ifne, 'iflt, _ + 'ifge, 'ifle, 'if__icmpeq, 'if__icmpne, 'if__icmplt, _ + 'if__cmpge, 'if__cmpgt, 'if__cmple, 'if__cmpeq, 'if__acmpeq,_ + 'if__acmpne, 'goto, 'jsr, 'ret, 'tableswitch, 'lookupswitch,_ + 'ireturn, 'lreturn, 'freturn, 'dreturn, 'areturn, 'return, _ + 'getstatic, 'putstatic, 'getfield,'putfield, 'invokevirtual,_ + 'invokespecial, 'invokestatic, 'invokeinterface, _ + 'xxxunusedxxx, 'new, 'newarray, 'anewarray, 'arraylength, _ + 'athrow, 'checkcast, 'instanceof, 'monitorenter, _ + 'monitorexit, 'wide, 'multianewarray, 'ifnull, 'ifnonnull, _ + 'goto__w, 'jsr__w, 'breakpoint, 'unknownopcode0, _ + 'unknownopcode1, 'unknownopcode2, 'unknownopcode3, _ + 'unknownopcode4, 'unknownopcode5, 'unknownopcode6, _ + 'unknownopcode7, 'unknownopcode8, 'unknownopcode9, _ + 'unknownopcode10, 'unknownopcode11, 'unknownopcode12, _ + 'unknownopcode13, 'unknownopcode14, 'unknownopcode15, _ + 'unknownopcode16, 'unknownopcode17, 'unknownopcode18, _ + 'unknownopcode19, 'unknownopcode20, 'unknownopcode21, _ + 'unknownopcode22, 'unknownopcode23, 'unknownopcode24, _ + 'unknownopcode25, 'unknownopcode26, 'unknownopcode27, _ + 'unknownopcode28, 'unknownopcode29, 'unknownopcode30, _ + 'unknownopcode31, 'unknownopcode32, 'unknownopcode33, _ + 'unknownopcode34, 'unknownopcode35, 'unknownopcode36, _ + 'unknownopcode37, 'unknownopcode38, 'unknownopcode39, _ + 'unknownopcode40, 'unknownopcode41, 'unknownopcode42, _ + 'unknownopcode43, 'unknownopcode44, 'unknownopcode45, _ + 'unknownopcode46, 'unknownopcode47, 'unknownopcode48, _ + 'unknownopcode49, 'unknownopcode50, _ + 'impldep1, 'impldep2 ]]$PrimitiveArray(Symbol) + + Rep == Byte + + coerce(x: Byte): % == + per x + + coerce(x: %): Byte == + rep x + + coerce(x: %): OutputForm == + mnemonics.(x::Byte::Integer) :: OutputForm +@ + + +\section{License} +<<license>>= +--Copyright (C) 2007-2008, Gabriel Dos Reis. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical Algorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ + +<<*>>= +<<license>> +<<domain JAVACODE JavaBytecode>> +@ + +\end{document} diff --git a/src/interp/buildom.boot b/src/interp/buildom.boot index 6d94cc4c..12b77b33 100644 --- a/src/interp/buildom.boot +++ b/src/interp/buildom.boot @@ -265,8 +265,8 @@ Enumeration(:"args") == dom.5 := nil for i in $FirstParamSlot.. for a in args repeat dom.i := a dom.($FirstParamSlot + nargs) := [function EnumEqual, :dom] - dom.($FirstParamSlot + nargs + 1) := [function createEnum, :dom] - dom.($FirstParamSlot + nargs + 2) := [function EnumPrint, :dom] + dom.($FirstParamSlot + nargs + 1) := [function EnumPrint, :dom] + dom.($FirstParamSlot + nargs + 2) := [function createEnum, :dom] haddProp($ConstructorCache,"Enumeration",args,[1,:dom]) dom @@ -281,7 +281,7 @@ createEnum(sym, dom) == val := -1 for v in args for i in 0.. repeat sym=v => return(val:=i) - val<0 => error ["Cannot coerce",sym,"to",["Enumeration",:args]] + val<0 => userError ["Cannot coerce",sym,"to",["Enumeration",:args]] val --% INSTANTIATORS diff --git a/src/interp/sys-utility.boot b/src/interp/sys-utility.boot index 41deb426..409632be 100644 --- a/src/interp/sys-utility.boot +++ b/src/interp/sys-utility.boot @@ -194,3 +194,12 @@ loadModule(path,name) == --% numericis log10 x == LOG(x,10) + +bitand: (%Short,%Short) -> %Short +bitand(x,y) == + BOOLE(BOOLE_-AND,x,y) + +bitior: (%Short,%Short) -> %Short +bitior(x,y) == + BOOLE(BOOLE_-IOR,x,y) + diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 3f9d72ac..05cfd01d 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2237767 . 3419169924) +(2238320 . 3419278780) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,23 +46,23 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4247 . T) (-4245 . T) (-4244 . T) ((-4252 "*") . T) (-4243 . T) (-4248 . T) (-4242 . T) (-4131 . T)) +((-4251 . T) (-4249 . T) (-4248 . T) ((-4256 "*") . T) (-4247 . T) (-4252 . T) (-4246 . T) (-2341 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL -(-31 R -1730) +(-31 R -1896) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) +((|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (-32 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4250))) +((|HasAttribute| |#1| (QUOTE -4254))) (-33) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-4131 . T)) +((-2341 . T)) NIL (-34) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -70,7 +70,7 @@ NIL NIL (-35 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4250 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4255 . T) (-2341 . T)) NIL (-36 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -78,20 +78,20 @@ NIL NIL (-37 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4244 . T) (-4245 . T) (-4247 . T)) +((-4248 . T) (-4249 . T) (-4251 . T)) NIL (-38 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-39 -1730 UP UPUP -1233) +(-39 -1896 UP UPUP -1690) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4243 |has| (-385 |#2|) (-341)) (-4248 |has| (-385 |#2|) (-341)) (-4242 |has| (-385 |#2|) (-341)) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3150 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3150 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3150 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3150 (|HasCategory| (-385 |#2|) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341))))) -(-40 R -1730) +((-4247 |has| (-385 |#2|) (-341)) (-4252 |has| (-385 |#2|) (-341)) (-4246 |has| (-385 |#2|) (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3215 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3215 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3215 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3215 (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341))))) +(-40 R -1896) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))))) (-41 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -102,31 +102,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-286)))) (-43 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4247 |has| |#1| (-517)) (-4245 . T) (-4244 . T)) +((-4251 |has| |#1| (-517)) (-4249 . T) (-4248 . T)) ((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-44 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4250 . T) (-4251 . T)) -((-3150 (-12 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-788))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#2|))))))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-788))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-788))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))) (-12 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-3215 (-12 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#2|))))))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (-12 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797))))) (-45 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (-46 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-47) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| $ (QUOTE (-975))) (|HasCategory| $ (LIST (QUOTE -966) (QUOTE (-525))))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| $ (QUOTE (-976))) (|HasCategory| $ (LIST (QUOTE -967) (QUOTE (-525))))) (-48) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-49 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4247 . T)) +((-4251 . T)) NIL (-50 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -140,7 +140,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-53 |Base| R -1730) +(-53 |Base| R -1896) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -150,7 +150,7 @@ NIL NIL (-55 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4250 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4255 . T) (-2341 . T)) NIL (-56 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -158,65 +158,65 @@ NIL NIL (-57 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-58 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-59 -3419) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-59 -3515) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-60 -3419) +(-60 -3515) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-61 -3419) +(-61 -3515) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3419) +(-62 -3515) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-63 -3419) +(-63 -3515) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3419) +(-64 -3515) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3419) +(-65 -3515) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3419) +(-66 -3515) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3419) +(-67 -3515) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-68 -3419) +(-68 -3515) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3419) +(-69 -3515) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-70 -3419) +(-70 -3515) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-71 -3419) +(-71 -3515) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-72 -3419) +(-72 -3515) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -228,55 +228,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3419) +(-75 -3515) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-76 -3419) +(-76 -3515) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -3419) +(-77 -3515) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3419) +(-78 -3515) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3419) +(-79 -3515) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3419) +(-80 -3515) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3419) +(-81 -3515) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -3419) +(-82 -3515) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3419) +(-83 -3515) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3419) +(-84 -3515) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3419) +(-85 -3515) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3419) +(-86 -3515) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-87 -3419) +(-87 -3515) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -286,8 +286,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-341)))) (-89 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-90 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL @@ -298,15 +298,15 @@ NIL NIL (-92) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4250 . T)) +((-4254 . T)) NIL (-93) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4250 . T) ((-4252 "*") . T) (-4251 . T) (-4247 . T) (-4245 . T) (-4244 . T) (-4243 . T) (-4248 . T) (-4242 . T) (-4241 . T) (-4240 . T) (-4239 . T) (-4238 . T) (-4246 . T) (-4249 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4237 . T)) +((-4254 . T) ((-4256 "*") . T) (-4255 . T) (-4251 . T) (-4249 . T) (-4248 . T) (-4247 . T) (-4252 . T) (-4246 . T) (-4245 . T) (-4244 . T) (-4243 . T) (-4242 . T) (-4250 . T) (-4253 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4241 . T)) NIL (-94 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4247 . T)) +((-4251 . T)) NIL (-95 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -322,15 +322,15 @@ NIL NIL (-98 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-99 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4252 "*")))) +((|HasAttribute| |#1| (QUOTE (-4256 "*")))) (-100) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4250 . T)) +((-4254 . T)) NIL (-101 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -338,12 +338,12 @@ NIL NIL (-102 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4251 . T) (-4131 . T)) +((-4255 . T) (-2341 . T)) NIL (-103) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-525) (QUOTE (-842))) (|HasCategory| (-525) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-951))) (|HasCategory| (-525) (QUOTE (-761))) (-3150 (|HasCategory| (-525) (QUOTE (-761))) (|HasCategory| (-525) (QUOTE (-788)))) (|HasCategory| (-525) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1065))) (|HasCategory| (-525) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1089)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-525) (LIST (QUOTE -587) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-842)))) (|HasCategory| (-525) (QUOTE (-136))))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-525) (QUOTE (-843))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-952))) (|HasCategory| (-525) (QUOTE (-762))) (-3215 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1066))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (|HasCategory| (-525) (QUOTE (-136))))) (-104) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -354,11 +354,11 @@ NIL NIL (-106) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4251 . T) (-4250 . T)) -((-12 (|HasCategory| (-108) (QUOTE (-1018))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-108) (QUOTE (-1018))) (|HasCategory| (-108) (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-12 (|HasCategory| (-108) (QUOTE (-1019))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-108) (QUOTE (-1019))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-797))))) (-107 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) NIL (-108) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -367,30 +367,30 @@ NIL (-109 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-788)))) +((|HasCategory| |#1| (QUOTE (-789)))) (-110) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-111 -1730 UP) +(-111 -1896 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-112 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-113 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-112 |#1|) (QUOTE (-842))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-138))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-112 |#1|) (QUOTE (-951))) (|HasCategory| (-112 |#1|) (QUOTE (-761))) (-3150 (|HasCategory| (-112 |#1|) (QUOTE (-761))) (|HasCategory| (-112 |#1|) (QUOTE (-788)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-1065))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-213))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -486) (QUOTE (-1089)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-286))) (|HasCategory| (-112 |#1|) (QUOTE (-510))) (|HasCategory| (-112 |#1|) (QUOTE (-788))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-842)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-112 |#1|) (QUOTE (-843))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-138))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-112 |#1|) (QUOTE (-952))) (|HasCategory| (-112 |#1|) (QUOTE (-762))) (-3215 (|HasCategory| (-112 |#1|) (QUOTE (-762))) (|HasCategory| (-112 |#1|) (QUOTE (-789)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-1066))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-213))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-286))) (|HasCategory| (-112 |#1|) (QUOTE (-510))) (|HasCategory| (-112 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-843)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))))) (-114 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4251))) +((|HasAttribute| |#1| (QUOTE -4255))) (-115 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-4131 . T)) +((-2341 . T)) NIL (-116 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -398,15 +398,15 @@ NIL NIL (-117 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-118 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-119) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL (-120 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -414,22 +414,22 @@ NIL NIL (-121 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4250 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4255 . T) (-2341 . T)) NIL (-122 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-123 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-124) ((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| (-125) (QUOTE (-788))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (-12 (|HasCategory| (-125) (QUOTE (-1018))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125)))))) (-3150 (-12 (|HasCategory| (-125) (QUOTE (-1018))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| (-125) (QUOTE (-788))) (|HasCategory| (-125) (QUOTE (-1018)))) (|HasCategory| (-125) (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-125) (QUOTE (-1018))) (-12 (|HasCategory| (-125) (QUOTE (-1018))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (-12 (|HasCategory| (-125) (QUOTE (-1019))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125)))))) (-3215 (-12 (|HasCategory| (-125) (QUOTE (-1019))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-125) (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1019)))) (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1019))) (-12 (|HasCategory| (-125) (QUOTE (-1019))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-797))))) (-125) -((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) +((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL (-126) @@ -442,13 +442,13 @@ NIL NIL (-128) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4252 "*") . T)) +(((-4256 "*") . T)) NIL -(-129 |minix| -2058 S T$) +(-129 |minix| -3815 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-130 |minix| -2058 R) +(-130 |minix| -3815 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -458,8 +458,8 @@ NIL NIL (-132) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4250 . T) (-4240 . T) (-4251 . T)) -((-3150 (-12 (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1018))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (QUOTE (-788))) (|HasCategory| (-135) (QUOTE (-1018))) (-12 (|HasCategory| (-135) (QUOTE (-1018))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4244 . T) (-4255 . T)) +((-3215 (-12 (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1019))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-797))))) (-133 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -474,7 +474,7 @@ NIL NIL (-136) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4247 . T)) +((-4251 . T)) NIL (-137 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -482,9 +482,9 @@ NIL NIL (-138) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4247 . T)) +((-4251 . T)) NIL -(-139 -1730 UP UPUP) +(-139 -1896 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -495,14 +495,14 @@ NIL (-141 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasAttribute| |#1| (QUOTE -4250))) +((|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasAttribute| |#1| (QUOTE -4254))) (-142 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-4131 . T)) +((-2341 . T)) NIL (-143 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4245 . T) (-4244 . T) (-4247 . T)) +((-4249 . T) (-4248 . T) (-4251 . T)) NIL (-144) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -516,7 +516,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-147 R -1730) +(-147 R -1896) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -543,10 +543,10 @@ NIL (-153 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-951))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasAttribute| |#2| (QUOTE -4246)) (|HasAttribute| |#2| (QUOTE -4249)) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-788)))) +((|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-985))) (|HasCategory| |#2| (QUOTE (-952))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasAttribute| |#2| (QUOTE -4250)) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-789)))) (-154 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4243 -3150 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4246 |has| |#1| (-6 -4246)) (-4249 |has| |#1| (-6 -4249)) (-4185 . T) (-4131 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 -3215 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4250 |has| |#1| (-6 -4250)) (-4253 |has| |#1| (-6 -4253)) (-2381 . T) (-2341 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-155 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -558,8 +558,8 @@ NIL NIL (-157 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4243 -3150 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4246 |has| |#1| (-6 -4246)) (-4249 |has| |#1| (-6 -4249)) (-4185 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-346)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-769)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-788)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-951)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-1111)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-842))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-842))))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-510))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-842))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-341)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasAttribute| |#1| (QUOTE -4246)) (|HasAttribute| |#1| (QUOTE -4249)) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089))))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-327))))) +((-4247 -3215 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4250 |has| |#1| (-6 -4250)) (-4253 |has| |#1| (-6 -4253)) (-2381 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-346)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-952)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-843))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-843)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-843))))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-985))) (-12 (|HasCategory| |#1| (QUOTE (-985))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-510))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasAttribute| |#1| (QUOTE -4250)) (|HasAttribute| |#1| (QUOTE -4253)) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090))))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-327))))) (-158 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -570,11 +570,11 @@ NIL NIL (-160) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-161 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4252 "*") . T) (-4243 . T) (-4248 . T) (-4242 . T) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") . T) (-4247 . T) (-4252 . T) (-4246 . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-162) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -591,7 +591,7 @@ NIL (-165 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-885 |#2|) (LIST (QUOTE -819) (|devaluate| |#1|)))) +((|HasCategory| (-886 |#2|) (LIST (QUOTE -820) (|devaluate| |#1|)))) (-166 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL @@ -608,7 +608,7 @@ NIL ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-170 R -1730) +(-170 R -1896) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -712,19 +712,19 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-196 -1730 UP UPUP R) +(-196 -1896 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-197 -1730 FP) +(-197 -1896 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-198) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-525) (QUOTE (-842))) (|HasCategory| (-525) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-951))) (|HasCategory| (-525) (QUOTE (-761))) (-3150 (|HasCategory| (-525) (QUOTE (-761))) (|HasCategory| (-525) (QUOTE (-788)))) (|HasCategory| (-525) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1065))) (|HasCategory| (-525) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1089)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-525) (LIST (QUOTE -587) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-842)))) (|HasCategory| (-525) (QUOTE (-136))))) -(-199 R -1730) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-525) (QUOTE (-843))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-952))) (|HasCategory| (-525) (QUOTE (-762))) (-3215 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1066))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (|HasCategory| (-525) (QUOTE (-136))))) +(-199 R -1896) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -738,19 +738,19 @@ NIL NIL (-202 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-203 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4247 . T)) +((-4251 . T)) NIL -(-204 R -1730) +(-204 R -1896) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-205) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4173 . T) (-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-2371 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-206) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -758,23 +758,23 @@ NIL NIL (-207 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4252 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4256 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-208 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-209 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4251 . T) (-4131 . T)) +((-4255 . T) (-2341 . T)) NIL (-210 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-213)))) +((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213)))) (-211 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4247 . T)) +((-4251 . T)) NIL (-212 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -782,36 +782,36 @@ NIL NIL (-213) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4247 . T)) +((-4251 . T)) NIL (-214 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4250))) +((|HasAttribute| |#1| (QUOTE -4254))) (-215 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4251 . T) (-4131 . T)) +((-4255 . T) (-2341 . T)) NIL (-216) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-217 S -2058 R) +(-217 S -3815 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-786))) (|HasAttribute| |#3| (QUOTE -4247)) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-668))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (QUOTE (-1018)))) -(-218 -2058 R) +((|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasAttribute| |#3| (QUOTE -4251)) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (QUOTE (-1019)))) +(-218 -3815 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4244 |has| |#2| (-975)) (-4245 |has| |#2| (-975)) (-4247 |has| |#2| (-6 -4247)) ((-4252 "*") |has| |#2| (-160)) (-4250 . T) (-4131 . T)) +((-4248 |has| |#2| (-976)) (-4249 |has| |#2| (-976)) (-4251 |has| |#2| (-6 -4251)) ((-4256 "*") |has| |#2| (-160)) (-4254 . T) (-2341 . T)) NIL -(-219 -2058 A B) +(-219 -3815 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-220 -2058 R) +(-220 -3815 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4244 |has| |#2| (-975)) (-4245 |has| |#2| (-975)) (-4247 |has| |#2| (-6 -4247)) ((-4252 "*") |has| |#2| (-160)) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))))) (-3150 (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-975)))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (QUOTE (-341))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-734))) (-3150 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-786)))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-160))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-975)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-975)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-786)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-975)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1018))))) (-3150 (-12 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-788))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-975)))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089))))) (|HasCategory| |#2| (QUOTE (-668))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-3150 (|HasCategory| |#2| (QUOTE (-975))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasAttribute| |#2| (QUOTE -4247)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4248 |has| |#2| (-976)) (-4249 |has| |#2| (-976)) (-4251 |has| |#2| (-6 -4251)) ((-4256 "*") |has| |#2| (-160)) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3215 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-341))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-735))) (-3215 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-160))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019))))) (-3215 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-669))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-3215 (|HasCategory| |#2| (QUOTE (-976))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (|HasAttribute| |#2| (QUOTE -4251)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (-221) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -822,47 +822,47 @@ NIL NIL (-223) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4243 . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-224 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-4131 . T)) +((-2341 . T)) NIL (-225 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-226 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-227 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4252 "*") |has| |#2| (-160)) (-4243 |has| |#2| (-517)) (-4248 |has| |#2| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#2| (QUOTE (-842))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4248)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-136))))) +(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#2| (QUOTE (-843))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136))))) (-228) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL (-229 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4247 -3150 (-3543 (|has| |#4| (-975)) (|has| |#4| (-213))) (-3543 (|has| |#4| (-975)) (|has| |#4| (-833 (-1089)))) (|has| |#4| (-6 -4247)) (-3543 (|has| |#4| (-975)) (|has| |#4| (-587 (-525))))) (-4244 |has| |#4| (-975)) (-4245 |has| |#4| (-975)) ((-4252 "*") |has| |#4| (-160)) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-786))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-975))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -833) (QUOTE (-1089)))))) (|HasCategory| |#4| (QUOTE (-341))) (-3150 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-975)))) (-3150 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341)))) (|HasCategory| |#4| (QUOTE (-975))) (|HasCategory| |#4| (QUOTE (-734))) (-3150 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (QUOTE (-786)))) (|HasCategory| |#4| (QUOTE (-786))) (|HasCategory| |#4| (QUOTE (-160))) (-3150 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-975)))) (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#4| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-975)))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-160)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-213)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-341)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-346)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-734)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-786)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-975)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1018))))) (-3150 (-12 (|HasCategory| |#4| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-786))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-975))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#4| (QUOTE (-668))) (-12 (|HasCategory| |#4| (QUOTE (-975))) (|HasCategory| |#4| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-975))) (|HasCategory| |#4| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-975)))) (-3150 (|HasCategory| |#4| (QUOTE (-975))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525)))))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1018)))) (-3150 (|HasAttribute| |#4| (QUOTE -4247)) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-975)))) (-12 (|HasCategory| |#4| (QUOTE (-975))) (|HasCategory| |#4| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-975))) (|HasCategory| |#4| (LIST (QUOTE -833) (QUOTE (-1089)))))) (|HasCategory| |#4| (QUOTE (-126))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4251 -3215 (-2385 (|has| |#4| (-976)) (|has| |#4| (-213))) (-2385 (|has| |#4| (-976)) (|has| |#4| (-834 (-1090)))) (|has| |#4| (-6 -4251)) (-2385 (|has| |#4| (-976)) (|has| |#4| (-588 (-525))))) (-4248 |has| |#4| (-976)) (-4249 |has| |#4| (-976)) ((-4256 "*") |has| |#4| (-160)) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#4| (QUOTE (-341))) (-3215 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-976)))) (-3215 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341)))) (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (QUOTE (-735))) (-3215 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (QUOTE (-787)))) (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-160))) (-3215 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-976)))) (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-976)))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-160)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-213)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-341)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-346)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-735)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-787)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-976)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1019))))) (-3215 (-12 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-669))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-976)))) (-3215 (|HasCategory| |#4| (QUOTE (-976))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1019)))) (-3215 (|HasAttribute| |#4| (QUOTE -4251)) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-976)))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#4| (QUOTE (-126))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797))))) (-230 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4247 -3150 (-3543 (|has| |#3| (-975)) (|has| |#3| (-213))) (-3543 (|has| |#3| (-975)) (|has| |#3| (-833 (-1089)))) (|has| |#3| (-6 -4247)) (-3543 (|has| |#3| (-975)) (|has| |#3| (-587 (-525))))) (-4244 |has| |#3| (-975)) (-4245 |has| |#3| (-975)) ((-4252 "*") |has| |#3| (-160)) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-786))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))))) (|HasCategory| |#3| (QUOTE (-341))) (-3150 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-975)))) (-3150 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (QUOTE (-734))) (-3150 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-786)))) (|HasCategory| |#3| (QUOTE (-786))) (|HasCategory| |#3| (QUOTE (-160))) (-3150 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-975)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-975)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-786)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-975)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1018))))) (-3150 (-12 (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-786))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-668))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-975)))) (-3150 (|HasCategory| |#3| (QUOTE (-975))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-3150 (|HasAttribute| |#3| (QUOTE -4247)) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-975)))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4251 -3215 (-2385 (|has| |#3| (-976)) (|has| |#3| (-213))) (-2385 (|has| |#3| (-976)) (|has| |#3| (-834 (-1090)))) (|has| |#3| (-6 -4251)) (-2385 (|has| |#3| (-976)) (|has| |#3| (-588 (-525))))) (-4248 |has| |#3| (-976)) (-4249 |has| |#3| (-976)) ((-4256 "*") |has| |#3| (-160)) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#3| (QUOTE (-341))) (-3215 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3215 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (QUOTE (-735))) (-3215 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-160))) (-3215 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-976)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019))))) (-3215 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-669))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (-3215 (|HasCategory| |#3| (QUOTE (-976))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019)))) (-3215 (|HasAttribute| |#3| (QUOTE -4251)) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-797))))) (-231 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-213)))) (-232 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) NIL (-233 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4250 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4255 . T) (-2341 . T)) NIL (-234) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -902,8 +902,8 @@ NIL NIL (-243 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#3| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#3| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) (-244 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -948,11 +948,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-255 R -1730) +(-255 R -1896) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-256 R -1730) +(-256 R -1896) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -971,10 +971,10 @@ NIL (-260 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-1018)))) +((|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019)))) (-261 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4251 . T) (-4131 . T)) +((-4255 . T) (-2341 . T)) NIL (-262 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -995,18 +995,18 @@ NIL (-266 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4251))) +((|HasAttribute| |#1| (QUOTE -4255))) (-267 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-268 S R |Mod| -1466 -3459 |exactQuo|) +(-268 S R |Mod| -3934 -1440 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-269) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4243 . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-270) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1022,21 +1022,21 @@ NIL NIL (-273 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4247 -3150 (|has| |#1| (-975)) (|has| |#1| (-450))) (-4244 |has| |#1| (-975)) (-4245 |has| |#1| (-975))) -((|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-975)))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-975)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-975)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-975)))) (-3150 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-668)))) (|HasCategory| |#1| (QUOTE (-450))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-668))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3150 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-668))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-281))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450)))) (-3150 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-668)))) (-3150 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-975)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-668))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +((-4251 -3215 (|has| |#1| (-976)) (|has| |#1| (-450))) (-4248 |has| |#1| (-976)) (-4249 |has| |#1| (-976))) +((|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-976)))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-976)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-976)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-976)))) (-3215 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669)))) (|HasCategory| |#1| (QUOTE (-450))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-1019)))) (-3215 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1031)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-281))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450)))) (-3215 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669)))) (-3215 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-976)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) (-274 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#2|)))))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-1018))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#2|)))))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797))))) (-275) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-276 -1730 S) +(-276 -1896 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-277 E -1730) +(-277 E -1896) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL @@ -1051,7 +1051,7 @@ NIL (-280 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-975)))) +((|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-976)))) (-281) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1074,7 +1074,7 @@ NIL NIL (-286) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-287 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1084,7 +1084,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-289 -1730) +(-289 -1896) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1094,8 +1094,8 @@ NIL NIL (-291 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-951))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-761))) (-3150 (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-761))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-788)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-1065))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-213))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -486) (QUOTE (-1089)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -288) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (LIST (QUOTE -265) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-286))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-510))) (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-788))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| $ (QUOTE (-136)))) (-3150 (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| $ (QUOTE (-136)))))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-843))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-952))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (-3215 (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-789)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-1066))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-213))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -288) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -265) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-286))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-510))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-789))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-843))) (|HasCategory| $ (QUOTE (-136)))) (-3215 (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-843))) (|HasCategory| $ (QUOTE (-136)))))) (-292 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1106,9 +1106,9 @@ NIL NIL (-294 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4247 -3150 (-3543 (|has| |#1| (-975)) (|has| |#1| (-587 (-525)))) (-12 (|has| |#1| (-517)) (-3150 (-3543 (|has| |#1| (-975)) (|has| |#1| (-587 (-525)))) (|has| |#1| (-975)) (|has| |#1| (-450)))) (|has| |#1| (-975)) (|has| |#1| (-450))) (-4245 |has| |#1| (-160)) (-4244 |has| |#1| (-160)) ((-4252 "*") |has| |#1| (-517)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4242 |has| |#1| (-517))) -((-3150 (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (-3150 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-975)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (-3150 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-975)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-975)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-975)))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525))))) (-3150 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1030)))) (-3150 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))))) (-3150 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1030)))) (-3150 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))))) (-3150 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-975)))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| $ (QUOTE (-975))) (|HasCategory| $ (LIST (QUOTE -966) (QUOTE (-525))))) -(-295 R -1730) +((-4251 -3215 (-2385 (|has| |#1| (-976)) (|has| |#1| (-588 (-525)))) (-12 (|has| |#1| (-517)) (-3215 (-2385 (|has| |#1| (-976)) (|has| |#1| (-588 (-525)))) (|has| |#1| (-976)) (|has| |#1| (-450)))) (|has| |#1| (-976)) (|has| |#1| (-450))) (-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) ((-4256 "*") |has| |#1| (-517)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-517)) (-4246 |has| |#1| (-517))) +((-3215 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (-3215 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-3215 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1031)))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976)))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-3215 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3215 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3215 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3215 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3215 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-976)))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| $ (QUOTE (-976))) (|HasCategory| $ (LIST (QUOTE -967) (QUOTE (-525))))) +(-295 R -1896) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1118,8 +1118,8 @@ NIL NIL (-297 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|))))))) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|))))))) (-298 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1130,8 +1130,8 @@ NIL NIL (-300 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4245 . T) (-4244 . T)) -((|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-733)))) +((-4249 . T) (-4248 . T)) +((|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-734)))) (-301 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1139,26 +1139,26 @@ NIL (-302 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-712) (QUOTE (-733)))) +((|HasCategory| (-713) (QUOTE (-734)))) (-303 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL ((|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160)))) (-304 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-305 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-306 S -1730) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-306 S -1896) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-346)))) -(-307 -1730) +(-307 -1896) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-308) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) @@ -1176,54 +1176,54 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-312 S -1730 UP UPUP R) +(-312 S -1896 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-313 -1730 UP UPUP R) +(-313 -1896 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-314 -1730 UP UPUP R) +(-314 -1896 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-315 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-316 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-317 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-357)))) (|HasCategory| $ (QUOTE (-975))) (|HasCategory| $ (LIST (QUOTE -966) (QUOTE (-525))))) +((-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-357)))) (|HasCategory| $ (QUOTE (-976))) (|HasCategory| $ (LIST (QUOTE -967) (QUOTE (-525))))) (-318 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-319 S -1730 UP UPUP) +(-319 S -1896 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-341)))) -(-320 -1730 UP UPUP) +(-320 -1896 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4243 |has| (-385 |#2|) (-341)) (-4248 |has| (-385 |#2|) (-341)) (-4242 |has| (-385 |#2|) (-341)) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 |has| (-385 |#2|) (-341)) (-4252 |has| (-385 |#2|) (-341)) (-4246 |has| (-385 |#2|) (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-321 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| (-843 |#1|) (QUOTE (-136))) (|HasCategory| (-843 |#1|) (QUOTE (-346)))) (|HasCategory| (-843 |#1|) (QUOTE (-138))) (|HasCategory| (-843 |#1|) (QUOTE (-346))) (|HasCategory| (-843 |#1|) (QUOTE (-136)))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| (-844 |#1|) (QUOTE (-136))) (|HasCategory| (-844 |#1|) (QUOTE (-346)))) (|HasCategory| (-844 |#1|) (QUOTE (-138))) (|HasCategory| (-844 |#1|) (QUOTE (-346))) (|HasCategory| (-844 |#1|) (QUOTE (-136)))) (-322 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-323 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-324 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1238,33 +1238,33 @@ NIL NIL (-327) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-328 R UP -1730) +(-328 R UP -1896) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-329 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| (-843 |#1|) (QUOTE (-136))) (|HasCategory| (-843 |#1|) (QUOTE (-346)))) (|HasCategory| (-843 |#1|) (QUOTE (-138))) (|HasCategory| (-843 |#1|) (QUOTE (-346))) (|HasCategory| (-843 |#1|) (QUOTE (-136)))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| (-844 |#1|) (QUOTE (-136))) (|HasCategory| (-844 |#1|) (QUOTE (-346)))) (|HasCategory| (-844 |#1|) (QUOTE (-138))) (|HasCategory| (-844 |#1|) (QUOTE (-346))) (|HasCategory| (-844 |#1|) (QUOTE (-136)))) (-330 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-331 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-332 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| (-843 |#1|) (QUOTE (-136))) (|HasCategory| (-843 |#1|) (QUOTE (-346)))) (|HasCategory| (-843 |#1|) (QUOTE (-138))) (|HasCategory| (-843 |#1|) (QUOTE (-346))) (|HasCategory| (-843 |#1|) (QUOTE (-136)))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| (-844 |#1|) (QUOTE (-136))) (|HasCategory| (-844 |#1|) (QUOTE (-346)))) (|HasCategory| (-844 |#1|) (QUOTE (-138))) (|HasCategory| (-844 |#1|) (QUOTE (-346))) (|HasCategory| (-844 |#1|) (QUOTE (-136)))) (-333 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) -(-334 -1730 GF) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +(-334 -1896 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1272,21 +1272,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-336 -1730 FP FPP) +(-336 -1896 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-337 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-338 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-339 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4247 . T)) +((-4251 . T)) NIL (-340 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1294,7 +1294,7 @@ NIL NIL (-341) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-342 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1310,7 +1310,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-517)))) (-345 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4247 |has| |#1| (-517)) (-4245 . T) (-4244 . T)) +((-4251 |has| |#1| (-517)) (-4249 . T) (-4248 . T)) NIL (-346) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1322,7 +1322,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-341)))) (-348 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4244 . T) (-4245 . T) (-4247 . T)) +((-4248 . T) (-4249 . T) (-4251 . T)) NIL (-349 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1331,14 +1331,14 @@ NIL (-350 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4251)) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-1018)))) +((|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019)))) (-351 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4250 . T) (-4131 . T)) +((-4254 . T) (-2341 . T)) NIL (-352 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4245 . T) (-4244 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4249 . T) (-4248 . T)) NIL (-353 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1347,10 +1347,10 @@ NIL (-354 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) +((|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-355 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4247 . T)) +((-4251 . T)) NIL (-356 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1358,7 +1358,7 @@ NIL NIL (-357) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4233 . T) (-4241 . T) (-4173 . T) (-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4237 . T) (-4245 . T) (-2371 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-358 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1366,31 +1366,31 @@ NIL NIL (-359 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((|HasCategory| |#1| (QUOTE (-160)))) (-360 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) NIL (-361) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-4131 . T)) +((-2341 . T)) NIL (-362) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-4131 . T)) +((-2341 . T)) NIL (-363 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) ((|HasCategory| |#1| (QUOTE (-160)))) (-364 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-788)))) +((|HasCategory| |#1| (QUOTE (-789)))) (-365) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-366) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1402,13 +1402,13 @@ NIL NIL (-368 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) NIL (-369) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-370 -1730 UP UPUP R) +(-370 -1896 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1422,27 +1422,27 @@ NIL NIL (-373) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-4131 . T)) +((-2341 . T)) NIL (-374) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-4131 . T)) +((-2341 . T)) NIL (-375) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-376 -3419 |returnType| -3638 |symbols|) +(-376 -3515 |returnType| -3362 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-377 -1730 UP) +(-377 -1896 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL (-378 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-4131 . T)) +((-2341 . T)) NIL (-379 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) @@ -1450,15 +1450,15 @@ NIL NIL (-380) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-381 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4233)) (|HasAttribute| |#1| (QUOTE -4241))) +((|HasAttribute| |#1| (QUOTE -4237)) (|HasAttribute| |#1| (QUOTE -4245))) (-382) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4173 . T) (-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-2371 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-383 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1470,20 +1470,20 @@ NIL NIL (-385 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4237 -12 (|has| |#1| (-6 -4248)) (|has| |#1| (-429)) (|has| |#1| (-6 -4237))) (-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-761))) (-3150 (|HasCategory| |#1| (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-788)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1065))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-769))))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-769))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-769)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-510))) (-12 (|HasAttribute| |#1| (QUOTE -4248)) (|HasAttribute| |#1| (QUOTE -4237)) (|HasCategory| |#1| (QUOTE (-429)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) +((-4241 -12 (|has| |#1| (-6 -4252)) (|has| |#1| (-429)) (|has| |#1| (-6 -4241))) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-762))) (-3215 (|HasCategory| |#1| (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-789)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1066))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-510))) (-12 (|HasAttribute| |#1| (QUOTE -4252)) (|HasAttribute| |#1| (QUOTE -4241)) (|HasCategory| |#1| (QUOTE (-429)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) (-386 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-387 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4244 . T) (-4245 . T) (-4247 . T)) +((-4248 . T) (-4249 . T) (-4251 . T)) NIL (-388 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) +((|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-389 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1492,14 +1492,14 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-391 R -1730 UP A) +(-391 R -1896 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4247 . T)) +((-4251 . T)) NIL -(-392 R -1730 UP A |ibasis|) +(-392 R -1896 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -966) (|devaluate| |#2|)))) +((|HasCategory| |#4| (LIST (QUOTE -967) (|devaluate| |#2|)))) (-393 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1510,12 +1510,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-341)))) (-395 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4247 |has| |#1| (-517)) (-4245 . T) (-4244 . T)) +((-4251 |has| |#1| (-517)) (-4249 . T) (-4248 . T)) NIL (-396 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1089)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -288) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -265) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1129))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-1129)))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-429)))) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -288) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -265) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1130))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-429)))) (-397 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL @@ -1539,40 +1539,40 @@ NIL (-402 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-346)))) +((|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-346)))) (-403 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4250 . T) (-4240 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4244 . T) (-4255 . T) (-2341 . T)) NIL -(-404 R -1730) +(-404 R -1896) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-405 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4237 -12 (|has| |#1| (-6 -4237)) (|has| |#2| (-6 -4237))) (-4244 . T) (-4245 . T) (-4247 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4237)) (|HasAttribute| |#2| (QUOTE -4237)))) -(-406 R -1730) +((-4241 -12 (|has| |#1| (-6 -4241)) (|has| |#2| (-6 -4241))) (-4248 . T) (-4249 . T) (-4251 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4241)) (|HasAttribute| |#2| (QUOTE -4241)))) +(-406 R -1896) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-407 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) +((|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-408 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4247 -3150 (|has| |#1| (-975)) (|has| |#1| (-450))) (-4245 |has| |#1| (-160)) (-4244 |has| |#1| (-160)) ((-4252 "*") |has| |#1| (-517)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4242 |has| |#1| (-517)) (-4131 . T)) +((-4251 -3215 (|has| |#1| (-976)) (|has| |#1| (-450))) (-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) ((-4256 "*") |has| |#1| (-517)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-517)) (-4246 |has| |#1| (-517)) (-2341 . T)) NIL -(-409 R -1730) +(-409 R -1896) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-410 R -1730) +(-410 R -1896) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-411 R -1730) +(-411 R -1896) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1580,10 +1580,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-413 R -1730 UP) +(-413 R -1896 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-47))))) +((|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-47))))) (-414) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL @@ -1598,17 +1598,17 @@ NIL NIL (-417) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-4131 . T)) +((-2341 . T)) NIL (-418) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-4131 . T)) +((-2341 . T)) NIL (-419 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-420 R UP -1730) +(-420 R UP -1896) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1646,16 +1646,16 @@ NIL NIL (-429) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-430 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4247 |has| (-385 (-885 |#1|)) (-517)) (-4245 . T) (-4244 . T)) -((|HasCategory| (-385 (-885 |#1|)) (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-385 (-885 |#1|)) (QUOTE (-517)))) +((-4251 |has| (-385 (-886 |#1|)) (-517)) (-4249 . T) (-4248 . T)) +((|HasCategory| (-385 (-886 |#1|)) (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-385 (-886 |#1|)) (QUOTE (-517)))) (-431 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4252 "*") |has| |#2| (-160)) (-4243 |has| |#2| (-517)) (-4248 |has| |#2| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#2| (QUOTE (-842))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4248)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-136))))) +(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#2| (QUOTE (-843))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136))))) (-432 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1682,7 +1682,7 @@ NIL NIL (-438 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) NIL (-439 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1690,8 +1690,8 @@ NIL NIL (-440 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4251 . T) (-4250 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#4| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797))))) (-441 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1720,7 +1720,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-448 |lv| -1730 R) +(-448 |lv| -1896 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1730,45 +1730,45 @@ NIL NIL (-450) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4247 . T)) +((-4251 . T)) NIL (-451 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|))))))) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|))))))) (-452 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#2|)))))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-788))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#2|)))))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797))))) (-453 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4251 . T) (-4250 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797))))) (-454) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-455 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#2|)))))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-1018))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#2|)))))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797))))) (-456) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-457 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4252 "*") |has| |#2| (-160)) (-4243 |has| |#2| (-517)) (-4248 |has| |#2| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#2| (QUOTE (-842))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4248)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-136))))) -(-458 -2058 S) +(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#2| (QUOTE (-843))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136))))) +(-458 -3815 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4244 |has| |#2| (-975)) (-4245 |has| |#2| (-975)) (-4247 |has| |#2| (-6 -4247)) ((-4252 "*") |has| |#2| (-160)) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))))) (-3150 (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-975)))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (QUOTE (-341))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-734))) (-3150 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-786)))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-160))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-975)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-975)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-786)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-975)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1018))))) (-3150 (-12 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-788))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-975)))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089))))) (|HasCategory| |#2| (QUOTE (-668))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-3150 (|HasCategory| |#2| (QUOTE (-975))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasAttribute| |#2| (QUOTE -4247)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4248 |has| |#2| (-976)) (-4249 |has| |#2| (-976)) (-4251 |has| |#2| (-6 -4251)) ((-4256 "*") |has| |#2| (-160)) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3215 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-341))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-735))) (-3215 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-160))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019))))) (-3215 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-669))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-3215 (|HasCategory| |#2| (QUOTE (-976))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (|HasAttribute| |#2| (QUOTE -4251)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (-459 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-460 -1730 UP UPUP R) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-460 -1896 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1778,15 +1778,15 @@ NIL NIL (-462) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-525) (QUOTE (-842))) (|HasCategory| (-525) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-951))) (|HasCategory| (-525) (QUOTE (-761))) (-3150 (|HasCategory| (-525) (QUOTE (-761))) (|HasCategory| (-525) (QUOTE (-788)))) (|HasCategory| (-525) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1065))) (|HasCategory| (-525) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1089)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-525) (LIST (QUOTE -587) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-842)))) (|HasCategory| (-525) (QUOTE (-136))))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-525) (QUOTE (-843))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-952))) (|HasCategory| (-525) (QUOTE (-762))) (-3215 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1066))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (|HasCategory| (-525) (QUOTE (-136))))) (-463 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4250)) (|HasAttribute| |#1| (QUOTE -4251)) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) +((|HasAttribute| |#1| (QUOTE -4254)) (|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (-464 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-4131 . T)) +((-2341 . T)) NIL (-465 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) @@ -1796,34 +1796,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-467 -1730 UP |AlExt| |AlPol|) +(-467 -1896 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-468) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| $ (QUOTE (-975))) (|HasCategory| $ (LIST (QUOTE -966) (QUOTE (-525))))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| $ (QUOTE (-976))) (|HasCategory| $ (LIST (QUOTE -967) (QUOTE (-525))))) (-469 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-470 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-471 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-472 R UP -1730) +(-472 R UP -1896) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-473 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4251 . T) (-4250 . T)) -((-12 (|HasCategory| (-108) (QUOTE (-1018))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-108) (QUOTE (-1018))) (|HasCategory| (-108) (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-12 (|HasCategory| (-108) (QUOTE (-1019))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-108) (QUOTE (-1019))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-797))))) (-474 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1836,10 +1836,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-477 -1730 |Expon| |VarSet| |DPoly|) +(-477 -1896 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-1089))))) +((|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-1090))))) (-478 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -1879,35 +1879,35 @@ NIL (-487 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-733)))) +((|HasCategory| |#2| (QUOTE (-734)))) (-488 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-489 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| (-538 |#1|) (QUOTE (-136))) (|HasCategory| (-538 |#1|) (QUOTE (-346)))) (|HasCategory| (-538 |#1|) (QUOTE (-138))) (|HasCategory| (-538 |#1|) (QUOTE (-346))) (|HasCategory| (-538 |#1|) (QUOTE (-136)))) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| (-538 |#1|) (QUOTE (-136))) (|HasCategory| (-538 |#1|) (QUOTE (-346)))) (|HasCategory| (-538 |#1|) (QUOTE (-138))) (|HasCategory| (-538 |#1|) (QUOTE (-346))) (|HasCategory| (-538 |#1|) (QUOTE (-136)))) (-490 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-491 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-492 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4251))) +((|HasAttribute| |#3| (QUOTE -4255))) (-493 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4251))) +((|HasAttribute| |#7| (QUOTE -4255))) (-494 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4252 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4256 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-495 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL @@ -1920,7 +1920,7 @@ NIL ((|constructor| (NIL "converts entire exponents to OutputForm"))) NIL NIL -(-498 K -1730 |Par|) +(-498 K -1896 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -1940,7 +1940,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-503 K -1730 |Par|) +(-503 K -1896 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -1970,17 +1970,17 @@ NIL NIL (-510) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4248 . T) (-4249 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4252 . T) (-4253 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-511 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#2|)))))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-1018))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796))))) -(-512 R -1730) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#2|)))))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797))))) +(-512 R -1896) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-513 R0 -1730 UP UPUP R) +(-513 R0 -1896 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -1990,7 +1990,7 @@ NIL NIL (-515 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4173 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-2371 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-516 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -1998,9 +1998,9 @@ NIL NIL (-517) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-518 R -1730) +(-518 R -1896) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2012,39 +2012,39 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-521 R -1730 L) +(-521 R -1896 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -601) (|devaluate| |#2|)))) +((|HasCategory| |#3| (LIST (QUOTE -602) (|devaluate| |#2|)))) (-522) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-523 -1730 UP UPUP R) +(-523 -1896 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-524 -1730 UP) +(-524 -1896 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-525) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4232 . T) (-4238 . T) (-4242 . T) (-4237 . T) (-4248 . T) (-4249 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4236 . T) (-4242 . T) (-4246 . T) (-4241 . T) (-4252 . T) (-4253 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-526) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-527 R -1730 L) +(-527 R -1896 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -601) (|devaluate| |#2|)))) -(-528 R -1730) +((|HasCategory| |#3| (LIST (QUOTE -602) (|devaluate| |#2|)))) +(-528 R -1896) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-577))))) -(-529 -1730 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1054)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-578))))) +(-529 -1896 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2052,54 +2052,54 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-531 -1730) +(-531 -1896) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-532 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4173 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-2371 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-533) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-534 R -1730) +(-534 R -1896) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-263))) (|HasCategory| |#2| (QUOTE (-577))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-263)))) (|HasCategory| |#1| (QUOTE (-517)))) -(-535 -1730 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-263))) (|HasCategory| |#2| (QUOTE (-578))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-263)))) (|HasCategory| |#1| (QUOTE (-517)))) +(-535 -1896 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-536 R -1730) +(-536 R -1896) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL (-537 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL (-538 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) ((|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-346)))) (-539) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-540 R -1730) +(-540 R -1896) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-541 E -1730) +(-541 E -1896) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-542 -1730) +(-542 -1896) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4245 . T) (-4244 . T)) -((|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-1089))))) +((-4249 . T) (-4248 . T)) +((|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-1090))))) (-543 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2122,19 +2122,19 @@ NIL NIL (-548 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| (-135) (QUOTE (-788))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1018))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (-3150 (|HasCategory| (-135) (LIST (QUOTE -565) (QUOTE (-796)))) (-12 (|HasCategory| (-135) (QUOTE (-1018))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| (-135) (QUOTE (-788))) (|HasCategory| (-135) (QUOTE (-1018)))) (|HasCategory| (-135) (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-135) (QUOTE (-1018))) (-12 (|HasCategory| (-135) (QUOTE (-1018))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (-3215 (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-797)))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1019)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1019))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-797))))) (-549 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-550 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))) (|HasCategory| (-525) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525)))))) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))) (|HasCategory| (-525) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525)))))) (-551 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4245 |has| |#1| (-517)) (-4244 |has| |#1| (-517)) ((-4252 "*") |has| |#1| (-517)) (-4243 |has| |#1| (-517)) (-4247 . T)) +((-4249 |has| |#1| (-517)) (-4248 |has| |#1| (-517)) ((-4256 "*") |has| |#1| (-517)) (-4247 |has| |#1| (-517)) (-4251 . T)) ((|HasCategory| |#1| (QUOTE (-517)))) (-552 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) @@ -2144,7 +2144,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-554 R -1730 FG) +(-554 R -1896 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2154,2571 +2154,2575 @@ NIL NIL (-556 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-668))) (|HasCategory| |#1| (QUOTE (-975))) (-12 (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-975)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-976))) (-12 (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-976)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (-557 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4251)) (|HasCategory| |#2| (QUOTE (-788))) (|HasAttribute| |#1| (QUOTE -4250)) (|HasCategory| |#3| (QUOTE (-1018)))) +((|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#2| (QUOTE (-789))) (|HasAttribute| |#1| (QUOTE -4254)) (|HasCategory| |#3| (QUOTE (-1019)))) (-558 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-4131 . T)) +((-2341 . T)) +NIL +(-559) +((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) +NIL NIL -(-559 R A) +(-560 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4247 -3150 (-3543 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4245 . T) (-4244 . T)) -((-3150 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) -(-560 |Entry|) +((-4251 -3215 (-2385 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4249 . T) (-4248 . T)) +((-3215 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) +(-561 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (QUOTE (-1072))) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| (-1072) (QUOTE (-788))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (LIST (QUOTE -565) (QUOTE (-796))))) -(-561 S |Key| |Entry|) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| (-1073) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (LIST (QUOTE -566) (QUOTE (-797))))) +(-562 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-562 |Key| |Entry|) +(-563 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4251 . T) (-4131 . T)) +((-4255 . T) (-2341 . T)) NIL -(-563 R S) +(-564 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-564 S) +(-565 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) -(-565 S) +((|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) +(-566 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-566 S) +(-567 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-567 -1730 UP) +(-568 -1896 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-568 S R) +(-569 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-569 R) +(-570 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4247 . T)) +((-4251 . T)) NIL -(-570 A R S) +(-571 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-786)))) -(-571 R -1730) +((-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-787)))) +(-572 R -1896) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-572 R UP) +(-573 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4245 . T) (-4244 . T) ((-4252 "*") . T) (-4243 . T) (-4247 . T)) -((|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) -(-573 R E V P TS ST) +((-4249 . T) (-4248 . T) ((-4256 "*") . T) (-4247 . T) (-4251 . T)) +((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) +(-574 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-574 OV E Z P) +(-575 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-575 |VarSet| R |Order|) +(-576 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4247 . T)) +((-4251 . T)) NIL -(-576 R |ls|) +(-577 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-577) +(-578) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-578 R -1730) +(-579 R -1896) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-579 |lv| -1730) +(-580 |lv| -1896) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-580) +(-581) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (QUOTE (-1072))) (LIST (QUOTE |:|) (QUOTE -1568) (QUOTE (-51))))))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-51) (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-51) (QUOTE (-1018))) (|HasCategory| (-51) (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1018))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-1072) (QUOTE (-788))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-51) (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-51) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-51) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (LIST (QUOTE -565) (QUOTE (-796))))) -(-581 S R) +((-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -3978) (QUOTE (-51))))))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-51) (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-1073) (QUOTE (-789))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (LIST (QUOTE -566) (QUOTE (-797))))) +(-582 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-341)))) -(-582 R) +(-583 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4245 . T) (-4244 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4249 . T) (-4248 . T)) NIL -(-583 R A) +(-584 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4247 -3150 (-3543 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4245 . T) (-4244 . T)) -((-3150 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) -(-584 R FE) +((-4251 -3215 (-2385 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4249 . T) (-4248 . T)) +((-3215 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) +(-585 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-585 R) +(-586 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-586 S R) +(-587 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3389 (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-341)))) -(-587 R) +((-2823 (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-341)))) +(-588 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4247 . T)) +((-4251 . T)) NIL -(-588 A B) +(-589 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-589 A B) +(-590 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-590 A B C) +(-591 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-591 S) -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-769))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (-592 S) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-593 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-593 R) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-594 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-594 S E |un|) +(-595 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-595 A S) +(-596 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4251))) -(-596 S) +((|HasAttribute| |#1| (QUOTE -4255))) +(-597 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-4131 . T)) +((-2341 . T)) NIL -(-597 R -1730 L) +(-598 R -1896 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-598 A) +(-599 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) -(-599 A M) +((-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) +(-600 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) -(-600 S A) +((-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) +(-601 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-341)))) -(-601 A) +(-602 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4244 . T) (-4245 . T) (-4247 . T)) +((-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-602 -1730 UP) +(-603 -1896 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-603 A -2595) +(-604 A -3966) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) -(-604 A L) +((-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) +(-605 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-605 S) +(-606 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-606) +(-607) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-607 M R S) +(-608 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4245 . T) (-4244 . T)) -((|HasCategory| |#1| (QUOTE (-732)))) -(-608 R) +((-4249 . T) (-4248 . T)) +((|HasCategory| |#1| (QUOTE (-733)))) +(-609 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-609 |VarSet| R) +(-610 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4245 . T) (-4244 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4249 . T) (-4248 . T)) ((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-160)))) -(-610 A S) +(-611 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-611 S) +(-612 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-612 -1730) +(-613 -1896) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-613 -1730 |Row| |Col| M) +(-614 -1896 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-614 R E OV P) +(-615 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-615 |n| R) +(-616 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4247 . T) (-4250 . T) (-4244 . T) (-4245 . T)) -((|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4252 "*"))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (-3150 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))) (-3150 (|HasAttribute| |#2| (QUOTE (-4252 "*"))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-160)))) -(-616 |VarSet|) +((-4251 . T) (-4254 . T) (-4248 . T) (-4249 . T)) +((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (-3215 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))) (-3215 (|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-160)))) +(-617 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-617 A S) +(-618 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-618 S) +(-619 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-4131 . T)) +((-2341 . T)) NIL -(-619 R) +(-620 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (QUOTE (-975))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-620 |VarSet|) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-976))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-621 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-621 A) +(-622 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-622 A C) +(-623 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-623 A B C) +(-624 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-624 A) +(-625 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-625 A C) +(-626 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-626 A B C) +(-627 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-627 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-628 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-628 S R |Row| |Col|) +(-629 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4252 "*"))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517)))) -(-629 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517)))) +(-630 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4250 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4255 . T) (-2341 . T)) NIL -(-630 R |Row| |Col| M) +(-631 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL ((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517)))) -(-631 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4250 . T) (-4251 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4252 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (-632 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4254 . T) (-4255 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4256 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-633 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-633 S -1730 FLAF FLAS) +(-634 S -1896 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-634 R Q) +(-635 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-635) +(-636) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4243 . T) (-4248 |has| (-640) (-341)) (-4242 |has| (-640) (-341)) (-4185 . T) (-4249 |has| (-640) (-6 -4249)) (-4246 |has| (-640) (-6 -4246)) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-640) (QUOTE (-138))) (|HasCategory| (-640) (QUOTE (-136))) (|HasCategory| (-640) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-640) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| (-640) (QUOTE (-346))) (|HasCategory| (-640) (QUOTE (-341))) (|HasCategory| (-640) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-640) (QUOTE (-213))) (-3150 (|HasCategory| (-640) (QUOTE (-341))) (|HasCategory| (-640) (QUOTE (-327)))) (|HasCategory| (-640) (QUOTE (-327))) (|HasCategory| (-640) (LIST (QUOTE -265) (QUOTE (-640)) (QUOTE (-640)))) (|HasCategory| (-640) (LIST (QUOTE -288) (QUOTE (-640)))) (|HasCategory| (-640) (LIST (QUOTE -486) (QUOTE (-1089)) (QUOTE (-640)))) (|HasCategory| (-640) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| (-640) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| (-640) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| (-640) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (-3150 (|HasCategory| (-640) (QUOTE (-286))) (|HasCategory| (-640) (QUOTE (-341))) (|HasCategory| (-640) (QUOTE (-327)))) (|HasCategory| (-640) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-640) (QUOTE (-951))) (|HasCategory| (-640) (QUOTE (-1111))) (-12 (|HasCategory| (-640) (QUOTE (-932))) (|HasCategory| (-640) (QUOTE (-1111)))) (-3150 (-12 (|HasCategory| (-640) (QUOTE (-286))) (|HasCategory| (-640) (QUOTE (-842)))) (|HasCategory| (-640) (QUOTE (-341))) (-12 (|HasCategory| (-640) (QUOTE (-327))) (|HasCategory| (-640) (QUOTE (-842))))) (-3150 (-12 (|HasCategory| (-640) (QUOTE (-286))) (|HasCategory| (-640) (QUOTE (-842)))) (-12 (|HasCategory| (-640) (QUOTE (-341))) (|HasCategory| (-640) (QUOTE (-842)))) (-12 (|HasCategory| (-640) (QUOTE (-327))) (|HasCategory| (-640) (QUOTE (-842))))) (|HasCategory| (-640) (QUOTE (-510))) (-12 (|HasCategory| (-640) (QUOTE (-984))) (|HasCategory| (-640) (QUOTE (-1111)))) (|HasCategory| (-640) (QUOTE (-984))) (-3150 (|HasCategory| (-640) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-640) (QUOTE (-341)))) (|HasCategory| (-640) (QUOTE (-286))) (|HasCategory| (-640) (QUOTE (-842))) (-3150 (-12 (|HasCategory| (-640) (QUOTE (-286))) (|HasCategory| (-640) (QUOTE (-842)))) (|HasCategory| (-640) (QUOTE (-341)))) (-3150 (-12 (|HasCategory| (-640) (QUOTE (-286))) (|HasCategory| (-640) (QUOTE (-842)))) (|HasCategory| (-640) (QUOTE (-517)))) (-12 (|HasCategory| (-640) (QUOTE (-213))) (|HasCategory| (-640) (QUOTE (-341)))) (-12 (|HasCategory| (-640) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-640) (QUOTE (-341)))) (|HasCategory| (-640) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-640) (QUOTE (-788))) (|HasCategory| (-640) (QUOTE (-517))) (|HasAttribute| (-640) (QUOTE -4249)) (|HasAttribute| (-640) (QUOTE -4246)) (-12 (|HasCategory| (-640) (QUOTE (-286))) (|HasCategory| (-640) (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-640) (QUOTE (-286))) (|HasCategory| (-640) (QUOTE (-842)))) (|HasCategory| (-640) (QUOTE (-136)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-640) (QUOTE (-286))) (|HasCategory| (-640) (QUOTE (-842)))) (|HasCategory| (-640) (QUOTE (-327))))) -(-636 S) +((-4247 . T) (-4252 |has| (-641) (-341)) (-4246 |has| (-641) (-341)) (-2381 . T) (-4253 |has| (-641) (-6 -4253)) (-4250 |has| (-641) (-6 -4250)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-641) (QUOTE (-138))) (|HasCategory| (-641) (QUOTE (-136))) (|HasCategory| (-641) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-346))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-641) (QUOTE (-213))) (-3215 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (LIST (QUOTE -265) (QUOTE (-641)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -288) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-641) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (-3215 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-641) (QUOTE (-952))) (|HasCategory| (-641) (QUOTE (-1112))) (-12 (|HasCategory| (-641) (QUOTE (-933))) (|HasCategory| (-641) (QUOTE (-1112)))) (-3215 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-341))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-843))))) (-3215 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (-12 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-843)))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-843))))) (|HasCategory| (-641) (QUOTE (-510))) (-12 (|HasCategory| (-641) (QUOTE (-985))) (|HasCategory| (-641) (QUOTE (-1112)))) (|HasCategory| (-641) (QUOTE (-985))) (-3215 (|HasCategory| (-641) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843))) (-3215 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-341)))) (-3215 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-517)))) (-12 (|HasCategory| (-641) (QUOTE (-213))) (|HasCategory| (-641) (QUOTE (-341)))) (-12 (|HasCategory| (-641) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-789))) (|HasCategory| (-641) (QUOTE (-517))) (|HasAttribute| (-641) (QUOTE -4253)) (|HasAttribute| (-641) (QUOTE -4250)) (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-136)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-327))))) +(-637 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4251 . T) (-4131 . T)) +((-4255 . T) (-2341 . T)) NIL -(-637 U) +(-638 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-638) +(-639) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-639 OV E -1730 PG) +(-640 OV E -1896 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-640) +(-641) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4173 . T) (-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-2371 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-641 R) +(-642 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-642) +(-643) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4249 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4253 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-643 S D1 D2 I) +(-644 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-644 S) +(-645 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-645 S) +(-646 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-646 S) +(-647 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-647 S T$) +(-648 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-648 S -1796 I) +(-649 S -1990 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-649 E OV R P) +(-650 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-650 R) +(-651 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4244 . T) (-4245 . T) (-4247 . T)) +((-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-651 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-652 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-652) +(-653) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-653 R |Mod| -1466 -3459 |exactQuo|) +(-654 R |Mod| -3934 -1440 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-654 R |Rep|) +(-655 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4246 |has| |#1| (-341)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-327))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-655 IS E |ff|) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4250 |has| |#1| (-341)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-327))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-656 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-656 R M) +(-657 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4245 |has| |#1| (-160)) (-4244 |has| |#1| (-160)) (-4247 . T)) +((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T)) ((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138)))) -(-657 R |Mod| -1466 -3459 |exactQuo|) +(-658 R |Mod| -3934 -1440 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4247 . T)) +((-4251 . T)) NIL -(-658 S R) +(-659 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-659 R) +(-660 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) NIL -(-660 -1730) +(-661 -1896) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4247 . T)) +((-4251 . T)) NIL -(-661 S) +(-662 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-662) +(-663) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-663 S) +(-664 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-664) +(-665) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-665 S R UP) +(-666 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-327))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346)))) -(-666 R UP) +(-667 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4243 |has| |#1| (-341)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 |has| |#1| (-341)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-667 S) +(-668 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-668) +(-669) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-669 -1730 UP) +(-670 -1896 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-670 |VarSet| E1 E2 R S PR PS) +(-671 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-671 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-672 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-672 E OV R PPR) +(-673 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-673 |vl| R) +(-674 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4252 "*") |has| |#2| (-160)) (-4243 |has| |#2| (-517)) (-4248 |has| |#2| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#2| (QUOTE (-842))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-798 |#1|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4248)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-136))))) -(-674 E OV R PRF) +(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#2| (QUOTE (-843))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136))))) +(-675 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-675 E OV R P) +(-676 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-676 R S M) +(-677 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-677 R M) +(-678 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4245 |has| |#1| (-160)) (-4244 |has| |#1| (-160)) (-4247 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-788)))) -(-678 S) +((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-789)))) +(-679 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4240 . T) (-4251 . T) (-4131 . T)) +((-4244 . T) (-4255 . T) (-2341 . T)) NIL -(-679 S) +(-680 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4250 . T) (-4240 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-680) +((-4254 . T) (-4244 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-681) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-681 S) +(-682 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-682 |Coef| |Var|) +(-683 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4245 . T) (-4244 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4249 . T) (-4248 . T) (-4251 . T)) NIL -(-683 OV E R P) +(-684 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-684 E OV R P) +(-685 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-685 S R) +(-686 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-686 R) +(-687 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) NIL -(-687) +(-688) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-688) +(-689) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-689) +(-690) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-690) +(-691) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-691) +(-692) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-692) +(-693) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-693) +(-694) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-694) +(-695) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-695) +(-696) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-696) +(-697) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-697) +(-698) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-698) +(-699) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-699) +(-700) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-700) +(-701) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-701) +(-702) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-702 S) +(-703 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-703) +(-704) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-704 S) +(-705 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-705) +(-706) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-706 |Par|) +(-707 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-707 -1730) +(-708 -1896) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-708 P -1730) +(-709 P -1896) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-709 UP -1730) +(-710 UP -1896) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-710) +(-711) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-711 R) +(-712 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-712) +(-713) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4252 "*") . T)) +(((-4256 "*") . T)) NIL -(-713 R -1730) +(-714 R -1896) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-714 S) +(-715 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-715) +(-716) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-716 R |PolR| E |PolE|) +(-717 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-717 R E V P TS) +(-718 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-718 -1730 |ExtF| |SUEx| |ExtP| |n|) +(-719 -1896 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-719 BP E OV R P) +(-720 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-720 |Par|) +(-721 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-721 R |VarSet|) +(-722 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-1089))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-1089))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-1089)))) (-3389 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-1089)))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-1089)))) (-3389 (|HasCategory| |#1| (QUOTE (-510)))) (-3389 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-1089)))) (-3389 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525))))) (-3389 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-1089)))) (-3389 (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-525))))))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-722 R S) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (-2823 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (-2823 (|HasCategory| |#1| (QUOTE (-510)))) (-2823 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (-2823 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525))))) (-2823 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (-2823 (|HasCategory| |#1| (LIST (QUOTE -924) (QUOTE (-525))))))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-723 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-723 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4246 |has| |#1| (-341)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) (-724 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4250 |has| |#1| (-341)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-725 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) -(-725 R E V P) +(-726 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-726 S) +(-727 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-160)))) -(-727) +((-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-160)))) +(-728) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-728) +(-729) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-729) +(-730) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-730) +(-731) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-731 |Curve|) +(-732 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-732) +(-733) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-733) +(-734) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-734) +(-735) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-735) +(-736) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-736) +(-737) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-737 S R) +(-738 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-346)))) -(-738 R) +((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-985))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-346)))) +(-739 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4244 . T) (-4245 . T) (-4247 . T)) +((-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-739 -3150 R OS S) +(-740 -3215 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-740 R) +(-741 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-3150 (|HasCategory| (-929 |#1|) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3150 (|HasCategory| (-929 |#1|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| (-929 |#1|) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-929 |#1|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) -(-741) +((-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-3215 (|HasCategory| (-930 |#1|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3215 (|HasCategory| (-930 |#1|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-985))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| (-930 |#1|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-930 |#1|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) +(-742) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-742 R -1730 L) +(-743 R -1896 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-743 R -1730) +(-744 R -1896) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-744) +(-745) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-745 R -1730) +(-746 R -1896) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-746) +(-747) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-747 -1730 UP UPUP R) +(-748 -1896 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-748 -1730 UP L LQ) +(-749 -1896 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-749) +(-750) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-750 -1730 UP L LQ) +(-751 -1896 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-751 -1730 UP) +(-752 -1896 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-752 -1730 L UP A LO) +(-753 -1896 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-753 -1730 UP) +(-754 -1896 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-754 -1730 LO) +(-755 -1896 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-755 -1730 LODO) +(-756 -1896 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-756 -2058 S |f|) +(-757 -3815 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4244 |has| |#2| (-975)) (-4245 |has| |#2| (-975)) (-4247 |has| |#2| (-6 -4247)) ((-4252 "*") |has| |#2| (-160)) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))))) (-3150 (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-975)))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (QUOTE (-341))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-734))) (-3150 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-786)))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-160))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-975)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-975)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-975)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-786)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-975)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1018))))) (-3150 (-12 (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-786))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-788))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-975)))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089))))) (|HasCategory| |#2| (QUOTE (-668))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-3150 (|HasCategory| |#2| (QUOTE (-975))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1018)))) (|HasAttribute| |#2| (QUOTE -4247)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) -(-757 R) +((-4248 |has| |#2| (-976)) (-4249 |has| |#2| (-976)) (-4251 |has| |#2| (-6 -4251)) ((-4256 "*") |has| |#2| (-160)) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3215 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-341))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-735))) (-3215 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-160))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019))))) (-3215 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-669))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-3215 (|HasCategory| |#2| (QUOTE (-976))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (|HasAttribute| |#2| (QUOTE -4251)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) +(-758 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-759 (-1089)) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-759 (-1089)) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-759 (-1089)) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-759 (-1089)) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-759 (-1089)) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-758 |Kernels| R |var|) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-759 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4252 "*") |has| |#2| (-341)) (-4243 |has| |#2| (-341)) (-4248 |has| |#2| (-341)) (-4242 |has| |#2| (-341)) (-4247 . T) (-4245 . T) (-4244 . T)) +(((-4256 "*") |has| |#2| (-341)) (-4247 |has| |#2| (-341)) (-4252 |has| |#2| (-341)) (-4246 |has| |#2| (-341)) (-4251 . T) (-4249 . T) (-4248 . T)) ((|HasCategory| |#2| (QUOTE (-341)))) -(-759 S) +(-760 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-760 S) +(-761 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-761) +(-762) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-762) +(-763) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-763) +(-764) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-764) +(-765) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-765) +(-766) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-766) +(-767) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-767 R) +(-768 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-768 P R) +(-769 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4244 . T) (-4245 . T) (-4247 . T)) +((-4248 . T) (-4249 . T) (-4251 . T)) ((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-213)))) -(-769) +(-770) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-770) +(-771) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-771 S) +(-772 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4250 . T) (-4240 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4244 . T) (-4255 . T) (-2341 . T)) NIL -(-772) +(-773) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-773 R S) +(-774 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-774 R) -((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4247 |has| |#1| (-786))) -((|HasCategory| |#1| (QUOTE (-786))) (-3150 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-786)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3150 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21)))) (-775 R) +((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) +((-4251 |has| |#1| (-787))) +((|HasCategory| |#1| (QUOTE (-787))) (-3215 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3215 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-776 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4245 |has| |#1| (-160)) (-4244 |has| |#1| (-160)) (-4247 . T)) +((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T)) ((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138)))) -(-776) +(-777) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-777) +(-778) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-778) +(-779) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-779) +(-780) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-780 R S) +(-781 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-781 R) +(-782 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4247 |has| |#1| (-786))) -((|HasCategory| |#1| (QUOTE (-786))) (-3150 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-786)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3150 (|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-782) +((-4251 |has| |#1| (-787))) +((|HasCategory| |#1| (QUOTE (-787))) (-3215 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3215 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-783) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-783 -2058 S) +(-784 -3815 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-784) +(-785) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-785 S) +(-786 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-786) +(-787) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4247 . T)) +((-4251 . T)) NIL -(-787 S) +(-788 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-788) +(-789) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-789 S R) +(-790 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160)))) -(-790 R) +(-791 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4244 . T) (-4245 . T) (-4247 . T)) +((-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-791 R C) +(-792 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) -(-792 R |sigma| -3970) +(-793 R |sigma| -1880) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) -(-793 |x| R |sigma| -3970) +((-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) +(-794 |x| R |sigma| -1880) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-341)))) -(-794 R) +((-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-341)))) +(-795 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) -(-795) +(-796) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-796) +(-797) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-797) +(-798) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-798 |VariableList|) +(-799 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-799 R |vl| |wl| |wtlevel|) +(-800 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4245 |has| |#1| (-160)) (-4244 |has| |#1| (-160)) (-4247 . T)) +((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T)) ((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) -(-800 R PS UP) +(-801 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-801 R |x| |pt|) +(-802 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-802 |p|) +(-803 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-803 |p|) +(-804 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-804 |p|) +(-805 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-803 |#1|) (QUOTE (-842))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| (-803 |#1|) (QUOTE (-136))) (|HasCategory| (-803 |#1|) (QUOTE (-138))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-803 |#1|) (QUOTE (-951))) (|HasCategory| (-803 |#1|) (QUOTE (-761))) (-3150 (|HasCategory| (-803 |#1|) (QUOTE (-761))) (|HasCategory| (-803 |#1|) (QUOTE (-788)))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-803 |#1|) (QUOTE (-1065))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| (-803 |#1|) (QUOTE (-213))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -486) (QUOTE (-1089)) (LIST (QUOTE -803) (|devaluate| |#1|)))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -803) (|devaluate| |#1|)))) (|HasCategory| (-803 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -803) (|devaluate| |#1|)) (LIST (QUOTE -803) (|devaluate| |#1|)))) (|HasCategory| (-803 |#1|) (QUOTE (-286))) (|HasCategory| (-803 |#1|) (QUOTE (-510))) (|HasCategory| (-803 |#1|) (QUOTE (-788))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-803 |#1|) (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-803 |#1|) (QUOTE (-842)))) (|HasCategory| (-803 |#1|) (QUOTE (-136))))) -(-805 |p| PADIC) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-804 |#1|) (QUOTE (-843))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-804 |#1|) (QUOTE (-136))) (|HasCategory| (-804 |#1|) (QUOTE (-138))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-804 |#1|) (QUOTE (-952))) (|HasCategory| (-804 |#1|) (QUOTE (-762))) (-3215 (|HasCategory| (-804 |#1|) (QUOTE (-762))) (|HasCategory| (-804 |#1|) (QUOTE (-789)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-804 |#1|) (QUOTE (-1066))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-804 |#1|) (QUOTE (-213))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -804) (|devaluate| |#1|)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -804) (|devaluate| |#1|)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -804) (|devaluate| |#1|)) (LIST (QUOTE -804) (|devaluate| |#1|)))) (|HasCategory| (-804 |#1|) (QUOTE (-286))) (|HasCategory| (-804 |#1|) (QUOTE (-510))) (|HasCategory| (-804 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-804 |#1|) (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-804 |#1|) (QUOTE (-843)))) (|HasCategory| (-804 |#1|) (QUOTE (-136))))) +(-806 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-951))) (|HasCategory| |#2| (QUOTE (-761))) (-3150 (|HasCategory| |#2| (QUOTE (-761))) (|HasCategory| |#2| (QUOTE (-788)))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-788))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-136))))) -(-806 S T$) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-952))) (|HasCategory| |#2| (QUOTE (-762))) (-3215 (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136))))) +(-807 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))))) -(-807) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))))) +(-808) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-808) +(-809) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-809 CF1 CF2) +(-810 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-810 |ComponentFunction|) +(-811 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-811 CF1 CF2) +(-812 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-812 |ComponentFunction|) +(-813 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-813) +(-814) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-814 CF1 CF2) +(-815 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-815 |ComponentFunction|) +(-816 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-816) +(-817) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-817 R) +(-818 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-818 R S L) +(-819 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-819 S) +(-820 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-820 |Base| |Subject| |Pat|) +(-821 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3389 (|HasCategory| |#2| (QUOTE (-975)))) (-3389 (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-1089)))))) (-12 (|HasCategory| |#2| (QUOTE (-975))) (-3389 (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-1089)))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-1089))))) -(-821 R A B) +((-12 (-2823 (|HasCategory| |#2| (QUOTE (-976)))) (-2823 (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (-2823 (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090))))) +(-822 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-822 R S) +(-823 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-823 R -1796) +(-824 R -1990) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-824 R S) +(-825 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-825 R) +(-826 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-826 |VarSet|) +(-827 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-827 UP R) +(-828 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-828) +(-829) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-829 UP -1730) +(-830 UP -1896) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-830) +(-831) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-831) +(-832) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-832 A S) +(-833 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-833 S) +(-834 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4247 . T)) +((-4251 . T)) NIL -(-834 S) +(-835 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-835 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-836 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-836 S) +(-837 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4247 . T)) +((-4251 . T)) NIL -(-837 S) +(-838 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-838 S) +(-839 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4247 . T)) -((-3150 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-788)))) -(-839 R E |VarSet| S) +((-4251 . T)) +((-3215 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) +(-840 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-840 R S) +(-841 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-841 S) +(-842 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-136)))) -(-842) +(-843) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-843 |p|) +(-844 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) ((|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-346)))) -(-844 R0 -1730 UP UPUP R) +(-845 R0 -1896 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-845 UP UPUP R) +(-846 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-846 UP UPUP) +(-847 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-847 R) +(-848 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-848 R) +(-849 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-849 E OV R P) +(-850 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-850) +(-851) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-851 -1730) +(-852 -1896) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-852 R) +(-853 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-853) +(-854) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-854) +(-855) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4252 "*") . T)) +(((-4256 "*") . T)) NIL -(-855 -1730 P) +(-856 -1896 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-856 |xx| -1730) +(-857 |xx| -1896) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-857 R |Var| |Expon| GR) +(-858 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-858 S) +(-859 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-859) +(-860) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-860) +(-861) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-861) +(-862) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-862 R -1730) +(-863 R -1896) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-863) +(-864) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-864 S A B) +(-865 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-865 S R -1730) +(-866 S R -1896) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-866 I) +(-867 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-867 S E) +(-868 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-868 S R L) +(-869 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-869 S E V R P) +(-870 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -819) (|devaluate| |#1|)))) -(-870 R -1730 -1796) +((|HasCategory| |#3| (LIST (QUOTE -820) (|devaluate| |#1|)))) +(-871 R -1896 -1990) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-871 -1796) +(-872 -1990) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-872 S R Q) +(-873 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-873 S) +(-874 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-874 S R P) +(-875 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-875) +(-876) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-876 R) +(-877 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-668))) (|HasCategory| |#1| (QUOTE (-975))) (-12 (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-975)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-877 |lv| R) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-976))) (-12 (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-976)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-878 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-878 |TheField| |ThePols|) +(-879 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-786)))) -(-879 R S) +((|HasCategory| |#1| (QUOTE (-787)))) +(-880 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-880 |x| R) +(-881 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-881 S R E |VarSet|) +(-882 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-842))) (|HasAttribute| |#2| (QUOTE -4248)) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#4| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#4| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-788)))) -(-882 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-843))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-789)))) +(-883 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) NIL -(-883 E V R P -1730) +(-884 E V R P -1896) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-884 E |Vars| R P S) +(-885 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-885 R) +(-886 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1089) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-1089) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-1089) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-1089) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-1089) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-886 E V R P -1730) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-887 E V R P -1896) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-429)))) -(-887) +(-888) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-888 R L) +(-889 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-889 A B) +(-890 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-890 S) +(-891 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-891) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-892) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-892 -1730) +(-893 -1896) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-893 I) +(-894 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-894) +(-895) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-895 R E) +(-896 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-126)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4248))) -(-896 A B) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-126)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252))) +(-897 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4247 -12 (|has| |#2| (-450)) (|has| |#1| (-450)))) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-668))) (|HasCategory| |#2| (QUOTE (-668))))) (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-668))) (|HasCategory| |#2| (QUOTE (-668)))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734))))) (-12 (|HasCategory| |#1| (QUOTE (-668))) (|HasCategory| |#2| (QUOTE (-668)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) -(-897) +((-4251 -12 (|has| |#2| (-450)) (|has| |#1| (-450)))) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669))))) (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) +(-898) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-898 T$) +(-899 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the varible name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-899) +((|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-900) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-900 S) +(-901 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4250 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4255 . T) (-2341 . T)) NIL -(-901 R |polR|) +(-902 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-429)))) -(-902) +(-903) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-903 S |Coef| |Expon| |Var|) +(-904 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-904 |Coef| |Expon| |Var|) +(-905 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-905) +(-906) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-906 S R E |VarSet| P) +(-907 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-517)))) -(-907 R E |VarSet| P) +(-908 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4250 . T) (-4131 . T)) +((-4254 . T) (-2341 . T)) NIL -(-908 R E V P) +(-909 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-429)))) -(-909 K) +(-910 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-910 |VarSet| E RC P) +(-911 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-911 R) +(-912 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-912 R1 R2) +(-913 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-913 R) +(-914 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-914 K) +(-915 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-915 R E OV PPR) +(-916 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-916 K R UP -1730) +(-917 K R UP -1896) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-917 |vl| |nv|) +(-918 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-918 R |Var| |Expon| |Dpoly|) +(-919 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-286))))) -(-919 R E V P TS) +(-920 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-920) +(-921) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-921 A B R S) +(-922 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-922 A S) +(-923 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-951))) (|HasCategory| |#2| (QUOTE (-761))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1065)))) -(-923 S) +((|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-952))) (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1066)))) +(-924 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4131 . T) (-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-2341 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-924 |n| K) +(-925 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-925 S) +(-926 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4250 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4255 . T) (-2341 . T)) NIL -(-926 S R) +(-927 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-269)))) -(-927 R) +((|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-985))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-269)))) +(-928 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4243 |has| |#1| (-269)) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 |has| |#1| (-269)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-928 QR R QS S) +(-929 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-929 R) +(-930 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4243 |has| |#1| (-269)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-510))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))))) -(-930 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) +((-4247 |has| |#1| (-269)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-985))) (|HasCategory| |#1| (QUOTE (-510))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))))) (-931 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-932 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-932) +(-933) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-933 -1730 UP UPUP |radicnd| |n|) +(-934 -1896 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4243 |has| (-385 |#2|) (-341)) (-4248 |has| (-385 |#2|) (-341)) (-4242 |has| (-385 |#2|) (-341)) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3150 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3150 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3150 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3150 (|HasCategory| (-385 |#2|) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341))))) -(-934 |bb|) +((-4247 |has| (-385 |#2|) (-341)) (-4252 |has| (-385 |#2|) (-341)) (-4246 |has| (-385 |#2|) (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3215 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3215 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3215 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3215 (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341))))) +(-935 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-525) (QUOTE (-842))) (|HasCategory| (-525) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-951))) (|HasCategory| (-525) (QUOTE (-761))) (-3150 (|HasCategory| (-525) (QUOTE (-761))) (|HasCategory| (-525) (QUOTE (-788)))) (|HasCategory| (-525) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1065))) (|HasCategory| (-525) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1089)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-525) (LIST (QUOTE -587) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-842)))) (|HasCategory| (-525) (QUOTE (-136))))) -(-935) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-525) (QUOTE (-843))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-952))) (|HasCategory| (-525) (QUOTE (-762))) (-3215 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1066))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (|HasCategory| (-525) (QUOTE (-136))))) +(-936) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-936) +(-937) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-937 RP) +(-938 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-938 S) +(-939 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-939 A S) +(-940 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4251)) (|HasCategory| |#2| (QUOTE (-1018)))) -(-940 S) +((|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#2| (QUOTE (-1019)))) +(-941 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-4131 . T)) +((-2341 . T)) NIL -(-941 S) +(-942 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-942) +(-943) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4243 . T) (-4248 . T) (-4242 . T) (-4245 . T) (-4244 . T) ((-4252 "*") . T) (-4247 . T)) +((-4247 . T) (-4252 . T) (-4246 . T) (-4249 . T) (-4248 . T) ((-4256 "*") . T) (-4251 . T)) NIL -(-943 R -1730) +(-944 R -1896) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-944 R -1730) +(-945 R -1896) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-945 -1730 UP) +(-946 -1896 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-946 -1730 UP) +(-947 -1896 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-947 S) +(-948 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-948 F1 UP UPUP R F2) +(-949 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-949 |Pol|) +(-950 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-950 |Pol|) +(-951 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-951) +(-952) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-952) +(-953) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-953 |TheField|) +(-954 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4243 . T) (-4248 . T) (-4242 . T) (-4245 . T) (-4244 . T) ((-4252 "*") . T) (-4247 . T)) -((-3150 (|HasCategory| (-385 (-525)) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -966) (QUOTE (-525))))) -(-954 -1730 L) +((-4247 . T) (-4252 . T) (-4246 . T) (-4249 . T) (-4248 . T) ((-4256 "*") . T) (-4251 . T)) +((-3215 (|HasCategory| (-385 (-525)) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -967) (QUOTE (-525))))) +(-955 -1896 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-955 S) +(-956 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1018)))) -(-956 R E V P) +((|HasCategory| |#1| (QUOTE (-1019)))) +(-957 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4251 . T) (-4250 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -565) (QUOTE (-796))))) -(-957 R) +((-4255 . T) (-4254 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797))))) +(-958 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4252 "*")))) -(-958 R) +((|HasAttribute| |#1| (QUOTE (-4256 "*")))) +(-959 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-286)))) -(-959 S) +(-960 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-960) +(-961) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-961 S) +(-962 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-962 S) +(-963 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-963 -1730 |Expon| |VarSet| |FPol| |LFPol|) +(-964 -1896 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-964) +(-965) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (QUOTE (-1089))) (LIST (QUOTE |:|) (QUOTE -1568) (QUOTE (-51))))))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-51) (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-51) (QUOTE (-1018))) (|HasCategory| (-51) (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1018))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-1089) (QUOTE (-788))) (|HasCategory| (-51) (QUOTE (-1018))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-51) (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-51) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -565) (QUOTE (-796))))) -(-965 A S) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (QUOTE (-1090))) (LIST (QUOTE |:|) (QUOTE -3978) (QUOTE (-51))))))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-51) (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-1090) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1019))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -566) (QUOTE (-797))))) +(-966 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-966 S) +(-967 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-967 Q R) +(-968 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-968) +(-969) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-969 UP) +(-970 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-970 R) +(-971 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-971 R) +(-972 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-972 R |ls|) +(-973 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4251 . T) (-4250 . T)) -((-12 (|HasCategory| (-721 |#1| (-798 |#2|)) (QUOTE (-1018))) (|HasCategory| (-721 |#1| (-798 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -721) (|devaluate| |#1|) (LIST (QUOTE -798) (|devaluate| |#2|)))))) (|HasCategory| (-721 |#1| (-798 |#2|)) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-721 |#1| (-798 |#2|)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-798 |#2|) (QUOTE (-346))) (|HasCategory| (-721 |#1| (-798 |#2|)) (LIST (QUOTE -565) (QUOTE (-796))))) -(-973) +((-4255 . T) (-4254 . T)) +((-12 (|HasCategory| (-722 |#1| (-799 |#2|)) (QUOTE (-1019))) (|HasCategory| (-722 |#1| (-799 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -722) (|devaluate| |#1|) (LIST (QUOTE -799) (|devaluate| |#2|)))))) (|HasCategory| (-722 |#1| (-799 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-722 |#1| (-799 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-799 |#2|) (QUOTE (-346))) (|HasCategory| (-722 |#1| (-799 |#2|)) (LIST (QUOTE -566) (QUOTE (-797))))) +(-974) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-974 S) +(-975 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-975) +(-976) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4247 . T)) +((-4251 . T)) NIL -(-976 |xx| -1730) +(-977 |xx| -1896) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-977 S |m| |n| R |Row| |Col|) +(-978 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-286))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-517))) (|HasCategory| |#4| (QUOTE (-160)))) -(-978 |m| |n| R |Row| |Col|) +(-979 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4250 . T) (-4131 . T) (-4245 . T) (-4244 . T)) +((-4254 . T) (-2341 . T) (-4249 . T) (-4248 . T)) NIL -(-979 |m| |n| R) +(-980 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4250 . T) (-4245 . T) (-4244 . T)) -((-3150 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (QUOTE (-286))) (|HasCategory| |#3| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -565) (QUOTE (-796)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) -(-980 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4254 . T) (-4249 . T) (-4248 . T)) +((-3215 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (QUOTE (-286))) (|HasCategory| |#3| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-797)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) +(-981 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-981 R) +(-982 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-982) +(-983) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-983 S) +(-984 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-984) +(-985) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-985 |TheField| |ThePolDom|) +(-986 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-986) +(-987) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4238 . T) (-4242 . T) (-4237 . T) (-4248 . T) (-4249 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4242 . T) (-4246 . T) (-4241 . T) (-4252 . T) (-4253 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-987) +(-988) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (QUOTE (-1089))) (LIST (QUOTE |:|) (QUOTE -1568) (QUOTE (-51))))))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-51) (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-51) (QUOTE (-1018))) (|HasCategory| (-51) (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1018))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (QUOTE (-1018))) (|HasCategory| (-1089) (QUOTE (-788))) (|HasCategory| (-51) (QUOTE (-1018))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-51) (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-51) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (LIST (QUOTE -565) (QUOTE (-796))))) -(-988 S R E V) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (QUOTE (-1090))) (LIST (QUOTE |:|) (QUOTE -3978) (QUOTE (-51))))))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-51) (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (QUOTE (-1019))) (|HasCategory| (-1090) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1019))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (LIST (QUOTE -566) (QUOTE (-797))))) +(-989 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-1089))))) -(-989 R E V) +((|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -924) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-1090))))) +(-990 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) NIL -(-990 S |TheField| |ThePols|) +(-991 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-991 |TheField| |ThePols|) +(-992 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-992 R E V P TS) +(-993 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-993 S R E V P) +(-994 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-994 R E V P) +(-995 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-995 R E V P TS) +(-996 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-996 |f|) +(-997 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-997 |Base| R -1730) +(-998 |Base| R -1896) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-998 |Base| R -1730) +(-999 |Base| R -1896) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-999 R |ls|) +(-1000 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1000 UP SAE UPA) +(-1001 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1001 R UP M) +(-1002 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4243 |has| |#1| (-341)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-327)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089))))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341))))) -(-1002 UP SAE UPA) +((-4247 |has| |#1| (-341)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-327)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090))))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341))))) +(-1003 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1003) +(-1004) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1004 S) +(-1005 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1005) +(-1006) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1006 R) +(-1007 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1007 R) +(-1008 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1008 (-1089)) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-1008 (-1089)) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-1008 (-1089)) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-1008 (-1089)) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-1008 (-1089)) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-1008 S) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-1009 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1009 R S) +(-1010 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-786)))) -(-1010 R S) +((|HasCategory| |#1| (QUOTE (-787)))) +(-1011 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1011 S) +(-1012 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1018)))) -(-1012 S) +((|HasCategory| |#1| (QUOTE (-1019)))) +(-1013 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-4131 . T)) +((-2341 . T)) NIL -(-1013 S) +(-1014 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1018)))) -(-1014 S L) +((|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (QUOTE (-1019)))) +(-1015 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-4131 . T)) +((-2341 . T)) NIL -(-1015 A S) +(-1016 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1016 S) +(-1017 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4240 . T) (-4131 . T)) +((-4244 . T) (-2341 . T)) NIL -(-1017 S) +(-1018 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1018) +(-1019) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1019 |m| |n|) +(-1020 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1020 S) +(-1021 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4250 . T) (-4240 . T) (-4251 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-788))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-1021 |Str| |Sym| |Int| |Flt| |Expr|) +((-4254 . T) (-4244 . T) (-4255 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-1022 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1022) +(-1023) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1023 |Str| |Sym| |Int| |Flt| |Expr|) +(-1024 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1024 R FS) +(-1025 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1025 R E V P TS) +(-1026 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1026 R E V P TS) +(-1027 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1027 R E V P) +(-1028 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-1028) +(-1029) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1029 S) +(-1030 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1030) +(-1031) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1031 |dimtot| |dim1| S) +(-1032 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4244 |has| |#3| (-975)) (-4245 |has| |#3| (-975)) (-4247 |has| |#3| (-6 -4247)) ((-4252 "*") |has| |#3| (-160)) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-786))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))))) (-3150 (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1018)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-975)))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#3| (QUOTE (-341))) (-3150 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-975)))) (-3150 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (QUOTE (-734))) (-3150 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-786)))) (|HasCategory| |#3| (QUOTE (-786))) (|HasCategory| |#3| (QUOTE (-160))) (-3150 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-975)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-786))) (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (QUOTE (-1018)))) (-3150 (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-975)))) (-3150 (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-975)))) (-3150 (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-975)))) (-3150 (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-975)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-126)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-786)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-975)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1018))))) (-3150 (-12 (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-786))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-788))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-975)))) (-12 (|HasCategory| |#3| (QUOTE (-975))) (|HasCategory| |#3| (LIST (QUOTE -833) (QUOTE (-1089))))) (|HasCategory| |#3| (QUOTE (-668))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525))))) (-3150 (|HasCategory| |#3| (QUOTE (-975))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -966) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1018)))) (|HasAttribute| |#3| (QUOTE -4247)) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1018))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -565) (QUOTE (-796))))) -(-1032 R |x|) +((-4248 |has| |#3| (-976)) (-4249 |has| |#3| (-976)) (-4251 |has| |#3| (-6 -4251)) ((-4256 "*") |has| |#3| (-160)) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3215 (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#3| (QUOTE (-341))) (-3215 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3215 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (QUOTE (-735))) (-3215 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-160))) (-3215 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-976)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (QUOTE (-1019)))) (-3215 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3215 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3215 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3215 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-126)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019))))) (-3215 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (|HasCategory| |#3| (QUOTE (-669))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-3215 (|HasCategory| |#3| (QUOTE (-976))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019)))) (|HasAttribute| |#3| (QUOTE -4251)) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-797))))) +(-1033 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-429)))) -(-1033 R -1730) +(-1034 R -1896) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1034 R) +(-1035 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1035) +(-1036) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1036) +(-1037) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4238 . T) (-4242 . T) (-4237 . T) (-4248 . T) (-4249 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4242 . T) (-4246 . T) (-4241 . T) (-4252 . T) (-4253 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1037 S) +(-1038 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4250 . T) (-4251 . T) (-4131 . T)) +((-4254 . T) (-4255 . T) (-2341 . T)) NIL -(-1038 S |ndim| R |Row| |Col|) +(-1039 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-341))) (|HasAttribute| |#3| (QUOTE (-4252 "*"))) (|HasCategory| |#3| (QUOTE (-160)))) -(-1039 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-341))) (|HasAttribute| |#3| (QUOTE (-4256 "*"))) (|HasCategory| |#3| (QUOTE (-160)))) +(-1040 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4131 . T) (-4250 . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-2341 . T) (-4254 . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1040 R |Row| |Col| M) +(-1041 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1041 R |VarSet|) +(-1042 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-1042 |Coef| |Var| SMP) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-1043 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341)))) -(-1043 R E V P) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341)))) +(-1044 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-1044 UP -1730) +(-1045 UP -1896) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1045 R) +(-1046 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1046 R) +(-1047 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1047 R) +(-1048 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1048 S A) +(-1049 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-788)))) -(-1049 R) +((|HasCategory| |#1| (QUOTE (-789)))) +(-1050 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1050 R) +(-1051 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1051) +(-1052) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1052) +(-1053) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1053) +(-1054) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1054 V C) +(-1055 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1055 V C) +(-1056 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| (-1054 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1054) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1018)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1018))) (-3150 (|HasCategory| (-1054 |#1| |#2|) (LIST (QUOTE -565) (QUOTE (-796)))) (-12 (|HasCategory| (-1054 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1054) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1018))))) (|HasCategory| (-1054 |#1| |#2|) (LIST (QUOTE -565) (QUOTE (-796))))) -(-1056 |ndim| R) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| (-1055 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1019)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1019))) (-3215 (|HasCategory| (-1055 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-797)))) (-12 (|HasCategory| (-1055 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1019))))) (|HasCategory| (-1055 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-797))))) +(-1057 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4247 . T) (-4239 |has| |#2| (-6 (-4252 "*"))) (-4250 . T) (-4244 . T) (-4245 . T)) -((|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4252 "*"))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (-3150 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-341))) (-3150 (|HasAttribute| |#2| (QUOTE (-4252 "*"))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-160)))) -(-1057 S) +((-4251 . T) (-4243 |has| |#2| (-6 (-4256 "*"))) (-4254 . T) (-4248 . T) (-4249 . T)) +((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (-3215 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-341))) (-3215 (|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-160)))) +(-1058 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1058) +(-1059) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-1059 R E V P TS) +(-1060 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1060 R E V P) +(-1061 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4251 . T) (-4250 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -565) (QUOTE (-796))))) -(-1061 S) +((-4255 . T) (-4254 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797))))) +(-1062 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-1062 A S) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-1063 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1063 S) +(-1064 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-4131 . T)) +((-2341 . T)) NIL -(-1064 |Key| |Ent| |dent|) +(-1065 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#2|)))))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-788))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796))))) -(-1065) +((-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#2|)))))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797))))) +(-1066) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1066 |Coef|) +(-1067 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1067 S) +(-1068 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1068 A B) +(-1069 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1069 A B C) +(-1070 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1070 S) +(-1071 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4251 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-1071) +((-4255 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-1072) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-1072) +(-1073) NIL -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| (-135) (QUOTE (-788))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1018))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| (-135) (QUOTE (-1018))) (-12 (|HasCategory| (-135) (QUOTE (-1018))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -565) (QUOTE (-796))))) -(-1073 |Entry|) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1019))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-797))))) +(-1074 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (QUOTE (-1072))) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#1|)))))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (QUOTE (-1018))) (|HasCategory| (-1072) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (LIST (QUOTE -565) (QUOTE (-796))))) -(-1074 A) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#1|)))))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (QUOTE (-1019))) (|HasCategory| (-1073) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (LIST (QUOTE -566) (QUOTE (-797))))) +(-1075 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) -(-1075 |Coef|) +(-1076 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1076 |Coef|) +(-1077 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1077 R UP) +(-1078 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-286)))) -(-1078 |n| R) +(-1079 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1079 S1 S2) +(-1080 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1080 |Coef| |var| |cen|) +(-1081 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4252 "*") -3150 (-3543 (|has| |#1| (-341)) (|has| (-1087 |#1| |#2| |#3|) (-761))) (|has| |#1| (-160)) (-3543 (|has| |#1| (-341)) (|has| (-1087 |#1| |#2| |#3|) (-842)))) (-4243 -3150 (-3543 (|has| |#1| (-341)) (|has| (-1087 |#1| |#2| |#3|) (-761))) (|has| |#1| (-517)) (-3543 (|has| |#1| (-341)) (|has| (-1087 |#1| |#2| |#3|) (-842)))) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1089)) (LIST (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3150 (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3150 (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3150 (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1030))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-341)))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-3150 (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1089)) (LIST (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3150 (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3150 (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-1081 R -1730) +(((-4256 "*") -3215 (-2385 (|has| |#1| (-341)) (|has| (-1088 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-2385 (|has| |#1| (-341)) (|has| (-1088 |#1| |#2| |#3|) (-843)))) (-4247 -3215 (-2385 (|has| |#1| (-341)) (|has| (-1088 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-2385 (|has| |#1| (-341)) (|has| (-1088 |#1| |#2| |#3|) (-843)))) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3215 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3215 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3215 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1031))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-341)))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3215 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3215 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3215 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-1082 R -1896) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1082 R) +(-1083 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1083 R S) +(-1084 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1084 E OV R P) +(-1085 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1085 R) +(-1086 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4246 |has| |#1| (-341)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4248)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-1086 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|))))))) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4250 |has| |#1| (-341)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))))) (-1087 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|))))))) +(-1088 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-712)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-712)) (|devaluate| |#1|)))) (|HasCategory| (-712) (QUOTE (-1030))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-712))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-712))))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|))))))) -(-1088) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1031))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|))))))) +(-1089) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1089) +(-1090) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1090 R) +(-1091 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1091 R) +(-1092 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-6 -4248)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| (-902) (QUOTE (-126))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4248))) -(-1092) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| (-903) (QUOTE (-126))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252))) +(-1093) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1093) +(-1094) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1094) +(-1095) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1095 R) +(-1096 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1096) +(-1097) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1097 S) +(-1098 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1098 S) +(-1099 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1099 |Key| |Entry|) +(-1100 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4250 . T) (-4251 . T)) -((-12 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1265) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1568) (|devaluate| |#2|)))))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1018)))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -566) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-1018))) (-3150 (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#2| (LIST (QUOTE -565) (QUOTE (-796)))) (|HasCategory| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (LIST (QUOTE -565) (QUOTE (-796))))) -(-1100 R) +((-4254 . T) (-4255 . T)) +((-12 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3160) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3978) (|devaluate| |#2|)))))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (-3215 (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (LIST (QUOTE -566) (QUOTE (-797))))) +(-1101 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1101 S |Key| |Entry|) +(-1102 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1102 |Key| |Entry|) +(-1103 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4251 . T) (-4131 . T)) +((-4255 . T) (-2341 . T)) NIL -(-1103 |Key| |Entry|) +(-1104 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1104) +(-1105) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1105 S) +(-1106 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1106) +(-1107) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1107) +(-1108) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1108 R) +(-1109 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1109) +(-1110) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1110 S) +(-1111 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1111) +(-1112) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1112 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4251 . T) (-4250 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (-1113 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4255 . T) (-4254 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-1114 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1114) +(-1115) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1115 R -1730) +(-1116 R -1896) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1116 R |Row| |Col| M) +(-1117 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1117 R -1730) +(-1118 R -1896) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -566) (LIST (QUOTE -825) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -819) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -819) (|devaluate| |#1|))))) -(-1118 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -820) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -820) (|devaluate| |#1|))))) +(-1119 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-346)))) -(-1119 R E V P) +(-1120 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-1120 |Coef|) +(-1121 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341)))) -(-1121 |Curve|) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341)))) +(-1122 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1122) +(-1123) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1123 S) +(-1124 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-1124 -1730) +((|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-1125 -1896) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1125) +(-1126) ((|constructor| (NIL "The fundamental Type."))) -((-4131 . T)) +((-2341 . T)) NIL -(-1126 S) +(-1127 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-788)))) -(-1127) +((|HasCategory| |#1| (QUOTE (-789)))) +(-1128) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1128 S) +(-1129 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1129) +(-1130) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1130 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1131 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1131 |Coef|) +(-1132 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1132 S |Coef| UTS) +(-1133 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-341)))) -(-1133 |Coef| UTS) +(-1134 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4131 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-2341 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1134 |Coef| UTS) +(-1135 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-761)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-951)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-1089)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))) (-3150 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-138))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-213)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1030))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-951)))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-761)))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-761)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1089)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-788)))) (|HasCategory| |#2| (QUOTE (-842))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136)))))) -(-1135 |Coef| |var| |cen|) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-952)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))) (-3215 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-138))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-213)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1031))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-952)))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (QUOTE (-843))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136)))))) +(-1136 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4252 "*") -3150 (-3543 (|has| |#1| (-341)) (|has| (-1163 |#1| |#2| |#3|) (-761))) (|has| |#1| (-160)) (-3543 (|has| |#1| (-341)) (|has| (-1163 |#1| |#2| |#3|) (-842)))) (-4243 -3150 (-3543 (|has| |#1| (-341)) (|has| (-1163 |#1| |#2| |#3|) (-761))) (|has| |#1| (-517)) (-3543 (|has| |#1| (-341)) (|has| (-1163 |#1| |#2| |#3|) (-842)))) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) -((-3150 (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1089)) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3150 (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3150 (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3150 (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1030))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-1089)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-341)))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-3150 (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1089)) (LIST (QUOTE -1163) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3150 (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3150 (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-761))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1163 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-1136 ZP) +(((-4256 "*") -3215 (-2385 (|has| |#1| (-341)) (|has| (-1164 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-2385 (|has| |#1| (-341)) (|has| (-1164 |#1| |#2| |#3|) (-843)))) (-4247 -3215 (-2385 (|has| |#1| (-341)) (|has| (-1164 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-2385 (|has| |#1| (-341)) (|has| (-1164 |#1| |#2| |#3|) (-843)))) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) +((-3215 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3215 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3215 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3215 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1031))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-341)))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3215 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3215 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3215 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-1137 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1137 R S) +(-1138 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-786)))) -(-1138 S) +((|HasCategory| |#1| (QUOTE (-787)))) +(-1139 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-786))) (|HasCategory| |#1| (QUOTE (-1018)))) -(-1139 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (QUOTE (-1019)))) +(-1140 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1140 R Q UP) +(-1141 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1141 R UP) +(-1142 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1142 R UP) +(-1143 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1143 R U) +(-1144 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1144 |x| R) +(-1145 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4252 "*") |has| |#2| (-160)) (-4243 |has| |#2| (-517)) (-4246 |has| |#2| (-341)) (-4248 |has| |#2| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -819) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-357))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -819) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -819) (QUOTE (-525))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-357)))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (LIST (QUOTE -825) (QUOTE (-525)))))) (-12 (|HasCategory| (-1003) (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -587) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (-3150 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (-3150 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE -4248)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (-3150 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-136))))) -(-1145 R PR S PS) +(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4250 |has| |#2| (-341)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-3215 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3215 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3215 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136))))) +(-1146 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1146 S R) +(-1147 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-1065)))) -(-1147 R) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-1066)))) +(-1148 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4246 |has| |#1| (-341)) (-4248 |has| |#1| (-6 -4248)) (-4245 . T) (-4244 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4250 |has| |#1| (-341)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T)) NIL -(-1148 S |Coef| |Expon|) +(-1149 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1030))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2686) (LIST (|devaluate| |#2|) (QUOTE (-1089)))))) -(-1149 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1031))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4044) (LIST (|devaluate| |#2|) (QUOTE (-1090)))))) +(-1150 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1150 RC P) +(-1151 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1151 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1152 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1152 |Coef|) +(-1153 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1153 S |Coef| ULS) +(-1154 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1154 |Coef| ULS) +(-1155 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1155 |Coef| ULS) +(-1156 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) -(-1156 |Coef| |var| |cen|) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) +(-1157 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4248 |has| |#1| (-341)) (-4242 |has| |#1| (-341)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3150 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|))))))) -(-1157 R FE |var| |cen|) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3215 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|))))))) +(-1158 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4252 "*") |has| (-1156 |#2| |#3| |#4|) (-160)) (-4243 |has| (-1156 |#2| |#3| |#4|) (-517)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| (-1156 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1156 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1156 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1156 |#2| |#3| |#4|) (QUOTE (-160))) (|HasCategory| (-1156 |#2| |#3| |#4|) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1156 |#2| |#3| |#4|) (LIST (QUOTE -966) (QUOTE (-525)))) (|HasCategory| (-1156 |#2| |#3| |#4|) (QUOTE (-341))) (|HasCategory| (-1156 |#2| |#3| |#4|) (QUOTE (-429))) (-3150 (|HasCategory| (-1156 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1156 |#2| |#3| |#4|) (LIST (QUOTE -966) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| (-1156 |#2| |#3| |#4|) (QUOTE (-517)))) -(-1158 A S) +(((-4256 "*") |has| (-1157 |#2| |#3| |#4|) (-160)) (-4247 |has| (-1157 |#2| |#3| |#4|) (-517)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-160))) (|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-341))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-429))) (-3215 (|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-517)))) +(-1159 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4251))) -(-1159 S) +((|HasAttribute| |#1| (QUOTE -4255))) +(-1160 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-4131 . T)) +((-2341 . T)) NIL -(-1160 |Coef1| |Coef2| UTS1 UTS2) +(-1161 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1161 S |Coef|) +(-1162 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-891))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasSignature| |#2| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2452) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1089))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) -(-1162 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-892))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasSignature| |#2| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2313) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1090))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) +(-1163 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1163 |Coef| |var| |cen|) +(-1164 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4252 "*") |has| |#1| (-160)) (-4243 |has| |#1| (-517)) (-4244 . T) (-4245 . T) (-4247 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3150 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -833) (QUOTE (-1089)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-712)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-712)) (|devaluate| |#1|)))) (|HasCategory| (-712) (QUOTE (-1030))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-712))))) (|HasSignature| |#1| (LIST (QUOTE -2686) (LIST (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-712))))) (|HasCategory| |#1| (QUOTE (-341))) (-3150 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-891))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2452) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (LIST (QUOTE -1444) (LIST (LIST (QUOTE -591) (QUOTE (-1089))) (|devaluate| |#1|))))))) -(-1164 |Coef| UTS) +(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3215 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1031))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -4044) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3215 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -3122) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|))))))) +(-1165 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1165 -1730 UP L UTS) +(-1166 -1896 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-517)))) -(-1166) +(-1167) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-4131 . T)) +((-2341 . T)) NIL -(-1167 |sym|) +(-1168 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1168 S R) +(-1169 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-668))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1169 R) +((|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1170 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4251 . T) (-4250 . T) (-4131 . T)) +((-4255 . T) (-4254 . T) (-2341 . T)) NIL -(-1170 A B) +(-1171 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1171 R) +(-1172 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4251 . T) (-4250 . T)) -((-3150 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3150 (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-501)))) (-3150 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-525) (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-668))) (|HasCategory| |#1| (QUOTE (-975))) (-12 (|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-975)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -565) (QUOTE (-796))))) -(-1172) +((-4255 . T) (-4254 . T)) +((-3215 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3215 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3215 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-976))) (-12 (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-976)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) +(-1173) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1173) +(-1174) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1174) +(-1175) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1175) +(-1176) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1176) +(-1177) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1177 A S) +(-1178 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1178 S) +(-1179 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4245 . T) (-4244 . T)) +((-4249 . T) (-4248 . T)) NIL -(-1179 R) +(-1180 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1180 K R UP -1730) +(-1181 K R UP -1896) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1181 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1182 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4245 |has| |#1| (-160)) (-4244 |has| |#1| (-160)) (-4247 . T)) +((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T)) ((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) -(-1182 R E V P) +(-1183 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4251 . T) (-4250 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -565) (QUOTE (-796))))) -(-1183 R) +((-4255 . T) (-4254 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797))))) +(-1184 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4244 . T) (-4245 . T) (-4247 . T)) +((-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1184 |vl| R) +(-1185 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4247 . T) (-4243 |has| |#2| (-6 -4243)) (-4245 . T) (-4244 . T)) -((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4243))) -(-1185 R |VarSet| XPOLY) +((-4251 . T) (-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T)) +((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4247))) +(-1186 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1186 |vl| R) +(-1187 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4243 |has| |#2| (-6 -4243)) (-4245 . T) (-4244 . T) (-4247 . T)) +((-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T)) NIL -(-1187 S -1730) +(-1188 S -1896) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138)))) -(-1188 -1730) +(-1189 -1896) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4242 . T) (-4248 . T) (-4243 . T) ((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL -(-1189 |VarSet| R) +(-1190 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4243 |has| |#2| (-6 -4243)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -659) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasAttribute| |#2| (QUOTE -4243))) -(-1190 |vl| R) +((-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -660) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasAttribute| |#2| (QUOTE -4247))) +(-1191 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4243 |has| |#2| (-6 -4243)) (-4245 . T) (-4244 . T) (-4247 . T)) +((-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T)) NIL -(-1191 R) +(-1192 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4243 |has| |#1| (-6 -4243)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#1| (QUOTE (-160))) (|HasAttribute| |#1| (QUOTE -4243))) -(-1192 R E) +((-4247 |has| |#1| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#1| (QUOTE (-160))) (|HasAttribute| |#1| (QUOTE -4247))) +(-1193 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4247 . T) (-4248 |has| |#1| (-6 -4248)) (-4243 |has| |#1| (-6 -4243)) (-4245 . T) (-4244 . T)) -((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasAttribute| |#1| (QUOTE -4247)) (|HasAttribute| |#1| (QUOTE -4248)) (|HasAttribute| |#1| (QUOTE -4243))) -(-1193 |VarSet| R) +((-4251 . T) (-4252 |has| |#1| (-6 -4252)) (-4247 |has| |#1| (-6 -4247)) (-4249 . T) (-4248 . T)) +((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasAttribute| |#1| (QUOTE -4251)) (|HasAttribute| |#1| (QUOTE -4252)) (|HasAttribute| |#1| (QUOTE -4247))) +(-1194 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4243 |has| |#2| (-6 -4243)) (-4245 . T) (-4244 . T) (-4247 . T)) -((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4243))) -(-1194 A) +((-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T)) +((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4247))) +(-1195 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1195 R |ls| |ls2|) +(-1196 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1196 R) +(-1197 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1197 |p|) +(-1198 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4252 "*") . T) (-4244 . T) (-4245 . T) (-4247 . T)) +(((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T)) NIL NIL NIL @@ -4736,4 +4740,4 @@ NIL NIL NIL NIL -((-3 NIL 2237747 2237752 2237757 2237762) (-2 NIL 2237727 2237732 2237737 2237742) (-1 NIL 2237707 2237712 2237717 2237722) (0 NIL 2237687 2237692 2237697 2237702) (-1197 "ZMOD.spad" 2237496 2237509 2237625 2237682) (-1196 "ZLINDEP.spad" 2236540 2236551 2237486 2237491) (-1195 "ZDSOLVE.spad" 2226389 2226411 2236530 2236535) (-1194 "YSTREAM.spad" 2225882 2225893 2226379 2226384) (-1193 "XRPOLY.spad" 2225102 2225122 2225738 2225807) (-1192 "XPR.spad" 2222831 2222844 2224820 2224919) (-1191 "XPOLY.spad" 2222386 2222397 2222687 2222756) (-1190 "XPOLYC.spad" 2221703 2221719 2222312 2222381) (-1189 "XPBWPOLY.spad" 2220140 2220160 2221483 2221552) (-1188 "XF.spad" 2218601 2218616 2220042 2220135) (-1187 "XF.spad" 2217042 2217059 2218485 2218490) (-1186 "XFALG.spad" 2214066 2214082 2216968 2217037) (-1185 "XEXPPKG.spad" 2213317 2213343 2214056 2214061) (-1184 "XDPOLY.spad" 2212931 2212947 2213173 2213242) (-1183 "XALG.spad" 2212529 2212540 2212887 2212926) (-1182 "WUTSET.spad" 2208368 2208385 2212175 2212202) (-1181 "WP.spad" 2207382 2207426 2208226 2208293) (-1180 "WFFINTBS.spad" 2204945 2204967 2207372 2207377) (-1179 "WEIER.spad" 2203159 2203170 2204935 2204940) (-1178 "VSPACE.spad" 2202832 2202843 2203127 2203154) (-1177 "VSPACE.spad" 2202525 2202538 2202822 2202827) (-1176 "VOID.spad" 2202115 2202124 2202515 2202520) (-1175 "VIEW.spad" 2199737 2199746 2202105 2202110) (-1174 "VIEWDEF.spad" 2194934 2194943 2199727 2199732) (-1173 "VIEW3D.spad" 2178769 2178778 2194924 2194929) (-1172 "VIEW2D.spad" 2166506 2166515 2178759 2178764) (-1171 "VECTOR.spad" 2165183 2165194 2165434 2165461) (-1170 "VECTOR2.spad" 2163810 2163823 2165173 2165178) (-1169 "VECTCAT.spad" 2161698 2161709 2163766 2163805) (-1168 "VECTCAT.spad" 2159407 2159420 2161477 2161482) (-1167 "VARIABLE.spad" 2159187 2159202 2159397 2159402) (-1166 "UTYPE.spad" 2158821 2158830 2159167 2159182) (-1165 "UTSODETL.spad" 2158114 2158138 2158777 2158782) (-1164 "UTSODE.spad" 2156302 2156322 2158104 2158109) (-1163 "UTS.spad" 2151091 2151119 2154769 2154866) (-1162 "UTSCAT.spad" 2148542 2148558 2150989 2151086) (-1161 "UTSCAT.spad" 2145637 2145655 2148086 2148091) (-1160 "UTS2.spad" 2145230 2145265 2145627 2145632) (-1159 "URAGG.spad" 2139852 2139863 2145210 2145225) (-1158 "URAGG.spad" 2134448 2134461 2139808 2139813) (-1157 "UPXSSING.spad" 2132094 2132120 2133532 2133665) (-1156 "UPXS.spad" 2129121 2129149 2130226 2130375) (-1155 "UPXSCONS.spad" 2126878 2126898 2127253 2127402) (-1154 "UPXSCCA.spad" 2125336 2125356 2126724 2126873) (-1153 "UPXSCCA.spad" 2123936 2123958 2125326 2125331) (-1152 "UPXSCAT.spad" 2122517 2122533 2123782 2123931) (-1151 "UPXS2.spad" 2122058 2122111 2122507 2122512) (-1150 "UPSQFREE.spad" 2120470 2120484 2122048 2122053) (-1149 "UPSCAT.spad" 2118063 2118087 2120368 2120465) (-1148 "UPSCAT.spad" 2115362 2115388 2117669 2117674) (-1147 "UPOLYC.spad" 2110340 2110351 2115204 2115357) (-1146 "UPOLYC.spad" 2105210 2105223 2110076 2110081) (-1145 "UPOLYC2.spad" 2104679 2104698 2105200 2105205) (-1144 "UP.spad" 2101724 2101739 2102232 2102385) (-1143 "UPMP.spad" 2100614 2100627 2101714 2101719) (-1142 "UPDIVP.spad" 2100177 2100191 2100604 2100609) (-1141 "UPDECOMP.spad" 2098414 2098428 2100167 2100172) (-1140 "UPCDEN.spad" 2097621 2097637 2098404 2098409) (-1139 "UP2.spad" 2096983 2097004 2097611 2097616) (-1138 "UNISEG.spad" 2096336 2096347 2096902 2096907) (-1137 "UNISEG2.spad" 2095829 2095842 2096292 2096297) (-1136 "UNIFACT.spad" 2094930 2094942 2095819 2095824) (-1135 "ULS.spad" 2085489 2085517 2086582 2087011) (-1134 "ULSCONS.spad" 2079532 2079552 2079904 2080053) (-1133 "ULSCCAT.spad" 2077129 2077149 2079352 2079527) (-1132 "ULSCCAT.spad" 2074860 2074882 2077085 2077090) (-1131 "ULSCAT.spad" 2073076 2073092 2074706 2074855) (-1130 "ULS2.spad" 2072588 2072641 2073066 2073071) (-1129 "UFD.spad" 2071653 2071662 2072514 2072583) (-1128 "UFD.spad" 2070780 2070791 2071643 2071648) (-1127 "UDVO.spad" 2069627 2069636 2070770 2070775) (-1126 "UDPO.spad" 2067054 2067065 2069583 2069588) (-1125 "TYPE.spad" 2066976 2066985 2067034 2067049) (-1124 "TWOFACT.spad" 2065626 2065641 2066966 2066971) (-1123 "TUPLE.spad" 2065012 2065023 2065525 2065530) (-1122 "TUBETOOL.spad" 2061849 2061858 2065002 2065007) (-1121 "TUBE.spad" 2060490 2060507 2061839 2061844) (-1120 "TS.spad" 2059079 2059095 2060055 2060152) (-1119 "TSETCAT.spad" 2046194 2046211 2059035 2059074) (-1118 "TSETCAT.spad" 2033307 2033326 2046150 2046155) (-1117 "TRMANIP.spad" 2027673 2027690 2033013 2033018) (-1116 "TRIMAT.spad" 2026632 2026657 2027663 2027668) (-1115 "TRIGMNIP.spad" 2025149 2025166 2026622 2026627) (-1114 "TRIGCAT.spad" 2024661 2024670 2025139 2025144) (-1113 "TRIGCAT.spad" 2024171 2024182 2024651 2024656) (-1112 "TREE.spad" 2022742 2022753 2023778 2023805) (-1111 "TRANFUN.spad" 2022573 2022582 2022732 2022737) (-1110 "TRANFUN.spad" 2022402 2022413 2022563 2022568) (-1109 "TOPSP.spad" 2022076 2022085 2022392 2022397) (-1108 "TOOLSIGN.spad" 2021739 2021750 2022066 2022071) (-1107 "TEXTFILE.spad" 2020296 2020305 2021729 2021734) (-1106 "TEX.spad" 2017313 2017322 2020286 2020291) (-1105 "TEX1.spad" 2016869 2016880 2017303 2017308) (-1104 "TEMUTL.spad" 2016424 2016433 2016859 2016864) (-1103 "TBCMPPK.spad" 2014517 2014540 2016414 2016419) (-1102 "TBAGG.spad" 2013541 2013564 2014485 2014512) (-1101 "TBAGG.spad" 2012585 2012610 2013531 2013536) (-1100 "TANEXP.spad" 2011961 2011972 2012575 2012580) (-1099 "TABLE.spad" 2010372 2010395 2010642 2010669) (-1098 "TABLEAU.spad" 2009853 2009864 2010362 2010367) (-1097 "TABLBUMP.spad" 2006636 2006647 2009843 2009848) (-1096 "SYSTEM.spad" 2005910 2005919 2006626 2006631) (-1095 "SYSSOLP.spad" 2003383 2003394 2005900 2005905) (-1094 "SYNTAX.spad" 1999575 1999584 2003373 2003378) (-1093 "SYMTAB.spad" 1997631 1997640 1999565 1999570) (-1092 "SYMS.spad" 1993616 1993625 1997621 1997626) (-1091 "SYMPOLY.spad" 1992626 1992637 1992708 1992835) (-1090 "SYMFUNC.spad" 1992101 1992112 1992616 1992621) (-1089 "SYMBOL.spad" 1989437 1989446 1992091 1992096) (-1088 "SWITCH.spad" 1986194 1986203 1989427 1989432) (-1087 "SUTS.spad" 1983093 1983121 1984661 1984758) (-1086 "SUPXS.spad" 1980107 1980135 1981225 1981374) (-1085 "SUP.spad" 1976879 1976890 1977660 1977813) (-1084 "SUPFRACF.spad" 1975984 1976002 1976869 1976874) (-1083 "SUP2.spad" 1975374 1975387 1975974 1975979) (-1082 "SUMRF.spad" 1974340 1974351 1975364 1975369) (-1081 "SUMFS.spad" 1973973 1973990 1974330 1974335) (-1080 "SULS.spad" 1964519 1964547 1965625 1966054) (-1079 "SUCH.spad" 1964199 1964214 1964509 1964514) (-1078 "SUBSPACE.spad" 1956206 1956221 1964189 1964194) (-1077 "SUBRESP.spad" 1955366 1955380 1956162 1956167) (-1076 "STTF.spad" 1951465 1951481 1955356 1955361) (-1075 "STTFNC.spad" 1947933 1947949 1951455 1951460) (-1074 "STTAYLOR.spad" 1940331 1940342 1947814 1947819) (-1073 "STRTBL.spad" 1938836 1938853 1938985 1939012) (-1072 "STRING.spad" 1938245 1938254 1938259 1938286) (-1071 "STRICAT.spad" 1938021 1938030 1938201 1938240) (-1070 "STREAM.spad" 1934789 1934800 1937546 1937561) (-1069 "STREAM3.spad" 1934334 1934349 1934779 1934784) (-1068 "STREAM2.spad" 1933402 1933415 1934324 1934329) (-1067 "STREAM1.spad" 1933106 1933117 1933392 1933397) (-1066 "STINPROD.spad" 1932012 1932028 1933096 1933101) (-1065 "STEP.spad" 1931213 1931222 1932002 1932007) (-1064 "STBL.spad" 1929739 1929767 1929906 1929921) (-1063 "STAGG.spad" 1928804 1928815 1929719 1929734) (-1062 "STAGG.spad" 1927877 1927890 1928794 1928799) (-1061 "STACK.spad" 1927228 1927239 1927484 1927511) (-1060 "SREGSET.spad" 1924932 1924949 1926874 1926901) (-1059 "SRDCMPK.spad" 1923477 1923497 1924922 1924927) (-1058 "SRAGG.spad" 1918562 1918571 1923433 1923472) (-1057 "SRAGG.spad" 1913679 1913690 1918552 1918557) (-1056 "SQMATRIX.spad" 1911305 1911323 1912213 1912300) (-1055 "SPLTREE.spad" 1905857 1905870 1910741 1910768) (-1054 "SPLNODE.spad" 1902445 1902458 1905847 1905852) (-1053 "SPFCAT.spad" 1901222 1901231 1902435 1902440) (-1052 "SPECOUT.spad" 1899772 1899781 1901212 1901217) (-1051 "spad-parser.spad" 1899237 1899246 1899762 1899767) (-1050 "SPACEC.spad" 1883250 1883261 1899227 1899232) (-1049 "SPACE3.spad" 1883026 1883037 1883240 1883245) (-1048 "SORTPAK.spad" 1882571 1882584 1882982 1882987) (-1047 "SOLVETRA.spad" 1880328 1880339 1882561 1882566) (-1046 "SOLVESER.spad" 1878848 1878859 1880318 1880323) (-1045 "SOLVERAD.spad" 1874858 1874869 1878838 1878843) (-1044 "SOLVEFOR.spad" 1873278 1873296 1874848 1874853) (-1043 "SNTSCAT.spad" 1872866 1872883 1873234 1873273) (-1042 "SMTS.spad" 1871126 1871152 1872431 1872528) (-1041 "SMP.spad" 1868568 1868588 1868958 1869085) (-1040 "SMITH.spad" 1867411 1867436 1868558 1868563) (-1039 "SMATCAT.spad" 1865509 1865539 1867343 1867406) (-1038 "SMATCAT.spad" 1863551 1863583 1865387 1865392) (-1037 "SKAGG.spad" 1862500 1862511 1863507 1863546) (-1036 "SINT.spad" 1860808 1860817 1862366 1862495) (-1035 "SIMPAN.spad" 1860536 1860545 1860798 1860803) (-1034 "SIGNRF.spad" 1859644 1859655 1860526 1860531) (-1033 "SIGNEF.spad" 1858913 1858930 1859634 1859639) (-1032 "SHP.spad" 1856831 1856846 1858869 1858874) (-1031 "SHDP.spad" 1848221 1848248 1848730 1848859) (-1030 "SGROUP.spad" 1847687 1847696 1848211 1848216) (-1029 "SGROUP.spad" 1847151 1847162 1847677 1847682) (-1028 "SGCF.spad" 1840032 1840041 1847141 1847146) (-1027 "SFRTCAT.spad" 1838948 1838965 1839988 1840027) (-1026 "SFRGCD.spad" 1838011 1838031 1838938 1838943) (-1025 "SFQCMPK.spad" 1832648 1832668 1838001 1838006) (-1024 "SFORT.spad" 1832083 1832097 1832638 1832643) (-1023 "SEXOF.spad" 1831926 1831966 1832073 1832078) (-1022 "SEX.spad" 1831818 1831827 1831916 1831921) (-1021 "SEXCAT.spad" 1828922 1828962 1831808 1831813) (-1020 "SET.spad" 1827222 1827233 1828343 1828382) (-1019 "SETMN.spad" 1825656 1825673 1827212 1827217) (-1018 "SETCAT.spad" 1825141 1825150 1825646 1825651) (-1017 "SETCAT.spad" 1824624 1824635 1825131 1825136) (-1016 "SETAGG.spad" 1821147 1821158 1824592 1824619) (-1015 "SETAGG.spad" 1817690 1817703 1821137 1821142) (-1014 "SEGXCAT.spad" 1816802 1816815 1817670 1817685) (-1013 "SEG.spad" 1816615 1816626 1816721 1816726) (-1012 "SEGCAT.spad" 1815434 1815445 1816595 1816610) (-1011 "SEGBIND.spad" 1814506 1814517 1815389 1815394) (-1010 "SEGBIND2.spad" 1814202 1814215 1814496 1814501) (-1009 "SEG2.spad" 1813627 1813640 1814158 1814163) (-1008 "SDVAR.spad" 1812903 1812914 1813617 1813622) (-1007 "SDPOL.spad" 1810296 1810307 1810587 1810714) (-1006 "SCPKG.spad" 1808375 1808386 1810286 1810291) (-1005 "SCOPE.spad" 1807520 1807529 1808365 1808370) (-1004 "SCACHE.spad" 1806202 1806213 1807510 1807515) (-1003 "SAOS.spad" 1806074 1806083 1806192 1806197) (-1002 "SAERFFC.spad" 1805787 1805807 1806064 1806069) (-1001 "SAE.spad" 1803965 1803981 1804576 1804711) (-1000 "SAEFACT.spad" 1803666 1803686 1803955 1803960) (-999 "RURPK.spad" 1801308 1801323 1803656 1803661) (-998 "RULESET.spad" 1800750 1800773 1801298 1801303) (-997 "RULE.spad" 1798955 1798978 1800740 1800745) (-996 "RULECOLD.spad" 1798808 1798820 1798945 1798950) (-995 "RSETGCD.spad" 1795187 1795206 1798798 1798803) (-994 "RSETCAT.spad" 1784960 1784976 1795143 1795182) (-993 "RSETCAT.spad" 1774765 1774783 1784950 1784955) (-992 "RSDCMPK.spad" 1773218 1773237 1774755 1774760) (-991 "RRCC.spad" 1771603 1771632 1773208 1773213) (-990 "RRCC.spad" 1769986 1770017 1771593 1771598) (-989 "RPOLCAT.spad" 1749347 1749361 1769854 1769981) (-988 "RPOLCAT.spad" 1728423 1728439 1748932 1748937) (-987 "ROUTINE.spad" 1724287 1724295 1727070 1727097) (-986 "ROMAN.spad" 1723520 1723528 1724153 1724282) (-985 "ROIRC.spad" 1722601 1722632 1723510 1723515) (-984 "RNS.spad" 1721505 1721513 1722503 1722596) (-983 "RNS.spad" 1720495 1720505 1721495 1721500) (-982 "RNG.spad" 1720231 1720239 1720485 1720490) (-981 "RMODULE.spad" 1719870 1719880 1720221 1720226) (-980 "RMCAT2.spad" 1719279 1719335 1719860 1719865) (-979 "RMATRIX.spad" 1717959 1717977 1718446 1718485) (-978 "RMATCAT.spad" 1713481 1713511 1717903 1717954) (-977 "RMATCAT.spad" 1708905 1708937 1713329 1713334) (-976 "RINTERP.spad" 1708794 1708813 1708895 1708900) (-975 "RING.spad" 1708152 1708160 1708774 1708789) (-974 "RING.spad" 1707518 1707528 1708142 1708147) (-973 "RIDIST.spad" 1706903 1706911 1707508 1707513) (-972 "RGCHAIN.spad" 1705483 1705498 1706388 1706415) (-971 "RF.spad" 1703098 1703108 1705473 1705478) (-970 "RFFACTOR.spad" 1702561 1702571 1703088 1703093) (-969 "RFFACT.spad" 1702297 1702308 1702551 1702556) (-968 "RFDIST.spad" 1701286 1701294 1702287 1702292) (-967 "RETSOL.spad" 1700704 1700716 1701276 1701281) (-966 "RETRACT.spad" 1700054 1700064 1700694 1700699) (-965 "RETRACT.spad" 1699402 1699414 1700044 1700049) (-964 "RESULT.spad" 1697463 1697471 1698049 1698076) (-963 "RESRING.spad" 1696811 1696857 1697401 1697458) (-962 "RESLATC.spad" 1696136 1696146 1696801 1696806) (-961 "REPSQ.spad" 1695866 1695876 1696126 1696131) (-960 "REP.spad" 1693419 1693427 1695856 1695861) (-959 "REPDB.spad" 1693125 1693135 1693409 1693414) (-958 "REP2.spad" 1682698 1682708 1692967 1692972) (-957 "REP1.spad" 1676689 1676699 1682648 1682653) (-956 "REGSET.spad" 1674487 1674503 1676335 1676362) (-955 "REF.spad" 1673817 1673827 1674442 1674447) (-954 "REDORDER.spad" 1672994 1673010 1673807 1673812) (-953 "RECLOS.spad" 1671784 1671803 1672487 1672580) (-952 "REALSOLV.spad" 1670917 1670925 1671774 1671779) (-951 "REAL.spad" 1670790 1670798 1670907 1670912) (-950 "REAL0Q.spad" 1668073 1668087 1670780 1670785) (-949 "REAL0.spad" 1664902 1664916 1668063 1668068) (-948 "RDIV.spad" 1664554 1664578 1664892 1664897) (-947 "RDIST.spad" 1664118 1664128 1664544 1664549) (-946 "RDETRS.spad" 1662915 1662932 1664108 1664113) (-945 "RDETR.spad" 1661023 1661040 1662905 1662910) (-944 "RDEEFS.spad" 1660097 1660113 1661013 1661018) (-943 "RDEEF.spad" 1659094 1659110 1660087 1660092) (-942 "RCFIELD.spad" 1656278 1656286 1658996 1659089) (-941 "RCFIELD.spad" 1653548 1653558 1656268 1656273) (-940 "RCAGG.spad" 1651451 1651461 1653528 1653543) (-939 "RCAGG.spad" 1649291 1649303 1651370 1651375) (-938 "RATRET.spad" 1648652 1648662 1649281 1649286) (-937 "RATFACT.spad" 1648345 1648356 1648642 1648647) (-936 "RANDSRC.spad" 1647665 1647673 1648335 1648340) (-935 "RADUTIL.spad" 1647420 1647428 1647655 1647660) (-934 "RADIX.spad" 1644213 1644226 1645890 1645983) (-933 "RADFF.spad" 1642630 1642666 1642748 1642904) (-932 "RADCAT.spad" 1642224 1642232 1642620 1642625) (-931 "RADCAT.spad" 1641816 1641826 1642214 1642219) (-930 "QUEUE.spad" 1641159 1641169 1641423 1641450) (-929 "QUAT.spad" 1639745 1639755 1640087 1640152) (-928 "QUATCT2.spad" 1639364 1639382 1639735 1639740) (-927 "QUATCAT.spad" 1637529 1637539 1639294 1639359) (-926 "QUATCAT.spad" 1635446 1635458 1637213 1637218) (-925 "QUAGG.spad" 1634260 1634270 1635402 1635441) (-924 "QFORM.spad" 1633723 1633737 1634250 1634255) (-923 "QFCAT.spad" 1632414 1632424 1633613 1633718) (-922 "QFCAT.spad" 1630711 1630723 1631912 1631917) (-921 "QFCAT2.spad" 1630402 1630418 1630701 1630706) (-920 "QEQUAT.spad" 1629959 1629967 1630392 1630397) (-919 "QCMPACK.spad" 1624706 1624725 1629949 1629954) (-918 "QALGSET.spad" 1620781 1620813 1624620 1624625) (-917 "QALGSET2.spad" 1618777 1618795 1620771 1620776) (-916 "PWFFINTB.spad" 1616087 1616108 1618767 1618772) (-915 "PUSHVAR.spad" 1615416 1615435 1616077 1616082) (-914 "PTRANFN.spad" 1611542 1611552 1615406 1615411) (-913 "PTPACK.spad" 1608630 1608640 1611532 1611537) (-912 "PTFUNC2.spad" 1608451 1608465 1608620 1608625) (-911 "PTCAT.spad" 1607533 1607543 1608407 1608446) (-910 "PSQFR.spad" 1606840 1606864 1607523 1607528) (-909 "PSEUDLIN.spad" 1605698 1605708 1606830 1606835) (-908 "PSETPK.spad" 1591131 1591147 1605576 1605581) (-907 "PSETCAT.spad" 1585039 1585062 1591099 1591126) (-906 "PSETCAT.spad" 1578933 1578958 1584995 1585000) (-905 "PSCURVE.spad" 1577916 1577924 1578923 1578928) (-904 "PSCAT.spad" 1576683 1576712 1577814 1577911) (-903 "PSCAT.spad" 1575540 1575571 1576673 1576678) (-902 "PRTITION.spad" 1574383 1574391 1575530 1575535) (-901 "PRS.spad" 1563945 1563962 1574339 1574344) (-900 "PRQAGG.spad" 1563364 1563374 1563901 1563940) (-899 "PROPLOG.spad" 1562767 1562775 1563354 1563359) (-898 "PROPFRML.spad" 1560632 1560643 1562703 1562708) (-897 "PROPERTY.spad" 1560126 1560134 1560622 1560627) (-896 "PRODUCT.spad" 1557806 1557818 1558092 1558147) (-895 "PR.spad" 1556195 1556207 1556900 1557027) (-894 "PRINT.spad" 1555947 1555955 1556185 1556190) (-893 "PRIMES.spad" 1554198 1554208 1555937 1555942) (-892 "PRIMELT.spad" 1552179 1552193 1554188 1554193) (-891 "PRIMCAT.spad" 1551802 1551810 1552169 1552174) (-890 "PRIMARR.spad" 1550807 1550817 1550985 1551012) (-889 "PRIMARR2.spad" 1549530 1549542 1550797 1550802) (-888 "PREASSOC.spad" 1548902 1548914 1549520 1549525) (-887 "PPCURVE.spad" 1548039 1548047 1548892 1548897) (-886 "POLYROOT.spad" 1546811 1546833 1547995 1548000) (-885 "POLY.spad" 1544111 1544121 1544628 1544755) (-884 "POLYLIFT.spad" 1543372 1543395 1544101 1544106) (-883 "POLYCATQ.spad" 1541474 1541496 1543362 1543367) (-882 "POLYCAT.spad" 1534880 1534901 1541342 1541469) (-881 "POLYCAT.spad" 1527588 1527611 1534052 1534057) (-880 "POLY2UP.spad" 1527036 1527050 1527578 1527583) (-879 "POLY2.spad" 1526631 1526643 1527026 1527031) (-878 "POLUTIL.spad" 1525572 1525601 1526587 1526592) (-877 "POLTOPOL.spad" 1524320 1524335 1525562 1525567) (-876 "POINT.spad" 1523161 1523171 1523248 1523275) (-875 "PNTHEORY.spad" 1519827 1519835 1523151 1523156) (-874 "PMTOOLS.spad" 1518584 1518598 1519817 1519822) (-873 "PMSYM.spad" 1518129 1518139 1518574 1518579) (-872 "PMQFCAT.spad" 1517716 1517730 1518119 1518124) (-871 "PMPRED.spad" 1517185 1517199 1517706 1517711) (-870 "PMPREDFS.spad" 1516629 1516651 1517175 1517180) (-869 "PMPLCAT.spad" 1515699 1515717 1516561 1516566) (-868 "PMLSAGG.spad" 1515280 1515294 1515689 1515694) (-867 "PMKERNEL.spad" 1514847 1514859 1515270 1515275) (-866 "PMINS.spad" 1514423 1514433 1514837 1514842) (-865 "PMFS.spad" 1513996 1514014 1514413 1514418) (-864 "PMDOWN.spad" 1513282 1513296 1513986 1513991) (-863 "PMASS.spad" 1512294 1512302 1513272 1513277) (-862 "PMASSFS.spad" 1511263 1511279 1512284 1512289) (-861 "PLOTTOOL.spad" 1511043 1511051 1511253 1511258) (-860 "PLOT.spad" 1505874 1505882 1511033 1511038) (-859 "PLOT3D.spad" 1502294 1502302 1505864 1505869) (-858 "PLOT1.spad" 1501435 1501445 1502284 1502289) (-857 "PLEQN.spad" 1488651 1488678 1501425 1501430) (-856 "PINTERP.spad" 1488267 1488286 1488641 1488646) (-855 "PINTERPA.spad" 1488049 1488065 1488257 1488262) (-854 "PI.spad" 1487656 1487664 1488023 1488044) (-853 "PID.spad" 1486612 1486620 1487582 1487651) (-852 "PICOERCE.spad" 1486269 1486279 1486602 1486607) (-851 "PGROEB.spad" 1484866 1484880 1486259 1486264) (-850 "PGE.spad" 1476119 1476127 1484856 1484861) (-849 "PGCD.spad" 1475001 1475018 1476109 1476114) (-848 "PFRPAC.spad" 1474144 1474154 1474991 1474996) (-847 "PFR.spad" 1470801 1470811 1474046 1474139) (-846 "PFOTOOLS.spad" 1470059 1470075 1470791 1470796) (-845 "PFOQ.spad" 1469429 1469447 1470049 1470054) (-844 "PFO.spad" 1468848 1468875 1469419 1469424) (-843 "PF.spad" 1468422 1468434 1468653 1468746) (-842 "PFECAT.spad" 1466088 1466096 1468348 1468417) (-841 "PFECAT.spad" 1463782 1463792 1466044 1466049) (-840 "PFBRU.spad" 1461652 1461664 1463772 1463777) (-839 "PFBR.spad" 1459190 1459213 1461642 1461647) (-838 "PERM.spad" 1454871 1454881 1459020 1459035) (-837 "PERMGRP.spad" 1449607 1449617 1454861 1454866) (-836 "PERMCAT.spad" 1448159 1448169 1449587 1449602) (-835 "PERMAN.spad" 1446691 1446705 1448149 1448154) (-834 "PENDTREE.spad" 1445964 1445974 1446320 1446325) (-833 "PDRING.spad" 1444455 1444465 1445944 1445959) (-832 "PDRING.spad" 1442954 1442966 1444445 1444450) (-831 "PDEPROB.spad" 1441911 1441919 1442944 1442949) (-830 "PDEPACK.spad" 1435913 1435921 1441901 1441906) (-829 "PDECOMP.spad" 1435375 1435392 1435903 1435908) (-828 "PDECAT.spad" 1433729 1433737 1435365 1435370) (-827 "PCOMP.spad" 1433580 1433593 1433719 1433724) (-826 "PBWLB.spad" 1432162 1432179 1433570 1433575) (-825 "PATTERN.spad" 1426593 1426603 1432152 1432157) (-824 "PATTERN2.spad" 1426329 1426341 1426583 1426588) (-823 "PATTERN1.spad" 1424631 1424647 1426319 1426324) (-822 "PATRES.spad" 1422178 1422190 1424621 1424626) (-821 "PATRES2.spad" 1421840 1421854 1422168 1422173) (-820 "PATMATCH.spad" 1420002 1420033 1421553 1421558) (-819 "PATMAB.spad" 1419427 1419437 1419992 1419997) (-818 "PATLRES.spad" 1418511 1418525 1419417 1419422) (-817 "PATAB.spad" 1418275 1418285 1418501 1418506) (-816 "PARTPERM.spad" 1415637 1415645 1418265 1418270) (-815 "PARSURF.spad" 1415065 1415093 1415627 1415632) (-814 "PARSU2.spad" 1414860 1414876 1415055 1415060) (-813 "script-parser.spad" 1414380 1414388 1414850 1414855) (-812 "PARSCURV.spad" 1413808 1413836 1414370 1414375) (-811 "PARSC2.spad" 1413597 1413613 1413798 1413803) (-810 "PARPCURV.spad" 1413055 1413083 1413587 1413592) (-809 "PARPC2.spad" 1412844 1412860 1413045 1413050) (-808 "PAN2EXPR.spad" 1412256 1412264 1412834 1412839) (-807 "PALETTE.spad" 1411226 1411234 1412246 1412251) (-806 "PAIR.spad" 1410209 1410222 1410814 1410819) (-805 "PADICRC.spad" 1407542 1407560 1408717 1408810) (-804 "PADICRAT.spad" 1405560 1405572 1405781 1405874) (-803 "PADIC.spad" 1405255 1405267 1405486 1405555) (-802 "PADICCT.spad" 1403796 1403808 1405181 1405250) (-801 "PADEPAC.spad" 1402475 1402494 1403786 1403791) (-800 "PADE.spad" 1401215 1401231 1402465 1402470) (-799 "OWP.spad" 1400199 1400229 1401073 1401140) (-798 "OVAR.spad" 1399980 1400003 1400189 1400194) (-797 "OUT.spad" 1399064 1399072 1399970 1399975) (-796 "OUTFORM.spad" 1388478 1388486 1399054 1399059) (-795 "OSI.spad" 1387953 1387961 1388468 1388473) (-794 "ORTHPOL.spad" 1386414 1386424 1387870 1387875) (-793 "OREUP.spad" 1385774 1385802 1386096 1386135) (-792 "ORESUP.spad" 1385075 1385099 1385456 1385495) (-791 "OREPCTO.spad" 1382894 1382906 1384995 1385000) (-790 "OREPCAT.spad" 1376951 1376961 1382850 1382889) (-789 "OREPCAT.spad" 1370898 1370910 1376799 1376804) (-788 "ORDSET.spad" 1370064 1370072 1370888 1370893) (-787 "ORDSET.spad" 1369228 1369238 1370054 1370059) (-786 "ORDRING.spad" 1368618 1368626 1369208 1369223) (-785 "ORDRING.spad" 1368016 1368026 1368608 1368613) (-784 "ORDMON.spad" 1367871 1367879 1368006 1368011) (-783 "ORDFUNS.spad" 1366997 1367013 1367861 1367866) (-782 "ORDFIN.spad" 1366931 1366939 1366987 1366992) (-781 "ORDCOMP.spad" 1365399 1365409 1366481 1366510) (-780 "ORDCOMP2.spad" 1364684 1364696 1365389 1365394) (-779 "OPTPROB.spad" 1363264 1363272 1364674 1364679) (-778 "OPTPACK.spad" 1355649 1355657 1363254 1363259) (-777 "OPTCAT.spad" 1353324 1353332 1355639 1355644) (-776 "OPQUERY.spad" 1352873 1352881 1353314 1353319) (-775 "OP.spad" 1352615 1352625 1352695 1352762) (-774 "ONECOMP.spad" 1351363 1351373 1352165 1352194) (-773 "ONECOMP2.spad" 1350781 1350793 1351353 1351358) (-772 "OMSERVER.spad" 1349783 1349791 1350771 1350776) (-771 "OMSAGG.spad" 1349559 1349569 1349727 1349778) (-770 "OMPKG.spad" 1348171 1348179 1349549 1349554) (-769 "OM.spad" 1347136 1347144 1348161 1348166) (-768 "OMLO.spad" 1346561 1346573 1347022 1347061) (-767 "OMEXPR.spad" 1346395 1346405 1346551 1346556) (-766 "OMERR.spad" 1345938 1345946 1346385 1346390) (-765 "OMERRK.spad" 1344972 1344980 1345928 1345933) (-764 "OMENC.spad" 1344316 1344324 1344962 1344967) (-763 "OMDEV.spad" 1338605 1338613 1344306 1344311) (-762 "OMCONN.spad" 1338014 1338022 1338595 1338600) (-761 "OINTDOM.spad" 1337777 1337785 1337940 1338009) (-760 "OFMONOID.spad" 1333964 1333974 1337767 1337772) (-759 "ODVAR.spad" 1333225 1333235 1333954 1333959) (-758 "ODR.spad" 1332673 1332699 1333037 1333186) (-757 "ODPOL.spad" 1330022 1330032 1330362 1330489) (-756 "ODP.spad" 1321548 1321568 1321921 1322050) (-755 "ODETOOLS.spad" 1320131 1320150 1321538 1321543) (-754 "ODESYS.spad" 1317781 1317798 1320121 1320126) (-753 "ODERTRIC.spad" 1313722 1313739 1317738 1317743) (-752 "ODERED.spad" 1313109 1313133 1313712 1313717) (-751 "ODERAT.spad" 1310660 1310677 1313099 1313104) (-750 "ODEPRRIC.spad" 1307551 1307573 1310650 1310655) (-749 "ODEPROB.spad" 1306750 1306758 1307541 1307546) (-748 "ODEPRIM.spad" 1304024 1304046 1306740 1306745) (-747 "ODEPAL.spad" 1303400 1303424 1304014 1304019) (-746 "ODEPACK.spad" 1290002 1290010 1303390 1303395) (-745 "ODEINT.spad" 1289433 1289449 1289992 1289997) (-744 "ODEIFTBL.spad" 1286828 1286836 1289423 1289428) (-743 "ODEEF.spad" 1282195 1282211 1286818 1286823) (-742 "ODECONST.spad" 1281714 1281732 1282185 1282190) (-741 "ODECAT.spad" 1280310 1280318 1281704 1281709) (-740 "OCT.spad" 1278457 1278467 1279173 1279212) (-739 "OCTCT2.spad" 1278101 1278122 1278447 1278452) (-738 "OC.spad" 1275875 1275885 1278057 1278096) (-737 "OC.spad" 1273375 1273387 1275559 1275564) (-736 "OCAMON.spad" 1273223 1273231 1273365 1273370) (-735 "OASGP.spad" 1273038 1273046 1273213 1273218) (-734 "OAMONS.spad" 1272558 1272566 1273028 1273033) (-733 "OAMON.spad" 1272419 1272427 1272548 1272553) (-732 "OAGROUP.spad" 1272281 1272289 1272409 1272414) (-731 "NUMTUBE.spad" 1271868 1271884 1272271 1272276) (-730 "NUMQUAD.spad" 1259730 1259738 1271858 1271863) (-729 "NUMODE.spad" 1250866 1250874 1259720 1259725) (-728 "NUMINT.spad" 1248424 1248432 1250856 1250861) (-727 "NUMFMT.spad" 1247264 1247272 1248414 1248419) (-726 "NUMERIC.spad" 1239337 1239347 1247070 1247075) (-725 "NTSCAT.spad" 1237827 1237843 1239293 1239332) (-724 "NTPOLFN.spad" 1237372 1237382 1237744 1237749) (-723 "NSUP.spad" 1230385 1230395 1234925 1235078) (-722 "NSUP2.spad" 1229777 1229789 1230375 1230380) (-721 "NSMP.spad" 1225976 1225995 1226284 1226411) (-720 "NREP.spad" 1224348 1224362 1225966 1225971) (-719 "NPCOEF.spad" 1223594 1223614 1224338 1224343) (-718 "NORMRETR.spad" 1223192 1223231 1223584 1223589) (-717 "NORMPK.spad" 1221094 1221113 1223182 1223187) (-716 "NORMMA.spad" 1220782 1220808 1221084 1221089) (-715 "NONE.spad" 1220523 1220531 1220772 1220777) (-714 "NONE1.spad" 1220199 1220209 1220513 1220518) (-713 "NODE1.spad" 1219668 1219684 1220189 1220194) (-712 "NNI.spad" 1218555 1218563 1219642 1219663) (-711 "NLINSOL.spad" 1217177 1217187 1218545 1218550) (-710 "NIPROB.spad" 1215660 1215668 1217167 1217172) (-709 "NFINTBAS.spad" 1213120 1213137 1215650 1215655) (-708 "NCODIV.spad" 1211318 1211334 1213110 1213115) (-707 "NCNTFRAC.spad" 1210960 1210974 1211308 1211313) (-706 "NCEP.spad" 1209120 1209134 1210950 1210955) (-705 "NASRING.spad" 1208716 1208724 1209110 1209115) (-704 "NASRING.spad" 1208310 1208320 1208706 1208711) (-703 "NARNG.spad" 1207654 1207662 1208300 1208305) (-702 "NARNG.spad" 1206996 1207006 1207644 1207649) (-701 "NAGSP.spad" 1206069 1206077 1206986 1206991) (-700 "NAGS.spad" 1195594 1195602 1206059 1206064) (-699 "NAGF07.spad" 1193987 1193995 1195584 1195589) (-698 "NAGF04.spad" 1188219 1188227 1193977 1193982) (-697 "NAGF02.spad" 1182028 1182036 1188209 1188214) (-696 "NAGF01.spad" 1177631 1177639 1182018 1182023) (-695 "NAGE04.spad" 1171091 1171099 1177621 1177626) (-694 "NAGE02.spad" 1161433 1161441 1171081 1171086) (-693 "NAGE01.spad" 1157317 1157325 1161423 1161428) (-692 "NAGD03.spad" 1155237 1155245 1157307 1157312) (-691 "NAGD02.spad" 1147768 1147776 1155227 1155232) (-690 "NAGD01.spad" 1141881 1141889 1147758 1147763) (-689 "NAGC06.spad" 1137668 1137676 1141871 1141876) (-688 "NAGC05.spad" 1136137 1136145 1137658 1137663) (-687 "NAGC02.spad" 1135392 1135400 1136127 1136132) (-686 "NAALG.spad" 1134927 1134937 1135360 1135387) (-685 "NAALG.spad" 1134482 1134494 1134917 1134922) (-684 "MULTSQFR.spad" 1131440 1131457 1134472 1134477) (-683 "MULTFACT.spad" 1130823 1130840 1131430 1131435) (-682 "MTSCAT.spad" 1128857 1128878 1130721 1130818) (-681 "MTHING.spad" 1128514 1128524 1128847 1128852) (-680 "MSYSCMD.spad" 1127948 1127956 1128504 1128509) (-679 "MSET.spad" 1125890 1125900 1127654 1127693) (-678 "MSETAGG.spad" 1125723 1125733 1125846 1125885) (-677 "MRING.spad" 1122694 1122706 1125431 1125498) (-676 "MRF2.spad" 1122262 1122276 1122684 1122689) (-675 "MRATFAC.spad" 1121808 1121825 1122252 1122257) (-674 "MPRFF.spad" 1119838 1119857 1121798 1121803) (-673 "MPOLY.spad" 1117276 1117291 1117635 1117762) (-672 "MPCPF.spad" 1116540 1116559 1117266 1117271) (-671 "MPC3.spad" 1116355 1116395 1116530 1116535) (-670 "MPC2.spad" 1115997 1116030 1116345 1116350) (-669 "MONOTOOL.spad" 1114332 1114349 1115987 1115992) (-668 "MONOID.spad" 1113506 1113514 1114322 1114327) (-667 "MONOID.spad" 1112678 1112688 1113496 1113501) (-666 "MONOGEN.spad" 1111424 1111437 1112538 1112673) (-665 "MONOGEN.spad" 1110192 1110207 1111308 1111313) (-664 "MONADWU.spad" 1108206 1108214 1110182 1110187) (-663 "MONADWU.spad" 1106218 1106228 1108196 1108201) (-662 "MONAD.spad" 1105362 1105370 1106208 1106213) (-661 "MONAD.spad" 1104504 1104514 1105352 1105357) (-660 "MOEBIUS.spad" 1103190 1103204 1104484 1104499) (-659 "MODULE.spad" 1103060 1103070 1103158 1103185) (-658 "MODULE.spad" 1102950 1102962 1103050 1103055) (-657 "MODRING.spad" 1102281 1102320 1102930 1102945) (-656 "MODOP.spad" 1100940 1100952 1102103 1102170) (-655 "MODMONOM.spad" 1100472 1100490 1100930 1100935) (-654 "MODMON.spad" 1097177 1097193 1097953 1098106) (-653 "MODFIELD.spad" 1096535 1096574 1097079 1097172) (-652 "MMLFORM.spad" 1095395 1095403 1096525 1096530) (-651 "MMAP.spad" 1095135 1095169 1095385 1095390) (-650 "MLO.spad" 1093562 1093572 1095091 1095130) (-649 "MLIFT.spad" 1092134 1092151 1093552 1093557) (-648 "MKUCFUNC.spad" 1091667 1091685 1092124 1092129) (-647 "MKRECORD.spad" 1091269 1091282 1091657 1091662) (-646 "MKFUNC.spad" 1090650 1090660 1091259 1091264) (-645 "MKFLCFN.spad" 1089606 1089616 1090640 1090645) (-644 "MKCHSET.spad" 1089382 1089392 1089596 1089601) (-643 "MKBCFUNC.spad" 1088867 1088885 1089372 1089377) (-642 "MINT.spad" 1088306 1088314 1088769 1088862) (-641 "MHROWRED.spad" 1086807 1086817 1088296 1088301) (-640 "MFLOAT.spad" 1085252 1085260 1086697 1086802) (-639 "MFINFACT.spad" 1084652 1084674 1085242 1085247) (-638 "MESH.spad" 1082384 1082392 1084642 1084647) (-637 "MDDFACT.spad" 1080577 1080587 1082374 1082379) (-636 "MDAGG.spad" 1079852 1079862 1080545 1080572) (-635 "MCMPLX.spad" 1075832 1075840 1076446 1076647) (-634 "MCDEN.spad" 1075040 1075052 1075822 1075827) (-633 "MCALCFN.spad" 1072142 1072168 1075030 1075035) (-632 "MATSTOR.spad" 1069418 1069428 1072132 1072137) (-631 "MATRIX.spad" 1068122 1068132 1068606 1068633) (-630 "MATLIN.spad" 1065448 1065472 1068006 1068011) (-629 "MATCAT.spad" 1057021 1057043 1065404 1065443) (-628 "MATCAT.spad" 1048478 1048502 1056863 1056868) (-627 "MATCAT2.spad" 1047746 1047794 1048468 1048473) (-626 "MAPPKG3.spad" 1046645 1046659 1047736 1047741) (-625 "MAPPKG2.spad" 1045979 1045991 1046635 1046640) (-624 "MAPPKG1.spad" 1044797 1044807 1045969 1045974) (-623 "MAPHACK3.spad" 1044605 1044619 1044787 1044792) (-622 "MAPHACK2.spad" 1044370 1044382 1044595 1044600) (-621 "MAPHACK1.spad" 1044000 1044010 1044360 1044365) (-620 "MAGMA.spad" 1041790 1041807 1043990 1043995) (-619 "M3D.spad" 1039488 1039498 1041170 1041175) (-618 "LZSTAGG.spad" 1036706 1036716 1039468 1039483) (-617 "LZSTAGG.spad" 1033932 1033944 1036696 1036701) (-616 "LWORD.spad" 1030637 1030654 1033922 1033927) (-615 "LSQM.spad" 1028865 1028879 1029263 1029314) (-614 "LSPP.spad" 1028398 1028415 1028855 1028860) (-613 "LSMP.spad" 1027238 1027266 1028388 1028393) (-612 "LSMP1.spad" 1025042 1025056 1027228 1027233) (-611 "LSAGG.spad" 1024699 1024709 1024998 1025037) (-610 "LSAGG.spad" 1024388 1024400 1024689 1024694) (-609 "LPOLY.spad" 1023342 1023361 1024244 1024313) (-608 "LPEFRAC.spad" 1022599 1022609 1023332 1023337) (-607 "LO.spad" 1022000 1022014 1022533 1022560) (-606 "LOGIC.spad" 1021602 1021610 1021990 1021995) (-605 "LOGIC.spad" 1021202 1021212 1021592 1021597) (-604 "LODOOPS.spad" 1020120 1020132 1021192 1021197) (-603 "LODO.spad" 1019506 1019522 1019802 1019841) (-602 "LODOF.spad" 1018550 1018567 1019463 1019468) (-601 "LODOCAT.spad" 1017208 1017218 1018506 1018545) (-600 "LODOCAT.spad" 1015864 1015876 1017164 1017169) (-599 "LODO2.spad" 1015139 1015151 1015546 1015585) (-598 "LODO1.spad" 1014541 1014551 1014821 1014860) (-597 "LODEEF.spad" 1013313 1013331 1014531 1014536) (-596 "LNAGG.spad" 1009105 1009115 1013293 1013308) (-595 "LNAGG.spad" 1004871 1004883 1009061 1009066) (-594 "LMOPS.spad" 1001607 1001624 1004861 1004866) (-593 "LMODULE.spad" 1001249 1001259 1001597 1001602) (-592 "LMDICT.spad" 1000532 1000542 1000800 1000827) (-591 "LIST.spad" 998250 998260 999679 999706) (-590 "LIST3.spad" 997541 997555 998240 998245) (-589 "LIST2.spad" 996181 996193 997531 997536) (-588 "LIST2MAP.spad" 993058 993070 996171 996176) (-587 "LINEXP.spad" 992490 992500 993038 993053) (-586 "LINDEP.spad" 991267 991279 992402 992407) (-585 "LIMITRF.spad" 989181 989191 991257 991262) (-584 "LIMITPS.spad" 988064 988077 989171 989176) (-583 "LIE.spad" 986078 986090 987354 987499) (-582 "LIECAT.spad" 985554 985564 986004 986073) (-581 "LIECAT.spad" 985058 985070 985510 985515) (-580 "LIB.spad" 983106 983114 983717 983732) (-579 "LGROBP.spad" 980459 980478 983096 983101) (-578 "LF.spad" 979378 979394 980449 980454) (-577 "LFCAT.spad" 978397 978405 979368 979373) (-576 "LEXTRIPK.spad" 973900 973915 978387 978392) (-575 "LEXP.spad" 971903 971930 973880 973895) (-574 "LEADCDET.spad" 970287 970304 971893 971898) (-573 "LAZM3PK.spad" 968991 969013 970277 970282) (-572 "LAUPOL.spad" 967682 967695 968586 968655) (-571 "LAPLACE.spad" 967255 967271 967672 967677) (-570 "LA.spad" 966695 966709 967177 967216) (-569 "LALG.spad" 966471 966481 966675 966690) (-568 "LALG.spad" 966255 966267 966461 966466) (-567 "KOVACIC.spad" 964968 964985 966245 966250) (-566 "KONVERT.spad" 964690 964700 964958 964963) (-565 "KOERCE.spad" 964427 964437 964680 964685) (-564 "KERNEL.spad" 962962 962972 964211 964216) (-563 "KERNEL2.spad" 962665 962677 962952 962957) (-562 "KDAGG.spad" 961756 961778 962633 962660) (-561 "KDAGG.spad" 960867 960891 961746 961751) (-560 "KAFILE.spad" 959830 959846 960065 960092) (-559 "JORDAN.spad" 957657 957669 959120 959265) (-558 "IXAGG.spad" 955770 955794 957637 957652) (-557 "IXAGG.spad" 953748 953774 955617 955622) (-556 "IVECTOR.spad" 952521 952536 952676 952703) (-555 "ITUPLE.spad" 951666 951676 952511 952516) (-554 "ITRIGMNP.spad" 950477 950496 951656 951661) (-553 "ITFUN3.spad" 949971 949985 950467 950472) (-552 "ITFUN2.spad" 949701 949713 949961 949966) (-551 "ITAYLOR.spad" 947493 947508 949537 949662) (-550 "ISUPS.spad" 939904 939919 946467 946564) (-549 "ISUMP.spad" 939401 939417 939894 939899) (-548 "ISTRING.spad" 938404 938417 938570 938597) (-547 "IRURPK.spad" 937117 937136 938394 938399) (-546 "IRSN.spad" 935077 935085 937107 937112) (-545 "IRRF2F.spad" 933552 933562 935033 935038) (-544 "IRREDFFX.spad" 933153 933164 933542 933547) (-543 "IROOT.spad" 931484 931494 933143 933148) (-542 "IR.spad" 929274 929288 931340 931367) (-541 "IR2.spad" 928294 928310 929264 929269) (-540 "IR2F.spad" 927494 927510 928284 928289) (-539 "IPRNTPK.spad" 927254 927262 927484 927489) (-538 "IPF.spad" 926819 926831 927059 927152) (-537 "IPADIC.spad" 926580 926606 926745 926814) (-536 "INVLAPLA.spad" 926225 926241 926570 926575) (-535 "INTTR.spad" 919471 919488 926215 926220) (-534 "INTTOOLS.spad" 917183 917199 919046 919051) (-533 "INTSLPE.spad" 916489 916497 917173 917178) (-532 "INTRVL.spad" 916055 916065 916403 916484) (-531 "INTRF.spad" 914419 914433 916045 916050) (-530 "INTRET.spad" 913851 913861 914409 914414) (-529 "INTRAT.spad" 912526 912543 913841 913846) (-528 "INTPM.spad" 910889 910905 912169 912174) (-527 "INTPAF.spad" 908657 908675 910821 910826) (-526 "INTPACK.spad" 898967 898975 908647 908652) (-525 "INT.spad" 898328 898336 898821 898962) (-524 "INTHERTR.spad" 897594 897611 898318 898323) (-523 "INTHERAL.spad" 897260 897284 897584 897589) (-522 "INTHEORY.spad" 893673 893681 897250 897255) (-521 "INTG0.spad" 887136 887154 893605 893610) (-520 "INTFTBL.spad" 881165 881173 887126 887131) (-519 "INTFACT.spad" 880224 880234 881155 881160) (-518 "INTEF.spad" 878539 878555 880214 880219) (-517 "INTDOM.spad" 877154 877162 878465 878534) (-516 "INTDOM.spad" 875831 875841 877144 877149) (-515 "INTCAT.spad" 874084 874094 875745 875826) (-514 "INTBIT.spad" 873587 873595 874074 874079) (-513 "INTALG.spad" 872769 872796 873577 873582) (-512 "INTAF.spad" 872261 872277 872759 872764) (-511 "INTABL.spad" 870779 870810 870942 870969) (-510 "INS.spad" 868175 868183 870681 870774) (-509 "INS.spad" 865657 865667 868165 868170) (-508 "INPSIGN.spad" 865091 865104 865647 865652) (-507 "INPRODPF.spad" 864157 864176 865081 865086) (-506 "INPRODFF.spad" 863215 863239 864147 864152) (-505 "INNMFACT.spad" 862186 862203 863205 863210) (-504 "INMODGCD.spad" 861670 861700 862176 862181) (-503 "INFSP.spad" 859955 859977 861660 861665) (-502 "INFPROD0.spad" 859005 859024 859945 859950) (-501 "INFORM.spad" 856273 856281 858995 859000) (-500 "INFORM1.spad" 855898 855908 856263 856268) (-499 "INFINITY.spad" 855450 855458 855888 855893) (-498 "INEP.spad" 853982 854004 855440 855445) (-497 "INDE.spad" 853888 853905 853972 853977) (-496 "INCRMAPS.spad" 853309 853319 853878 853883) (-495 "INBFF.spad" 849079 849090 853299 853304) (-494 "IMATRIX.spad" 848024 848050 848536 848563) (-493 "IMATQF.spad" 847118 847162 847980 847985) (-492 "IMATLIN.spad" 845723 845747 847074 847079) (-491 "ILIST.spad" 844379 844394 844906 844933) (-490 "IIARRAY2.spad" 843767 843805 843986 844013) (-489 "IFF.spad" 843177 843193 843448 843541) (-488 "IFARRAY.spad" 840664 840679 842360 842387) (-487 "IFAMON.spad" 840526 840543 840620 840625) (-486 "IEVALAB.spad" 839915 839927 840516 840521) (-485 "IEVALAB.spad" 839302 839316 839905 839910) (-484 "IDPO.spad" 839100 839112 839292 839297) (-483 "IDPOAMS.spad" 838856 838868 839090 839095) (-482 "IDPOAM.spad" 838576 838588 838846 838851) (-481 "IDPC.spad" 837510 837522 838566 838571) (-480 "IDPAM.spad" 837255 837267 837500 837505) (-479 "IDPAG.spad" 837002 837014 837245 837250) (-478 "IDECOMP.spad" 834239 834257 836992 836997) (-477 "IDEAL.spad" 829162 829201 834174 834179) (-476 "ICDEN.spad" 828313 828329 829152 829157) (-475 "ICARD.spad" 827502 827510 828303 828308) (-474 "IBPTOOLS.spad" 826095 826112 827492 827497) (-473 "IBITS.spad" 825294 825307 825731 825758) (-472 "IBATOOL.spad" 822169 822188 825284 825289) (-471 "IBACHIN.spad" 820656 820671 822159 822164) (-470 "IARRAY2.spad" 819644 819670 820263 820290) (-469 "IARRAY1.spad" 818689 818704 818827 818854) (-468 "IAN.spad" 816904 816912 818507 818600) (-467 "IALGFACT.spad" 816505 816538 816894 816899) (-466 "HYPCAT.spad" 815929 815937 816495 816500) (-465 "HYPCAT.spad" 815351 815361 815919 815924) (-464 "HOAGG.spad" 812609 812619 815331 815346) (-463 "HOAGG.spad" 809652 809664 812376 812381) (-462 "HEXADEC.spad" 807524 807532 808122 808215) (-461 "HEUGCD.spad" 806539 806550 807514 807519) (-460 "HELLFDIV.spad" 806129 806153 806529 806534) (-459 "HEAP.spad" 805521 805531 805736 805763) (-458 "HDP.spad" 797043 797059 797420 797549) (-457 "HDMP.spad" 794222 794237 794840 794967) (-456 "HB.spad" 792459 792467 794212 794217) (-455 "HASHTBL.spad" 790929 790960 791140 791167) (-454 "HACKPI.spad" 790412 790420 790831 790924) (-453 "GTSET.spad" 789351 789367 790058 790085) (-452 "GSTBL.spad" 787870 787905 788044 788059) (-451 "GSERIES.spad" 785037 785064 786002 786151) (-450 "GROUP.spad" 784211 784219 785017 785032) (-449 "GROUP.spad" 783393 783403 784201 784206) (-448 "GROEBSOL.spad" 781881 781902 783383 783388) (-447 "GRMOD.spad" 780452 780464 781871 781876) (-446 "GRMOD.spad" 779021 779035 780442 780447) (-445 "GRIMAGE.spad" 771626 771634 779011 779016) (-444 "GRDEF.spad" 770005 770013 771616 771621) (-443 "GRAY.spad" 768464 768472 769995 770000) (-442 "GRALG.spad" 767511 767523 768454 768459) (-441 "GRALG.spad" 766556 766570 767501 767506) (-440 "GPOLSET.spad" 766010 766033 766238 766265) (-439 "GOSPER.spad" 765275 765293 766000 766005) (-438 "GMODPOL.spad" 764413 764440 765243 765270) (-437 "GHENSEL.spad" 763482 763496 764403 764408) (-436 "GENUPS.spad" 759583 759596 763472 763477) (-435 "GENUFACT.spad" 759160 759170 759573 759578) (-434 "GENPGCD.spad" 758744 758761 759150 759155) (-433 "GENMFACT.spad" 758196 758215 758734 758739) (-432 "GENEEZ.spad" 756135 756148 758186 758191) (-431 "GDMP.spad" 753156 753173 753932 754059) (-430 "GCNAALG.spad" 747051 747078 752950 753017) (-429 "GCDDOM.spad" 746223 746231 746977 747046) (-428 "GCDDOM.spad" 745457 745467 746213 746218) (-427 "GB.spad" 742975 743013 745413 745418) (-426 "GBINTERN.spad" 738995 739033 742965 742970) (-425 "GBF.spad" 734752 734790 738985 738990) (-424 "GBEUCLID.spad" 732626 732664 734742 734747) (-423 "GAUSSFAC.spad" 731923 731931 732616 732621) (-422 "GALUTIL.spad" 730245 730255 731879 731884) (-421 "GALPOLYU.spad" 728691 728704 730235 730240) (-420 "GALFACTU.spad" 726856 726875 728681 728686) (-419 "GALFACT.spad" 716989 717000 726846 726851) (-418 "FVFUN.spad" 714002 714010 716969 716984) (-417 "FVC.spad" 713044 713052 713982 713997) (-416 "FUNCTION.spad" 712893 712905 713034 713039) (-415 "FT.spad" 711105 711113 712883 712888) (-414 "FTEM.spad" 710268 710276 711095 711100) (-413 "FSUPFACT.spad" 709169 709188 710205 710210) (-412 "FST.spad" 707255 707263 709159 709164) (-411 "FSRED.spad" 706733 706749 707245 707250) (-410 "FSPRMELT.spad" 705557 705573 706690 706695) (-409 "FSPECF.spad" 703634 703650 705547 705552) (-408 "FS.spad" 697685 697695 703398 703629) (-407 "FS.spad" 691527 691539 697242 697247) (-406 "FSINT.spad" 691185 691201 691517 691522) (-405 "FSERIES.spad" 690372 690384 691005 691104) (-404 "FSCINT.spad" 689685 689701 690362 690367) (-403 "FSAGG.spad" 688790 688800 689629 689680) (-402 "FSAGG.spad" 687869 687881 688710 688715) (-401 "FSAGG2.spad" 686568 686584 687859 687864) (-400 "FS2UPS.spad" 680957 680991 686558 686563) (-399 "FS2.spad" 680602 680618 680947 680952) (-398 "FS2EXPXP.spad" 679725 679748 680592 680597) (-397 "FRUTIL.spad" 678667 678677 679715 679720) (-396 "FR.spad" 672364 672374 677694 677763) (-395 "FRNAALG.spad" 667451 667461 672306 672359) (-394 "FRNAALG.spad" 662550 662562 667407 667412) (-393 "FRNAAF2.spad" 662004 662022 662540 662545) (-392 "FRMOD.spad" 661399 661429 661936 661941) (-391 "FRIDEAL.spad" 660594 660615 661379 661394) (-390 "FRIDEAL2.spad" 660196 660228 660584 660589) (-389 "FRETRCT.spad" 659707 659717 660186 660191) (-388 "FRETRCT.spad" 659086 659098 659567 659572) (-387 "FRAMALG.spad" 657414 657427 659042 659081) (-386 "FRAMALG.spad" 655774 655789 657404 657409) (-385 "FRAC.spad" 652877 652887 653280 653453) (-384 "FRAC2.spad" 652480 652492 652867 652872) (-383 "FR2.spad" 651814 651826 652470 652475) (-382 "FPS.spad" 648623 648631 651704 651809) (-381 "FPS.spad" 645460 645470 648543 648548) (-380 "FPC.spad" 644502 644510 645362 645455) (-379 "FPC.spad" 643630 643640 644492 644497) (-378 "FPATMAB.spad" 643382 643392 643610 643625) (-377 "FPARFRAC.spad" 641855 641872 643372 643377) (-376 "FORTRAN.spad" 640361 640404 641845 641850) (-375 "FORT.spad" 639290 639298 640351 640356) (-374 "FORTFN.spad" 636450 636458 639270 639285) (-373 "FORTCAT.spad" 636124 636132 636430 636445) (-372 "FORMULA.spad" 633462 633470 636114 636119) (-371 "FORMULA1.spad" 632941 632951 633452 633457) (-370 "FORDER.spad" 632632 632656 632931 632936) (-369 "FOP.spad" 631833 631841 632622 632627) (-368 "FNLA.spad" 631257 631279 631801 631828) (-367 "FNCAT.spad" 629585 629593 631247 631252) (-366 "FNAME.spad" 629477 629485 629575 629580) (-365 "FMTC.spad" 629275 629283 629403 629472) (-364 "FMONOID.spad" 626330 626340 629231 629236) (-363 "FM.spad" 626025 626037 626264 626291) (-362 "FMFUN.spad" 623045 623053 626005 626020) (-361 "FMC.spad" 622087 622095 623025 623040) (-360 "FMCAT.spad" 619741 619759 622055 622082) (-359 "FM1.spad" 619098 619110 619675 619702) (-358 "FLOATRP.spad" 616819 616833 619088 619093) (-357 "FLOAT.spad" 609983 609991 616685 616814) (-356 "FLOATCP.spad" 607400 607414 609973 609978) (-355 "FLINEXP.spad" 607112 607122 607380 607395) (-354 "FLINEXP.spad" 606778 606790 607048 607053) (-353 "FLASORT.spad" 606098 606110 606768 606773) (-352 "FLALG.spad" 603744 603763 606024 606093) (-351 "FLAGG.spad" 600750 600760 603712 603739) (-350 "FLAGG.spad" 597669 597681 600633 600638) (-349 "FLAGG2.spad" 596350 596366 597659 597664) (-348 "FINRALG.spad" 594379 594392 596306 596345) (-347 "FINRALG.spad" 592334 592349 594263 594268) (-346 "FINITE.spad" 591486 591494 592324 592329) (-345 "FINAALG.spad" 580467 580477 591428 591481) (-344 "FINAALG.spad" 569460 569472 580423 580428) (-343 "FILE.spad" 569043 569053 569450 569455) (-342 "FILECAT.spad" 567561 567578 569033 569038) (-341 "FIELD.spad" 566967 566975 567463 567556) (-340 "FIELD.spad" 566459 566469 566957 566962) (-339 "FGROUP.spad" 565068 565078 566439 566454) (-338 "FGLMICPK.spad" 563855 563870 565058 565063) (-337 "FFX.spad" 563230 563245 563571 563664) (-336 "FFSLPE.spad" 562719 562740 563220 563225) (-335 "FFPOLY.spad" 553971 553982 562709 562714) (-334 "FFPOLY2.spad" 553031 553048 553961 553966) (-333 "FFP.spad" 552428 552448 552747 552840) (-332 "FF.spad" 551876 551892 552109 552202) (-331 "FFNBX.spad" 550388 550408 551592 551685) (-330 "FFNBP.spad" 548901 548918 550104 550197) (-329 "FFNB.spad" 547366 547387 548582 548675) (-328 "FFINTBAS.spad" 544780 544799 547356 547361) (-327 "FFIELDC.spad" 542355 542363 544682 544775) (-326 "FFIELDC.spad" 540016 540026 542345 542350) (-325 "FFHOM.spad" 538764 538781 540006 540011) (-324 "FFF.spad" 536199 536210 538754 538759) (-323 "FFCGX.spad" 535046 535066 535915 536008) (-322 "FFCGP.spad" 533935 533955 534762 534855) (-321 "FFCG.spad" 532727 532748 533616 533709) (-320 "FFCAT.spad" 525628 525650 532566 532722) (-319 "FFCAT.spad" 518608 518632 525548 525553) (-318 "FFCAT2.spad" 518353 518393 518598 518603) (-317 "FEXPR.spad" 510066 510112 518113 518152) (-316 "FEVALAB.spad" 509772 509782 510056 510061) (-315 "FEVALAB.spad" 509263 509275 509549 509554) (-314 "FDIV.spad" 508705 508729 509253 509258) (-313 "FDIVCAT.spad" 506747 506771 508695 508700) (-312 "FDIVCAT.spad" 504787 504813 506737 506742) (-311 "FDIV2.spad" 504441 504481 504777 504782) (-310 "FCPAK1.spad" 502994 503002 504431 504436) (-309 "FCOMP.spad" 502373 502383 502984 502989) (-308 "FC.spad" 492198 492206 502363 502368) (-307 "FAXF.spad" 485133 485147 492100 492193) (-306 "FAXF.spad" 478120 478136 485089 485094) (-305 "FARRAY.spad" 476266 476276 477303 477330) (-304 "FAMR.spad" 474386 474398 476164 476261) (-303 "FAMR.spad" 472490 472504 474270 474275) (-302 "FAMONOID.spad" 472140 472150 472444 472449) (-301 "FAMONC.spad" 470362 470374 472130 472135) (-300 "FAGROUP.spad" 469968 469978 470258 470285) (-299 "FACUTIL.spad" 468164 468181 469958 469963) (-298 "FACTFUNC.spad" 467340 467350 468154 468159) (-297 "EXPUPXS.spad" 464173 464196 465472 465621) (-296 "EXPRTUBE.spad" 461401 461409 464163 464168) (-295 "EXPRODE.spad" 458273 458289 461391 461396) (-294 "EXPR.spad" 453575 453585 454289 454692) (-293 "EXPR2UPS.spad" 449667 449680 453565 453570) (-292 "EXPR2.spad" 449370 449382 449657 449662) (-291 "EXPEXPAN.spad" 446311 446336 446945 447038) (-290 "EXIT.spad" 445982 445990 446301 446306) (-289 "EVALCYC.spad" 445440 445454 445972 445977) (-288 "EVALAB.spad" 445004 445014 445430 445435) (-287 "EVALAB.spad" 444566 444578 444994 444999) (-286 "EUCDOM.spad" 442108 442116 444492 444561) (-285 "EUCDOM.spad" 439712 439722 442098 442103) (-284 "ESTOOLS.spad" 431552 431560 439702 439707) (-283 "ESTOOLS2.spad" 431153 431167 431542 431547) (-282 "ESTOOLS1.spad" 430838 430849 431143 431148) (-281 "ES.spad" 423385 423393 430828 430833) (-280 "ES.spad" 415840 415850 423285 423290) (-279 "ESCONT.spad" 412613 412621 415830 415835) (-278 "ESCONT1.spad" 412362 412374 412603 412608) (-277 "ES2.spad" 411857 411873 412352 412357) (-276 "ES1.spad" 411423 411439 411847 411852) (-275 "ERROR.spad" 408744 408752 411413 411418) (-274 "EQTBL.spad" 407216 407238 407425 407452) (-273 "EQ.spad" 402100 402110 404899 405008) (-272 "EQ2.spad" 401816 401828 402090 402095) (-271 "EP.spad" 398130 398140 401806 401811) (-270 "ENV.spad" 396832 396840 398120 398125) (-269 "ENTIRER.spad" 396500 396508 396776 396827) (-268 "EMR.spad" 395701 395742 396426 396495) (-267 "ELTAGG.spad" 393941 393960 395691 395696) (-266 "ELTAGG.spad" 392145 392166 393897 393902) (-265 "ELTAB.spad" 391592 391610 392135 392140) (-264 "ELFUTS.spad" 390971 390990 391582 391587) (-263 "ELEMFUN.spad" 390660 390668 390961 390966) (-262 "ELEMFUN.spad" 390347 390357 390650 390655) (-261 "ELAGG.spad" 388278 388288 390315 390342) (-260 "ELAGG.spad" 386158 386170 388197 388202) (-259 "ELABEXPR.spad" 385089 385097 386148 386153) (-258 "EFUPXS.spad" 381865 381895 385045 385050) (-257 "EFULS.spad" 378701 378724 381821 381826) (-256 "EFSTRUC.spad" 376656 376672 378691 378696) (-255 "EF.spad" 371422 371438 376646 376651) (-254 "EAB.spad" 369698 369706 371412 371417) (-253 "E04UCFA.spad" 369234 369242 369688 369693) (-252 "E04NAFA.spad" 368811 368819 369224 369229) (-251 "E04MBFA.spad" 368391 368399 368801 368806) (-250 "E04JAFA.spad" 367927 367935 368381 368386) (-249 "E04GCFA.spad" 367463 367471 367917 367922) (-248 "E04FDFA.spad" 366999 367007 367453 367458) (-247 "E04DGFA.spad" 366535 366543 366989 366994) (-246 "E04AGNT.spad" 362377 362385 366525 366530) (-245 "DVARCAT.spad" 359062 359072 362367 362372) (-244 "DVARCAT.spad" 355745 355757 359052 359057) (-243 "DSMP.spad" 353179 353193 353484 353611) (-242 "DROPT.spad" 347124 347132 353169 353174) (-241 "DROPT1.spad" 346787 346797 347114 347119) (-240 "DROPT0.spad" 341614 341622 346777 346782) (-239 "DRAWPT.spad" 339769 339777 341604 341609) (-238 "DRAW.spad" 332369 332382 339759 339764) (-237 "DRAWHACK.spad" 331677 331687 332359 332364) (-236 "DRAWCX.spad" 329119 329127 331667 331672) (-235 "DRAWCURV.spad" 328656 328671 329109 329114) (-234 "DRAWCFUN.spad" 317828 317836 328646 328651) (-233 "DQAGG.spad" 315984 315994 317784 317823) (-232 "DPOLCAT.spad" 311325 311341 315852 315979) (-231 "DPOLCAT.spad" 306752 306770 311281 311286) (-230 "DPMO.spad" 300739 300755 300877 301173) (-229 "DPMM.spad" 294739 294757 294864 295160) (-228 "DOMAIN.spad" 294010 294018 294729 294734) (-227 "DMP.spad" 291235 291250 291807 291934) (-226 "DLP.spad" 290583 290593 291225 291230) (-225 "DLIST.spad" 288995 289005 289766 289793) (-224 "DLAGG.spad" 287396 287406 288975 288990) (-223 "DIVRING.spad" 286843 286851 287340 287391) (-222 "DIVRING.spad" 286334 286344 286833 286838) (-221 "DISPLAY.spad" 284514 284522 286324 286329) (-220 "DIRPROD.spad" 275773 275789 276413 276542) (-219 "DIRPROD2.spad" 274581 274599 275763 275768) (-218 "DIRPCAT.spad" 273513 273529 274435 274576) (-217 "DIRPCAT.spad" 272185 272203 273109 273114) (-216 "DIOSP.spad" 271010 271018 272175 272180) (-215 "DIOPS.spad" 269982 269992 270978 271005) (-214 "DIOPS.spad" 268940 268952 269938 269943) (-213 "DIFRING.spad" 268232 268240 268920 268935) (-212 "DIFRING.spad" 267532 267542 268222 268227) (-211 "DIFEXT.spad" 266691 266701 267512 267527) (-210 "DIFEXT.spad" 265767 265779 266590 266595) (-209 "DIAGG.spad" 265385 265395 265735 265762) (-208 "DIAGG.spad" 265023 265035 265375 265380) (-207 "DHMATRIX.spad" 263327 263337 264480 264507) (-206 "DFSFUN.spad" 256735 256743 263317 263322) (-205 "DFLOAT.spad" 253258 253266 256625 256730) (-204 "DFINTTLS.spad" 251467 251483 253248 253253) (-203 "DERHAM.spad" 249377 249409 251447 251462) (-202 "DEQUEUE.spad" 248695 248705 248984 249011) (-201 "DEGRED.spad" 248310 248324 248685 248690) (-200 "DEFINTRF.spad" 245835 245845 248300 248305) (-199 "DEFINTEF.spad" 244331 244347 245825 245830) (-198 "DECIMAL.spad" 242215 242223 242801 242894) (-197 "DDFACT.spad" 240014 240031 242205 242210) (-196 "DBLRESP.spad" 239612 239636 240004 240009) (-195 "DBASE.spad" 238184 238194 239602 239607) (-194 "D03FAFA.spad" 238012 238020 238174 238179) (-193 "D03EEFA.spad" 237832 237840 238002 238007) (-192 "D03AGNT.spad" 236912 236920 237822 237827) (-191 "D02EJFA.spad" 236374 236382 236902 236907) (-190 "D02CJFA.spad" 235852 235860 236364 236369) (-189 "D02BHFA.spad" 235342 235350 235842 235847) (-188 "D02BBFA.spad" 234832 234840 235332 235337) (-187 "D02AGNT.spad" 229636 229644 234822 234827) (-186 "D01WGTS.spad" 227955 227963 229626 229631) (-185 "D01TRNS.spad" 227932 227940 227945 227950) (-184 "D01GBFA.spad" 227454 227462 227922 227927) (-183 "D01FCFA.spad" 226976 226984 227444 227449) (-182 "D01ASFA.spad" 226444 226452 226966 226971) (-181 "D01AQFA.spad" 225890 225898 226434 226439) (-180 "D01APFA.spad" 225314 225322 225880 225885) (-179 "D01ANFA.spad" 224808 224816 225304 225309) (-178 "D01AMFA.spad" 224318 224326 224798 224803) (-177 "D01ALFA.spad" 223858 223866 224308 224313) (-176 "D01AKFA.spad" 223384 223392 223848 223853) (-175 "D01AJFA.spad" 222907 222915 223374 223379) (-174 "D01AGNT.spad" 218966 218974 222897 222902) (-173 "CYCLOTOM.spad" 218472 218480 218956 218961) (-172 "CYCLES.spad" 215304 215312 218462 218467) (-171 "CVMP.spad" 214721 214731 215294 215299) (-170 "CTRIGMNP.spad" 213211 213227 214711 214716) (-169 "CTORCALL.spad" 212799 212807 213201 213206) (-168 "CSTTOOLS.spad" 212042 212055 212789 212794) (-167 "CRFP.spad" 205746 205759 212032 212037) (-166 "CRAPACK.spad" 204789 204799 205736 205741) (-165 "CPMATCH.spad" 204289 204304 204714 204719) (-164 "CPIMA.spad" 203994 204013 204279 204284) (-163 "COORDSYS.spad" 198887 198897 203984 203989) (-162 "CONTOUR.spad" 198289 198297 198877 198882) (-161 "CONTFRAC.spad" 193901 193911 198191 198284) (-160 "COMRING.spad" 193575 193583 193839 193896) (-159 "COMPPROP.spad" 193089 193097 193565 193570) (-158 "COMPLPAT.spad" 192856 192871 193079 193084) (-157 "COMPLEX.spad" 186889 186899 187133 187394) (-156 "COMPLEX2.spad" 186602 186614 186879 186884) (-155 "COMPFACT.spad" 186204 186218 186592 186597) (-154 "COMPCAT.spad" 184260 184270 185926 186199) (-153 "COMPCAT.spad" 182023 182035 183691 183696) (-152 "COMMUPC.spad" 181769 181787 182013 182018) (-151 "COMMONOP.spad" 181302 181310 181759 181764) (-150 "COMM.spad" 181111 181119 181292 181297) (-149 "COMBOPC.spad" 180016 180024 181101 181106) (-148 "COMBINAT.spad" 178761 178771 180006 180011) (-147 "COMBF.spad" 176129 176145 178751 178756) (-146 "COLOR.spad" 174966 174974 176119 176124) (-145 "CMPLXRT.spad" 174675 174692 174956 174961) (-144 "CLIP.spad" 170767 170775 174665 174670) (-143 "CLIF.spad" 169406 169422 170723 170762) (-142 "CLAGG.spad" 165881 165891 169386 169401) (-141 "CLAGG.spad" 162237 162249 165744 165749) (-140 "CINTSLPE.spad" 161562 161575 162227 162232) (-139 "CHVAR.spad" 159640 159662 161552 161557) (-138 "CHARZ.spad" 159555 159563 159620 159635) (-137 "CHARPOL.spad" 159063 159073 159545 159550) (-136 "CHARNZ.spad" 158816 158824 159043 159058) (-135 "CHAR.spad" 156684 156692 158806 158811) (-134 "CFCAT.spad" 156000 156008 156674 156679) (-133 "CDEN.spad" 155158 155172 155990 155995) (-132 "CCLASS.spad" 153307 153315 154569 154608) (-131 "CATEGORY.spad" 153086 153094 153297 153302) (-130 "CARTEN.spad" 148189 148213 153076 153081) (-129 "CARTEN2.spad" 147575 147602 148179 148184) (-128 "CARD.spad" 144864 144872 147549 147570) (-127 "CACHSET.spad" 144486 144494 144854 144859) (-126 "CABMON.spad" 144039 144047 144476 144481) (-125 "BYTE.spad" 143751 143759 144029 144034) (-124 "BYTEARY.spad" 142826 142834 142920 142947) (-123 "BTREE.spad" 141895 141905 142433 142460) (-122 "BTOURN.spad" 140898 140908 141502 141529) (-121 "BTCAT.spad" 140274 140284 140854 140893) (-120 "BTCAT.spad" 139682 139694 140264 140269) (-119 "BTAGG.spad" 138698 138706 139638 139677) (-118 "BTAGG.spad" 137746 137756 138688 138693) (-117 "BSTREE.spad" 136481 136491 137353 137380) (-116 "BRILL.spad" 134676 134687 136471 136476) (-115 "BRAGG.spad" 133590 133600 134656 134671) (-114 "BRAGG.spad" 132478 132490 133546 133551) (-113 "BPADICRT.spad" 130462 130474 130717 130810) (-112 "BPADIC.spad" 130126 130138 130388 130457) (-111 "BOUNDZRO.spad" 129782 129799 130116 130121) (-110 "BOP.spad" 125246 125254 129772 129777) (-109 "BOP1.spad" 122632 122642 125202 125207) (-108 "BOOLEAN.spad" 121895 121903 122622 122627) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2238300 2238305 2238310 2238315) (-2 NIL 2238280 2238285 2238290 2238295) (-1 NIL 2238260 2238265 2238270 2238275) (0 NIL 2238240 2238245 2238250 2238255) (-1198 "ZMOD.spad" 2238049 2238062 2238178 2238235) (-1197 "ZLINDEP.spad" 2237093 2237104 2238039 2238044) (-1196 "ZDSOLVE.spad" 2226942 2226964 2237083 2237088) (-1195 "YSTREAM.spad" 2226435 2226446 2226932 2226937) (-1194 "XRPOLY.spad" 2225655 2225675 2226291 2226360) (-1193 "XPR.spad" 2223384 2223397 2225373 2225472) (-1192 "XPOLY.spad" 2222939 2222950 2223240 2223309) (-1191 "XPOLYC.spad" 2222256 2222272 2222865 2222934) (-1190 "XPBWPOLY.spad" 2220693 2220713 2222036 2222105) (-1189 "XF.spad" 2219154 2219169 2220595 2220688) (-1188 "XF.spad" 2217595 2217612 2219038 2219043) (-1187 "XFALG.spad" 2214619 2214635 2217521 2217590) (-1186 "XEXPPKG.spad" 2213870 2213896 2214609 2214614) (-1185 "XDPOLY.spad" 2213484 2213500 2213726 2213795) (-1184 "XALG.spad" 2213082 2213093 2213440 2213479) (-1183 "WUTSET.spad" 2208921 2208938 2212728 2212755) (-1182 "WP.spad" 2207935 2207979 2208779 2208846) (-1181 "WFFINTBS.spad" 2205498 2205520 2207925 2207930) (-1180 "WEIER.spad" 2203712 2203723 2205488 2205493) (-1179 "VSPACE.spad" 2203385 2203396 2203680 2203707) (-1178 "VSPACE.spad" 2203078 2203091 2203375 2203380) (-1177 "VOID.spad" 2202668 2202677 2203068 2203073) (-1176 "VIEW.spad" 2200290 2200299 2202658 2202663) (-1175 "VIEWDEF.spad" 2195487 2195496 2200280 2200285) (-1174 "VIEW3D.spad" 2179322 2179331 2195477 2195482) (-1173 "VIEW2D.spad" 2167059 2167068 2179312 2179317) (-1172 "VECTOR.spad" 2165736 2165747 2165987 2166014) (-1171 "VECTOR2.spad" 2164363 2164376 2165726 2165731) (-1170 "VECTCAT.spad" 2162251 2162262 2164319 2164358) (-1169 "VECTCAT.spad" 2159960 2159973 2162030 2162035) (-1168 "VARIABLE.spad" 2159740 2159755 2159950 2159955) (-1167 "UTYPE.spad" 2159374 2159383 2159720 2159735) (-1166 "UTSODETL.spad" 2158667 2158691 2159330 2159335) (-1165 "UTSODE.spad" 2156855 2156875 2158657 2158662) (-1164 "UTS.spad" 2151644 2151672 2155322 2155419) (-1163 "UTSCAT.spad" 2149095 2149111 2151542 2151639) (-1162 "UTSCAT.spad" 2146190 2146208 2148639 2148644) (-1161 "UTS2.spad" 2145783 2145818 2146180 2146185) (-1160 "URAGG.spad" 2140405 2140416 2145763 2145778) (-1159 "URAGG.spad" 2135001 2135014 2140361 2140366) (-1158 "UPXSSING.spad" 2132647 2132673 2134085 2134218) (-1157 "UPXS.spad" 2129674 2129702 2130779 2130928) (-1156 "UPXSCONS.spad" 2127431 2127451 2127806 2127955) (-1155 "UPXSCCA.spad" 2125889 2125909 2127277 2127426) (-1154 "UPXSCCA.spad" 2124489 2124511 2125879 2125884) (-1153 "UPXSCAT.spad" 2123070 2123086 2124335 2124484) (-1152 "UPXS2.spad" 2122611 2122664 2123060 2123065) (-1151 "UPSQFREE.spad" 2121023 2121037 2122601 2122606) (-1150 "UPSCAT.spad" 2118616 2118640 2120921 2121018) (-1149 "UPSCAT.spad" 2115915 2115941 2118222 2118227) (-1148 "UPOLYC.spad" 2110893 2110904 2115757 2115910) (-1147 "UPOLYC.spad" 2105763 2105776 2110629 2110634) (-1146 "UPOLYC2.spad" 2105232 2105251 2105753 2105758) (-1145 "UP.spad" 2102277 2102292 2102785 2102938) (-1144 "UPMP.spad" 2101167 2101180 2102267 2102272) (-1143 "UPDIVP.spad" 2100730 2100744 2101157 2101162) (-1142 "UPDECOMP.spad" 2098967 2098981 2100720 2100725) (-1141 "UPCDEN.spad" 2098174 2098190 2098957 2098962) (-1140 "UP2.spad" 2097536 2097557 2098164 2098169) (-1139 "UNISEG.spad" 2096889 2096900 2097455 2097460) (-1138 "UNISEG2.spad" 2096382 2096395 2096845 2096850) (-1137 "UNIFACT.spad" 2095483 2095495 2096372 2096377) (-1136 "ULS.spad" 2086042 2086070 2087135 2087564) (-1135 "ULSCONS.spad" 2080085 2080105 2080457 2080606) (-1134 "ULSCCAT.spad" 2077682 2077702 2079905 2080080) (-1133 "ULSCCAT.spad" 2075413 2075435 2077638 2077643) (-1132 "ULSCAT.spad" 2073629 2073645 2075259 2075408) (-1131 "ULS2.spad" 2073141 2073194 2073619 2073624) (-1130 "UFD.spad" 2072206 2072215 2073067 2073136) (-1129 "UFD.spad" 2071333 2071344 2072196 2072201) (-1128 "UDVO.spad" 2070180 2070189 2071323 2071328) (-1127 "UDPO.spad" 2067607 2067618 2070136 2070141) (-1126 "TYPE.spad" 2067529 2067538 2067587 2067602) (-1125 "TWOFACT.spad" 2066179 2066194 2067519 2067524) (-1124 "TUPLE.spad" 2065565 2065576 2066078 2066083) (-1123 "TUBETOOL.spad" 2062402 2062411 2065555 2065560) (-1122 "TUBE.spad" 2061043 2061060 2062392 2062397) (-1121 "TS.spad" 2059632 2059648 2060608 2060705) (-1120 "TSETCAT.spad" 2046747 2046764 2059588 2059627) (-1119 "TSETCAT.spad" 2033860 2033879 2046703 2046708) (-1118 "TRMANIP.spad" 2028226 2028243 2033566 2033571) (-1117 "TRIMAT.spad" 2027185 2027210 2028216 2028221) (-1116 "TRIGMNIP.spad" 2025702 2025719 2027175 2027180) (-1115 "TRIGCAT.spad" 2025214 2025223 2025692 2025697) (-1114 "TRIGCAT.spad" 2024724 2024735 2025204 2025209) (-1113 "TREE.spad" 2023295 2023306 2024331 2024358) (-1112 "TRANFUN.spad" 2023126 2023135 2023285 2023290) (-1111 "TRANFUN.spad" 2022955 2022966 2023116 2023121) (-1110 "TOPSP.spad" 2022629 2022638 2022945 2022950) (-1109 "TOOLSIGN.spad" 2022292 2022303 2022619 2022624) (-1108 "TEXTFILE.spad" 2020849 2020858 2022282 2022287) (-1107 "TEX.spad" 2017866 2017875 2020839 2020844) (-1106 "TEX1.spad" 2017422 2017433 2017856 2017861) (-1105 "TEMUTL.spad" 2016977 2016986 2017412 2017417) (-1104 "TBCMPPK.spad" 2015070 2015093 2016967 2016972) (-1103 "TBAGG.spad" 2014094 2014117 2015038 2015065) (-1102 "TBAGG.spad" 2013138 2013163 2014084 2014089) (-1101 "TANEXP.spad" 2012514 2012525 2013128 2013133) (-1100 "TABLE.spad" 2010925 2010948 2011195 2011222) (-1099 "TABLEAU.spad" 2010406 2010417 2010915 2010920) (-1098 "TABLBUMP.spad" 2007189 2007200 2010396 2010401) (-1097 "SYSTEM.spad" 2006463 2006472 2007179 2007184) (-1096 "SYSSOLP.spad" 2003936 2003947 2006453 2006458) (-1095 "SYNTAX.spad" 2000128 2000137 2003926 2003931) (-1094 "SYMTAB.spad" 1998184 1998193 2000118 2000123) (-1093 "SYMS.spad" 1994169 1994178 1998174 1998179) (-1092 "SYMPOLY.spad" 1993179 1993190 1993261 1993388) (-1091 "SYMFUNC.spad" 1992654 1992665 1993169 1993174) (-1090 "SYMBOL.spad" 1989990 1989999 1992644 1992649) (-1089 "SWITCH.spad" 1986747 1986756 1989980 1989985) (-1088 "SUTS.spad" 1983646 1983674 1985214 1985311) (-1087 "SUPXS.spad" 1980660 1980688 1981778 1981927) (-1086 "SUP.spad" 1977432 1977443 1978213 1978366) (-1085 "SUPFRACF.spad" 1976537 1976555 1977422 1977427) (-1084 "SUP2.spad" 1975927 1975940 1976527 1976532) (-1083 "SUMRF.spad" 1974893 1974904 1975917 1975922) (-1082 "SUMFS.spad" 1974526 1974543 1974883 1974888) (-1081 "SULS.spad" 1965072 1965100 1966178 1966607) (-1080 "SUCH.spad" 1964752 1964767 1965062 1965067) (-1079 "SUBSPACE.spad" 1956759 1956774 1964742 1964747) (-1078 "SUBRESP.spad" 1955919 1955933 1956715 1956720) (-1077 "STTF.spad" 1952018 1952034 1955909 1955914) (-1076 "STTFNC.spad" 1948486 1948502 1952008 1952013) (-1075 "STTAYLOR.spad" 1940884 1940895 1948367 1948372) (-1074 "STRTBL.spad" 1939389 1939406 1939538 1939565) (-1073 "STRING.spad" 1938798 1938807 1938812 1938839) (-1072 "STRICAT.spad" 1938574 1938583 1938754 1938793) (-1071 "STREAM.spad" 1935342 1935353 1938099 1938114) (-1070 "STREAM3.spad" 1934887 1934902 1935332 1935337) (-1069 "STREAM2.spad" 1933955 1933968 1934877 1934882) (-1068 "STREAM1.spad" 1933659 1933670 1933945 1933950) (-1067 "STINPROD.spad" 1932565 1932581 1933649 1933654) (-1066 "STEP.spad" 1931766 1931775 1932555 1932560) (-1065 "STBL.spad" 1930292 1930320 1930459 1930474) (-1064 "STAGG.spad" 1929357 1929368 1930272 1930287) (-1063 "STAGG.spad" 1928430 1928443 1929347 1929352) (-1062 "STACK.spad" 1927781 1927792 1928037 1928064) (-1061 "SREGSET.spad" 1925485 1925502 1927427 1927454) (-1060 "SRDCMPK.spad" 1924030 1924050 1925475 1925480) (-1059 "SRAGG.spad" 1919115 1919124 1923986 1924025) (-1058 "SRAGG.spad" 1914232 1914243 1919105 1919110) (-1057 "SQMATRIX.spad" 1911858 1911876 1912766 1912853) (-1056 "SPLTREE.spad" 1906410 1906423 1911294 1911321) (-1055 "SPLNODE.spad" 1902998 1903011 1906400 1906405) (-1054 "SPFCAT.spad" 1901775 1901784 1902988 1902993) (-1053 "SPECOUT.spad" 1900325 1900334 1901765 1901770) (-1052 "spad-parser.spad" 1899790 1899799 1900315 1900320) (-1051 "SPACEC.spad" 1883803 1883814 1899780 1899785) (-1050 "SPACE3.spad" 1883579 1883590 1883793 1883798) (-1049 "SORTPAK.spad" 1883124 1883137 1883535 1883540) (-1048 "SOLVETRA.spad" 1880881 1880892 1883114 1883119) (-1047 "SOLVESER.spad" 1879401 1879412 1880871 1880876) (-1046 "SOLVERAD.spad" 1875411 1875422 1879391 1879396) (-1045 "SOLVEFOR.spad" 1873831 1873849 1875401 1875406) (-1044 "SNTSCAT.spad" 1873419 1873436 1873787 1873826) (-1043 "SMTS.spad" 1871679 1871705 1872984 1873081) (-1042 "SMP.spad" 1869121 1869141 1869511 1869638) (-1041 "SMITH.spad" 1867964 1867989 1869111 1869116) (-1040 "SMATCAT.spad" 1866062 1866092 1867896 1867959) (-1039 "SMATCAT.spad" 1864104 1864136 1865940 1865945) (-1038 "SKAGG.spad" 1863053 1863064 1864060 1864099) (-1037 "SINT.spad" 1861361 1861370 1862919 1863048) (-1036 "SIMPAN.spad" 1861089 1861098 1861351 1861356) (-1035 "SIGNRF.spad" 1860197 1860208 1861079 1861084) (-1034 "SIGNEF.spad" 1859466 1859483 1860187 1860192) (-1033 "SHP.spad" 1857384 1857399 1859422 1859427) (-1032 "SHDP.spad" 1848774 1848801 1849283 1849412) (-1031 "SGROUP.spad" 1848240 1848249 1848764 1848769) (-1030 "SGROUP.spad" 1847704 1847715 1848230 1848235) (-1029 "SGCF.spad" 1840585 1840594 1847694 1847699) (-1028 "SFRTCAT.spad" 1839501 1839518 1840541 1840580) (-1027 "SFRGCD.spad" 1838564 1838584 1839491 1839496) (-1026 "SFQCMPK.spad" 1833201 1833221 1838554 1838559) (-1025 "SFORT.spad" 1832636 1832650 1833191 1833196) (-1024 "SEXOF.spad" 1832479 1832519 1832626 1832631) (-1023 "SEX.spad" 1832371 1832380 1832469 1832474) (-1022 "SEXCAT.spad" 1829475 1829515 1832361 1832366) (-1021 "SET.spad" 1827775 1827786 1828896 1828935) (-1020 "SETMN.spad" 1826209 1826226 1827765 1827770) (-1019 "SETCAT.spad" 1825694 1825703 1826199 1826204) (-1018 "SETCAT.spad" 1825177 1825188 1825684 1825689) (-1017 "SETAGG.spad" 1821700 1821711 1825145 1825172) (-1016 "SETAGG.spad" 1818243 1818256 1821690 1821695) (-1015 "SEGXCAT.spad" 1817355 1817368 1818223 1818238) (-1014 "SEG.spad" 1817168 1817179 1817274 1817279) (-1013 "SEGCAT.spad" 1815987 1815998 1817148 1817163) (-1012 "SEGBIND.spad" 1815059 1815070 1815942 1815947) (-1011 "SEGBIND2.spad" 1814755 1814768 1815049 1815054) (-1010 "SEG2.spad" 1814180 1814193 1814711 1814716) (-1009 "SDVAR.spad" 1813456 1813467 1814170 1814175) (-1008 "SDPOL.spad" 1810849 1810860 1811140 1811267) (-1007 "SCPKG.spad" 1808928 1808939 1810839 1810844) (-1006 "SCOPE.spad" 1808073 1808082 1808918 1808923) (-1005 "SCACHE.spad" 1806755 1806766 1808063 1808068) (-1004 "SAOS.spad" 1806627 1806636 1806745 1806750) (-1003 "SAERFFC.spad" 1806340 1806360 1806617 1806622) (-1002 "SAE.spad" 1804518 1804534 1805129 1805264) (-1001 "SAEFACT.spad" 1804219 1804239 1804508 1804513) (-1000 "RURPK.spad" 1801860 1801876 1804209 1804214) (-999 "RULESET.spad" 1801302 1801325 1801850 1801855) (-998 "RULE.spad" 1799507 1799530 1801292 1801297) (-997 "RULECOLD.spad" 1799360 1799372 1799497 1799502) (-996 "RSETGCD.spad" 1795739 1795758 1799350 1799355) (-995 "RSETCAT.spad" 1785512 1785528 1795695 1795734) (-994 "RSETCAT.spad" 1775317 1775335 1785502 1785507) (-993 "RSDCMPK.spad" 1773770 1773789 1775307 1775312) (-992 "RRCC.spad" 1772155 1772184 1773760 1773765) (-991 "RRCC.spad" 1770538 1770569 1772145 1772150) (-990 "RPOLCAT.spad" 1749899 1749913 1770406 1770533) (-989 "RPOLCAT.spad" 1728975 1728991 1749484 1749489) (-988 "ROUTINE.spad" 1724839 1724847 1727622 1727649) (-987 "ROMAN.spad" 1724072 1724080 1724705 1724834) (-986 "ROIRC.spad" 1723153 1723184 1724062 1724067) (-985 "RNS.spad" 1722057 1722065 1723055 1723148) (-984 "RNS.spad" 1721047 1721057 1722047 1722052) (-983 "RNG.spad" 1720783 1720791 1721037 1721042) (-982 "RMODULE.spad" 1720422 1720432 1720773 1720778) (-981 "RMCAT2.spad" 1719831 1719887 1720412 1720417) (-980 "RMATRIX.spad" 1718511 1718529 1718998 1719037) (-979 "RMATCAT.spad" 1714033 1714063 1718455 1718506) (-978 "RMATCAT.spad" 1709457 1709489 1713881 1713886) (-977 "RINTERP.spad" 1709346 1709365 1709447 1709452) (-976 "RING.spad" 1708704 1708712 1709326 1709341) (-975 "RING.spad" 1708070 1708080 1708694 1708699) (-974 "RIDIST.spad" 1707455 1707463 1708060 1708065) (-973 "RGCHAIN.spad" 1706035 1706050 1706940 1706967) (-972 "RF.spad" 1703650 1703660 1706025 1706030) (-971 "RFFACTOR.spad" 1703113 1703123 1703640 1703645) (-970 "RFFACT.spad" 1702849 1702860 1703103 1703108) (-969 "RFDIST.spad" 1701838 1701846 1702839 1702844) (-968 "RETSOL.spad" 1701256 1701268 1701828 1701833) (-967 "RETRACT.spad" 1700606 1700616 1701246 1701251) (-966 "RETRACT.spad" 1699954 1699966 1700596 1700601) (-965 "RESULT.spad" 1698015 1698023 1698601 1698628) (-964 "RESRING.spad" 1697363 1697409 1697953 1698010) (-963 "RESLATC.spad" 1696688 1696698 1697353 1697358) (-962 "REPSQ.spad" 1696418 1696428 1696678 1696683) (-961 "REP.spad" 1693971 1693979 1696408 1696413) (-960 "REPDB.spad" 1693677 1693687 1693961 1693966) (-959 "REP2.spad" 1683250 1683260 1693519 1693524) (-958 "REP1.spad" 1677241 1677251 1683200 1683205) (-957 "REGSET.spad" 1675039 1675055 1676887 1676914) (-956 "REF.spad" 1674369 1674379 1674994 1674999) (-955 "REDORDER.spad" 1673546 1673562 1674359 1674364) (-954 "RECLOS.spad" 1672336 1672355 1673039 1673132) (-953 "REALSOLV.spad" 1671469 1671477 1672326 1672331) (-952 "REAL.spad" 1671342 1671350 1671459 1671464) (-951 "REAL0Q.spad" 1668625 1668639 1671332 1671337) (-950 "REAL0.spad" 1665454 1665468 1668615 1668620) (-949 "RDIV.spad" 1665106 1665130 1665444 1665449) (-948 "RDIST.spad" 1664670 1664680 1665096 1665101) (-947 "RDETRS.spad" 1663467 1663484 1664660 1664665) (-946 "RDETR.spad" 1661575 1661592 1663457 1663462) (-945 "RDEEFS.spad" 1660649 1660665 1661565 1661570) (-944 "RDEEF.spad" 1659646 1659662 1660639 1660644) (-943 "RCFIELD.spad" 1656830 1656838 1659548 1659641) (-942 "RCFIELD.spad" 1654100 1654110 1656820 1656825) (-941 "RCAGG.spad" 1652003 1652013 1654080 1654095) (-940 "RCAGG.spad" 1649843 1649855 1651922 1651927) (-939 "RATRET.spad" 1649204 1649214 1649833 1649838) (-938 "RATFACT.spad" 1648897 1648908 1649194 1649199) (-937 "RANDSRC.spad" 1648217 1648225 1648887 1648892) (-936 "RADUTIL.spad" 1647972 1647980 1648207 1648212) (-935 "RADIX.spad" 1644765 1644778 1646442 1646535) (-934 "RADFF.spad" 1643182 1643218 1643300 1643456) (-933 "RADCAT.spad" 1642776 1642784 1643172 1643177) (-932 "RADCAT.spad" 1642368 1642378 1642766 1642771) (-931 "QUEUE.spad" 1641711 1641721 1641975 1642002) (-930 "QUAT.spad" 1640297 1640307 1640639 1640704) (-929 "QUATCT2.spad" 1639916 1639934 1640287 1640292) (-928 "QUATCAT.spad" 1638081 1638091 1639846 1639911) (-927 "QUATCAT.spad" 1635998 1636010 1637765 1637770) (-926 "QUAGG.spad" 1634812 1634822 1635954 1635993) (-925 "QFORM.spad" 1634275 1634289 1634802 1634807) (-924 "QFCAT.spad" 1632966 1632976 1634165 1634270) (-923 "QFCAT.spad" 1631263 1631275 1632464 1632469) (-922 "QFCAT2.spad" 1630954 1630970 1631253 1631258) (-921 "QEQUAT.spad" 1630511 1630519 1630944 1630949) (-920 "QCMPACK.spad" 1625258 1625277 1630501 1630506) (-919 "QALGSET.spad" 1621333 1621365 1625172 1625177) (-918 "QALGSET2.spad" 1619329 1619347 1621323 1621328) (-917 "PWFFINTB.spad" 1616639 1616660 1619319 1619324) (-916 "PUSHVAR.spad" 1615968 1615987 1616629 1616634) (-915 "PTRANFN.spad" 1612094 1612104 1615958 1615963) (-914 "PTPACK.spad" 1609182 1609192 1612084 1612089) (-913 "PTFUNC2.spad" 1609003 1609017 1609172 1609177) (-912 "PTCAT.spad" 1608085 1608095 1608959 1608998) (-911 "PSQFR.spad" 1607392 1607416 1608075 1608080) (-910 "PSEUDLIN.spad" 1606250 1606260 1607382 1607387) (-909 "PSETPK.spad" 1591683 1591699 1606128 1606133) (-908 "PSETCAT.spad" 1585591 1585614 1591651 1591678) (-907 "PSETCAT.spad" 1579485 1579510 1585547 1585552) (-906 "PSCURVE.spad" 1578468 1578476 1579475 1579480) (-905 "PSCAT.spad" 1577235 1577264 1578366 1578463) (-904 "PSCAT.spad" 1576092 1576123 1577225 1577230) (-903 "PRTITION.spad" 1574935 1574943 1576082 1576087) (-902 "PRS.spad" 1564497 1564514 1574891 1574896) (-901 "PRQAGG.spad" 1563916 1563926 1564453 1564492) (-900 "PROPLOG.spad" 1563319 1563327 1563906 1563911) (-899 "PROPFRML.spad" 1561184 1561195 1563255 1563260) (-898 "PROPERTY.spad" 1560678 1560686 1561174 1561179) (-897 "PRODUCT.spad" 1558358 1558370 1558644 1558699) (-896 "PR.spad" 1556747 1556759 1557452 1557579) (-895 "PRINT.spad" 1556499 1556507 1556737 1556742) (-894 "PRIMES.spad" 1554750 1554760 1556489 1556494) (-893 "PRIMELT.spad" 1552731 1552745 1554740 1554745) (-892 "PRIMCAT.spad" 1552354 1552362 1552721 1552726) (-891 "PRIMARR.spad" 1551359 1551369 1551537 1551564) (-890 "PRIMARR2.spad" 1550082 1550094 1551349 1551354) (-889 "PREASSOC.spad" 1549454 1549466 1550072 1550077) (-888 "PPCURVE.spad" 1548591 1548599 1549444 1549449) (-887 "POLYROOT.spad" 1547363 1547385 1548547 1548552) (-886 "POLY.spad" 1544663 1544673 1545180 1545307) (-885 "POLYLIFT.spad" 1543924 1543947 1544653 1544658) (-884 "POLYCATQ.spad" 1542026 1542048 1543914 1543919) (-883 "POLYCAT.spad" 1535432 1535453 1541894 1542021) (-882 "POLYCAT.spad" 1528140 1528163 1534604 1534609) (-881 "POLY2UP.spad" 1527588 1527602 1528130 1528135) (-880 "POLY2.spad" 1527183 1527195 1527578 1527583) (-879 "POLUTIL.spad" 1526124 1526153 1527139 1527144) (-878 "POLTOPOL.spad" 1524872 1524887 1526114 1526119) (-877 "POINT.spad" 1523713 1523723 1523800 1523827) (-876 "PNTHEORY.spad" 1520379 1520387 1523703 1523708) (-875 "PMTOOLS.spad" 1519136 1519150 1520369 1520374) (-874 "PMSYM.spad" 1518681 1518691 1519126 1519131) (-873 "PMQFCAT.spad" 1518268 1518282 1518671 1518676) (-872 "PMPRED.spad" 1517737 1517751 1518258 1518263) (-871 "PMPREDFS.spad" 1517181 1517203 1517727 1517732) (-870 "PMPLCAT.spad" 1516251 1516269 1517113 1517118) (-869 "PMLSAGG.spad" 1515832 1515846 1516241 1516246) (-868 "PMKERNEL.spad" 1515399 1515411 1515822 1515827) (-867 "PMINS.spad" 1514975 1514985 1515389 1515394) (-866 "PMFS.spad" 1514548 1514566 1514965 1514970) (-865 "PMDOWN.spad" 1513834 1513848 1514538 1514543) (-864 "PMASS.spad" 1512846 1512854 1513824 1513829) (-863 "PMASSFS.spad" 1511815 1511831 1512836 1512841) (-862 "PLOTTOOL.spad" 1511595 1511603 1511805 1511810) (-861 "PLOT.spad" 1506426 1506434 1511585 1511590) (-860 "PLOT3D.spad" 1502846 1502854 1506416 1506421) (-859 "PLOT1.spad" 1501987 1501997 1502836 1502841) (-858 "PLEQN.spad" 1489203 1489230 1501977 1501982) (-857 "PINTERP.spad" 1488819 1488838 1489193 1489198) (-856 "PINTERPA.spad" 1488601 1488617 1488809 1488814) (-855 "PI.spad" 1488208 1488216 1488575 1488596) (-854 "PID.spad" 1487164 1487172 1488134 1488203) (-853 "PICOERCE.spad" 1486821 1486831 1487154 1487159) (-852 "PGROEB.spad" 1485418 1485432 1486811 1486816) (-851 "PGE.spad" 1476671 1476679 1485408 1485413) (-850 "PGCD.spad" 1475553 1475570 1476661 1476666) (-849 "PFRPAC.spad" 1474696 1474706 1475543 1475548) (-848 "PFR.spad" 1471353 1471363 1474598 1474691) (-847 "PFOTOOLS.spad" 1470611 1470627 1471343 1471348) (-846 "PFOQ.spad" 1469981 1469999 1470601 1470606) (-845 "PFO.spad" 1469400 1469427 1469971 1469976) (-844 "PF.spad" 1468974 1468986 1469205 1469298) (-843 "PFECAT.spad" 1466640 1466648 1468900 1468969) (-842 "PFECAT.spad" 1464334 1464344 1466596 1466601) (-841 "PFBRU.spad" 1462204 1462216 1464324 1464329) (-840 "PFBR.spad" 1459742 1459765 1462194 1462199) (-839 "PERM.spad" 1455423 1455433 1459572 1459587) (-838 "PERMGRP.spad" 1450159 1450169 1455413 1455418) (-837 "PERMCAT.spad" 1448711 1448721 1450139 1450154) (-836 "PERMAN.spad" 1447243 1447257 1448701 1448706) (-835 "PENDTREE.spad" 1446516 1446526 1446872 1446877) (-834 "PDRING.spad" 1445007 1445017 1446496 1446511) (-833 "PDRING.spad" 1443506 1443518 1444997 1445002) (-832 "PDEPROB.spad" 1442463 1442471 1443496 1443501) (-831 "PDEPACK.spad" 1436465 1436473 1442453 1442458) (-830 "PDECOMP.spad" 1435927 1435944 1436455 1436460) (-829 "PDECAT.spad" 1434281 1434289 1435917 1435922) (-828 "PCOMP.spad" 1434132 1434145 1434271 1434276) (-827 "PBWLB.spad" 1432714 1432731 1434122 1434127) (-826 "PATTERN.spad" 1427145 1427155 1432704 1432709) (-825 "PATTERN2.spad" 1426881 1426893 1427135 1427140) (-824 "PATTERN1.spad" 1425183 1425199 1426871 1426876) (-823 "PATRES.spad" 1422730 1422742 1425173 1425178) (-822 "PATRES2.spad" 1422392 1422406 1422720 1422725) (-821 "PATMATCH.spad" 1420554 1420585 1422105 1422110) (-820 "PATMAB.spad" 1419979 1419989 1420544 1420549) (-819 "PATLRES.spad" 1419063 1419077 1419969 1419974) (-818 "PATAB.spad" 1418827 1418837 1419053 1419058) (-817 "PARTPERM.spad" 1416189 1416197 1418817 1418822) (-816 "PARSURF.spad" 1415617 1415645 1416179 1416184) (-815 "PARSU2.spad" 1415412 1415428 1415607 1415612) (-814 "script-parser.spad" 1414932 1414940 1415402 1415407) (-813 "PARSCURV.spad" 1414360 1414388 1414922 1414927) (-812 "PARSC2.spad" 1414149 1414165 1414350 1414355) (-811 "PARPCURV.spad" 1413607 1413635 1414139 1414144) (-810 "PARPC2.spad" 1413396 1413412 1413597 1413602) (-809 "PAN2EXPR.spad" 1412808 1412816 1413386 1413391) (-808 "PALETTE.spad" 1411778 1411786 1412798 1412803) (-807 "PAIR.spad" 1410761 1410774 1411366 1411371) (-806 "PADICRC.spad" 1408094 1408112 1409269 1409362) (-805 "PADICRAT.spad" 1406112 1406124 1406333 1406426) (-804 "PADIC.spad" 1405807 1405819 1406038 1406107) (-803 "PADICCT.spad" 1404348 1404360 1405733 1405802) (-802 "PADEPAC.spad" 1403027 1403046 1404338 1404343) (-801 "PADE.spad" 1401767 1401783 1403017 1403022) (-800 "OWP.spad" 1400751 1400781 1401625 1401692) (-799 "OVAR.spad" 1400532 1400555 1400741 1400746) (-798 "OUT.spad" 1399616 1399624 1400522 1400527) (-797 "OUTFORM.spad" 1389030 1389038 1399606 1399611) (-796 "OSI.spad" 1388505 1388513 1389020 1389025) (-795 "ORTHPOL.spad" 1386966 1386976 1388422 1388427) (-794 "OREUP.spad" 1386326 1386354 1386648 1386687) (-793 "ORESUP.spad" 1385627 1385651 1386008 1386047) (-792 "OREPCTO.spad" 1383446 1383458 1385547 1385552) (-791 "OREPCAT.spad" 1377503 1377513 1383402 1383441) (-790 "OREPCAT.spad" 1371450 1371462 1377351 1377356) (-789 "ORDSET.spad" 1370616 1370624 1371440 1371445) (-788 "ORDSET.spad" 1369780 1369790 1370606 1370611) (-787 "ORDRING.spad" 1369170 1369178 1369760 1369775) (-786 "ORDRING.spad" 1368568 1368578 1369160 1369165) (-785 "ORDMON.spad" 1368423 1368431 1368558 1368563) (-784 "ORDFUNS.spad" 1367549 1367565 1368413 1368418) (-783 "ORDFIN.spad" 1367483 1367491 1367539 1367544) (-782 "ORDCOMP.spad" 1365951 1365961 1367033 1367062) (-781 "ORDCOMP2.spad" 1365236 1365248 1365941 1365946) (-780 "OPTPROB.spad" 1363816 1363824 1365226 1365231) (-779 "OPTPACK.spad" 1356201 1356209 1363806 1363811) (-778 "OPTCAT.spad" 1353876 1353884 1356191 1356196) (-777 "OPQUERY.spad" 1353425 1353433 1353866 1353871) (-776 "OP.spad" 1353167 1353177 1353247 1353314) (-775 "ONECOMP.spad" 1351915 1351925 1352717 1352746) (-774 "ONECOMP2.spad" 1351333 1351345 1351905 1351910) (-773 "OMSERVER.spad" 1350335 1350343 1351323 1351328) (-772 "OMSAGG.spad" 1350111 1350121 1350279 1350330) (-771 "OMPKG.spad" 1348723 1348731 1350101 1350106) (-770 "OM.spad" 1347688 1347696 1348713 1348718) (-769 "OMLO.spad" 1347113 1347125 1347574 1347613) (-768 "OMEXPR.spad" 1346947 1346957 1347103 1347108) (-767 "OMERR.spad" 1346490 1346498 1346937 1346942) (-766 "OMERRK.spad" 1345524 1345532 1346480 1346485) (-765 "OMENC.spad" 1344868 1344876 1345514 1345519) (-764 "OMDEV.spad" 1339157 1339165 1344858 1344863) (-763 "OMCONN.spad" 1338566 1338574 1339147 1339152) (-762 "OINTDOM.spad" 1338329 1338337 1338492 1338561) (-761 "OFMONOID.spad" 1334516 1334526 1338319 1338324) (-760 "ODVAR.spad" 1333777 1333787 1334506 1334511) (-759 "ODR.spad" 1333225 1333251 1333589 1333738) (-758 "ODPOL.spad" 1330574 1330584 1330914 1331041) (-757 "ODP.spad" 1322100 1322120 1322473 1322602) (-756 "ODETOOLS.spad" 1320683 1320702 1322090 1322095) (-755 "ODESYS.spad" 1318333 1318350 1320673 1320678) (-754 "ODERTRIC.spad" 1314274 1314291 1318290 1318295) (-753 "ODERED.spad" 1313661 1313685 1314264 1314269) (-752 "ODERAT.spad" 1311212 1311229 1313651 1313656) (-751 "ODEPRRIC.spad" 1308103 1308125 1311202 1311207) (-750 "ODEPROB.spad" 1307302 1307310 1308093 1308098) (-749 "ODEPRIM.spad" 1304576 1304598 1307292 1307297) (-748 "ODEPAL.spad" 1303952 1303976 1304566 1304571) (-747 "ODEPACK.spad" 1290554 1290562 1303942 1303947) (-746 "ODEINT.spad" 1289985 1290001 1290544 1290549) (-745 "ODEIFTBL.spad" 1287380 1287388 1289975 1289980) (-744 "ODEEF.spad" 1282747 1282763 1287370 1287375) (-743 "ODECONST.spad" 1282266 1282284 1282737 1282742) (-742 "ODECAT.spad" 1280862 1280870 1282256 1282261) (-741 "OCT.spad" 1279009 1279019 1279725 1279764) (-740 "OCTCT2.spad" 1278653 1278674 1278999 1279004) (-739 "OC.spad" 1276427 1276437 1278609 1278648) (-738 "OC.spad" 1273927 1273939 1276111 1276116) (-737 "OCAMON.spad" 1273775 1273783 1273917 1273922) (-736 "OASGP.spad" 1273590 1273598 1273765 1273770) (-735 "OAMONS.spad" 1273110 1273118 1273580 1273585) (-734 "OAMON.spad" 1272971 1272979 1273100 1273105) (-733 "OAGROUP.spad" 1272833 1272841 1272961 1272966) (-732 "NUMTUBE.spad" 1272420 1272436 1272823 1272828) (-731 "NUMQUAD.spad" 1260282 1260290 1272410 1272415) (-730 "NUMODE.spad" 1251418 1251426 1260272 1260277) (-729 "NUMINT.spad" 1248976 1248984 1251408 1251413) (-728 "NUMFMT.spad" 1247816 1247824 1248966 1248971) (-727 "NUMERIC.spad" 1239889 1239899 1247622 1247627) (-726 "NTSCAT.spad" 1238379 1238395 1239845 1239884) (-725 "NTPOLFN.spad" 1237924 1237934 1238296 1238301) (-724 "NSUP.spad" 1230937 1230947 1235477 1235630) (-723 "NSUP2.spad" 1230329 1230341 1230927 1230932) (-722 "NSMP.spad" 1226528 1226547 1226836 1226963) (-721 "NREP.spad" 1224900 1224914 1226518 1226523) (-720 "NPCOEF.spad" 1224146 1224166 1224890 1224895) (-719 "NORMRETR.spad" 1223744 1223783 1224136 1224141) (-718 "NORMPK.spad" 1221646 1221665 1223734 1223739) (-717 "NORMMA.spad" 1221334 1221360 1221636 1221641) (-716 "NONE.spad" 1221075 1221083 1221324 1221329) (-715 "NONE1.spad" 1220751 1220761 1221065 1221070) (-714 "NODE1.spad" 1220220 1220236 1220741 1220746) (-713 "NNI.spad" 1219107 1219115 1220194 1220215) (-712 "NLINSOL.spad" 1217729 1217739 1219097 1219102) (-711 "NIPROB.spad" 1216212 1216220 1217719 1217724) (-710 "NFINTBAS.spad" 1213672 1213689 1216202 1216207) (-709 "NCODIV.spad" 1211870 1211886 1213662 1213667) (-708 "NCNTFRAC.spad" 1211512 1211526 1211860 1211865) (-707 "NCEP.spad" 1209672 1209686 1211502 1211507) (-706 "NASRING.spad" 1209268 1209276 1209662 1209667) (-705 "NASRING.spad" 1208862 1208872 1209258 1209263) (-704 "NARNG.spad" 1208206 1208214 1208852 1208857) (-703 "NARNG.spad" 1207548 1207558 1208196 1208201) (-702 "NAGSP.spad" 1206621 1206629 1207538 1207543) (-701 "NAGS.spad" 1196146 1196154 1206611 1206616) (-700 "NAGF07.spad" 1194539 1194547 1196136 1196141) (-699 "NAGF04.spad" 1188771 1188779 1194529 1194534) (-698 "NAGF02.spad" 1182580 1182588 1188761 1188766) (-697 "NAGF01.spad" 1178183 1178191 1182570 1182575) (-696 "NAGE04.spad" 1171643 1171651 1178173 1178178) (-695 "NAGE02.spad" 1161985 1161993 1171633 1171638) (-694 "NAGE01.spad" 1157869 1157877 1161975 1161980) (-693 "NAGD03.spad" 1155789 1155797 1157859 1157864) (-692 "NAGD02.spad" 1148320 1148328 1155779 1155784) (-691 "NAGD01.spad" 1142433 1142441 1148310 1148315) (-690 "NAGC06.spad" 1138220 1138228 1142423 1142428) (-689 "NAGC05.spad" 1136689 1136697 1138210 1138215) (-688 "NAGC02.spad" 1135944 1135952 1136679 1136684) (-687 "NAALG.spad" 1135479 1135489 1135912 1135939) (-686 "NAALG.spad" 1135034 1135046 1135469 1135474) (-685 "MULTSQFR.spad" 1131992 1132009 1135024 1135029) (-684 "MULTFACT.spad" 1131375 1131392 1131982 1131987) (-683 "MTSCAT.spad" 1129409 1129430 1131273 1131370) (-682 "MTHING.spad" 1129066 1129076 1129399 1129404) (-681 "MSYSCMD.spad" 1128500 1128508 1129056 1129061) (-680 "MSET.spad" 1126442 1126452 1128206 1128245) (-679 "MSETAGG.spad" 1126275 1126285 1126398 1126437) (-678 "MRING.spad" 1123246 1123258 1125983 1126050) (-677 "MRF2.spad" 1122814 1122828 1123236 1123241) (-676 "MRATFAC.spad" 1122360 1122377 1122804 1122809) (-675 "MPRFF.spad" 1120390 1120409 1122350 1122355) (-674 "MPOLY.spad" 1117828 1117843 1118187 1118314) (-673 "MPCPF.spad" 1117092 1117111 1117818 1117823) (-672 "MPC3.spad" 1116907 1116947 1117082 1117087) (-671 "MPC2.spad" 1116549 1116582 1116897 1116902) (-670 "MONOTOOL.spad" 1114884 1114901 1116539 1116544) (-669 "MONOID.spad" 1114058 1114066 1114874 1114879) (-668 "MONOID.spad" 1113230 1113240 1114048 1114053) (-667 "MONOGEN.spad" 1111976 1111989 1113090 1113225) (-666 "MONOGEN.spad" 1110744 1110759 1111860 1111865) (-665 "MONADWU.spad" 1108758 1108766 1110734 1110739) (-664 "MONADWU.spad" 1106770 1106780 1108748 1108753) (-663 "MONAD.spad" 1105914 1105922 1106760 1106765) (-662 "MONAD.spad" 1105056 1105066 1105904 1105909) (-661 "MOEBIUS.spad" 1103742 1103756 1105036 1105051) (-660 "MODULE.spad" 1103612 1103622 1103710 1103737) (-659 "MODULE.spad" 1103502 1103514 1103602 1103607) (-658 "MODRING.spad" 1102833 1102872 1103482 1103497) (-657 "MODOP.spad" 1101492 1101504 1102655 1102722) (-656 "MODMONOM.spad" 1101024 1101042 1101482 1101487) (-655 "MODMON.spad" 1097729 1097745 1098505 1098658) (-654 "MODFIELD.spad" 1097087 1097126 1097631 1097724) (-653 "MMLFORM.spad" 1095947 1095955 1097077 1097082) (-652 "MMAP.spad" 1095687 1095721 1095937 1095942) (-651 "MLO.spad" 1094114 1094124 1095643 1095682) (-650 "MLIFT.spad" 1092686 1092703 1094104 1094109) (-649 "MKUCFUNC.spad" 1092219 1092237 1092676 1092681) (-648 "MKRECORD.spad" 1091821 1091834 1092209 1092214) (-647 "MKFUNC.spad" 1091202 1091212 1091811 1091816) (-646 "MKFLCFN.spad" 1090158 1090168 1091192 1091197) (-645 "MKCHSET.spad" 1089934 1089944 1090148 1090153) (-644 "MKBCFUNC.spad" 1089419 1089437 1089924 1089929) (-643 "MINT.spad" 1088858 1088866 1089321 1089414) (-642 "MHROWRED.spad" 1087359 1087369 1088848 1088853) (-641 "MFLOAT.spad" 1085804 1085812 1087249 1087354) (-640 "MFINFACT.spad" 1085204 1085226 1085794 1085799) (-639 "MESH.spad" 1082936 1082944 1085194 1085199) (-638 "MDDFACT.spad" 1081129 1081139 1082926 1082931) (-637 "MDAGG.spad" 1080404 1080414 1081097 1081124) (-636 "MCMPLX.spad" 1076384 1076392 1076998 1077199) (-635 "MCDEN.spad" 1075592 1075604 1076374 1076379) (-634 "MCALCFN.spad" 1072694 1072720 1075582 1075587) (-633 "MATSTOR.spad" 1069970 1069980 1072684 1072689) (-632 "MATRIX.spad" 1068674 1068684 1069158 1069185) (-631 "MATLIN.spad" 1066000 1066024 1068558 1068563) (-630 "MATCAT.spad" 1057573 1057595 1065956 1065995) (-629 "MATCAT.spad" 1049030 1049054 1057415 1057420) (-628 "MATCAT2.spad" 1048298 1048346 1049020 1049025) (-627 "MAPPKG3.spad" 1047197 1047211 1048288 1048293) (-626 "MAPPKG2.spad" 1046531 1046543 1047187 1047192) (-625 "MAPPKG1.spad" 1045349 1045359 1046521 1046526) (-624 "MAPHACK3.spad" 1045157 1045171 1045339 1045344) (-623 "MAPHACK2.spad" 1044922 1044934 1045147 1045152) (-622 "MAPHACK1.spad" 1044552 1044562 1044912 1044917) (-621 "MAGMA.spad" 1042342 1042359 1044542 1044547) (-620 "M3D.spad" 1040040 1040050 1041722 1041727) (-619 "LZSTAGG.spad" 1037258 1037268 1040020 1040035) (-618 "LZSTAGG.spad" 1034484 1034496 1037248 1037253) (-617 "LWORD.spad" 1031189 1031206 1034474 1034479) (-616 "LSQM.spad" 1029417 1029431 1029815 1029866) (-615 "LSPP.spad" 1028950 1028967 1029407 1029412) (-614 "LSMP.spad" 1027790 1027818 1028940 1028945) (-613 "LSMP1.spad" 1025594 1025608 1027780 1027785) (-612 "LSAGG.spad" 1025251 1025261 1025550 1025589) (-611 "LSAGG.spad" 1024940 1024952 1025241 1025246) (-610 "LPOLY.spad" 1023894 1023913 1024796 1024865) (-609 "LPEFRAC.spad" 1023151 1023161 1023884 1023889) (-608 "LO.spad" 1022552 1022566 1023085 1023112) (-607 "LOGIC.spad" 1022154 1022162 1022542 1022547) (-606 "LOGIC.spad" 1021754 1021764 1022144 1022149) (-605 "LODOOPS.spad" 1020672 1020684 1021744 1021749) (-604 "LODO.spad" 1020058 1020074 1020354 1020393) (-603 "LODOF.spad" 1019102 1019119 1020015 1020020) (-602 "LODOCAT.spad" 1017760 1017770 1019058 1019097) (-601 "LODOCAT.spad" 1016416 1016428 1017716 1017721) (-600 "LODO2.spad" 1015691 1015703 1016098 1016137) (-599 "LODO1.spad" 1015093 1015103 1015373 1015412) (-598 "LODEEF.spad" 1013865 1013883 1015083 1015088) (-597 "LNAGG.spad" 1009657 1009667 1013845 1013860) (-596 "LNAGG.spad" 1005423 1005435 1009613 1009618) (-595 "LMOPS.spad" 1002159 1002176 1005413 1005418) (-594 "LMODULE.spad" 1001801 1001811 1002149 1002154) (-593 "LMDICT.spad" 1001084 1001094 1001352 1001379) (-592 "LIST.spad" 998802 998812 1000231 1000258) (-591 "LIST3.spad" 998093 998107 998792 998797) (-590 "LIST2.spad" 996733 996745 998083 998088) (-589 "LIST2MAP.spad" 993610 993622 996723 996728) (-588 "LINEXP.spad" 993042 993052 993590 993605) (-587 "LINDEP.spad" 991819 991831 992954 992959) (-586 "LIMITRF.spad" 989733 989743 991809 991814) (-585 "LIMITPS.spad" 988616 988629 989723 989728) (-584 "LIE.spad" 986630 986642 987906 988051) (-583 "LIECAT.spad" 986106 986116 986556 986625) (-582 "LIECAT.spad" 985610 985622 986062 986067) (-581 "LIB.spad" 983658 983666 984269 984284) (-580 "LGROBP.spad" 981011 981030 983648 983653) (-579 "LF.spad" 979930 979946 981001 981006) (-578 "LFCAT.spad" 978949 978957 979920 979925) (-577 "LEXTRIPK.spad" 974452 974467 978939 978944) (-576 "LEXP.spad" 972455 972482 974432 974447) (-575 "LEADCDET.spad" 970839 970856 972445 972450) (-574 "LAZM3PK.spad" 969543 969565 970829 970834) (-573 "LAUPOL.spad" 968234 968247 969138 969207) (-572 "LAPLACE.spad" 967807 967823 968224 968229) (-571 "LA.spad" 967247 967261 967729 967768) (-570 "LALG.spad" 967023 967033 967227 967242) (-569 "LALG.spad" 966807 966819 967013 967018) (-568 "KOVACIC.spad" 965520 965537 966797 966802) (-567 "KONVERT.spad" 965242 965252 965510 965515) (-566 "KOERCE.spad" 964979 964989 965232 965237) (-565 "KERNEL.spad" 963514 963524 964763 964768) (-564 "KERNEL2.spad" 963217 963229 963504 963509) (-563 "KDAGG.spad" 962308 962330 963185 963212) (-562 "KDAGG.spad" 961419 961443 962298 962303) (-561 "KAFILE.spad" 960382 960398 960617 960644) (-560 "JORDAN.spad" 958209 958221 959672 959817) (-559 "JAVACODE.spad" 957975 957983 958199 958204) (-558 "IXAGG.spad" 956088 956112 957955 957970) (-557 "IXAGG.spad" 954066 954092 955935 955940) (-556 "IVECTOR.spad" 952839 952854 952994 953021) (-555 "ITUPLE.spad" 951984 951994 952829 952834) (-554 "ITRIGMNP.spad" 950795 950814 951974 951979) (-553 "ITFUN3.spad" 950289 950303 950785 950790) (-552 "ITFUN2.spad" 950019 950031 950279 950284) (-551 "ITAYLOR.spad" 947811 947826 949855 949980) (-550 "ISUPS.spad" 940222 940237 946785 946882) (-549 "ISUMP.spad" 939719 939735 940212 940217) (-548 "ISTRING.spad" 938722 938735 938888 938915) (-547 "IRURPK.spad" 937435 937454 938712 938717) (-546 "IRSN.spad" 935395 935403 937425 937430) (-545 "IRRF2F.spad" 933870 933880 935351 935356) (-544 "IRREDFFX.spad" 933471 933482 933860 933865) (-543 "IROOT.spad" 931802 931812 933461 933466) (-542 "IR.spad" 929592 929606 931658 931685) (-541 "IR2.spad" 928612 928628 929582 929587) (-540 "IR2F.spad" 927812 927828 928602 928607) (-539 "IPRNTPK.spad" 927572 927580 927802 927807) (-538 "IPF.spad" 927137 927149 927377 927470) (-537 "IPADIC.spad" 926898 926924 927063 927132) (-536 "INVLAPLA.spad" 926543 926559 926888 926893) (-535 "INTTR.spad" 919789 919806 926533 926538) (-534 "INTTOOLS.spad" 917501 917517 919364 919369) (-533 "INTSLPE.spad" 916807 916815 917491 917496) (-532 "INTRVL.spad" 916373 916383 916721 916802) (-531 "INTRF.spad" 914737 914751 916363 916368) (-530 "INTRET.spad" 914169 914179 914727 914732) (-529 "INTRAT.spad" 912844 912861 914159 914164) (-528 "INTPM.spad" 911207 911223 912487 912492) (-527 "INTPAF.spad" 908975 908993 911139 911144) (-526 "INTPACK.spad" 899285 899293 908965 908970) (-525 "INT.spad" 898646 898654 899139 899280) (-524 "INTHERTR.spad" 897912 897929 898636 898641) (-523 "INTHERAL.spad" 897578 897602 897902 897907) (-522 "INTHEORY.spad" 893991 893999 897568 897573) (-521 "INTG0.spad" 887454 887472 893923 893928) (-520 "INTFTBL.spad" 881483 881491 887444 887449) (-519 "INTFACT.spad" 880542 880552 881473 881478) (-518 "INTEF.spad" 878857 878873 880532 880537) (-517 "INTDOM.spad" 877472 877480 878783 878852) (-516 "INTDOM.spad" 876149 876159 877462 877467) (-515 "INTCAT.spad" 874402 874412 876063 876144) (-514 "INTBIT.spad" 873905 873913 874392 874397) (-513 "INTALG.spad" 873087 873114 873895 873900) (-512 "INTAF.spad" 872579 872595 873077 873082) (-511 "INTABL.spad" 871097 871128 871260 871287) (-510 "INS.spad" 868493 868501 870999 871092) (-509 "INS.spad" 865975 865985 868483 868488) (-508 "INPSIGN.spad" 865409 865422 865965 865970) (-507 "INPRODPF.spad" 864475 864494 865399 865404) (-506 "INPRODFF.spad" 863533 863557 864465 864470) (-505 "INNMFACT.spad" 862504 862521 863523 863528) (-504 "INMODGCD.spad" 861988 862018 862494 862499) (-503 "INFSP.spad" 860273 860295 861978 861983) (-502 "INFPROD0.spad" 859323 859342 860263 860268) (-501 "INFORM.spad" 856591 856599 859313 859318) (-500 "INFORM1.spad" 856216 856226 856581 856586) (-499 "INFINITY.spad" 855768 855776 856206 856211) (-498 "INEP.spad" 854300 854322 855758 855763) (-497 "INDE.spad" 854206 854223 854290 854295) (-496 "INCRMAPS.spad" 853627 853637 854196 854201) (-495 "INBFF.spad" 849397 849408 853617 853622) (-494 "IMATRIX.spad" 848342 848368 848854 848881) (-493 "IMATQF.spad" 847436 847480 848298 848303) (-492 "IMATLIN.spad" 846041 846065 847392 847397) (-491 "ILIST.spad" 844697 844712 845224 845251) (-490 "IIARRAY2.spad" 844085 844123 844304 844331) (-489 "IFF.spad" 843495 843511 843766 843859) (-488 "IFARRAY.spad" 840982 840997 842678 842705) (-487 "IFAMON.spad" 840844 840861 840938 840943) (-486 "IEVALAB.spad" 840233 840245 840834 840839) (-485 "IEVALAB.spad" 839620 839634 840223 840228) (-484 "IDPO.spad" 839418 839430 839610 839615) (-483 "IDPOAMS.spad" 839174 839186 839408 839413) (-482 "IDPOAM.spad" 838894 838906 839164 839169) (-481 "IDPC.spad" 837828 837840 838884 838889) (-480 "IDPAM.spad" 837573 837585 837818 837823) (-479 "IDPAG.spad" 837320 837332 837563 837568) (-478 "IDECOMP.spad" 834557 834575 837310 837315) (-477 "IDEAL.spad" 829480 829519 834492 834497) (-476 "ICDEN.spad" 828631 828647 829470 829475) (-475 "ICARD.spad" 827820 827828 828621 828626) (-474 "IBPTOOLS.spad" 826413 826430 827810 827815) (-473 "IBITS.spad" 825612 825625 826049 826076) (-472 "IBATOOL.spad" 822487 822506 825602 825607) (-471 "IBACHIN.spad" 820974 820989 822477 822482) (-470 "IARRAY2.spad" 819962 819988 820581 820608) (-469 "IARRAY1.spad" 819007 819022 819145 819172) (-468 "IAN.spad" 817222 817230 818825 818918) (-467 "IALGFACT.spad" 816823 816856 817212 817217) (-466 "HYPCAT.spad" 816247 816255 816813 816818) (-465 "HYPCAT.spad" 815669 815679 816237 816242) (-464 "HOAGG.spad" 812927 812937 815649 815664) (-463 "HOAGG.spad" 809970 809982 812694 812699) (-462 "HEXADEC.spad" 807842 807850 808440 808533) (-461 "HEUGCD.spad" 806857 806868 807832 807837) (-460 "HELLFDIV.spad" 806447 806471 806847 806852) (-459 "HEAP.spad" 805839 805849 806054 806081) (-458 "HDP.spad" 797361 797377 797738 797867) (-457 "HDMP.spad" 794540 794555 795158 795285) (-456 "HB.spad" 792777 792785 794530 794535) (-455 "HASHTBL.spad" 791247 791278 791458 791485) (-454 "HACKPI.spad" 790730 790738 791149 791242) (-453 "GTSET.spad" 789669 789685 790376 790403) (-452 "GSTBL.spad" 788188 788223 788362 788377) (-451 "GSERIES.spad" 785355 785382 786320 786469) (-450 "GROUP.spad" 784529 784537 785335 785350) (-449 "GROUP.spad" 783711 783721 784519 784524) (-448 "GROEBSOL.spad" 782199 782220 783701 783706) (-447 "GRMOD.spad" 780770 780782 782189 782194) (-446 "GRMOD.spad" 779339 779353 780760 780765) (-445 "GRIMAGE.spad" 771944 771952 779329 779334) (-444 "GRDEF.spad" 770323 770331 771934 771939) (-443 "GRAY.spad" 768782 768790 770313 770318) (-442 "GRALG.spad" 767829 767841 768772 768777) (-441 "GRALG.spad" 766874 766888 767819 767824) (-440 "GPOLSET.spad" 766328 766351 766556 766583) (-439 "GOSPER.spad" 765593 765611 766318 766323) (-438 "GMODPOL.spad" 764731 764758 765561 765588) (-437 "GHENSEL.spad" 763800 763814 764721 764726) (-436 "GENUPS.spad" 759901 759914 763790 763795) (-435 "GENUFACT.spad" 759478 759488 759891 759896) (-434 "GENPGCD.spad" 759062 759079 759468 759473) (-433 "GENMFACT.spad" 758514 758533 759052 759057) (-432 "GENEEZ.spad" 756453 756466 758504 758509) (-431 "GDMP.spad" 753474 753491 754250 754377) (-430 "GCNAALG.spad" 747369 747396 753268 753335) (-429 "GCDDOM.spad" 746541 746549 747295 747364) (-428 "GCDDOM.spad" 745775 745785 746531 746536) (-427 "GB.spad" 743293 743331 745731 745736) (-426 "GBINTERN.spad" 739313 739351 743283 743288) (-425 "GBF.spad" 735070 735108 739303 739308) (-424 "GBEUCLID.spad" 732944 732982 735060 735065) (-423 "GAUSSFAC.spad" 732241 732249 732934 732939) (-422 "GALUTIL.spad" 730563 730573 732197 732202) (-421 "GALPOLYU.spad" 729009 729022 730553 730558) (-420 "GALFACTU.spad" 727174 727193 728999 729004) (-419 "GALFACT.spad" 717307 717318 727164 727169) (-418 "FVFUN.spad" 714320 714328 717287 717302) (-417 "FVC.spad" 713362 713370 714300 714315) (-416 "FUNCTION.spad" 713211 713223 713352 713357) (-415 "FT.spad" 711423 711431 713201 713206) (-414 "FTEM.spad" 710586 710594 711413 711418) (-413 "FSUPFACT.spad" 709487 709506 710523 710528) (-412 "FST.spad" 707573 707581 709477 709482) (-411 "FSRED.spad" 707051 707067 707563 707568) (-410 "FSPRMELT.spad" 705875 705891 707008 707013) (-409 "FSPECF.spad" 703952 703968 705865 705870) (-408 "FS.spad" 698003 698013 703716 703947) (-407 "FS.spad" 691845 691857 697560 697565) (-406 "FSINT.spad" 691503 691519 691835 691840) (-405 "FSERIES.spad" 690690 690702 691323 691422) (-404 "FSCINT.spad" 690003 690019 690680 690685) (-403 "FSAGG.spad" 689108 689118 689947 689998) (-402 "FSAGG.spad" 688187 688199 689028 689033) (-401 "FSAGG2.spad" 686886 686902 688177 688182) (-400 "FS2UPS.spad" 681275 681309 686876 686881) (-399 "FS2.spad" 680920 680936 681265 681270) (-398 "FS2EXPXP.spad" 680043 680066 680910 680915) (-397 "FRUTIL.spad" 678985 678995 680033 680038) (-396 "FR.spad" 672682 672692 678012 678081) (-395 "FRNAALG.spad" 667769 667779 672624 672677) (-394 "FRNAALG.spad" 662868 662880 667725 667730) (-393 "FRNAAF2.spad" 662322 662340 662858 662863) (-392 "FRMOD.spad" 661717 661747 662254 662259) (-391 "FRIDEAL.spad" 660912 660933 661697 661712) (-390 "FRIDEAL2.spad" 660514 660546 660902 660907) (-389 "FRETRCT.spad" 660025 660035 660504 660509) (-388 "FRETRCT.spad" 659404 659416 659885 659890) (-387 "FRAMALG.spad" 657732 657745 659360 659399) (-386 "FRAMALG.spad" 656092 656107 657722 657727) (-385 "FRAC.spad" 653195 653205 653598 653771) (-384 "FRAC2.spad" 652798 652810 653185 653190) (-383 "FR2.spad" 652132 652144 652788 652793) (-382 "FPS.spad" 648941 648949 652022 652127) (-381 "FPS.spad" 645778 645788 648861 648866) (-380 "FPC.spad" 644820 644828 645680 645773) (-379 "FPC.spad" 643948 643958 644810 644815) (-378 "FPATMAB.spad" 643700 643710 643928 643943) (-377 "FPARFRAC.spad" 642173 642190 643690 643695) (-376 "FORTRAN.spad" 640679 640722 642163 642168) (-375 "FORT.spad" 639608 639616 640669 640674) (-374 "FORTFN.spad" 636768 636776 639588 639603) (-373 "FORTCAT.spad" 636442 636450 636748 636763) (-372 "FORMULA.spad" 633780 633788 636432 636437) (-371 "FORMULA1.spad" 633259 633269 633770 633775) (-370 "FORDER.spad" 632950 632974 633249 633254) (-369 "FOP.spad" 632151 632159 632940 632945) (-368 "FNLA.spad" 631575 631597 632119 632146) (-367 "FNCAT.spad" 629903 629911 631565 631570) (-366 "FNAME.spad" 629795 629803 629893 629898) (-365 "FMTC.spad" 629593 629601 629721 629790) (-364 "FMONOID.spad" 626648 626658 629549 629554) (-363 "FM.spad" 626343 626355 626582 626609) (-362 "FMFUN.spad" 623363 623371 626323 626338) (-361 "FMC.spad" 622405 622413 623343 623358) (-360 "FMCAT.spad" 620059 620077 622373 622400) (-359 "FM1.spad" 619416 619428 619993 620020) (-358 "FLOATRP.spad" 617137 617151 619406 619411) (-357 "FLOAT.spad" 610301 610309 617003 617132) (-356 "FLOATCP.spad" 607718 607732 610291 610296) (-355 "FLINEXP.spad" 607430 607440 607698 607713) (-354 "FLINEXP.spad" 607096 607108 607366 607371) (-353 "FLASORT.spad" 606416 606428 607086 607091) (-352 "FLALG.spad" 604062 604081 606342 606411) (-351 "FLAGG.spad" 601068 601078 604030 604057) (-350 "FLAGG.spad" 597987 597999 600951 600956) (-349 "FLAGG2.spad" 596668 596684 597977 597982) (-348 "FINRALG.spad" 594697 594710 596624 596663) (-347 "FINRALG.spad" 592652 592667 594581 594586) (-346 "FINITE.spad" 591804 591812 592642 592647) (-345 "FINAALG.spad" 580785 580795 591746 591799) (-344 "FINAALG.spad" 569778 569790 580741 580746) (-343 "FILE.spad" 569361 569371 569768 569773) (-342 "FILECAT.spad" 567879 567896 569351 569356) (-341 "FIELD.spad" 567285 567293 567781 567874) (-340 "FIELD.spad" 566777 566787 567275 567280) (-339 "FGROUP.spad" 565386 565396 566757 566772) (-338 "FGLMICPK.spad" 564173 564188 565376 565381) (-337 "FFX.spad" 563548 563563 563889 563982) (-336 "FFSLPE.spad" 563037 563058 563538 563543) (-335 "FFPOLY.spad" 554289 554300 563027 563032) (-334 "FFPOLY2.spad" 553349 553366 554279 554284) (-333 "FFP.spad" 552746 552766 553065 553158) (-332 "FF.spad" 552194 552210 552427 552520) (-331 "FFNBX.spad" 550706 550726 551910 552003) (-330 "FFNBP.spad" 549219 549236 550422 550515) (-329 "FFNB.spad" 547684 547705 548900 548993) (-328 "FFINTBAS.spad" 545098 545117 547674 547679) (-327 "FFIELDC.spad" 542673 542681 545000 545093) (-326 "FFIELDC.spad" 540334 540344 542663 542668) (-325 "FFHOM.spad" 539082 539099 540324 540329) (-324 "FFF.spad" 536517 536528 539072 539077) (-323 "FFCGX.spad" 535364 535384 536233 536326) (-322 "FFCGP.spad" 534253 534273 535080 535173) (-321 "FFCG.spad" 533045 533066 533934 534027) (-320 "FFCAT.spad" 525946 525968 532884 533040) (-319 "FFCAT.spad" 518926 518950 525866 525871) (-318 "FFCAT2.spad" 518671 518711 518916 518921) (-317 "FEXPR.spad" 510384 510430 518431 518470) (-316 "FEVALAB.spad" 510090 510100 510374 510379) (-315 "FEVALAB.spad" 509581 509593 509867 509872) (-314 "FDIV.spad" 509023 509047 509571 509576) (-313 "FDIVCAT.spad" 507065 507089 509013 509018) (-312 "FDIVCAT.spad" 505105 505131 507055 507060) (-311 "FDIV2.spad" 504759 504799 505095 505100) (-310 "FCPAK1.spad" 503312 503320 504749 504754) (-309 "FCOMP.spad" 502691 502701 503302 503307) (-308 "FC.spad" 492516 492524 502681 502686) (-307 "FAXF.spad" 485451 485465 492418 492511) (-306 "FAXF.spad" 478438 478454 485407 485412) (-305 "FARRAY.spad" 476584 476594 477621 477648) (-304 "FAMR.spad" 474704 474716 476482 476579) (-303 "FAMR.spad" 472808 472822 474588 474593) (-302 "FAMONOID.spad" 472458 472468 472762 472767) (-301 "FAMONC.spad" 470680 470692 472448 472453) (-300 "FAGROUP.spad" 470286 470296 470576 470603) (-299 "FACUTIL.spad" 468482 468499 470276 470281) (-298 "FACTFUNC.spad" 467658 467668 468472 468477) (-297 "EXPUPXS.spad" 464491 464514 465790 465939) (-296 "EXPRTUBE.spad" 461719 461727 464481 464486) (-295 "EXPRODE.spad" 458591 458607 461709 461714) (-294 "EXPR.spad" 453893 453903 454607 455010) (-293 "EXPR2UPS.spad" 449985 449998 453883 453888) (-292 "EXPR2.spad" 449688 449700 449975 449980) (-291 "EXPEXPAN.spad" 446629 446654 447263 447356) (-290 "EXIT.spad" 446300 446308 446619 446624) (-289 "EVALCYC.spad" 445758 445772 446290 446295) (-288 "EVALAB.spad" 445322 445332 445748 445753) (-287 "EVALAB.spad" 444884 444896 445312 445317) (-286 "EUCDOM.spad" 442426 442434 444810 444879) (-285 "EUCDOM.spad" 440030 440040 442416 442421) (-284 "ESTOOLS.spad" 431870 431878 440020 440025) (-283 "ESTOOLS2.spad" 431471 431485 431860 431865) (-282 "ESTOOLS1.spad" 431156 431167 431461 431466) (-281 "ES.spad" 423703 423711 431146 431151) (-280 "ES.spad" 416158 416168 423603 423608) (-279 "ESCONT.spad" 412931 412939 416148 416153) (-278 "ESCONT1.spad" 412680 412692 412921 412926) (-277 "ES2.spad" 412175 412191 412670 412675) (-276 "ES1.spad" 411741 411757 412165 412170) (-275 "ERROR.spad" 409062 409070 411731 411736) (-274 "EQTBL.spad" 407534 407556 407743 407770) (-273 "EQ.spad" 402418 402428 405217 405326) (-272 "EQ2.spad" 402134 402146 402408 402413) (-271 "EP.spad" 398448 398458 402124 402129) (-270 "ENV.spad" 397150 397158 398438 398443) (-269 "ENTIRER.spad" 396818 396826 397094 397145) (-268 "EMR.spad" 396019 396060 396744 396813) (-267 "ELTAGG.spad" 394259 394278 396009 396014) (-266 "ELTAGG.spad" 392463 392484 394215 394220) (-265 "ELTAB.spad" 391910 391928 392453 392458) (-264 "ELFUTS.spad" 391289 391308 391900 391905) (-263 "ELEMFUN.spad" 390978 390986 391279 391284) (-262 "ELEMFUN.spad" 390665 390675 390968 390973) (-261 "ELAGG.spad" 388596 388606 390633 390660) (-260 "ELAGG.spad" 386476 386488 388515 388520) (-259 "ELABEXPR.spad" 385407 385415 386466 386471) (-258 "EFUPXS.spad" 382183 382213 385363 385368) (-257 "EFULS.spad" 379019 379042 382139 382144) (-256 "EFSTRUC.spad" 376974 376990 379009 379014) (-255 "EF.spad" 371740 371756 376964 376969) (-254 "EAB.spad" 370016 370024 371730 371735) (-253 "E04UCFA.spad" 369552 369560 370006 370011) (-252 "E04NAFA.spad" 369129 369137 369542 369547) (-251 "E04MBFA.spad" 368709 368717 369119 369124) (-250 "E04JAFA.spad" 368245 368253 368699 368704) (-249 "E04GCFA.spad" 367781 367789 368235 368240) (-248 "E04FDFA.spad" 367317 367325 367771 367776) (-247 "E04DGFA.spad" 366853 366861 367307 367312) (-246 "E04AGNT.spad" 362695 362703 366843 366848) (-245 "DVARCAT.spad" 359380 359390 362685 362690) (-244 "DVARCAT.spad" 356063 356075 359370 359375) (-243 "DSMP.spad" 353497 353511 353802 353929) (-242 "DROPT.spad" 347442 347450 353487 353492) (-241 "DROPT1.spad" 347105 347115 347432 347437) (-240 "DROPT0.spad" 341932 341940 347095 347100) (-239 "DRAWPT.spad" 340087 340095 341922 341927) (-238 "DRAW.spad" 332687 332700 340077 340082) (-237 "DRAWHACK.spad" 331995 332005 332677 332682) (-236 "DRAWCX.spad" 329437 329445 331985 331990) (-235 "DRAWCURV.spad" 328974 328989 329427 329432) (-234 "DRAWCFUN.spad" 318146 318154 328964 328969) (-233 "DQAGG.spad" 316302 316312 318102 318141) (-232 "DPOLCAT.spad" 311643 311659 316170 316297) (-231 "DPOLCAT.spad" 307070 307088 311599 311604) (-230 "DPMO.spad" 301057 301073 301195 301491) (-229 "DPMM.spad" 295057 295075 295182 295478) (-228 "DOMAIN.spad" 294328 294336 295047 295052) (-227 "DMP.spad" 291553 291568 292125 292252) (-226 "DLP.spad" 290901 290911 291543 291548) (-225 "DLIST.spad" 289313 289323 290084 290111) (-224 "DLAGG.spad" 287714 287724 289293 289308) (-223 "DIVRING.spad" 287161 287169 287658 287709) (-222 "DIVRING.spad" 286652 286662 287151 287156) (-221 "DISPLAY.spad" 284832 284840 286642 286647) (-220 "DIRPROD.spad" 276091 276107 276731 276860) (-219 "DIRPROD2.spad" 274899 274917 276081 276086) (-218 "DIRPCAT.spad" 273831 273847 274753 274894) (-217 "DIRPCAT.spad" 272503 272521 273427 273432) (-216 "DIOSP.spad" 271328 271336 272493 272498) (-215 "DIOPS.spad" 270300 270310 271296 271323) (-214 "DIOPS.spad" 269258 269270 270256 270261) (-213 "DIFRING.spad" 268550 268558 269238 269253) (-212 "DIFRING.spad" 267850 267860 268540 268545) (-211 "DIFEXT.spad" 267009 267019 267830 267845) (-210 "DIFEXT.spad" 266085 266097 266908 266913) (-209 "DIAGG.spad" 265703 265713 266053 266080) (-208 "DIAGG.spad" 265341 265353 265693 265698) (-207 "DHMATRIX.spad" 263645 263655 264798 264825) (-206 "DFSFUN.spad" 257053 257061 263635 263640) (-205 "DFLOAT.spad" 253576 253584 256943 257048) (-204 "DFINTTLS.spad" 251785 251801 253566 253571) (-203 "DERHAM.spad" 249695 249727 251765 251780) (-202 "DEQUEUE.spad" 249013 249023 249302 249329) (-201 "DEGRED.spad" 248628 248642 249003 249008) (-200 "DEFINTRF.spad" 246153 246163 248618 248623) (-199 "DEFINTEF.spad" 244649 244665 246143 246148) (-198 "DECIMAL.spad" 242533 242541 243119 243212) (-197 "DDFACT.spad" 240332 240349 242523 242528) (-196 "DBLRESP.spad" 239930 239954 240322 240327) (-195 "DBASE.spad" 238502 238512 239920 239925) (-194 "D03FAFA.spad" 238330 238338 238492 238497) (-193 "D03EEFA.spad" 238150 238158 238320 238325) (-192 "D03AGNT.spad" 237230 237238 238140 238145) (-191 "D02EJFA.spad" 236692 236700 237220 237225) (-190 "D02CJFA.spad" 236170 236178 236682 236687) (-189 "D02BHFA.spad" 235660 235668 236160 236165) (-188 "D02BBFA.spad" 235150 235158 235650 235655) (-187 "D02AGNT.spad" 229954 229962 235140 235145) (-186 "D01WGTS.spad" 228273 228281 229944 229949) (-185 "D01TRNS.spad" 228250 228258 228263 228268) (-184 "D01GBFA.spad" 227772 227780 228240 228245) (-183 "D01FCFA.spad" 227294 227302 227762 227767) (-182 "D01ASFA.spad" 226762 226770 227284 227289) (-181 "D01AQFA.spad" 226208 226216 226752 226757) (-180 "D01APFA.spad" 225632 225640 226198 226203) (-179 "D01ANFA.spad" 225126 225134 225622 225627) (-178 "D01AMFA.spad" 224636 224644 225116 225121) (-177 "D01ALFA.spad" 224176 224184 224626 224631) (-176 "D01AKFA.spad" 223702 223710 224166 224171) (-175 "D01AJFA.spad" 223225 223233 223692 223697) (-174 "D01AGNT.spad" 219284 219292 223215 223220) (-173 "CYCLOTOM.spad" 218790 218798 219274 219279) (-172 "CYCLES.spad" 215622 215630 218780 218785) (-171 "CVMP.spad" 215039 215049 215612 215617) (-170 "CTRIGMNP.spad" 213529 213545 215029 215034) (-169 "CTORCALL.spad" 213117 213125 213519 213524) (-168 "CSTTOOLS.spad" 212360 212373 213107 213112) (-167 "CRFP.spad" 206064 206077 212350 212355) (-166 "CRAPACK.spad" 205107 205117 206054 206059) (-165 "CPMATCH.spad" 204607 204622 205032 205037) (-164 "CPIMA.spad" 204312 204331 204597 204602) (-163 "COORDSYS.spad" 199205 199215 204302 204307) (-162 "CONTOUR.spad" 198607 198615 199195 199200) (-161 "CONTFRAC.spad" 194219 194229 198509 198602) (-160 "COMRING.spad" 193893 193901 194157 194214) (-159 "COMPPROP.spad" 193407 193415 193883 193888) (-158 "COMPLPAT.spad" 193174 193189 193397 193402) (-157 "COMPLEX.spad" 187207 187217 187451 187712) (-156 "COMPLEX2.spad" 186920 186932 187197 187202) (-155 "COMPFACT.spad" 186522 186536 186910 186915) (-154 "COMPCAT.spad" 184578 184588 186244 186517) (-153 "COMPCAT.spad" 182341 182353 184009 184014) (-152 "COMMUPC.spad" 182087 182105 182331 182336) (-151 "COMMONOP.spad" 181620 181628 182077 182082) (-150 "COMM.spad" 181429 181437 181610 181615) (-149 "COMBOPC.spad" 180334 180342 181419 181424) (-148 "COMBINAT.spad" 179079 179089 180324 180329) (-147 "COMBF.spad" 176447 176463 179069 179074) (-146 "COLOR.spad" 175284 175292 176437 176442) (-145 "CMPLXRT.spad" 174993 175010 175274 175279) (-144 "CLIP.spad" 171085 171093 174983 174988) (-143 "CLIF.spad" 169724 169740 171041 171080) (-142 "CLAGG.spad" 166199 166209 169704 169719) (-141 "CLAGG.spad" 162555 162567 166062 166067) (-140 "CINTSLPE.spad" 161880 161893 162545 162550) (-139 "CHVAR.spad" 159958 159980 161870 161875) (-138 "CHARZ.spad" 159873 159881 159938 159953) (-137 "CHARPOL.spad" 159381 159391 159863 159868) (-136 "CHARNZ.spad" 159134 159142 159361 159376) (-135 "CHAR.spad" 157002 157010 159124 159129) (-134 "CFCAT.spad" 156318 156326 156992 156997) (-133 "CDEN.spad" 155476 155490 156308 156313) (-132 "CCLASS.spad" 153625 153633 154887 154926) (-131 "CATEGORY.spad" 153404 153412 153615 153620) (-130 "CARTEN.spad" 148507 148531 153394 153399) (-129 "CARTEN2.spad" 147893 147920 148497 148502) (-128 "CARD.spad" 145182 145190 147867 147888) (-127 "CACHSET.spad" 144804 144812 145172 145177) (-126 "CABMON.spad" 144357 144365 144794 144799) (-125 "BYTE.spad" 143751 143759 144347 144352) (-124 "BYTEARY.spad" 142826 142834 142920 142947) (-123 "BTREE.spad" 141895 141905 142433 142460) (-122 "BTOURN.spad" 140898 140908 141502 141529) (-121 "BTCAT.spad" 140274 140284 140854 140893) (-120 "BTCAT.spad" 139682 139694 140264 140269) (-119 "BTAGG.spad" 138698 138706 139638 139677) (-118 "BTAGG.spad" 137746 137756 138688 138693) (-117 "BSTREE.spad" 136481 136491 137353 137380) (-116 "BRILL.spad" 134676 134687 136471 136476) (-115 "BRAGG.spad" 133590 133600 134656 134671) (-114 "BRAGG.spad" 132478 132490 133546 133551) (-113 "BPADICRT.spad" 130462 130474 130717 130810) (-112 "BPADIC.spad" 130126 130138 130388 130457) (-111 "BOUNDZRO.spad" 129782 129799 130116 130121) (-110 "BOP.spad" 125246 125254 129772 129777) (-109 "BOP1.spad" 122632 122642 125202 125207) (-108 "BOOLEAN.spad" 121895 121903 122622 122627) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 6b7fd020..092e9cdf 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,163 +1,163 @@ -(142764 . 3419169932) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((#0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) #0#) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +(142797 . 3419278785) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) #0#) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) (((|#2| |#2|) . T)) ((((-525)) . T)) -((($ $) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) ((|#2| |#2|) . T) ((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525))))) +((($ $) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((|#2| |#2|) . T) ((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525))))) ((($) . T)) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (((|#2|) . T)) -((($) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) ((|#2|) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525))))) -(|has| |#1| (-842)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) +((($) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((|#2|) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525))))) +(|has| |#1| (-843)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) ((($) . T) (((-385 (-525))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-135)) . T)) -((((-501)) . T) (((-1072)) . T) (((-205)) . T) (((-357)) . T) (((-825 (-357))) . T)) -(((|#1|) . T)) -((((-205)) . T) (((-796)) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1|) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-786))) -((($ $) . T) ((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T)) -(-3150 (|has| |#1| (-761)) (|has| |#1| (-788))) -((((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-525)) |has| |#1| (-966 (-525))) ((|#1|) . T)) -((((-796)) . T)) -((((-796)) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -(|has| |#1| (-786)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +((((-501)) . T) (((-1073)) . T) (((-205)) . T) (((-357)) . T) (((-826 (-357))) . T)) +(((|#1|) . T)) +((((-205)) . T) (((-797)) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1|) . T)) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-787))) +((($ $) . T) ((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T)) +(-3215 (|has| |#1| (-762)) (|has| |#1| (-789))) +((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +(|has| |#1| (-787)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) -((((-796)) . T)) -((((-796)) |has| |#1| (-1018))) +((($) . T) (((-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) +((((-797)) . T)) +((((-797)) |has| |#1| (-1019))) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(((|#2| (-458 (-2028 |#1|) (-712))) . T)) -(((|#1| (-497 (-1089))) . T)) -(((#0=(-803 |#1|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(((|#2| (-458 (-1696 |#1|) (-713))) . T)) +(((|#1| (-497 (-1090))) . T)) +(((#0=(-804 |#1|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (|has| |#4| (-346)) (|has| |#3| (-346)) (((|#1|) . T)) -((((-803 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) +((((-804 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-517)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) ((($) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) ((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-796)) . T)) -((((-796)) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-797)) . T)) +((((-797)) . T)) ((((-385 (-525))) . T) (($) . T)) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1163 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T)) +(((|#1|) . T) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T)) (((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) (((|#1| |#2|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T)) -(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) +(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) (((|#1|) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) -((($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) +((($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) -(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842)))) +(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))) ((($ $) . T)) (((|#2|) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) -((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842)))) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) +((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))) ((($) . T)) (|has| |#1| (-346)) (((|#1|) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-796)) . T)) -((((-796)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-797)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))) (|has| |#1| (-975))) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))) (|has| |#1| (-975))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976))) (((|#1| |#1|) . T)) (|has| |#1| (-517)) -(((|#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) (((-1089) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1089) |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) (((-1090) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1090) |#2|)))) ((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-786))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-787))) ((($ $) . T) ((#0=(-385 (-525)) #0#) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(|has| |#1| (-1018)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(|has| |#1| (-1018)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(|has| |#1| (-786)) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(|has| |#1| (-1019)) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(|has| |#1| (-1019)) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(|has| |#1| (-787)) ((($) . T) (((-385 (-525))) . T)) (((|#1|) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) -(-3150 (|has| |#4| (-734)) (|has| |#4| (-786))) -(-3150 (|has| |#4| (-734)) (|has| |#4| (-786))) -(-3150 (|has| |#3| (-734)) (|has| |#3| (-786))) -(-3150 (|has| |#3| (-734)) (|has| |#3| (-786))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) +(-3215 (|has| |#4| (-735)) (|has| |#4| (-787))) +(-3215 (|has| |#4| (-735)) (|has| |#4| (-787))) +(-3215 (|has| |#3| (-735)) (|has| |#3| (-787))) +(-3215 (|has| |#3| (-735)) (|has| |#3| (-787))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1018)) -(|has| |#1| (-1018)) -(((|#1| (-1089) (-1008 (-1089)) (-497 (-1008 (-1089)))) . T)) +(|has| |#1| (-1019)) +(|has| |#1| (-1019)) +(((|#1| (-1090) (-1009 (-1090)) (-497 (-1009 (-1090)))) . T)) ((((-525) |#1|) . T)) ((((-525)) . T)) ((((-525)) . T)) -((((-843 |#1|)) . T)) +((((-844 |#1|)) . T)) (((|#1| (-497 |#2|)) . T)) ((((-525)) . T)) ((((-525)) . T)) (((|#1|) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(((|#1| (-712)) . T)) -(|has| |#2| (-734)) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) -(|has| |#2| (-786)) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(((|#1| (-713)) . T)) +(|has| |#2| (-735)) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) +(|has| |#2| (-787)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1072) |#1|) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +((((-1073) |#1|) . T)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) (((|#1|) . T)) -(((|#3| (-712)) . T)) +(((|#3| (-713)) . T)) (|has| |#1| (-138)) (|has| |#1| (-136)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) -(|has| |#1| (-1018)) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) +(|has| |#1| (-1019)) ((((-385 (-525))) . T) (((-525)) . T)) -((((-1089) |#2|) |has| |#2| (-486 (-1089) |#2|)) ((|#2| |#2|) |has| |#2| (-288 |#2|))) +((((-1090) |#2|) |has| |#2| (-486 (-1090) |#2|)) ((|#2| |#2|) |has| |#2| (-288 |#2|))) ((((-385 (-525))) . T) (((-525)) . T)) (((|#1|) . T) (($) . T)) ((((-525)) . T)) ((((-525)) . T)) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160))) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160))) ((((-525)) . T)) ((((-525)) . T)) -(((#0=(-640) (-1085 #0#)) . T)) +(((#0=(-641) (-1086 #0#)) . T)) ((((-385 (-525))) . T) (($) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) ((((-525) |#1|) . T)) @@ -166,269 +166,269 @@ (|has| |#2| (-341)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-796)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-1072) |#1|) . T)) +((((-797)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-1073) |#1|) . T)) (((|#3| |#3|) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1| |#1|) . T)) -(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842)))) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) -(((|#1|) . T)) -((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842)))) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((($) -3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) ((|#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-975)))) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) +(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +(((|#1|) . T)) +((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((($) -3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) ((|#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976)))) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) ((((-525) |#1|) . T)) -((((-157 (-205))) |has| |#1| (-951)) (((-157 (-357))) |has| |#1| (-951)) (((-501)) |has| |#1| (-566 (-501))) (((-1085 |#1|)) . T) (((-825 (-525))) |has| |#1| (-566 (-825 (-525)))) (((-825 (-357))) |has| |#1| (-566 (-825 (-357))))) -((((-796)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1|) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-786))) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-786))) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) -(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517)))) +((((-157 (-205))) |has| |#1| (-952)) (((-157 (-357))) |has| |#1| (-952)) (((-501)) |has| |#1| (-567 (-501))) (((-1086 |#1|)) . T) (((-826 (-525))) |has| |#1| (-567 (-826 (-525)))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357))))) +((((-797)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1|) . T)) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-787))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-787))) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) +(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517)))) (|has| |#1| (-341)) -(-12 (|has| |#4| (-213)) (|has| |#4| (-975))) -(-12 (|has| |#3| (-213)) (|has| |#3| (-975))) -(-3150 (|has| |#4| (-160)) (|has| |#4| (-786)) (|has| |#4| (-975))) -(-3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) -((((-796)) . T)) -(((|#1|) . T)) -((((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-525)) |has| |#1| (-966 (-525))) ((|#1|) . T)) -(((|#1|) . T) (((-525)) |has| |#1| (-587 (-525)))) -(((|#2|) . T) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) +(-12 (|has| |#4| (-213)) (|has| |#4| (-976))) +(-12 (|has| |#3| (-213)) (|has| |#3| (-976))) +(-3215 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976))) +(-3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) +((((-797)) . T)) +(((|#1|) . T)) +((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T)) +(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525)))) +(((|#2|) . T) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) (|has| |#1| (-517)) (|has| |#1| (-517)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) (((|#1|) . T)) (|has| |#1| (-517)) (|has| |#1| (-517)) (|has| |#1| (-517)) -((((-640)) . T)) +((((-641)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-932)) (|has| |#1| (-1111))) +(-12 (|has| |#1| (-933)) (|has| |#1| (-1112))) (((|#2|) . T) (($) . T) (((-385 (-525))) . T)) -(-12 (|has| |#1| (-1018)) (|has| |#2| (-1018))) +(-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))) ((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T)) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T)) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T)) (((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T)) -(((|#3| |#3|) -3150 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-975))) (($ $) |has| |#3| (-160))) -(((|#4| |#4|) -3150 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-975))) (($ $) |has| |#4| (-160))) +(((|#3| |#3|) -3215 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))) (($ $) |has| |#3| (-160))) +(((|#4| |#4|) -3215 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-976))) (($ $) |has| |#4| (-160))) (((|#1|) . T)) (((|#2|) . T)) -((((-501)) |has| |#2| (-566 (-501))) (((-825 (-357))) |has| |#2| (-566 (-825 (-357)))) (((-825 (-525))) |has| |#2| (-566 (-825 (-525))))) -((((-796)) . T)) +((((-501)) |has| |#2| (-567 (-501))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525))))) +((((-797)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-796)) . T)) -((((-501)) |has| |#1| (-566 (-501))) (((-825 (-357))) |has| |#1| (-566 (-825 (-357)))) (((-825 (-525))) |has| |#1| (-566 (-825 (-525))))) -((((-796)) . T)) -(((|#3|) -3150 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-975))) (($) |has| |#3| (-160))) -(((|#4|) -3150 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-975))) (($) |has| |#4| (-160))) -((((-796)) . T)) -((((-501)) . T) (((-525)) . T) (((-825 (-525))) . T) (((-357)) . T) (((-205)) . T)) -(((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) +((((-797)) . T)) +((((-501)) |has| |#1| (-567 (-501))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#1| (-567 (-826 (-525))))) +((((-797)) . T)) +(((|#3|) -3215 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))) (($) |has| |#3| (-160))) +(((|#4|) -3215 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-976))) (($) |has| |#4| (-160))) +((((-797)) . T)) +((((-501)) . T) (((-525)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T)) +(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) ((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T)) ((((-385 $) (-385 $)) |has| |#2| (-517)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-842)) -((((-1072) (-51)) . T)) -((((-525)) |has| #0=(-385 |#2|) (-587 (-525))) ((#0#) . T)) -((((-501)) . T) (((-205)) . T) (((-357)) . T) (((-825 (-357))) . T)) -((((-796)) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))) (|has| |#1| (-975))) +((((-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-843)) +((((-1073) (-51)) . T)) +((((-525)) |has| #0=(-385 |#2|) (-588 (-525))) ((#0#) . T)) +((((-501)) . T) (((-205)) . T) (((-357)) . T) (((-826 (-357))) . T)) +((((-797)) . T)) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976))) (((|#1|) |has| |#1| (-160))) (((|#1| $) |has| |#1| (-265 |#1| |#1|))) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) ((((-385 (-525))) . T) (($) . T)) ((((-385 (-525))) . T) (($) . T)) -((((-796)) . T)) -(|has| |#1| (-788)) -(|has| |#1| (-1018)) +((((-797)) . T)) +(|has| |#1| (-789)) +(|has| |#1| (-1019)) (((|#1|) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) ((((-125)) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) ((((-125)) . T)) -((($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-213)) -((($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(((|#1| (-497 (-759 (-1089)))) . T)) -(((|#1| (-902)) . T)) -(((#0=(-803 |#1|) $) |has| #0# (-265 #0# #0#))) +((($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +(((|#1| (-497 (-760 (-1090)))) . T)) +(((|#1| (-903)) . T)) +(((#0=(-804 |#1|) $) |has| #0# (-265 #0# #0#))) ((((-525) |#4|) . T)) ((((-525) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1065)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) -(|has| (-1157 |#1| |#2| |#3| |#4|) (-136)) -(|has| (-1157 |#1| |#2| |#3| |#4|) (-138)) +(|has| |#1| (-1066)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) +(|has| (-1158 |#1| |#2| |#3| |#4|) (-136)) +(|has| (-1158 |#1| |#2| |#3| |#4|) (-138)) (|has| |#1| (-136)) (|has| |#1| (-138)) (((|#1|) |has| |#1| (-160))) -((((-1089)) -12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) +((((-1090)) -12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (((|#2|) . T)) -(|has| |#1| (-1018)) -((((-1072) |#1|) . T)) +(|has| |#1| (-1019)) +((((-1073) |#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-525)) |has| |#2| (-587 (-525)))) +(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525)))) (|has| |#2| (-346)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-975))) -((((-796)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((#0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) #0#) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +(((|#2|) |has| |#2| (-976))) +((((-797)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) #0#) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((#0=(-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) #0#) |has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((#0=(-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) #0#) |has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))))) ((((-525) |#1|) . T)) -((((-796)) . T)) -((((-501)) -12 (|has| |#1| (-566 (-501))) (|has| |#2| (-566 (-501)))) (((-825 (-357))) -12 (|has| |#1| (-566 (-825 (-357)))) (|has| |#2| (-566 (-825 (-357))))) (((-825 (-525))) -12 (|has| |#1| (-566 (-825 (-525)))) (|has| |#2| (-566 (-825 (-525)))))) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))) (((-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357))))) (((-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) +((((-797)) . T)) +((((-797)) . T)) ((($) . T)) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((((-796)) . T)) -((((-796)) . T)) -(|has| (-1156 |#2| |#3| |#4|) (-138)) -(|has| (-1156 |#2| |#3| |#4|) (-136)) -(((|#2|) |has| |#2| (-1018)) (((-525)) -12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018))) (((-385 (-525))) -12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-797)) . T)) +((((-797)) . T)) +(|has| (-1157 |#2| |#3| |#4|) (-138)) +(|has| (-1157 |#2| |#3| |#4|) (-136)) +(((|#2|) |has| |#2| (-1019)) (((-525)) -12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (((-385 (-525))) -12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (((|#1|) . T)) -(|has| |#1| (-1018)) -((((-796)) . T)) +(|has| |#1| (-1019)) +((((-797)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))) (|has| |#1| (-975))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976))) (((|#1|) . T)) ((((-525) |#1|) . T)) (((|#2|) |has| |#2| (-160))) (((|#1|) |has| |#1| (-160))) (((|#1|) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-786))) -((((-796)) |has| |#1| (-1018))) -(-3150 (|has| |#1| (-450)) (|has| |#1| (-668)) (|has| |#1| (-833 (-1089))) (|has| |#1| (-975)) (|has| |#1| (-1030))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) -((((-843 |#1|)) . T)) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-787))) +((((-797)) |has| |#1| (-1019))) +(-3215 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)) (|has| |#1| (-1031))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) +((((-844 |#1|)) . T)) ((((-385 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-525) |#1|))) ((((-385 (-525))) . T) (($) . T)) -(|has| |#1| (-788)) +(|has| |#1| (-789)) (((|#1|) . T) (($) . T)) ((((-385 (-525))) . T) (($) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T)) ((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517))) (|has| |#1| (-341)) -(-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) +(-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-341)) ((((-525)) . T)) -(|has| |#1| (-15 * (|#1| (-712) |#1|))) -((((-1056 |#2| (-385 (-885 |#1|)))) . T) (((-385 (-885 |#1|))) . T)) +(|has| |#1| (-15 * (|#1| (-713) |#1|))) +((((-1057 |#2| (-385 (-886 |#1|)))) . T) (((-385 (-886 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-160)) (($) . T)) (((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T)) (((|#1|) . T)) ((((-525) |#1|) . T)) (((|#2|) . T)) -(-3150 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) +(-3215 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) (((|#1|) . T)) -((((-1089)) -12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(-12 (|has| |#1| (-341)) (|has| |#2| (-761))) -(-3150 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) -(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-517)))) +((((-1090)) -12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(-12 (|has| |#1| (-341)) (|has| |#2| (-762))) +(-3215 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) +(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-517)))) ((($ $) |has| |#1| (-517))) -(((#0=(-640) (-1085 #0#)) . T)) -((((-796)) . T)) -((((-796)) . T) (((-1171 |#4|)) . T)) -((((-796)) . T) (((-1171 |#3|)) . T)) -((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-517)))) +(((#0=(-641) (-1086 #0#)) . T)) +((((-797)) . T)) +((((-797)) . T) (((-1172 |#4|)) . T)) +((((-797)) . T) (((-1172 |#3|)) . T)) +((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-517)))) ((($) |has| |#1| (-517))) -((((-796)) . T)) -((($) . T)) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1163 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1163 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T)) -(((|#1|) . T) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) -(((|#3|) |has| |#3| (-975))) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(|has| |#1| (-1018)) -(((|#2| (-760 |#1|)) . T)) +((((-797)) . T)) +((($) . T)) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1164 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T)) +(((|#1|) . T) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) +(((|#3|) |has| |#3| (-976))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +(|has| |#1| (-1019)) +(((|#2| (-761 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-341)) ((((-385 $) (-385 $)) |has| |#1| (-517)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-1003) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-843 |#1|)) . T)) +(((#0=(-1004) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-844 |#1|)) . T)) ((((-135)) . T)) ((((-135)) . T)) -(((|#3|) |has| |#3| (-1018)) (((-525)) -12 (|has| |#3| (-966 (-525))) (|has| |#3| (-1018))) (((-385 (-525))) -12 (|has| |#3| (-966 (-385 (-525)))) (|has| |#3| (-1018)))) -((((-796)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +(((|#3|) |has| |#3| (-1019)) (((-525)) -12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019))) (((-385 (-525))) -12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019)))) +((((-797)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (((|#1|) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) . T)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) . T)) (|has| |#1| (-341)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-786))) -((((-1089) |#1|) |has| |#1| (-486 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|))) -(|has| |#2| (-761)) -(|has| |#1| (-37 (-385 (-525)))) -(|has| |#1| (-786)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -((((-796)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-501)) |has| |#1| (-566 (-501)))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-787))) +((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|))) +(|has| |#2| (-762)) +(|has| |#1| (-37 (-385 (-525)))) +(|has| |#1| (-787)) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +((((-797)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-501)) |has| |#1| (-567 (-501)))) (((|#1| |#2|) . T)) -((((-1089)) -12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))))) -((((-1072) |#1|) . T)) +((((-1090)) -12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) +((((-1073) |#1|) . T)) (((|#1| |#2| |#3| (-497 |#3|)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (|has| |#1| (-346)) (|has| |#1| (-346)) (|has| |#1| (-346)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T)) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) (|has| |#1| (-346)) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((((-525)) . T)) ((((-525)) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) -((((-796)) . T)) -((((-796)) . T)) -(-12 (|has| |#2| (-213)) (|has| |#2| (-975))) -((((-1089) #0=(-803 |#1|)) |has| #0# (-486 (-1089) #0#)) ((#0# #0#) |has| #0# (-288 #0#))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) +((((-797)) . T)) +((((-797)) . T)) +(-12 (|has| |#2| (-213)) (|has| |#2| (-976))) +((((-1090) #0=(-804 |#1|)) |has| #0# (-486 (-1090) #0#)) ((#0# #0#) |has| #0# (-288 #0#))) (((|#1|) . T)) ((((-525) |#4|) . T)) ((((-525) |#3|) . T)) -(((|#1|) . T) (((-525)) |has| |#1| (-587 (-525)))) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525)))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) +((((-1158 |#1| |#2| |#3| |#4|)) . T)) ((((-385 (-525))) . T) (((-525)) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-525)) . T) (((-385 (-525))) . T)) @@ -440,95 +440,95 @@ (((|#1|) . T)) (((|#1|) . T)) (((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) +(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) (((|#1|) . T) (($) . T) (((-385 (-525))) . T)) (((|#1|) |has| |#1| (-517))) ((((-525) |#4|) . T)) ((((-525) |#3|) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-525)) . T) (((-385 (-525))) . T) (($) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-525) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-798 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-799 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1089) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1090) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-160))) -((($) -3150 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525))))) -(((|#2| |#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-975))) (($ $) |has| |#2| (-160))) +((($) -3215 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525))))) +(((|#2| |#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($ $) |has| |#2| (-160))) ((((-135)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-346)) (|has| |#2| (-346))) -((((-796)) . T)) -(((|#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-975))) (($) |has| |#2| (-160))) +((((-797)) . T)) +(((|#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($) |has| |#2| (-160))) (((|#1|) . T)) -((((-796)) . T)) -(|has| |#1| (-1018)) +((((-797)) . T)) +(|has| |#1| (-1019)) (|has| $ (-138)) ((((-525) |#1|) . T)) -((($) -3150 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) -((((-1089)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) +((($) -3215 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) +((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (|has| |#1| (-341)) -(-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) +(-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-341)) -(|has| |#1| (-15 * (|#1| (-712) |#1|))) +(|has| |#1| (-15 * (|#1| (-713) |#1|))) (((|#1|) . T)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -((((-796)) . T)) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +((((-797)) . T)) ((((-525) (-125)) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) -(((|#2| (-497 (-798 |#1|))) . T)) -((((-796)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1|) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) +(((|#2| (-497 (-799 |#1|))) . T)) +((((-797)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1|) . T)) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((((-538 |#1|)) . T)) ((($) . T)) (((|#1|) . T) (($) . T)) -((((-525)) |has| |#1| (-587 (-525))) ((|#1|) . T)) +((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T)) (((|#4|) . T)) (((|#3|) . T)) -((((-803 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) -((((-1089)) -12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) +((((-804 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) +((((-1090)) -12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (((|#1|) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) ((((-525) |#2|) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-517)))) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1087 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) -(((|#2|) |has| |#2| (-975))) -(|has| |#1| (-1018)) -((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-517)))) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T)) -(((|#1|) . T) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-517)))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1088 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +(((|#2|) |has| |#2| (-976))) +(|has| |#1| (-1019)) +((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-517)))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T)) +(((|#1|) . T) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (((|#1|) |has| |#1| (-160)) (($) . T)) (((|#1|) . T)) -(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) -((((-796)) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) +(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) +((((-797)) . T)) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842)))) -(((#0=(-1003) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) +((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))) +(((#0=(-1004) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) ((($) . T)) (((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) (((|#2|) |has| |#1| (-341))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1018)) (((-525)) -12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018))) (((-385 (-525))) -12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) +(((|#2|) |has| |#2| (-1019)) (((-525)) -12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (((-385 (-525))) -12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) ((((-525) |#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-385 |#2|) |#3|) . T)) (((|#1| (-385 (-525))) . T)) ((((-385 (-525))) . T) (($) . T)) @@ -538,144 +538,144 @@ (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-136)) (|has| |#1| (-138)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) -((($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) +((($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) ((((-385 (-525))) . T) (($) . T)) ((((-385 (-525))) . T) (($) . T)) ((((-385 (-525))) . T) (($) . T)) -(((|#2| |#3| (-798 |#1|)) . T)) -((((-1089)) |has| |#2| (-833 (-1089)))) +(((|#2| |#3| (-799 |#1|)) . T)) +((((-1090)) |has| |#2| (-834 (-1090)))) (((|#1|) . T)) (((|#1| (-497 |#2|) |#2|) . T)) -(((|#1| (-712) (-1003)) . T)) +(((|#1| (-713) (-1004)) . T)) ((((-385 (-525))) |has| |#2| (-341)) (($) . T)) -(((|#1| (-497 (-1008 (-1089))) (-1008 (-1089))) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(((|#1| (-497 (-1009 (-1090))) (-1009 (-1090))) . T)) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) (((|#1|) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(|has| |#2| (-734)) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(|has| |#2| (-735)) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) (|has| |#1| (-346)) (|has| |#1| (-346)) (|has| |#1| (-346)) -(|has| |#2| (-786)) -((((-826 |#1|)) . T) (((-760 |#1|)) . T)) -((((-760 (-1089))) . T)) +(|has| |#2| (-787)) +((((-827 |#1|)) . T) (((-761 |#1|)) . T)) +((((-761 (-1090))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-591 (-525))) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-501)) . T) (((-825 (-525))) . T) (((-357)) . T) (((-205)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-592 (-525))) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-501)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T)) (|has| |#1| (-213)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-1163 |#1| |#2| |#3|) $) -12 (|has| (-1163 |#1| |#2| |#3|) (-265 (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-1164 |#1| |#2| |#3|) $) -12 (|has| (-1164 |#1| |#2| |#3|) (-265 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1054 |#1| |#2|)) |has| (-1054 |#1| |#2|) (-288 (-1054 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) -(((|#2|) . T) (((-525)) |has| |#2| (-966 (-525))) (((-385 (-525))) |has| |#2| (-966 (-385 (-525))))) -(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +((((-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) +(((|#2|) . T) (((-525)) |has| |#2| (-967 (-525))) (((-385 (-525))) |has| |#2| (-967 (-385 (-525))))) +(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) (((|#2|) . T)) -((((-796)) -3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-565 (-796))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975)) (|has| |#2| (-1018))) (((-1171 |#2|)) . T)) +((((-797)) -3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-797))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) (((-1172 |#2|)) . T)) (((|#1|) |has| |#1| (-160))) ((((-525)) . T)) -((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842)))) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) ((((-525) (-135)) . T)) -((($) -3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) ((|#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-975)))) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-975))) +((($) -3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) ((|#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976)))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976))) (((|#1|) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-975))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976))) (((|#2|) |has| |#1| (-341))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1| (-497 #0=(-1089)) #0#) . T)) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1| (-497 #0=(-1090)) #0#) . T)) (((|#1|) . T) (($) . T)) (|has| |#4| (-160)) (|has| |#3| (-160)) -(((#0=(-385 (-885 |#1|)) #0#) . T)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(|has| |#1| (-1018)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(|has| |#1| (-1018)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) +(((#0=(-385 (-886 |#1|)) #0#) . T)) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(|has| |#1| (-1019)) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(|has| |#1| (-1019)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) (((|#1| |#1|) |has| |#1| (-160))) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#1|) . T)) -((((-385 (-885 |#1|))) . T)) +((((-385 (-886 |#1|))) . T)) ((((-525) (-125)) . T)) (((|#1|) |has| |#1| (-160))) ((((-125)) . T)) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -((((-796)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-975)) (((-525)) -12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +((((-797)) . T)) +((((-1158 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-976)) (((-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))) (((|#1| |#2|) . T)) -(-3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) -(|has| |#3| (-734)) -(-3150 (|has| |#3| (-734)) (|has| |#3| (-786))) -(|has| |#3| (-786)) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) -(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517)))) +(-3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) +(|has| |#3| (-735)) +(-3215 (|has| |#3| (-735)) (|has| |#3| (-787))) +(|has| |#3| (-787)) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) +(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517)))) (((|#2|) . T)) ((((-525) (-125)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) ((((-525) |#2|) . T)) -(((|#1| (-1070 |#1|)) |has| |#1| (-786))) -(|has| |#1| (-1018)) -(((|#1|) . T)) -(-12 (|has| |#1| (-341)) (|has| |#2| (-1065))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(|has| |#1| (-1018)) -(((|#2|) . T)) -((((-501)) |has| |#2| (-566 (-501))) (((-825 (-357))) |has| |#2| (-566 (-825 (-357)))) (((-825 (-525))) |has| |#2| (-566 (-825 (-525))))) -(((|#4|) -3150 (|has| |#4| (-160)) (|has| |#4| (-341)))) -(((|#3|) -3150 (|has| |#3| (-160)) (|has| |#3| (-341)))) -((((-796)) . T)) -(((|#1|) . T)) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-842))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-842))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-842))) -((($ $) . T) ((#0=(-1089) $) |has| |#1| (-213)) ((#0# |#1|) |has| |#1| (-213)) ((#1=(-759 (-1089)) |#1|) . T) ((#1# $) . T)) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-842))) +(((|#1| (-1071 |#1|)) |has| |#1| (-787))) +(|has| |#1| (-1019)) +(((|#1|) . T)) +(-12 (|has| |#1| (-341)) (|has| |#2| (-1066))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(|has| |#1| (-1019)) +(((|#2|) . T)) +((((-501)) |has| |#2| (-567 (-501))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525))))) +(((|#4|) -3215 (|has| |#4| (-160)) (|has| |#4| (-341)))) +(((|#3|) -3215 (|has| |#3| (-160)) (|has| |#3| (-341)))) +((((-797)) . T)) +(((|#1|) . T)) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-843))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-843))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-843))) +((($ $) . T) ((#0=(-1090) $) |has| |#1| (-213)) ((#0# |#1|) |has| |#1| (-213)) ((#1=(-760 (-1090)) |#1|) . T) ((#1# $) . T)) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-843))) ((((-525) |#2|) . T)) -((((-796)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((($) -3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) ((|#3|) -3150 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-975)))) +((((-797)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((($) -3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) ((|#3|) -3215 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976)))) ((((-525) |#1|) . T)) (|has| (-385 |#2|) (-138)) (|has| (-385 |#2|) (-136)) @@ -683,50 +683,50 @@ (|has| |#1| (-37 (-385 (-525)))) (((|#1|) . T)) (((|#2|) . T) (($) . T) (((-385 (-525))) . T)) -((((-796)) . T)) +((((-797)) . T)) (|has| |#1| (-517)) (|has| |#1| (-517)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-796)) . T)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-797)) . T)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) (|has| |#1| (-37 (-385 (-525)))) -((((-366) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) +((((-366) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) (|has| |#1| (-37 (-385 (-525)))) -(|has| |#2| (-1065)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) +(|has| |#2| (-1066)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (((|#1|) . T)) -((((-366) (-1072)) . T)) +((((-366) (-1073)) . T)) (|has| |#1| (-517)) ((((-112 |#1|)) . T)) ((((-125)) . T)) ((((-525) |#1|) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) (((|#2|) . T)) -((((-796)) . T)) -((((-760 |#1|)) . T)) +((((-797)) . T)) +((((-761 |#1|)) . T)) (((|#2|) |has| |#2| (-160))) -((((-1089) (-51)) . T)) +((((-1090) (-51)) . T)) (((|#1|) . T)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-517)) (((|#1|) |has| |#1| (-160))) -((((-796)) . T)) -((((-501)) |has| |#1| (-566 (-501)))) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) +((((-797)) . T)) +((((-501)) |has| |#1| (-567 (-501)))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) (((|#2|) |has| |#2| (-288 |#2|))) (((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1085 |#1|)) . T)) +(((|#1| (-1086 |#1|)) . T)) (|has| $ (-138)) (((|#2|) . T)) (((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) ((($) . T) (((-525)) . T) (((-385 (-525))) . T)) (|has| |#2| (-346)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) @@ -734,94 +734,94 @@ (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((((-525)) . T) (((-385 (-525))) . T) (($) . T)) -((((-1087 |#1| |#2| |#3|) $) -12 (|has| (-1087 |#1| |#2| |#3|) (-265 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341))) (($ $) . T)) -((((-796)) . T)) -((((-796)) . T)) -((($) . T) (((-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) -((((-501)) |has| |#1| (-566 (-501)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +((((-1088 |#1| |#2| |#3|) $) -12 (|has| (-1088 |#1| |#2| |#3|) (-265 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))) (($ $) . T)) +((((-797)) . T)) +((((-797)) . T)) +((($) . T) (((-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) +((((-501)) |has| |#1| (-567 (-501)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) ((($ $) . T)) ((($ $) . T)) -((((-796)) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((#0=(-1163 |#1| |#2| |#3|) #0#) -12 (|has| (-1163 |#1| |#2| |#3|) (-288 (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341))) (((-1089) #0#) -12 (|has| (-1163 |#1| |#2| |#3|) (-486 (-1089) (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341)))) -(-12 (|has| |#1| (-1018)) (|has| |#2| (-1018))) +((((-797)) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((#0=(-1164 |#1| |#2| |#3|) #0#) -12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))) (((-1090) #0#) -12 (|has| (-1164 |#1| |#2| |#3|) (-486 (-1090) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) +(-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) ((((-385 (-525))) . T) (((-525)) . T)) ((((-525) (-135)) . T)) ((((-135)) . T)) (((|#1|) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-975))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976))) ((((-108)) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) ((((-108)) . T)) (((|#1|) . T)) -((((-501)) |has| |#1| (-566 (-501))) (((-205)) . #0=(|has| |#1| (-951))) (((-357)) . #0#)) -((((-796)) . T)) -(|has| |#1| (-761)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(|has| |#1| (-788)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-517))) +((((-501)) |has| |#1| (-567 (-501))) (((-205)) . #0=(|has| |#1| (-952))) (((-357)) . #0#)) +((((-797)) . T)) +(|has| |#1| (-762)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(|has| |#1| (-789)) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-517))) (|has| |#1| (-517)) -(|has| |#1| (-842)) -(((|#1|) . T)) -(|has| |#1| (-1018)) -((((-796)) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-517))) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -(((|#1| (-1171 |#1|) (-1171 |#1|)) . T)) +(|has| |#1| (-843)) +(((|#1|) . T)) +(|has| |#1| (-1019)) +((((-797)) . T)) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-517))) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +(((|#1| (-1172 |#1|) (-1172 |#1|)) . T)) ((((-525) (-135)) . T)) ((($) . T)) -(-3150 (|has| |#4| (-160)) (|has| |#4| (-786)) (|has| |#4| (-975))) -(-3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) -((((-796)) . T)) -(|has| |#1| (-1018)) -(((|#1| (-902)) . T)) +(-3215 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976))) +(-3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) +((((-797)) . T)) +(|has| |#1| (-1019)) +(((|#1| (-903)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668)))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))) (((|#1|) . T)) -(|has| |#2| (-734)) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) +(|has| |#2| (-735)) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(|has| |#2| (-786)) -(-12 (|has| |#1| (-734)) (|has| |#2| (-734))) -(-12 (|has| |#1| (-734)) (|has| |#2| (-734))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(|has| |#2| (-787)) +(-12 (|has| |#1| (-735)) (|has| |#2| (-735))) +(-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-160))) (((|#1|) |has| |#1| (-160))) -((((-796)) . T)) +((((-797)) . T)) (|has| |#1| (-327)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-385 (-525))) . T) (($) . T)) -((($) . T) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T)) -(|has| |#1| (-769)) -((((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-525)) |has| |#1| (-966 (-525))) ((|#1|) . T)) -(|has| |#1| (-1018)) +((($) . T) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T)) +(|has| |#1| (-770)) +((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T)) +(|has| |#1| (-1019)) (((|#1| $) |has| |#1| (-265 |#1| |#1|))) ((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517))) ((($) |has| |#1| (-517))) -(((|#4|) |has| |#4| (-1018))) -(((|#3|) |has| |#3| (-1018))) +(((|#4|) |has| |#4| (-1019))) +(((|#3|) |has| |#3| (-1019))) (|has| |#3| (-346)) -(((|#1|) . T) (((-796)) . T)) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1163 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) -(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517)))) -((((-796)) . T)) +(((|#1|) . T) (((-797)) . T)) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) +(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517)))) +((((-797)) . T)) ((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (((|#2|) . T)) (((|#1| |#1|) |has| |#1| (-160))) @@ -830,69 +830,69 @@ (((|#1|) . T)) (((|#1|) |has| |#1| (-160))) ((((-385 (-525))) . T) (((-525)) . T)) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) ((((-135)) . T)) (((|#1|) . T)) ((((-135)) . T)) -((($) -3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) ((|#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-975)))) +((($) -3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) ((|#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976)))) ((((-135)) . T)) (((|#1| |#2| |#3|) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-975))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976))) (|has| $ (-138)) (|has| $ (-138)) -(|has| |#1| (-1018)) -((((-796)) . T)) +(|has| |#1| (-1019)) +((((-797)) . T)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-975)) (|has| |#1| (-1030))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-976)) (|has| |#1| (-1031))) ((($ $) |has| |#1| (-265 $ $)) ((|#1| $) |has| |#1| (-265 |#1| |#1|))) (((|#1| (-385 (-525))) . T)) (((|#1|) . T)) -((((-1089)) . T)) +((((-1090)) . T)) (|has| |#1| (-517)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (|has| |#1| (-517)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -((((-796)) . T)) +((((-797)) . T)) (|has| |#2| (-136)) (|has| |#2| (-138)) (((|#2|) . T) (($) . T)) (|has| |#1| (-138)) (|has| |#1| (-136)) -(|has| |#4| (-786)) -(((|#2| (-220 (-2028 |#1|) (-712)) (-798 |#1|)) . T)) -(|has| |#3| (-786)) +(|has| |#4| (-787)) +(((|#2| (-220 (-1696 |#1|) (-713)) (-799 |#1|)) . T)) +(|has| |#3| (-787)) (((|#1| (-497 |#3|) |#3|) . T)) (|has| |#1| (-138)) (|has| |#1| (-136)) (((#0=(-385 (-525)) #0#) |has| |#2| (-341)) (($ $) . T)) -((((-803 |#1|)) . T)) +((((-804 |#1|)) . T)) (|has| |#1| (-138)) (|has| |#1| (-346)) (|has| |#1| (-346)) (|has| |#1| (-346)) (|has| |#1| (-136)) ((((-385 (-525))) |has| |#2| (-341)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) -(-3150 (|has| |#1| (-327)) (|has| |#1| (-346))) -((((-1056 |#2| |#1|)) . T) ((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) +(-3215 (|has| |#1| (-327)) (|has| |#1| (-346))) +((((-1057 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-160)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-213)) (|has| |#2| (-975))) -(((|#2|) . T) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -(-3150 (|has| |#3| (-734)) (|has| |#3| (-786))) -(-3150 (|has| |#3| (-734)) (|has| |#3| (-786))) -((((-796)) . T)) +(-12 (|has| |#2| (-213)) (|has| |#2| (-976))) +(((|#2|) . T) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +(-3215 (|has| |#3| (-735)) (|has| |#3| (-787))) +(-3215 (|has| |#3| (-735)) (|has| |#3| (-787))) +((((-797)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-640)) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) +((((-641)) . T)) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) (|has| |#1| (-517)) (((|#1|) . T)) (((|#1|) . T)) @@ -900,52 +900,52 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1089) (-51)) . T)) -((((-796)) . T)) -((((-501)) . T) (((-825 (-525))) . T) (((-357)) . T) (((-205)) . T)) +((((-1090) (-51)) . T)) +((((-797)) . T)) +((((-501)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T)) (((|#1|) . T)) -((((-796)) . T)) -((((-501)) . T) (((-825 (-525))) . T) (((-357)) . T) (((-205)) . T)) +((((-797)) . T)) +((((-501)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T)) (((|#1| (-525)) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1| (-385 (-525))) . T)) -(((|#3|) . T) (((-564 $)) . T)) +(((|#3|) . T) (((-565 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) -(((#0=(-1087 |#1| |#2| |#3|) #0#) -12 (|has| (-1087 |#1| |#2| |#3|) (-288 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341))) (((-1089) #0#) -12 (|has| (-1087 |#1| |#2| |#3|) (-486 (-1089) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341)))) +(((#0=(-1088 |#1| |#2| |#3|) #0#) -12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))) (((-1090) #0#) -12 (|has| (-1088 |#1| |#2| |#3|) (-486 (-1090) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) ((((-525)) . T) (($) . T) (((-385 (-525))) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) |has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))))) -((((-796)) . T)) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) |has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))))) +((((-797)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1089) (-51)) . T)) +((((-1090) (-51)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-798 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-769)) -(|has| |#1| (-1018)) -(((|#2| |#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-975))) (($ $) |has| |#2| (-160))) -(((|#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)))) -((((-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-975))) (($) |has| |#2| (-160))) -((((-712)) . T)) +((($ $) . T) ((#0=(-799 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-770)) +(|has| |#1| (-1019)) +(((|#2| |#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($ $) |has| |#2| (-160))) +(((|#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)))) +((((-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($) |has| |#2| (-160))) +((((-713)) . T)) ((((-525)) . T)) (|has| |#1| (-517)) -((((-796)) . T)) -(((|#1| (-385 (-525)) (-1003)) . T)) +((((-797)) . T)) +(((|#1| (-385 (-525)) (-1004)) . T)) (|has| |#1| (-136)) (((|#1|) . T)) (|has| |#1| (-517)) @@ -953,255 +953,255 @@ ((((-112 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-138)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-517))) -((((-825 (-525))) . T) (((-825 (-357))) . T) (((-501)) . T) (((-1089)) . T)) -((((-796)) . T)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -((($) . T)) -((((-796)) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-517))) +((((-826 (-525))) . T) (((-826 (-357))) . T) (((-501)) . T) (((-1090)) . T)) +((((-797)) . T)) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +((($) . T)) +((((-797)) . T)) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) (((|#2|) |has| |#2| (-160))) -((($) -3150 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525))))) -((((-803 |#1|)) . T)) -(-3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975)) (|has| |#2| (-1018))) -(-12 (|has| |#3| (-213)) (|has| |#3| (-975))) -(|has| |#2| (-1065)) -(((#0=(-51)) . T) (((-2 (|:| -1265 (-1089)) (|:| -1568 #0#))) . T)) +((($) -3215 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525))))) +((((-804 |#1|)) . T)) +(-3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) +(-12 (|has| |#3| (-213)) (|has| |#3| (-976))) +(|has| |#2| (-1066)) +(((#0=(-51)) . T) (((-2 (|:| -3160 (-1090)) (|:| -3978 #0#))) . T)) (((|#1| |#2|) . T)) -(-3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) -(((|#1| (-525) (-1003)) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1| (-385 (-525)) (-1003)) . T)) -((($) -3150 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) +(-3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) +(((|#1| (-525) (-1004)) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1| (-385 (-525)) (-1004)) . T)) +((($) -3215 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) ((((-525) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-346)) (-12 (|has| |#1| (-346)) (|has| |#2| (-346))) -((((-796)) . T)) -((((-1089) |#1|) |has| |#1| (-486 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|))) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) +((((-797)) . T)) +((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) (((|#1|) . T)) ((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517))) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) -(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517)))) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) +(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517)))) ((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((((-796)) . T)) +((((-797)) . T)) (|has| |#1| (-327)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((#0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) #0#) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) #0#) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) (|has| |#1| (-517)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-796)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-797)) . T)) (((|#1| |#2|) . T)) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-842))) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-842))) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-843))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-843))) ((((-385 (-525))) . T) (((-525)) . T)) ((((-525)) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) ((($) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T)) -((((-803 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) -((((-796)) . T)) -(((|#3| |#3|) -3150 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-975))) (($ $) |has| |#3| (-160))) -(|has| |#1| (-951)) -((((-796)) . T)) -(((|#3|) -3150 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-975))) (($) |has| |#3| (-160))) +((((-804 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) +((((-797)) . T)) +(((|#3| |#3|) -3215 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))) (($ $) |has| |#3| (-160))) +(|has| |#1| (-952)) +((((-797)) . T)) +(((|#3|) -3215 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))) (($) |has| |#3| (-160))) ((((-525) (-108)) . T)) (((|#1|) |has| |#1| (-288 |#1|))) (|has| |#1| (-346)) (|has| |#1| (-346)) (|has| |#1| (-346)) -((((-1089) $) |has| |#1| (-486 (-1089) $)) (($ $) |has| |#1| (-288 $)) ((|#1| |#1|) |has| |#1| (-288 |#1|)) (((-1089) |#1|) |has| |#1| (-486 (-1089) |#1|))) -((((-1089)) |has| |#1| (-833 (-1089)))) -(-3150 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327))) -((((-366) (-1036)) . T)) +((((-1090) $) |has| |#1| (-486 (-1090) $)) (($ $) |has| |#1| (-288 $)) ((|#1| |#1|) |has| |#1| (-288 |#1|)) (((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|))) +((((-1090)) |has| |#1| (-834 (-1090)))) +(-3215 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327))) +((((-366) (-1037)) . T)) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((((-366) |#1|) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) -(|has| |#1| (-1018)) -((((-796)) . T)) -((((-796)) . T)) -((((-843 |#1|)) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) -((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842)))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) +(|has| |#1| (-1019)) +((((-797)) . T)) +((((-797)) . T)) +((((-844 |#1|)) . T)) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) +((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) -(((#0=(-803 |#1|)) |has| #0# (-288 #0#))) +(((#0=(-804 |#1|)) |has| #0# (-288 #0#))) (((|#1| |#2|) . T)) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) -(-12 (|has| |#1| (-734)) (|has| |#2| (-734))) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) +(-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (((|#1|) . T)) -(-12 (|has| |#1| (-734)) (|has| |#2| (-734))) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) +(-12 (|has| |#1| (-735)) (|has| |#2| (-735))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -(|has| |#1| (-1111)) +(((|#2|) . T) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +(|has| |#1| (-1112)) (((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) ((((-385 (-525))) . T) (($) . T)) -(((|#4|) |has| |#4| (-975))) -(((|#3|) |has| |#3| (-975))) +(((|#4|) |has| |#4| (-976))) +(((|#3|) |has| |#3| (-976))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T)) (|has| |#1| (-341)) ((((-525)) . T) (((-385 (-525))) . T) (($) . T)) -((($ $) . T) ((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +((($ $) . T) ((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) (((|#1|) . T) (($) . T) (((-385 (-525))) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1|) . T) (($) . T) (((-385 (-525))) . T)) (((|#1|) . T) (($) . T) (((-385 (-525))) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-525) |#3|) . T)) -((((-796)) . T)) -((((-501)) |has| |#3| (-566 (-501)))) -((((-631 |#3|)) . T) (((-796)) . T)) +((((-797)) . T)) +((((-501)) |has| |#3| (-567 (-501)))) +((((-632 |#3|)) . T) (((-797)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-786)) -(|has| |#1| (-786)) -((($) . T) (((-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-517))) -(((#0=(-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) #0#) |has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))))) -((($) . T)) -(|has| |#2| (-788)) -((($) . T)) -(((|#2|) |has| |#2| (-1018))) -((((-796)) -3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-565 (-796))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975)) (|has| |#2| (-1018))) (((-1171 |#2|)) . T)) -(|has| |#1| (-788)) -(|has| |#1| (-788)) -((((-1072) (-51)) . T)) -(|has| |#1| (-788)) -((((-796)) . T)) -((((-525)) |has| #0=(-385 |#2|) (-587 (-525))) ((#0#) . T)) +(|has| |#1| (-787)) +(|has| |#1| (-787)) +((($) . T) (((-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-517))) +(((#0=(-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) #0#) |has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))))) +((($) . T)) +(|has| |#2| (-789)) +((($) . T)) +(((|#2|) |has| |#2| (-1019))) +((((-797)) -3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-797))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) (((-1172 |#2|)) . T)) +(|has| |#1| (-789)) +(|has| |#1| (-789)) +((((-1073) (-51)) . T)) +(|has| |#1| (-789)) +((((-797)) . T)) +((((-525)) |has| #0=(-385 |#2|) (-588 (-525))) ((#0#) . T)) ((((-525) (-135)) . T)) -((((-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T) ((|#1| |#2|) . T)) +((((-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T) ((|#1| |#2|) . T)) ((((-385 (-525))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-796)) . T)) -((((-843 |#1|)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-797)) . T)) +((((-844 |#1|)) . T)) (|has| |#1| (-341)) (|has| |#1| (-341)) (|has| |#1| (-341)) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) -(|has| |#1| (-786)) +(|has| |#1| (-787)) (|has| |#1| (-341)) -(|has| |#1| (-786)) +(|has| |#1| (-787)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-786)) -((((-1089)) |has| |#1| (-833 (-1089)))) -(((|#1| (-1089)) . T)) -(((|#1| (-1171 |#1|) (-1171 |#1|)) . T)) +(|has| |#1| (-787)) +((((-1090)) |has| |#1| (-834 (-1090)))) +(((|#1| (-1090)) . T)) +(((|#1| (-1172 |#1|) (-1172 |#1|)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -(|has| |#1| (-1018)) -(((|#1| (-1089) (-759 (-1089)) (-497 (-759 (-1089)))) . T)) -((((-385 (-885 |#1|))) . T)) +(|has| |#1| (-1019)) +(((|#1| (-1090) (-760 (-1090)) (-497 (-760 (-1090)))) . T)) +((((-385 (-886 |#1|))) . T)) ((((-501)) . T)) -((((-796)) . T)) +((((-797)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) (((|#1|) |has| |#1| (-160))) -((((-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T) ((|#1| |#2|) . T)) +((((-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) ((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-160))) -((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842)))) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (((|#1|) . T)) (((|#1|) . T)) -((((-501)) |has| |#1| (-566 (-501))) (((-825 (-357))) |has| |#1| (-566 (-825 (-357)))) (((-825 (-525))) |has| |#1| (-566 (-825 (-525))))) -((((-796)) . T)) -(((|#2|) . T) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -(|has| |#2| (-786)) -(-12 (|has| |#2| (-213)) (|has| |#2| (-975))) +((((-501)) |has| |#1| (-567 (-501))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#1| (-567 (-826 (-525))))) +((((-797)) . T)) +(((|#2|) . T) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +(|has| |#2| (-787)) +(-12 (|has| |#2| (-213)) (|has| |#2| (-976))) (|has| |#1| (-517)) -(|has| |#1| (-1065)) -((((-1072) |#1|) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T)) -((((-385 (-525))) |has| |#1| (-966 (-525))) (((-525)) |has| |#1| (-966 (-525))) (((-1089)) |has| |#1| (-966 (-1089))) ((|#1|) . T)) +(|has| |#1| (-1066)) +((((-1073) |#1|) . T)) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T)) +((((-385 (-525))) |has| |#1| (-967 (-525))) (((-525)) |has| |#1| (-967 (-525))) (((-1090)) |has| |#1| (-967 (-1090))) ((|#1|) . T)) ((((-525) |#2|) . T)) -((((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-525)) |has| |#1| (-966 (-525))) ((|#1|) . T)) -((((-525)) |has| |#1| (-819 (-525))) (((-357)) |has| |#1| (-819 (-357)))) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T)) +((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T)) +((((-525)) |has| |#1| (-820 (-525))) (((-357)) |has| |#1| (-820 (-357)))) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T)) (((|#1|) . T)) -((((-591 |#4|)) . T) (((-796)) . T)) -((((-501)) |has| |#4| (-566 (-501)))) -((((-501)) |has| |#4| (-566 (-501)))) -((((-796)) . T) (((-591 |#4|)) . T)) -((($) |has| |#1| (-786))) +((((-592 |#4|)) . T) (((-797)) . T)) +((((-501)) |has| |#4| (-567 (-501)))) +((((-501)) |has| |#4| (-567 (-501)))) +((((-797)) . T) (((-592 |#4|)) . T)) +((($) |has| |#1| (-787))) (((|#1|) . T)) -((((-591 |#4|)) . T) (((-796)) . T)) -((((-501)) |has| |#4| (-566 (-501)))) +((((-592 |#4|)) . T) (((-797)) . T)) +((((-501)) |has| |#4| (-567 (-501)))) (((|#1|) . T)) (((|#2|) . T)) -((((-1089)) |has| (-385 |#2|) (-833 (-1089)))) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((#0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) #0#) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +((((-1090)) |has| (-385 |#2|) (-834 (-1090)))) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) #0#) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -((((-796)) -3150 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-565 (-796))) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-734)) (|has| |#3| (-786)) (|has| |#3| (-975)) (|has| |#3| (-1018))) (((-1171 |#3|)) . T)) +((((-797)) -3215 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-566 (-797))) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976)) (|has| |#3| (-1019))) (((-1172 |#3|)) . T)) ((((-525) |#2|) . T)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(((|#2| |#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-975))) (($ $) |has| |#2| (-160))) -((((-796)) . T)) -((((-796)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T) ((|#2|) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-1072) (-1089) (-525) (-205) (-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -(|has| |#1| (-37 (-385 (-525)))) -(|has| |#1| (-37 (-385 (-525)))) -((((-796)) . T)) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(((|#2| |#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($ $) |has| |#2| (-160))) +((((-797)) . T)) +((((-797)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T) ((|#2|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-1073) (-1090) (-525) (-205) (-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +(|has| |#1| (-37 (-385 (-525)))) +(|has| |#1| (-37 (-385 (-525)))) +((((-797)) . T)) ((((-525) (-108)) . T)) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-108)) . T)) ((((-108)) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) ((((-108)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -((((-796)) . T)) -((((-501)) |has| |#1| (-566 (-501)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) -(((|#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-975))) (($) |has| |#2| (-160))) +((((-797)) . T)) +((((-501)) |has| |#1| (-567 (-501)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) +(((|#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($) |has| |#2| (-160))) (|has| $ (-138)) ((((-385 |#2|)) . T)) -((((-385 (-525))) |has| #0=(-385 |#2|) (-966 (-385 (-525)))) (((-525)) |has| #0# (-966 (-525))) ((#0#) . T)) +((((-385 (-525))) |has| #0=(-385 |#2|) (-967 (-385 (-525)))) (((-525)) |has| #0# (-967 (-525))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-160))) (|has| |#2| (-136)) @@ -1209,19 +1209,19 @@ (((|#3|) |has| |#3| (-160))) (|has| |#1| (-138)) (|has| |#1| (-136)) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) (|has| |#1| (-138)) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) (|has| |#1| (-138)) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) (|has| |#1| (-138)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-213)) -((((-1089) (-51)) . T)) -((((-796)) . T)) +((((-1090) (-51)) . T)) +((((-797)) . T)) (((|#1| |#1|) . T)) -((((-1089)) |has| |#2| (-833 (-1089)))) +((((-1090)) |has| |#2| (-834 (-1090)))) ((((-525) (-108)) . T)) (|has| |#1| (-517)) (((|#2|) . T)) @@ -1236,144 +1236,144 @@ (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (((|#1|) . T)) -((((-796)) . T)) -((((-501)) . T) (((-825 (-525))) . T) (((-357)) . T) (((-205)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-929 |#1|)) . T) ((|#1|) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +((((-797)) . T)) +((((-501)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-930 |#1|)) . T) ((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) ((((-385 (-525))) . T) (((-385 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1085 |#1|)) . T)) +(((|#1| (-1086 |#1|)) . T)) ((((-525)) . T) (($) . T) (((-385 (-525))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-788)) +(|has| |#1| (-789)) (((|#2|) . T)) ((((-525)) . T) (($) . T) (((-385 (-525))) . T)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) ((((-525) |#2|) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) (((|#2|) . T)) ((((-525) |#3|) . T)) (((|#2|) . T)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -((((-1163 |#1| |#2| |#3|)) |has| |#1| (-341))) +((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -((((-796)) . T)) -(|has| |#1| (-1018)) -(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) -(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) +((((-797)) . T)) +(|has| |#1| (-1019)) +(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) +(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((#0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) #0#) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) #0#) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) (((|#2| |#2|) . T)) (|has| |#2| (-341)) -(((|#2|) . T) (((-525)) |has| |#2| (-966 (-525))) (((-385 (-525))) |has| |#2| (-966 (-385 (-525))))) +(((|#2|) . T) (((-525)) |has| |#2| (-967 (-525))) (((-385 (-525))) |has| |#2| (-967 (-385 (-525))))) (((|#2|) . T)) -((((-1072) (-51)) . T)) +((((-1073) (-51)) . T)) (((|#2|) |has| |#2| (-160))) ((((-525) |#3|) . T)) ((((-525) (-135)) . T)) ((((-135)) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-108)) . T)) (|has| |#1| (-138)) (((|#1|) . T)) (|has| |#1| (-136)) ((($) . T)) (|has| |#1| (-517)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-525)) |has| |#2| (-587 (-525)))) -((((-796)) . T)) -((((-525)) |has| |#1| (-587 (-525))) ((|#1|) . T)) -((((-525)) |has| |#1| (-587 (-525))) ((|#1|) . T)) -((((-525)) |has| |#1| (-587 (-525))) ((|#1|) . T)) -((((-1072) (-51)) . T)) +(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525)))) +((((-797)) . T)) +((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T)) +((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T)) +((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T)) +((((-1073) (-51)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#1| |#2|) . T)) ((((-525) (-135)) . T)) -(((#0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) #0#) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) -((($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(|has| |#1| (-788)) -(((|#2| (-712) (-1003)) . T)) +(((#0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) #0#) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) +((($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +(|has| |#1| (-789)) +(((|#2| (-713) (-1004)) . T)) (((|#1| |#2|) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-517))) -(|has| |#1| (-732)) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-517))) +(|has| |#1| (-733)) (((|#1|) |has| |#1| (-160))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-3150 (|has| |#1| (-138)) (-12 (|has| |#1| (-341)) (|has| |#2| (-138)))) -(-3150 (|has| |#1| (-136)) (-12 (|has| |#1| (-341)) (|has| |#2| (-136)))) +(-3215 (|has| |#1| (-138)) (-12 (|has| |#1| (-341)) (|has| |#2| (-138)))) +(-3215 (|has| |#1| (-136)) (-12 (|has| |#1| (-341)) (|has| |#2| (-136)))) (((|#4|) . T)) (|has| |#1| (-136)) -((((-1072) |#1|) . T)) +((((-1073) |#1|) . T)) (|has| |#1| (-138)) (((|#1|) . T)) ((((-525)) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) -((((-796)) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +((((-797)) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#3|) . T)) -((((-1163 |#1| |#2| |#3|)) |has| |#1| (-341))) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(((|#1|) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018))) (((-890 |#1|)) . T)) -(|has| |#1| (-786)) -(|has| |#1| (-786)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(((|#1|) . T)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))) (((-891 |#1|)) . T)) +(|has| |#1| (-787)) +(|has| |#1| (-787)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (|has| |#2| (-341)) (((|#1|) |has| |#1| (-160))) -(((|#2|) |has| |#2| (-975))) -((((-1072) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) -(((|#2| (-826 |#1|)) . T)) +(((|#2|) |has| |#2| (-976))) +((((-1073) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) +(((|#2| (-827 |#1|)) . T)) ((($) . T)) -((((-366) (-1072)) . T)) +((((-366) (-1073)) . T)) ((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((((-796)) -3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-565 (-796))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975)) (|has| |#2| (-1018))) (((-1171 |#2|)) . T)) -(((#0=(-51)) . T) (((-2 (|:| -1265 (-1072)) (|:| -1568 #0#))) . T)) +((((-797)) -3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-797))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) (((-1172 |#2|)) . T)) +(((#0=(-51)) . T) (((-2 (|:| -3160 (-1073)) (|:| -3978 #0#))) . T)) (((|#1|) . T)) -((((-796)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) +((((-797)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) ((((-135)) . T)) (|has| |#2| (-136)) (|has| |#2| (-138)) (|has| |#1| (-450)) -(-3150 (|has| |#1| (-450)) (|has| |#1| (-668)) (|has| |#1| (-833 (-1089))) (|has| |#1| (-975))) +(-3215 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976))) (|has| |#1| (-341)) -((((-796)) . T)) +((((-797)) . T)) (|has| |#1| (-37 (-385 (-525)))) ((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517))) ((($) |has| |#1| (-517))) -(|has| |#1| (-786)) -(|has| |#1| (-786)) -((((-796)) . T)) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1163 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) -(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517)))) +(|has| |#1| (-787)) +(|has| |#1| (-787)) +((((-797)) . T)) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) +(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517)))) ((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (((|#1| |#2|) . T)) -((((-1089)) |has| |#1| (-833 (-1089)))) -((((-843 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) -((((-796)) . T)) -((((-796)) . T)) -(|has| |#1| (-1018)) -(((|#2| (-458 (-2028 |#1|) (-712)) (-798 |#1|)) . T)) +((((-1090)) |has| |#1| (-834 (-1090)))) +((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) +((((-797)) . T)) +((((-797)) . T)) +(|has| |#1| (-1019)) +(((|#2| (-458 (-1696 |#1|) (-713)) (-799 |#1|)) . T)) ((((-385 (-525))) . #0=(|has| |#2| (-341))) (($) . #0#)) -(((|#1| (-497 (-1089)) (-1089)) . T)) +(((|#1| (-497 (-1090)) (-1090)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1387,62 +1387,62 @@ (|has| |#1| (-138)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) . T)) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-341))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-1089) (-51)) . T)) +(((|#1|) . T) (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) . T)) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341))) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-1090) (-51)) . T)) ((($ $) . T)) (((|#1| (-525)) . T)) -((((-843 |#1|)) . T)) -(((|#1|) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-975))) (($) -3150 (|has| |#1| (-833 (-1089))) (|has| |#1| (-975)))) -(((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) -(|has| |#1| (-788)) -(|has| |#1| (-788)) +((((-844 |#1|)) . T)) +(((|#1|) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-976))) (($) -3215 (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)))) +(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) +(|has| |#1| (-789)) +(|has| |#1| (-789)) ((((-525) |#2|) . T)) ((((-525)) . T)) -((((-1163 |#1| |#2| |#3|)) -12 (|has| (-1163 |#1| |#2| |#3|) (-288 (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341)))) -(|has| |#1| (-788)) -((((-631 |#2|)) . T) (((-796)) . T)) +((((-1164 |#1| |#2| |#3|)) -12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) +(|has| |#1| (-789)) +((((-632 |#2|)) . T) (((-797)) . T)) (((|#1| |#2|) . T)) -((((-385 (-885 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) -(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) +((((-385 (-886 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) +(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (((|#1|) |has| |#1| (-160))) -(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) -(((|#3|) -3150 (|has| |#3| (-160)) (|has| |#3| (-341)))) -(|has| |#2| (-788)) -(|has| |#1| (-788)) -(-3150 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-842))) +(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) +(((|#3|) -3215 (|has| |#3| (-160)) (|has| |#3| (-341)))) +(|has| |#2| (-789)) +(|has| |#1| (-789)) +(-3215 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-843))) ((($ $) . T) ((#0=(-385 (-525)) #0#) . T)) ((((-525) |#2|) . T)) -(((|#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)))) +(((|#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)))) (|has| |#1| (-327)) -(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) +(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) ((($) . T) (((-385 (-525))) . T)) ((((-525) (-108)) . T)) -(|has| |#1| (-761)) -(|has| |#1| (-761)) +(|has| |#1| (-762)) +(|has| |#1| (-762)) (((|#1|) . T)) -(-3150 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327))) -(|has| |#1| (-786)) -(|has| |#1| (-786)) -(|has| |#1| (-786)) +(-3215 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327))) +(|has| |#1| (-787)) +(|has| |#1| (-787)) +(|has| |#1| (-787)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) (|has| |#1| (-37 (-385 (-525)))) ((((-525)) . T) (($) . T) (((-385 (-525))) . T)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) (|has| |#1| (-37 (-385 (-525)))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-1089)) |has| |#1| (-833 (-1089))) (((-1003)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-1090)) |has| |#1| (-834 (-1090))) (((-1004)) . T)) (((|#1|) . T)) -(|has| |#1| (-786)) -(((#0=(-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) #0#) |has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(|has| |#1| (-1018)) +(|has| |#1| (-787)) +(((#0=(-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) #0#) |has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(|has| |#1| (-1019)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) @@ -1452,14 +1452,14 @@ (((|#2|) . T)) (((|#1|) . T)) (((|#1| (-497 |#2|) |#2|) . T)) -((((-796)) . T)) -((((-712)) . T) (((-796)) . T)) -(((|#1| (-712) (-1003)) . T)) +((((-797)) . T)) +((((-713)) . T) (((-797)) . T)) +(((|#1| (-713) (-1004)) . T)) (((|#3|) . T)) (((|#1|) . T)) ((((-135)) . T)) (((|#2|) |has| |#2| (-160))) -(-3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975)) (|has| |#2| (-1018))) +(-3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) (((|#1|) . T)) (|has| |#1| (-136)) (|has| |#1| (-138)) @@ -1468,65 +1468,65 @@ (((|#3|) |has| |#3| (-341))) (((|#1|) . T)) (((|#2|) |has| |#1| (-341))) -((((-796)) . T)) +((((-797)) . T)) (((|#2|) . T)) -(((|#1| (-1085 |#1|)) . T)) -((((-1003)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) +(((|#1| (-1086 |#1|)) . T)) +((((-1004)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) ((($) . T) ((|#1|) . T) (((-385 (-525))) . T)) (((|#2|) . T)) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-341))) -((($) |has| |#1| (-786))) -(|has| |#1| (-842)) -((((-796)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341))) +((($) |has| |#1| (-787))) +(|has| |#1| (-843)) +((((-797)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((#0=(-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) #0#) |has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))))) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-842))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-842))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((#0=(-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) #0#) |has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))))) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-843))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-843))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3150 (|has| |#3| (-160)) (|has| |#3| (-341)))) -(|has| |#1| (-788)) +(((|#3|) -3215 (|has| |#3| (-160)) (|has| |#3| (-341)))) +(|has| |#1| (-789)) (|has| |#1| (-517)) ((((-538 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-3150 (-12 (|has| |#1| (-341)) (|has| |#2| (-761))) (-12 (|has| |#1| (-341)) (|has| |#2| (-788)))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -((((-843 |#1|)) . T)) +(-3215 (-12 (|has| |#1| (-341)) (|has| |#2| (-762))) (-12 (|has| |#1| (-341)) (|has| |#2| (-789)))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +((((-844 |#1|)) . T)) (((|#1| (-469 |#1| |#3|) (-469 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-712)) . T)) +(((|#1| (-713)) . T)) ((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517))) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) -(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517)))) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160))) +(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517)))) ((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) . T)) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) . T)) ((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T)) -((((-616 |#1|)) . T)) +((((-617 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) ((((-501)) . T)) -((((-796)) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-796)) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -(((|#2|) . T)) -(-3150 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-734)) (|has| |#3| (-786)) (|has| |#3| (-975)) (|has| |#3| (-1018))) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) -((((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-525)) |has| |#1| (-966 (-525))) ((|#1|) . T)) -(|has| |#1| (-1111)) -(|has| |#1| (-1111)) -(-3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975)) (|has| |#2| (-1018))) -(|has| |#1| (-1111)) -(|has| |#1| (-1111)) +((((-797)) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-797)) . T)) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +(((|#2|) . T)) +(-3215 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976)) (|has| |#3| (-1019))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) +((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T)) +(|has| |#1| (-1112)) +(|has| |#1| (-1112)) +(-3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) +(|has| |#1| (-1112)) +(|has| |#1| (-1112)) (((|#3| |#3|) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) ((($ $) . T) ((#0=(-385 (-525)) #0#) . T) ((#1=(-385 |#1|) #1#) . T) ((|#1| |#1|) . T)) @@ -1535,181 +1535,181 @@ ((($) . T) (((-385 (-525))) . T) (((-385 |#1|)) . T) ((|#1|) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) -((((-1072) (-51)) . T)) -(|has| |#1| (-1018)) -(-3150 (|has| |#2| (-761)) (|has| |#2| (-788))) +((((-1073) (-51)) . T)) +(|has| |#1| (-1019)) +(-3215 (|has| |#2| (-762)) (|has| |#2| (-789))) (((|#1|) . T)) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) (((|#1|) |has| |#1| (-160)) (($) . T)) ((($) . T)) -((((-1087 |#1| |#2| |#3|)) -12 (|has| (-1087 |#1| |#2| |#3|) (-288 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341)))) -((((-796)) . T)) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) +((((-1088 |#1| |#2| |#3|)) -12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) +((((-797)) . T)) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((($) . T)) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-796)) . T)) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-842))) -(|has| |#2| (-842)) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-797)) . T)) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-843))) +(|has| |#2| (-843)) (|has| |#1| (-341)) -(((|#2|) |has| |#2| (-1018))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(((|#2|) |has| |#2| (-1019))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((($) . T) ((|#2|) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-842))) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -((((-501)) . T) (((-385 (-1085 (-525)))) . T) (((-205)) . T) (((-357)) . T)) -((((-357)) . T) (((-205)) . T) (((-796)) . T)) -(|has| |#1| (-842)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-843))) +(|has| |#1| (-843)) +(|has| |#1| (-843)) +((((-501)) . T) (((-385 (-1086 (-525)))) . T) (((-205)) . T) (((-357)) . T)) +((((-357)) . T) (((-205)) . T) (((-797)) . T)) +(|has| |#1| (-843)) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) ((($ $) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) ((($ $) . T)) ((((-525) (-108)) . T)) ((($) . T)) (((|#1|) . T)) ((((-525)) . T)) ((((-108)) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (|has| |#1| (-37 (-385 (-525)))) (((|#1| (-525)) . T)) ((($) . T)) -(((|#2|) . T) (((-525)) |has| |#2| (-587 (-525)))) -((((-525)) |has| |#1| (-587 (-525))) ((|#1|) . T)) +(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525)))) +((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T)) (((|#1|) . T)) ((((-525)) . T)) (((|#1| |#2|) . T)) -((((-1089)) |has| |#1| (-975))) +((((-1090)) |has| |#1| (-976))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1| (-525)) . T)) -(((|#1| (-1163 |#1| |#2| |#3|)) . T)) +(((|#1| (-1164 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-385 (-525))) . T)) -(((|#1| (-1135 |#1| |#2| |#3|)) . T)) -(((|#1| (-712)) . T)) +(((|#1| (-1136 |#1| |#2| |#3|)) . T)) +(((|#1| (-713)) . T)) (((|#1|) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-796)) . T)) -(|has| |#1| (-1018)) -((((-1072) |#1|) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-797)) . T)) +(|has| |#1| (-1019)) +((((-1073) |#1|) . T)) ((($) . T)) (|has| |#2| (-138)) (|has| |#2| (-136)) -(((|#1| (-497 (-759 (-1089))) (-759 (-1089))) . T)) -((((-796)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-975))) +(((|#1| (-497 (-760 (-1090))) (-760 (-1090))) . T)) +((((-797)) . T)) +((((-1158 |#1| |#2| |#3| |#4|)) . T)) +((((-1158 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-976))) ((((-525) (-108)) . T)) -((((-796)) |has| |#1| (-1018))) +((((-797)) |has| |#1| (-1019))) (|has| |#2| (-160)) ((((-525)) . T)) -(|has| |#2| (-786)) +(|has| |#2| (-787)) (((|#1|) . T)) ((((-525)) . T)) -((((-796)) . T)) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-327))) +((((-797)) . T)) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-327))) (|has| |#1| (-138)) -((((-796)) . T)) +((((-797)) . T)) (((|#3|) . T)) -(-3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) -((((-796)) . T)) -((((-1156 |#2| |#3| |#4|)) . T) (((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-796)) . T)) -((((-47)) -12 (|has| |#1| (-517)) (|has| |#1| (-966 (-525)))) (((-564 $)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) -3150 (-12 (|has| |#1| (-517)) (|has| |#1| (-966 (-525)))) (|has| |#1| (-966 (-385 (-525))))) (((-385 (-885 |#1|))) |has| |#1| (-517)) (((-885 |#1|)) |has| |#1| (-975)) (((-1089)) . T)) +(-3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) +((((-797)) . T)) +((((-1157 |#2| |#3| |#4|)) . T) (((-1158 |#1| |#2| |#3| |#4|)) . T)) +((((-797)) . T)) +((((-47)) -12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525)))) (((-565 $)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) -3215 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525)))) (|has| |#1| (-967 (-385 (-525))))) (((-385 (-886 |#1|))) |has| |#1| (-517)) (((-886 |#1|)) |has| |#1| (-976)) (((-1090)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-712)) . T)) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160))) +(((|#1| (-713)) . T)) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160))) (((|#1|) |has| |#1| (-288 |#1|))) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) -((((-525)) |has| |#1| (-819 (-525))) (((-357)) |has| |#1| (-819 (-357)))) +((((-1158 |#1| |#2| |#3| |#4|)) . T)) +((((-525)) |has| |#1| (-820 (-525))) (((-357)) |has| |#1| (-820 (-357)))) (((|#1|) . T)) (|has| |#1| (-517)) (((|#1|) . T)) -((((-796)) . T)) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +((((-797)) . T)) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) (((|#1|) |has| |#1| (-160))) ((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (((|#1|) . T)) -(((|#3|) |has| |#3| (-1018))) -(((|#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-341)))) -((((-1156 |#2| |#3| |#4|)) . T)) +(((|#3|) |has| |#3| (-1019))) +(((|#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-341)))) +((((-1157 |#2| |#3| |#4|)) . T)) ((((-108)) . T)) -(|has| |#1| (-761)) -(|has| |#1| (-761)) -(((|#1| (-525) (-1003)) . T)) +(|has| |#1| (-762)) +(|has| |#1| (-762)) +(((|#1| (-525) (-1004)) . T)) ((($) |has| |#1| (-288 $)) ((|#1|) |has| |#1| (-288 |#1|))) -(|has| |#1| (-786)) -(|has| |#1| (-786)) -(((|#1| (-525) (-1003)) . T)) -(-3150 (|has| |#1| (-833 (-1089))) (|has| |#1| (-975))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -(((|#1| (-385 (-525)) (-1003)) . T)) -(((|#1| (-712) (-1003)) . T)) -(|has| |#1| (-788)) -(((#0=(-843 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T)) +(|has| |#1| (-787)) +(|has| |#1| (-787)) +(((|#1| (-525) (-1004)) . T)) +(-3215 (|has| |#1| (-834 (-1090))) (|has| |#1| (-976))) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +(((|#1| (-385 (-525)) (-1004)) . T)) +(((|#1| (-713) (-1004)) . T)) +(|has| |#1| (-789)) +(((#0=(-844 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T)) (|has| |#2| (-136)) (|has| |#2| (-138)) (((|#2|) . T)) (|has| |#1| (-136)) (|has| |#1| (-138)) -(|has| |#1| (-1018)) -((((-843 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) -(|has| |#1| (-1018)) +(|has| |#1| (-1019)) +((((-844 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) +(|has| |#1| (-1019)) (((|#1|) . T)) -(|has| |#1| (-1018)) -((((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-587 (-525)))) ((|#2|) |has| |#1| (-341))) -(-3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975)) (|has| |#2| (-1018))) +(|has| |#1| (-1019)) +((((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-588 (-525)))) ((|#2|) |has| |#1| (-341))) +(-3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) (((|#2|) |has| |#2| (-160))) (((|#1|) |has| |#1| (-160))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) -((((-796)) . T)) -(|has| |#3| (-786)) -((((-796)) . T)) -((((-1156 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T)) -((((-796)) . T)) -(((|#1| |#1|) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-975)))) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) +((((-797)) . T)) +(|has| |#3| (-787)) +((((-797)) . T)) +((((-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T)) +((((-797)) . T)) +(((|#1| |#1|) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-976)))) (((|#1|) . T)) ((((-525)) . T)) ((((-525)) . T)) -(((|#1|) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-975)))) +(((|#1|) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-976)))) (((|#2|) |has| |#2| (-341))) ((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-341))) -(|has| |#1| (-788)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +(|has| |#1| (-789)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) |has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-842))) -(((|#2|) . T) (((-525)) |has| |#2| (-587 (-525)))) -((((-796)) . T)) -((((-796)) . T)) -((((-501)) . T) (((-525)) . T) (((-825 (-525))) . T) (((-357)) . T) (((-205)) . T)) -((((-796)) . T)) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) |has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-843))) +(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525)))) +((((-797)) . T)) +((((-797)) . T)) +((((-501)) . T) (((-525)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T)) +((((-797)) . T)) (|has| |#1| (-37 (-385 (-525)))) ((((-525)) . T) (($) . T) (((-385 (-525))) . T)) ((((-525)) . T) (($) . T) (((-385 (-525))) . T)) (|has| |#1| (-213)) (((|#1|) . T)) (((|#1| (-525)) . T)) -(|has| |#1| (-786)) -(((|#1| (-1087 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-787)) +(((|#1| (-1088 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| (-385 (-525))) . T)) -(((|#1| (-1080 |#1| |#2| |#3|)) . T)) -(((|#1| (-712)) . T)) +(((|#1| (-1081 |#1| |#2| |#3|)) . T)) +(((|#1| (-713)) . T)) (((|#1|) . T)) (((|#1| |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) . T)) (((|#1|) . T)) @@ -1724,43 +1724,43 @@ (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (((|#1|) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) (((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) . T) (($ $) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) ((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) (|has| |#1| (-341)) (|has| |#1| (-341)) (|has| (-385 |#2|) (-213)) -(|has| |#1| (-842)) -(((|#2|) |has| |#2| (-975))) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +(|has| |#1| (-843)) +(((|#2|) |has| |#2| (-976))) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) (|has| |#1| (-341)) (((|#1|) |has| |#1| (-160))) (((|#1| |#1|) . T)) -((((-803 |#1|)) . T)) -((((-796)) . T)) +((((-804 |#1|)) . T)) +((((-797)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1018))) -(|has| |#2| (-788)) +(((|#2|) |has| |#2| (-1019))) +(|has| |#2| (-789)) (((|#1|) . T)) -((((-385 (-525))) . T) (((-525)) . T) (((-564 $)) . T)) +((((-385 (-525))) . T) (((-525)) . T) (((-565 $)) . T)) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) ((($) . T)) -(|has| |#1| (-788)) -((((-796)) . T)) +(|has| |#1| (-789)) +((((-797)) . T)) (((|#1| (-497 |#2|) |#2|) . T)) -(((|#1| (-525) (-1003)) . T)) -((((-843 |#1|)) . T)) -((((-796)) . T)) +(((|#1| (-525) (-1004)) . T)) +((((-844 |#1|)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-385 (-525)) (-1003)) . T)) -(((|#1| (-712) (-1003)) . T)) +(((|#1| (-385 (-525)) (-1004)) . T)) +(((|#1| (-713) (-1004)) . T)) (((#0=(-385 |#2|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-525)) -3150 (|has| (-385 (-525)) (-966 (-525))) (|has| |#1| (-966 (-525)))) (((-385 (-525))) . T)) +(((|#1|) . T) (((-525)) -3215 (|has| (-385 (-525)) (-967 (-525))) (|has| |#1| (-967 (-525)))) (((-385 (-525))) . T)) (((|#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-160))) (((|#1|) . T)) @@ -1768,52 +1768,52 @@ (((|#1|) . T)) ((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T)) (|has| |#2| (-213)) -(((|#2| (-497 (-798 |#1|)) (-798 |#1|)) . T)) -((((-796)) . T)) +(((|#2| (-497 (-799 |#1|)) (-799 |#1|)) . T)) +((((-797)) . T)) ((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((((-796)) . T)) +((((-797)) . T)) (((|#1| |#3|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) |has| |#1| (-160))) -((((-640)) . T)) -((((-640)) . T)) +((((-641)) . T)) +((((-641)) . T)) (((|#2|) |has| |#2| (-160))) -(|has| |#2| (-786)) -((((-108)) |has| |#1| (-1018)) (((-796)) -3150 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-668)) (|has| |#1| (-833 (-1089))) (|has| |#1| (-975)) (|has| |#1| (-1030)) (|has| |#1| (-1018)))) +(|has| |#2| (-787)) +((((-108)) |has| |#1| (-1019)) (((-797)) -3215 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)) (|has| |#1| (-1031)) (|has| |#1| (-1019)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) . T)) -((((-796)) . T)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) . T)) +((((-797)) . T)) ((((-525) |#1|) . T)) -((((-640)) . T) (((-385 (-525))) . T) (((-525)) . T)) +((((-641)) . T) (((-385 (-525))) . T) (((-525)) . T)) (((|#1| |#1|) |has| |#1| (-160))) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) ((((-357)) . T)) -((((-640)) . T)) +((((-641)) . T)) ((((-385 (-525))) . #0=(|has| |#2| (-341))) (($) . #0#)) (((|#1|) |has| |#1| (-160))) -((((-385 (-885 |#1|))) . T)) +((((-385 (-886 |#1|))) . T)) (((|#2| |#2|) . T)) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) (((|#2|) . T)) -(|has| |#2| (-788)) -(((|#3|) |has| |#3| (-975))) -(|has| |#2| (-842)) -(|has| |#1| (-842)) +(|has| |#2| (-789)) +(((|#3|) |has| |#3| (-976))) +(|has| |#2| (-843)) +(|has| |#1| (-843)) (|has| |#1| (-341)) -(|has| |#1| (-788)) -((((-1089)) |has| |#2| (-833 (-1089)))) -((((-796)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +(|has| |#1| (-789)) +((((-1090)) |has| |#2| (-834 (-1090)))) +((((-797)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) ((((-385 (-525))) . T) (($) . T)) (|has| |#1| (-450)) (|has| |#1| (-346)) (|has| |#1| (-346)) (|has| |#1| (-346)) (|has| |#1| (-341)) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-975)) (|has| |#1| (-1030))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-976)) (|has| |#1| (-1031))) (|has| |#1| (-37 (-385 (-525)))) ((((-112 |#1|)) . T)) ((((-112 |#1|)) . T)) @@ -1823,8 +1823,8 @@ ((($) . T)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -(((|#2|) . T) (((-796)) . T)) -(((|#2|) . T) (((-796)) . T)) +(((|#2|) . T) (((-797)) . T)) +(((|#2|) . T) (((-797)) . T)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) @@ -1833,64 +1833,64 @@ (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -(|has| |#1| (-788)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) +(|has| |#1| (-789)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-138)) (|has| |#1| (-136)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) ((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) ((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (((|#2|) . T)) (((|#3|) . T)) ((((-112 |#1|)) . T)) (|has| |#1| (-346)) -(|has| |#1| (-788)) -(((|#2|) . T) (((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-525)) |has| |#1| (-966 (-525))) ((|#1|) . T)) +(|has| |#1| (-789)) +(((|#2|) . T) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T)) ((((-112 |#1|)) . T)) (((|#2|) |has| |#2| (-160))) (((|#1|) . T)) ((((-525)) . T)) (|has| |#1| (-341)) (|has| |#1| (-341)) -((((-796)) . T)) -((((-796)) . T)) -((((-501)) |has| |#1| (-566 (-501))) (((-825 (-525))) |has| |#1| (-566 (-825 (-525)))) (((-825 (-357))) |has| |#1| (-566 (-825 (-357)))) (((-357)) . #0=(|has| |#1| (-951))) (((-205)) . #0#)) +((((-797)) . T)) +((((-797)) . T)) +((((-501)) |has| |#1| (-567 (-501))) (((-826 (-525))) |has| |#1| (-567 (-826 (-525)))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357)))) (((-357)) . #0=(|has| |#1| (-952))) (((-205)) . #0#)) (((|#1|) |has| |#1| (-341))) -((((-796)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((($ $) . T) (((-564 $) $) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -((($) . T) (((-1157 |#1| |#2| |#3| |#4|)) . T) (((-385 (-525))) . T)) -((($) -3150 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-975))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-517))) +((((-797)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((($ $) . T) (((-565 $) $) . T)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +((($) . T) (((-1158 |#1| |#2| |#3| |#4|)) . T) (((-385 (-525))) . T)) +((($) -3215 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-517))) (|has| |#1| (-341)) (|has| |#1| (-341)) (|has| |#1| (-341)) ((((-357)) . T) (((-525)) . T) (((-385 (-525))) . T)) -((((-591 (-721 |#1| (-798 |#2|)))) . T) (((-796)) . T)) -((((-501)) |has| (-721 |#1| (-798 |#2|)) (-566 (-501)))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +((((-592 (-722 |#1| (-799 |#2|)))) . T) (((-797)) . T)) +((((-501)) |has| (-722 |#1| (-799 |#2|)) (-567 (-501)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) ((((-357)) . T)) -(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) -((((-796)) . T)) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-842))) -(((|#1|) . T)) -(|has| |#1| (-788)) -(|has| |#1| (-788)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) -(|has| |#1| (-1018)) -((((-796)) . T)) -((((-385 (-525))) . T) (((-525)) . T) (((-564 $)) . T)) +(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) +((((-797)) . T)) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-843))) +(((|#1|) . T)) +(|has| |#1| (-789)) +(|has| |#1| (-789)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) +(|has| |#1| (-1019)) +((((-797)) . T)) +((((-385 (-525))) . T) (((-525)) . T) (((-565 $)) . T)) (|has| |#1| (-136)) (|has| |#1| (-138)) ((((-525)) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -(((#0=(-1156 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))) (($) . T)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +(((#0=(-1157 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))) (($) . T)) ((((-525)) . T)) (|has| |#1| (-341)) -(-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138))) -(-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))) +(-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138))) +(-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))) (|has| |#1| (-341)) (|has| |#1| (-136)) (|has| |#1| (-138)) @@ -1899,43 +1899,43 @@ (|has| |#1| (-213)) (|has| |#1| (-341)) (((|#3|) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-525)) |has| |#2| (-587 (-525))) ((|#2|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-525)) |has| |#2| (-588 (-525))) ((|#2|) . T)) (((|#2|) . T)) -(|has| |#1| (-1018)) +(|has| |#1| (-1019)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-525)) |has| |#1| (-587 (-525)))) +(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525)))) (((|#3|) |has| |#3| (-160))) -(-3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975)) (|has| |#2| (-1018))) +(-3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) ((((-525)) . T)) (((|#1| $) |has| |#1| (-265 |#1| |#1|))) ((((-385 (-525))) . T) (($) . T) (((-385 |#1|)) . T) ((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -3150 (|has| |#1| (-269)) (|has| |#1| (-341))) ((#0=(-385 (-525)) #0#) |has| |#1| (-341))) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) . T)) +(((|#1| |#1|) . T) (($ $) -3215 (|has| |#1| (-269)) (|has| |#1| (-341))) ((#0=(-385 (-525)) #0#) |has| |#1| (-341))) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) . T)) ((($) . T)) ((((-525) |#1|) . T)) -((((-1089)) |has| (-385 |#2|) (-833 (-1089)))) -(((|#1|) . T) (($) -3150 (|has| |#1| (-269)) (|has| |#1| (-341))) (((-385 (-525))) |has| |#1| (-341))) -((((-501)) |has| |#2| (-566 (-501)))) -((((-631 |#2|)) . T) (((-796)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) -(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) -((((-803 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(-3150 (|has| |#4| (-734)) (|has| |#4| (-786))) -(-3150 (|has| |#3| (-734)) (|has| |#3| (-786))) -((((-796)) . T)) -((((-796)) . T)) -(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) -(((|#2|) |has| |#2| (-975))) +((((-1090)) |has| (-385 |#2|) (-834 (-1090)))) +(((|#1|) . T) (($) -3215 (|has| |#1| (-269)) (|has| |#1| (-341))) (((-385 (-525))) |has| |#1| (-341))) +((((-501)) |has| |#2| (-567 (-501)))) +((((-632 |#2|)) . T) (((-797)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) +(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) +((((-804 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(-3215 (|has| |#4| (-735)) (|has| |#4| (-787))) +(-3215 (|has| |#3| (-735)) (|has| |#3| (-787))) +((((-797)) . T)) +((((-797)) . T)) +(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) +(((|#2|) |has| |#2| (-976))) (((|#1|) . T)) ((((-385 |#2|)) . T)) (((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) +(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) ((((-525) |#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -1943,19 +1943,19 @@ ((((-385 (-525))) . T) (($) . T)) ((((-385 (-525))) . T) (($) . T)) ((((-385 (-525))) . T) (($) . T)) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-1129))) -((($) . T)) -((((-385 (-525))) |has| #0=(-385 |#2|) (-966 (-385 (-525)))) (((-525)) |has| #0# (-966 (-525))) ((#0#) . T)) -(((|#2|) . T) (((-525)) |has| |#2| (-587 (-525)))) -(((|#1| (-712)) . T)) -(|has| |#1| (-788)) -(((|#1|) . T) (((-525)) |has| |#1| (-587 (-525)))) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-1130))) +((($) . T)) +((((-385 (-525))) |has| #0=(-385 |#2|) (-967 (-385 (-525)))) (((-525)) |has| #0# (-967 (-525))) ((#0#) . T)) +(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525)))) +(((|#1| (-713)) . T)) +(|has| |#1| (-789)) +(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525)))) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) ((((-525)) . T)) (|has| |#1| (-37 (-385 (-525)))) -((((-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) |has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(|has| |#1| (-786)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) |has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(|has| |#1| (-787)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) @@ -1977,130 +1977,130 @@ (|has| |#1| (-37 (-385 (-525)))) (((|#1| |#2|) . T)) ((((-135)) . T)) -((((-721 |#1| (-798 |#2|))) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) -(|has| |#1| (-1111)) -(((|#1|) . T)) -(-3150 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-734)) (|has| |#3| (-786)) (|has| |#3| (-975)) (|has| |#3| (-1018))) -((((-1089) |#1|) |has| |#1| (-486 (-1089) |#1|))) -(((|#2|) . T)) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((((-843 |#1|)) . T)) -((($) . T)) -((((-385 (-885 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-501)) |has| |#4| (-566 (-501)))) -((((-796)) . T) (((-591 |#4|)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-786)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) |has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))))) -(|has| |#1| (-1018)) +((((-722 |#1| (-799 |#2|))) . T)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) +(|has| |#1| (-1112)) +(((|#1|) . T)) +(-3215 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976)) (|has| |#3| (-1019))) +((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|))) +(((|#2|) . T)) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-844 |#1|)) . T)) +((($) . T)) +((((-385 (-886 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-501)) |has| |#4| (-567 (-501)))) +((((-797)) . T) (((-592 |#4|)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-787)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) |has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))))) +(|has| |#1| (-1019)) (|has| |#1| (-341)) -(|has| |#1| (-788)) +(|has| |#1| (-789)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-385 (-525))) . T)) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160))) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160))) (|has| |#1| (-136)) (|has| |#1| (-138)) -(-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138))) -(-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))) +(-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138))) +(-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-138)) (|has| |#1| (-136)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) -((((-1163 |#1| |#2| |#3|)) |has| |#1| (-341))) -(|has| |#1| (-786)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) +((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341))) +(|has| |#1| (-787)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-525)) |has| |#1| (-587 (-525)))) -((((-525)) |has| |#1| (-587 (-525))) ((|#1|) . T)) -((((-843 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) -(|has| |#1| (-1018)) +(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525)))) +((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T)) +((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) +(|has| |#1| (-1019)) (((|#1|) . T) (($) . T) (((-385 (-525))) . T) (((-525)) . T)) (|has| |#2| (-136)) (|has| |#2| (-138)) -((((-843 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) -(|has| |#1| (-1018)) +((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) +(|has| |#1| (-1019)) (((|#2|) |has| |#2| (-160))) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-341))) ((((-385 |#2|)) . T)) -((((-796)) . T)) -(((|#1|) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-501)) |has| |#1| (-566 (-501)))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-1089) |#1|) |has| |#1| (-486 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|))) -(((|#1|) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)))) +((((-797)) . T)) +(((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-501)) |has| |#1| (-567 (-501)))) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|))) +(((|#1|) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)))) ((((-294 |#1|)) . T)) (((|#2|) |has| |#2| (-341))) (((|#2|) . T)) -((((-385 (-525))) . T) (((-640)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((#0=(-721 |#1| (-798 |#2|)) #0#) |has| (-721 |#1| (-798 |#2|)) (-288 (-721 |#1| (-798 |#2|))))) -((((-798 |#1|)) . T)) +((((-385 (-525))) . T) (((-641)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((#0=(-722 |#1| (-799 |#2|)) #0#) |has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|))))) +((((-799 |#1|)) . T)) (((|#2|) |has| |#2| (-160))) (((|#1|) |has| |#1| (-160))) (((|#2|) . T)) -((((-1089)) |has| |#1| (-833 (-1089))) (((-1003)) . T)) -((((-1089)) |has| |#1| (-833 (-1089))) (((-1008 (-1089))) . T)) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +((((-1090)) |has| |#1| (-834 (-1090))) (((-1004)) . T)) +((((-1090)) |has| |#1| (-834 (-1090))) (((-1009 (-1090))) . T)) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (|has| |#1| (-37 (-385 (-525)))) -(((|#3|) |has| |#3| (-975)) (((-525)) -12 (|has| |#3| (-587 (-525))) (|has| |#3| (-975)))) -(((|#4|) |has| |#4| (-975)) (((-525)) -12 (|has| |#4| (-587 (-525))) (|has| |#4| (-975)))) +(((|#3|) |has| |#3| (-976)) (((-525)) -12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976)))) +(((|#4|) |has| |#4| (-976)) (((-525)) -12 (|has| |#4| (-588 (-525))) (|has| |#4| (-976)))) (|has| |#1| (-136)) (|has| |#1| (-138)) ((($ $) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-668)) (|has| |#1| (-833 (-1089))) (|has| |#1| (-975)) (|has| |#1| (-1030)) (|has| |#1| (-1018))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)) (|has| |#1| (-1031)) (|has| |#1| (-1019))) (|has| |#1| (-517)) (((|#2|) . T)) ((((-525)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-975))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976))) ((((-538 |#1|)) . T)) ((($) . T)) (((|#1| (-57 |#1|) (-57 |#1|)) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-796)) . T)) -(((|#2|) |has| |#2| (-6 (-4252 "*")))) +((((-797)) . T)) +(((|#2|) |has| |#2| (-6 (-4256 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-385 (-525))) |has| |#2| (-966 (-385 (-525)))) (((-525)) |has| |#2| (-966 (-525))) ((|#2|) . T) (((-798 |#1|)) . T)) +((((-385 (-525))) |has| |#2| (-967 (-385 (-525)))) (((-525)) |has| |#2| (-967 (-525))) ((|#2|) . T) (((-799 |#1|)) . T)) ((($) . T) (((-112 |#1|)) . T) (((-385 (-525))) . T)) -((((-1041 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) -((((-1085 |#1|)) . T) (((-1003)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) -((((-1041 |#1| (-1089))) . T) (((-1008 (-1089))) . T) ((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-1089)) . T)) -(|has| |#1| (-1018)) +((((-1042 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) +((((-1086 |#1|)) . T) (((-1004)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) +((((-1042 |#1| (-1090))) . T) (((-1009 (-1090))) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-1090)) . T)) +(|has| |#1| (-1019)) ((($) . T)) -(|has| |#1| (-1018)) -((((-525)) -12 (|has| |#1| (-819 (-525))) (|has| |#2| (-819 (-525)))) (((-357)) -12 (|has| |#1| (-819 (-357))) (|has| |#2| (-819 (-357))))) +(|has| |#1| (-1019)) +((((-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#2| (-820 (-525)))) (((-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#2| (-820 (-357))))) (((|#1| |#2|) . T)) -((((-1089) |#1|) . T)) +((((-1090) |#1|) . T)) (((|#4|) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) -((((-1089) (-51)) . T)) -((((-1156 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T)) -((((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-525)) |has| |#1| (-966 (-525))) ((|#1|) . T)) -((((-796)) . T)) -(-3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975)) (|has| |#2| (-1018))) -(((#0=(-1157 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) +((((-1090) (-51)) . T)) +((((-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T)) +((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T)) +((((-797)) . T)) +(-3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) +(((#0=(-1158 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-160)) ((#0=(-385 (-525)) #0#) |has| |#1| (-517)) (($ $) |has| |#1| (-517))) (((|#1|) . T) (($) . T) (((-385 (-525))) . T)) (((|#1| $) |has| |#1| (-265 |#1| |#1|))) -((((-1157 |#1| |#2| |#3| |#4|)) . T) (((-385 (-525))) . T) (($) . T)) +((((-1158 |#1| |#2| |#3| |#4|)) . T) (((-385 (-525))) . T) (($) . T)) (((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-517)) (($) |has| |#1| (-517))) (|has| |#1| (-341)) (|has| |#1| (-136)) @@ -2109,222 +2109,222 @@ (|has| |#1| (-136)) ((((-385 (-525))) . T) (($) . T)) (((|#3|) |has| |#3| (-341))) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) -((((-1089)) . T)) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) +((((-1090)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (((|#2| |#3|) . T)) -(-3150 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) +(-3215 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) (((|#1| (-497 |#2|)) . T)) -(((|#1| (-712)) . T)) -(((|#1| (-497 (-1008 (-1089)))) . T)) +(((|#1| (-713)) . T)) +(((|#1| (-497 (-1009 (-1090)))) . T)) (((|#1|) |has| |#1| (-160))) (((|#1|) . T)) -(|has| |#2| (-842)) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) -((((-796)) . T)) -((($ $) . T) ((#0=(-1156 |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) |has| #0# (-37 (-385 (-525))))) -((((-843 |#1|)) . T)) -(-12 (|has| |#1| (-341)) (|has| |#2| (-761))) +(|has| |#2| (-843)) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) +((((-797)) . T)) +((($ $) . T) ((#0=(-1157 |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) |has| #0# (-37 (-385 (-525))))) +((((-844 |#1|)) . T)) +(-12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((($) . T) (((-385 (-525))) . T)) ((($) . T)) ((($) . T)) (|has| |#1| (-341)) -(-3150 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (|has| |#1| (-341)) -((($) . T) ((#0=(-1156 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525))))) +((($) . T) ((#0=(-1157 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525))))) (((|#1| |#2|) . T)) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-341))) -(-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-341)) (|has| |#1| (-327))) -(-3150 (|has| |#1| (-833 (-1089))) (|has| |#1| (-975))) -((((-525)) |has| |#1| (-587 (-525))) ((|#1|) . T)) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341))) +(-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341)) (|has| |#1| (-327))) +(-3215 (|has| |#1| (-834 (-1090))) (|has| |#1| (-976))) +((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) ((((-108)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) ((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|))) . T)) +(((|#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) . T)) (|has| |#2| (-341)) -(|has| |#1| (-788)) +(|has| |#1| (-789)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-796)) . T)) -(|has| |#1| (-1018)) +((((-797)) . T)) +(|has| |#1| (-1019)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) ((((-385 $) (-385 $)) |has| |#1| (-517)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-761)) +(|has| |#2| (-762)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-796)) . T)) -(((|#1| (-497 (-1089))) . T)) +((((-797)) . T)) +(((|#1| (-497 (-1090))) . T)) (((|#1|) |has| |#1| (-160))) -((((-796)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) -(((|#2|) -3150 (|has| |#2| (-6 (-4252 "*"))) (|has| |#2| (-160)))) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(|has| |#2| (-788)) -(|has| |#2| (-842)) -(|has| |#1| (-842)) +((((-797)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) +(((|#2|) -3215 (|has| |#2| (-6 (-4256 "*"))) (|has| |#2| (-160)))) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(|has| |#2| (-789)) +(|has| |#2| (-843)) +(|has| |#1| (-843)) (((|#2|) |has| |#2| (-160))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-1163 |#1| |#2| |#3|)) |has| |#1| (-341))) -((((-796)) . T)) -((((-796)) . T)) -((((-501)) . T) (((-525)) . T) (((-825 (-525))) . T) (((-357)) . T) (((-205)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341))) +((((-797)) . T)) +((((-797)) . T)) +((((-501)) . T) (((-525)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) . T)) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) (((|#1| (-385 (-525))) . T)) (((|#1|) . T)) -(-3150 (|has| |#1| (-269)) (|has| |#1| (-341))) +(-3215 (|has| |#1| (-269)) (|has| |#1| (-341))) ((((-135)) . T)) ((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T)) -(|has| |#1| (-786)) -((((-796)) . T)) -((((-796)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(|has| |#1| (-787)) +((((-797)) . T)) +((((-797)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#1| |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-385 (-525))) . T) (($) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-501)) |has| |#1| (-566 (-501))) (((-825 (-525))) |has| |#1| (-566 (-825 (-525)))) (((-825 (-357))) |has| |#1| (-566 (-825 (-357))))) -((((-1089) (-51)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-501)) |has| |#1| (-567 (-501))) (((-826 (-525))) |has| |#1| (-567 (-826 (-525)))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357))))) +((((-1090) (-51)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-591 (-135))) . T) (((-1072)) . T)) -((((-796)) . T)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) -((((-1089) |#1|) |has| |#1| (-486 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|))) -(|has| |#1| (-788)) -((((-796)) . T)) -((((-501)) |has| |#1| (-566 (-501)))) -((((-796)) . T)) +((((-592 (-135))) . T) (((-1073)) . T)) +((((-797)) . T)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) +((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|))) +(|has| |#1| (-789)) +((((-797)) . T)) +((((-501)) |has| |#1| (-567 (-501)))) +((((-797)) . T)) (((|#2|) |has| |#2| (-341))) -((((-796)) . T)) -((((-501)) |has| |#4| (-566 (-501)))) -((((-796)) . T) (((-591 |#4|)) . T)) +((((-797)) . T)) +((((-501)) |has| |#4| (-567 (-501)))) +((((-797)) . T) (((-592 |#4|)) . T)) (((|#2|) . T)) -((((-843 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) -(-3150 (|has| |#4| (-160)) (|has| |#4| (-786)) (|has| |#4| (-975))) -(-3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) -((((-1089) (-51)) . T)) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) +(-3215 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976))) +(-3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) +((((-1090) (-51)) . T)) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(|has| |#1| (-842)) -(|has| |#1| (-842)) +(-3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(|has| |#1| (-843)) +(|has| |#1| (-843)) (((|#2|) . T)) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-525)) . T)) (((#0=(-385 (-525)) #0#) . T) (($ $) . T)) ((((-385 (-525))) . T) (($) . T)) -(((|#1| (-385 (-525)) (-1003)) . T)) -(|has| |#1| (-1018)) +(((|#1| (-385 (-525)) (-1004)) . T)) +(|has| |#1| (-1019)) (|has| |#1| (-517)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(|has| |#1| (-761)) -(((#0=(-843 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(|has| |#1| (-762)) +(((#0=(-844 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T)) ((((-385 |#2|)) . T)) -(|has| |#1| (-786)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +(|has| |#1| (-787)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) (((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) . T) ((#1=(-525) #1#) . T) (($ $) . T)) -((((-843 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) -(((|#2|) |has| |#2| (-975)) (((-525)) -12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) +((((-844 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) +(((|#2|) |has| |#2| (-976)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((|#1|) . T) (((-385 (-525))) . T) (((-525)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-138)) (|has| |#1| (-136)) (((|#2|) . T)) -((((-796)) . T)) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) . T)) -(((#0=(-51)) . T) (((-2 (|:| -1265 (-1089)) (|:| -1568 #0#))) . T)) +((((-797)) . T)) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) . T)) +(((#0=(-51)) . T) (((-2 (|:| -3160 (-1090)) (|:| -3978 #0#))) . T)) (|has| |#1| (-327)) ((((-525)) . T)) -((((-796)) . T)) -(((#0=(-1157 |#1| |#2| |#3| |#4|) $) |has| #0# (-265 #0# #0#))) +((((-797)) . T)) +(((#0=(-1158 |#1| |#2| |#3| |#4|) $) |has| #0# (-265 #0# #0#))) (|has| |#1| (-341)) -(((#0=(-1003) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) -(((#0=(-385 (-525)) #0#) . T) ((#1=(-640) #1#) . T) (($ $) . T)) +(((#0=(-1004) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) +(((#0=(-385 (-525)) #0#) . T) ((#1=(-641) #1#) . T) (($ $) . T)) ((((-294 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-385 (-525))) |has| |#1| (-341))) -(|has| |#1| (-1018)) +(|has| |#1| (-1019)) (((|#1|) . T)) -(((|#1|) -3150 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|)))) -(((|#1|) -3150 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|)))) +(((|#1|) -3215 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|)))) +(((|#1|) -3215 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|)))) (((|#2|) . T)) -((((-385 (-525))) . T) (((-640)) . T) (($) . T)) +((((-385 (-525))) . T) (((-641)) . T) (($) . T)) (((|#3| |#3|) . T)) (|has| |#2| (-213)) -((((-798 |#1|)) . T)) -((((-1089)) |has| |#1| (-833 (-1089))) ((|#3|) . T)) -(-12 (|has| |#1| (-341)) (|has| |#2| (-951))) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-341))) -((((-796)) . T)) +((((-799 |#1|)) . T)) +((((-1090)) |has| |#1| (-834 (-1090))) ((|#3|) . T)) +(-12 (|has| |#1| (-341)) (|has| |#2| (-952))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341))) +((((-797)) . T)) (|has| |#1| (-341)) (|has| |#1| (-341)) ((((-385 (-525))) . T) (($) . T) (((-385 |#1|)) . T) ((|#1|) . T)) ((((-525)) . T)) -(|has| |#1| (-1018)) +(|has| |#1| (-1019)) (((|#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) ((((-525)) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(((|#2|) . T) (((-525)) |has| |#2| (-587 (-525)))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-538 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) ((($) . T) (((-385 (-525))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1171 |#1|) (-1171 |#1|)) . T)) +(((|#1| (-1172 |#1|) (-1172 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((#0=(-112 |#1|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) -((((-385 (-525))) |has| |#2| (-966 (-385 (-525)))) (((-525)) |has| |#2| (-966 (-525))) ((|#2|) . T) (((-798 |#1|)) . T)) -((((-1041 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((|#2|) . T)) +((((-385 (-525))) |has| |#2| (-967 (-385 (-525)))) (((-525)) |has| |#2| (-967 (-525))) ((|#2|) . T) (((-799 |#1|)) . T)) +((((-1042 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-616 |#1|)) . T)) +((((-617 |#1|)) . T)) ((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T)) ((((-112 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) -((((-525)) -12 (|has| |#1| (-819 (-525))) (|has| |#3| (-819 (-525)))) (((-357)) -12 (|has| |#1| (-819 (-357))) (|has| |#3| (-819 (-357))))) +((((-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))) (((-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357))))) (((|#2|) . T) ((|#6|) . T)) (((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T)) ((((-135)) . T)) @@ -2332,48 +2332,48 @@ ((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) ((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (((|#1|) . T)) -(|has| |#2| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) +(|has| |#2| (-843)) +(|has| |#1| (-843)) +(|has| |#1| (-843)) (((|#4|) . T)) -(|has| |#2| (-951)) +(|has| |#2| (-952)) ((($) . T)) -(|has| |#1| (-842)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +(|has| |#1| (-843)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) (|has| |#1| (-341)) -((((-843 |#1|)) . T)) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-844 |#1|)) . T)) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) ((($ $) . T) ((#0=(-385 (-525)) #0#) . T)) -(-3150 (|has| |#1| (-346)) (|has| |#1| (-788))) +(-3215 (|has| |#1| (-346)) (|has| |#1| (-789))) (((|#1|) . T)) -((((-796)) . T)) -((((-1089)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) +((((-797)) . T)) +((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) ((((-385 |#2|) |#3|) . T)) ((($) . T) (((-385 (-525))) . T)) -((((-712) |#1|) . T)) -(((|#2| (-220 (-2028 |#1|) (-712))) . T)) +((((-713) |#1|) . T)) +(((|#2| (-220 (-1696 |#1|) (-713))) . T)) (((|#1| (-497 |#3|)) . T)) ((((-385 (-525))) . T)) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -((((-796)) . T)) -(((#0=(-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) #0#) |has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))))) -(|has| |#1| (-842)) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +((((-797)) . T)) +(((#0=(-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) #0#) |has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))))) +(|has| |#1| (-843)) (|has| |#2| (-341)) -(-3150 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975))) +(-3215 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976))) ((((-157 (-357))) . T) (((-205)) . T) (((-357)) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T)) ((((-357)) . T) (((-525)) . T)) (((#0=(-385 (-525)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) (|has| |#1| (-517)) ((((-385 (-525))) . T) (($) . T)) ((($) . T)) @@ -2381,13 +2381,13 @@ (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -(-3150 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327))) +(-3215 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327))) (|has| |#1| (-37 (-385 (-525)))) -(-12 (|has| |#1| (-510)) (|has| |#1| (-769))) -((((-796)) . T)) -((((-1089)) -3150 (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))) (-12 (|has| |#1| (-341)) (|has| |#2| (-833 (-1089)))))) +(-12 (|has| |#1| (-510)) (|has| |#1| (-770))) +((((-797)) . T)) +((((-1090)) -3215 (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))) (-12 (|has| |#1| (-341)) (|has| |#2| (-834 (-1090)))))) (|has| |#1| (-341)) -((((-1089)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) +((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (|has| |#1| (-341)) ((((-385 (-525))) . T) (($) . T)) ((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T)) @@ -2395,54 +2395,54 @@ (((|#1|) . T)) (((|#2|) |has| |#1| (-341))) (((|#2|) |has| |#1| (-341))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-160))) (((|#1|) . T)) -(((|#2|) . T) (((-1089)) -12 (|has| |#1| (-341)) (|has| |#2| (-966 (-1089)))) (((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-966 (-525)))) (((-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-966 (-525))))) +(((|#2|) . T) (((-1090)) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-1090)))) (((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-525)))) (((-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-525))))) (((|#2|) . T)) -((((-1089) #0=(-1157 |#1| |#2| |#3| |#4|)) |has| #0# (-486 (-1089) #0#)) ((#0# #0#) |has| #0# (-288 #0#))) -((((-564 $) $) . T) (($ $) . T)) -((((-157 (-205))) . T) (((-157 (-357))) . T) (((-1085 (-640))) . T) (((-825 (-357))) . T)) -((((-796)) . T)) +((((-1090) #0=(-1158 |#1| |#2| |#3| |#4|)) |has| #0# (-486 (-1090) #0#)) ((#0# #0#) |has| #0# (-288 #0#))) +((((-565 $) $) . T) (($ $) . T)) +((((-157 (-205))) . T) (((-157 (-357))) . T) (((-1086 (-641))) . T) (((-826 (-357))) . T)) +((((-797)) . T)) (|has| |#1| (-517)) (|has| |#1| (-517)) (|has| (-385 |#2|) (-213)) (((|#1| (-385 (-525))) . T)) ((($ $) . T)) -((((-1089)) |has| |#2| (-833 (-1089)))) +((((-1090)) |has| |#2| (-834 (-1090)))) ((($) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-385 (-525))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#2|) |has| |#1| (-341))) -((((-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-819 (-357)))) (((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-819 (-525))))) +((((-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-820 (-357)))) (((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-820 (-525))))) (|has| |#1| (-341)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (|has| |#1| (-341)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) (|has| |#1| (-341)) (|has| |#1| (-517)) -(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) +(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (((|#3|) . T)) (((|#1|) . T)) -(-3150 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975))) +(-3215 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976))) (((|#2|) . T)) (((|#2|) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (|has| |#1| (-37 (-385 (-525)))) (((|#1| |#2|) . T)) (|has| |#1| (-37 (-385 (-525)))) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) (|has| |#1| (-138)) -((((-1072) |#1|) . T)) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) +((((-1073) |#1|) . T)) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) (|has| |#1| (-138)) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-346))) (|has| |#1| (-138)) ((((-538 |#1|)) . T)) ((($) . T)) @@ -2450,77 +2450,77 @@ (|has| |#1| (-517)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-327))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-327))) (|has| |#1| (-138)) -((((-796)) . T)) +((((-797)) . T)) ((($) . T)) -((((-385 (-525))) |has| |#2| (-966 (-525))) (((-525)) |has| |#2| (-966 (-525))) (((-1089)) |has| |#2| (-966 (-1089))) ((|#2|) . T)) +((((-385 (-525))) |has| |#2| (-967 (-525))) (((-525)) |has| |#2| (-967 (-525))) (((-1090)) |has| |#2| (-967 (-1090))) ((|#2|) . T)) (((#0=(-385 |#2|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T)) -((((-1054 |#1| |#2|)) . T)) +((((-1055 |#1| |#2|)) . T)) (((|#1| (-525)) . T)) (((|#1| (-385 (-525))) . T)) -((((-525)) |has| |#2| (-819 (-525))) (((-357)) |has| |#2| (-819 (-357)))) +((((-525)) |has| |#2| (-820 (-525))) (((-357)) |has| |#2| (-820 (-357)))) (((|#2|) . T)) ((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T)) ((((-108)) . T)) (((|#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-796)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-1089) (-51)) . T)) +((((-797)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-1090) (-51)) . T)) ((((-385 |#2|)) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T)) -(|has| |#1| (-1018)) -(|has| |#1| (-732)) -(|has| |#1| (-732)) -((((-501)) |has| |#1| (-566 (-501)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) +(|has| |#1| (-1019)) +(|has| |#1| (-733)) +(|has| |#1| (-733)) +((((-501)) |has| |#1| (-567 (-501)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) ((((-110)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-205)) . T) (((-357)) . T) (((-825 (-357))) . T)) -((((-796)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-385 (-525))) . T)) +((((-205)) . T) (((-357)) . T) (((-826 (-357))) . T)) +((((-797)) . T)) +((((-1158 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-385 (-525))) . T)) (((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)) (((-385 (-525))) |has| |#1| (-517))) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#2|) . T)) -((((-796)) . T)) -(((#0=(-843 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T)) +((((-797)) . T)) +(((#0=(-844 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-843 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) +((((-844 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) (|has| |#1| (-341)) (((|#2|) . T)) ((((-525)) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-525)) . T)) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) ((((-157 (-357))) . T) (((-205)) . T) (((-357)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-1072)) . T) (((-501)) . T) (((-525)) . T) (((-825 (-525))) . T) (((-357)) . T) (((-205)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-1073)) . T) (((-501)) . T) (((-525)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T)) +((((-797)) . T)) (|has| |#1| (-138)) (|has| |#1| (-136)) -((($) . T) ((#0=(-1156 |#2| |#3| |#4|)) |has| #0# (-160)) (((-385 (-525))) |has| #0# (-37 (-385 (-525))))) +((($) . T) ((#0=(-1157 |#2| |#3| |#4|)) |has| #0# (-160)) (((-385 (-525))) |has| #0# (-37 (-385 (-525))))) (((|#1|) . T) (($) . T) (((-385 (-525))) . T)) (|has| |#1| (-341)) (|has| |#1| (-341)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-668)) (|has| |#1| (-833 (-1089))) (|has| |#1| (-975)) (|has| |#1| (-1030)) (|has| |#1| (-1018))) -(|has| |#1| (-1065)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)) (|has| |#1| (-1031)) (|has| |#1| (-1019))) +(|has| |#1| (-1066)) ((((-525) |#1|) . T)) (((|#1|) . T)) (((#0=(-112 |#1|) $) |has| #0# (-265 #0# #0#))) (((|#1|) |has| |#1| (-160))) (((|#1|) . T)) ((((-110)) . T) ((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1| |#2|) . T)) -((((-1089) |#1|) . T)) +((((-1090) |#1|) . T)) (((|#1|) |has| |#1| (-288 |#1|))) ((((-525) |#1|) . T)) (((|#1|) . T)) @@ -2528,55 +2528,55 @@ (((|#1|) . T)) (|has| |#1| (-517)) ((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) ((((-357)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-341)) (|has| |#1| (-341)) (|has| |#1| (-517)) -(|has| |#1| (-1018)) -((((-721 |#1| (-798 |#2|))) |has| (-721 |#1| (-798 |#2|)) (-288 (-721 |#1| (-798 |#2|))))) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) +(|has| |#1| (-1019)) +((((-722 |#1| (-799 |#2|))) |has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|))))) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) (((|#1|) . T)) (((|#2| |#3|) . T)) -(|has| |#2| (-842)) +(|has| |#2| (-843)) (((|#1|) . T)) (((|#1| (-497 |#2|)) . T)) -(((|#1| (-712)) . T)) +(((|#1| (-713)) . T)) (|has| |#1| (-213)) -(((|#1| (-497 (-1008 (-1089)))) . T)) +(((|#1| (-497 (-1009 (-1090)))) . T)) (|has| |#2| (-341)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) . T)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-796)) . T)) -((((-796)) . T)) -(-3150 (|has| |#3| (-734)) (|has| |#3| (-786))) -((((-796)) . T)) -((((-796)) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-797)) . T)) +((((-797)) . T)) +(-3215 (|has| |#3| (-735)) (|has| |#3| (-787))) +((((-797)) . T)) +((((-797)) . T)) (((|#1|) . T)) -((($ $) . T) (((-564 $) $) . T)) +((($ $) . T) (((-565 $) $) . T)) (((|#1|) . T)) ((((-525)) . T)) (((|#3|) . T)) -((((-796)) . T)) -(-3150 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327))) -(-3150 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-975))) +((((-797)) . T)) +(-3215 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327))) +(-3215 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976))) (((#0=(-538 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T)) ((($ $) . T) ((#0=(-385 (-525)) #0#) . T)) (((|#1|) |has| |#1| (-160))) -(((|#1| (-1171 |#1|) (-1171 |#1|)) . T)) +(((|#1| (-1172 |#1|) (-1172 |#1|)) . T)) ((((-538 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) ((($) . T) (((-385 (-525))) . T)) ((($) . T) (((-385 (-525))) . T)) -(((|#2|) |has| |#2| (-6 (-4252 "*")))) +(((|#2|) |has| |#2| (-6 (-4256 "*")))) (((|#1|) . T)) (((|#1|) . T)) -((((-796)) |has| |#1| (-565 (-796)))) +((((-797)) |has| |#1| (-566 (-797)))) ((((-273 |#3|)) . T)) -(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) +(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) ((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T)) @@ -2584,508 +2584,508 @@ (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) (((|#1|) . T) (((-385 (-525))) . T) (($) . T)) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) (((|#2|) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) -((((-796)) . T)) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(|has| |#2| (-842)) -(|has| |#1| (-842)) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +((((-797)) . T)) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +(|has| |#2| (-843)) +(|has| |#1| (-843)) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (((|#1|) . T)) -((((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) . T)) +((((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1018)) +(|has| |#1| (-1019)) (((|#1|) . T)) -((((-1089)) . T) ((|#1|) . T)) -((((-796)) . T)) -((((-796)) . T)) -(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) +((((-1090)) . T) ((|#1|) . T)) +((((-797)) . T)) +((((-797)) . T)) +(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (((#0=(-385 (-525)) #0#) . T)) ((((-385 (-525))) . T)) -(-3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975))) +(-3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976))) (((|#1|) . T)) (((|#1|) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-786)) (|has| |#2| (-975))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-976))) ((((-501)) . T)) -((((-796)) . T)) -((((-1089)) |has| |#2| (-833 (-1089))) (((-1003)) . T)) -((((-1156 |#2| |#3| |#4|)) . T)) -((((-843 |#1|)) . T)) +((((-797)) . T)) +((((-1090)) |has| |#2| (-834 (-1090))) (((-1004)) . T)) +((((-1157 |#2| |#3| |#4|)) . T)) +((((-844 |#1|)) . T)) ((($) . T) (((-385 (-525))) . T)) -(-12 (|has| |#1| (-341)) (|has| |#2| (-761))) -(-12 (|has| |#1| (-341)) (|has| |#2| (-761))) -(|has| |#1| (-1129)) +(-12 (|has| |#1| (-341)) (|has| |#2| (-762))) +(-12 (|has| |#1| (-341)) (|has| |#2| (-762))) +(|has| |#1| (-1130)) (((|#2|) . T)) ((($ $) . T) ((#0=(-385 (-525)) #0#) . T)) -((((-1089)) |has| |#1| (-833 (-1089)))) -((((-843 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) -((($) . T) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T)) -(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-517)))) +((((-1090)) |has| |#1| (-834 (-1090)))) +((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) +((($) . T) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T)) +(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-517)))) ((($) . T) (((-385 (-525))) . T)) (((|#1|) . T) (((-385 (-525))) . T) (((-525)) . T) (($) . T)) -(((|#2|) |has| |#2| (-975)) (((-525)) -12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) -((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-517)))) +(((|#2|) |has| |#2| (-976)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) +((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-517)))) (|has| |#1| (-517)) (((|#1|) |has| |#1| (-341))) ((((-525)) . T)) -(|has| |#1| (-732)) -(|has| |#1| (-732)) -((((-1089) #0=(-112 |#1|)) |has| #0# (-486 (-1089) #0#)) ((#0# #0#) |has| #0# (-288 #0#))) -(((|#2|) . T) (((-525)) |has| |#2| (-966 (-525))) (((-385 (-525))) |has| |#2| (-966 (-385 (-525))))) -((((-1003)) . T) ((|#2|) . T) (((-525)) |has| |#2| (-966 (-525))) (((-385 (-525))) |has| |#2| (-966 (-385 (-525))))) +(|has| |#1| (-733)) +(|has| |#1| (-733)) +((((-1090) #0=(-112 |#1|)) |has| #0# (-486 (-1090) #0#)) ((#0# #0#) |has| #0# (-288 #0#))) +(((|#2|) . T) (((-525)) |has| |#2| (-967 (-525))) (((-385 (-525))) |has| |#2| (-967 (-385 (-525))))) +((((-1004)) . T) ((|#2|) . T) (((-525)) |has| |#2| (-967 (-525))) (((-385 (-525))) |has| |#2| (-967 (-385 (-525))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-525) (-712)) . T) ((|#3| (-712)) . T)) +((((-525) (-713)) . T) ((|#3| (-713)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-796)) . T)) -(|has| |#2| (-761)) -(|has| |#2| (-761)) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) -((((-525)) |has| |#1| (-819 (-525))) (((-357)) |has| |#1| (-819 (-357)))) -(((|#1|) . T)) -((((-803 |#1|)) . T)) -((((-803 |#1|)) . T)) -(-12 (|has| |#1| (-341)) (|has| |#2| (-842))) -((((-385 (-525))) . T) (((-640)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-797)) . T)) +(|has| |#2| (-762)) +(|has| |#2| (-762)) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) +((((-525)) |has| |#1| (-820 (-525))) (((-357)) |has| |#1| (-820 (-357)))) +(((|#1|) . T)) +((((-804 |#1|)) . T)) +((((-804 |#1|)) . T)) +(-12 (|has| |#1| (-341)) (|has| |#2| (-843))) +((((-385 (-525))) . T) (((-641)) . T) (($) . T)) (|has| |#1| (-341)) (|has| |#1| (-341)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) +(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (|has| |#1| (-341)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-798 |#1|)) . T)) +((((-799 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-712)) . T)) -((((-1089)) . T)) -((((-803 |#1|)) . T)) -(-3150 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-734)) (|has| |#3| (-786)) (|has| |#3| (-975))) -(-3150 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-786)) (|has| |#3| (-975))) -((((-796)) . T)) +(((|#2| (-713)) . T)) +((((-1090)) . T)) +((((-804 |#1|)) . T)) +(-3215 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976))) +(-3215 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-787)) (|has| |#3| (-976))) +((((-797)) . T)) (((|#1|) . T)) -(-3150 (|has| |#2| (-734)) (|has| |#2| (-786))) -(-3150 (-12 (|has| |#1| (-734)) (|has| |#2| (-734))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) -((((-803 |#1|)) . T)) +(-3215 (|has| |#2| (-735)) (|has| |#2| (-787))) +(-3215 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) +((((-804 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-346)) (|has| |#1| (-346)) (|has| |#1| (-346)) -((($ $) . T) (((-564 $) $) . T)) +((($ $) . T) (((-565 $) $) . T)) ((($) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-525)) . T)) (((|#2|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T) (((-385 (-525))) |has| |#1| (-341))) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) ((($) . T) ((|#2|) . T) (((-385 (-525))) . T)) -(|has| |#1| (-1018)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-796)) . T)) -(|has| |#2| (-842)) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) . T)) -((((-501)) |has| |#2| (-566 (-501))) (((-825 (-357))) |has| |#2| (-566 (-825 (-357)))) (((-825 (-525))) |has| |#2| (-566 (-825 (-525))))) -((((-796)) . T)) -((((-796)) . T)) -(((|#3|) |has| |#3| (-975)) (((-525)) -12 (|has| |#3| (-587 (-525))) (|has| |#3| (-975)))) -((((-1041 |#1| |#2|)) . T) (((-885 |#1|)) |has| |#2| (-566 (-1089))) (((-796)) . T)) -((((-885 |#1|)) |has| |#2| (-566 (-1089))) (((-1072)) -12 (|has| |#1| (-966 (-525))) (|has| |#2| (-566 (-1089)))) (((-825 (-525))) -12 (|has| |#1| (-566 (-825 (-525)))) (|has| |#2| (-566 (-825 (-525))))) (((-825 (-357))) -12 (|has| |#1| (-566 (-825 (-357)))) (|has| |#2| (-566 (-825 (-357))))) (((-501)) -12 (|has| |#1| (-566 (-501))) (|has| |#2| (-566 (-501))))) -((((-1085 |#1|)) . T) (((-796)) . T)) -((((-796)) . T)) -((((-385 (-525))) |has| |#2| (-966 (-385 (-525)))) (((-525)) |has| |#2| (-966 (-525))) ((|#2|) . T) (((-798 |#1|)) . T)) +(|has| |#1| (-1019)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-797)) . T)) +(|has| |#2| (-843)) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) . T)) +((((-501)) |has| |#2| (-567 (-501))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525))))) +((((-797)) . T)) +((((-797)) . T)) +(((|#3|) |has| |#3| (-976)) (((-525)) -12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976)))) +((((-1042 |#1| |#2|)) . T) (((-886 |#1|)) |has| |#2| (-567 (-1090))) (((-797)) . T)) +((((-886 |#1|)) |has| |#2| (-567 (-1090))) (((-1073)) -12 (|has| |#1| (-967 (-525))) (|has| |#2| (-567 (-1090)))) (((-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525))))) (((-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357))))) (((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501))))) +((((-1086 |#1|)) . T) (((-797)) . T)) +((((-797)) . T)) +((((-385 (-525))) |has| |#2| (-967 (-385 (-525)))) (((-525)) |has| |#2| (-967 (-525))) ((|#2|) . T) (((-799 |#1|)) . T)) ((((-112 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) -((((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-525)) |has| |#1| (-966 (-525))) ((|#1|) . T) (((-1089)) . T)) -((((-796)) . T)) +((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T) (((-1090)) . T)) +((((-797)) . T)) ((((-525)) . T)) ((($) . T)) -((((-357)) |has| |#1| (-819 (-357))) (((-525)) |has| |#1| (-819 (-525)))) +((((-357)) |has| |#1| (-820 (-357))) (((-525)) |has| |#1| (-820 (-525)))) ((((-525)) . T)) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) |has| |#1| (-160)) (($) . T)) ((((-525)) . T) (((-385 (-525))) . T)) (((|#1|) |has| |#1| (-288 |#1|))) -((((-796)) . T)) +((((-797)) . T)) ((((-357)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-385 (-525))) . T) (($) . T)) ((((-385 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1018)) -(((|#2| (-458 (-2028 |#1|) (-712))) . T)) +(|has| |#1| (-1019)) +(((|#2| (-458 (-1696 |#1|) (-713))) . T)) ((((-525) |#1|) . T)) (((|#2| |#2|) . T)) -(((|#1| (-497 (-1089))) . T)) -(-3150 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975))) +(((|#1| (-497 (-1090))) . T)) +(-3215 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976))) ((((-525)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1089)) |has| |#1| (-833 (-1089))) (((-1003)) . T)) -(((|#1|) . T) (((-525)) |has| |#1| (-587 (-525)))) +((((-1090)) |has| |#1| (-834 (-1090))) (((-1004)) . T)) +(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525)))) (|has| |#1| (-517)) ((($) . T) (((-385 (-525))) . T)) ((($) . T)) ((($) . T)) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) (((|#1|) . T)) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((((-796)) . T)) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-797)) . T)) ((((-135)) . T)) (((|#1|) . T) (((-385 (-525))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#1|) . T)) -(|has| |#1| (-1065)) -(((|#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|))) . T)) +(|has| |#1| (-1066)) +(((|#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) . T)) (((|#1|) . T)) ((((-385 $) (-385 $)) |has| |#1| (-517)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) -((((-796)) . T)) -((((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-525)) |has| |#1| (-966 (-525))) ((|#1|) . T) ((|#2|) . T)) -((((-1003)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525))))) -((((-357)) -12 (|has| |#1| (-819 (-357))) (|has| |#2| (-819 (-357)))) (((-525)) -12 (|has| |#1| (-819 (-525))) (|has| |#2| (-819 (-525))))) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) +((((-797)) . T)) +((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T) ((|#2|) . T)) +((((-1004)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525))))) +((((-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#2| (-820 (-357)))) (((-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#2| (-820 (-525))))) +((((-1158 |#1| |#2| |#3| |#4|)) . T)) ((((-525) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-160)) (($) . T)) ((($) . T)) -((((-640)) . T)) -((((-721 |#1| (-798 |#2|))) . T)) +((((-641)) . T)) +((((-722 |#1| (-799 |#2|))) . T)) ((($) . T)) ((((-385 (-525))) . T) (($) . T)) -(|has| |#1| (-1018)) -(|has| |#1| (-1018)) +(|has| |#1| (-1019)) +(|has| |#1| (-1019)) (|has| |#2| (-341)) (|has| |#1| (-341)) (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525)))) ((((-525)) . T)) -((((-1089)) -12 (|has| |#4| (-833 (-1089))) (|has| |#4| (-975)))) -((((-1089)) -12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) +((((-1090)) -12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) +((((-1090)) -12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (((|#1|) . T)) (|has| |#1| (-213)) (((|#1| (-497 |#3|)) . T)) (|has| |#1| (-346)) -(((|#2| (-220 (-2028 |#1|) (-712))) . T)) +(((|#2| (-220 (-1696 |#1|) (-713))) . T)) (|has| |#1| (-346)) (|has| |#1| (-346)) (((|#1|) . T) (($) . T)) (((|#1| (-497 |#2|)) . T)) -(-3150 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(((|#1| (-712)) . T)) +(-3215 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(((|#1| (-713)) . T)) (|has| |#1| (-517)) -(-3150 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-786)) (|has| |#2| (-975))) +(-3215 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-976))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-796)) . T)) -(-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))) -(-3150 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-734)) (|has| |#3| (-786)) (|has| |#3| (-975))) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) +((((-797)) . T)) +(-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) +(-3215 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) (((|#1|) |has| |#1| (-160))) -(((|#4|) |has| |#4| (-975))) -(((|#3|) |has| |#3| (-975))) -(-12 (|has| |#1| (-341)) (|has| |#2| (-761))) -(-12 (|has| |#1| (-341)) (|has| |#2| (-761))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) +(((|#4|) |has| |#4| (-976))) +(((|#3|) |has| |#3| (-976))) +(-12 (|has| |#1| (-341)) (|has| |#2| (-762))) +(-12 (|has| |#1| (-341)) (|has| |#2| (-762))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) ((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T)) ((($ $) . T) ((#0=(-385 (-525)) #0#) . T)) -((((-796)) . T)) +((((-797)) . T)) ((($) . T) (((-385 (-525))) . T)) (((|#1|) . T)) -(((|#4|) |has| |#4| (-1018)) (((-525)) -12 (|has| |#4| (-966 (-525))) (|has| |#4| (-1018))) (((-385 (-525))) -12 (|has| |#4| (-966 (-385 (-525)))) (|has| |#4| (-1018)))) -(((|#3|) |has| |#3| (-1018)) (((-525)) -12 (|has| |#3| (-966 (-525))) (|has| |#3| (-1018))) (((-385 (-525))) -12 (|has| |#3| (-966 (-385 (-525)))) (|has| |#3| (-1018)))) +(((|#4|) |has| |#4| (-1019)) (((-525)) -12 (|has| |#4| (-967 (-525))) (|has| |#4| (-1019))) (((-385 (-525))) -12 (|has| |#4| (-967 (-385 (-525)))) (|has| |#4| (-1019)))) +(((|#3|) |has| |#3| (-1019)) (((-525)) -12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019))) (((-385 (-525))) -12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019)))) (|has| |#2| (-341)) -(((|#2|) |has| |#2| (-975)) (((-525)) -12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) +(((|#2|) |has| |#2| (-976)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((|#1|) . T)) (|has| |#2| (-341)) -(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) +(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T)) (((|#2| |#2|) . T)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) (((|#1|) . T) (($) . T) (((-385 (-525))) . T)) (((|#1|) . T) (($) . T) (((-385 (-525))) . T)) (((|#1|) . T) (($) . T) (((-385 (-525))) . T)) (((|#2|) . T)) ((($) . T)) -((((-796)) |has| |#1| (-1018))) -((((-1157 |#1| |#2| |#3| |#4|)) . T)) +((((-797)) |has| |#1| (-1019))) +((((-1158 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-761)) -(|has| |#2| (-761)) +(|has| |#2| (-762)) +(|has| |#2| (-762)) (|has| |#1| (-341)) (|has| |#1| (-341)) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-341)) (((|#1|) |has| |#2| (-395 |#1|))) (((|#1|) |has| |#2| (-395 |#1|))) -((((-843 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) -((((-796)) . T)) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) |has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))))) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) +((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) +((((-797)) . T)) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) |has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))))) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((((-525) |#1|) . T)) ((((-525) |#1|) . T)) ((((-525) |#1|) . T)) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((((-525) |#1|) . T)) (((|#1|) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -((((-1089)) |has| |#1| (-833 (-1089))) (((-759 (-1089))) . T)) -(-3150 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-734)) (|has| |#3| (-786)) (|has| |#3| (-975))) -((((-760 |#1|)) . T)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +((((-1090)) |has| |#1| (-834 (-1090))) (((-760 (-1090))) . T)) +(-3215 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976))) +((((-761 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-796)) . T)) -(-3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) +((((-797)) . T)) +(-3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) (((|#1| |#2|) . T)) (|has| |#1| (-37 (-385 (-525)))) -((((-796)) . T)) -((((-1157 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-385 (-525))) . T)) +((((-797)) . T)) +((((-1158 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-385 (-525))) . T)) (((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)) (((-385 (-525))) |has| |#1| (-517))) -(((|#2|) . T) (((-525)) |has| |#2| (-587 (-525)))) +(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525)))) (|has| |#1| (-341)) -(-3150 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (-12 (|has| |#1| (-341)) (|has| |#2| (-213)))) +(-3215 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (-12 (|has| |#1| (-341)) (|has| |#2| (-213)))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-341)) (((|#1|) . T)) -(((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T)) +(((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T)) ((((-525) |#1|) . T)) ((((-294 |#1|)) . T)) -(((#0=(-640) (-1085 #0#)) . T)) -((((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T)) +(((#0=(-641) (-1086 #0#)) . T)) +((((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-786)) -((($ $) . T) ((#0=(-798 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1041 |#1| (-1089))) . T) (((-759 (-1089))) . T) ((|#1|) . T) (((-525)) |has| |#1| (-966 (-525))) (((-385 (-525))) |has| |#1| (-966 (-385 (-525)))) (((-1089)) . T)) +(|has| |#1| (-787)) +((($ $) . T) ((#0=(-799 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1042 |#1| (-1090))) . T) (((-760 (-1090))) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-1090)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1003) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1089) $) |has| |#1| (-213)) ((#0# |#1|) |has| |#1| (-213)) ((#1=(-1008 (-1089)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1004) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1090) $) |has| |#1| (-213)) ((#0# |#1|) |has| |#1| (-213)) ((#1=(-1009 (-1090)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525))))) -(|has| |#2| (-842)) -((($) . T) ((#0=(-1156 |#2| |#3| |#4|)) |has| #0# (-160)) (((-385 (-525))) |has| #0# (-37 (-385 (-525))))) +(|has| |#2| (-843)) +((($) . T) ((#0=(-1157 |#2| |#3| |#4|)) |has| #0# (-160)) (((-385 (-525))) |has| #0# (-37 (-385 (-525))))) ((((-525) |#1|) . T)) -(((#0=(-1157 |#1| |#2| |#3| |#4|)) |has| #0# (-288 #0#))) +(((#0=(-1158 |#1| |#2| |#3| |#4|)) |has| #0# (-288 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2| |#2|) |has| |#1| (-341)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) +((($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2| |#2|) |has| |#1| (-341)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) (|has| |#2| (-213)) (|has| $ (-138)) -((((-796)) . T)) -((($) . T) (((-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) -((((-796)) . T)) -(|has| |#1| (-786)) -((((-1089)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) +((((-797)) . T)) +((($) . T) (((-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T)) +((((-797)) . T)) +(|has| |#1| (-787)) +((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) ((((-385 |#2|) |#3|) . T)) (((|#1|) . T)) -((((-796)) . T)) -(((|#2| (-616 |#1|)) . T)) -(-12 (|has| |#1| (-286)) (|has| |#1| (-842))) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +((((-797)) . T)) +(((|#2| (-617 |#1|)) . T)) +(-12 (|has| |#1| (-286)) (|has| |#1| (-843))) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#4|) . T)) (|has| |#1| (-517)) -((($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) ((|#1|) . T)) -((((-1089)) -3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) -(((|#1|) . T) (($) -3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) -((((-1089)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) -((((-1089)) -12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) -(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) +((($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) ((|#1|) . T)) +((((-1090)) -3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) +(((|#1|) . T) (($) -3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341)))) +((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) +((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) +(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) ((((-525) |#1|) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) (((|#1|) . T)) -(((|#1| (-497 (-759 (-1089)))) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(((|#1| (-497 (-760 (-1090)))) . T)) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) (((|#1|) . T)) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) (((|#1|) . T)) -(-3150 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))) -((((-1163 |#1| |#2| |#3|)) |has| |#1| (-341))) -((($) . T) (((-803 |#1|)) . T) (((-385 (-525))) . T)) -((((-1163 |#1| |#2| |#3|)) |has| |#1| (-341))) +(-3215 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) +((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341))) +((($) . T) (((-804 |#1|)) . T) (((-385 (-525))) . T)) +((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341))) (|has| |#1| (-517)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-385 |#2|)) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-385 (-525)) #0#) . T) (($ $) . T)) ((((-525)) . T)) -((((-796)) . T)) +((((-797)) . T)) (((|#2|) . T) (((-385 (-525))) . T) (($) . T)) ((((-538 |#1|)) . T) (((-385 (-525))) . T) (($) . T)) -((((-796)) . T)) +((((-797)) . T)) ((((-385 (-525))) . T) (($) . T)) ((((-525) |#1|) . T)) -((((-796)) . T)) -((($ $) . T) (((-1089) $) . T)) -((((-1163 |#1| |#2| |#3|)) . T)) -((((-1163 |#1| |#2| |#3|)) . T) (((-1135 |#1| |#2| |#3|)) . T)) -(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|))) . T)) -((((-501)) |has| |#2| (-566 (-501))) (((-825 (-357))) |has| |#2| (-566 (-825 (-357)))) (((-825 (-525))) |has| |#2| (-566 (-825 (-525))))) -((((-796)) . T)) -((((-796)) . T)) -((((-825 (-525))) -12 (|has| |#1| (-566 (-825 (-525)))) (|has| |#3| (-566 (-825 (-525))))) (((-825 (-357))) -12 (|has| |#1| (-566 (-825 (-357)))) (|has| |#3| (-566 (-825 (-357))))) (((-501)) -12 (|has| |#1| (-566 (-501))) (|has| |#3| (-566 (-501))))) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-797)) . T)) +((($ $) . T) (((-1090) $) . T)) +((((-1164 |#1| |#2| |#3|)) . T)) +((((-1164 |#1| |#2| |#3|)) . T) (((-1136 |#1| |#2| |#3|)) . T)) +(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) . T)) +((((-501)) |has| |#2| (-567 (-501))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525))))) +((((-797)) . T)) +((((-797)) . T)) +((((-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525))))) (((-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357))))) (((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501))))) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) . T)) -((((-796)) . T)) -((((-1163 |#1| |#2| |#3|)) |has| |#1| (-341))) -((((-1089)) . T) (((-796)) . T)) +((((-797)) . T)) +((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341))) +((((-1090)) . T) (((-797)) . T)) (|has| |#1| (-341)) -((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842)))) +((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T)) -((($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -((((-1022)) . T)) -((((-796)) . T)) -((($) -3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +((((-1023)) . T)) +((((-797)) . T)) +((($) -3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) ((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T)) ((($) . T)) -((($) -3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(|has| |#2| (-842)) -(|has| |#1| (-842)) +((($) -3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) +(|has| |#2| (-843)) +(|has| |#1| (-843)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-160))) -((((-640)) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +((((-641)) . T)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) (((|#1|) |has| |#1| (-160))) (((|#1|) |has| |#1| (-160))) ((((-385 (-525))) . T) (($) . T)) (((|#1| (-525)) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) (|has| |#1| (-341)) (|has| |#1| (-341)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) -(-3150 (|has| |#1| (-160)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) +(-3215 (|has| |#1| (-160)) (|has| |#1| (-517))) (((|#1| (-525)) . T)) (((|#1| (-385 (-525))) . T)) -(((|#1| (-712)) . T)) +(((|#1| (-713)) . T)) ((((-385 (-525))) . T)) (((|#1| (-497 |#2|) |#2|) . T)) ((((-525) |#1|) . T)) ((((-525) |#1|) . T)) -(|has| |#1| (-1018)) +(|has| |#1| (-1019)) ((((-525) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-825 (-357))) . T) (((-825 (-525))) . T) (((-1089)) . T) (((-501)) . T)) +((((-826 (-357))) . T) (((-826 (-525))) . T) (((-1090)) . T) (((-501)) . T)) (((|#1|) . T)) -((((-796)) . T)) -(-3150 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-734)) (|has| |#2| (-786)) (|has| |#2| (-975))) -(-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))) +((((-797)) . T)) +(-3215 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976))) +(-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) ((((-525)) . T)) ((((-525)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-3150 (|has| |#2| (-160)) (|has| |#2| (-786)) (|has| |#2| (-975))) -((((-1089)) -12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) -(-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668)))) +(-3215 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) +((((-1090)) -12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) +(-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-341)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-213)) -((((-796)) . T)) -(((|#1| (-712) (-1003)) . T)) +((((-797)) . T)) +(((|#1| (-713) (-1004)) . T)) ((((-525) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) ((((-525) |#1|) . T)) ((((-525) |#1|) . T)) ((((-112 |#1|)) . T)) ((((-385 (-525))) . T) (((-525)) . T)) -(((|#2|) |has| |#2| (-975))) +(((|#2|) |has| |#2| (-976))) ((((-385 (-525))) . T) (($) . T)) (((|#2|) . T)) ((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517))) ((((-525)) . T)) ((((-525)) . T)) -((((-1072) (-1089) (-525) (-205) (-796)) . T)) +((((-1073) (-1090) (-525) (-205) (-797)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-3150 (|has| |#1| (-327)) (|has| |#1| (-346))) +(-3215 (|has| |#1| (-327)) (|has| |#1| (-346))) (((|#1| |#2|) . T)) ((($) . T) ((|#1|) . T)) -((((-796)) . T)) +((((-797)) . T)) ((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525))))) -(((|#2|) |has| |#2| (-1018)) (((-525)) -12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018))) (((-385 (-525))) -12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) -((((-501)) |has| |#1| (-566 (-501)))) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-788)) (|has| |#1| (-1018)))) +(((|#2|) |has| |#2| (-1019)) (((-525)) -12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (((-385 (-525))) -12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) +((((-501)) |has| |#1| (-567 (-501)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019)))) ((($) . T) (((-385 (-525))) . T)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -((((-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-951))) (((-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-951))) (((-825 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-566 (-825 (-357))))) (((-825 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-566 (-825 (-525))))) (((-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-566 (-501))))) -((((-796)) . T)) -((((-796)) . T)) +(|has| |#1| (-843)) +(|has| |#1| (-843)) +((((-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) (((-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) (((-826 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-826 (-357))))) (((-826 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-826 (-525))))) (((-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-501))))) +((((-797)) . T)) +((((-797)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-160))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-517))) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-786))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-517))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-787))) (((|#2|) . T)) -(-3150 (|has| |#1| (-21)) (|has| |#1| (-786))) +(-3215 (|has| |#1| (-21)) (|has| |#1| (-787))) (((|#1|) |has| |#1| (-160))) (((|#1|) . T)) (((|#1|) . T)) -((((-796)) -3150 (-12 (|has| |#1| (-565 (-796))) (|has| |#2| (-565 (-796)))) (-12 (|has| |#1| (-1018)) (|has| |#2| (-1018))))) +((((-797)) -3215 (-12 (|has| |#1| (-566 (-797))) (|has| |#2| (-566 (-797)))) (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))))) ((((-385 |#2|) |#3|) . T)) ((((-385 (-525))) . T) (($) . T)) (|has| |#1| (-37 (-385 (-525)))) @@ -3093,129 +3093,130 @@ ((($ $) . T) ((#0=(-385 (-525)) #0#) . T)) (|has| (-385 |#2|) (-138)) (|has| (-385 |#2|) (-136)) -((((-640)) . T)) +((((-641)) . T)) (((|#1|) . T) (((-385 (-525))) . T) (((-525)) . T) (($) . T)) (((#0=(-525) #0#) . T)) ((($) . T) (((-385 (-525))) . T)) -(-3150 (|has| |#4| (-160)) (|has| |#4| (-786)) (|has| |#4| (-975))) -(-3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) -(|has| |#4| (-734)) -(-3150 (|has| |#4| (-734)) (|has| |#4| (-786))) -(|has| |#4| (-786)) -(|has| |#3| (-734)) -(-3150 (|has| |#3| (-734)) (|has| |#3| (-786))) -(|has| |#3| (-786)) +(-3215 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976))) +(-3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) +(|has| |#4| (-735)) +(-3215 (|has| |#4| (-735)) (|has| |#4| (-787))) +(|has| |#4| (-787)) +(|has| |#3| (-735)) +(-3215 (|has| |#3| (-735)) (|has| |#3| (-787))) +(|has| |#3| (-787)) ((((-525)) . T)) (((|#2|) . T)) -((((-1089)) -3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) -((((-1089)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) -((((-1089)) -12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) +((((-1090)) -3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) +((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) +((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-798 |#1|)) . T)) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-341))) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-341))) -((((-1054 |#1| |#2|)) . T)) -(((|#2|) . T) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) . T)) +((((-799 |#1|)) . T)) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341))) +((((-1055 |#1| |#2|)) . T)) +(((|#2|) . T) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) . T)) ((($) . T)) -(|has| |#1| (-951)) -(((|#2|) . T) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) -((((-796)) . T)) -((((-501)) |has| |#2| (-566 (-501))) (((-825 (-525))) |has| |#2| (-566 (-825 (-525)))) (((-825 (-357))) |has| |#2| (-566 (-825 (-357)))) (((-357)) . #0=(|has| |#2| (-951))) (((-205)) . #0#)) -((((-1089) (-51)) . T)) +(|has| |#1| (-952)) +(((|#2|) . T) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) +((((-797)) . T)) +((((-501)) |has| |#2| (-567 (-501))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525)))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-357)) . #0=(|has| |#2| (-952))) (((-205)) . #0#)) +((((-1090) (-51)) . T)) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (((|#2|) . T)) ((($ $) . T)) -((((-385 (-525))) . T) (((-640)) . T) (($) . T)) -((((-1087 |#1| |#2| |#3|)) . T)) -((((-1087 |#1| |#2| |#3|)) . T) (((-1080 |#1| |#2| |#3|)) . T)) -((((-796)) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +((((-385 (-525))) . T) (((-641)) . T) (($) . T)) +((((-1088 |#1| |#2| |#3|)) . T)) +((((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T)) +((((-797)) . T)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) ((((-525) |#1|) . T)) -((((-1087 |#1| |#2| |#3|)) |has| |#1| (-341))) +((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-341)) -(((|#3|) . T) ((|#2|) . T) (($) -3150 (|has| |#4| (-160)) (|has| |#4| (-786)) (|has| |#4| (-975))) ((|#4|) -3150 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-975)))) -(((|#2|) . T) (($) -3150 (|has| |#3| (-160)) (|has| |#3| (-786)) (|has| |#3| (-975))) ((|#3|) -3150 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-975)))) +(((|#3|) . T) ((|#2|) . T) (($) -3215 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976))) ((|#4|) -3215 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-976)))) +(((|#2|) . T) (($) -3215 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) ((|#3|) -3215 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976)))) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-341)) ((((-112 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-385 (-525))) |has| |#2| (-966 (-385 (-525)))) (((-525)) |has| |#2| (-966 (-525))) ((|#2|) . T) (((-798 |#1|)) . T)) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) +((((-385 (-525))) |has| |#2| (-967 (-385 (-525)))) (((-525)) |has| |#2| (-967 (-525))) ((|#2|) . T) (((-799 |#1|)) . T)) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1|) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) +((((-125)) . T) (((-797)) . T)) ((((-525) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-341)) (|has| |#2| (-265 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-842))) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) -((((-796)) . T)) -((((-796)) . T)) -((((-796)) . T)) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-843))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) +((((-797)) . T)) +((((-797)) . T)) +((((-797)) . T)) (((|#1| (-497 |#2|)) . T)) -((((-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) . T)) +((((-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) . T)) (((|#1| (-525)) . T)) (((|#1| (-385 (-525))) . T)) -(((|#1| (-712)) . T)) +(((|#1| (-713)) . T)) ((((-112 |#1|)) . T) (($) . T) (((-385 (-525))) . T)) -(-3150 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-842))) -(-3150 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-842))) +(-3215 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) +(-3215 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((($) . T)) -(((|#2| (-497 (-798 |#1|))) . T)) +(((|#2| (-497 (-799 |#1|))) . T)) ((((-525) |#1|) . T)) (((|#2|) . T)) -(((|#2| (-712)) . T)) -((((-796)) -3150 (|has| |#1| (-565 (-796))) (|has| |#1| (-1018)))) +(((|#2| (-713)) . T)) +((((-797)) -3215 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1072) |#1|) . T)) +((((-1073) |#1|) . T)) ((((-385 |#2|)) . T)) -((((-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T)) +((((-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T)) (|has| |#1| (-517)) (|has| |#1| (-517)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#2| $) |has| |#2| (-265 |#2| |#2|))) -(((|#1| (-591 |#1|)) |has| |#1| (-786))) -(-3150 (|has| |#1| (-213)) (|has| |#1| (-327))) -(-3150 (|has| |#1| (-341)) (|has| |#1| (-327))) -(|has| |#1| (-1018)) +(((|#1| (-592 |#1|)) |has| |#1| (-787))) +(-3215 (|has| |#1| (-213)) (|has| |#1| (-327))) +(-3215 (|has| |#1| (-341)) (|has| |#1| (-327))) +(|has| |#1| (-1019)) (((|#1|) . T)) ((((-385 (-525))) . T) (($) . T)) -((((-929 |#1|)) . T) ((|#1|) . T) (((-525)) -3150 (|has| (-929 |#1|) (-966 (-525))) (|has| |#1| (-966 (-525)))) (((-385 (-525))) -3150 (|has| (-929 |#1|) (-966 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525)))))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -((((-1089)) |has| |#1| (-833 (-1089)))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) -(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) +((((-930 |#1|)) . T) ((|#1|) . T) (((-525)) -3215 (|has| (-930 |#1|) (-967 (-525))) (|has| |#1| (-967 (-525)))) (((-385 (-525))) -3215 (|has| (-930 |#1|) (-967 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +((((-1090)) |has| |#1| (-834 (-1090)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) +(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (((|#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1054 |#1| |#2|) #0#) |has| (-1054 |#1| |#2|) (-288 (-1054 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((#0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) #0#) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) +(((#0=(-1055 |#1| |#2|) #0#) |has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) #0#) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) (((#0=(-112 |#1|)) |has| #0# (-288 #0#))) -(-3150 (|has| |#1| (-788)) (|has| |#1| (-1018))) +(-3215 (|has| |#1| (-789)) (|has| |#1| (-1019))) ((($ $) . T)) -((($ $) . T) ((#0=(-798 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-799 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-213)) ((|#2| |#1|) |has| |#1| (-213)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-607 . -1018) T) ((-243 . -486) 142655) ((-227 . -486) 142598) ((-532 . -107) 142583) ((-497 . -23) T) ((-225 . -1018) 142533) ((-113 . -288) 142490) ((-455 . -486) 142282) ((-635 . -97) T) ((-1055 . -486) 142201) ((-368 . -126) T) ((-1182 . -907) 142170) ((-556 . -464) 142154) ((-570 . -126) T) ((-760 . -784) T) ((-494 . -55) 142104) ((-57 . -486) 142037) ((-490 . -486) 141970) ((-396 . -833) 141929) ((-157 . -975) T) ((-488 . -486) 141862) ((-470 . -486) 141795) ((-469 . -486) 141728) ((-740 . -966) 141515) ((-640 . -37) 141480) ((-321 . -327) T) ((-1013 . -1012) 141464) ((-1013 . -1018) 141442) ((-157 . -223) 141393) ((-157 . -213) 141344) ((-1013 . -1014) 141302) ((-805 . -265) 141260) ((-205 . -736) T) ((-205 . -733) T) ((-635 . -263) NIL) ((-1064 . -1102) 141239) ((-385 . -923) 141223) ((-642 . -21) T) ((-642 . -25) T) ((-1184 . -593) 141197) ((-294 . -149) 141176) ((-294 . -134) 141155) ((-1064 . -102) 141105) ((-128 . -25) T) ((-39 . -211) 141082) ((-112 . -21) T) ((-112 . -25) T) ((-560 . -267) 141058) ((-452 . -267) 141037) ((-1144 . -975) T) ((-793 . -975) T) ((-740 . -316) 141021) ((-113 . -1065) NIL) ((-89 . -565) 140953) ((-454 . -126) T) ((-548 . -1125) T) ((-1144 . -304) 140930) ((-532 . -975) T) ((-1144 . -213) T) ((-607 . -659) 140914) ((-890 . -267) 140891) ((-58 . -33) T) ((-986 . -736) T) ((-986 . -733) T) ((-757 . -668) T) ((-673 . -46) 140856) ((-572 . -37) 140843) ((-333 . -269) T) ((-330 . -269) T) ((-322 . -269) T) ((-243 . -269) 140774) ((-227 . -269) 140705) ((-953 . -97) T) ((-391 . -668) T) ((-113 . -37) 140650) ((-391 . -450) T) ((-332 . -97) T) ((-1120 . -982) T) ((-653 . -982) T) ((-1087 . -46) 140627) ((-1086 . -46) 140597) ((-1080 . -46) 140574) ((-964 . -142) 140520) ((-843 . -269) T) ((-1042 . -46) 140492) ((-635 . -288) NIL) ((-487 . -565) 140474) ((-482 . -565) 140456) ((-480 . -565) 140438) ((-305 . -1018) 140388) ((-654 . -429) 140319) ((-47 . -97) T) ((-1155 . -265) 140304) ((-1134 . -265) 140224) ((-591 . -611) 140208) ((-591 . -596) 140192) ((-317 . -21) T) ((-317 . -25) T) ((-39 . -327) NIL) ((-161 . -21) T) ((-161 . -25) T) ((-591 . -351) 140176) ((-556 . -265) 140153) ((-366 . -97) T) ((-1036 . -134) T) ((-122 . -565) 140085) ((-807 . -1018) T) ((-603 . -389) 140069) ((-656 . -565) 140051) ((-150 . -565) 140033) ((-146 . -565) 140015) ((-1184 . -668) T) ((-1020 . -33) T) ((-804 . -736) NIL) ((-804 . -733) NIL) ((-795 . -788) T) ((-673 . -819) NIL) ((-1193 . -126) T) ((-359 . -126) T) ((-837 . -97) T) ((-673 . -966) 139893) ((-497 . -126) T) ((-1007 . -389) 139877) ((-930 . -464) 139861) ((-113 . -378) 139838) ((-1080 . -1125) 139817) ((-723 . -389) 139801) ((-721 . -389) 139785) ((-876 . -33) T) ((-635 . -1065) NIL) ((-230 . -593) 139622) ((-229 . -593) 139446) ((-758 . -853) 139425) ((-431 . -389) 139409) ((-556 . -19) 139393) ((-1060 . -1119) 139362) ((-1080 . -819) NIL) ((-1080 . -817) 139314) ((-556 . -558) 139291) ((-1112 . -565) 139223) ((-1088 . -565) 139205) ((-60 . -373) T) ((-1086 . -966) 139140) ((-1080 . -966) 139106) ((-635 . -37) 139056) ((-451 . -265) 139041) ((-673 . -355) 139025) ((-603 . -982) T) ((-1155 . -932) 138991) ((-1134 . -932) 138957) ((-987 . -1102) 138932) ((-805 . -566) 138740) ((-805 . -565) 138722) ((-1099 . -464) 138659) ((-396 . -951) 138638) ((-47 . -288) 138625) ((-987 . -102) 138571) ((-455 . -464) 138508) ((-491 . -1125) T) ((-1055 . -464) 138479) ((-1080 . -316) 138431) ((-1080 . -355) 138383) ((-415 . -97) T) ((-1007 . -982) T) ((-230 . -33) T) ((-229 . -33) T) ((-723 . -982) T) ((-721 . -982) T) ((-673 . -833) 138360) ((-431 . -982) T) ((-57 . -464) 138344) ((-963 . -981) 138318) ((-490 . -464) 138302) ((-488 . -464) 138286) ((-470 . -464) 138270) ((-469 . -464) 138254) ((-225 . -486) 138187) ((-963 . -107) 138154) ((-1087 . -833) 138067) ((-615 . -1030) T) ((-1086 . -833) 137973) ((-1080 . -833) 137806) ((-1042 . -833) 137790) ((-332 . -1065) T) ((-300 . -981) 137772) ((-230 . -732) 137751) ((-230 . -735) 137702) ((-230 . -734) 137681) ((-229 . -732) 137660) ((-229 . -735) 137611) ((-229 . -734) 137590) ((-49 . -982) T) ((-230 . -668) 137521) ((-229 . -668) 137452) ((-1120 . -1018) T) ((-615 . -23) T) ((-538 . -982) T) ((-489 . -982) T) ((-357 . -981) 137417) ((-300 . -107) 137392) ((-71 . -361) T) ((-71 . -373) T) ((-953 . -37) 137329) ((-635 . -378) 137311) ((-94 . -97) T) ((-653 . -1018) T) ((-933 . -136) 137283) ((-933 . -138) 137255) ((-357 . -107) 137211) ((-297 . -1129) 137190) ((-451 . -932) 137156) ((-332 . -37) 137121) ((-39 . -348) 137093) ((-806 . -565) 136965) ((-123 . -121) 136949) ((-117 . -121) 136933) ((-775 . -981) 136903) ((-774 . -21) 136855) ((-768 . -981) 136839) ((-774 . -25) 136791) ((-297 . -517) 136742) ((-525 . -769) T) ((-220 . -1125) T) ((-775 . -107) 136707) ((-768 . -107) 136686) ((-1155 . -565) 136668) ((-1134 . -565) 136650) ((-1134 . -566) 136323) ((-1085 . -842) 136302) ((-1041 . -842) 136281) ((-47 . -37) 136246) ((-1191 . -1030) T) ((-556 . -565) 136158) ((-556 . -566) 136119) ((-1189 . -1030) T) ((-220 . -966) 135948) ((-1085 . -593) 135873) ((-1041 . -593) 135798) ((-660 . -565) 135780) ((-792 . -593) 135754) ((-1191 . -23) T) ((-1189 . -23) T) ((-963 . -975) T) ((-1099 . -265) 135733) ((-157 . -346) 135684) ((-934 . -1125) T) ((-43 . -23) T) ((-455 . -265) 135663) ((-542 . -1018) T) ((-1060 . -1027) 135632) ((-1022 . -1021) 135584) ((-124 . -1125) T) ((-368 . -21) T) ((-368 . -25) T) ((-143 . -1030) T) ((-1197 . -97) T) ((-934 . -817) 135566) ((-934 . -819) 135548) ((-1120 . -659) 135445) ((-572 . -211) 135429) ((-570 . -21) T) ((-268 . -517) T) ((-570 . -25) T) ((-1106 . -1018) T) ((-653 . -659) 135394) ((-220 . -355) 135364) ((-934 . -966) 135324) ((-357 . -975) T) ((-203 . -982) T) ((-113 . -211) 135301) ((-57 . -265) 135278) ((-143 . -23) T) ((-488 . -265) 135255) ((-305 . -486) 135188) ((-469 . -265) 135165) ((-357 . -223) T) ((-357 . -213) T) ((-775 . -975) T) ((-768 . -975) T) ((-654 . -882) 135134) ((-642 . -788) T) ((-451 . -565) 135116) ((-768 . -213) 135095) ((-128 . -788) T) ((-603 . -1018) T) ((-1099 . -558) 135074) ((-511 . -1102) 135053) ((-314 . -1018) T) ((-297 . -341) 135032) ((-385 . -138) 135011) ((-385 . -136) 134990) ((-896 . -1030) 134889) ((-220 . -833) 134822) ((-756 . -1030) 134753) ((-599 . -790) 134737) ((-455 . -558) 134716) ((-511 . -102) 134666) ((-934 . -355) 134648) ((-934 . -316) 134630) ((-92 . -1018) T) ((-896 . -23) 134441) ((-454 . -21) T) ((-454 . -25) T) ((-756 . -23) 134312) ((-1089 . -565) 134294) ((-57 . -19) 134278) ((-1089 . -566) 134200) ((-1085 . -668) T) ((-1041 . -668) T) ((-488 . -19) 134184) ((-469 . -19) 134168) ((-57 . -558) 134145) ((-1007 . -1018) T) ((-834 . -97) 134123) ((-792 . -668) T) ((-723 . -1018) T) ((-488 . -558) 134100) ((-469 . -558) 134077) ((-721 . -1018) T) ((-721 . -989) 134044) ((-438 . -1018) T) ((-431 . -1018) T) ((-542 . -659) 134019) ((-594 . -1018) T) ((-934 . -833) NIL) ((-1163 . -46) 133996) ((-575 . -1030) T) ((-615 . -126) T) ((-1157 . -97) T) ((-1156 . -46) 133966) ((-1135 . -46) 133943) ((-1120 . -160) 133894) ((-1001 . -1129) 133845) ((-254 . -1018) T) ((-83 . -418) T) ((-83 . -373) T) ((-1086 . -286) 133824) ((-1080 . -286) 133803) ((-49 . -1018) T) ((-1001 . -517) 133754) ((-653 . -160) T) ((-550 . -46) 133731) ((-205 . -593) 133696) ((-538 . -1018) T) ((-489 . -1018) T) ((-337 . -1129) T) ((-331 . -1129) T) ((-323 . -1129) T) ((-462 . -761) T) ((-462 . -853) T) ((-297 . -1030) T) ((-103 . -1129) T) ((-317 . -788) T) ((-198 . -853) T) ((-198 . -761) T) ((-656 . -981) 133666) ((-337 . -517) T) ((-331 . -517) T) ((-323 . -517) T) ((-103 . -517) T) ((-603 . -659) 133636) ((-1080 . -951) NIL) ((-297 . -23) T) ((-65 . -1125) T) ((-930 . -565) 133568) ((-635 . -211) 133550) ((-656 . -107) 133515) ((-591 . -33) T) ((-225 . -464) 133499) ((-1020 . -1016) 133483) ((-159 . -1018) T) ((-885 . -842) 133462) ((-457 . -842) 133441) ((-1193 . -21) T) ((-1193 . -25) T) ((-1191 . -126) T) ((-1189 . -126) T) ((-1007 . -659) 133290) ((-986 . -593) 133277) ((-885 . -593) 133202) ((-723 . -659) 133031) ((-501 . -565) 133013) ((-501 . -566) 132994) ((-721 . -659) 132843) ((-1182 . -97) T) ((-998 . -97) T) ((-359 . -25) T) ((-359 . -21) T) ((-457 . -593) 132768) ((-438 . -659) 132739) ((-431 . -659) 132588) ((-918 . -97) T) ((-679 . -97) T) ((-497 . -25) T) ((-1135 . -1125) 132567) ((-1167 . -565) 132533) ((-1135 . -819) NIL) ((-1135 . -817) 132485) ((-132 . -97) T) ((-43 . -126) T) ((-1099 . -566) NIL) ((-1099 . -565) 132467) ((-1056 . -1039) 132412) ((-321 . -982) T) ((-609 . -565) 132394) ((-268 . -1030) T) ((-333 . -565) 132376) ((-330 . -565) 132358) ((-322 . -565) 132340) ((-243 . -566) 132088) ((-243 . -565) 132070) ((-227 . -565) 132052) ((-227 . -566) 131913) ((-972 . -1119) 131842) ((-834 . -288) 131780) ((-1197 . -1065) T) ((-1156 . -966) 131715) ((-1135 . -966) 131681) ((-1120 . -486) 131648) ((-1055 . -565) 131630) ((-760 . -668) T) ((-556 . -267) 131607) ((-538 . -659) 131572) ((-455 . -566) NIL) ((-455 . -565) 131554) ((-489 . -659) 131499) ((-294 . -97) T) ((-291 . -97) T) ((-268 . -23) T) ((-143 . -126) T) ((-364 . -668) T) ((-805 . -981) 131451) ((-843 . -565) 131433) ((-843 . -566) 131415) ((-805 . -107) 131353) ((-130 . -97) T) ((-110 . -97) T) ((-654 . -1147) 131337) ((-656 . -975) T) ((-635 . -327) NIL) ((-490 . -565) 131269) ((-357 . -736) T) ((-203 . -1018) T) ((-357 . -733) T) ((-205 . -735) T) ((-205 . -732) T) ((-57 . -566) 131230) ((-57 . -565) 131142) ((-205 . -668) T) ((-488 . -566) 131103) ((-488 . -565) 131015) ((-470 . -565) 130947) ((-469 . -566) 130908) ((-469 . -565) 130820) ((-1001 . -341) 130771) ((-39 . -389) 130748) ((-75 . -1125) T) ((-804 . -842) NIL) ((-337 . -307) 130732) ((-337 . -341) T) ((-331 . -307) 130716) ((-331 . -341) T) ((-323 . -307) 130700) ((-323 . -341) T) ((-294 . -263) 130679) ((-103 . -341) T) ((-68 . -1125) T) ((-1135 . -316) 130631) ((-804 . -593) 130576) ((-1135 . -355) 130528) ((-896 . -126) 130383) ((-756 . -126) 130254) ((-890 . -596) 130238) ((-1007 . -160) 130149) ((-890 . -351) 130133) ((-986 . -735) T) ((-986 . -732) T) ((-723 . -160) 130024) ((-721 . -160) 129935) ((-757 . -46) 129897) ((-986 . -668) T) ((-305 . -464) 129881) ((-885 . -668) T) ((-431 . -160) 129792) ((-225 . -265) 129769) ((-457 . -668) T) ((-1182 . -288) 129707) ((-1163 . -833) 129620) ((-1156 . -833) 129526) ((-1155 . -981) 129361) ((-1135 . -833) 129194) ((-1134 . -981) 129002) ((-1120 . -269) 128981) ((-1060 . -142) 128965) ((-996 . -97) T) ((-860 . -887) T) ((-73 . -1125) T) ((-679 . -288) 128903) ((-157 . -842) 128856) ((-609 . -360) 128828) ((-30 . -887) T) ((-1 . -565) 128810) ((-1036 . -97) T) ((-1001 . -23) T) ((-49 . -569) 128794) ((-1001 . -1030) T) ((-933 . -387) 128766) ((-550 . -833) 128679) ((-416 . -97) T) ((-132 . -288) NIL) ((-805 . -975) T) ((-774 . -788) 128658) ((-79 . -1125) T) ((-653 . -269) T) ((-39 . -982) T) ((-538 . -160) T) ((-489 . -160) T) ((-483 . -565) 128640) ((-157 . -593) 128550) ((-479 . -565) 128532) ((-329 . -138) 128514) ((-329 . -136) T) ((-337 . -1030) T) ((-331 . -1030) T) ((-323 . -1030) T) ((-934 . -286) T) ((-847 . -286) T) ((-805 . -223) T) ((-103 . -1030) T) ((-805 . -213) 128493) ((-1155 . -107) 128314) ((-1134 . -107) 128103) ((-225 . -1159) 128087) ((-525 . -786) T) ((-337 . -23) T) ((-332 . -327) T) ((-294 . -288) 128074) ((-291 . -288) 128015) ((-331 . -23) T) ((-297 . -126) T) ((-323 . -23) T) ((-934 . -951) T) ((-103 . -23) T) ((-225 . -558) 127992) ((-1157 . -37) 127884) ((-1144 . -842) 127863) ((-108 . -1018) T) ((-964 . -97) T) ((-1144 . -593) 127788) ((-804 . -735) NIL) ((-793 . -593) 127762) ((-804 . -732) NIL) ((-757 . -819) NIL) ((-804 . -668) T) ((-1007 . -486) 127635) ((-723 . -486) 127582) ((-721 . -486) 127534) ((-532 . -593) 127521) ((-757 . -966) 127351) ((-431 . -486) 127294) ((-366 . -367) T) ((-58 . -1125) T) ((-570 . -788) 127273) ((-473 . -606) T) ((-1060 . -907) 127242) ((-933 . -429) T) ((-640 . -786) T) ((-482 . -733) T) ((-451 . -981) 127077) ((-321 . -1018) T) ((-291 . -1065) NIL) ((-268 . -126) T) ((-372 . -1018) T) ((-635 . -348) 127044) ((-803 . -982) T) ((-203 . -569) 127021) ((-305 . -265) 126998) ((-451 . -107) 126819) ((-1155 . -975) T) ((-1134 . -975) T) ((-757 . -355) 126803) ((-157 . -668) T) ((-599 . -97) T) ((-1155 . -223) 126782) ((-1155 . -213) 126734) ((-1134 . -213) 126639) ((-1134 . -223) 126618) ((-933 . -380) NIL) ((-615 . -587) 126566) ((-294 . -37) 126476) ((-291 . -37) 126405) ((-67 . -565) 126387) ((-297 . -466) 126353) ((-1099 . -267) 126332) ((-1031 . -1030) 126263) ((-81 . -1125) T) ((-59 . -565) 126245) ((-455 . -267) 126224) ((-1184 . -966) 126201) ((-1078 . -1018) T) ((-1031 . -23) 126072) ((-757 . -833) 126008) ((-1144 . -668) T) ((-1020 . -1125) T) ((-1007 . -269) 125939) ((-826 . -97) T) ((-723 . -269) 125850) ((-305 . -19) 125834) ((-57 . -267) 125811) ((-721 . -269) 125742) ((-793 . -668) T) ((-113 . -786) NIL) ((-488 . -267) 125719) ((-305 . -558) 125696) ((-469 . -267) 125673) ((-431 . -269) 125604) ((-964 . -288) 125455) ((-532 . -668) T) ((-607 . -565) 125437) ((-225 . -566) 125398) ((-225 . -565) 125310) ((-1061 . -33) T) ((-876 . -1125) T) ((-321 . -659) 125255) ((-615 . -25) T) ((-615 . -21) T) ((-451 . -975) T) ((-583 . -395) 125220) ((-559 . -395) 125185) ((-1036 . -1065) T) ((-538 . -269) T) ((-489 . -269) T) ((-1156 . -286) 125164) ((-451 . -213) 125116) ((-451 . -223) 125095) ((-1135 . -286) 125074) ((-1001 . -126) T) ((-805 . -736) 125053) ((-135 . -97) T) ((-39 . -1018) T) ((-805 . -733) 125032) ((-591 . -940) 125016) ((-537 . -982) T) ((-525 . -982) T) ((-468 . -982) T) ((-385 . -429) T) ((-337 . -126) T) ((-294 . -378) 125000) ((-291 . -378) 124961) ((-331 . -126) T) ((-323 . -126) T) ((-1135 . -951) NIL) ((-1094 . -1018) T) ((-1013 . -565) 124928) ((-103 . -126) T) ((-1036 . -37) 124915) ((-854 . -1018) T) ((-712 . -1018) T) ((-616 . -1018) T) ((-642 . -138) T) ((-112 . -138) T) ((-1191 . -21) T) ((-1191 . -25) T) ((-1189 . -21) T) ((-1189 . -25) T) ((-609 . -981) 124899) ((-497 . -788) T) ((-473 . -788) T) ((-333 . -981) 124851) ((-330 . -981) 124803) ((-322 . -981) 124755) ((-230 . -1125) T) ((-229 . -1125) T) ((-243 . -981) 124598) ((-227 . -981) 124441) ((-609 . -107) 124420) ((-333 . -107) 124358) ((-330 . -107) 124296) ((-322 . -107) 124234) ((-243 . -107) 124063) ((-227 . -107) 123892) ((-758 . -1129) 123871) ((-572 . -389) 123855) ((-43 . -21) T) ((-43 . -25) T) ((-756 . -587) 123763) ((-758 . -517) 123742) ((-230 . -966) 123571) ((-229 . -966) 123400) ((-122 . -115) 123384) ((-843 . -981) 123349) ((-640 . -982) T) ((-654 . -97) T) ((-321 . -160) T) ((-143 . -21) T) ((-143 . -25) T) ((-86 . -565) 123331) ((-843 . -107) 123287) ((-39 . -659) 123232) ((-803 . -1018) T) ((-305 . -566) 123193) ((-305 . -565) 123105) ((-1134 . -733) 123058) ((-1134 . -736) 123011) ((-230 . -355) 122981) ((-229 . -355) 122951) ((-599 . -37) 122921) ((-560 . -33) T) ((-458 . -1030) 122852) ((-452 . -33) T) ((-1031 . -126) 122723) ((-896 . -25) 122534) ((-807 . -565) 122516) ((-896 . -21) 122471) ((-756 . -21) 122382) ((-756 . -25) 122234) ((-572 . -982) T) ((-1091 . -517) 122213) ((-1085 . -46) 122190) ((-333 . -975) T) ((-330 . -975) T) ((-458 . -23) 122061) ((-322 . -975) T) ((-227 . -975) T) ((-243 . -975) T) ((-1041 . -46) 122033) ((-113 . -982) T) ((-963 . -593) 122007) ((-890 . -33) T) ((-333 . -213) 121986) ((-333 . -223) T) ((-330 . -213) 121965) ((-330 . -223) T) ((-227 . -304) 121922) ((-322 . -213) 121901) ((-322 . -223) T) ((-243 . -304) 121873) ((-243 . -213) 121852) ((-1070 . -142) 121836) ((-230 . -833) 121769) ((-229 . -833) 121702) ((-1003 . -788) T) ((-1138 . -1125) T) ((-392 . -1030) T) ((-979 . -23) T) ((-843 . -975) T) ((-300 . -593) 121684) ((-953 . -786) T) ((-1120 . -932) 121650) ((-1086 . -853) 121629) ((-1080 . -853) 121608) ((-843 . -223) T) ((-758 . -341) 121587) ((-363 . -23) T) ((-123 . -1018) 121565) ((-117 . -1018) 121543) ((-843 . -213) T) ((-1080 . -761) NIL) ((-357 . -593) 121508) ((-803 . -659) 121495) ((-972 . -142) 121460) ((-39 . -160) T) ((-635 . -389) 121442) ((-654 . -288) 121429) ((-775 . -593) 121389) ((-768 . -593) 121363) ((-297 . -25) T) ((-297 . -21) T) ((-603 . -265) 121342) ((-537 . -1018) T) ((-525 . -1018) T) ((-468 . -1018) T) ((-225 . -267) 121319) ((-291 . -211) 121280) ((-1085 . -819) NIL) ((-1041 . -819) 121139) ((-125 . -788) T) ((-1085 . -966) 121021) ((-1041 . -966) 120906) ((-169 . -565) 120888) ((-792 . -966) 120786) ((-723 . -265) 120713) ((-758 . -1030) T) ((-963 . -668) T) ((-556 . -596) 120697) ((-972 . -907) 120626) ((-929 . -97) T) ((-758 . -23) T) ((-654 . -1065) 120604) ((-635 . -982) T) ((-556 . -351) 120588) ((-329 . -429) T) ((-321 . -269) T) ((-1172 . -1018) T) ((-377 . -97) T) ((-268 . -21) T) ((-268 . -25) T) ((-339 . -668) T) ((-652 . -1018) T) ((-640 . -1018) T) ((-339 . -450) T) ((-1120 . -565) 120570) ((-1085 . -355) 120554) ((-1041 . -355) 120538) ((-953 . -389) 120500) ((-132 . -209) 120482) ((-357 . -735) T) ((-357 . -732) T) ((-803 . -160) T) ((-357 . -668) T) ((-653 . -565) 120464) ((-654 . -37) 120293) ((-1171 . -1169) 120277) ((-329 . -380) T) ((-1171 . -1018) 120227) ((-537 . -659) 120214) ((-525 . -659) 120201) ((-468 . -659) 120166) ((-294 . -577) 120145) ((-775 . -668) T) ((-768 . -668) T) ((-591 . -1125) T) ((-1001 . -587) 120093) ((-1085 . -833) 120036) ((-1041 . -833) 120020) ((-607 . -981) 120004) ((-103 . -587) 119986) ((-458 . -126) 119857) ((-1091 . -1030) T) ((-885 . -46) 119826) ((-572 . -1018) T) ((-607 . -107) 119805) ((-305 . -267) 119782) ((-457 . -46) 119739) ((-1091 . -23) T) ((-113 . -1018) T) ((-98 . -97) 119717) ((-1181 . -1030) T) ((-979 . -126) T) ((-953 . -982) T) ((-760 . -966) 119701) ((-933 . -666) 119673) ((-1181 . -23) T) ((-640 . -659) 119638) ((-542 . -565) 119620) ((-364 . -966) 119604) ((-332 . -982) T) ((-363 . -126) T) ((-302 . -966) 119588) ((-205 . -819) 119570) ((-934 . -853) T) ((-89 . -33) T) ((-934 . -761) T) ((-847 . -853) T) ((-462 . -1129) T) ((-1106 . -565) 119552) ((-1023 . -1018) T) ((-198 . -1129) T) ((-929 . -288) 119517) ((-205 . -966) 119477) ((-39 . -269) T) ((-1001 . -21) T) ((-1001 . -25) T) ((-1036 . -769) T) ((-462 . -517) T) ((-337 . -25) T) ((-198 . -517) T) ((-337 . -21) T) ((-331 . -25) T) ((-331 . -21) T) ((-656 . -593) 119437) ((-323 . -25) T) ((-323 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -982) T) ((-537 . -160) T) ((-525 . -160) T) ((-468 . -160) T) ((-603 . -565) 119419) ((-679 . -678) 119403) ((-314 . -565) 119385) ((-66 . -361) T) ((-66 . -373) T) ((-1020 . -102) 119369) ((-986 . -819) 119351) ((-885 . -819) 119276) ((-598 . -1030) T) ((-572 . -659) 119263) ((-457 . -819) NIL) ((-1060 . -97) T) ((-986 . -966) 119245) ((-92 . -565) 119227) ((-454 . -138) T) ((-885 . -966) 119109) ((-113 . -659) 119054) ((-598 . -23) T) ((-457 . -966) 118932) ((-1007 . -566) NIL) ((-1007 . -565) 118914) ((-723 . -566) NIL) ((-723 . -565) 118875) ((-721 . -566) 118510) ((-721 . -565) 118424) ((-1031 . -587) 118332) ((-438 . -565) 118314) ((-431 . -565) 118296) ((-431 . -566) 118157) ((-964 . -209) 118103) ((-122 . -33) T) ((-758 . -126) T) ((-805 . -842) 118082) ((-594 . -565) 118064) ((-333 . -1188) 118048) ((-330 . -1188) 118032) ((-322 . -1188) 118016) ((-123 . -486) 117949) ((-117 . -486) 117882) ((-483 . -733) T) ((-483 . -736) T) ((-482 . -735) T) ((-98 . -288) 117820) ((-202 . -97) 117798) ((-635 . -1018) T) ((-640 . -160) T) ((-805 . -593) 117750) ((-63 . -362) T) ((-254 . -565) 117732) ((-63 . -373) T) ((-885 . -355) 117716) ((-803 . -269) T) ((-49 . -565) 117698) ((-929 . -37) 117646) ((-538 . -565) 117628) ((-457 . -355) 117612) ((-538 . -566) 117594) ((-489 . -565) 117576) ((-843 . -1188) 117563) ((-804 . -1125) T) ((-642 . -429) T) ((-468 . -486) 117529) ((-462 . -341) T) ((-333 . -346) 117508) ((-330 . -346) 117487) ((-322 . -346) 117466) ((-198 . -341) T) ((-656 . -668) T) ((-112 . -429) T) ((-1192 . -1183) 117450) ((-804 . -817) 117427) ((-804 . -819) NIL) ((-896 . -788) 117326) ((-756 . -788) 117277) ((-599 . -601) 117261) ((-1112 . -33) T) ((-159 . -565) 117243) ((-1031 . -21) 117154) ((-1031 . -25) 117006) ((-804 . -966) 116983) ((-885 . -833) 116964) ((-1144 . -46) 116941) ((-843 . -346) T) ((-57 . -596) 116925) ((-488 . -596) 116909) ((-457 . -833) 116886) ((-69 . -418) T) ((-69 . -373) T) ((-469 . -596) 116870) ((-57 . -351) 116854) ((-572 . -160) T) ((-488 . -351) 116838) ((-469 . -351) 116822) ((-768 . -650) 116806) ((-1085 . -286) 116785) ((-1091 . -126) T) ((-113 . -160) T) ((-1060 . -288) 116723) ((-157 . -1125) T) ((-583 . -686) 116707) ((-559 . -686) 116691) ((-1181 . -126) T) ((-1156 . -853) 116670) ((-1135 . -853) 116649) ((-1135 . -761) NIL) ((-635 . -659) 116599) ((-1134 . -842) 116552) ((-953 . -1018) T) ((-804 . -355) 116529) ((-804 . -316) 116506) ((-838 . -1030) T) ((-157 . -817) 116490) ((-157 . -819) 116415) ((-462 . -1030) T) ((-332 . -1018) T) ((-198 . -1030) T) ((-74 . -418) T) ((-74 . -373) T) ((-157 . -966) 116313) ((-297 . -788) T) ((-1171 . -486) 116246) ((-1155 . -593) 116143) ((-1134 . -593) 116013) ((-805 . -735) 115992) ((-805 . -732) 115971) ((-805 . -668) T) ((-462 . -23) T) ((-203 . -565) 115953) ((-161 . -429) T) ((-202 . -288) 115891) ((-84 . -418) T) ((-84 . -373) T) ((-198 . -23) T) ((-1193 . -1186) 115870) ((-537 . -269) T) ((-525 . -269) T) ((-620 . -966) 115854) ((-468 . -269) T) ((-130 . -447) 115809) ((-47 . -1018) T) ((-654 . -211) 115793) ((-804 . -833) NIL) ((-1144 . -819) NIL) ((-822 . -97) T) ((-818 . -97) T) ((-366 . -1018) T) ((-157 . -355) 115777) ((-157 . -316) 115761) ((-1144 . -966) 115643) ((-793 . -966) 115541) ((-1056 . -97) T) ((-598 . -126) T) ((-113 . -486) 115449) ((-607 . -733) 115428) ((-607 . -736) 115407) ((-532 . -966) 115389) ((-273 . -1178) 115359) ((-799 . -97) T) ((-895 . -517) 115338) ((-1120 . -981) 115221) ((-458 . -587) 115129) ((-837 . -1018) T) ((-953 . -659) 115066) ((-653 . -981) 115031) ((-556 . -33) T) ((-1061 . -1125) T) ((-1120 . -107) 114900) ((-451 . -593) 114797) ((-332 . -659) 114742) ((-157 . -833) 114701) ((-640 . -269) T) ((-635 . -160) T) ((-653 . -107) 114657) ((-1197 . -982) T) ((-1144 . -355) 114641) ((-396 . -1129) 114619) ((-291 . -786) NIL) ((-396 . -517) T) ((-205 . -286) T) ((-1134 . -732) 114572) ((-1134 . -735) 114525) ((-1155 . -668) T) ((-1134 . -668) T) ((-47 . -659) 114490) ((-205 . -951) T) ((-329 . -1178) 114467) ((-1157 . -389) 114433) ((-660 . -668) T) ((-1144 . -833) 114376) ((-108 . -565) 114358) ((-108 . -566) 114340) ((-660 . -450) T) ((-458 . -21) 114251) ((-123 . -464) 114235) ((-117 . -464) 114219) ((-458 . -25) 114071) ((-572 . -269) T) ((-542 . -981) 114046) ((-415 . -1018) T) ((-986 . -286) T) ((-113 . -269) T) ((-1022 . -97) T) ((-933 . -97) T) ((-542 . -107) 114014) ((-1056 . -288) 113952) ((-1120 . -975) T) ((-986 . -951) T) ((-64 . -1125) T) ((-979 . -25) T) ((-979 . -21) T) ((-653 . -975) T) ((-363 . -21) T) ((-363 . -25) T) ((-635 . -486) NIL) ((-953 . -160) T) ((-653 . -223) T) ((-986 . -510) T) ((-475 . -97) T) ((-332 . -160) T) ((-321 . -565) 113934) ((-372 . -565) 113916) ((-451 . -668) T) ((-1036 . -786) T) ((-825 . -966) 113884) ((-103 . -788) T) ((-603 . -981) 113868) ((-462 . -126) T) ((-1157 . -982) T) ((-198 . -126) T) ((-1070 . -97) 113846) ((-94 . -1018) T) ((-225 . -611) 113830) ((-225 . -596) 113814) ((-603 . -107) 113793) ((-294 . -389) 113777) ((-225 . -351) 113761) ((-1073 . -215) 113708) ((-929 . -211) 113692) ((-72 . -1125) T) ((-47 . -160) T) ((-642 . -365) T) ((-642 . -134) T) ((-1192 . -97) T) ((-1007 . -981) 113535) ((-243 . -842) 113514) ((-227 . -842) 113493) ((-723 . -981) 113316) ((-721 . -981) 113159) ((-560 . -1125) T) ((-1078 . -565) 113141) ((-1007 . -107) 112970) ((-972 . -97) T) ((-452 . -1125) T) ((-438 . -981) 112941) ((-431 . -981) 112784) ((-609 . -593) 112768) ((-804 . -286) T) ((-723 . -107) 112577) ((-721 . -107) 112406) ((-333 . -593) 112358) ((-330 . -593) 112310) ((-322 . -593) 112262) ((-243 . -593) 112187) ((-227 . -593) 112112) ((-1072 . -788) T) ((-1008 . -966) 112096) ((-438 . -107) 112057) ((-431 . -107) 111886) ((-997 . -966) 111863) ((-930 . -33) T) ((-898 . -565) 111824) ((-890 . -1125) T) ((-122 . -940) 111808) ((-895 . -1030) T) ((-804 . -951) NIL) ((-677 . -1030) T) ((-657 . -1030) T) ((-1171 . -464) 111792) ((-1056 . -37) 111752) ((-895 . -23) T) ((-781 . -97) T) ((-758 . -21) T) ((-758 . -25) T) ((-677 . -23) T) ((-657 . -23) T) ((-106 . -606) T) ((-843 . -593) 111717) ((-538 . -981) 111682) ((-489 . -981) 111627) ((-207 . -55) 111585) ((-430 . -23) T) ((-385 . -97) T) ((-242 . -97) T) ((-635 . -269) T) ((-799 . -37) 111555) ((-538 . -107) 111511) ((-489 . -107) 111440) ((-396 . -1030) T) ((-294 . -982) 111331) ((-291 . -982) T) ((-603 . -975) T) ((-1197 . -1018) T) ((-157 . -286) 111262) ((-396 . -23) T) ((-39 . -565) 111244) ((-39 . -566) 111228) ((-103 . -923) 111210) ((-112 . -802) 111194) ((-47 . -486) 111160) ((-1112 . -940) 111144) ((-1094 . -565) 111126) ((-1099 . -33) T) ((-854 . -565) 111108) ((-1031 . -788) 111059) ((-712 . -565) 111041) ((-616 . -565) 111023) ((-1070 . -288) 110961) ((-455 . -33) T) ((-1011 . -1125) T) ((-454 . -429) T) ((-1007 . -975) T) ((-1055 . -33) T) ((-723 . -975) T) ((-721 . -975) T) ((-592 . -215) 110945) ((-580 . -215) 110891) ((-1144 . -286) 110870) ((-1007 . -304) 110831) ((-431 . -975) T) ((-1091 . -21) T) ((-1007 . -213) 110810) ((-723 . -304) 110787) ((-723 . -213) T) ((-721 . -304) 110759) ((-305 . -596) 110743) ((-673 . -1129) 110722) ((-1091 . -25) T) ((-57 . -33) T) ((-490 . -33) T) ((-488 . -33) T) ((-431 . -304) 110701) ((-305 . -351) 110685) ((-470 . -33) T) ((-469 . -33) T) ((-933 . -1065) NIL) ((-583 . -97) T) ((-559 . -97) T) ((-673 . -517) 110616) ((-333 . -668) T) ((-330 . -668) T) ((-322 . -668) T) ((-243 . -668) T) ((-227 . -668) T) ((-972 . -288) 110524) ((-834 . -1018) 110502) ((-49 . -975) T) ((-1181 . -21) T) ((-1181 . -25) T) ((-1087 . -517) 110481) ((-1086 . -1129) 110460) ((-538 . -975) T) ((-489 . -975) T) ((-1080 . -1129) 110439) ((-339 . -966) 110423) ((-300 . -966) 110407) ((-953 . -269) T) ((-357 . -819) 110389) ((-1086 . -517) 110340) ((-1080 . -517) 110291) ((-933 . -37) 110236) ((-740 . -1030) T) ((-843 . -668) T) ((-538 . -223) T) ((-538 . -213) T) ((-489 . -213) T) ((-489 . -223) T) ((-1042 . -517) 110215) ((-332 . -269) T) ((-592 . -636) 110199) ((-357 . -966) 110159) ((-1036 . -982) T) ((-98 . -121) 110143) ((-740 . -23) T) ((-1171 . -265) 110120) ((-385 . -288) 110085) ((-1191 . -1186) 110061) ((-1189 . -1186) 110040) ((-1157 . -1018) T) ((-803 . -565) 110022) ((-775 . -966) 109991) ((-185 . -728) T) ((-184 . -728) T) ((-183 . -728) T) ((-182 . -728) T) ((-181 . -728) T) ((-180 . -728) T) ((-179 . -728) T) ((-178 . -728) T) ((-177 . -728) T) ((-176 . -728) T) ((-468 . -932) T) ((-253 . -777) T) ((-252 . -777) T) ((-251 . -777) T) ((-250 . -777) T) ((-47 . -269) T) ((-249 . -777) T) ((-248 . -777) T) ((-247 . -777) T) ((-175 . -728) T) ((-564 . -788) T) ((-599 . -389) 109975) ((-106 . -788) T) ((-598 . -21) T) ((-598 . -25) T) ((-1192 . -37) 109945) ((-113 . -265) 109896) ((-1171 . -19) 109880) ((-1171 . -558) 109857) ((-1182 . -1018) T) ((-998 . -1018) T) ((-918 . -1018) T) ((-895 . -126) T) ((-679 . -1018) T) ((-677 . -126) T) ((-657 . -126) T) ((-483 . -734) T) ((-385 . -1065) 109835) ((-430 . -126) T) ((-483 . -735) T) ((-203 . -975) T) ((-273 . -97) 109618) ((-132 . -1018) T) ((-640 . -932) T) ((-89 . -1125) T) ((-123 . -565) 109550) ((-117 . -565) 109482) ((-1197 . -160) T) ((-1086 . -341) 109461) ((-1080 . -341) 109440) ((-294 . -1018) T) ((-396 . -126) T) ((-291 . -1018) T) ((-385 . -37) 109392) ((-1049 . -97) T) ((-1157 . -659) 109284) ((-599 . -982) T) ((-297 . -136) 109263) ((-297 . -138) 109242) ((-130 . -1018) T) ((-110 . -1018) T) ((-795 . -97) T) ((-537 . -565) 109224) ((-525 . -566) 109123) ((-525 . -565) 109105) ((-468 . -565) 109087) ((-468 . -566) 109032) ((-460 . -23) T) ((-458 . -788) 108983) ((-462 . -587) 108965) ((-897 . -565) 108947) ((-198 . -587) 108929) ((-205 . -382) T) ((-607 . -593) 108913) ((-1085 . -853) 108892) ((-673 . -1030) T) ((-329 . -97) T) ((-759 . -788) T) ((-673 . -23) T) ((-321 . -981) 108837) ((-1072 . -1071) T) ((-1061 . -102) 108821) ((-1087 . -1030) T) ((-1086 . -1030) T) ((-487 . -966) 108805) ((-1080 . -1030) T) ((-1042 . -1030) T) ((-321 . -107) 108734) ((-934 . -1129) T) ((-122 . -1125) T) ((-847 . -1129) T) ((-635 . -265) NIL) ((-1172 . -565) 108716) ((-1087 . -23) T) ((-1086 . -23) T) ((-1080 . -23) T) ((-934 . -517) T) ((-1056 . -211) 108700) ((-847 . -517) T) ((-1042 . -23) T) ((-228 . -565) 108682) ((-996 . -1018) T) ((-740 . -126) T) ((-652 . -565) 108664) ((-294 . -659) 108574) ((-291 . -659) 108503) ((-640 . -565) 108485) ((-640 . -566) 108430) ((-385 . -378) 108414) ((-416 . -1018) T) ((-462 . -25) T) ((-462 . -21) T) ((-1036 . -1018) T) ((-198 . -25) T) ((-198 . -21) T) ((-654 . -389) 108398) ((-656 . -966) 108367) ((-1171 . -565) 108279) ((-1171 . -566) 108240) ((-1157 . -160) T) ((-225 . -33) T) ((-859 . -905) T) ((-1112 . -1125) T) ((-607 . -732) 108219) ((-607 . -735) 108198) ((-376 . -373) T) ((-494 . -97) 108176) ((-964 . -1018) T) ((-202 . -925) 108160) ((-477 . -97) T) ((-572 . -565) 108142) ((-44 . -788) NIL) ((-572 . -566) 108119) ((-964 . -562) 108094) ((-834 . -486) 108027) ((-321 . -975) T) ((-113 . -566) NIL) ((-113 . -565) 108009) ((-805 . -1125) T) ((-615 . -395) 107993) ((-615 . -1039) 107938) ((-473 . -142) 107920) ((-321 . -213) T) ((-321 . -223) T) ((-39 . -981) 107865) ((-805 . -817) 107849) ((-805 . -819) 107774) ((-654 . -982) T) ((-635 . -932) NIL) ((-3 . |UnionCategory|) T) ((-1155 . -46) 107744) ((-1134 . -46) 107721) ((-1055 . -940) 107692) ((-205 . -853) T) ((-39 . -107) 107621) ((-805 . -966) 107488) ((-1036 . -659) 107475) ((-1023 . -565) 107457) ((-1001 . -138) 107436) ((-1001 . -136) 107387) ((-934 . -341) T) ((-297 . -1114) 107353) ((-357 . -286) T) ((-297 . -1111) 107319) ((-294 . -160) 107298) ((-291 . -160) T) ((-933 . -211) 107275) ((-847 . -341) T) ((-538 . -1188) 107262) ((-489 . -1188) 107239) ((-337 . -138) 107218) ((-337 . -136) 107169) ((-331 . -138) 107148) ((-331 . -136) 107099) ((-560 . -1102) 107075) ((-323 . -138) 107054) ((-323 . -136) 107005) ((-297 . -34) 106971) ((-452 . -1102) 106950) ((0 . |EnumerationCategory|) T) ((-297 . -91) 106916) ((-357 . -951) T) ((-103 . -138) T) ((-103 . -136) NIL) ((-44 . -215) 106866) ((-599 . -1018) T) ((-560 . -102) 106813) ((-460 . -126) T) ((-452 . -102) 106763) ((-220 . -1030) 106694) ((-805 . -355) 106678) ((-805 . -316) 106662) ((-220 . -23) 106533) ((-986 . -853) T) ((-986 . -761) T) ((-538 . -346) T) ((-489 . -346) T) ((-329 . -1065) T) ((-305 . -33) T) ((-43 . -395) 106517) ((-806 . -1125) T) ((-368 . -686) 106501) ((-1182 . -486) 106434) ((-673 . -126) T) ((-1163 . -517) 106413) ((-1156 . -1129) 106392) ((-1156 . -517) 106343) ((-679 . -486) 106276) ((-1135 . -1129) 106255) ((-1135 . -517) 106206) ((-826 . -1018) T) ((-135 . -782) T) ((-1134 . -1125) 106185) ((-1134 . -819) 106058) ((-1134 . -817) 106028) ((-494 . -288) 105966) ((-1087 . -126) T) ((-132 . -486) NIL) ((-1086 . -126) T) ((-1080 . -126) T) ((-1042 . -126) T) ((-953 . -932) T) ((-329 . -37) 105931) ((-934 . -1030) T) ((-847 . -1030) T) ((-80 . -565) 105913) ((-39 . -975) T) ((-803 . -981) 105900) ((-934 . -23) T) ((-805 . -833) 105859) ((-642 . -97) T) ((-933 . -327) NIL) ((-556 . -1125) T) ((-902 . -23) T) ((-847 . -23) T) ((-803 . -107) 105844) ((-405 . -1030) T) ((-451 . -46) 105814) ((-128 . -97) T) ((-39 . -213) 105786) ((-39 . -223) T) ((-112 . -97) T) ((-551 . -517) 105765) ((-550 . -517) 105744) ((-635 . -565) 105726) ((-635 . -566) 105634) ((-294 . -486) 105600) ((-291 . -486) 105492) ((-1155 . -966) 105476) ((-1134 . -966) 105265) ((-929 . -389) 105249) ((-405 . -23) T) ((-1036 . -160) T) ((-1157 . -269) T) ((-599 . -659) 105219) ((-135 . -1018) T) ((-47 . -932) T) ((-385 . -211) 105203) ((-274 . -215) 105153) ((-804 . -853) T) ((-804 . -761) NIL) ((-798 . -788) T) ((-1134 . -316) 105123) ((-1134 . -355) 105093) ((-202 . -1037) 105077) ((-1171 . -267) 105054) ((-1120 . -593) 104979) ((-895 . -21) T) ((-895 . -25) T) ((-677 . -21) T) ((-677 . -25) T) ((-657 . -21) T) ((-657 . -25) T) ((-653 . -593) 104944) ((-430 . -21) T) ((-430 . -25) T) ((-317 . -97) T) ((-161 . -97) T) ((-929 . -982) T) ((-803 . -975) T) ((-715 . -97) T) ((-1156 . -341) 104923) ((-1155 . -833) 104829) ((-1135 . -341) 104808) ((-1134 . -833) 104659) ((-953 . -565) 104641) ((-385 . -769) 104594) ((-1087 . -466) 104560) ((-157 . -853) 104491) ((-1086 . -466) 104457) ((-1080 . -466) 104423) ((-654 . -1018) T) ((-1042 . -466) 104389) ((-537 . -981) 104376) ((-525 . -981) 104363) ((-468 . -981) 104328) ((-294 . -269) 104307) ((-291 . -269) T) ((-332 . -565) 104289) ((-396 . -25) T) ((-396 . -21) T) ((-94 . -265) 104268) ((-537 . -107) 104253) ((-525 . -107) 104238) ((-468 . -107) 104194) ((-1089 . -819) 104161) ((-834 . -464) 104145) ((-47 . -565) 104127) ((-47 . -566) 104072) ((-220 . -126) 103943) ((-1144 . -853) 103922) ((-757 . -1129) 103901) ((-964 . -486) 103745) ((-366 . -565) 103727) ((-757 . -517) 103658) ((-542 . -593) 103633) ((-243 . -46) 103605) ((-227 . -46) 103562) ((-497 . -481) 103539) ((-930 . -1125) T) ((-640 . -981) 103504) ((-1163 . -1030) T) ((-1156 . -1030) T) ((-1135 . -1030) T) ((-933 . -348) 103476) ((-108 . -346) T) ((-451 . -833) 103382) ((-1163 . -23) T) ((-1156 . -23) T) ((-837 . -565) 103364) ((-89 . -102) 103348) ((-1120 . -668) T) ((-838 . -788) 103299) ((-642 . -1065) T) ((-640 . -107) 103255) ((-1135 . -23) T) ((-551 . -1030) T) ((-550 . -1030) T) ((-654 . -659) 103084) ((-653 . -668) T) ((-1036 . -269) T) ((-934 . -126) T) ((-462 . -788) T) ((-902 . -126) T) ((-847 . -126) T) ((-740 . -25) T) ((-198 . -788) T) ((-740 . -21) T) ((-537 . -975) T) ((-525 . -975) T) ((-468 . -975) T) ((-551 . -23) T) ((-321 . -1188) 103061) ((-297 . -429) 103040) ((-317 . -288) 103027) ((-550 . -23) T) ((-405 . -126) T) ((-603 . -593) 103001) ((-225 . -940) 102985) ((-805 . -286) T) ((-1193 . -1183) 102969) ((-642 . -37) 102956) ((-525 . -213) T) ((-468 . -223) T) ((-468 . -213) T) ((-712 . -733) T) ((-712 . -736) T) ((-1064 . -215) 102906) ((-1007 . -842) 102885) ((-112 . -37) 102872) ((-191 . -741) T) ((-190 . -741) T) ((-189 . -741) T) ((-188 . -741) T) ((-805 . -951) 102851) ((-1182 . -464) 102835) ((-723 . -842) 102814) ((-721 . -842) 102793) ((-1099 . -1125) T) ((-431 . -842) 102772) ((-679 . -464) 102756) ((-1007 . -593) 102681) ((-723 . -593) 102606) ((-572 . -981) 102593) ((-455 . -1125) T) ((-321 . -346) T) ((-132 . -464) 102575) ((-721 . -593) 102500) ((-1055 . -1125) T) ((-438 . -593) 102471) ((-243 . -819) 102330) ((-227 . -819) NIL) ((-113 . -981) 102275) ((-431 . -593) 102200) ((-609 . -966) 102177) ((-572 . -107) 102162) ((-333 . -966) 102146) ((-330 . -966) 102130) ((-322 . -966) 102114) ((-243 . -966) 101960) ((-227 . -966) 101838) ((-113 . -107) 101767) ((-57 . -1125) T) ((-490 . -1125) T) ((-488 . -1125) T) ((-470 . -1125) T) ((-469 . -1125) T) ((-415 . -565) 101749) ((-412 . -565) 101731) ((-3 . -97) T) ((-956 . -1119) 101700) ((-774 . -97) T) ((-631 . -55) 101658) ((-640 . -975) T) ((-49 . -593) 101632) ((-268 . -429) T) ((-453 . -1119) 101601) ((0 . -97) T) ((-538 . -593) 101566) ((-489 . -593) 101511) ((-48 . -97) T) ((-843 . -966) 101498) ((-640 . -223) T) ((-1001 . -387) 101477) ((-673 . -587) 101425) ((-929 . -1018) T) ((-654 . -160) 101316) ((-462 . -923) 101298) ((-243 . -355) 101282) ((-227 . -355) 101266) ((-377 . -1018) T) ((-317 . -37) 101250) ((-955 . -97) 101228) ((-198 . -923) 101210) ((-161 . -37) 101142) ((-1155 . -286) 101121) ((-1134 . -286) 101100) ((-603 . -668) T) ((-94 . -565) 101082) ((-1080 . -587) 101034) ((-460 . -25) T) ((-460 . -21) T) ((-1134 . -951) 100987) ((-572 . -975) T) ((-357 . -382) T) ((-368 . -97) T) ((-243 . -833) 100933) ((-227 . -833) 100910) ((-113 . -975) T) ((-757 . -1030) T) ((-1007 . -668) T) ((-572 . -213) 100889) ((-570 . -97) T) ((-723 . -668) T) ((-721 . -668) T) ((-391 . -1030) T) ((-113 . -223) T) ((-39 . -346) NIL) ((-113 . -213) NIL) ((-431 . -668) T) ((-757 . -23) T) ((-673 . -25) T) ((-673 . -21) T) ((-644 . -788) T) ((-998 . -265) 100868) ((-76 . -374) T) ((-76 . -373) T) ((-635 . -981) 100818) ((-1163 . -126) T) ((-1156 . -126) T) ((-1135 . -126) T) ((-1056 . -389) 100802) ((-583 . -345) 100734) ((-559 . -345) 100666) ((-1070 . -1063) 100650) ((-98 . -1018) 100628) ((-1087 . -25) T) ((-1087 . -21) T) ((-1086 . -21) T) ((-929 . -659) 100576) ((-203 . -593) 100543) ((-635 . -107) 100477) ((-49 . -668) T) ((-1086 . -25) T) ((-329 . -327) T) ((-1080 . -21) T) ((-1001 . -429) 100428) ((-1080 . -25) T) ((-654 . -486) 100375) ((-538 . -668) T) ((-489 . -668) T) ((-1042 . -21) T) ((-1042 . -25) T) ((-551 . -126) T) ((-550 . -126) T) ((-337 . -429) T) ((-331 . -429) T) ((-323 . -429) T) ((-451 . -286) 100354) ((-291 . -265) 100289) ((-103 . -429) T) ((-77 . -418) T) ((-77 . -373) T) ((-454 . -97) T) ((-1197 . -565) 100271) ((-1197 . -566) 100253) ((-1001 . -380) 100232) ((-964 . -464) 100163) ((-525 . -736) T) ((-525 . -733) T) ((-987 . -215) 100109) ((-337 . -380) 100060) ((-331 . -380) 100011) ((-323 . -380) 99962) ((-1184 . -1030) T) ((-1184 . -23) T) ((-1173 . -97) T) ((-162 . -565) 99944) ((-1056 . -982) T) ((-615 . -686) 99928) ((-1091 . -136) 99907) ((-1091 . -138) 99886) ((-1060 . -1018) T) ((-1060 . -994) 99855) ((-67 . -1125) T) ((-953 . -981) 99792) ((-799 . -982) T) ((-220 . -587) 99700) ((-635 . -975) T) ((-332 . -981) 99645) ((-59 . -1125) T) ((-953 . -107) 99561) ((-834 . -565) 99493) ((-635 . -223) T) ((-635 . -213) NIL) ((-781 . -786) 99472) ((-640 . -736) T) ((-640 . -733) T) ((-933 . -389) 99449) ((-332 . -107) 99378) ((-357 . -853) T) ((-385 . -786) 99357) ((-654 . -269) 99268) ((-203 . -668) T) ((-1163 . -466) 99234) ((-1156 . -466) 99200) ((-1135 . -466) 99166) ((-294 . -932) 99145) ((-202 . -1018) 99123) ((-297 . -904) 99085) ((-100 . -97) T) ((-47 . -981) 99050) ((-1193 . -97) T) ((-359 . -97) T) ((-47 . -107) 99006) ((-934 . -587) 98988) ((-1157 . -565) 98970) ((-497 . -97) T) ((-473 . -97) T) ((-1049 . -1050) 98954) ((-143 . -1178) 98938) ((-225 . -1125) T) ((-1085 . -1129) 98917) ((-1041 . -1129) 98896) ((-220 . -21) 98807) ((-220 . -25) 98659) ((-123 . -115) 98643) ((-117 . -115) 98627) ((-43 . -686) 98611) ((-1085 . -517) 98522) ((-1041 . -517) 98453) ((-964 . -265) 98428) ((-757 . -126) T) ((-113 . -736) NIL) ((-113 . -733) NIL) ((-333 . -286) T) ((-330 . -286) T) ((-322 . -286) T) ((-1013 . -1125) T) ((-230 . -1030) 98359) ((-229 . -1030) 98290) ((-953 . -975) T) ((-933 . -982) T) ((-321 . -593) 98235) ((-570 . -37) 98219) ((-1182 . -565) 98181) ((-1182 . -566) 98142) ((-998 . -565) 98124) ((-953 . -223) T) ((-332 . -975) T) ((-756 . -1178) 98094) ((-230 . -23) T) ((-229 . -23) T) ((-918 . -565) 98076) ((-679 . -566) 98037) ((-679 . -565) 98019) ((-740 . -788) 97998) ((-929 . -486) 97910) ((-332 . -213) T) ((-332 . -223) T) ((-1073 . -142) 97857) ((-934 . -25) T) ((-132 . -565) 97839) ((-132 . -566) 97798) ((-843 . -286) T) ((-934 . -21) T) ((-902 . -25) T) ((-847 . -21) T) ((-847 . -25) T) ((-405 . -21) T) ((-405 . -25) T) ((-781 . -389) 97782) ((-47 . -975) T) ((-1191 . -1183) 97766) ((-1189 . -1183) 97750) ((-964 . -558) 97725) ((-294 . -566) 97586) ((-294 . -565) 97568) ((-291 . -566) NIL) ((-291 . -565) 97550) ((-47 . -223) T) ((-47 . -213) T) ((-599 . -265) 97511) ((-511 . -215) 97461) ((-130 . -565) 97443) ((-110 . -565) 97425) ((-454 . -37) 97390) ((-1193 . -1190) 97369) ((-1184 . -126) T) ((-1192 . -982) T) ((-1003 . -97) T) ((-86 . -1125) T) ((-473 . -288) NIL) ((-930 . -102) 97353) ((-822 . -1018) T) ((-818 . -1018) T) ((-1171 . -596) 97337) ((-1171 . -351) 97321) ((-305 . -1125) T) ((-548 . -788) T) ((-1056 . -1018) T) ((-1056 . -978) 97261) ((-98 . -486) 97194) ((-860 . -565) 97176) ((-321 . -668) T) ((-30 . -565) 97158) ((-799 . -1018) T) ((-781 . -982) 97137) ((-39 . -593) 97082) ((-205 . -1129) T) ((-385 . -982) T) ((-1072 . -142) 97064) ((-929 . -269) 97015) ((-205 . -517) T) ((-297 . -1152) 96999) ((-297 . -1149) 96969) ((-1099 . -1102) 96948) ((-996 . -565) 96930) ((-592 . -142) 96914) ((-580 . -142) 96860) ((-1099 . -102) 96810) ((-455 . -1102) 96789) ((-462 . -138) T) ((-462 . -136) NIL) ((-1036 . -566) 96704) ((-416 . -565) 96686) ((-198 . -138) T) ((-198 . -136) NIL) ((-1036 . -565) 96668) ((-125 . -97) T) ((-51 . -97) T) ((-1135 . -587) 96620) ((-455 . -102) 96570) ((-924 . -23) T) ((-1193 . -37) 96540) ((-1085 . -1030) T) ((-1041 . -1030) T) ((-986 . -1129) T) ((-792 . -1030) T) ((-885 . -1129) 96519) ((-457 . -1129) 96498) ((-673 . -788) 96477) ((-986 . -517) T) ((-885 . -517) 96408) ((-1085 . -23) T) ((-1041 . -23) T) ((-792 . -23) T) ((-457 . -517) 96339) ((-1056 . -659) 96271) ((-1060 . -486) 96204) ((-964 . -566) NIL) ((-964 . -565) 96186) ((-799 . -659) 96156) ((-1120 . -46) 96125) ((-229 . -126) T) ((-230 . -126) T) ((-1022 . -1018) T) ((-933 . -1018) T) ((-60 . -565) 96107) ((-1080 . -788) NIL) ((-953 . -733) T) ((-953 . -736) T) ((-1197 . -981) 96094) ((-1197 . -107) 96079) ((-803 . -593) 96066) ((-1163 . -25) T) ((-1163 . -21) T) ((-1156 . -21) T) ((-1156 . -25) T) ((-1135 . -21) T) ((-1135 . -25) T) ((-956 . -142) 96050) ((-805 . -761) 96029) ((-805 . -853) T) ((-654 . -265) 95956) ((-551 . -21) T) ((-551 . -25) T) ((-550 . -21) T) ((-39 . -668) T) ((-202 . -486) 95889) ((-550 . -25) T) ((-453 . -142) 95873) ((-440 . -142) 95857) ((-854 . -668) T) ((-712 . -734) T) ((-712 . -735) T) ((-475 . -1018) T) ((-712 . -668) T) ((-205 . -341) T) ((-1070 . -1018) 95835) ((-804 . -1129) T) ((-599 . -565) 95817) ((-804 . -517) T) ((-635 . -346) NIL) ((-337 . -1178) 95801) ((-615 . -97) T) ((-331 . -1178) 95785) ((-323 . -1178) 95769) ((-1192 . -1018) T) ((-491 . -788) 95748) ((-758 . -429) 95727) ((-972 . -1018) T) ((-972 . -994) 95656) ((-956 . -907) 95625) ((-760 . -1030) T) ((-933 . -659) 95570) ((-364 . -1030) T) ((-453 . -907) 95539) ((-440 . -907) 95508) ((-106 . -142) 95490) ((-71 . -565) 95472) ((-826 . -565) 95454) ((-1001 . -666) 95433) ((-1197 . -975) T) ((-757 . -587) 95381) ((-273 . -982) 95324) ((-157 . -1129) 95229) ((-205 . -1030) T) ((-302 . -23) T) ((-1080 . -923) 95181) ((-781 . -1018) T) ((-1042 . -682) 95160) ((-1157 . -981) 95065) ((-1155 . -853) 95044) ((-803 . -668) T) ((-157 . -517) 94955) ((-1134 . -853) 94934) ((-537 . -593) 94921) ((-385 . -1018) T) ((-525 . -593) 94908) ((-242 . -1018) T) ((-468 . -593) 94873) ((-205 . -23) T) ((-1134 . -761) 94826) ((-1191 . -97) T) ((-332 . -1188) 94803) ((-1189 . -97) T) ((-1157 . -107) 94695) ((-135 . -565) 94677) ((-924 . -126) T) ((-43 . -97) T) ((-220 . -788) 94628) ((-1144 . -1129) 94607) ((-98 . -464) 94591) ((-1192 . -659) 94561) ((-1007 . -46) 94522) ((-986 . -1030) T) ((-885 . -1030) T) ((-123 . -33) T) ((-117 . -33) T) ((-723 . -46) 94499) ((-721 . -46) 94471) ((-1144 . -517) 94382) ((-332 . -346) T) ((-457 . -1030) T) ((-1085 . -126) T) ((-1041 . -126) T) ((-431 . -46) 94361) ((-804 . -341) T) ((-792 . -126) T) ((-143 . -97) T) ((-986 . -23) T) ((-885 . -23) T) ((-532 . -517) T) ((-757 . -25) T) ((-757 . -21) T) ((-1056 . -486) 94294) ((-542 . -966) 94278) ((-457 . -23) T) ((-329 . -982) T) ((-1120 . -833) 94259) ((-615 . -288) 94197) ((-1031 . -1178) 94167) ((-640 . -593) 94132) ((-933 . -160) T) ((-895 . -136) 94111) ((-583 . -1018) T) ((-559 . -1018) T) ((-895 . -138) 94090) ((-934 . -788) T) ((-677 . -138) 94069) ((-677 . -136) 94048) ((-902 . -788) T) ((-451 . -853) 94027) ((-294 . -981) 93937) ((-291 . -981) 93866) ((-929 . -265) 93824) ((-385 . -659) 93776) ((-124 . -788) T) ((-642 . -786) T) ((-1157 . -975) T) ((-294 . -107) 93672) ((-291 . -107) 93585) ((-896 . -97) T) ((-756 . -97) 93396) ((-654 . -566) NIL) ((-654 . -565) 93378) ((-603 . -966) 93276) ((-1157 . -304) 93220) ((-964 . -267) 93195) ((-537 . -668) T) ((-525 . -735) T) ((-157 . -341) 93146) ((-525 . -732) T) ((-525 . -668) T) ((-468 . -668) T) ((-1060 . -464) 93130) ((-1007 . -819) NIL) ((-804 . -1030) T) ((-113 . -842) NIL) ((-1191 . -1190) 93106) ((-1189 . -1190) 93085) ((-723 . -819) NIL) ((-721 . -819) 92944) ((-1184 . -25) T) ((-1184 . -21) T) ((-1123 . -97) 92922) ((-1024 . -373) T) ((-572 . -593) 92909) ((-431 . -819) NIL) ((-619 . -97) 92887) ((-1007 . -966) 92716) ((-804 . -23) T) ((-723 . -966) 92577) ((-721 . -966) 92436) ((-113 . -593) 92381) ((-431 . -966) 92259) ((-594 . -966) 92243) ((-575 . -97) T) ((-202 . -464) 92227) ((-1171 . -33) T) ((-583 . -659) 92211) ((-559 . -659) 92195) ((-615 . -37) 92155) ((-297 . -97) T) ((-83 . -565) 92137) ((-49 . -966) 92121) ((-1036 . -981) 92108) ((-1007 . -355) 92092) ((-58 . -55) 92054) ((-640 . -735) T) ((-640 . -732) T) ((-538 . -966) 92041) ((-489 . -966) 92018) ((-640 . -668) T) ((-294 . -975) 91909) ((-302 . -126) T) ((-291 . -975) T) ((-157 . -1030) T) ((-723 . -355) 91893) ((-721 . -355) 91877) ((-44 . -142) 91827) ((-934 . -923) 91809) ((-431 . -355) 91793) ((-385 . -160) T) ((-294 . -223) 91772) ((-291 . -223) T) ((-291 . -213) NIL) ((-273 . -1018) 91555) ((-205 . -126) T) ((-1036 . -107) 91540) ((-157 . -23) T) ((-740 . -138) 91519) ((-740 . -136) 91498) ((-229 . -587) 91406) ((-230 . -587) 91314) ((-297 . -263) 91280) ((-1070 . -486) 91213) ((-1049 . -1018) T) ((-205 . -984) T) ((-756 . -288) 91151) ((-1007 . -833) 91086) ((-723 . -833) 91029) ((-721 . -833) 91013) ((-1191 . -37) 90983) ((-1189 . -37) 90953) ((-1144 . -1030) T) ((-793 . -1030) T) ((-431 . -833) 90930) ((-795 . -1018) T) ((-1144 . -23) T) ((-532 . -1030) T) ((-793 . -23) T) ((-572 . -668) T) ((-333 . -853) T) ((-330 . -853) T) ((-268 . -97) T) ((-322 . -853) T) ((-986 . -126) T) ((-885 . -126) T) ((-113 . -735) NIL) ((-113 . -732) NIL) ((-113 . -668) T) ((-635 . -842) NIL) ((-972 . -486) 90831) ((-457 . -126) T) ((-532 . -23) T) ((-619 . -288) 90769) ((-583 . -703) T) ((-559 . -703) T) ((-1135 . -788) NIL) ((-933 . -269) T) ((-230 . -21) T) ((-635 . -593) 90719) ((-329 . -1018) T) ((-230 . -25) T) ((-229 . -21) T) ((-229 . -25) T) ((-143 . -37) 90703) ((-2 . -97) T) ((-843 . -853) T) ((-458 . -1178) 90673) ((-203 . -966) 90650) ((-1036 . -975) T) ((-653 . -286) T) ((-273 . -659) 90592) ((-642 . -982) T) ((-462 . -429) T) ((-385 . -486) 90504) ((-198 . -429) T) ((-1036 . -213) T) ((-274 . -142) 90454) ((-929 . -566) 90415) ((-929 . -565) 90397) ((-920 . -565) 90379) ((-112 . -982) T) ((-599 . -981) 90363) ((-205 . -466) T) ((-377 . -565) 90345) ((-377 . -566) 90322) ((-979 . -1178) 90292) ((-599 . -107) 90271) ((-1056 . -464) 90255) ((-756 . -37) 90225) ((-61 . -418) T) ((-61 . -373) T) ((-1073 . -97) T) ((-804 . -126) T) ((-459 . -97) 90203) ((-1197 . -346) T) ((-1001 . -97) T) ((-985 . -97) T) ((-329 . -659) 90148) ((-673 . -138) 90127) ((-673 . -136) 90106) ((-953 . -593) 90043) ((-494 . -1018) 90021) ((-337 . -97) T) ((-331 . -97) T) ((-323 . -97) T) ((-103 . -97) T) ((-477 . -1018) T) ((-332 . -593) 89966) ((-1085 . -587) 89914) ((-1041 . -587) 89862) ((-363 . -481) 89841) ((-774 . -786) 89820) ((-357 . -1129) T) ((-635 . -668) T) ((-317 . -982) T) ((-1135 . -923) 89772) ((-161 . -982) T) ((-98 . -565) 89704) ((-1087 . -136) 89683) ((-1087 . -138) 89662) ((-357 . -517) T) ((-1086 . -138) 89641) ((-1086 . -136) 89620) ((-1080 . -136) 89527) ((-385 . -269) T) ((-1080 . -138) 89434) ((-1042 . -138) 89413) ((-1042 . -136) 89392) ((-297 . -37) 89233) ((-157 . -126) T) ((-291 . -736) NIL) ((-291 . -733) NIL) ((-599 . -975) T) ((-47 . -593) 89198) ((-924 . -21) T) ((-123 . -940) 89182) ((-117 . -940) 89166) ((-924 . -25) T) ((-834 . -115) 89150) ((-1072 . -97) T) ((-757 . -788) 89129) ((-1144 . -126) T) ((-1085 . -25) T) ((-1085 . -21) T) ((-793 . -126) T) ((-1041 . -25) T) ((-1041 . -21) T) ((-792 . -25) T) ((-792 . -21) T) ((-723 . -286) 89108) ((-592 . -97) 89086) ((-580 . -97) T) ((-1073 . -288) 88881) ((-532 . -126) T) ((-570 . -786) 88860) ((-1070 . -464) 88844) ((-1064 . -142) 88794) ((-1060 . -565) 88756) ((-1060 . -566) 88717) ((-953 . -732) T) ((-953 . -735) T) ((-953 . -668) T) ((-459 . -288) 88655) ((-430 . -395) 88625) ((-329 . -160) T) ((-268 . -37) 88612) ((-253 . -97) T) ((-252 . -97) T) ((-251 . -97) T) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-321 . -966) 88589) ((-194 . -97) T) ((-193 . -97) T) ((-191 . -97) T) ((-190 . -97) T) ((-189 . -97) T) ((-188 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-654 . -981) 88412) ((-183 . -97) T) ((-182 . -97) T) ((-181 . -97) T) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-332 . -668) T) ((-654 . -107) 88221) ((-615 . -211) 88205) ((-538 . -286) T) ((-489 . -286) T) ((-273 . -486) 88154) ((-103 . -288) NIL) ((-70 . -373) T) ((-1031 . -97) 87965) ((-774 . -389) 87949) ((-1036 . -736) T) ((-1036 . -733) T) ((-642 . -1018) T) ((-357 . -341) T) ((-157 . -466) 87927) ((-202 . -565) 87859) ((-128 . -1018) T) ((-112 . -1018) T) ((-47 . -668) T) ((-972 . -464) 87824) ((-132 . -403) 87806) ((-132 . -346) T) ((-956 . -97) T) ((-484 . -481) 87785) ((-453 . -97) T) ((-440 . -97) T) ((-963 . -1030) T) ((-1087 . -34) 87751) ((-1087 . -91) 87717) ((-1087 . -1114) 87683) ((-1087 . -1111) 87649) ((-1072 . -288) NIL) ((-87 . -374) T) ((-87 . -373) T) ((-1001 . -1065) 87628) ((-1086 . -1111) 87594) ((-1086 . -1114) 87560) ((-963 . -23) T) ((-1086 . -91) 87526) ((-532 . -466) T) ((-1086 . -34) 87492) ((-1080 . -1111) 87458) ((-1080 . -1114) 87424) ((-1080 . -91) 87390) ((-339 . -1030) T) ((-337 . -1065) 87369) ((-331 . -1065) 87348) ((-323 . -1065) 87327) ((-1080 . -34) 87293) ((-1042 . -34) 87259) ((-1042 . -91) 87225) ((-103 . -1065) T) ((-1042 . -1114) 87191) ((-774 . -982) 87170) ((-592 . -288) 87108) ((-580 . -288) 86959) ((-1042 . -1111) 86925) ((-654 . -975) T) ((-986 . -587) 86907) ((-1001 . -37) 86775) ((-885 . -587) 86723) ((-934 . -138) T) ((-934 . -136) NIL) ((-357 . -1030) T) ((-302 . -25) T) ((-300 . -23) T) ((-876 . -788) 86702) ((-654 . -304) 86679) ((-457 . -587) 86627) ((-39 . -966) 86517) ((-642 . -659) 86504) ((-654 . -213) T) ((-317 . -1018) T) ((-161 . -1018) T) ((-309 . -788) T) ((-396 . -429) 86454) ((-357 . -23) T) ((-337 . -37) 86419) ((-331 . -37) 86384) ((-323 . -37) 86349) ((-78 . -418) T) ((-78 . -373) T) ((-205 . -25) T) ((-205 . -21) T) ((-775 . -1030) T) ((-103 . -37) 86299) ((-768 . -1030) T) ((-715 . -1018) T) ((-112 . -659) 86286) ((-616 . -966) 86270) ((-564 . -97) T) ((-775 . -23) T) ((-768 . -23) T) ((-1070 . -265) 86247) ((-1031 . -288) 86185) ((-1020 . -215) 86169) ((-62 . -374) T) ((-62 . -373) T) ((-106 . -97) T) ((-39 . -355) 86146) ((-598 . -790) 86130) ((-986 . -21) T) ((-986 . -25) T) ((-756 . -211) 86100) ((-885 . -25) T) ((-885 . -21) T) ((-570 . -982) T) ((-457 . -25) T) ((-457 . -21) T) ((-956 . -288) 86038) ((-822 . -565) 86020) ((-818 . -565) 86002) ((-230 . -788) 85953) ((-229 . -788) 85904) ((-494 . -486) 85837) ((-804 . -587) 85814) ((-453 . -288) 85752) ((-440 . -288) 85690) ((-329 . -269) T) ((-1070 . -1159) 85674) ((-1056 . -565) 85636) ((-1056 . -566) 85597) ((-1054 . -97) T) ((-929 . -981) 85493) ((-39 . -833) 85445) ((-1070 . -558) 85422) ((-1197 . -593) 85409) ((-987 . -142) 85355) ((-805 . -1129) T) ((-929 . -107) 85237) ((-317 . -659) 85221) ((-799 . -565) 85203) ((-161 . -659) 85135) ((-385 . -265) 85093) ((-805 . -517) T) ((-103 . -378) 85075) ((-82 . -362) T) ((-82 . -373) T) ((-642 . -160) T) ((-94 . -668) T) ((-458 . -97) 84886) ((-94 . -450) T) ((-112 . -160) T) ((-1031 . -37) 84856) ((-157 . -587) 84804) ((-979 . -97) T) ((-804 . -25) T) ((-756 . -218) 84783) ((-804 . -21) T) ((-759 . -97) T) ((-392 . -97) T) ((-363 . -97) T) ((-106 . -288) NIL) ((-207 . -97) 84761) ((-123 . -1125) T) ((-117 . -1125) T) ((-963 . -126) T) ((-615 . -345) 84745) ((-929 . -975) T) ((-1144 . -587) 84693) ((-1022 . -565) 84675) ((-933 . -565) 84657) ((-487 . -23) T) ((-482 . -23) T) ((-321 . -286) T) ((-480 . -23) T) ((-300 . -126) T) ((-3 . -1018) T) ((-933 . -566) 84641) ((-929 . -223) 84620) ((-929 . -213) 84599) ((-1197 . -668) T) ((-1163 . -136) 84578) ((-774 . -1018) T) ((-1163 . -138) 84557) ((-1156 . -138) 84536) ((-1156 . -136) 84515) ((-1155 . -1129) 84494) ((-1135 . -136) 84401) ((-1135 . -138) 84308) ((-1134 . -1129) 84287) ((-357 . -126) T) ((-525 . -819) 84269) ((0 . -1018) T) ((-161 . -160) T) ((-157 . -21) T) ((-157 . -25) T) ((-48 . -1018) T) ((-1157 . -593) 84174) ((-1155 . -517) 84125) ((-656 . -1030) T) ((-1134 . -517) 84076) ((-525 . -966) 84058) ((-550 . -138) 84037) ((-550 . -136) 84016) ((-468 . -966) 83959) ((-85 . -362) T) ((-85 . -373) T) ((-805 . -341) T) ((-775 . -126) T) ((-768 . -126) T) ((-656 . -23) T) ((-475 . -565) 83941) ((-1193 . -982) T) ((-357 . -984) T) ((-955 . -1018) 83919) ((-834 . -33) T) ((-458 . -288) 83857) ((-1070 . -566) 83818) ((-1070 . -565) 83750) ((-1085 . -788) 83729) ((-44 . -97) T) ((-1041 . -788) 83708) ((-758 . -97) T) ((-1144 . -25) T) ((-1144 . -21) T) ((-793 . -25) T) ((-43 . -345) 83692) ((-793 . -21) T) ((-673 . -429) 83643) ((-1192 . -565) 83625) ((-532 . -25) T) ((-532 . -21) T) ((-368 . -1018) T) ((-979 . -288) 83563) ((-570 . -1018) T) ((-640 . -819) 83545) ((-1171 . -1125) T) ((-207 . -288) 83483) ((-135 . -346) T) ((-972 . -566) 83425) ((-972 . -565) 83368) ((-291 . -842) NIL) ((-640 . -966) 83313) ((-653 . -853) T) ((-451 . -1129) 83292) ((-1086 . -429) 83271) ((-1080 . -429) 83250) ((-308 . -97) T) ((-805 . -1030) T) ((-294 . -593) 83072) ((-291 . -593) 83001) ((-451 . -517) 82952) ((-317 . -486) 82918) ((-511 . -142) 82868) ((-39 . -286) T) ((-781 . -565) 82850) ((-642 . -269) T) ((-805 . -23) T) ((-357 . -466) T) ((-1001 . -211) 82820) ((-484 . -97) T) ((-385 . -566) 82628) ((-385 . -565) 82610) ((-242 . -565) 82592) ((-112 . -269) T) ((-1157 . -668) T) ((-1155 . -341) 82571) ((-1134 . -341) 82550) ((-1182 . -33) T) ((-113 . -1125) T) ((-103 . -211) 82532) ((-1091 . -97) T) ((-454 . -1018) T) ((-494 . -464) 82516) ((-679 . -33) T) ((-458 . -37) 82486) ((-132 . -33) T) ((-113 . -817) 82463) ((-113 . -819) NIL) ((-572 . -966) 82348) ((-591 . -788) 82327) ((-1181 . -97) T) ((-274 . -97) T) ((-654 . -346) 82306) ((-113 . -966) 82283) ((-368 . -659) 82267) ((-570 . -659) 82251) ((-44 . -288) 82055) ((-757 . -136) 82034) ((-757 . -138) 82013) ((-1192 . -360) 81992) ((-760 . -788) T) ((-1173 . -1018) T) ((-1073 . -209) 81939) ((-364 . -788) 81918) ((-1163 . -1114) 81884) ((-1163 . -1111) 81850) ((-1156 . -1111) 81816) ((-487 . -126) T) ((-1156 . -1114) 81782) ((-1135 . -1111) 81748) ((-1135 . -1114) 81714) ((-1163 . -34) 81680) ((-1163 . -91) 81646) ((-583 . -565) 81615) ((-559 . -565) 81584) ((-205 . -788) T) ((-1156 . -91) 81550) ((-1156 . -34) 81516) ((-1155 . -1030) T) ((-1036 . -593) 81503) ((-1135 . -91) 81469) ((-1134 . -1030) T) ((-548 . -142) 81451) ((-1001 . -327) 81430) ((-113 . -355) 81407) ((-113 . -316) 81384) ((-161 . -269) T) ((-1135 . -34) 81350) ((-803 . -286) T) ((-291 . -735) NIL) ((-291 . -732) NIL) ((-294 . -668) 81200) ((-291 . -668) T) ((-451 . -341) 81179) ((-337 . -327) 81158) ((-331 . -327) 81137) ((-323 . -327) 81116) ((-294 . -450) 81095) ((-1155 . -23) T) ((-1134 . -23) T) ((-660 . -1030) T) ((-656 . -126) T) ((-598 . -97) T) ((-454 . -659) 81060) ((-44 . -261) 81010) ((-100 . -1018) T) ((-66 . -565) 80992) ((-798 . -97) T) ((-572 . -833) 80951) ((-1193 . -1018) T) ((-359 . -1018) T) ((-80 . -1125) T) ((-986 . -788) T) ((-885 . -788) 80930) ((-113 . -833) NIL) ((-723 . -853) 80909) ((-655 . -788) T) ((-497 . -1018) T) ((-473 . -1018) T) ((-333 . -1129) T) ((-330 . -1129) T) ((-322 . -1129) T) ((-243 . -1129) 80888) ((-227 . -1129) 80867) ((-1031 . -211) 80837) ((-457 . -788) 80816) ((-1056 . -981) 80800) ((-368 . -703) T) ((-1072 . -769) T) ((-635 . -1125) T) ((-333 . -517) T) ((-330 . -517) T) ((-322 . -517) T) ((-243 . -517) 80731) ((-227 . -517) 80662) ((-1056 . -107) 80641) ((-430 . -686) 80611) ((-799 . -981) 80581) ((-758 . -37) 80523) ((-635 . -817) 80505) ((-635 . -819) 80487) ((-274 . -288) 80291) ((-843 . -1129) T) ((-615 . -389) 80275) ((-799 . -107) 80240) ((-635 . -966) 80185) ((-934 . -429) T) ((-843 . -517) T) ((-538 . -853) T) ((-451 . -1030) T) ((-489 . -853) T) ((-1070 . -267) 80162) ((-847 . -429) T) ((-63 . -565) 80144) ((-580 . -209) 80090) ((-451 . -23) T) ((-1036 . -735) T) ((-805 . -126) T) ((-1036 . -732) T) ((-1184 . -1186) 80069) ((-1036 . -668) T) ((-599 . -593) 80043) ((-273 . -565) 79785) ((-964 . -33) T) ((-756 . -786) 79764) ((-537 . -286) T) ((-525 . -286) T) ((-468 . -286) T) ((-1193 . -659) 79734) ((-635 . -355) 79716) ((-635 . -316) 79698) ((-454 . -160) T) ((-359 . -659) 79668) ((-804 . -788) NIL) ((-525 . -951) T) ((-468 . -951) T) ((-1049 . -565) 79650) ((-1031 . -218) 79629) ((-195 . -97) T) ((-1064 . -97) T) ((-69 . -565) 79611) ((-1056 . -975) T) ((-1091 . -37) 79508) ((-795 . -565) 79490) ((-525 . -510) T) ((-615 . -982) T) ((-673 . -882) 79443) ((-1056 . -213) 79422) ((-1003 . -1018) T) ((-963 . -25) T) ((-963 . -21) T) ((-933 . -981) 79367) ((-838 . -97) T) ((-799 . -975) T) ((-635 . -833) NIL) ((-333 . -307) 79351) ((-333 . -341) T) ((-330 . -307) 79335) ((-330 . -341) T) ((-322 . -307) 79319) ((-322 . -341) T) ((-462 . -97) T) ((-1181 . -37) 79289) ((-494 . -629) 79239) ((-198 . -97) T) ((-953 . -966) 79121) ((-933 . -107) 79050) ((-1087 . -904) 79019) ((-1086 . -904) 78981) ((-491 . -142) 78965) ((-1001 . -348) 78944) ((-329 . -565) 78926) ((-300 . -21) T) ((-332 . -966) 78903) ((-300 . -25) T) ((-1080 . -904) 78872) ((-1042 . -904) 78839) ((-74 . -565) 78821) ((-640 . -286) T) ((-157 . -788) 78800) ((-843 . -341) T) ((-357 . -25) T) ((-357 . -21) T) ((-843 . -307) 78787) ((-84 . -565) 78769) ((-640 . -951) T) ((-620 . -788) T) ((-1155 . -126) T) ((-1134 . -126) T) ((-834 . -940) 78753) ((-775 . -21) T) ((-47 . -966) 78696) ((-775 . -25) T) ((-768 . -25) T) ((-768 . -21) T) ((-1191 . -982) T) ((-1189 . -982) T) ((-599 . -668) T) ((-1192 . -981) 78680) ((-1144 . -788) 78659) ((-756 . -389) 78628) ((-98 . -115) 78612) ((-125 . -1018) T) ((-51 . -1018) T) ((-859 . -565) 78594) ((-804 . -923) 78571) ((-764 . -97) T) ((-1192 . -107) 78550) ((-598 . -37) 78520) ((-532 . -788) T) ((-333 . -1030) T) ((-330 . -1030) T) ((-322 . -1030) T) ((-243 . -1030) T) ((-227 . -1030) T) ((-572 . -286) 78499) ((-1064 . -288) 78303) ((-609 . -23) T) ((-458 . -211) 78273) ((-143 . -982) T) ((-333 . -23) T) ((-330 . -23) T) ((-322 . -23) T) ((-113 . -286) T) ((-243 . -23) T) ((-227 . -23) T) ((-933 . -975) T) ((-654 . -842) 78252) ((-933 . -213) 78224) ((-933 . -223) T) ((-113 . -951) NIL) ((-843 . -1030) T) ((-1156 . -429) 78203) ((-1135 . -429) 78182) ((-494 . -565) 78114) ((-654 . -593) 78039) ((-385 . -981) 77991) ((-477 . -565) 77973) ((-843 . -23) T) ((-462 . -288) NIL) ((-451 . -126) T) ((-198 . -288) NIL) ((-385 . -107) 77911) ((-756 . -982) 77842) ((-679 . -1016) 77826) ((-1155 . -466) 77792) ((-1134 . -466) 77758) ((-454 . -269) T) ((-132 . -1016) 77740) ((-124 . -142) 77722) ((-1192 . -975) T) ((-987 . -97) T) ((-473 . -486) NIL) ((-644 . -97) T) ((-458 . -218) 77701) ((-1085 . -136) 77680) ((-1085 . -138) 77659) ((-1041 . -138) 77638) ((-1041 . -136) 77617) ((-583 . -981) 77601) ((-559 . -981) 77585) ((-615 . -1018) T) ((-615 . -978) 77525) ((-1087 . -1162) 77509) ((-1087 . -1149) 77486) ((-462 . -1065) T) ((-1086 . -1154) 77447) ((-1086 . -1149) 77417) ((-1086 . -1152) 77401) ((-198 . -1065) T) ((-321 . -853) T) ((-759 . -245) 77385) ((-583 . -107) 77364) ((-559 . -107) 77343) ((-1080 . -1133) 77304) ((-781 . -975) 77283) ((-1080 . -1149) 77260) ((-487 . -25) T) ((-468 . -281) T) ((-483 . -23) T) ((-482 . -25) T) ((-480 . -25) T) ((-479 . -23) T) ((-1080 . -1131) 77244) ((-385 . -975) T) ((-297 . -982) T) ((-635 . -286) T) ((-103 . -786) T) ((-385 . -223) T) ((-385 . -213) 77223) ((-654 . -668) T) ((-462 . -37) 77173) ((-198 . -37) 77123) ((-451 . -466) 77089) ((-1072 . -1058) T) ((-1019 . -97) T) ((-642 . -565) 77071) ((-642 . -566) 76986) ((-656 . -21) T) ((-656 . -25) T) ((-128 . -565) 76968) ((-112 . -565) 76950) ((-146 . -25) T) ((-1191 . -1018) T) ((-805 . -587) 76898) ((-1189 . -1018) T) ((-895 . -97) T) ((-677 . -97) T) ((-657 . -97) T) ((-430 . -97) T) ((-757 . -429) 76849) ((-43 . -1018) T) ((-1008 . -788) T) ((-609 . -126) T) ((-987 . -288) 76700) ((-615 . -659) 76684) ((-268 . -982) T) ((-333 . -126) T) ((-330 . -126) T) ((-322 . -126) T) ((-243 . -126) T) ((-227 . -126) T) ((-396 . -97) T) ((-143 . -1018) T) ((-44 . -209) 76634) ((-890 . -788) 76613) ((-929 . -593) 76551) ((-220 . -1178) 76521) ((-953 . -286) T) ((-273 . -981) 76443) ((-843 . -126) T) ((-39 . -853) T) ((-462 . -378) 76425) ((-332 . -286) T) ((-198 . -378) 76407) ((-1001 . -389) 76391) ((-273 . -107) 76308) ((-805 . -25) T) ((-805 . -21) T) ((-317 . -565) 76290) ((-1157 . -46) 76234) ((-205 . -138) T) ((-161 . -565) 76216) ((-1031 . -786) 76195) ((-715 . -565) 76177) ((-560 . -215) 76124) ((-452 . -215) 76074) ((-1191 . -659) 76044) ((-47 . -286) T) ((-1189 . -659) 76014) ((-896 . -1018) T) ((-756 . -1018) 75825) ((-290 . -97) T) ((-834 . -1125) T) ((-47 . -951) T) ((-1134 . -587) 75733) ((-631 . -97) 75711) ((-43 . -659) 75695) ((-511 . -97) T) ((-65 . -361) T) ((-65 . -373) T) ((-607 . -23) T) ((-615 . -703) T) ((-1123 . -1018) 75673) ((-329 . -981) 75618) ((-619 . -1018) 75596) ((-986 . -138) T) ((-885 . -138) 75575) ((-885 . -136) 75554) ((-740 . -97) T) ((-143 . -659) 75538) ((-457 . -138) 75517) ((-457 . -136) 75496) ((-329 . -107) 75425) ((-1001 . -982) T) ((-300 . -788) 75404) ((-1163 . -904) 75373) ((-575 . -1018) T) ((-1156 . -904) 75335) ((-483 . -126) T) ((-479 . -126) T) ((-274 . -209) 75285) ((-337 . -982) T) ((-331 . -982) T) ((-323 . -982) T) ((-273 . -975) 75228) ((-1135 . -904) 75197) ((-357 . -788) T) ((-103 . -982) T) ((-929 . -668) T) ((-803 . -853) T) ((-781 . -736) 75176) ((-781 . -733) 75155) ((-396 . -288) 75094) ((-445 . -97) T) ((-550 . -904) 75063) ((-297 . -1018) T) ((-385 . -736) 75042) ((-385 . -733) 75021) ((-473 . -464) 75003) ((-1157 . -966) 74969) ((-1155 . -21) T) ((-1155 . -25) T) ((-1134 . -21) T) ((-1134 . -25) T) ((-756 . -659) 74911) ((-640 . -382) T) ((-1182 . -1125) T) ((-1031 . -389) 74880) ((-933 . -346) NIL) ((-98 . -33) T) ((-679 . -1125) T) ((-43 . -703) T) ((-548 . -97) T) ((-75 . -374) T) ((-75 . -373) T) ((-598 . -601) 74864) ((-132 . -1125) T) ((-804 . -138) T) ((-804 . -136) NIL) ((-329 . -975) T) ((-68 . -361) T) ((-68 . -373) T) ((-1079 . -97) T) ((-615 . -486) 74797) ((-631 . -288) 74735) ((-895 . -37) 74632) ((-677 . -37) 74602) ((-511 . -288) 74406) ((-294 . -1125) T) ((-329 . -213) T) ((-329 . -223) T) ((-291 . -1125) T) ((-268 . -1018) T) ((-1093 . -565) 74388) ((-653 . -1129) T) ((-1070 . -596) 74372) ((-1120 . -517) 74351) ((-653 . -517) T) ((-294 . -817) 74335) ((-294 . -819) 74260) ((-291 . -817) 74221) ((-291 . -819) NIL) ((-740 . -288) 74186) ((-297 . -659) 74027) ((-302 . -301) 74004) ((-460 . -97) T) ((-451 . -25) T) ((-451 . -21) T) ((-396 . -37) 73978) ((-294 . -966) 73646) ((-205 . -1111) T) ((-205 . -1114) T) ((-3 . -565) 73628) ((-291 . -966) 73558) ((-2 . -1018) T) ((-2 . |RecordCategory|) T) ((-774 . -565) 73540) ((-1031 . -982) 73471) ((-537 . -853) T) ((-525 . -761) T) ((-525 . -853) T) ((-468 . -853) T) ((-130 . -966) 73455) ((-205 . -91) T) ((-73 . -418) T) ((-73 . -373) T) ((0 . -565) 73437) ((-157 . -138) 73416) ((-157 . -136) 73367) ((-205 . -34) T) ((-48 . -565) 73349) ((-454 . -982) T) ((-462 . -211) 73331) ((-459 . -900) 73315) ((-458 . -786) 73294) ((-198 . -211) 73276) ((-79 . -418) T) ((-79 . -373) T) ((-1060 . -33) T) ((-756 . -160) 73255) ((-673 . -97) T) ((-955 . -565) 73222) ((-473 . -265) 73197) ((-294 . -355) 73167) ((-291 . -355) 73128) ((-291 . -316) 73089) ((-1005 . -565) 73071) ((-757 . -882) 73018) ((-607 . -126) T) ((-1144 . -136) 72997) ((-1144 . -138) 72976) ((-1087 . -97) T) ((-1086 . -97) T) ((-1080 . -97) T) ((-1073 . -1018) T) ((-1042 . -97) T) ((-202 . -33) T) ((-268 . -659) 72963) ((-1073 . -562) 72939) ((-548 . -288) NIL) ((-459 . -1018) 72917) ((-368 . -565) 72899) ((-482 . -788) T) ((-1064 . -209) 72849) ((-1163 . -1162) 72833) ((-1163 . -1149) 72810) ((-1156 . -1154) 72771) ((-1156 . -1149) 72741) ((-1156 . -1152) 72725) ((-1135 . -1133) 72686) ((-1135 . -1149) 72663) ((-570 . -565) 72645) ((-1135 . -1131) 72629) ((-640 . -853) T) ((-1087 . -263) 72595) ((-1086 . -263) 72561) ((-1080 . -263) 72527) ((-1001 . -1018) T) ((-985 . -1018) T) ((-47 . -281) T) ((-294 . -833) 72494) ((-291 . -833) NIL) ((-985 . -991) 72473) ((-1036 . -819) 72455) ((-740 . -37) 72439) ((-243 . -587) 72387) ((-227 . -587) 72335) ((-642 . -981) 72322) ((-550 . -1149) 72299) ((-1042 . -263) 72265) ((-297 . -160) 72196) ((-337 . -1018) T) ((-331 . -1018) T) ((-323 . -1018) T) ((-473 . -19) 72178) ((-1036 . -966) 72160) ((-1020 . -142) 72144) ((-103 . -1018) T) ((-112 . -981) 72131) ((-653 . -341) T) ((-473 . -558) 72106) ((-642 . -107) 72091) ((-414 . -97) T) ((-44 . -1063) 72041) ((-112 . -107) 72026) ((-583 . -662) T) ((-559 . -662) T) ((-756 . -486) 71959) ((-964 . -1125) T) ((-876 . -142) 71943) ((-491 . -97) 71893) ((-1007 . -1129) 71872) ((-454 . -565) 71824) ((-454 . -566) 71746) ((-60 . -1125) T) ((-723 . -1129) 71725) ((-721 . -1129) 71704) ((-1085 . -429) 71635) ((-1072 . -1018) T) ((-1056 . -593) 71609) ((-1007 . -517) 71540) ((-458 . -389) 71509) ((-572 . -853) 71488) ((-431 . -1129) 71467) ((-1041 . -429) 71418) ((-376 . -565) 71400) ((-619 . -486) 71333) ((-723 . -517) 71244) ((-721 . -517) 71175) ((-673 . -288) 71162) ((-609 . -25) T) ((-609 . -21) T) ((-431 . -517) 71093) ((-113 . -853) T) ((-113 . -761) NIL) ((-333 . -25) T) ((-333 . -21) T) ((-330 . -25) T) ((-330 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-243 . -25) T) ((-243 . -21) T) ((-81 . -362) T) ((-81 . -373) T) ((-227 . -25) T) ((-227 . -21) T) ((-1173 . -565) 71075) ((-1120 . -1030) T) ((-1120 . -23) T) ((-1080 . -288) 70960) ((-1042 . -288) 70947) ((-799 . -593) 70907) ((-1001 . -659) 70775) ((-876 . -911) 70759) ((-268 . -160) T) ((-843 . -21) T) ((-843 . -25) T) ((-805 . -788) 70710) ((-653 . -1030) T) ((-653 . -23) T) ((-592 . -1018) 70688) ((-580 . -562) 70663) ((-580 . -1018) T) ((-538 . -1129) T) ((-489 . -1129) T) ((-538 . -517) T) ((-489 . -517) T) ((-337 . -659) 70615) ((-331 . -659) 70567) ((-161 . -981) 70499) ((-317 . -981) 70483) ((-103 . -659) 70433) ((-161 . -107) 70344) ((-323 . -659) 70296) ((-317 . -107) 70275) ((-253 . -1018) T) ((-252 . -1018) T) ((-251 . -1018) T) ((-250 . -1018) T) ((-642 . -975) T) ((-249 . -1018) T) ((-248 . -1018) T) ((-247 . -1018) T) ((-194 . -1018) T) ((-193 . -1018) T) ((-191 . -1018) T) ((-157 . -1114) 70253) ((-157 . -1111) 70231) ((-190 . -1018) T) ((-189 . -1018) T) ((-112 . -975) T) ((-188 . -1018) T) ((-185 . -1018) T) ((-642 . -213) T) ((-184 . -1018) T) ((-183 . -1018) T) ((-182 . -1018) T) ((-181 . -1018) T) ((-180 . -1018) T) ((-179 . -1018) T) ((-178 . -1018) T) ((-177 . -1018) T) ((-176 . -1018) T) ((-175 . -1018) T) ((-220 . -97) 70042) ((-157 . -34) 70020) ((-157 . -91) 69998) ((-599 . -966) 69896) ((-458 . -982) 69827) ((-1031 . -1018) 69638) ((-1056 . -33) T) ((-615 . -464) 69622) ((-71 . -1125) T) ((-100 . -565) 69604) ((-1193 . -565) 69586) ((-359 . -565) 69568) ((-532 . -1114) T) ((-532 . -1111) T) ((-673 . -37) 69417) ((-497 . -565) 69399) ((-491 . -288) 69337) ((-473 . -565) 69319) ((-473 . -566) 69301) ((-1080 . -1065) NIL) ((-956 . -994) 69270) ((-956 . -1018) T) ((-934 . -97) T) ((-902 . -97) T) ((-847 . -97) T) ((-826 . -966) 69247) ((-1056 . -668) T) ((-933 . -593) 69192) ((-453 . -1018) T) ((-440 . -1018) T) ((-542 . -23) T) ((-532 . -34) T) ((-532 . -91) T) ((-405 . -97) T) ((-987 . -209) 69138) ((-124 . -97) T) ((-1087 . -37) 69035) ((-799 . -668) T) ((-635 . -853) T) ((-483 . -25) T) ((-479 . -21) T) ((-479 . -25) T) ((-1086 . -37) 68876) ((-317 . -975) T) ((-1080 . -37) 68672) ((-1001 . -160) T) ((-161 . -975) T) ((-1042 . -37) 68569) ((-654 . -46) 68546) ((-337 . -160) T) ((-331 . -160) T) ((-490 . -55) 68520) ((-470 . -55) 68470) ((-329 . -1188) 68447) ((-205 . -429) T) ((-297 . -269) 68398) ((-323 . -160) T) ((-161 . -223) T) ((-1134 . -788) 68297) ((-103 . -160) T) ((-805 . -923) 68281) ((-603 . -1030) T) ((-538 . -341) T) ((-538 . -307) 68268) ((-489 . -307) 68245) ((-489 . -341) T) ((-294 . -286) 68224) ((-291 . -286) T) ((-556 . -788) 68203) ((-1031 . -659) 68145) ((-491 . -261) 68129) ((-603 . -23) T) ((-396 . -211) 68113) ((-291 . -951) NIL) ((-314 . -23) T) ((-98 . -940) 68097) ((-44 . -35) 68076) ((-564 . -1018) T) ((-329 . -346) T) ((-468 . -27) T) ((-220 . -288) 68014) ((-1007 . -1030) T) ((-1192 . -593) 67988) ((-723 . -1030) T) ((-721 . -1030) T) ((-431 . -1030) T) ((-986 . -429) T) ((-885 . -429) 67939) ((-106 . -1018) T) ((-1007 . -23) T) ((-758 . -982) T) ((-723 . -23) T) ((-721 . -23) T) ((-457 . -429) 67890) ((-1073 . -486) 67673) ((-359 . -360) 67652) ((-1091 . -389) 67636) ((-438 . -23) T) ((-431 . -23) T) ((-459 . -486) 67569) ((-268 . -269) T) ((-1003 . -565) 67551) ((-385 . -842) 67530) ((-49 . -1030) T) ((-953 . -853) T) ((-933 . -668) T) ((-654 . -819) NIL) ((-538 . -1030) T) ((-489 . -1030) T) ((-781 . -593) 67503) ((-1120 . -126) T) ((-1080 . -378) 67455) ((-934 . -288) NIL) ((-756 . -464) 67439) ((-332 . -853) T) ((-1070 . -33) T) ((-385 . -593) 67391) ((-49 . -23) T) ((-653 . -126) T) ((-654 . -966) 67273) ((-538 . -23) T) ((-103 . -486) NIL) ((-489 . -23) T) ((-157 . -387) 67244) ((-124 . -288) NIL) ((-1054 . -1018) T) ((-1184 . -1183) 67228) ((-642 . -736) T) ((-642 . -733) T) ((-1036 . -286) T) ((-357 . -138) T) ((-259 . -565) 67210) ((-1134 . -923) 67180) ((-47 . -853) T) ((-619 . -464) 67164) ((-230 . -1178) 67134) ((-229 . -1178) 67104) ((-1089 . -788) T) ((-1031 . -160) 67083) ((-1036 . -951) T) ((-972 . -33) T) ((-775 . -138) 67062) ((-775 . -136) 67041) ((-679 . -102) 67025) ((-564 . -127) T) ((-458 . -1018) 66836) ((-1091 . -982) T) ((-804 . -429) T) ((-83 . -1125) T) ((-220 . -37) 66806) ((-132 . -102) 66788) ((-654 . -355) 66772) ((-1036 . -510) T) ((-368 . -981) 66756) ((-1192 . -668) T) ((-1085 . -882) 66725) ((-125 . -565) 66692) ((-51 . -565) 66674) ((-1041 . -882) 66641) ((-598 . -389) 66625) ((-1181 . -982) T) ((-570 . -981) 66609) ((-607 . -25) T) ((-607 . -21) T) ((-1072 . -486) NIL) ((-1163 . -97) T) ((-1156 . -97) T) ((-368 . -107) 66588) ((-202 . -233) 66572) ((-1135 . -97) T) ((-979 . -1018) T) ((-934 . -1065) T) ((-979 . -978) 66512) ((-759 . -1018) T) ((-321 . -1129) T) ((-583 . -593) 66496) ((-570 . -107) 66475) ((-559 . -593) 66459) ((-551 . -97) T) ((-542 . -126) T) ((-550 . -97) T) ((-392 . -1018) T) ((-363 . -1018) T) ((-207 . -1018) 66437) ((-592 . -486) 66370) ((-580 . -486) 66214) ((-774 . -975) 66193) ((-591 . -142) 66177) ((-321 . -517) T) ((-654 . -833) 66120) ((-511 . -209) 66070) ((-1163 . -263) 66036) ((-1001 . -269) 65987) ((-462 . -786) T) ((-203 . -1030) T) ((-1156 . -263) 65953) ((-1135 . -263) 65919) ((-934 . -37) 65869) ((-198 . -786) T) ((-1120 . -466) 65835) ((-847 . -37) 65787) ((-781 . -735) 65766) ((-781 . -732) 65745) ((-781 . -668) 65724) ((-337 . -269) T) ((-331 . -269) T) ((-323 . -269) T) ((-157 . -429) 65655) ((-405 . -37) 65639) ((-103 . -269) T) ((-203 . -23) T) ((-385 . -735) 65618) ((-385 . -732) 65597) ((-385 . -668) T) ((-473 . -267) 65572) ((-454 . -981) 65537) ((-603 . -126) T) ((-1031 . -486) 65470) ((-314 . -126) T) ((-157 . -380) 65449) ((-458 . -659) 65391) ((-756 . -265) 65368) ((-454 . -107) 65324) ((-598 . -982) T) ((-1144 . -429) 65255) ((-1007 . -126) T) ((-243 . -788) 65234) ((-227 . -788) 65213) ((-723 . -126) T) ((-721 . -126) T) ((-532 . -429) T) ((-979 . -659) 65155) ((-570 . -975) T) ((-956 . -486) 65088) ((-438 . -126) T) ((-431 . -126) T) ((-44 . -1018) T) ((-363 . -659) 65058) ((-758 . -1018) T) ((-453 . -486) 64991) ((-440 . -486) 64924) ((-430 . -345) 64894) ((-44 . -562) 64873) ((-294 . -281) T) ((-615 . -565) 64835) ((-57 . -788) 64814) ((-1135 . -288) 64699) ((-934 . -378) 64681) ((-756 . -558) 64658) ((-488 . -788) 64637) ((-469 . -788) 64616) ((-39 . -1129) T) ((-929 . -966) 64514) ((-49 . -126) T) ((-538 . -126) T) ((-489 . -126) T) ((-273 . -593) 64376) ((-321 . -307) 64353) ((-321 . -341) T) ((-300 . -301) 64330) ((-297 . -265) 64315) ((-39 . -517) T) ((-357 . -1111) T) ((-357 . -1114) T) ((-964 . -1102) 64290) ((-1099 . -215) 64240) ((-1080 . -211) 64192) ((-308 . -1018) T) ((-357 . -91) T) ((-357 . -34) T) ((-964 . -102) 64138) ((-454 . -975) T) ((-455 . -215) 64088) ((-1073 . -464) 64022) ((-1193 . -981) 64006) ((-359 . -981) 63990) ((-454 . -223) T) ((-757 . -97) T) ((-656 . -138) 63969) ((-656 . -136) 63948) ((-459 . -464) 63932) ((-460 . -313) 63901) ((-1193 . -107) 63880) ((-484 . -1018) T) ((-458 . -160) 63859) ((-929 . -355) 63843) ((-391 . -97) T) ((-359 . -107) 63822) ((-929 . -316) 63806) ((-258 . -914) 63790) ((-257 . -914) 63774) ((-1191 . -565) 63756) ((-1189 . -565) 63738) ((-106 . -486) NIL) ((-1085 . -1147) 63722) ((-792 . -790) 63706) ((-1091 . -1018) T) ((-98 . -1125) T) ((-885 . -882) 63667) ((-758 . -659) 63609) ((-1135 . -1065) NIL) ((-457 . -882) 63554) ((-986 . -134) T) ((-58 . -97) 63532) ((-43 . -565) 63514) ((-76 . -565) 63496) ((-329 . -593) 63441) ((-1181 . -1018) T) ((-483 . -788) T) ((-321 . -1030) T) ((-274 . -1018) T) ((-929 . -833) 63400) ((-274 . -562) 63379) ((-1163 . -37) 63276) ((-1156 . -37) 63117) ((-462 . -982) T) ((-1135 . -37) 62913) ((-198 . -982) T) ((-321 . -23) T) ((-143 . -565) 62895) ((-774 . -736) 62874) ((-774 . -733) 62853) ((-551 . -37) 62826) ((-550 . -37) 62723) ((-803 . -517) T) ((-203 . -126) T) ((-297 . -932) 62689) ((-77 . -565) 62671) ((-654 . -286) 62650) ((-273 . -668) 62553) ((-765 . -97) T) ((-798 . -782) T) ((-273 . -450) 62532) ((-1184 . -97) T) ((-39 . -341) T) ((-805 . -138) 62511) ((-805 . -136) 62490) ((-1072 . -464) 62472) ((-1193 . -975) T) ((-458 . -486) 62405) ((-1060 . -1125) T) ((-896 . -565) 62387) ((-592 . -464) 62371) ((-580 . -464) 62302) ((-756 . -565) 62054) ((-47 . -27) T) ((-1091 . -659) 61951) ((-598 . -1018) T) ((-414 . -342) 61925) ((-1020 . -97) T) ((-757 . -288) 61912) ((-798 . -1018) T) ((-1189 . -360) 61884) ((-979 . -486) 61817) ((-1073 . -265) 61793) ((-220 . -211) 61763) ((-1181 . -659) 61733) ((-758 . -160) 61712) ((-207 . -486) 61645) ((-570 . -736) 61624) ((-570 . -733) 61603) ((-1123 . -565) 61515) ((-202 . -1125) T) ((-619 . -565) 61447) ((-1070 . -940) 61431) ((-329 . -668) T) ((-876 . -97) 61381) ((-1135 . -378) 61333) ((-1031 . -464) 61317) ((-58 . -288) 61255) ((-309 . -97) T) ((-1120 . -21) T) ((-1120 . -25) T) ((-39 . -1030) T) ((-653 . -21) T) ((-575 . -565) 61237) ((-487 . -301) 61216) ((-653 . -25) T) ((-103 . -265) NIL) ((-854 . -1030) T) ((-39 . -23) T) ((-712 . -1030) T) ((-525 . -1129) T) ((-468 . -1129) T) ((-297 . -565) 61198) ((-934 . -211) 61180) ((-157 . -154) 61164) ((-537 . -517) T) ((-525 . -517) T) ((-468 . -517) T) ((-712 . -23) T) ((-1155 . -138) 61143) ((-1073 . -558) 61119) ((-1155 . -136) 61098) ((-956 . -464) 61082) ((-1134 . -136) 61007) ((-1134 . -138) 60932) ((-1184 . -1190) 60911) ((-453 . -464) 60895) ((-440 . -464) 60879) ((-494 . -33) T) ((-598 . -659) 60849) ((-108 . -899) T) ((-607 . -788) 60828) ((-1091 . -160) 60779) ((-343 . -97) T) ((-220 . -218) 60758) ((-230 . -97) T) ((-229 . -97) T) ((-1144 . -882) 60727) ((-105 . -97) T) ((-225 . -788) 60706) ((-757 . -37) 60555) ((-44 . -486) 60347) ((-1072 . -265) 60322) ((-195 . -1018) T) ((-1064 . -1018) T) ((-1064 . -562) 60301) ((-542 . -25) T) ((-542 . -21) T) ((-1020 . -288) 60239) ((-895 . -389) 60223) ((-640 . -1129) T) ((-580 . -265) 60198) ((-1007 . -587) 60146) ((-723 . -587) 60094) ((-721 . -587) 60042) ((-321 . -126) T) ((-268 . -565) 60024) ((-640 . -517) T) ((-838 . -1018) T) ((-803 . -1030) T) ((-431 . -587) 59972) ((-838 . -836) 59956) ((-357 . -429) T) ((-462 . -1018) T) ((-642 . -593) 59943) ((-876 . -288) 59881) ((-198 . -1018) T) ((-294 . -853) 59860) ((-291 . -853) T) ((-291 . -761) NIL) ((-368 . -662) T) ((-803 . -23) T) ((-112 . -593) 59847) ((-451 . -136) 59826) ((-396 . -389) 59810) ((-451 . -138) 59789) ((-106 . -464) 59771) ((-2 . -565) 59753) ((-1072 . -19) 59735) ((-1072 . -558) 59710) ((-603 . -21) T) ((-603 . -25) T) ((-548 . -1058) T) ((-1031 . -265) 59687) ((-314 . -25) T) ((-314 . -21) T) ((-468 . -341) T) ((-1184 . -37) 59657) ((-1056 . -1125) T) ((-580 . -558) 59632) ((-1007 . -25) T) ((-1007 . -21) T) ((-497 . -733) T) ((-497 . -736) T) ((-113 . -1129) T) ((-895 . -982) T) ((-572 . -517) T) ((-677 . -982) T) ((-657 . -982) T) ((-723 . -25) T) ((-723 . -21) T) ((-721 . -21) T) ((-721 . -25) T) ((-615 . -981) 59616) ((-438 . -25) T) ((-113 . -517) T) ((-438 . -21) T) ((-431 . -25) T) ((-431 . -21) T) ((-1056 . -966) 59514) ((-758 . -269) 59493) ((-764 . -1018) T) ((-898 . -899) T) ((-615 . -107) 59472) ((-274 . -486) 59264) ((-1191 . -981) 59248) ((-1189 . -981) 59232) ((-230 . -288) 59170) ((-229 . -288) 59108) ((-1138 . -97) 59086) ((-1073 . -566) NIL) ((-1073 . -565) 59068) ((-1155 . -1111) 59034) ((-1155 . -1114) 59000) ((-1135 . -211) 58952) ((-1134 . -1111) 58918) ((-1134 . -1114) 58884) ((-1056 . -355) 58868) ((-1036 . -761) T) ((-1036 . -853) T) ((-1031 . -558) 58845) ((-1001 . -566) 58829) ((-459 . -565) 58761) ((-756 . -267) 58738) ((-560 . -142) 58685) ((-396 . -982) T) ((-462 . -659) 58635) ((-458 . -464) 58619) ((-305 . -788) 58598) ((-317 . -593) 58572) ((-49 . -21) T) ((-49 . -25) T) ((-198 . -659) 58522) ((-157 . -666) 58493) ((-161 . -593) 58425) ((-538 . -21) T) ((-538 . -25) T) ((-489 . -25) T) ((-489 . -21) T) ((-452 . -142) 58375) ((-1001 . -565) 58357) ((-985 . -565) 58339) ((-924 . -97) T) ((-796 . -97) T) ((-740 . -389) 58303) ((-39 . -126) T) ((-640 . -341) T) ((-194 . -828) T) ((-642 . -735) T) ((-642 . -732) T) ((-537 . -1030) T) ((-525 . -1030) T) ((-468 . -1030) T) ((-642 . -668) T) ((-337 . -565) 58285) ((-331 . -565) 58267) ((-323 . -565) 58249) ((-64 . -374) T) ((-64 . -373) T) ((-103 . -566) 58179) ((-103 . -565) 58161) ((-193 . -828) T) ((-890 . -142) 58145) ((-1155 . -91) 58111) ((-712 . -126) T) ((-128 . -668) T) ((-112 . -668) T) ((-1155 . -34) 58077) ((-979 . -464) 58061) ((-537 . -23) T) ((-525 . -23) T) ((-468 . -23) T) ((-1134 . -91) 58027) ((-1134 . -34) 57993) ((-1085 . -97) T) ((-1041 . -97) T) ((-792 . -97) T) ((-207 . -464) 57977) ((-1191 . -107) 57956) ((-1189 . -107) 57935) ((-43 . -981) 57919) ((-1144 . -1147) 57903) ((-793 . -790) 57887) ((-1091 . -269) 57866) ((-106 . -265) 57841) ((-1056 . -833) 57800) ((-43 . -107) 57779) ((-615 . -975) T) ((-1094 . -1166) T) ((-1072 . -566) NIL) ((-1072 . -565) 57761) ((-987 . -562) 57736) ((-987 . -1018) T) ((-72 . -418) T) ((-72 . -373) T) ((-615 . -213) 57715) ((-143 . -981) 57699) ((-532 . -515) 57683) ((-333 . -138) 57662) ((-333 . -136) 57613) ((-330 . -138) 57592) ((-644 . -1018) T) ((-330 . -136) 57543) ((-322 . -138) 57522) ((-322 . -136) 57473) ((-243 . -136) 57452) ((-243 . -138) 57431) ((-230 . -37) 57401) ((-227 . -138) 57380) ((-113 . -341) T) ((-227 . -136) 57359) ((-229 . -37) 57329) ((-143 . -107) 57308) ((-933 . -966) 57198) ((-1080 . -786) NIL) ((-635 . -1129) T) ((-740 . -982) T) ((-640 . -1030) T) ((-1191 . -975) T) ((-1189 . -975) T) ((-1070 . -1125) T) ((-933 . -355) 57175) ((-843 . -136) T) ((-843 . -138) 57157) ((-803 . -126) T) ((-756 . -981) 57055) ((-635 . -517) T) ((-640 . -23) T) ((-592 . -565) 56987) ((-592 . -566) 56948) ((-580 . -566) NIL) ((-580 . -565) 56930) ((-462 . -160) T) ((-203 . -21) T) ((-198 . -160) T) ((-203 . -25) T) ((-451 . -1114) 56896) ((-451 . -1111) 56862) ((-253 . -565) 56844) ((-252 . -565) 56826) ((-251 . -565) 56808) ((-250 . -565) 56790) ((-249 . -565) 56772) ((-473 . -596) 56754) ((-248 . -565) 56736) ((-317 . -668) T) ((-247 . -565) 56718) ((-106 . -19) 56700) ((-161 . -668) T) ((-473 . -351) 56682) ((-194 . -565) 56664) ((-491 . -1063) 56648) ((-473 . -119) T) ((-106 . -558) 56623) ((-193 . -565) 56605) ((-451 . -34) 56571) ((-451 . -91) 56537) ((-191 . -565) 56519) ((-190 . -565) 56501) ((-189 . -565) 56483) ((-188 . -565) 56465) ((-185 . -565) 56447) ((-184 . -565) 56429) ((-183 . -565) 56411) ((-182 . -565) 56393) ((-181 . -565) 56375) ((-180 . -565) 56357) ((-179 . -565) 56339) ((-501 . -1021) 56291) ((-178 . -565) 56273) ((-177 . -565) 56255) ((-44 . -464) 56192) ((-176 . -565) 56174) ((-175 . -565) 56156) ((-756 . -107) 56047) ((-591 . -97) 55997) ((-458 . -265) 55974) ((-1031 . -565) 55726) ((-1019 . -1018) T) ((-972 . -1125) T) ((-572 . -1030) T) ((-1192 . -966) 55710) ((-1085 . -288) 55697) ((-1041 . -288) 55684) ((-113 . -1030) T) ((-760 . -97) T) ((-572 . -23) T) ((-1064 . -486) 55476) ((-364 . -97) T) ((-302 . -97) T) ((-933 . -833) 55428) ((-895 . -1018) T) ((-143 . -975) T) ((-113 . -23) T) ((-673 . -389) 55412) ((-677 . -1018) T) ((-657 . -1018) T) ((-644 . -127) T) ((-430 . -1018) T) ((-294 . -408) 55396) ((-385 . -1125) T) ((-956 . -566) 55357) ((-953 . -1129) T) ((-205 . -97) T) ((-956 . -565) 55319) ((-757 . -211) 55303) ((-953 . -517) T) ((-774 . -593) 55276) ((-332 . -1129) T) ((-453 . -565) 55238) ((-453 . -566) 55199) ((-440 . -566) 55160) ((-440 . -565) 55122) ((-385 . -817) 55106) ((-297 . -981) 54941) ((-385 . -819) 54866) ((-781 . -966) 54764) ((-462 . -486) NIL) ((-458 . -558) 54741) ((-332 . -517) T) ((-198 . -486) NIL) ((-805 . -429) T) ((-396 . -1018) T) ((-385 . -966) 54608) ((-297 . -107) 54429) ((-635 . -341) T) ((-205 . -263) T) ((-47 . -1129) T) ((-756 . -975) 54360) ((-537 . -126) T) ((-525 . -126) T) ((-468 . -126) T) ((-47 . -517) T) ((-1073 . -267) 54336) ((-1085 . -1065) 54314) ((-294 . -27) 54293) ((-986 . -97) T) ((-756 . -213) 54246) ((-220 . -786) 54225) ((-885 . -97) T) ((-655 . -97) T) ((-274 . -464) 54162) ((-457 . -97) T) ((-673 . -982) T) ((-564 . -565) 54144) ((-564 . -566) 54005) ((-385 . -355) 53989) ((-385 . -316) 53973) ((-1085 . -37) 53802) ((-1041 . -37) 53651) ((-792 . -37) 53621) ((-368 . -593) 53605) ((-591 . -288) 53543) ((-895 . -659) 53440) ((-202 . -102) 53424) ((-44 . -265) 53349) ((-677 . -659) 53319) ((-570 . -593) 53293) ((-290 . -1018) T) ((-268 . -981) 53280) ((-106 . -565) 53262) ((-106 . -566) 53244) ((-430 . -659) 53214) ((-757 . -232) 53153) ((-631 . -1018) 53131) ((-511 . -1018) T) ((-1087 . -982) T) ((-1086 . -982) T) ((-268 . -107) 53116) ((-1080 . -982) T) ((-1042 . -982) T) ((-511 . -562) 53095) ((-934 . -786) T) ((-207 . -629) 53053) ((-635 . -1030) T) ((-1120 . -682) 53029) ((-297 . -975) T) ((-321 . -25) T) ((-321 . -21) T) ((-385 . -833) 52988) ((-66 . -1125) T) ((-774 . -735) 52967) ((-396 . -659) 52941) ((-740 . -1018) T) ((-774 . -732) 52920) ((-640 . -126) T) ((-654 . -853) 52899) ((-635 . -23) T) ((-462 . -269) T) ((-774 . -668) 52878) ((-297 . -213) 52830) ((-297 . -223) 52809) ((-198 . -269) T) ((-953 . -341) T) ((-1155 . -429) 52788) ((-1134 . -429) 52767) ((-332 . -307) 52744) ((-332 . -341) T) ((-1054 . -565) 52726) ((-44 . -1159) 52676) ((-804 . -97) T) ((-591 . -261) 52660) ((-640 . -984) T) ((-454 . -593) 52625) ((-445 . -1018) T) ((-44 . -558) 52550) ((-1072 . -267) 52525) ((-39 . -587) 52464) ((-47 . -341) T) ((-1024 . -565) 52446) ((-1007 . -788) 52425) ((-580 . -267) 52400) ((-723 . -788) 52379) ((-721 . -788) 52358) ((-458 . -565) 52110) ((-220 . -389) 52079) ((-885 . -288) 52066) ((-431 . -788) 52045) ((-63 . -1125) T) ((-572 . -126) T) ((-457 . -288) 52032) ((-987 . -486) 51876) ((-268 . -975) T) ((-113 . -126) T) ((-430 . -703) T) ((-895 . -160) 51827) ((-1001 . -981) 51737) ((-570 . -735) 51716) ((-548 . -1018) T) ((-570 . -732) 51695) ((-570 . -668) T) ((-274 . -265) 51674) ((-273 . -1125) T) ((-979 . -565) 51636) ((-979 . -566) 51597) ((-953 . -1030) T) ((-157 . -97) T) ((-254 . -788) T) ((-1079 . -1018) T) ((-759 . -565) 51579) ((-1031 . -267) 51556) ((-1020 . -209) 51540) ((-933 . -286) T) ((-740 . -659) 51524) ((-337 . -981) 51476) ((-332 . -1030) T) ((-331 . -981) 51428) ((-392 . -565) 51410) ((-363 . -565) 51392) ((-323 . -981) 51344) ((-207 . -565) 51276) ((-1001 . -107) 51172) ((-953 . -23) T) ((-103 . -981) 51122) ((-831 . -97) T) ((-779 . -97) T) ((-749 . -97) T) ((-710 . -97) T) ((-620 . -97) T) ((-451 . -429) 51101) ((-396 . -160) T) ((-337 . -107) 51039) ((-331 . -107) 50977) ((-323 . -107) 50915) ((-230 . -211) 50885) ((-229 . -211) 50855) ((-332 . -23) T) ((-69 . -1125) T) ((-205 . -37) 50820) ((-103 . -107) 50754) ((-39 . -25) T) ((-39 . -21) T) ((-615 . -662) T) ((-157 . -263) 50732) ((-47 . -1030) T) ((-854 . -25) T) ((-712 . -25) T) ((-1064 . -464) 50669) ((-460 . -1018) T) ((-1193 . -593) 50643) ((-1144 . -97) T) ((-793 . -97) T) ((-220 . -982) 50574) ((-986 . -1065) T) ((-896 . -733) 50527) ((-359 . -593) 50511) ((-47 . -23) T) ((-896 . -736) 50464) ((-756 . -736) 50415) ((-756 . -733) 50366) ((-274 . -558) 50345) ((-454 . -668) T) ((-532 . -97) T) ((-804 . -288) 50302) ((-598 . -265) 50281) ((-108 . -606) T) ((-74 . -1125) T) ((-986 . -37) 50268) ((-609 . -352) 50247) ((-885 . -37) 50096) ((-673 . -1018) T) ((-457 . -37) 49945) ((-84 . -1125) T) ((-532 . -263) T) ((-1135 . -786) NIL) ((-1087 . -1018) T) ((-1086 . -1018) T) ((-1080 . -1018) T) ((-329 . -966) 49922) ((-1001 . -975) T) ((-934 . -982) T) ((-44 . -565) 49904) ((-44 . -566) NIL) ((-847 . -982) T) ((-758 . -565) 49886) ((-1061 . -97) 49864) ((-1001 . -223) 49815) ((-405 . -982) T) ((-337 . -975) T) ((-331 . -975) T) ((-343 . -342) 49792) ((-323 . -975) T) ((-230 . -218) 49771) ((-229 . -218) 49750) ((-105 . -342) 49724) ((-1001 . -213) 49649) ((-1042 . -1018) T) ((-273 . -833) 49608) ((-103 . -975) T) ((-635 . -126) T) ((-396 . -486) 49450) ((-337 . -213) 49429) ((-337 . -223) T) ((-43 . -662) T) ((-331 . -213) 49408) ((-331 . -223) T) ((-323 . -213) 49387) ((-323 . -223) T) ((-157 . -288) 49352) ((-103 . -223) T) ((-103 . -213) T) ((-297 . -733) T) ((-803 . -21) T) ((-803 . -25) T) ((-385 . -286) T) ((-473 . -33) T) ((-106 . -267) 49327) ((-1031 . -981) 49225) ((-804 . -1065) NIL) ((-308 . -565) 49207) ((-385 . -951) 49186) ((-1031 . -107) 49077) ((-414 . -1018) T) ((-1193 . -668) T) ((-61 . -565) 49059) ((-804 . -37) 49004) ((-494 . -1125) T) ((-556 . -142) 48988) ((-484 . -565) 48970) ((-1144 . -288) 48957) ((-673 . -659) 48806) ((-497 . -734) T) ((-497 . -735) T) ((-525 . -587) 48788) ((-468 . -587) 48748) ((-333 . -429) T) ((-330 . -429) T) ((-322 . -429) T) ((-243 . -429) 48699) ((-491 . -1018) 48649) ((-227 . -429) 48600) ((-1064 . -265) 48579) ((-1091 . -565) 48561) ((-631 . -486) 48494) ((-895 . -269) 48473) ((-511 . -486) 48265) ((-1085 . -211) 48249) ((-157 . -1065) 48228) ((-1181 . -565) 48210) ((-1087 . -659) 48107) ((-1086 . -659) 47948) ((-825 . -97) T) ((-1080 . -659) 47744) ((-1042 . -659) 47641) ((-1070 . -618) 47625) ((-333 . -380) 47576) ((-330 . -380) 47527) ((-322 . -380) 47478) ((-953 . -126) T) ((-740 . -486) 47390) ((-274 . -566) NIL) ((-274 . -565) 47372) ((-843 . -429) T) ((-896 . -346) 47325) ((-756 . -346) 47304) ((-482 . -481) 47283) ((-480 . -481) 47262) ((-462 . -265) NIL) ((-458 . -267) 47239) ((-396 . -269) T) ((-332 . -126) T) ((-198 . -265) NIL) ((-635 . -466) NIL) ((-94 . -1030) T) ((-157 . -37) 47067) ((-1155 . -904) 47029) ((-1061 . -288) 46967) ((-1134 . -904) 46936) ((-843 . -380) T) ((-1031 . -975) 46867) ((-1157 . -517) T) ((-1064 . -558) 46846) ((-108 . -788) T) ((-987 . -464) 46777) ((-537 . -21) T) ((-537 . -25) T) ((-525 . -21) T) ((-525 . -25) T) ((-468 . -25) T) ((-468 . -21) T) ((-1144 . -1065) 46755) ((-1031 . -213) 46708) ((-47 . -126) T) ((-1107 . -97) T) ((-220 . -1018) 46519) ((-804 . -378) 46496) ((-1008 . -97) T) ((-997 . -97) T) ((-560 . -97) T) ((-452 . -97) T) ((-1144 . -37) 46325) ((-793 . -37) 46295) ((-673 . -160) 46206) ((-598 . -565) 46188) ((-532 . -37) 46175) ((-890 . -97) 46125) ((-798 . -565) 46107) ((-798 . -566) 46029) ((-548 . -486) NIL) ((-1163 . -982) T) ((-1156 . -982) T) ((-1135 . -982) T) ((-551 . -982) T) ((-550 . -982) T) ((-1197 . -1030) T) ((-1087 . -160) 45980) ((-1086 . -160) 45911) ((-1080 . -160) 45842) ((-1042 . -160) 45793) ((-934 . -1018) T) ((-902 . -1018) T) ((-847 . -1018) T) ((-1120 . -138) 45772) ((-740 . -738) 45756) ((-640 . -25) T) ((-640 . -21) T) ((-113 . -587) 45733) ((-642 . -819) 45715) ((-405 . -1018) T) ((-294 . -1129) 45694) ((-291 . -1129) T) ((-157 . -378) 45678) ((-1120 . -136) 45657) ((-451 . -904) 45619) ((-124 . -1018) T) ((-70 . -565) 45601) ((-103 . -736) T) ((-103 . -733) T) ((-294 . -517) 45580) ((-642 . -966) 45562) ((-291 . -517) T) ((-1197 . -23) T) ((-128 . -966) 45544) ((-458 . -981) 45442) ((-44 . -267) 45367) ((-220 . -659) 45309) ((-458 . -107) 45200) ((-1011 . -97) 45178) ((-963 . -97) T) ((-591 . -769) 45157) ((-673 . -486) 45100) ((-979 . -981) 45084) ((-572 . -21) T) ((-572 . -25) T) ((-987 . -265) 45059) ((-339 . -97) T) ((-300 . -97) T) ((-615 . -593) 45033) ((-363 . -981) 45017) ((-979 . -107) 44996) ((-757 . -389) 44980) ((-113 . -25) T) ((-87 . -565) 44962) ((-113 . -21) T) ((-560 . -288) 44757) ((-452 . -288) 44561) ((-1064 . -566) NIL) ((-363 . -107) 44540) ((-357 . -97) T) ((-195 . -565) 44522) ((-1064 . -565) 44504) ((-934 . -659) 44454) ((-1080 . -486) 44223) ((-847 . -659) 44175) ((-1042 . -486) 44145) ((-329 . -286) T) ((-1099 . -142) 44095) ((-890 . -288) 44033) ((-775 . -97) T) ((-405 . -659) 44017) ((-205 . -769) T) ((-768 . -97) T) ((-766 . -97) T) ((-455 . -142) 43967) ((-1155 . -1154) 43946) ((-1036 . -1129) T) ((-317 . -966) 43913) ((-1155 . -1149) 43883) ((-1155 . -1152) 43867) ((-1134 . -1133) 43846) ((-78 . -565) 43828) ((-838 . -565) 43810) ((-1134 . -1149) 43787) ((-1036 . -517) T) ((-854 . -788) T) ((-462 . -566) 43717) ((-462 . -565) 43699) ((-712 . -788) T) ((-357 . -263) T) ((-616 . -788) T) ((-1134 . -1131) 43683) ((-1157 . -1030) T) ((-198 . -566) 43613) ((-198 . -565) 43595) ((-987 . -558) 43570) ((-57 . -142) 43554) ((-488 . -142) 43538) ((-469 . -142) 43522) ((-337 . -1188) 43506) ((-331 . -1188) 43490) ((-323 . -1188) 43474) ((-294 . -341) 43453) ((-291 . -341) T) ((-458 . -975) 43384) ((-635 . -587) 43366) ((-1191 . -593) 43340) ((-1189 . -593) 43314) ((-1157 . -23) T) ((-631 . -464) 43298) ((-62 . -565) 43280) ((-1031 . -736) 43231) ((-1031 . -733) 43182) ((-511 . -464) 43119) ((-615 . -33) T) ((-458 . -213) 43072) ((-274 . -267) 43051) ((-220 . -160) 43030) ((-757 . -982) T) ((-43 . -593) 42988) ((-1001 . -346) 42939) ((-673 . -269) 42870) ((-491 . -486) 42803) ((-758 . -981) 42754) ((-1007 . -136) 42733) ((-337 . -346) 42712) ((-331 . -346) 42691) ((-323 . -346) 42670) ((-1007 . -138) 42649) ((-804 . -211) 42626) ((-758 . -107) 42568) ((-723 . -136) 42547) ((-723 . -138) 42526) ((-243 . -882) 42493) ((-230 . -786) 42472) ((-227 . -882) 42417) ((-229 . -786) 42396) ((-721 . -136) 42375) ((-721 . -138) 42354) ((-143 . -593) 42328) ((-431 . -138) 42307) ((-431 . -136) 42286) ((-615 . -668) T) ((-764 . -565) 42268) ((-1163 . -1018) T) ((-1156 . -1018) T) ((-1135 . -1018) T) ((-1120 . -1114) 42234) ((-1120 . -1111) 42200) ((-1087 . -269) 42179) ((-1086 . -269) 42130) ((-1080 . -269) 42081) ((-1042 . -269) 42060) ((-317 . -833) 42041) ((-934 . -160) T) ((-847 . -160) T) ((-551 . -1018) T) ((-550 . -1018) T) ((-635 . -21) T) ((-635 . -25) T) ((-451 . -1152) 42025) ((-451 . -1149) 41995) ((-396 . -265) 41923) ((-294 . -1030) 41773) ((-291 . -1030) T) ((-1120 . -34) 41739) ((-1120 . -91) 41705) ((-82 . -565) 41687) ((-89 . -97) 41665) ((-1197 . -126) T) ((-538 . -136) T) ((-538 . -138) 41647) ((-489 . -138) 41629) ((-489 . -136) T) ((-294 . -23) 41482) ((-39 . -320) 41456) ((-291 . -23) T) ((-1072 . -596) 41438) ((-756 . -593) 41288) ((-1184 . -982) T) ((-1072 . -351) 41270) ((-157 . -211) 41254) ((-548 . -464) 41236) ((-220 . -486) 41169) ((-1191 . -668) T) ((-1189 . -668) T) ((-1091 . -981) 41052) ((-1091 . -107) 40921) ((-758 . -975) T) ((-487 . -97) T) ((-47 . -587) 40881) ((-482 . -97) T) ((-480 . -97) T) ((-1181 . -981) 40851) ((-963 . -37) 40835) ((-758 . -213) T) ((-758 . -223) 40814) ((-511 . -265) 40793) ((-1181 . -107) 40758) ((-1144 . -211) 40742) ((-1163 . -659) 40639) ((-987 . -566) NIL) ((-987 . -565) 40621) ((-1156 . -659) 40462) ((-1135 . -659) 40258) ((-933 . -853) T) ((-644 . -565) 40227) ((-143 . -668) T) ((-1031 . -346) 40206) ((-934 . -486) NIL) ((-230 . -389) 40175) ((-229 . -389) 40144) ((-953 . -25) T) ((-953 . -21) T) ((-551 . -659) 40117) ((-550 . -659) 40014) ((-740 . -265) 39972) ((-122 . -97) 39950) ((-774 . -966) 39848) ((-157 . -769) 39827) ((-297 . -593) 39724) ((-756 . -33) T) ((-656 . -97) T) ((-1036 . -1030) T) ((-124 . -486) NIL) ((-955 . -1125) T) ((-357 . -37) 39689) ((-332 . -25) T) ((-332 . -21) T) ((-150 . -97) T) ((-146 . -97) T) ((-333 . -1178) 39673) ((-330 . -1178) 39657) ((-322 . -1178) 39641) ((-157 . -327) 39620) ((-525 . -788) T) ((-468 . -788) T) ((-1036 . -23) T) ((-85 . -565) 39602) ((-642 . -286) T) ((-775 . -37) 39572) ((-768 . -37) 39542) ((-1157 . -126) T) ((-1064 . -267) 39521) ((-896 . -734) 39474) ((-896 . -735) 39427) ((-756 . -732) 39406) ((-112 . -286) T) ((-89 . -288) 39344) ((-619 . -33) T) ((-511 . -558) 39323) ((-47 . -25) T) ((-47 . -21) T) ((-756 . -735) 39274) ((-756 . -734) 39253) ((-642 . -951) T) ((-598 . -981) 39237) ((-896 . -668) 39136) ((-756 . -668) 39067) ((-896 . -450) 39020) ((-458 . -736) 38971) ((-458 . -733) 38922) ((-843 . -1178) 38909) ((-1091 . -975) T) ((-598 . -107) 38888) ((-1091 . -304) 38865) ((-1112 . -97) 38843) ((-1019 . -565) 38825) ((-642 . -510) T) ((-757 . -1018) T) ((-1181 . -975) T) ((-391 . -1018) T) ((-230 . -982) 38756) ((-229 . -982) 38687) ((-268 . -593) 38674) ((-548 . -265) 38649) ((-631 . -629) 38607) ((-895 . -565) 38589) ((-805 . -97) T) ((-677 . -565) 38571) ((-657 . -565) 38553) ((-1163 . -160) 38504) ((-1156 . -160) 38435) ((-1135 . -160) 38366) ((-640 . -788) T) ((-934 . -269) T) ((-430 . -565) 38348) ((-575 . -668) T) ((-58 . -1018) 38326) ((-225 . -142) 38310) ((-847 . -269) T) ((-953 . -942) T) ((-575 . -450) T) ((-654 . -1129) 38289) ((-551 . -160) 38268) ((-550 . -160) 38219) ((-1171 . -788) 38198) ((-654 . -517) 38109) ((-385 . -853) T) ((-385 . -761) 38088) ((-297 . -735) T) ((-297 . -668) T) ((-396 . -565) 38070) ((-396 . -566) 37978) ((-591 . -1063) 37962) ((-106 . -596) 37944) ((-122 . -288) 37882) ((-106 . -351) 37864) ((-161 . -286) T) ((-376 . -1125) T) ((-294 . -126) 37736) ((-291 . -126) T) ((-67 . -373) T) ((-106 . -119) T) ((-491 . -464) 37720) ((-599 . -1030) T) ((-548 . -19) 37702) ((-59 . -418) T) ((-59 . -373) T) ((-765 . -1018) T) ((-548 . -558) 37677) ((-454 . -966) 37637) ((-598 . -975) T) ((-599 . -23) T) ((-1184 . -1018) T) ((-757 . -659) 37486) ((-113 . -788) NIL) ((-1085 . -389) 37470) ((-1041 . -389) 37454) ((-792 . -389) 37438) ((-806 . -97) 37389) ((-1155 . -97) T) ((-1135 . -486) 37158) ((-1112 . -288) 37096) ((-290 . -565) 37078) ((-1134 . -97) T) ((-1020 . -1018) T) ((-1087 . -265) 37063) ((-1086 . -265) 37048) ((-268 . -668) T) ((-103 . -842) NIL) ((-631 . -565) 36980) ((-631 . -566) 36941) ((-1001 . -593) 36851) ((-555 . -565) 36833) ((-511 . -566) NIL) ((-511 . -565) 36815) ((-1080 . -265) 36663) ((-462 . -981) 36613) ((-653 . -429) T) ((-483 . -481) 36592) ((-479 . -481) 36571) ((-198 . -981) 36521) ((-337 . -593) 36473) ((-331 . -593) 36425) ((-205 . -786) T) ((-323 . -593) 36377) ((-556 . -97) 36327) ((-458 . -346) 36306) ((-103 . -593) 36256) ((-462 . -107) 36190) ((-220 . -464) 36174) ((-321 . -138) 36156) ((-321 . -136) T) ((-157 . -348) 36127) ((-876 . -1169) 36111) ((-198 . -107) 36045) ((-805 . -288) 36010) ((-876 . -1018) 35960) ((-740 . -566) 35921) ((-740 . -565) 35903) ((-660 . -97) T) ((-309 . -1018) T) ((-1036 . -126) T) ((-656 . -37) 35873) ((-294 . -466) 35852) ((-473 . -1125) T) ((-1155 . -263) 35818) ((-1134 . -263) 35784) ((-305 . -142) 35768) ((-987 . -267) 35743) ((-1184 . -659) 35713) ((-1073 . -33) T) ((-1193 . -966) 35690) ((-445 . -565) 35672) ((-459 . -33) T) ((-359 . -966) 35656) ((-1085 . -982) T) ((-1041 . -982) T) ((-792 . -982) T) ((-986 . -786) T) ((-757 . -160) 35567) ((-491 . -265) 35544) ((-124 . -464) 35526) ((-113 . -923) 35503) ((-1163 . -269) 35482) ((-1107 . -342) 35456) ((-1008 . -245) 35440) ((-451 . -97) T) ((-343 . -1018) T) ((-230 . -1018) T) ((-229 . -1018) T) ((-1156 . -269) 35391) ((-105 . -1018) T) ((-1135 . -269) 35342) ((-805 . -1065) 35320) ((-1087 . -932) 35286) ((-560 . -342) 35226) ((-1086 . -932) 35192) ((-560 . -209) 35139) ((-548 . -565) 35121) ((-548 . -566) NIL) ((-635 . -788) T) ((-452 . -209) 35071) ((-462 . -975) T) ((-1080 . -932) 35037) ((-86 . -417) T) ((-86 . -373) T) ((-198 . -975) T) ((-1042 . -932) 35003) ((-1001 . -668) T) ((-654 . -1030) T) ((-551 . -269) 34982) ((-550 . -269) 34961) ((-462 . -223) T) ((-462 . -213) T) ((-198 . -223) T) ((-198 . -213) T) ((-1079 . -565) 34943) ((-805 . -37) 34895) ((-337 . -668) T) ((-331 . -668) T) ((-323 . -668) T) ((-103 . -735) T) ((-103 . -732) T) ((-491 . -1159) 34879) ((-103 . -668) T) ((-654 . -23) T) ((-1197 . -25) T) ((-451 . -263) 34845) ((-1197 . -21) T) ((-1134 . -288) 34784) ((-1089 . -97) T) ((-39 . -136) 34756) ((-39 . -138) 34728) ((-491 . -558) 34705) ((-1031 . -593) 34555) ((-556 . -288) 34493) ((-44 . -596) 34443) ((-44 . -611) 34393) ((-44 . -351) 34343) ((-1072 . -33) T) ((-804 . -786) NIL) ((-599 . -126) T) ((-460 . -565) 34325) ((-220 . -265) 34302) ((-592 . -33) T) ((-580 . -33) T) ((-1007 . -429) 34253) ((-757 . -486) 34127) ((-723 . -429) 34058) ((-721 . -429) 34009) ((-431 . -429) 33960) ((-885 . -389) 33944) ((-673 . -565) 33926) ((-230 . -659) 33868) ((-229 . -659) 33810) ((-673 . -566) 33671) ((-457 . -389) 33655) ((-317 . -281) T) ((-329 . -853) T) ((-930 . -97) 33633) ((-953 . -788) T) ((-58 . -486) 33566) ((-1134 . -1065) 33518) ((-934 . -265) NIL) ((-205 . -982) T) ((-357 . -769) T) ((-1031 . -33) T) ((-1138 . -1012) 33502) ((-538 . -429) T) ((-489 . -429) T) ((-1138 . -1018) 33480) ((-1138 . -1014) 33437) ((-220 . -558) 33414) ((-1087 . -565) 33396) ((-1086 . -565) 33378) ((-1080 . -565) 33360) ((-1080 . -566) NIL) ((-1042 . -565) 33342) ((-124 . -265) 33317) ((-805 . -378) 33301) ((-501 . -97) T) ((-1155 . -37) 33142) ((-1134 . -37) 32956) ((-803 . -138) T) ((-538 . -380) T) ((-47 . -788) T) ((-489 . -380) T) ((-1157 . -21) T) ((-1157 . -25) T) ((-1031 . -732) 32935) ((-1031 . -735) 32886) ((-1031 . -734) 32865) ((-924 . -1018) T) ((-956 . -33) T) ((-796 . -1018) T) ((-1167 . -97) T) ((-1031 . -668) 32796) ((-609 . -97) T) ((-511 . -267) 32775) ((-1099 . -97) T) ((-453 . -33) T) ((-440 . -33) T) ((-333 . -97) T) ((-330 . -97) T) ((-322 . -97) T) ((-243 . -97) T) ((-227 . -97) T) ((-454 . -286) T) ((-986 . -982) T) ((-885 . -982) T) ((-294 . -587) 32683) ((-291 . -587) 32644) ((-457 . -982) T) ((-455 . -97) T) ((-414 . -565) 32626) ((-1085 . -1018) T) ((-1041 . -1018) T) ((-792 . -1018) T) ((-1055 . -97) T) ((-757 . -269) 32557) ((-895 . -981) 32440) ((-454 . -951) T) ((-124 . -19) 32422) ((-677 . -981) 32392) ((-124 . -558) 32367) ((-430 . -981) 32337) ((-1061 . -1037) 32321) ((-1020 . -486) 32254) ((-895 . -107) 32123) ((-843 . -97) T) ((-677 . -107) 32088) ((-57 . -97) 32038) ((-491 . -566) 31999) ((-491 . -565) 31911) ((-490 . -97) 31889) ((-488 . -97) 31839) ((-470 . -97) 31817) ((-469 . -97) 31767) ((-430 . -107) 31730) ((-230 . -160) 31709) ((-229 . -160) 31688) ((-396 . -981) 31662) ((-1120 . -904) 31624) ((-929 . -1030) T) ((-876 . -486) 31557) ((-462 . -736) T) ((-451 . -37) 31398) ((-396 . -107) 31365) ((-462 . -733) T) ((-930 . -288) 31303) ((-198 . -736) T) ((-198 . -733) T) ((-929 . -23) T) ((-654 . -126) T) ((-1134 . -378) 31273) ((-294 . -25) 31126) ((-157 . -389) 31110) ((-294 . -21) 30982) ((-291 . -25) T) ((-291 . -21) T) ((-798 . -346) T) ((-106 . -33) T) ((-458 . -593) 30832) ((-804 . -982) T) ((-548 . -267) 30807) ((-537 . -138) T) ((-525 . -138) T) ((-468 . -138) T) ((-1085 . -659) 30636) ((-1041 . -659) 30485) ((-1036 . -587) 30467) ((-792 . -659) 30437) ((-615 . -1125) T) ((-1 . -97) T) ((-220 . -565) 30189) ((-1144 . -389) 30173) ((-1099 . -288) 29977) ((-895 . -975) T) ((-677 . -975) T) ((-657 . -975) T) ((-591 . -1018) 29927) ((-979 . -593) 29911) ((-793 . -389) 29895) ((-483 . -97) T) ((-479 . -97) T) ((-227 . -288) 29882) ((-243 . -288) 29869) ((-895 . -304) 29848) ((-363 . -593) 29832) ((-455 . -288) 29636) ((-230 . -486) 29569) ((-615 . -966) 29467) ((-229 . -486) 29400) ((-1055 . -288) 29326) ((-760 . -1018) T) ((-740 . -981) 29310) ((-1163 . -265) 29295) ((-1156 . -265) 29280) ((-1135 . -265) 29128) ((-364 . -1018) T) ((-302 . -1018) T) ((-396 . -975) T) ((-157 . -982) T) ((-57 . -288) 29066) ((-740 . -107) 29045) ((-550 . -265) 29030) ((-490 . -288) 28968) ((-488 . -288) 28906) ((-470 . -288) 28844) ((-469 . -288) 28782) ((-396 . -213) 28761) ((-458 . -33) T) ((-934 . -566) 28691) ((-205 . -1018) T) ((-934 . -565) 28673) ((-902 . -565) 28655) ((-902 . -566) 28630) ((-847 . -565) 28612) ((-640 . -138) T) ((-642 . -853) T) ((-642 . -761) T) ((-405 . -565) 28594) ((-1036 . -21) T) ((-124 . -566) NIL) ((-124 . -565) 28576) ((-1036 . -25) T) ((-615 . -355) 28560) ((-112 . -853) T) ((-805 . -211) 28544) ((-76 . -1125) T) ((-122 . -121) 28528) ((-979 . -33) T) ((-1191 . -966) 28502) ((-1189 . -966) 28459) ((-1144 . -982) T) ((-793 . -982) T) ((-458 . -732) 28438) ((-333 . -1065) 28417) ((-330 . -1065) 28396) ((-322 . -1065) 28375) ((-458 . -735) 28326) ((-458 . -734) 28305) ((-207 . -33) T) ((-458 . -668) 28236) ((-58 . -464) 28220) ((-532 . -982) T) ((-1085 . -160) 28111) ((-1041 . -160) 28022) ((-986 . -1018) T) ((-1007 . -882) 27967) ((-885 . -1018) T) ((-758 . -593) 27918) ((-723 . -882) 27887) ((-655 . -1018) T) ((-721 . -882) 27854) ((-488 . -261) 27838) ((-615 . -833) 27797) ((-457 . -1018) T) ((-431 . -882) 27764) ((-77 . -1125) T) ((-333 . -37) 27729) ((-330 . -37) 27694) ((-322 . -37) 27659) ((-243 . -37) 27508) ((-227 . -37) 27357) ((-843 . -1065) T) ((-572 . -138) 27336) ((-572 . -136) 27315) ((-113 . -138) T) ((-113 . -136) NIL) ((-392 . -668) T) ((-740 . -975) T) ((-321 . -429) T) ((-1163 . -932) 27281) ((-1156 . -932) 27247) ((-1135 . -932) 27213) ((-843 . -37) 27178) ((-205 . -659) 27143) ((-297 . -46) 27113) ((-39 . -387) 27085) ((-131 . -565) 27067) ((-929 . -126) T) ((-756 . -1125) T) ((-161 . -853) T) ((-321 . -380) T) ((-491 . -267) 27044) ((-44 . -33) T) ((-756 . -966) 26873) ((-607 . -97) T) ((-599 . -21) T) ((-599 . -25) T) ((-1020 . -464) 26857) ((-1134 . -211) 26827) ((-619 . -1125) T) ((-225 . -97) 26777) ((-804 . -1018) T) ((-1091 . -593) 26702) ((-986 . -659) 26689) ((-673 . -981) 26532) ((-1085 . -486) 26479) ((-885 . -659) 26328) ((-1041 . -486) 26280) ((-457 . -659) 26129) ((-65 . -565) 26111) ((-673 . -107) 25940) ((-876 . -464) 25924) ((-1181 . -593) 25884) ((-758 . -668) T) ((-1087 . -981) 25767) ((-1086 . -981) 25602) ((-1080 . -981) 25392) ((-1042 . -981) 25275) ((-933 . -1129) T) ((-1013 . -97) 25253) ((-756 . -355) 25223) ((-933 . -517) T) ((-1087 . -107) 25092) ((-1086 . -107) 24913) ((-1080 . -107) 24682) ((-1042 . -107) 24551) ((-1023 . -1021) 24515) ((-357 . -786) T) ((-1163 . -565) 24497) ((-1156 . -565) 24479) ((-1135 . -565) 24461) ((-1135 . -566) NIL) ((-220 . -267) 24438) ((-39 . -429) T) ((-205 . -160) T) ((-157 . -1018) T) ((-635 . -138) T) ((-635 . -136) NIL) ((-551 . -565) 24420) ((-550 . -565) 24402) ((-831 . -1018) T) ((-779 . -1018) T) ((-749 . -1018) T) ((-710 . -1018) T) ((-603 . -790) 24386) ((-620 . -1018) T) ((-756 . -833) 24319) ((-39 . -380) NIL) ((-1036 . -606) T) ((-804 . -659) 24264) ((-230 . -464) 24248) ((-229 . -464) 24232) ((-654 . -587) 24180) ((-598 . -593) 24154) ((-274 . -33) T) ((-673 . -975) T) ((-538 . -1178) 24141) ((-489 . -1178) 24118) ((-1144 . -1018) T) ((-1085 . -269) 24029) ((-1041 . -269) 23960) ((-986 . -160) T) ((-793 . -1018) T) ((-885 . -160) 23871) ((-723 . -1147) 23855) ((-591 . -486) 23788) ((-75 . -565) 23770) ((-673 . -304) 23735) ((-1091 . -668) T) ((-532 . -1018) T) ((-457 . -160) 23646) ((-225 . -288) 23584) ((-124 . -267) 23559) ((-1056 . -1030) T) ((-68 . -565) 23541) ((-1181 . -668) T) ((-1087 . -975) T) ((-1086 . -975) T) ((-305 . -97) 23491) ((-1080 . -975) T) ((-1056 . -23) T) ((-1042 . -975) T) ((-89 . -1037) 23475) ((-799 . -1030) T) ((-1087 . -213) 23434) ((-1086 . -223) 23413) ((-1086 . -213) 23365) ((-1080 . -213) 23252) ((-1080 . -223) 23231) ((-297 . -833) 23137) ((-799 . -23) T) ((-157 . -659) 22965) ((-385 . -1129) T) ((-1019 . -346) T) ((-953 . -138) T) ((-933 . -341) T) ((-803 . -429) T) ((-876 . -265) 22942) ((-294 . -788) T) ((-291 . -788) NIL) ((-807 . -97) T) ((-654 . -25) T) ((-385 . -517) T) ((-654 . -21) T) ((-332 . -138) 22924) ((-332 . -136) T) ((-1061 . -1018) 22902) ((-430 . -662) T) ((-73 . -565) 22884) ((-110 . -788) T) ((-225 . -261) 22868) ((-220 . -981) 22766) ((-79 . -565) 22748) ((-677 . -346) 22701) ((-1089 . -769) T) ((-679 . -215) 22685) ((-1073 . -1125) T) ((-132 . -215) 22667) ((-220 . -107) 22558) ((-1144 . -659) 22387) ((-47 . -138) T) ((-804 . -160) T) ((-793 . -659) 22357) ((-459 . -1125) T) ((-885 . -486) 22304) ((-598 . -668) T) ((-532 . -659) 22291) ((-963 . -982) T) ((-457 . -486) 22234) ((-876 . -19) 22218) ((-876 . -558) 22195) ((-757 . -566) NIL) ((-757 . -565) 22177) ((-934 . -981) 22127) ((-391 . -565) 22109) ((-230 . -265) 22086) ((-229 . -265) 22063) ((-462 . -842) NIL) ((-294 . -29) 22033) ((-103 . -1125) T) ((-933 . -1030) T) ((-198 . -842) NIL) ((-847 . -981) 21985) ((-1001 . -966) 21883) ((-934 . -107) 21817) ((-243 . -211) 21801) ((-679 . -636) 21785) ((-405 . -981) 21769) ((-357 . -982) T) ((-933 . -23) T) ((-847 . -107) 21707) ((-635 . -1114) NIL) ((-462 . -593) 21657) ((-103 . -817) 21639) ((-103 . -819) 21621) ((-635 . -1111) NIL) ((-198 . -593) 21571) ((-337 . -966) 21555) ((-331 . -966) 21539) ((-305 . -288) 21477) ((-323 . -966) 21461) ((-205 . -269) T) ((-405 . -107) 21440) ((-58 . -565) 21372) ((-157 . -160) T) ((-1036 . -788) T) ((-103 . -966) 21332) ((-825 . -1018) T) ((-775 . -982) T) ((-768 . -982) T) ((-635 . -34) NIL) ((-635 . -91) NIL) ((-291 . -923) 21293) ((-537 . -429) T) ((-525 . -429) T) ((-468 . -429) T) ((-385 . -341) T) ((-220 . -975) 21224) ((-1064 . -33) T) ((-454 . -853) T) ((-929 . -587) 21172) ((-230 . -558) 21149) ((-229 . -558) 21126) ((-1001 . -355) 21110) ((-804 . -486) 21018) ((-220 . -213) 20971) ((-1072 . -1125) T) ((-765 . -565) 20953) ((-1192 . -1030) T) ((-1184 . -565) 20935) ((-1144 . -160) 20826) ((-103 . -355) 20808) ((-103 . -316) 20790) ((-986 . -269) T) ((-885 . -269) 20721) ((-740 . -346) 20700) ((-592 . -1125) T) ((-580 . -1125) T) ((-457 . -269) 20631) ((-532 . -160) T) ((-305 . -261) 20615) ((-1192 . -23) T) ((-1120 . -97) T) ((-1107 . -1018) T) ((-1008 . -1018) T) ((-997 . -1018) T) ((-81 . -565) 20597) ((-653 . -97) T) ((-333 . -327) 20576) ((-560 . -1018) T) ((-330 . -327) 20555) ((-322 . -327) 20534) ((-452 . -1018) T) ((-1099 . -209) 20484) ((-243 . -232) 20446) ((-1056 . -126) T) ((-560 . -562) 20422) ((-1001 . -833) 20355) ((-934 . -975) T) ((-847 . -975) T) ((-452 . -562) 20334) ((-1080 . -733) NIL) ((-1080 . -736) NIL) ((-1020 . -566) 20295) ((-455 . -209) 20245) ((-1020 . -565) 20227) ((-934 . -223) T) ((-934 . -213) T) ((-405 . -975) T) ((-890 . -1018) 20177) ((-847 . -223) T) ((-799 . -126) T) ((-640 . -429) T) ((-781 . -1030) 20156) ((-103 . -833) NIL) ((-1120 . -263) 20122) ((-805 . -786) 20101) ((-1031 . -1125) T) ((-838 . -668) T) ((-157 . -486) 20013) ((-929 . -25) T) ((-838 . -450) T) ((-385 . -1030) T) ((-462 . -735) T) ((-462 . -732) T) ((-843 . -327) T) ((-462 . -668) T) ((-198 . -735) T) ((-198 . -732) T) ((-929 . -21) T) ((-198 . -668) T) ((-781 . -23) 19965) ((-297 . -286) 19944) ((-964 . -215) 19890) ((-385 . -23) T) ((-876 . -566) 19851) ((-876 . -565) 19763) ((-591 . -464) 19747) ((-44 . -940) 19697) ((-309 . -565) 19679) ((-1031 . -966) 19508) ((-548 . -596) 19490) ((-548 . -351) 19472) ((-321 . -1178) 19449) ((-956 . -1125) T) ((-804 . -269) T) ((-1144 . -486) 19396) ((-453 . -1125) T) ((-440 . -1125) T) ((-542 . -97) T) ((-1085 . -265) 19323) ((-572 . -429) 19302) ((-930 . -925) 19286) ((-1184 . -360) 19258) ((-113 . -429) T) ((-1106 . -97) T) ((-1011 . -1018) 19236) ((-963 . -1018) T) ((-826 . -788) T) ((-329 . -1129) T) ((-1163 . -981) 19119) ((-1031 . -355) 19089) ((-1156 . -981) 18924) ((-1135 . -981) 18714) ((-1163 . -107) 18583) ((-1156 . -107) 18404) ((-1135 . -107) 18173) ((-1120 . -288) 18160) ((-329 . -517) T) ((-343 . -565) 18142) ((-268 . -286) T) ((-551 . -981) 18115) ((-550 . -981) 17998) ((-339 . -1018) T) ((-300 . -1018) T) ((-230 . -565) 17959) ((-229 . -565) 17920) ((-933 . -126) T) ((-105 . -565) 17902) ((-583 . -23) T) ((-635 . -387) 17869) ((-559 . -23) T) ((-603 . -97) T) ((-551 . -107) 17840) ((-550 . -107) 17709) ((-357 . -1018) T) ((-314 . -97) T) ((-157 . -269) 17620) ((-1134 . -786) 17573) ((-656 . -982) T) ((-1061 . -486) 17506) ((-1031 . -833) 17439) ((-775 . -1018) T) ((-768 . -1018) T) ((-766 . -1018) T) ((-92 . -97) T) ((-135 . -788) T) ((-564 . -817) 17423) ((-106 . -1125) T) ((-1007 . -97) T) ((-987 . -33) T) ((-723 . -97) T) ((-721 . -97) T) ((-438 . -97) T) ((-431 . -97) T) ((-220 . -736) 17374) ((-220 . -733) 17325) ((-594 . -97) T) ((-1144 . -269) 17236) ((-609 . -582) 17220) ((-591 . -265) 17197) ((-963 . -659) 17181) ((-532 . -269) T) ((-895 . -593) 17106) ((-1192 . -126) T) ((-677 . -593) 17066) ((-657 . -593) 17053) ((-254 . -97) T) ((-430 . -593) 16983) ((-49 . -97) T) ((-538 . -97) T) ((-489 . -97) T) ((-1163 . -975) T) ((-1156 . -975) T) ((-1135 . -975) T) ((-1163 . -213) 16942) ((-300 . -659) 16924) ((-1156 . -223) 16903) ((-1156 . -213) 16855) ((-1135 . -213) 16742) ((-1135 . -223) 16721) ((-1120 . -37) 16618) ((-934 . -736) T) ((-551 . -975) T) ((-550 . -975) T) ((-934 . -733) T) ((-902 . -736) T) ((-902 . -733) T) ((-805 . -982) T) ((-803 . -802) 16602) ((-104 . -565) 16584) ((-635 . -429) T) ((-357 . -659) 16549) ((-396 . -593) 16523) ((-654 . -788) 16502) ((-653 . -37) 16467) ((-550 . -213) 16426) ((-39 . -666) 16398) ((-329 . -307) 16375) ((-329 . -341) T) ((-1001 . -286) 16326) ((-273 . -1030) 16208) ((-1024 . -1125) T) ((-159 . -97) T) ((-1138 . -565) 16175) ((-781 . -126) 16127) ((-591 . -1159) 16111) ((-775 . -659) 16081) ((-768 . -659) 16051) ((-458 . -1125) T) ((-337 . -286) T) ((-331 . -286) T) ((-323 . -286) T) ((-591 . -558) 16028) ((-385 . -126) T) ((-491 . -611) 16012) ((-103 . -286) T) ((-273 . -23) 15896) ((-491 . -596) 15880) ((-635 . -380) NIL) ((-491 . -351) 15864) ((-270 . -565) 15846) ((-89 . -1018) 15824) ((-103 . -951) T) ((-525 . -134) T) ((-1171 . -142) 15808) ((-458 . -966) 15637) ((-1157 . -136) 15598) ((-1157 . -138) 15559) ((-979 . -1125) T) ((-924 . -565) 15541) ((-796 . -565) 15523) ((-757 . -981) 15366) ((-1007 . -288) 15353) ((-207 . -1125) T) ((-723 . -288) 15340) ((-721 . -288) 15327) ((-757 . -107) 15156) ((-431 . -288) 15143) ((-1085 . -566) NIL) ((-1085 . -565) 15125) ((-1041 . -565) 15107) ((-1041 . -566) 14855) ((-963 . -160) T) ((-792 . -565) 14837) ((-876 . -267) 14814) ((-560 . -486) 14597) ((-759 . -966) 14581) ((-452 . -486) 14373) ((-895 . -668) T) ((-677 . -668) T) ((-657 . -668) T) ((-329 . -1030) T) ((-1092 . -565) 14355) ((-203 . -97) T) ((-458 . -355) 14325) ((-487 . -1018) T) ((-482 . -1018) T) ((-480 . -1018) T) ((-740 . -593) 14299) ((-953 . -429) T) ((-890 . -486) 14232) ((-329 . -23) T) ((-583 . -126) T) ((-559 . -126) T) ((-332 . -429) T) ((-220 . -346) 14211) ((-357 . -160) T) ((-1155 . -982) T) ((-1134 . -982) T) ((-205 . -932) T) ((-640 . -365) T) ((-396 . -668) T) ((-642 . -1129) T) ((-1056 . -587) 14159) ((-537 . -802) 14143) ((-1073 . -1102) 14119) ((-642 . -517) T) ((-122 . -1018) 14097) ((-1184 . -981) 14081) ((-656 . -1018) T) ((-458 . -833) 14014) ((-603 . -37) 13984) ((-332 . -380) T) ((-294 . -138) 13963) ((-294 . -136) 13942) ((-112 . -517) T) ((-291 . -138) 13898) ((-291 . -136) 13854) ((-47 . -429) T) ((-150 . -1018) T) ((-146 . -1018) T) ((-1073 . -102) 13801) ((-723 . -1065) 13779) ((-631 . -33) T) ((-1184 . -107) 13758) ((-511 . -33) T) ((-459 . -102) 13742) ((-230 . -267) 13719) ((-229 . -267) 13696) ((-804 . -265) 13647) ((-44 . -1125) T) ((-757 . -975) T) ((-1091 . -46) 13624) ((-757 . -304) 13586) ((-1007 . -37) 13435) ((-757 . -213) 13414) ((-723 . -37) 13243) ((-721 . -37) 13092) ((-124 . -596) 13074) ((-431 . -37) 12923) ((-124 . -351) 12905) ((-591 . -566) 12866) ((-591 . -565) 12778) ((-538 . -1065) T) ((-489 . -1065) T) ((-1061 . -464) 12762) ((-1112 . -1018) 12740) ((-1056 . -25) T) ((-1056 . -21) T) ((-451 . -982) T) ((-1135 . -733) NIL) ((-1135 . -736) NIL) ((-929 . -788) 12719) ((-760 . -565) 12701) ((-799 . -21) T) ((-799 . -25) T) ((-740 . -668) T) ((-161 . -1129) T) ((-538 . -37) 12666) ((-489 . -37) 12631) ((-364 . -565) 12613) ((-302 . -565) 12595) ((-157 . -265) 12553) ((-61 . -1125) T) ((-108 . -97) T) ((-805 . -1018) T) ((-161 . -517) T) ((-656 . -659) 12523) ((-273 . -126) 12407) ((-205 . -565) 12389) ((-205 . -566) 12319) ((-933 . -587) 12258) ((-1184 . -975) T) ((-1036 . -138) T) ((-580 . -1102) 12233) ((-673 . -842) 12212) ((-548 . -33) T) ((-592 . -102) 12196) ((-580 . -102) 12142) ((-1144 . -265) 12069) ((-673 . -593) 11994) ((-274 . -1125) T) ((-1091 . -966) 11892) ((-1080 . -842) NIL) ((-986 . -566) 11807) ((-986 . -565) 11789) ((-321 . -97) T) ((-229 . -981) 11687) ((-230 . -981) 11585) ((-372 . -97) T) ((-885 . -565) 11567) ((-885 . -566) 11428) ((-655 . -565) 11410) ((-1182 . -1119) 11379) ((-457 . -565) 11361) ((-457 . -566) 11222) ((-227 . -389) 11206) ((-243 . -389) 11190) ((-229 . -107) 11081) ((-230 . -107) 10972) ((-1087 . -593) 10897) ((-1086 . -593) 10794) ((-1080 . -593) 10646) ((-1042 . -593) 10571) ((-329 . -126) T) ((-80 . -418) T) ((-80 . -373) T) ((-933 . -25) T) ((-933 . -21) T) ((-806 . -1018) 10522) ((-805 . -659) 10474) ((-357 . -269) T) ((-157 . -932) 10426) ((-635 . -365) T) ((-929 . -927) 10410) ((-642 . -1030) T) ((-635 . -154) 10392) ((-1155 . -1018) T) ((-1134 . -1018) T) ((-294 . -1111) 10371) ((-294 . -1114) 10350) ((-1078 . -97) T) ((-294 . -891) 10329) ((-128 . -1030) T) ((-112 . -1030) T) ((-556 . -1169) 10313) ((-642 . -23) T) ((-556 . -1018) 10263) ((-89 . -486) 10196) ((-161 . -341) T) ((-294 . -91) 10175) ((-294 . -34) 10154) ((-560 . -464) 10088) ((-128 . -23) T) ((-112 . -23) T) ((-660 . -1018) T) ((-452 . -464) 10025) ((-385 . -587) 9973) ((-598 . -966) 9871) ((-890 . -464) 9855) ((-333 . -982) T) ((-330 . -982) T) ((-322 . -982) T) ((-243 . -982) T) ((-227 . -982) T) ((-804 . -566) NIL) ((-804 . -565) 9837) ((-1192 . -21) T) ((-532 . -932) T) ((-673 . -668) T) ((-1192 . -25) T) ((-230 . -975) 9768) ((-229 . -975) 9699) ((-70 . -1125) T) ((-230 . -213) 9652) ((-229 . -213) 9605) ((-39 . -97) T) ((-843 . -982) T) ((-1094 . -97) T) ((-1087 . -668) T) ((-1086 . -668) T) ((-1080 . -668) T) ((-1080 . -732) NIL) ((-1080 . -735) NIL) ((-854 . -97) T) ((-1042 . -668) T) ((-712 . -97) T) ((-616 . -97) T) ((-451 . -1018) T) ((-317 . -1030) T) ((-161 . -1030) T) ((-297 . -853) 9584) ((-1155 . -659) 9425) ((-805 . -160) T) ((-1134 . -659) 9239) ((-781 . -21) 9191) ((-781 . -25) 9143) ((-225 . -1063) 9127) ((-122 . -486) 9060) ((-385 . -25) T) ((-385 . -21) T) ((-317 . -23) T) ((-157 . -565) 9042) ((-157 . -566) 8810) ((-161 . -23) T) ((-591 . -267) 8787) ((-491 . -33) T) ((-831 . -565) 8769) ((-87 . -1125) T) ((-779 . -565) 8751) ((-749 . -565) 8733) ((-710 . -565) 8715) ((-620 . -565) 8697) ((-220 . -593) 8547) ((-1089 . -1018) T) ((-1085 . -981) 8370) ((-1064 . -1125) T) ((-1041 . -981) 8213) ((-792 . -981) 8197) ((-1085 . -107) 8006) ((-1041 . -107) 7835) ((-792 . -107) 7814) ((-1144 . -566) NIL) ((-1144 . -565) 7796) ((-321 . -1065) T) ((-793 . -565) 7778) ((-997 . -265) 7757) ((-78 . -1125) T) ((-934 . -842) NIL) ((-560 . -265) 7733) ((-1112 . -486) 7666) ((-462 . -1125) T) ((-532 . -565) 7648) ((-452 . -265) 7627) ((-198 . -1125) T) ((-1007 . -211) 7611) ((-268 . -853) T) ((-758 . -286) 7590) ((-803 . -97) T) ((-723 . -211) 7574) ((-934 . -593) 7524) ((-890 . -265) 7501) ((-847 . -593) 7453) ((-583 . -21) T) ((-583 . -25) T) ((-559 . -21) T) ((-321 . -37) 7418) ((-635 . -666) 7385) ((-462 . -817) 7367) ((-462 . -819) 7349) ((-451 . -659) 7190) ((-198 . -817) 7172) ((-62 . -1125) T) ((-198 . -819) 7154) ((-559 . -25) T) ((-405 . -593) 7128) ((-462 . -966) 7088) ((-805 . -486) 7000) ((-198 . -966) 6960) ((-220 . -33) T) ((-930 . -1018) 6938) ((-1155 . -160) 6869) ((-1134 . -160) 6800) ((-654 . -136) 6779) ((-654 . -138) 6758) ((-642 . -126) T) ((-130 . -442) 6735) ((-603 . -601) 6719) ((-1061 . -565) 6651) ((-112 . -126) T) ((-454 . -1129) T) ((-560 . -558) 6627) ((-452 . -558) 6606) ((-314 . -313) 6575) ((-501 . -1018) T) ((-454 . -517) T) ((-1085 . -975) T) ((-1041 . -975) T) ((-792 . -975) T) ((-220 . -732) 6554) ((-220 . -735) 6505) ((-220 . -734) 6484) ((-1085 . -304) 6461) ((-220 . -668) 6392) ((-890 . -19) 6376) ((-462 . -355) 6358) ((-462 . -316) 6340) ((-1041 . -304) 6312) ((-332 . -1178) 6289) ((-198 . -355) 6271) ((-198 . -316) 6253) ((-890 . -558) 6230) ((-1085 . -213) T) ((-609 . -1018) T) ((-1167 . -1018) T) ((-1099 . -1018) T) ((-1007 . -232) 6167) ((-333 . -1018) T) ((-330 . -1018) T) ((-322 . -1018) T) ((-243 . -1018) T) ((-227 . -1018) T) ((-82 . -1125) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-124 . -33) T) ((-1099 . -562) 6102) ((-455 . -1018) T) ((-1055 . -1018) T) ((-455 . -562) 6081) ((-230 . -736) 6032) ((-230 . -733) 5983) ((-229 . -736) 5934) ((-39 . -1065) NIL) ((-229 . -733) 5885) ((-1001 . -853) 5836) ((-934 . -735) T) ((-934 . -732) T) ((-934 . -668) T) ((-902 . -735) T) ((-847 . -668) T) ((-89 . -464) 5820) ((-462 . -833) NIL) ((-843 . -1018) T) ((-205 . -981) 5785) ((-805 . -269) T) ((-198 . -833) NIL) ((-774 . -1030) 5764) ((-57 . -1018) 5714) ((-490 . -1018) 5692) ((-488 . -1018) 5642) ((-470 . -1018) 5620) ((-469 . -1018) 5570) ((-537 . -97) T) ((-525 . -97) T) ((-468 . -97) T) ((-451 . -160) 5501) ((-337 . -853) T) ((-331 . -853) T) ((-323 . -853) T) ((-205 . -107) 5457) ((-774 . -23) 5409) ((-405 . -668) T) ((-103 . -853) T) ((-39 . -37) 5354) ((-103 . -761) T) ((-538 . -327) T) ((-489 . -327) T) ((-1134 . -486) 5214) ((-294 . -429) 5193) ((-291 . -429) T) ((-775 . -265) 5172) ((-317 . -126) T) ((-161 . -126) T) ((-273 . -25) 5037) ((-273 . -21) 4921) ((-44 . -1102) 4900) ((-64 . -565) 4882) ((-825 . -565) 4864) ((-556 . -486) 4797) ((-44 . -102) 4747) ((-1020 . -403) 4731) ((-1020 . -346) 4710) ((-987 . -1125) T) ((-986 . -981) 4697) ((-885 . -981) 4540) ((-457 . -981) 4383) ((-609 . -659) 4367) ((-986 . -107) 4352) ((-885 . -107) 4181) ((-454 . -341) T) ((-333 . -659) 4133) ((-330 . -659) 4085) ((-322 . -659) 4037) ((-243 . -659) 3886) ((-227 . -659) 3735) ((-876 . -596) 3719) ((-457 . -107) 3548) ((-1172 . -97) T) ((-876 . -351) 3532) ((-1135 . -842) NIL) ((-72 . -565) 3514) ((-895 . -46) 3493) ((-570 . -1030) T) ((-1 . -1018) T) ((-652 . -97) T) ((-640 . -97) T) ((-1171 . -97) 3443) ((-1163 . -593) 3368) ((-1156 . -593) 3265) ((-122 . -464) 3249) ((-1107 . -565) 3231) ((-1008 . -565) 3213) ((-368 . -23) T) ((-997 . -565) 3195) ((-85 . -1125) T) ((-1135 . -593) 3047) ((-843 . -659) 3012) ((-570 . -23) T) ((-560 . -565) 2994) ((-560 . -566) NIL) ((-452 . -566) NIL) ((-452 . -565) 2976) ((-483 . -1018) T) ((-479 . -1018) T) ((-329 . -25) T) ((-329 . -21) T) ((-123 . -288) 2914) ((-117 . -288) 2852) ((-551 . -593) 2839) ((-205 . -975) T) ((-550 . -593) 2764) ((-357 . -932) T) ((-205 . -223) T) ((-205 . -213) T) ((-890 . -566) 2725) ((-890 . -565) 2637) ((-803 . -37) 2624) ((-1155 . -269) 2575) ((-1134 . -269) 2526) ((-1036 . -429) T) ((-475 . -788) T) ((-294 . -1053) 2505) ((-929 . -138) 2484) ((-929 . -136) 2463) ((-468 . -288) 2450) ((-274 . -1102) 2429) ((-454 . -1030) T) ((-804 . -981) 2374) ((-572 . -97) T) ((-1112 . -464) 2358) ((-230 . -346) 2337) ((-229 . -346) 2316) ((-274 . -102) 2266) ((-986 . -975) T) ((-113 . -97) T) ((-885 . -975) T) ((-804 . -107) 2195) ((-454 . -23) T) ((-457 . -975) T) ((-986 . -213) T) ((-885 . -304) 2164) ((-457 . -304) 2121) ((-333 . -160) T) ((-330 . -160) T) ((-322 . -160) T) ((-243 . -160) 2032) ((-227 . -160) 1943) ((-895 . -966) 1841) ((-677 . -966) 1812) ((-1023 . -97) T) ((-1011 . -565) 1779) ((-963 . -565) 1761) ((-1163 . -668) T) ((-1156 . -668) T) ((-1135 . -732) NIL) ((-157 . -981) 1671) ((-1135 . -735) NIL) ((-843 . -160) T) ((-1135 . -668) T) ((-1182 . -142) 1655) ((-933 . -320) 1629) ((-930 . -486) 1562) ((-781 . -788) 1541) ((-525 . -1065) T) ((-451 . -269) 1492) ((-551 . -668) T) ((-339 . -565) 1474) ((-300 . -565) 1456) ((-396 . -966) 1354) ((-550 . -668) T) ((-385 . -788) 1305) ((-157 . -107) 1201) ((-774 . -126) 1153) ((-679 . -142) 1137) ((-1171 . -288) 1075) ((-462 . -286) T) ((-357 . -565) 1042) ((-491 . -940) 1026) ((-357 . -566) 940) ((-198 . -286) T) ((-132 . -142) 922) ((-656 . -265) 901) ((-462 . -951) T) ((-537 . -37) 888) ((-525 . -37) 875) ((-468 . -37) 840) ((-198 . -951) T) ((-804 . -975) T) ((-775 . -565) 822) ((-768 . -565) 804) ((-766 . -565) 786) ((-757 . -842) 765) ((-1193 . -1030) T) ((-1144 . -981) 588) ((-793 . -981) 572) ((-804 . -223) T) ((-804 . -213) NIL) ((-631 . -1125) T) ((-1193 . -23) T) ((-757 . -593) 497) ((-511 . -1125) T) ((-396 . -316) 481) ((-532 . -981) 468) ((-1144 . -107) 277) ((-642 . -587) 259) ((-793 . -107) 238) ((-359 . -23) T) ((-1099 . -486) 30))
\ No newline at end of file +(((-608 . -1019) T) ((-243 . -486) 142688) ((-227 . -486) 142631) ((-532 . -107) 142616) ((-497 . -23) T) ((-225 . -1019) 142566) ((-113 . -288) 142523) ((-455 . -486) 142315) ((-636 . -97) T) ((-1056 . -486) 142234) ((-368 . -126) T) ((-1183 . -908) 142203) ((-556 . -464) 142187) ((-571 . -126) T) ((-761 . -785) T) ((-494 . -55) 142137) ((-57 . -486) 142070) ((-490 . -486) 142003) ((-396 . -834) 141962) ((-157 . -976) T) ((-488 . -486) 141895) ((-470 . -486) 141828) ((-469 . -486) 141761) ((-741 . -967) 141548) ((-641 . -37) 141513) ((-321 . -327) T) ((-1014 . -1013) 141497) ((-1014 . -1019) 141475) ((-157 . -223) 141426) ((-157 . -213) 141377) ((-1014 . -1015) 141335) ((-806 . -265) 141293) ((-205 . -737) T) ((-205 . -734) T) ((-636 . -263) NIL) ((-1065 . -1103) 141272) ((-385 . -924) 141256) ((-643 . -21) T) ((-643 . -25) T) ((-1185 . -594) 141230) ((-294 . -149) 141209) ((-294 . -134) 141188) ((-1065 . -102) 141138) ((-128 . -25) T) ((-39 . -211) 141115) ((-112 . -21) T) ((-112 . -25) T) ((-561 . -267) 141091) ((-452 . -267) 141070) ((-1145 . -976) T) ((-794 . -976) T) ((-741 . -316) 141054) ((-113 . -1066) NIL) ((-89 . -566) 140986) ((-454 . -126) T) ((-548 . -1126) T) ((-1145 . -304) 140963) ((-532 . -976) T) ((-1145 . -213) T) ((-608 . -660) 140947) ((-891 . -267) 140924) ((-58 . -33) T) ((-987 . -737) T) ((-987 . -734) T) ((-758 . -669) T) ((-674 . -46) 140889) ((-573 . -37) 140876) ((-333 . -269) T) ((-330 . -269) T) ((-322 . -269) T) ((-243 . -269) 140807) ((-227 . -269) 140738) ((-954 . -97) T) ((-391 . -669) T) ((-113 . -37) 140683) ((-391 . -450) T) ((-332 . -97) T) ((-1121 . -983) T) ((-654 . -983) T) ((-1088 . -46) 140660) ((-1087 . -46) 140630) ((-1081 . -46) 140607) ((-965 . -142) 140553) ((-844 . -269) T) ((-1043 . -46) 140525) ((-636 . -288) NIL) ((-487 . -566) 140507) ((-482 . -566) 140489) ((-480 . -566) 140471) ((-305 . -1019) 140421) ((-655 . -429) 140352) ((-47 . -97) T) ((-1156 . -265) 140337) ((-1135 . -265) 140257) ((-592 . -612) 140241) ((-592 . -597) 140225) ((-317 . -21) T) ((-317 . -25) T) ((-39 . -327) NIL) ((-161 . -21) T) ((-161 . -25) T) ((-592 . -351) 140209) ((-556 . -265) 140186) ((-559 . -566) 140153) ((-366 . -97) T) ((-1037 . -134) T) ((-122 . -566) 140085) ((-808 . -1019) T) ((-604 . -389) 140069) ((-657 . -566) 140051) ((-150 . -566) 140033) ((-146 . -566) 140015) ((-1185 . -669) T) ((-1021 . -33) T) ((-805 . -737) NIL) ((-805 . -734) NIL) ((-796 . -789) T) ((-674 . -820) NIL) ((-1194 . -126) T) ((-359 . -126) T) ((-838 . -97) T) ((-674 . -967) 139893) ((-497 . -126) T) ((-1008 . -389) 139877) ((-931 . -464) 139861) ((-113 . -378) 139838) ((-1081 . -1126) 139817) ((-724 . -389) 139801) ((-722 . -389) 139785) ((-877 . -33) T) ((-636 . -1066) NIL) ((-230 . -594) 139622) ((-229 . -594) 139446) ((-759 . -854) 139425) ((-431 . -389) 139409) ((-556 . -19) 139393) ((-1061 . -1120) 139362) ((-1081 . -820) NIL) ((-1081 . -818) 139314) ((-556 . -558) 139291) ((-1113 . -566) 139223) ((-1089 . -566) 139205) ((-60 . -373) T) ((-1087 . -967) 139140) ((-1081 . -967) 139106) ((-636 . -37) 139056) ((-451 . -265) 139041) ((-674 . -355) 139025) ((-604 . -983) T) ((-1156 . -933) 138991) ((-1135 . -933) 138957) ((-988 . -1103) 138932) ((-806 . -567) 138740) ((-806 . -566) 138722) ((-1100 . -464) 138659) ((-396 . -952) 138638) ((-47 . -288) 138625) ((-988 . -102) 138571) ((-455 . -464) 138508) ((-491 . -1126) T) ((-1056 . -464) 138479) ((-1081 . -316) 138431) ((-1081 . -355) 138383) ((-415 . -97) T) ((-1008 . -983) T) ((-230 . -33) T) ((-229 . -33) T) ((-724 . -983) T) ((-722 . -983) T) ((-674 . -834) 138360) ((-431 . -983) T) ((-57 . -464) 138344) ((-964 . -982) 138318) ((-490 . -464) 138302) ((-488 . -464) 138286) ((-470 . -464) 138270) ((-469 . -464) 138254) ((-225 . -486) 138187) ((-964 . -107) 138154) ((-1088 . -834) 138067) ((-616 . -1031) T) ((-1087 . -834) 137973) ((-1081 . -834) 137806) ((-1043 . -834) 137790) ((-332 . -1066) T) ((-300 . -982) 137772) ((-230 . -733) 137751) ((-230 . -736) 137702) ((-230 . -735) 137681) ((-229 . -733) 137660) ((-229 . -736) 137611) ((-229 . -735) 137590) ((-49 . -983) T) ((-230 . -669) 137521) ((-229 . -669) 137452) ((-1121 . -1019) T) ((-616 . -23) T) ((-538 . -983) T) ((-489 . -983) T) ((-357 . -982) 137417) ((-300 . -107) 137392) ((-71 . -361) T) ((-71 . -373) T) ((-954 . -37) 137329) ((-636 . -378) 137311) ((-94 . -97) T) ((-654 . -1019) T) ((-934 . -136) 137283) ((-934 . -138) 137255) ((-357 . -107) 137211) ((-297 . -1130) 137190) ((-451 . -933) 137156) ((-332 . -37) 137121) ((-39 . -348) 137093) ((-807 . -566) 136965) ((-123 . -121) 136949) ((-117 . -121) 136933) ((-776 . -982) 136903) ((-775 . -21) 136855) ((-769 . -982) 136839) ((-775 . -25) 136791) ((-297 . -517) 136742) ((-525 . -770) T) ((-220 . -1126) T) ((-776 . -107) 136707) ((-769 . -107) 136686) ((-1156 . -566) 136668) ((-1135 . -566) 136650) ((-1135 . -567) 136323) ((-1086 . -843) 136302) ((-1042 . -843) 136281) ((-47 . -37) 136246) ((-1192 . -1031) T) ((-556 . -566) 136158) ((-556 . -567) 136119) ((-1190 . -1031) T) ((-220 . -967) 135948) ((-1086 . -594) 135873) ((-1042 . -594) 135798) ((-661 . -566) 135780) ((-793 . -594) 135754) ((-1192 . -23) T) ((-1190 . -23) T) ((-964 . -976) T) ((-1100 . -265) 135733) ((-157 . -346) 135684) ((-935 . -1126) T) ((-43 . -23) T) ((-455 . -265) 135663) ((-542 . -1019) T) ((-1061 . -1028) 135632) ((-1023 . -1022) 135584) ((-124 . -1126) T) ((-368 . -21) T) ((-368 . -25) T) ((-143 . -1031) T) ((-1198 . -97) T) ((-935 . -818) 135566) ((-935 . -820) 135548) ((-1121 . -660) 135445) ((-573 . -211) 135429) ((-571 . -21) T) ((-268 . -517) T) ((-571 . -25) T) ((-1107 . -1019) T) ((-654 . -660) 135394) ((-220 . -355) 135364) ((-935 . -967) 135324) ((-357 . -976) T) ((-203 . -983) T) ((-113 . -211) 135301) ((-57 . -265) 135278) ((-143 . -23) T) ((-488 . -265) 135255) ((-305 . -486) 135188) ((-469 . -265) 135165) ((-357 . -223) T) ((-357 . -213) T) ((-776 . -976) T) ((-769 . -976) T) ((-655 . -883) 135134) ((-643 . -789) T) ((-451 . -566) 135116) ((-769 . -213) 135095) ((-128 . -789) T) ((-604 . -1019) T) ((-1100 . -558) 135074) ((-511 . -1103) 135053) ((-314 . -1019) T) ((-297 . -341) 135032) ((-385 . -138) 135011) ((-385 . -136) 134990) ((-897 . -1031) 134889) ((-220 . -834) 134822) ((-757 . -1031) 134753) ((-600 . -791) 134737) ((-455 . -558) 134716) ((-511 . -102) 134666) ((-935 . -355) 134648) ((-935 . -316) 134630) ((-92 . -1019) T) ((-897 . -23) 134441) ((-454 . -21) T) ((-454 . -25) T) ((-757 . -23) 134312) ((-1090 . -566) 134294) ((-57 . -19) 134278) ((-1090 . -567) 134200) ((-1086 . -669) T) ((-1042 . -669) T) ((-488 . -19) 134184) ((-469 . -19) 134168) ((-57 . -558) 134145) ((-1008 . -1019) T) ((-835 . -97) 134123) ((-793 . -669) T) ((-724 . -1019) T) ((-488 . -558) 134100) ((-469 . -558) 134077) ((-722 . -1019) T) ((-722 . -990) 134044) ((-438 . -1019) T) ((-431 . -1019) T) ((-542 . -660) 134019) ((-595 . -1019) T) ((-935 . -834) NIL) ((-1164 . -46) 133996) ((-576 . -1031) T) ((-616 . -126) T) ((-1158 . -97) T) ((-1157 . -46) 133966) ((-1136 . -46) 133943) ((-1121 . -160) 133894) ((-1002 . -1130) 133845) ((-254 . -1019) T) ((-83 . -418) T) ((-83 . -373) T) ((-1087 . -286) 133824) ((-1081 . -286) 133803) ((-49 . -1019) T) ((-1002 . -517) 133754) ((-654 . -160) T) ((-550 . -46) 133731) ((-205 . -594) 133696) ((-538 . -1019) T) ((-489 . -1019) T) ((-337 . -1130) T) ((-331 . -1130) T) ((-323 . -1130) T) ((-462 . -762) T) ((-462 . -854) T) ((-297 . -1031) T) ((-103 . -1130) T) ((-317 . -789) T) ((-198 . -854) T) ((-198 . -762) T) ((-657 . -982) 133666) ((-337 . -517) T) ((-331 . -517) T) ((-323 . -517) T) ((-103 . -517) T) ((-604 . -660) 133636) ((-1081 . -952) NIL) ((-297 . -23) T) ((-65 . -1126) T) ((-931 . -566) 133568) ((-636 . -211) 133550) ((-657 . -107) 133515) ((-592 . -33) T) ((-225 . -464) 133499) ((-1021 . -1017) 133483) ((-159 . -1019) T) ((-886 . -843) 133462) ((-457 . -843) 133441) ((-1194 . -21) T) ((-1194 . -25) T) ((-1192 . -126) T) ((-1190 . -126) T) ((-1008 . -660) 133290) ((-987 . -594) 133277) ((-886 . -594) 133202) ((-724 . -660) 133031) ((-501 . -566) 133013) ((-501 . -567) 132994) ((-722 . -660) 132843) ((-1183 . -97) T) ((-999 . -97) T) ((-359 . -25) T) ((-359 . -21) T) ((-457 . -594) 132768) ((-438 . -660) 132739) ((-431 . -660) 132588) ((-919 . -97) T) ((-680 . -97) T) ((-497 . -25) T) ((-1136 . -1126) 132567) ((-1168 . -566) 132533) ((-1136 . -820) NIL) ((-1136 . -818) 132485) ((-132 . -97) T) ((-43 . -126) T) ((-1100 . -567) NIL) ((-1100 . -566) 132467) ((-1057 . -1040) 132412) ((-321 . -983) T) ((-610 . -566) 132394) ((-268 . -1031) T) ((-333 . -566) 132376) ((-330 . -566) 132358) ((-322 . -566) 132340) ((-243 . -567) 132088) ((-243 . -566) 132070) ((-227 . -566) 132052) ((-227 . -567) 131913) ((-973 . -1120) 131842) ((-835 . -288) 131780) ((-1198 . -1066) T) ((-1157 . -967) 131715) ((-1136 . -967) 131681) ((-1121 . -486) 131648) ((-1056 . -566) 131630) ((-761 . -669) T) ((-556 . -267) 131607) ((-538 . -660) 131572) ((-455 . -567) NIL) ((-455 . -566) 131554) ((-489 . -660) 131499) ((-294 . -97) T) ((-291 . -97) T) ((-268 . -23) T) ((-143 . -126) T) ((-364 . -669) T) ((-806 . -982) 131451) ((-844 . -566) 131433) ((-844 . -567) 131415) ((-806 . -107) 131353) ((-130 . -97) T) ((-110 . -97) T) ((-655 . -1148) 131337) ((-657 . -976) T) ((-636 . -327) NIL) ((-490 . -566) 131269) ((-357 . -737) T) ((-203 . -1019) T) ((-357 . -734) T) ((-205 . -736) T) ((-205 . -733) T) ((-57 . -567) 131230) ((-57 . -566) 131142) ((-205 . -669) T) ((-488 . -567) 131103) ((-488 . -566) 131015) ((-470 . -566) 130947) ((-469 . -567) 130908) ((-469 . -566) 130820) ((-1002 . -341) 130771) ((-39 . -389) 130748) ((-75 . -1126) T) ((-805 . -843) NIL) ((-337 . -307) 130732) ((-337 . -341) T) ((-331 . -307) 130716) ((-331 . -341) T) ((-323 . -307) 130700) ((-323 . -341) T) ((-294 . -263) 130679) ((-103 . -341) T) ((-68 . -1126) T) ((-1136 . -316) 130631) ((-805 . -594) 130576) ((-1136 . -355) 130528) ((-897 . -126) 130383) ((-757 . -126) 130254) ((-891 . -597) 130238) ((-1008 . -160) 130149) ((-891 . -351) 130133) ((-987 . -736) T) ((-987 . -733) T) ((-724 . -160) 130024) ((-722 . -160) 129935) ((-758 . -46) 129897) ((-987 . -669) T) ((-305 . -464) 129881) ((-886 . -669) T) ((-431 . -160) 129792) ((-225 . -265) 129769) ((-457 . -669) T) ((-1183 . -288) 129707) ((-1164 . -834) 129620) ((-1157 . -834) 129526) ((-1156 . -982) 129361) ((-1136 . -834) 129194) ((-1135 . -982) 129002) ((-1121 . -269) 128981) ((-1061 . -142) 128965) ((-997 . -97) T) ((-861 . -888) T) ((-73 . -1126) T) ((-680 . -288) 128903) ((-157 . -843) 128856) ((-610 . -360) 128828) ((-30 . -888) T) ((-1 . -566) 128810) ((-1037 . -97) T) ((-1002 . -23) T) ((-49 . -570) 128794) ((-1002 . -1031) T) ((-934 . -387) 128766) ((-550 . -834) 128679) ((-416 . -97) T) ((-132 . -288) NIL) ((-806 . -976) T) ((-775 . -789) 128658) ((-79 . -1126) T) ((-654 . -269) T) ((-39 . -983) T) ((-538 . -160) T) ((-489 . -160) T) ((-483 . -566) 128640) ((-157 . -594) 128550) ((-479 . -566) 128532) ((-329 . -138) 128514) ((-329 . -136) T) ((-337 . -1031) T) ((-331 . -1031) T) ((-323 . -1031) T) ((-935 . -286) T) ((-848 . -286) T) ((-806 . -223) T) ((-103 . -1031) T) ((-806 . -213) 128493) ((-1156 . -107) 128314) ((-1135 . -107) 128103) ((-225 . -1160) 128087) ((-525 . -787) T) ((-337 . -23) T) ((-332 . -327) T) ((-294 . -288) 128074) ((-291 . -288) 128015) ((-331 . -23) T) ((-297 . -126) T) ((-323 . -23) T) ((-935 . -952) T) ((-103 . -23) T) ((-225 . -558) 127992) ((-1158 . -37) 127884) ((-1145 . -843) 127863) ((-108 . -1019) T) ((-965 . -97) T) ((-1145 . -594) 127788) ((-805 . -736) NIL) ((-794 . -594) 127762) ((-805 . -733) NIL) ((-758 . -820) NIL) ((-805 . -669) T) ((-1008 . -486) 127635) ((-724 . -486) 127582) ((-722 . -486) 127534) ((-532 . -594) 127521) ((-758 . -967) 127351) ((-431 . -486) 127294) ((-366 . -367) T) ((-58 . -1126) T) ((-571 . -789) 127273) ((-473 . -607) T) ((-1061 . -908) 127242) ((-934 . -429) T) ((-641 . -787) T) ((-482 . -734) T) ((-451 . -982) 127077) ((-321 . -1019) T) ((-291 . -1066) NIL) ((-268 . -126) T) ((-372 . -1019) T) ((-636 . -348) 127044) ((-804 . -983) T) ((-203 . -570) 127021) ((-305 . -265) 126998) ((-451 . -107) 126819) ((-1156 . -976) T) ((-1135 . -976) T) ((-758 . -355) 126803) ((-157 . -669) T) ((-600 . -97) T) ((-1156 . -223) 126782) ((-1156 . -213) 126734) ((-1135 . -213) 126639) ((-1135 . -223) 126618) ((-934 . -380) NIL) ((-616 . -588) 126566) ((-294 . -37) 126476) ((-291 . -37) 126405) ((-67 . -566) 126387) ((-297 . -466) 126353) ((-1100 . -267) 126332) ((-1032 . -1031) 126263) ((-81 . -1126) T) ((-59 . -566) 126245) ((-455 . -267) 126224) ((-1185 . -967) 126201) ((-1079 . -1019) T) ((-1032 . -23) 126072) ((-758 . -834) 126008) ((-1145 . -669) T) ((-1021 . -1126) T) ((-1008 . -269) 125939) ((-827 . -97) T) ((-724 . -269) 125850) ((-305 . -19) 125834) ((-57 . -267) 125811) ((-722 . -269) 125742) ((-794 . -669) T) ((-113 . -787) NIL) ((-488 . -267) 125719) ((-305 . -558) 125696) ((-469 . -267) 125673) ((-431 . -269) 125604) ((-965 . -288) 125455) ((-532 . -669) T) ((-608 . -566) 125437) ((-225 . -567) 125398) ((-225 . -566) 125310) ((-1062 . -33) T) ((-877 . -1126) T) ((-321 . -660) 125255) ((-616 . -25) T) ((-616 . -21) T) ((-451 . -976) T) ((-584 . -395) 125220) ((-560 . -395) 125185) ((-1037 . -1066) T) ((-538 . -269) T) ((-489 . -269) T) ((-1157 . -286) 125164) ((-451 . -213) 125116) ((-451 . -223) 125095) ((-1136 . -286) 125074) ((-1002 . -126) T) ((-806 . -737) 125053) ((-135 . -97) T) ((-39 . -1019) T) ((-806 . -734) 125032) ((-592 . -941) 125016) ((-537 . -983) T) ((-525 . -983) T) ((-468 . -983) T) ((-385 . -429) T) ((-337 . -126) T) ((-294 . -378) 125000) ((-291 . -378) 124961) ((-331 . -126) T) ((-323 . -126) T) ((-1136 . -952) NIL) ((-1095 . -1019) T) ((-1014 . -566) 124928) ((-103 . -126) T) ((-1037 . -37) 124915) ((-855 . -1019) T) ((-713 . -1019) T) ((-617 . -1019) T) ((-643 . -138) T) ((-112 . -138) T) ((-1192 . -21) T) ((-1192 . -25) T) ((-1190 . -21) T) ((-1190 . -25) T) ((-610 . -982) 124899) ((-497 . -789) T) ((-473 . -789) T) ((-333 . -982) 124851) ((-330 . -982) 124803) ((-322 . -982) 124755) ((-230 . -1126) T) ((-229 . -1126) T) ((-243 . -982) 124598) ((-227 . -982) 124441) ((-610 . -107) 124420) ((-333 . -107) 124358) ((-330 . -107) 124296) ((-322 . -107) 124234) ((-243 . -107) 124063) ((-227 . -107) 123892) ((-759 . -1130) 123871) ((-573 . -389) 123855) ((-43 . -21) T) ((-43 . -25) T) ((-757 . -588) 123763) ((-759 . -517) 123742) ((-230 . -967) 123571) ((-229 . -967) 123400) ((-122 . -115) 123384) ((-844 . -982) 123349) ((-641 . -983) T) ((-655 . -97) T) ((-321 . -160) T) ((-143 . -21) T) ((-143 . -25) T) ((-86 . -566) 123331) ((-844 . -107) 123287) ((-39 . -660) 123232) ((-804 . -1019) T) ((-305 . -567) 123193) ((-305 . -566) 123105) ((-1135 . -734) 123058) ((-1135 . -737) 123011) ((-230 . -355) 122981) ((-229 . -355) 122951) ((-600 . -37) 122921) ((-561 . -33) T) ((-458 . -1031) 122852) ((-452 . -33) T) ((-1032 . -126) 122723) ((-897 . -25) 122534) ((-808 . -566) 122516) ((-897 . -21) 122471) ((-757 . -21) 122382) ((-757 . -25) 122234) ((-573 . -983) T) ((-1092 . -517) 122213) ((-1086 . -46) 122190) ((-333 . -976) T) ((-330 . -976) T) ((-458 . -23) 122061) ((-322 . -976) T) ((-227 . -976) T) ((-243 . -976) T) ((-1042 . -46) 122033) ((-113 . -983) T) ((-964 . -594) 122007) ((-891 . -33) T) ((-333 . -213) 121986) ((-333 . -223) T) ((-330 . -213) 121965) ((-330 . -223) T) ((-227 . -304) 121922) ((-322 . -213) 121901) ((-322 . -223) T) ((-243 . -304) 121873) ((-243 . -213) 121852) ((-1071 . -142) 121836) ((-230 . -834) 121769) ((-229 . -834) 121702) ((-1004 . -789) T) ((-1139 . -1126) T) ((-392 . -1031) T) ((-980 . -23) T) ((-844 . -976) T) ((-300 . -594) 121684) ((-954 . -787) T) ((-1121 . -933) 121650) ((-1087 . -854) 121629) ((-1081 . -854) 121608) ((-844 . -223) T) ((-759 . -341) 121587) ((-363 . -23) T) ((-123 . -1019) 121565) ((-117 . -1019) 121543) ((-844 . -213) T) ((-1081 . -762) NIL) ((-357 . -594) 121508) ((-804 . -660) 121495) ((-973 . -142) 121460) ((-39 . -160) T) ((-636 . -389) 121442) ((-655 . -288) 121429) ((-776 . -594) 121389) ((-769 . -594) 121363) ((-297 . -25) T) ((-297 . -21) T) ((-604 . -265) 121342) ((-537 . -1019) T) ((-525 . -1019) T) ((-468 . -1019) T) ((-225 . -267) 121319) ((-291 . -211) 121280) ((-1086 . -820) NIL) ((-1042 . -820) 121139) ((-125 . -789) T) ((-1086 . -967) 121021) ((-1042 . -967) 120906) ((-169 . -566) 120888) ((-793 . -967) 120786) ((-724 . -265) 120713) ((-759 . -1031) T) ((-964 . -669) T) ((-556 . -597) 120697) ((-973 . -908) 120626) ((-930 . -97) T) ((-759 . -23) T) ((-655 . -1066) 120604) ((-636 . -983) T) ((-556 . -351) 120588) ((-329 . -429) T) ((-321 . -269) T) ((-1173 . -1019) T) ((-377 . -97) T) ((-268 . -21) T) ((-268 . -25) T) ((-339 . -669) T) ((-653 . -1019) T) ((-641 . -1019) T) ((-339 . -450) T) ((-1121 . -566) 120570) ((-1086 . -355) 120554) ((-1042 . -355) 120538) ((-954 . -389) 120500) ((-132 . -209) 120482) ((-357 . -736) T) ((-357 . -733) T) ((-804 . -160) T) ((-357 . -669) T) ((-654 . -566) 120464) ((-655 . -37) 120293) ((-1172 . -1170) 120277) ((-329 . -380) T) ((-1172 . -1019) 120227) ((-537 . -660) 120214) ((-525 . -660) 120201) ((-468 . -660) 120166) ((-294 . -578) 120145) ((-776 . -669) T) ((-769 . -669) T) ((-592 . -1126) T) ((-1002 . -588) 120093) ((-1086 . -834) 120036) ((-1042 . -834) 120020) ((-608 . -982) 120004) ((-103 . -588) 119986) ((-458 . -126) 119857) ((-1092 . -1031) T) ((-886 . -46) 119826) ((-573 . -1019) T) ((-608 . -107) 119805) ((-305 . -267) 119782) ((-457 . -46) 119739) ((-1092 . -23) T) ((-113 . -1019) T) ((-98 . -97) 119717) ((-1182 . -1031) T) ((-980 . -126) T) ((-954 . -983) T) ((-761 . -967) 119701) ((-934 . -667) 119673) ((-1182 . -23) T) ((-641 . -660) 119638) ((-542 . -566) 119620) ((-364 . -967) 119604) ((-332 . -983) T) ((-363 . -126) T) ((-302 . -967) 119588) ((-205 . -820) 119570) ((-935 . -854) T) ((-89 . -33) T) ((-935 . -762) T) ((-848 . -854) T) ((-462 . -1130) T) ((-1107 . -566) 119552) ((-1024 . -1019) T) ((-198 . -1130) T) ((-930 . -288) 119517) ((-205 . -967) 119477) ((-39 . -269) T) ((-1002 . -21) T) ((-1002 . -25) T) ((-1037 . -770) T) ((-462 . -517) T) ((-337 . -25) T) ((-198 . -517) T) ((-337 . -21) T) ((-331 . -25) T) ((-331 . -21) T) ((-657 . -594) 119437) ((-323 . -25) T) ((-323 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -983) T) ((-537 . -160) T) ((-525 . -160) T) ((-468 . -160) T) ((-604 . -566) 119419) ((-680 . -679) 119403) ((-314 . -566) 119385) ((-66 . -361) T) ((-66 . -373) T) ((-1021 . -102) 119369) ((-987 . -820) 119351) ((-886 . -820) 119276) ((-599 . -1031) T) ((-573 . -660) 119263) ((-457 . -820) NIL) ((-1061 . -97) T) ((-987 . -967) 119245) ((-92 . -566) 119227) ((-454 . -138) T) ((-886 . -967) 119109) ((-113 . -660) 119054) ((-599 . -23) T) ((-457 . -967) 118932) ((-1008 . -567) NIL) ((-1008 . -566) 118914) ((-724 . -567) NIL) ((-724 . -566) 118875) ((-722 . -567) 118510) ((-722 . -566) 118424) ((-1032 . -588) 118332) ((-438 . -566) 118314) ((-431 . -566) 118296) ((-431 . -567) 118157) ((-965 . -209) 118103) ((-122 . -33) T) ((-759 . -126) T) ((-806 . -843) 118082) ((-595 . -566) 118064) ((-333 . -1189) 118048) ((-330 . -1189) 118032) ((-322 . -1189) 118016) ((-123 . -486) 117949) ((-117 . -486) 117882) ((-483 . -734) T) ((-483 . -737) T) ((-482 . -736) T) ((-98 . -288) 117820) ((-202 . -97) 117798) ((-636 . -1019) T) ((-641 . -160) T) ((-806 . -594) 117750) ((-63 . -362) T) ((-254 . -566) 117732) ((-63 . -373) T) ((-886 . -355) 117716) ((-804 . -269) T) ((-49 . -566) 117698) ((-930 . -37) 117646) ((-538 . -566) 117628) ((-457 . -355) 117612) ((-538 . -567) 117594) ((-489 . -566) 117576) ((-844 . -1189) 117563) ((-805 . -1126) T) ((-643 . -429) T) ((-468 . -486) 117529) ((-462 . -341) T) ((-333 . -346) 117508) ((-330 . -346) 117487) ((-322 . -346) 117466) ((-198 . -341) T) ((-657 . -669) T) ((-112 . -429) T) ((-1193 . -1184) 117450) ((-805 . -818) 117427) ((-805 . -820) NIL) ((-897 . -789) 117326) ((-757 . -789) 117277) ((-600 . -602) 117261) ((-1113 . -33) T) ((-159 . -566) 117243) ((-1032 . -21) 117154) ((-1032 . -25) 117006) ((-805 . -967) 116983) ((-886 . -834) 116964) ((-1145 . -46) 116941) ((-844 . -346) T) ((-57 . -597) 116925) ((-488 . -597) 116909) ((-457 . -834) 116886) ((-69 . -418) T) ((-69 . -373) T) ((-469 . -597) 116870) ((-57 . -351) 116854) ((-573 . -160) T) ((-488 . -351) 116838) ((-469 . -351) 116822) ((-769 . -651) 116806) ((-1086 . -286) 116785) ((-1092 . -126) T) ((-113 . -160) T) ((-1061 . -288) 116723) ((-157 . -1126) T) ((-584 . -687) 116707) ((-560 . -687) 116691) ((-1182 . -126) T) ((-1157 . -854) 116670) ((-1136 . -854) 116649) ((-1136 . -762) NIL) ((-636 . -660) 116599) ((-1135 . -843) 116552) ((-954 . -1019) T) ((-805 . -355) 116529) ((-805 . -316) 116506) ((-839 . -1031) T) ((-157 . -818) 116490) ((-157 . -820) 116415) ((-462 . -1031) T) ((-332 . -1019) T) ((-198 . -1031) T) ((-74 . -418) T) ((-74 . -373) T) ((-157 . -967) 116313) ((-297 . -789) T) ((-1172 . -486) 116246) ((-1156 . -594) 116143) ((-1135 . -594) 116013) ((-806 . -736) 115992) ((-806 . -733) 115971) ((-806 . -669) T) ((-462 . -23) T) ((-203 . -566) 115953) ((-161 . -429) T) ((-202 . -288) 115891) ((-84 . -418) T) ((-84 . -373) T) ((-198 . -23) T) ((-1194 . -1187) 115870) ((-537 . -269) T) ((-525 . -269) T) ((-621 . -967) 115854) ((-468 . -269) T) ((-130 . -447) 115809) ((-47 . -1019) T) ((-655 . -211) 115793) ((-805 . -834) NIL) ((-1145 . -820) NIL) ((-823 . -97) T) ((-819 . -97) T) ((-366 . -1019) T) ((-157 . -355) 115777) ((-157 . -316) 115761) ((-1145 . -967) 115643) ((-794 . -967) 115541) ((-1057 . -97) T) ((-599 . -126) T) ((-113 . -486) 115449) ((-608 . -734) 115428) ((-608 . -737) 115407) ((-532 . -967) 115389) ((-273 . -1179) 115359) ((-800 . -97) T) ((-896 . -517) 115338) ((-1121 . -982) 115221) ((-458 . -588) 115129) ((-838 . -1019) T) ((-954 . -660) 115066) ((-654 . -982) 115031) ((-556 . -33) T) ((-1062 . -1126) T) ((-1121 . -107) 114900) ((-451 . -594) 114797) ((-332 . -660) 114742) ((-157 . -834) 114701) ((-641 . -269) T) ((-636 . -160) T) ((-654 . -107) 114657) ((-1198 . -983) T) ((-1145 . -355) 114641) ((-396 . -1130) 114619) ((-291 . -787) NIL) ((-396 . -517) T) ((-205 . -286) T) ((-1135 . -733) 114572) ((-1135 . -736) 114525) ((-1156 . -669) T) ((-1135 . -669) T) ((-47 . -660) 114490) ((-205 . -952) T) ((-329 . -1179) 114467) ((-1158 . -389) 114433) ((-661 . -669) T) ((-1145 . -834) 114376) ((-108 . -566) 114358) ((-108 . -567) 114340) ((-661 . -450) T) ((-458 . -21) 114251) ((-123 . -464) 114235) ((-117 . -464) 114219) ((-458 . -25) 114071) ((-573 . -269) T) ((-542 . -982) 114046) ((-415 . -1019) T) ((-987 . -286) T) ((-113 . -269) T) ((-1023 . -97) T) ((-934 . -97) T) ((-542 . -107) 114014) ((-1057 . -288) 113952) ((-1121 . -976) T) ((-987 . -952) T) ((-64 . -1126) T) ((-980 . -25) T) ((-980 . -21) T) ((-654 . -976) T) ((-363 . -21) T) ((-363 . -25) T) ((-636 . -486) NIL) ((-954 . -160) T) ((-654 . -223) T) ((-987 . -510) T) ((-475 . -97) T) ((-332 . -160) T) ((-321 . -566) 113934) ((-372 . -566) 113916) ((-451 . -669) T) ((-1037 . -787) T) ((-826 . -967) 113884) ((-103 . -789) T) ((-604 . -982) 113868) ((-462 . -126) T) ((-1158 . -983) T) ((-198 . -126) T) ((-1071 . -97) 113846) ((-94 . -1019) T) ((-225 . -612) 113830) ((-225 . -597) 113814) ((-604 . -107) 113793) ((-294 . -389) 113777) ((-225 . -351) 113761) ((-1074 . -215) 113708) ((-930 . -211) 113692) ((-72 . -1126) T) ((-47 . -160) T) ((-643 . -365) T) ((-643 . -134) T) ((-1193 . -97) T) ((-1008 . -982) 113535) ((-243 . -843) 113514) ((-227 . -843) 113493) ((-724 . -982) 113316) ((-722 . -982) 113159) ((-561 . -1126) T) ((-1079 . -566) 113141) ((-1008 . -107) 112970) ((-973 . -97) T) ((-452 . -1126) T) ((-438 . -982) 112941) ((-431 . -982) 112784) ((-610 . -594) 112768) ((-805 . -286) T) ((-724 . -107) 112577) ((-722 . -107) 112406) ((-333 . -594) 112358) ((-330 . -594) 112310) ((-322 . -594) 112262) ((-243 . -594) 112187) ((-227 . -594) 112112) ((-1073 . -789) T) ((-1009 . -967) 112096) ((-438 . -107) 112057) ((-431 . -107) 111886) ((-998 . -967) 111863) ((-931 . -33) T) ((-899 . -566) 111824) ((-891 . -1126) T) ((-122 . -941) 111808) ((-896 . -1031) T) ((-805 . -952) NIL) ((-678 . -1031) T) ((-658 . -1031) T) ((-1172 . -464) 111792) ((-1057 . -37) 111752) ((-896 . -23) T) ((-782 . -97) T) ((-759 . -21) T) ((-759 . -25) T) ((-678 . -23) T) ((-658 . -23) T) ((-106 . -607) T) ((-844 . -594) 111717) ((-538 . -982) 111682) ((-489 . -982) 111627) ((-207 . -55) 111585) ((-430 . -23) T) ((-385 . -97) T) ((-242 . -97) T) ((-636 . -269) T) ((-800 . -37) 111555) ((-538 . -107) 111511) ((-489 . -107) 111440) ((-396 . -1031) T) ((-294 . -983) 111331) ((-291 . -983) T) ((-604 . -976) T) ((-1198 . -1019) T) ((-157 . -286) 111262) ((-396 . -23) T) ((-39 . -566) 111244) ((-39 . -567) 111228) ((-103 . -924) 111210) ((-112 . -803) 111194) ((-47 . -486) 111160) ((-1113 . -941) 111144) ((-1095 . -566) 111126) ((-1100 . -33) T) ((-855 . -566) 111108) ((-1032 . -789) 111059) ((-713 . -566) 111041) ((-617 . -566) 111023) ((-1071 . -288) 110961) ((-455 . -33) T) ((-1012 . -1126) T) ((-454 . -429) T) ((-1008 . -976) T) ((-1056 . -33) T) ((-724 . -976) T) ((-722 . -976) T) ((-593 . -215) 110945) ((-581 . -215) 110891) ((-1145 . -286) 110870) ((-1008 . -304) 110831) ((-431 . -976) T) ((-1092 . -21) T) ((-1008 . -213) 110810) ((-724 . -304) 110787) ((-724 . -213) T) ((-722 . -304) 110759) ((-305 . -597) 110743) ((-674 . -1130) 110722) ((-1092 . -25) T) ((-57 . -33) T) ((-490 . -33) T) ((-488 . -33) T) ((-431 . -304) 110701) ((-305 . -351) 110685) ((-470 . -33) T) ((-469 . -33) T) ((-934 . -1066) NIL) ((-584 . -97) T) ((-560 . -97) T) ((-674 . -517) 110616) ((-333 . -669) T) ((-330 . -669) T) ((-322 . -669) T) ((-243 . -669) T) ((-227 . -669) T) ((-973 . -288) 110524) ((-835 . -1019) 110502) ((-49 . -976) T) ((-1182 . -21) T) ((-1182 . -25) T) ((-1088 . -517) 110481) ((-1087 . -1130) 110460) ((-538 . -976) T) ((-489 . -976) T) ((-1081 . -1130) 110439) ((-339 . -967) 110423) ((-300 . -967) 110407) ((-954 . -269) T) ((-357 . -820) 110389) ((-1087 . -517) 110340) ((-1081 . -517) 110291) ((-934 . -37) 110236) ((-741 . -1031) T) ((-844 . -669) T) ((-538 . -223) T) ((-538 . -213) T) ((-489 . -213) T) ((-489 . -223) T) ((-1043 . -517) 110215) ((-332 . -269) T) ((-593 . -637) 110199) ((-357 . -967) 110159) ((-1037 . -983) T) ((-98 . -121) 110143) ((-741 . -23) T) ((-1172 . -265) 110120) ((-385 . -288) 110085) ((-1192 . -1187) 110061) ((-1190 . -1187) 110040) ((-1158 . -1019) T) ((-804 . -566) 110022) ((-776 . -967) 109991) ((-185 . -729) T) ((-184 . -729) T) ((-183 . -729) T) ((-182 . -729) T) ((-181 . -729) T) ((-180 . -729) T) ((-179 . -729) T) ((-178 . -729) T) ((-177 . -729) T) ((-176 . -729) T) ((-468 . -933) T) ((-253 . -778) T) ((-252 . -778) T) ((-251 . -778) T) ((-250 . -778) T) ((-47 . -269) T) ((-249 . -778) T) ((-248 . -778) T) ((-247 . -778) T) ((-175 . -729) T) ((-565 . -789) T) ((-600 . -389) 109975) ((-106 . -789) T) ((-599 . -21) T) ((-599 . -25) T) ((-1193 . -37) 109945) ((-113 . -265) 109896) ((-1172 . -19) 109880) ((-1172 . -558) 109857) ((-1183 . -1019) T) ((-999 . -1019) T) ((-919 . -1019) T) ((-896 . -126) T) ((-680 . -1019) T) ((-678 . -126) T) ((-658 . -126) T) ((-483 . -735) T) ((-385 . -1066) 109835) ((-430 . -126) T) ((-483 . -736) T) ((-203 . -976) T) ((-273 . -97) 109618) ((-132 . -1019) T) ((-641 . -933) T) ((-89 . -1126) T) ((-123 . -566) 109550) ((-117 . -566) 109482) ((-1198 . -160) T) ((-1087 . -341) 109461) ((-1081 . -341) 109440) ((-294 . -1019) T) ((-396 . -126) T) ((-291 . -1019) T) ((-385 . -37) 109392) ((-1050 . -97) T) ((-1158 . -660) 109284) ((-600 . -983) T) ((-297 . -136) 109263) ((-297 . -138) 109242) ((-130 . -1019) T) ((-110 . -1019) T) ((-796 . -97) T) ((-537 . -566) 109224) ((-525 . -567) 109123) ((-525 . -566) 109105) ((-468 . -566) 109087) ((-468 . -567) 109032) ((-460 . -23) T) ((-458 . -789) 108983) ((-462 . -588) 108965) ((-898 . -566) 108947) ((-198 . -588) 108929) ((-205 . -382) T) ((-608 . -594) 108913) ((-1086 . -854) 108892) ((-674 . -1031) T) ((-329 . -97) T) ((-760 . -789) T) ((-674 . -23) T) ((-321 . -982) 108837) ((-1073 . -1072) T) ((-1062 . -102) 108821) ((-1088 . -1031) T) ((-1087 . -1031) T) ((-487 . -967) 108805) ((-1081 . -1031) T) ((-1043 . -1031) T) ((-321 . -107) 108734) ((-935 . -1130) T) ((-122 . -1126) T) ((-848 . -1130) T) ((-636 . -265) NIL) ((-1173 . -566) 108716) ((-1088 . -23) T) ((-1087 . -23) T) ((-1081 . -23) T) ((-935 . -517) T) ((-1057 . -211) 108700) ((-848 . -517) T) ((-1043 . -23) T) ((-228 . -566) 108682) ((-997 . -1019) T) ((-741 . -126) T) ((-653 . -566) 108664) ((-294 . -660) 108574) ((-291 . -660) 108503) ((-641 . -566) 108485) ((-641 . -567) 108430) ((-385 . -378) 108414) ((-416 . -1019) T) ((-462 . -25) T) ((-462 . -21) T) ((-1037 . -1019) T) ((-198 . -25) T) ((-198 . -21) T) ((-655 . -389) 108398) ((-657 . -967) 108367) ((-1172 . -566) 108279) ((-1172 . -567) 108240) ((-1158 . -160) T) ((-225 . -33) T) ((-860 . -906) T) ((-1113 . -1126) T) ((-608 . -733) 108219) ((-608 . -736) 108198) ((-376 . -373) T) ((-494 . -97) 108176) ((-965 . -1019) T) ((-202 . -926) 108160) ((-477 . -97) T) ((-573 . -566) 108142) ((-44 . -789) NIL) ((-573 . -567) 108119) ((-965 . -563) 108094) ((-835 . -486) 108027) ((-321 . -976) T) ((-113 . -567) NIL) ((-113 . -566) 108009) ((-806 . -1126) T) ((-616 . -395) 107993) ((-616 . -1040) 107938) ((-473 . -142) 107920) ((-321 . -213) T) ((-321 . -223) T) ((-39 . -982) 107865) ((-806 . -818) 107849) ((-806 . -820) 107774) ((-655 . -983) T) ((-636 . -933) NIL) ((-3 . |UnionCategory|) T) ((-1156 . -46) 107744) ((-1135 . -46) 107721) ((-1056 . -941) 107692) ((-205 . -854) T) ((-39 . -107) 107621) ((-806 . -967) 107488) ((-1037 . -660) 107475) ((-1024 . -566) 107457) ((-1002 . -138) 107436) ((-1002 . -136) 107387) ((-935 . -341) T) ((-297 . -1115) 107353) ((-357 . -286) T) ((-297 . -1112) 107319) ((-294 . -160) 107298) ((-291 . -160) T) ((-934 . -211) 107275) ((-848 . -341) T) ((-538 . -1189) 107262) ((-489 . -1189) 107239) ((-337 . -138) 107218) ((-337 . -136) 107169) ((-331 . -138) 107148) ((-331 . -136) 107099) ((-561 . -1103) 107075) ((-323 . -138) 107054) ((-323 . -136) 107005) ((-297 . -34) 106971) ((-452 . -1103) 106950) ((0 . |EnumerationCategory|) T) ((-297 . -91) 106916) ((-357 . -952) T) ((-103 . -138) T) ((-103 . -136) NIL) ((-44 . -215) 106866) ((-600 . -1019) T) ((-561 . -102) 106813) ((-460 . -126) T) ((-452 . -102) 106763) ((-220 . -1031) 106694) ((-806 . -355) 106678) ((-806 . -316) 106662) ((-220 . -23) 106533) ((-987 . -854) T) ((-987 . -762) T) ((-538 . -346) T) ((-489 . -346) T) ((-329 . -1066) T) ((-305 . -33) T) ((-43 . -395) 106517) ((-807 . -1126) T) ((-368 . -687) 106501) ((-1183 . -486) 106434) ((-674 . -126) T) ((-1164 . -517) 106413) ((-1157 . -1130) 106392) ((-1157 . -517) 106343) ((-680 . -486) 106276) ((-1136 . -1130) 106255) ((-1136 . -517) 106206) ((-827 . -1019) T) ((-135 . -783) T) ((-1135 . -1126) 106185) ((-1135 . -820) 106058) ((-1135 . -818) 106028) ((-494 . -288) 105966) ((-1088 . -126) T) ((-132 . -486) NIL) ((-1087 . -126) T) ((-1081 . -126) T) ((-1043 . -126) T) ((-954 . -933) T) ((-329 . -37) 105931) ((-935 . -1031) T) ((-848 . -1031) T) ((-80 . -566) 105913) ((-39 . -976) T) ((-804 . -982) 105900) ((-935 . -23) T) ((-806 . -834) 105859) ((-643 . -97) T) ((-934 . -327) NIL) ((-556 . -1126) T) ((-903 . -23) T) ((-848 . -23) T) ((-804 . -107) 105844) ((-405 . -1031) T) ((-451 . -46) 105814) ((-128 . -97) T) ((-39 . -213) 105786) ((-39 . -223) T) ((-112 . -97) T) ((-551 . -517) 105765) ((-550 . -517) 105744) ((-636 . -566) 105726) ((-636 . -567) 105634) ((-294 . -486) 105600) ((-291 . -486) 105492) ((-1156 . -967) 105476) ((-1135 . -967) 105265) ((-930 . -389) 105249) ((-405 . -23) T) ((-1037 . -160) T) ((-1158 . -269) T) ((-600 . -660) 105219) ((-135 . -1019) T) ((-47 . -933) T) ((-385 . -211) 105203) ((-274 . -215) 105153) ((-805 . -854) T) ((-805 . -762) NIL) ((-799 . -789) T) ((-1135 . -316) 105123) ((-1135 . -355) 105093) ((-202 . -1038) 105077) ((-1172 . -267) 105054) ((-1121 . -594) 104979) ((-896 . -21) T) ((-896 . -25) T) ((-678 . -21) T) ((-678 . -25) T) ((-658 . -21) T) ((-658 . -25) T) ((-654 . -594) 104944) ((-430 . -21) T) ((-430 . -25) T) ((-317 . -97) T) ((-161 . -97) T) ((-930 . -983) T) ((-804 . -976) T) ((-716 . -97) T) ((-1157 . -341) 104923) ((-1156 . -834) 104829) ((-1136 . -341) 104808) ((-1135 . -834) 104659) ((-954 . -566) 104641) ((-385 . -770) 104594) ((-1088 . -466) 104560) ((-157 . -854) 104491) ((-1087 . -466) 104457) ((-1081 . -466) 104423) ((-655 . -1019) T) ((-1043 . -466) 104389) ((-537 . -982) 104376) ((-525 . -982) 104363) ((-468 . -982) 104328) ((-294 . -269) 104307) ((-291 . -269) T) ((-332 . -566) 104289) ((-396 . -25) T) ((-396 . -21) T) ((-94 . -265) 104268) ((-537 . -107) 104253) ((-525 . -107) 104238) ((-468 . -107) 104194) ((-1090 . -820) 104161) ((-835 . -464) 104145) ((-47 . -566) 104127) ((-47 . -567) 104072) ((-220 . -126) 103943) ((-1145 . -854) 103922) ((-758 . -1130) 103901) ((-965 . -486) 103745) ((-366 . -566) 103727) ((-758 . -517) 103658) ((-542 . -594) 103633) ((-243 . -46) 103605) ((-227 . -46) 103562) ((-497 . -481) 103539) ((-931 . -1126) T) ((-641 . -982) 103504) ((-1164 . -1031) T) ((-1157 . -1031) T) ((-1136 . -1031) T) ((-934 . -348) 103476) ((-108 . -346) T) ((-451 . -834) 103382) ((-1164 . -23) T) ((-1157 . -23) T) ((-838 . -566) 103364) ((-89 . -102) 103348) ((-1121 . -669) T) ((-839 . -789) 103299) ((-643 . -1066) T) ((-641 . -107) 103255) ((-1136 . -23) T) ((-551 . -1031) T) ((-550 . -1031) T) ((-655 . -660) 103084) ((-654 . -669) T) ((-1037 . -269) T) ((-935 . -126) T) ((-462 . -789) T) ((-903 . -126) T) ((-848 . -126) T) ((-741 . -25) T) ((-198 . -789) T) ((-741 . -21) T) ((-537 . -976) T) ((-525 . -976) T) ((-468 . -976) T) ((-551 . -23) T) ((-321 . -1189) 103061) ((-297 . -429) 103040) ((-317 . -288) 103027) ((-550 . -23) T) ((-405 . -126) T) ((-604 . -594) 103001) ((-225 . -941) 102985) ((-806 . -286) T) ((-1194 . -1184) 102969) ((-643 . -37) 102956) ((-525 . -213) T) ((-468 . -223) T) ((-468 . -213) T) ((-713 . -734) T) ((-713 . -737) T) ((-1065 . -215) 102906) ((-1008 . -843) 102885) ((-112 . -37) 102872) ((-191 . -742) T) ((-190 . -742) T) ((-189 . -742) T) ((-188 . -742) T) ((-806 . -952) 102851) ((-1183 . -464) 102835) ((-724 . -843) 102814) ((-722 . -843) 102793) ((-1100 . -1126) T) ((-431 . -843) 102772) ((-680 . -464) 102756) ((-1008 . -594) 102681) ((-724 . -594) 102606) ((-573 . -982) 102593) ((-455 . -1126) T) ((-321 . -346) T) ((-132 . -464) 102575) ((-722 . -594) 102500) ((-1056 . -1126) T) ((-438 . -594) 102471) ((-243 . -820) 102330) ((-227 . -820) NIL) ((-113 . -982) 102275) ((-431 . -594) 102200) ((-610 . -967) 102177) ((-573 . -107) 102162) ((-333 . -967) 102146) ((-330 . -967) 102130) ((-322 . -967) 102114) ((-243 . -967) 101960) ((-227 . -967) 101838) ((-113 . -107) 101767) ((-57 . -1126) T) ((-490 . -1126) T) ((-488 . -1126) T) ((-470 . -1126) T) ((-469 . -1126) T) ((-415 . -566) 101749) ((-412 . -566) 101731) ((-3 . -97) T) ((-957 . -1120) 101700) ((-775 . -97) T) ((-632 . -55) 101658) ((-641 . -976) T) ((-49 . -594) 101632) ((-268 . -429) T) ((-453 . -1120) 101601) ((0 . -97) T) ((-538 . -594) 101566) ((-489 . -594) 101511) ((-48 . -97) T) ((-844 . -967) 101498) ((-641 . -223) T) ((-1002 . -387) 101477) ((-674 . -588) 101425) ((-930 . -1019) T) ((-655 . -160) 101316) ((-462 . -924) 101298) ((-243 . -355) 101282) ((-227 . -355) 101266) ((-377 . -1019) T) ((-317 . -37) 101250) ((-956 . -97) 101228) ((-198 . -924) 101210) ((-161 . -37) 101142) ((-1156 . -286) 101121) ((-1135 . -286) 101100) ((-604 . -669) T) ((-94 . -566) 101082) ((-1081 . -588) 101034) ((-460 . -25) T) ((-460 . -21) T) ((-1135 . -952) 100987) ((-573 . -976) T) ((-357 . -382) T) ((-368 . -97) T) ((-243 . -834) 100933) ((-227 . -834) 100910) ((-113 . -976) T) ((-758 . -1031) T) ((-1008 . -669) T) ((-573 . -213) 100889) ((-571 . -97) T) ((-724 . -669) T) ((-722 . -669) T) ((-391 . -1031) T) ((-113 . -223) T) ((-39 . -346) NIL) ((-113 . -213) NIL) ((-431 . -669) T) ((-758 . -23) T) ((-674 . -25) T) ((-674 . -21) T) ((-645 . -789) T) ((-999 . -265) 100868) ((-76 . -374) T) ((-76 . -373) T) ((-636 . -982) 100818) ((-1164 . -126) T) ((-1157 . -126) T) ((-1136 . -126) T) ((-1057 . -389) 100802) ((-584 . -345) 100734) ((-560 . -345) 100666) ((-1071 . -1064) 100650) ((-98 . -1019) 100628) ((-1088 . -25) T) ((-1088 . -21) T) ((-1087 . -21) T) ((-930 . -660) 100576) ((-203 . -594) 100543) ((-636 . -107) 100477) ((-49 . -669) T) ((-1087 . -25) T) ((-329 . -327) T) ((-1081 . -21) T) ((-1002 . -429) 100428) ((-1081 . -25) T) ((-655 . -486) 100375) ((-538 . -669) T) ((-489 . -669) T) ((-1043 . -21) T) ((-1043 . -25) T) ((-551 . -126) T) ((-550 . -126) T) ((-337 . -429) T) ((-331 . -429) T) ((-323 . -429) T) ((-451 . -286) 100354) ((-291 . -265) 100289) ((-103 . -429) T) ((-77 . -418) T) ((-77 . -373) T) ((-454 . -97) T) ((-1198 . -566) 100271) ((-1198 . -567) 100253) ((-1002 . -380) 100232) ((-965 . -464) 100163) ((-525 . -737) T) ((-525 . -734) T) ((-988 . -215) 100109) ((-337 . -380) 100060) ((-331 . -380) 100011) ((-323 . -380) 99962) ((-1185 . -1031) T) ((-1185 . -23) T) ((-1174 . -97) T) ((-162 . -566) 99944) ((-1057 . -983) T) ((-616 . -687) 99928) ((-1092 . -136) 99907) ((-1092 . -138) 99886) ((-1061 . -1019) T) ((-1061 . -995) 99855) ((-67 . -1126) T) ((-954 . -982) 99792) ((-800 . -983) T) ((-220 . -588) 99700) ((-636 . -976) T) ((-332 . -982) 99645) ((-59 . -1126) T) ((-954 . -107) 99561) ((-835 . -566) 99493) ((-636 . -223) T) ((-636 . -213) NIL) ((-782 . -787) 99472) ((-641 . -737) T) ((-641 . -734) T) ((-934 . -389) 99449) ((-332 . -107) 99378) ((-357 . -854) T) ((-385 . -787) 99357) ((-655 . -269) 99268) ((-203 . -669) T) ((-1164 . -466) 99234) ((-1157 . -466) 99200) ((-1136 . -466) 99166) ((-294 . -933) 99145) ((-202 . -1019) 99123) ((-297 . -905) 99085) ((-100 . -97) T) ((-47 . -982) 99050) ((-1194 . -97) T) ((-359 . -97) T) ((-47 . -107) 99006) ((-935 . -588) 98988) ((-1158 . -566) 98970) ((-497 . -97) T) ((-473 . -97) T) ((-1050 . -1051) 98954) ((-143 . -1179) 98938) ((-225 . -1126) T) ((-1086 . -1130) 98917) ((-1042 . -1130) 98896) ((-220 . -21) 98807) ((-220 . -25) 98659) ((-123 . -115) 98643) ((-117 . -115) 98627) ((-43 . -687) 98611) ((-1086 . -517) 98522) ((-1042 . -517) 98453) ((-965 . -265) 98428) ((-758 . -126) T) ((-113 . -737) NIL) ((-113 . -734) NIL) ((-333 . -286) T) ((-330 . -286) T) ((-322 . -286) T) ((-1014 . -1126) T) ((-230 . -1031) 98359) ((-229 . -1031) 98290) ((-954 . -976) T) ((-934 . -983) T) ((-321 . -594) 98235) ((-571 . -37) 98219) ((-1183 . -566) 98181) ((-1183 . -567) 98142) ((-999 . -566) 98124) ((-954 . -223) T) ((-332 . -976) T) ((-757 . -1179) 98094) ((-230 . -23) T) ((-229 . -23) T) ((-919 . -566) 98076) ((-680 . -567) 98037) ((-680 . -566) 98019) ((-741 . -789) 97998) ((-930 . -486) 97910) ((-332 . -213) T) ((-332 . -223) T) ((-1074 . -142) 97857) ((-935 . -25) T) ((-132 . -566) 97839) ((-132 . -567) 97798) ((-844 . -286) T) ((-935 . -21) T) ((-903 . -25) T) ((-848 . -21) T) ((-848 . -25) T) ((-405 . -21) T) ((-405 . -25) T) ((-782 . -389) 97782) ((-47 . -976) T) ((-1192 . -1184) 97766) ((-1190 . -1184) 97750) ((-965 . -558) 97725) ((-294 . -567) 97586) ((-294 . -566) 97568) ((-291 . -567) NIL) ((-291 . -566) 97550) ((-47 . -223) T) ((-47 . -213) T) ((-600 . -265) 97511) ((-511 . -215) 97461) ((-130 . -566) 97443) ((-110 . -566) 97425) ((-454 . -37) 97390) ((-1194 . -1191) 97369) ((-1185 . -126) T) ((-1193 . -983) T) ((-1004 . -97) T) ((-86 . -1126) T) ((-473 . -288) NIL) ((-931 . -102) 97353) ((-823 . -1019) T) ((-819 . -1019) T) ((-1172 . -597) 97337) ((-1172 . -351) 97321) ((-305 . -1126) T) ((-548 . -789) T) ((-1057 . -1019) T) ((-1057 . -979) 97261) ((-98 . -486) 97194) ((-861 . -566) 97176) ((-321 . -669) T) ((-30 . -566) 97158) ((-800 . -1019) T) ((-782 . -983) 97137) ((-39 . -594) 97082) ((-205 . -1130) T) ((-385 . -983) T) ((-1073 . -142) 97064) ((-930 . -269) 97015) ((-205 . -517) T) ((-297 . -1153) 96999) ((-297 . -1150) 96969) ((-1100 . -1103) 96948) ((-997 . -566) 96930) ((-593 . -142) 96914) ((-581 . -142) 96860) ((-1100 . -102) 96810) ((-455 . -1103) 96789) ((-462 . -138) T) ((-462 . -136) NIL) ((-1037 . -567) 96704) ((-416 . -566) 96686) ((-198 . -138) T) ((-198 . -136) NIL) ((-1037 . -566) 96668) ((-125 . -97) T) ((-51 . -97) T) ((-1136 . -588) 96620) ((-455 . -102) 96570) ((-925 . -23) T) ((-1194 . -37) 96540) ((-1086 . -1031) T) ((-1042 . -1031) T) ((-987 . -1130) T) ((-793 . -1031) T) ((-886 . -1130) 96519) ((-457 . -1130) 96498) ((-674 . -789) 96477) ((-987 . -517) T) ((-886 . -517) 96408) ((-1086 . -23) T) ((-1042 . -23) T) ((-793 . -23) T) ((-457 . -517) 96339) ((-1057 . -660) 96271) ((-1061 . -486) 96204) ((-965 . -567) NIL) ((-965 . -566) 96186) ((-800 . -660) 96156) ((-1121 . -46) 96125) ((-229 . -126) T) ((-230 . -126) T) ((-1023 . -1019) T) ((-934 . -1019) T) ((-60 . -566) 96107) ((-1081 . -789) NIL) ((-954 . -734) T) ((-954 . -737) T) ((-1198 . -982) 96094) ((-1198 . -107) 96079) ((-804 . -594) 96066) ((-1164 . -25) T) ((-1164 . -21) T) ((-1157 . -21) T) ((-1157 . -25) T) ((-1136 . -21) T) ((-1136 . -25) T) ((-957 . -142) 96050) ((-806 . -762) 96029) ((-806 . -854) T) ((-655 . -265) 95956) ((-551 . -21) T) ((-551 . -25) T) ((-550 . -21) T) ((-39 . -669) T) ((-202 . -486) 95889) ((-550 . -25) T) ((-453 . -142) 95873) ((-440 . -142) 95857) ((-855 . -669) T) ((-713 . -735) T) ((-713 . -736) T) ((-475 . -1019) T) ((-713 . -669) T) ((-205 . -341) T) ((-1071 . -1019) 95835) ((-805 . -1130) T) ((-600 . -566) 95817) ((-805 . -517) T) ((-636 . -346) NIL) ((-337 . -1179) 95801) ((-616 . -97) T) ((-331 . -1179) 95785) ((-323 . -1179) 95769) ((-1193 . -1019) T) ((-491 . -789) 95748) ((-759 . -429) 95727) ((-973 . -1019) T) ((-973 . -995) 95656) ((-957 . -908) 95625) ((-761 . -1031) T) ((-934 . -660) 95570) ((-364 . -1031) T) ((-453 . -908) 95539) ((-440 . -908) 95508) ((-106 . -142) 95490) ((-71 . -566) 95472) ((-827 . -566) 95454) ((-1002 . -667) 95433) ((-1198 . -976) T) ((-758 . -588) 95381) ((-273 . -983) 95324) ((-157 . -1130) 95229) ((-205 . -1031) T) ((-302 . -23) T) ((-1081 . -924) 95181) ((-782 . -1019) T) ((-1043 . -683) 95160) ((-1158 . -982) 95065) ((-1156 . -854) 95044) ((-804 . -669) T) ((-157 . -517) 94955) ((-1135 . -854) 94934) ((-537 . -594) 94921) ((-385 . -1019) T) ((-525 . -594) 94908) ((-242 . -1019) T) ((-468 . -594) 94873) ((-205 . -23) T) ((-1135 . -762) 94826) ((-1192 . -97) T) ((-332 . -1189) 94803) ((-1190 . -97) T) ((-1158 . -107) 94695) ((-135 . -566) 94677) ((-925 . -126) T) ((-43 . -97) T) ((-220 . -789) 94628) ((-1145 . -1130) 94607) ((-98 . -464) 94591) ((-1193 . -660) 94561) ((-1008 . -46) 94522) ((-987 . -1031) T) ((-886 . -1031) T) ((-123 . -33) T) ((-117 . -33) T) ((-724 . -46) 94499) ((-722 . -46) 94471) ((-1145 . -517) 94382) ((-332 . -346) T) ((-457 . -1031) T) ((-1086 . -126) T) ((-1042 . -126) T) ((-431 . -46) 94361) ((-805 . -341) T) ((-793 . -126) T) ((-143 . -97) T) ((-987 . -23) T) ((-886 . -23) T) ((-532 . -517) T) ((-758 . -25) T) ((-758 . -21) T) ((-1057 . -486) 94294) ((-542 . -967) 94278) ((-457 . -23) T) ((-329 . -983) T) ((-1121 . -834) 94259) ((-616 . -288) 94197) ((-1032 . -1179) 94167) ((-641 . -594) 94132) ((-934 . -160) T) ((-896 . -136) 94111) ((-584 . -1019) T) ((-560 . -1019) T) ((-896 . -138) 94090) ((-935 . -789) T) ((-678 . -138) 94069) ((-678 . -136) 94048) ((-903 . -789) T) ((-451 . -854) 94027) ((-294 . -982) 93937) ((-291 . -982) 93866) ((-930 . -265) 93824) ((-385 . -660) 93776) ((-124 . -789) T) ((-643 . -787) T) ((-1158 . -976) T) ((-294 . -107) 93672) ((-291 . -107) 93585) ((-897 . -97) T) ((-757 . -97) 93396) ((-655 . -567) NIL) ((-655 . -566) 93378) ((-604 . -967) 93276) ((-1158 . -304) 93220) ((-965 . -267) 93195) ((-537 . -669) T) ((-525 . -736) T) ((-157 . -341) 93146) ((-525 . -733) T) ((-525 . -669) T) ((-468 . -669) T) ((-1061 . -464) 93130) ((-1008 . -820) NIL) ((-805 . -1031) T) ((-113 . -843) NIL) ((-1192 . -1191) 93106) ((-1190 . -1191) 93085) ((-724 . -820) NIL) ((-722 . -820) 92944) ((-1185 . -25) T) ((-1185 . -21) T) ((-1124 . -97) 92922) ((-1025 . -373) T) ((-573 . -594) 92909) ((-431 . -820) NIL) ((-620 . -97) 92887) ((-1008 . -967) 92716) ((-805 . -23) T) ((-724 . -967) 92577) ((-722 . -967) 92436) ((-113 . -594) 92381) ((-431 . -967) 92259) ((-595 . -967) 92243) ((-576 . -97) T) ((-202 . -464) 92227) ((-1172 . -33) T) ((-584 . -660) 92211) ((-560 . -660) 92195) ((-616 . -37) 92155) ((-297 . -97) T) ((-83 . -566) 92137) ((-49 . -967) 92121) ((-1037 . -982) 92108) ((-1008 . -355) 92092) ((-58 . -55) 92054) ((-641 . -736) T) ((-641 . -733) T) ((-538 . -967) 92041) ((-489 . -967) 92018) ((-641 . -669) T) ((-294 . -976) 91909) ((-302 . -126) T) ((-291 . -976) T) ((-157 . -1031) T) ((-724 . -355) 91893) ((-722 . -355) 91877) ((-44 . -142) 91827) ((-935 . -924) 91809) ((-431 . -355) 91793) ((-385 . -160) T) ((-294 . -223) 91772) ((-291 . -223) T) ((-291 . -213) NIL) ((-273 . -1019) 91555) ((-205 . -126) T) ((-1037 . -107) 91540) ((-157 . -23) T) ((-741 . -138) 91519) ((-741 . -136) 91498) ((-229 . -588) 91406) ((-230 . -588) 91314) ((-297 . -263) 91280) ((-1071 . -486) 91213) ((-1050 . -1019) T) ((-205 . -985) T) ((-757 . -288) 91151) ((-1008 . -834) 91086) ((-724 . -834) 91029) ((-722 . -834) 91013) ((-1192 . -37) 90983) ((-1190 . -37) 90953) ((-1145 . -1031) T) ((-794 . -1031) T) ((-431 . -834) 90930) ((-796 . -1019) T) ((-1145 . -23) T) ((-532 . -1031) T) ((-794 . -23) T) ((-573 . -669) T) ((-333 . -854) T) ((-330 . -854) T) ((-268 . -97) T) ((-322 . -854) T) ((-987 . -126) T) ((-886 . -126) T) ((-113 . -736) NIL) ((-113 . -733) NIL) ((-113 . -669) T) ((-636 . -843) NIL) ((-973 . -486) 90831) ((-457 . -126) T) ((-532 . -23) T) ((-620 . -288) 90769) ((-584 . -704) T) ((-560 . -704) T) ((-1136 . -789) NIL) ((-934 . -269) T) ((-230 . -21) T) ((-636 . -594) 90719) ((-329 . -1019) T) ((-230 . -25) T) ((-229 . -21) T) ((-229 . -25) T) ((-143 . -37) 90703) ((-2 . -97) T) ((-844 . -854) T) ((-458 . -1179) 90673) ((-203 . -967) 90650) ((-1037 . -976) T) ((-654 . -286) T) ((-273 . -660) 90592) ((-643 . -983) T) ((-462 . -429) T) ((-385 . -486) 90504) ((-198 . -429) T) ((-1037 . -213) T) ((-274 . -142) 90454) ((-930 . -567) 90415) ((-930 . -566) 90397) ((-921 . -566) 90379) ((-112 . -983) T) ((-600 . -982) 90363) ((-205 . -466) T) ((-377 . -566) 90345) ((-377 . -567) 90322) ((-980 . -1179) 90292) ((-600 . -107) 90271) ((-1057 . -464) 90255) ((-757 . -37) 90225) ((-61 . -418) T) ((-61 . -373) T) ((-1074 . -97) T) ((-805 . -126) T) ((-459 . -97) 90203) ((-1198 . -346) T) ((-1002 . -97) T) ((-986 . -97) T) ((-329 . -660) 90148) ((-674 . -138) 90127) ((-674 . -136) 90106) ((-954 . -594) 90043) ((-494 . -1019) 90021) ((-337 . -97) T) ((-331 . -97) T) ((-323 . -97) T) ((-103 . -97) T) ((-477 . -1019) T) ((-332 . -594) 89966) ((-1086 . -588) 89914) ((-1042 . -588) 89862) ((-363 . -481) 89841) ((-775 . -787) 89820) ((-357 . -1130) T) ((-636 . -669) T) ((-317 . -983) T) ((-1136 . -924) 89772) ((-161 . -983) T) ((-98 . -566) 89704) ((-1088 . -136) 89683) ((-1088 . -138) 89662) ((-357 . -517) T) ((-1087 . -138) 89641) ((-1087 . -136) 89620) ((-1081 . -136) 89527) ((-385 . -269) T) ((-1081 . -138) 89434) ((-1043 . -138) 89413) ((-1043 . -136) 89392) ((-297 . -37) 89233) ((-157 . -126) T) ((-291 . -737) NIL) ((-291 . -734) NIL) ((-600 . -976) T) ((-47 . -594) 89198) ((-925 . -21) T) ((-123 . -941) 89182) ((-117 . -941) 89166) ((-925 . -25) T) ((-835 . -115) 89150) ((-1073 . -97) T) ((-758 . -789) 89129) ((-1145 . -126) T) ((-1086 . -25) T) ((-1086 . -21) T) ((-794 . -126) T) ((-1042 . -25) T) ((-1042 . -21) T) ((-793 . -25) T) ((-793 . -21) T) ((-724 . -286) 89108) ((-593 . -97) 89086) ((-581 . -97) T) ((-1074 . -288) 88881) ((-532 . -126) T) ((-571 . -787) 88860) ((-1071 . -464) 88844) ((-1065 . -142) 88794) ((-1061 . -566) 88756) ((-1061 . -567) 88717) ((-954 . -733) T) ((-954 . -736) T) ((-954 . -669) T) ((-459 . -288) 88655) ((-430 . -395) 88625) ((-329 . -160) T) ((-268 . -37) 88612) ((-253 . -97) T) ((-252 . -97) T) ((-251 . -97) T) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-321 . -967) 88589) ((-194 . -97) T) ((-193 . -97) T) ((-191 . -97) T) ((-190 . -97) T) ((-189 . -97) T) ((-188 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-655 . -982) 88412) ((-183 . -97) T) ((-182 . -97) T) ((-181 . -97) T) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-332 . -669) T) ((-655 . -107) 88221) ((-616 . -211) 88205) ((-538 . -286) T) ((-489 . -286) T) ((-273 . -486) 88154) ((-103 . -288) NIL) ((-70 . -373) T) ((-1032 . -97) 87965) ((-775 . -389) 87949) ((-1037 . -737) T) ((-1037 . -734) T) ((-643 . -1019) T) ((-357 . -341) T) ((-157 . -466) 87927) ((-202 . -566) 87859) ((-128 . -1019) T) ((-112 . -1019) T) ((-47 . -669) T) ((-973 . -464) 87824) ((-132 . -403) 87806) ((-132 . -346) T) ((-957 . -97) T) ((-484 . -481) 87785) ((-453 . -97) T) ((-440 . -97) T) ((-964 . -1031) T) ((-1088 . -34) 87751) ((-1088 . -91) 87717) ((-1088 . -1115) 87683) ((-1088 . -1112) 87649) ((-1073 . -288) NIL) ((-87 . -374) T) ((-87 . -373) T) ((-1002 . -1066) 87628) ((-1087 . -1112) 87594) ((-1087 . -1115) 87560) ((-964 . -23) T) ((-1087 . -91) 87526) ((-532 . -466) T) ((-1087 . -34) 87492) ((-1081 . -1112) 87458) ((-1081 . -1115) 87424) ((-1081 . -91) 87390) ((-339 . -1031) T) ((-337 . -1066) 87369) ((-331 . -1066) 87348) ((-323 . -1066) 87327) ((-1081 . -34) 87293) ((-1043 . -34) 87259) ((-1043 . -91) 87225) ((-103 . -1066) T) ((-1043 . -1115) 87191) ((-775 . -983) 87170) ((-593 . -288) 87108) ((-581 . -288) 86959) ((-1043 . -1112) 86925) ((-655 . -976) T) ((-987 . -588) 86907) ((-1002 . -37) 86775) ((-886 . -588) 86723) ((-935 . -138) T) ((-935 . -136) NIL) ((-357 . -1031) T) ((-302 . -25) T) ((-300 . -23) T) ((-877 . -789) 86702) ((-655 . -304) 86679) ((-457 . -588) 86627) ((-39 . -967) 86517) ((-643 . -660) 86504) ((-655 . -213) T) ((-317 . -1019) T) ((-161 . -1019) T) ((-309 . -789) T) ((-396 . -429) 86454) ((-357 . -23) T) ((-337 . -37) 86419) ((-331 . -37) 86384) ((-323 . -37) 86349) ((-78 . -418) T) ((-78 . -373) T) ((-205 . -25) T) ((-205 . -21) T) ((-776 . -1031) T) ((-103 . -37) 86299) ((-769 . -1031) T) ((-716 . -1019) T) ((-112 . -660) 86286) ((-617 . -967) 86270) ((-565 . -97) T) ((-776 . -23) T) ((-769 . -23) T) ((-1071 . -265) 86247) ((-1032 . -288) 86185) ((-1021 . -215) 86169) ((-62 . -374) T) ((-62 . -373) T) ((-106 . -97) T) ((-39 . -355) 86146) ((-599 . -791) 86130) ((-987 . -21) T) ((-987 . -25) T) ((-757 . -211) 86100) ((-886 . -25) T) ((-886 . -21) T) ((-571 . -983) T) ((-457 . -25) T) ((-457 . -21) T) ((-957 . -288) 86038) ((-823 . -566) 86020) ((-819 . -566) 86002) ((-230 . -789) 85953) ((-229 . -789) 85904) ((-494 . -486) 85837) ((-805 . -588) 85814) ((-453 . -288) 85752) ((-440 . -288) 85690) ((-329 . -269) T) ((-1071 . -1160) 85674) ((-1057 . -566) 85636) ((-1057 . -567) 85597) ((-1055 . -97) T) ((-930 . -982) 85493) ((-39 . -834) 85445) ((-1071 . -558) 85422) ((-1198 . -594) 85409) ((-988 . -142) 85355) ((-806 . -1130) T) ((-930 . -107) 85237) ((-317 . -660) 85221) ((-800 . -566) 85203) ((-161 . -660) 85135) ((-385 . -265) 85093) ((-806 . -517) T) ((-103 . -378) 85075) ((-82 . -362) T) ((-82 . -373) T) ((-643 . -160) T) ((-94 . -669) T) ((-458 . -97) 84886) ((-94 . -450) T) ((-112 . -160) T) ((-1032 . -37) 84856) ((-157 . -588) 84804) ((-980 . -97) T) ((-805 . -25) T) ((-757 . -218) 84783) ((-805 . -21) T) ((-760 . -97) T) ((-392 . -97) T) ((-363 . -97) T) ((-106 . -288) NIL) ((-207 . -97) 84761) ((-123 . -1126) T) ((-117 . -1126) T) ((-964 . -126) T) ((-616 . -345) 84745) ((-930 . -976) T) ((-1145 . -588) 84693) ((-1023 . -566) 84675) ((-934 . -566) 84657) ((-487 . -23) T) ((-482 . -23) T) ((-321 . -286) T) ((-480 . -23) T) ((-300 . -126) T) ((-3 . -1019) T) ((-934 . -567) 84641) ((-930 . -223) 84620) ((-930 . -213) 84599) ((-1198 . -669) T) ((-1164 . -136) 84578) ((-775 . -1019) T) ((-1164 . -138) 84557) ((-1157 . -138) 84536) ((-1157 . -136) 84515) ((-1156 . -1130) 84494) ((-1136 . -136) 84401) ((-1136 . -138) 84308) ((-1135 . -1130) 84287) ((-357 . -126) T) ((-525 . -820) 84269) ((0 . -1019) T) ((-161 . -160) T) ((-157 . -21) T) ((-157 . -25) T) ((-48 . -1019) T) ((-1158 . -594) 84174) ((-1156 . -517) 84125) ((-657 . -1031) T) ((-1135 . -517) 84076) ((-525 . -967) 84058) ((-550 . -138) 84037) ((-550 . -136) 84016) ((-468 . -967) 83959) ((-85 . -362) T) ((-85 . -373) T) ((-806 . -341) T) ((-776 . -126) T) ((-769 . -126) T) ((-657 . -23) T) ((-475 . -566) 83941) ((-1194 . -983) T) ((-357 . -985) T) ((-956 . -1019) 83919) ((-835 . -33) T) ((-458 . -288) 83857) ((-1071 . -567) 83818) ((-1071 . -566) 83750) ((-1086 . -789) 83729) ((-44 . -97) T) ((-1042 . -789) 83708) ((-759 . -97) T) ((-1145 . -25) T) ((-1145 . -21) T) ((-794 . -25) T) ((-43 . -345) 83692) ((-794 . -21) T) ((-674 . -429) 83643) ((-1193 . -566) 83625) ((-532 . -25) T) ((-532 . -21) T) ((-368 . -1019) T) ((-980 . -288) 83563) ((-571 . -1019) T) ((-641 . -820) 83545) ((-1172 . -1126) T) ((-207 . -288) 83483) ((-135 . -346) T) ((-973 . -567) 83425) ((-973 . -566) 83368) ((-291 . -843) NIL) ((-641 . -967) 83313) ((-654 . -854) T) ((-451 . -1130) 83292) ((-1087 . -429) 83271) ((-1081 . -429) 83250) ((-308 . -97) T) ((-806 . -1031) T) ((-294 . -594) 83072) ((-291 . -594) 83001) ((-451 . -517) 82952) ((-317 . -486) 82918) ((-511 . -142) 82868) ((-39 . -286) T) ((-782 . -566) 82850) ((-643 . -269) T) ((-806 . -23) T) ((-357 . -466) T) ((-1002 . -211) 82820) ((-484 . -97) T) ((-385 . -567) 82628) ((-385 . -566) 82610) ((-242 . -566) 82592) ((-112 . -269) T) ((-1158 . -669) T) ((-1156 . -341) 82571) ((-1135 . -341) 82550) ((-1183 . -33) T) ((-113 . -1126) T) ((-103 . -211) 82532) ((-1092 . -97) T) ((-454 . -1019) T) ((-494 . -464) 82516) ((-680 . -33) T) ((-458 . -37) 82486) ((-132 . -33) T) ((-113 . -818) 82463) ((-113 . -820) NIL) ((-573 . -967) 82348) ((-592 . -789) 82327) ((-1182 . -97) T) ((-274 . -97) T) ((-655 . -346) 82306) ((-113 . -967) 82283) ((-368 . -660) 82267) ((-571 . -660) 82251) ((-44 . -288) 82055) ((-758 . -136) 82034) ((-758 . -138) 82013) ((-1193 . -360) 81992) ((-761 . -789) T) ((-1174 . -1019) T) ((-1074 . -209) 81939) ((-364 . -789) 81918) ((-1164 . -1115) 81884) ((-1164 . -1112) 81850) ((-1157 . -1112) 81816) ((-487 . -126) T) ((-1157 . -1115) 81782) ((-1136 . -1112) 81748) ((-1136 . -1115) 81714) ((-1164 . -34) 81680) ((-1164 . -91) 81646) ((-584 . -566) 81615) ((-560 . -566) 81584) ((-205 . -789) T) ((-1157 . -91) 81550) ((-1157 . -34) 81516) ((-1156 . -1031) T) ((-1037 . -594) 81503) ((-1136 . -91) 81469) ((-1135 . -1031) T) ((-548 . -142) 81451) ((-1002 . -327) 81430) ((-113 . -355) 81407) ((-113 . -316) 81384) ((-161 . -269) T) ((-1136 . -34) 81350) ((-804 . -286) T) ((-291 . -736) NIL) ((-291 . -733) NIL) ((-294 . -669) 81200) ((-291 . -669) T) ((-451 . -341) 81179) ((-337 . -327) 81158) ((-331 . -327) 81137) ((-323 . -327) 81116) ((-294 . -450) 81095) ((-1156 . -23) T) ((-1135 . -23) T) ((-661 . -1031) T) ((-657 . -126) T) ((-599 . -97) T) ((-454 . -660) 81060) ((-44 . -261) 81010) ((-100 . -1019) T) ((-66 . -566) 80992) ((-799 . -97) T) ((-573 . -834) 80951) ((-1194 . -1019) T) ((-359 . -1019) T) ((-80 . -1126) T) ((-987 . -789) T) ((-886 . -789) 80930) ((-113 . -834) NIL) ((-724 . -854) 80909) ((-656 . -789) T) ((-497 . -1019) T) ((-473 . -1019) T) ((-333 . -1130) T) ((-330 . -1130) T) ((-322 . -1130) T) ((-243 . -1130) 80888) ((-227 . -1130) 80867) ((-1032 . -211) 80837) ((-457 . -789) 80816) ((-1057 . -982) 80800) ((-368 . -704) T) ((-1073 . -770) T) ((-636 . -1126) T) ((-333 . -517) T) ((-330 . -517) T) ((-322 . -517) T) ((-243 . -517) 80731) ((-227 . -517) 80662) ((-1057 . -107) 80641) ((-430 . -687) 80611) ((-800 . -982) 80581) ((-759 . -37) 80523) ((-636 . -818) 80505) ((-636 . -820) 80487) ((-274 . -288) 80291) ((-844 . -1130) T) ((-616 . -389) 80275) ((-800 . -107) 80240) ((-636 . -967) 80185) ((-935 . -429) T) ((-844 . -517) T) ((-538 . -854) T) ((-451 . -1031) T) ((-489 . -854) T) ((-1071 . -267) 80162) ((-848 . -429) T) ((-63 . -566) 80144) ((-581 . -209) 80090) ((-451 . -23) T) ((-1037 . -736) T) ((-806 . -126) T) ((-1037 . -733) T) ((-1185 . -1187) 80069) ((-1037 . -669) T) ((-600 . -594) 80043) ((-273 . -566) 79785) ((-965 . -33) T) ((-757 . -787) 79764) ((-537 . -286) T) ((-525 . -286) T) ((-468 . -286) T) ((-1194 . -660) 79734) ((-636 . -355) 79716) ((-636 . -316) 79698) ((-454 . -160) T) ((-359 . -660) 79668) ((-805 . -789) NIL) ((-525 . -952) T) ((-468 . -952) T) ((-1050 . -566) 79650) ((-1032 . -218) 79629) ((-195 . -97) T) ((-1065 . -97) T) ((-69 . -566) 79611) ((-1057 . -976) T) ((-1092 . -37) 79508) ((-796 . -566) 79490) ((-525 . -510) T) ((-616 . -983) T) ((-674 . -883) 79443) ((-1057 . -213) 79422) ((-1004 . -1019) T) ((-964 . -25) T) ((-964 . -21) T) ((-934 . -982) 79367) ((-839 . -97) T) ((-800 . -976) T) ((-636 . -834) NIL) ((-333 . -307) 79351) ((-333 . -341) T) ((-330 . -307) 79335) ((-330 . -341) T) ((-322 . -307) 79319) ((-322 . -341) T) ((-462 . -97) T) ((-1182 . -37) 79289) ((-494 . -630) 79239) ((-198 . -97) T) ((-954 . -967) 79121) ((-934 . -107) 79050) ((-1088 . -905) 79019) ((-1087 . -905) 78981) ((-491 . -142) 78965) ((-1002 . -348) 78944) ((-329 . -566) 78926) ((-300 . -21) T) ((-332 . -967) 78903) ((-300 . -25) T) ((-1081 . -905) 78872) ((-1043 . -905) 78839) ((-74 . -566) 78821) ((-641 . -286) T) ((-157 . -789) 78800) ((-844 . -341) T) ((-357 . -25) T) ((-357 . -21) T) ((-844 . -307) 78787) ((-84 . -566) 78769) ((-641 . -952) T) ((-621 . -789) T) ((-1156 . -126) T) ((-1135 . -126) T) ((-835 . -941) 78753) ((-776 . -21) T) ((-47 . -967) 78696) ((-776 . -25) T) ((-769 . -25) T) ((-769 . -21) T) ((-1192 . -983) T) ((-1190 . -983) T) ((-600 . -669) T) ((-1193 . -982) 78680) ((-1145 . -789) 78659) ((-757 . -389) 78628) ((-98 . -115) 78612) ((-125 . -1019) T) ((-51 . -1019) T) ((-860 . -566) 78594) ((-805 . -924) 78571) ((-765 . -97) T) ((-1193 . -107) 78550) ((-599 . -37) 78520) ((-532 . -789) T) ((-333 . -1031) T) ((-330 . -1031) T) ((-322 . -1031) T) ((-243 . -1031) T) ((-227 . -1031) T) ((-573 . -286) 78499) ((-1065 . -288) 78303) ((-610 . -23) T) ((-458 . -211) 78273) ((-143 . -983) T) ((-333 . -23) T) ((-330 . -23) T) ((-322 . -23) T) ((-113 . -286) T) ((-243 . -23) T) ((-227 . -23) T) ((-934 . -976) T) ((-655 . -843) 78252) ((-934 . -213) 78224) ((-934 . -223) T) ((-113 . -952) NIL) ((-844 . -1031) T) ((-1157 . -429) 78203) ((-1136 . -429) 78182) ((-494 . -566) 78114) ((-655 . -594) 78039) ((-385 . -982) 77991) ((-477 . -566) 77973) ((-844 . -23) T) ((-462 . -288) NIL) ((-451 . -126) T) ((-198 . -288) NIL) ((-385 . -107) 77911) ((-757 . -983) 77842) ((-680 . -1017) 77826) ((-1156 . -466) 77792) ((-1135 . -466) 77758) ((-454 . -269) T) ((-132 . -1017) 77740) ((-124 . -142) 77722) ((-1193 . -976) T) ((-988 . -97) T) ((-473 . -486) NIL) ((-645 . -97) T) ((-458 . -218) 77701) ((-1086 . -136) 77680) ((-1086 . -138) 77659) ((-1042 . -138) 77638) ((-1042 . -136) 77617) ((-584 . -982) 77601) ((-560 . -982) 77585) ((-616 . -1019) T) ((-616 . -979) 77525) ((-1088 . -1163) 77509) ((-1088 . -1150) 77486) ((-462 . -1066) T) ((-1087 . -1155) 77447) ((-1087 . -1150) 77417) ((-1087 . -1153) 77401) ((-198 . -1066) T) ((-321 . -854) T) ((-760 . -245) 77385) ((-584 . -107) 77364) ((-560 . -107) 77343) ((-1081 . -1134) 77304) ((-782 . -976) 77283) ((-1081 . -1150) 77260) ((-487 . -25) T) ((-468 . -281) T) ((-483 . -23) T) ((-482 . -25) T) ((-480 . -25) T) ((-479 . -23) T) ((-1081 . -1132) 77244) ((-385 . -976) T) ((-297 . -983) T) ((-636 . -286) T) ((-103 . -787) T) ((-385 . -223) T) ((-385 . -213) 77223) ((-655 . -669) T) ((-462 . -37) 77173) ((-198 . -37) 77123) ((-451 . -466) 77089) ((-1073 . -1059) T) ((-1020 . -97) T) ((-643 . -566) 77071) ((-643 . -567) 76986) ((-657 . -21) T) ((-657 . -25) T) ((-128 . -566) 76968) ((-112 . -566) 76950) ((-146 . -25) T) ((-1192 . -1019) T) ((-806 . -588) 76898) ((-1190 . -1019) T) ((-896 . -97) T) ((-678 . -97) T) ((-658 . -97) T) ((-430 . -97) T) ((-758 . -429) 76849) ((-43 . -1019) T) ((-1009 . -789) T) ((-610 . -126) T) ((-988 . -288) 76700) ((-616 . -660) 76684) ((-268 . -983) T) ((-333 . -126) T) ((-330 . -126) T) ((-322 . -126) T) ((-243 . -126) T) ((-227 . -126) T) ((-396 . -97) T) ((-143 . -1019) T) ((-44 . -209) 76634) ((-891 . -789) 76613) ((-930 . -594) 76551) ((-220 . -1179) 76521) ((-954 . -286) T) ((-273 . -982) 76443) ((-844 . -126) T) ((-39 . -854) T) ((-462 . -378) 76425) ((-332 . -286) T) ((-198 . -378) 76407) ((-1002 . -389) 76391) ((-273 . -107) 76308) ((-806 . -25) T) ((-806 . -21) T) ((-317 . -566) 76290) ((-1158 . -46) 76234) ((-205 . -138) T) ((-161 . -566) 76216) ((-1032 . -787) 76195) ((-716 . -566) 76177) ((-561 . -215) 76124) ((-452 . -215) 76074) ((-1192 . -660) 76044) ((-47 . -286) T) ((-1190 . -660) 76014) ((-897 . -1019) T) ((-757 . -1019) 75825) ((-290 . -97) T) ((-835 . -1126) T) ((-47 . -952) T) ((-1135 . -588) 75733) ((-632 . -97) 75711) ((-43 . -660) 75695) ((-511 . -97) T) ((-65 . -361) T) ((-65 . -373) T) ((-608 . -23) T) ((-616 . -704) T) ((-1124 . -1019) 75673) ((-329 . -982) 75618) ((-620 . -1019) 75596) ((-987 . -138) T) ((-886 . -138) 75575) ((-886 . -136) 75554) ((-741 . -97) T) ((-143 . -660) 75538) ((-457 . -138) 75517) ((-457 . -136) 75496) ((-329 . -107) 75425) ((-1002 . -983) T) ((-300 . -789) 75404) ((-1164 . -905) 75373) ((-576 . -1019) T) ((-1157 . -905) 75335) ((-483 . -126) T) ((-479 . -126) T) ((-274 . -209) 75285) ((-337 . -983) T) ((-331 . -983) T) ((-323 . -983) T) ((-273 . -976) 75228) ((-1136 . -905) 75197) ((-357 . -789) T) ((-103 . -983) T) ((-930 . -669) T) ((-804 . -854) T) ((-782 . -737) 75176) ((-782 . -734) 75155) ((-396 . -288) 75094) ((-445 . -97) T) ((-550 . -905) 75063) ((-297 . -1019) T) ((-385 . -737) 75042) ((-385 . -734) 75021) ((-473 . -464) 75003) ((-1158 . -967) 74969) ((-1156 . -21) T) ((-1156 . -25) T) ((-1135 . -21) T) ((-1135 . -25) T) ((-757 . -660) 74911) ((-641 . -382) T) ((-1183 . -1126) T) ((-1032 . -389) 74880) ((-934 . -346) NIL) ((-98 . -33) T) ((-680 . -1126) T) ((-43 . -704) T) ((-548 . -97) T) ((-75 . -374) T) ((-75 . -373) T) ((-599 . -602) 74864) ((-132 . -1126) T) ((-805 . -138) T) ((-805 . -136) NIL) ((-329 . -976) T) ((-68 . -361) T) ((-68 . -373) T) ((-1080 . -97) T) ((-616 . -486) 74797) ((-632 . -288) 74735) ((-896 . -37) 74632) ((-678 . -37) 74602) ((-511 . -288) 74406) ((-294 . -1126) T) ((-329 . -213) T) ((-329 . -223) T) ((-291 . -1126) T) ((-268 . -1019) T) ((-1094 . -566) 74388) ((-654 . -1130) T) ((-1071 . -597) 74372) ((-1121 . -517) 74351) ((-654 . -517) T) ((-294 . -818) 74335) ((-294 . -820) 74260) ((-291 . -818) 74221) ((-291 . -820) NIL) ((-741 . -288) 74186) ((-297 . -660) 74027) ((-302 . -301) 74004) ((-460 . -97) T) ((-451 . -25) T) ((-451 . -21) T) ((-396 . -37) 73978) ((-294 . -967) 73646) ((-205 . -1112) T) ((-205 . -1115) T) ((-3 . -566) 73628) ((-291 . -967) 73558) ((-2 . -1019) T) ((-2 . |RecordCategory|) T) ((-775 . -566) 73540) ((-1032 . -983) 73471) ((-537 . -854) T) ((-525 . -762) T) ((-525 . -854) T) ((-468 . -854) T) ((-130 . -967) 73455) ((-205 . -91) T) ((-73 . -418) T) ((-73 . -373) T) ((0 . -566) 73437) ((-157 . -138) 73416) ((-157 . -136) 73367) ((-205 . -34) T) ((-48 . -566) 73349) ((-454 . -983) T) ((-462 . -211) 73331) ((-459 . -901) 73315) ((-458 . -787) 73294) ((-198 . -211) 73276) ((-79 . -418) T) ((-79 . -373) T) ((-1061 . -33) T) ((-757 . -160) 73255) ((-674 . -97) T) ((-956 . -566) 73222) ((-473 . -265) 73197) ((-294 . -355) 73167) ((-291 . -355) 73128) ((-291 . -316) 73089) ((-1006 . -566) 73071) ((-758 . -883) 73018) ((-608 . -126) T) ((-1145 . -136) 72997) ((-1145 . -138) 72976) ((-1088 . -97) T) ((-1087 . -97) T) ((-1081 . -97) T) ((-1074 . -1019) T) ((-1043 . -97) T) ((-202 . -33) T) ((-268 . -660) 72963) ((-1074 . -563) 72939) ((-548 . -288) NIL) ((-459 . -1019) 72917) ((-368 . -566) 72899) ((-482 . -789) T) ((-1065 . -209) 72849) ((-1164 . -1163) 72833) ((-1164 . -1150) 72810) ((-1157 . -1155) 72771) ((-1157 . -1150) 72741) ((-1157 . -1153) 72725) ((-1136 . -1134) 72686) ((-1136 . -1150) 72663) ((-571 . -566) 72645) ((-1136 . -1132) 72629) ((-641 . -854) T) ((-1088 . -263) 72595) ((-1087 . -263) 72561) ((-1081 . -263) 72527) ((-1002 . -1019) T) ((-986 . -1019) T) ((-47 . -281) T) ((-294 . -834) 72494) ((-291 . -834) NIL) ((-986 . -992) 72473) ((-1037 . -820) 72455) ((-741 . -37) 72439) ((-243 . -588) 72387) ((-227 . -588) 72335) ((-643 . -982) 72322) ((-550 . -1150) 72299) ((-1043 . -263) 72265) ((-297 . -160) 72196) ((-337 . -1019) T) ((-331 . -1019) T) ((-323 . -1019) T) ((-473 . -19) 72178) ((-1037 . -967) 72160) ((-1021 . -142) 72144) ((-103 . -1019) T) ((-112 . -982) 72131) ((-654 . -341) T) ((-473 . -558) 72106) ((-643 . -107) 72091) ((-414 . -97) T) ((-44 . -1064) 72041) ((-112 . -107) 72026) ((-584 . -663) T) ((-560 . -663) T) ((-757 . -486) 71959) ((-965 . -1126) T) ((-877 . -142) 71943) ((-491 . -97) 71893) ((-1008 . -1130) 71872) ((-454 . -566) 71824) ((-454 . -567) 71746) ((-60 . -1126) T) ((-724 . -1130) 71725) ((-722 . -1130) 71704) ((-1086 . -429) 71635) ((-1073 . -1019) T) ((-1057 . -594) 71609) ((-1008 . -517) 71540) ((-458 . -389) 71509) ((-573 . -854) 71488) ((-431 . -1130) 71467) ((-1042 . -429) 71418) ((-376 . -566) 71400) ((-620 . -486) 71333) ((-724 . -517) 71244) ((-722 . -517) 71175) ((-674 . -288) 71162) ((-610 . -25) T) ((-610 . -21) T) ((-431 . -517) 71093) ((-113 . -854) T) ((-113 . -762) NIL) ((-333 . -25) T) ((-333 . -21) T) ((-330 . -25) T) ((-330 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-243 . -25) T) ((-243 . -21) T) ((-81 . -362) T) ((-81 . -373) T) ((-227 . -25) T) ((-227 . -21) T) ((-1174 . -566) 71075) ((-1121 . -1031) T) ((-1121 . -23) T) ((-1081 . -288) 70960) ((-1043 . -288) 70947) ((-800 . -594) 70907) ((-1002 . -660) 70775) ((-877 . -912) 70759) ((-268 . -160) T) ((-844 . -21) T) ((-844 . -25) T) ((-806 . -789) 70710) ((-654 . -1031) T) ((-654 . -23) T) ((-593 . -1019) 70688) ((-581 . -563) 70663) ((-581 . -1019) T) ((-538 . -1130) T) ((-489 . -1130) T) ((-538 . -517) T) ((-489 . -517) T) ((-337 . -660) 70615) ((-331 . -660) 70567) ((-161 . -982) 70499) ((-317 . -982) 70483) ((-103 . -660) 70433) ((-161 . -107) 70344) ((-323 . -660) 70296) ((-317 . -107) 70275) ((-253 . -1019) T) ((-252 . -1019) T) ((-251 . -1019) T) ((-250 . -1019) T) ((-643 . -976) T) ((-249 . -1019) T) ((-248 . -1019) T) ((-247 . -1019) T) ((-194 . -1019) T) ((-193 . -1019) T) ((-191 . -1019) T) ((-157 . -1115) 70253) ((-157 . -1112) 70231) ((-190 . -1019) T) ((-189 . -1019) T) ((-112 . -976) T) ((-188 . -1019) T) ((-185 . -1019) T) ((-643 . -213) T) ((-184 . -1019) T) ((-183 . -1019) T) ((-182 . -1019) T) ((-181 . -1019) T) ((-180 . -1019) T) ((-179 . -1019) T) ((-178 . -1019) T) ((-177 . -1019) T) ((-176 . -1019) T) ((-175 . -1019) T) ((-220 . -97) 70042) ((-157 . -34) 70020) ((-157 . -91) 69998) ((-600 . -967) 69896) ((-458 . -983) 69827) ((-1032 . -1019) 69638) ((-1057 . -33) T) ((-616 . -464) 69622) ((-71 . -1126) T) ((-100 . -566) 69604) ((-1194 . -566) 69586) ((-359 . -566) 69568) ((-532 . -1115) T) ((-532 . -1112) T) ((-674 . -37) 69417) ((-497 . -566) 69399) ((-491 . -288) 69337) ((-473 . -566) 69319) ((-473 . -567) 69301) ((-1081 . -1066) NIL) ((-957 . -995) 69270) ((-957 . -1019) T) ((-935 . -97) T) ((-903 . -97) T) ((-848 . -97) T) ((-827 . -967) 69247) ((-1057 . -669) T) ((-934 . -594) 69192) ((-453 . -1019) T) ((-440 . -1019) T) ((-542 . -23) T) ((-532 . -34) T) ((-532 . -91) T) ((-405 . -97) T) ((-988 . -209) 69138) ((-124 . -97) T) ((-1088 . -37) 69035) ((-800 . -669) T) ((-636 . -854) T) ((-483 . -25) T) ((-479 . -21) T) ((-479 . -25) T) ((-1087 . -37) 68876) ((-317 . -976) T) ((-1081 . -37) 68672) ((-1002 . -160) T) ((-161 . -976) T) ((-1043 . -37) 68569) ((-655 . -46) 68546) ((-337 . -160) T) ((-331 . -160) T) ((-490 . -55) 68520) ((-470 . -55) 68470) ((-329 . -1189) 68447) ((-205 . -429) T) ((-297 . -269) 68398) ((-323 . -160) T) ((-161 . -223) T) ((-1135 . -789) 68297) ((-103 . -160) T) ((-806 . -924) 68281) ((-604 . -1031) T) ((-538 . -341) T) ((-538 . -307) 68268) ((-489 . -307) 68245) ((-489 . -341) T) ((-294 . -286) 68224) ((-291 . -286) T) ((-556 . -789) 68203) ((-1032 . -660) 68145) ((-491 . -261) 68129) ((-604 . -23) T) ((-396 . -211) 68113) ((-291 . -952) NIL) ((-314 . -23) T) ((-98 . -941) 68097) ((-44 . -35) 68076) ((-565 . -1019) T) ((-329 . -346) T) ((-468 . -27) T) ((-220 . -288) 68014) ((-1008 . -1031) T) ((-1193 . -594) 67988) ((-724 . -1031) T) ((-722 . -1031) T) ((-431 . -1031) T) ((-987 . -429) T) ((-886 . -429) 67939) ((-106 . -1019) T) ((-1008 . -23) T) ((-759 . -983) T) ((-724 . -23) T) ((-722 . -23) T) ((-457 . -429) 67890) ((-1074 . -486) 67673) ((-359 . -360) 67652) ((-1092 . -389) 67636) ((-438 . -23) T) ((-431 . -23) T) ((-459 . -486) 67569) ((-268 . -269) T) ((-1004 . -566) 67551) ((-385 . -843) 67530) ((-49 . -1031) T) ((-954 . -854) T) ((-934 . -669) T) ((-655 . -820) NIL) ((-538 . -1031) T) ((-489 . -1031) T) ((-782 . -594) 67503) ((-1121 . -126) T) ((-1081 . -378) 67455) ((-935 . -288) NIL) ((-757 . -464) 67439) ((-332 . -854) T) ((-1071 . -33) T) ((-385 . -594) 67391) ((-49 . -23) T) ((-654 . -126) T) ((-655 . -967) 67273) ((-538 . -23) T) ((-103 . -486) NIL) ((-489 . -23) T) ((-157 . -387) 67244) ((-124 . -288) NIL) ((-1055 . -1019) T) ((-1185 . -1184) 67228) ((-643 . -737) T) ((-643 . -734) T) ((-1037 . -286) T) ((-357 . -138) T) ((-259 . -566) 67210) ((-1135 . -924) 67180) ((-47 . -854) T) ((-620 . -464) 67164) ((-230 . -1179) 67134) ((-229 . -1179) 67104) ((-1090 . -789) T) ((-1032 . -160) 67083) ((-1037 . -952) T) ((-973 . -33) T) ((-776 . -138) 67062) ((-776 . -136) 67041) ((-680 . -102) 67025) ((-565 . -127) T) ((-458 . -1019) 66836) ((-1092 . -983) T) ((-805 . -429) T) ((-83 . -1126) T) ((-220 . -37) 66806) ((-132 . -102) 66788) ((-655 . -355) 66772) ((-1037 . -510) T) ((-368 . -982) 66756) ((-1193 . -669) T) ((-1086 . -883) 66725) ((-125 . -566) 66692) ((-51 . -566) 66674) ((-1042 . -883) 66641) ((-599 . -389) 66625) ((-1182 . -983) T) ((-571 . -982) 66609) ((-608 . -25) T) ((-608 . -21) T) ((-1073 . -486) NIL) ((-1164 . -97) T) ((-1157 . -97) T) ((-368 . -107) 66588) ((-202 . -233) 66572) ((-1136 . -97) T) ((-980 . -1019) T) ((-935 . -1066) T) ((-980 . -979) 66512) ((-760 . -1019) T) ((-321 . -1130) T) ((-584 . -594) 66496) ((-571 . -107) 66475) ((-560 . -594) 66459) ((-551 . -97) T) ((-542 . -126) T) ((-550 . -97) T) ((-392 . -1019) T) ((-363 . -1019) T) ((-207 . -1019) 66437) ((-593 . -486) 66370) ((-581 . -486) 66214) ((-775 . -976) 66193) ((-592 . -142) 66177) ((-321 . -517) T) ((-655 . -834) 66120) ((-511 . -209) 66070) ((-1164 . -263) 66036) ((-1002 . -269) 65987) ((-462 . -787) T) ((-203 . -1031) T) ((-1157 . -263) 65953) ((-1136 . -263) 65919) ((-935 . -37) 65869) ((-198 . -787) T) ((-1121 . -466) 65835) ((-848 . -37) 65787) ((-782 . -736) 65766) ((-782 . -733) 65745) ((-782 . -669) 65724) ((-337 . -269) T) ((-331 . -269) T) ((-323 . -269) T) ((-157 . -429) 65655) ((-405 . -37) 65639) ((-103 . -269) T) ((-203 . -23) T) ((-385 . -736) 65618) ((-385 . -733) 65597) ((-385 . -669) T) ((-473 . -267) 65572) ((-454 . -982) 65537) ((-604 . -126) T) ((-1032 . -486) 65470) ((-314 . -126) T) ((-157 . -380) 65449) ((-458 . -660) 65391) ((-757 . -265) 65368) ((-454 . -107) 65324) ((-599 . -983) T) ((-1145 . -429) 65255) ((-1008 . -126) T) ((-243 . -789) 65234) ((-227 . -789) 65213) ((-724 . -126) T) ((-722 . -126) T) ((-532 . -429) T) ((-980 . -660) 65155) ((-571 . -976) T) ((-957 . -486) 65088) ((-438 . -126) T) ((-431 . -126) T) ((-44 . -1019) T) ((-363 . -660) 65058) ((-759 . -1019) T) ((-453 . -486) 64991) ((-440 . -486) 64924) ((-430 . -345) 64894) ((-44 . -563) 64873) ((-294 . -281) T) ((-616 . -566) 64835) ((-57 . -789) 64814) ((-1136 . -288) 64699) ((-935 . -378) 64681) ((-757 . -558) 64658) ((-488 . -789) 64637) ((-469 . -789) 64616) ((-39 . -1130) T) ((-930 . -967) 64514) ((-49 . -126) T) ((-538 . -126) T) ((-489 . -126) T) ((-273 . -594) 64376) ((-321 . -307) 64353) ((-321 . -341) T) ((-300 . -301) 64330) ((-297 . -265) 64315) ((-39 . -517) T) ((-357 . -1112) T) ((-357 . -1115) T) ((-965 . -1103) 64290) ((-1100 . -215) 64240) ((-1081 . -211) 64192) ((-308 . -1019) T) ((-357 . -91) T) ((-357 . -34) T) ((-965 . -102) 64138) ((-454 . -976) T) ((-455 . -215) 64088) ((-1074 . -464) 64022) ((-1194 . -982) 64006) ((-359 . -982) 63990) ((-454 . -223) T) ((-758 . -97) T) ((-657 . -138) 63969) ((-657 . -136) 63948) ((-459 . -464) 63932) ((-460 . -313) 63901) ((-1194 . -107) 63880) ((-484 . -1019) T) ((-458 . -160) 63859) ((-930 . -355) 63843) ((-391 . -97) T) ((-359 . -107) 63822) ((-930 . -316) 63806) ((-258 . -915) 63790) ((-257 . -915) 63774) ((-1192 . -566) 63756) ((-1190 . -566) 63738) ((-106 . -486) NIL) ((-1086 . -1148) 63722) ((-793 . -791) 63706) ((-1092 . -1019) T) ((-98 . -1126) T) ((-886 . -883) 63667) ((-759 . -660) 63609) ((-1136 . -1066) NIL) ((-457 . -883) 63554) ((-987 . -134) T) ((-58 . -97) 63532) ((-43 . -566) 63514) ((-76 . -566) 63496) ((-329 . -594) 63441) ((-1182 . -1019) T) ((-483 . -789) T) ((-321 . -1031) T) ((-274 . -1019) T) ((-930 . -834) 63400) ((-274 . -563) 63379) ((-1164 . -37) 63276) ((-1157 . -37) 63117) ((-462 . -983) T) ((-1136 . -37) 62913) ((-198 . -983) T) ((-321 . -23) T) ((-143 . -566) 62895) ((-775 . -737) 62874) ((-775 . -734) 62853) ((-551 . -37) 62826) ((-550 . -37) 62723) ((-804 . -517) T) ((-203 . -126) T) ((-297 . -933) 62689) ((-77 . -566) 62671) ((-655 . -286) 62650) ((-273 . -669) 62553) ((-766 . -97) T) ((-799 . -783) T) ((-273 . -450) 62532) ((-1185 . -97) T) ((-39 . -341) T) ((-806 . -138) 62511) ((-806 . -136) 62490) ((-1073 . -464) 62472) ((-1194 . -976) T) ((-458 . -486) 62405) ((-1061 . -1126) T) ((-897 . -566) 62387) ((-593 . -464) 62371) ((-581 . -464) 62302) ((-757 . -566) 62054) ((-47 . -27) T) ((-1092 . -660) 61951) ((-599 . -1019) T) ((-414 . -342) 61925) ((-1021 . -97) T) ((-758 . -288) 61912) ((-799 . -1019) T) ((-1190 . -360) 61884) ((-980 . -486) 61817) ((-1074 . -265) 61793) ((-220 . -211) 61763) ((-1182 . -660) 61733) ((-759 . -160) 61712) ((-207 . -486) 61645) ((-571 . -737) 61624) ((-571 . -734) 61603) ((-1124 . -566) 61515) ((-202 . -1126) T) ((-620 . -566) 61447) ((-1071 . -941) 61431) ((-329 . -669) T) ((-877 . -97) 61381) ((-1136 . -378) 61333) ((-1032 . -464) 61317) ((-58 . -288) 61255) ((-309 . -97) T) ((-1121 . -21) T) ((-1121 . -25) T) ((-39 . -1031) T) ((-654 . -21) T) ((-576 . -566) 61237) ((-487 . -301) 61216) ((-654 . -25) T) ((-103 . -265) NIL) ((-855 . -1031) T) ((-39 . -23) T) ((-713 . -1031) T) ((-525 . -1130) T) ((-468 . -1130) T) ((-297 . -566) 61198) ((-935 . -211) 61180) ((-157 . -154) 61164) ((-537 . -517) T) ((-525 . -517) T) ((-468 . -517) T) ((-713 . -23) T) ((-1156 . -138) 61143) ((-1074 . -558) 61119) ((-1156 . -136) 61098) ((-957 . -464) 61082) ((-1135 . -136) 61007) ((-1135 . -138) 60932) ((-1185 . -1191) 60911) ((-453 . -464) 60895) ((-440 . -464) 60879) ((-494 . -33) T) ((-599 . -660) 60849) ((-108 . -900) T) ((-608 . -789) 60828) ((-1092 . -160) 60779) ((-343 . -97) T) ((-220 . -218) 60758) ((-230 . -97) T) ((-229 . -97) T) ((-1145 . -883) 60727) ((-105 . -97) T) ((-225 . -789) 60706) ((-758 . -37) 60555) ((-44 . -486) 60347) ((-1073 . -265) 60322) ((-195 . -1019) T) ((-1065 . -1019) T) ((-1065 . -563) 60301) ((-542 . -25) T) ((-542 . -21) T) ((-1021 . -288) 60239) ((-896 . -389) 60223) ((-641 . -1130) T) ((-581 . -265) 60198) ((-1008 . -588) 60146) ((-724 . -588) 60094) ((-722 . -588) 60042) ((-321 . -126) T) ((-268 . -566) 60024) ((-641 . -517) T) ((-839 . -1019) T) ((-804 . -1031) T) ((-431 . -588) 59972) ((-839 . -837) 59956) ((-357 . -429) T) ((-462 . -1019) T) ((-643 . -594) 59943) ((-877 . -288) 59881) ((-198 . -1019) T) ((-294 . -854) 59860) ((-291 . -854) T) ((-291 . -762) NIL) ((-368 . -663) T) ((-804 . -23) T) ((-112 . -594) 59847) ((-451 . -136) 59826) ((-396 . -389) 59810) ((-451 . -138) 59789) ((-106 . -464) 59771) ((-2 . -566) 59753) ((-1073 . -19) 59735) ((-1073 . -558) 59710) ((-604 . -21) T) ((-604 . -25) T) ((-548 . -1059) T) ((-1032 . -265) 59687) ((-314 . -25) T) ((-314 . -21) T) ((-468 . -341) T) ((-1185 . -37) 59657) ((-1057 . -1126) T) ((-581 . -558) 59632) ((-1008 . -25) T) ((-1008 . -21) T) ((-497 . -734) T) ((-497 . -737) T) ((-113 . -1130) T) ((-896 . -983) T) ((-573 . -517) T) ((-678 . -983) T) ((-658 . -983) T) ((-724 . -25) T) ((-724 . -21) T) ((-722 . -21) T) ((-722 . -25) T) ((-616 . -982) 59616) ((-438 . -25) T) ((-113 . -517) T) ((-438 . -21) T) ((-431 . -25) T) ((-431 . -21) T) ((-1057 . -967) 59514) ((-759 . -269) 59493) ((-765 . -1019) T) ((-899 . -900) T) ((-616 . -107) 59472) ((-274 . -486) 59264) ((-1192 . -982) 59248) ((-1190 . -982) 59232) ((-230 . -288) 59170) ((-229 . -288) 59108) ((-1139 . -97) 59086) ((-1074 . -567) NIL) ((-1074 . -566) 59068) ((-1156 . -1112) 59034) ((-1156 . -1115) 59000) ((-1136 . -211) 58952) ((-1135 . -1112) 58918) ((-1135 . -1115) 58884) ((-1057 . -355) 58868) ((-1037 . -762) T) ((-1037 . -854) T) ((-1032 . -558) 58845) ((-1002 . -567) 58829) ((-459 . -566) 58761) ((-757 . -267) 58738) ((-561 . -142) 58685) ((-396 . -983) T) ((-462 . -660) 58635) ((-458 . -464) 58619) ((-305 . -789) 58598) ((-317 . -594) 58572) ((-49 . -21) T) ((-49 . -25) T) ((-198 . -660) 58522) ((-157 . -667) 58493) ((-161 . -594) 58425) ((-538 . -21) T) ((-538 . -25) T) ((-489 . -25) T) ((-489 . -21) T) ((-452 . -142) 58375) ((-1002 . -566) 58357) ((-986 . -566) 58339) ((-925 . -97) T) ((-797 . -97) T) ((-741 . -389) 58303) ((-39 . -126) T) ((-641 . -341) T) ((-194 . -829) T) ((-643 . -736) T) ((-643 . -733) T) ((-537 . -1031) T) ((-525 . -1031) T) ((-468 . -1031) T) ((-643 . -669) T) ((-337 . -566) 58285) ((-331 . -566) 58267) ((-323 . -566) 58249) ((-64 . -374) T) ((-64 . -373) T) ((-103 . -567) 58179) ((-103 . -566) 58161) ((-193 . -829) T) ((-891 . -142) 58145) ((-1156 . -91) 58111) ((-713 . -126) T) ((-128 . -669) T) ((-112 . -669) T) ((-1156 . -34) 58077) ((-980 . -464) 58061) ((-537 . -23) T) ((-525 . -23) T) ((-468 . -23) T) ((-1135 . -91) 58027) ((-1135 . -34) 57993) ((-1086 . -97) T) ((-1042 . -97) T) ((-793 . -97) T) ((-207 . -464) 57977) ((-1192 . -107) 57956) ((-1190 . -107) 57935) ((-43 . -982) 57919) ((-1145 . -1148) 57903) ((-794 . -791) 57887) ((-1092 . -269) 57866) ((-106 . -265) 57841) ((-1057 . -834) 57800) ((-43 . -107) 57779) ((-616 . -976) T) ((-1095 . -1167) T) ((-1073 . -567) NIL) ((-1073 . -566) 57761) ((-988 . -563) 57736) ((-988 . -1019) T) ((-72 . -418) T) ((-72 . -373) T) ((-616 . -213) 57715) ((-143 . -982) 57699) ((-532 . -515) 57683) ((-333 . -138) 57662) ((-333 . -136) 57613) ((-330 . -138) 57592) ((-645 . -1019) T) ((-330 . -136) 57543) ((-322 . -138) 57522) ((-322 . -136) 57473) ((-243 . -136) 57452) ((-243 . -138) 57431) ((-230 . -37) 57401) ((-227 . -138) 57380) ((-113 . -341) T) ((-227 . -136) 57359) ((-229 . -37) 57329) ((-143 . -107) 57308) ((-934 . -967) 57198) ((-1081 . -787) NIL) ((-636 . -1130) T) ((-741 . -983) T) ((-641 . -1031) T) ((-1192 . -976) T) ((-1190 . -976) T) ((-1071 . -1126) T) ((-934 . -355) 57175) ((-844 . -136) T) ((-844 . -138) 57157) ((-804 . -126) T) ((-757 . -982) 57055) ((-636 . -517) T) ((-641 . -23) T) ((-593 . -566) 56987) ((-593 . -567) 56948) ((-581 . -567) NIL) ((-581 . -566) 56930) ((-462 . -160) T) ((-203 . -21) T) ((-198 . -160) T) ((-203 . -25) T) ((-451 . -1115) 56896) ((-451 . -1112) 56862) ((-253 . -566) 56844) ((-252 . -566) 56826) ((-251 . -566) 56808) ((-250 . -566) 56790) ((-249 . -566) 56772) ((-473 . -597) 56754) ((-248 . -566) 56736) ((-317 . -669) T) ((-247 . -566) 56718) ((-106 . -19) 56700) ((-161 . -669) T) ((-473 . -351) 56682) ((-194 . -566) 56664) ((-491 . -1064) 56648) ((-473 . -119) T) ((-106 . -558) 56623) ((-193 . -566) 56605) ((-451 . -34) 56571) ((-451 . -91) 56537) ((-191 . -566) 56519) ((-190 . -566) 56501) ((-189 . -566) 56483) ((-188 . -566) 56465) ((-185 . -566) 56447) ((-184 . -566) 56429) ((-183 . -566) 56411) ((-182 . -566) 56393) ((-181 . -566) 56375) ((-180 . -566) 56357) ((-179 . -566) 56339) ((-501 . -1022) 56291) ((-178 . -566) 56273) ((-177 . -566) 56255) ((-44 . -464) 56192) ((-176 . -566) 56174) ((-175 . -566) 56156) ((-757 . -107) 56047) ((-592 . -97) 55997) ((-458 . -265) 55974) ((-1032 . -566) 55726) ((-1020 . -1019) T) ((-973 . -1126) T) ((-573 . -1031) T) ((-1193 . -967) 55710) ((-1086 . -288) 55697) ((-1042 . -288) 55684) ((-113 . -1031) T) ((-761 . -97) T) ((-573 . -23) T) ((-1065 . -486) 55476) ((-364 . -97) T) ((-302 . -97) T) ((-934 . -834) 55428) ((-896 . -1019) T) ((-143 . -976) T) ((-113 . -23) T) ((-674 . -389) 55412) ((-678 . -1019) T) ((-658 . -1019) T) ((-645 . -127) T) ((-430 . -1019) T) ((-294 . -408) 55396) ((-385 . -1126) T) ((-957 . -567) 55357) ((-954 . -1130) T) ((-205 . -97) T) ((-957 . -566) 55319) ((-758 . -211) 55303) ((-954 . -517) T) ((-775 . -594) 55276) ((-332 . -1130) T) ((-453 . -566) 55238) ((-453 . -567) 55199) ((-440 . -567) 55160) ((-440 . -566) 55122) ((-385 . -818) 55106) ((-297 . -982) 54941) ((-385 . -820) 54866) ((-782 . -967) 54764) ((-462 . -486) NIL) ((-458 . -558) 54741) ((-332 . -517) T) ((-198 . -486) NIL) ((-806 . -429) T) ((-396 . -1019) T) ((-385 . -967) 54608) ((-297 . -107) 54429) ((-636 . -341) T) ((-205 . -263) T) ((-47 . -1130) T) ((-757 . -976) 54360) ((-537 . -126) T) ((-525 . -126) T) ((-468 . -126) T) ((-47 . -517) T) ((-1074 . -267) 54336) ((-1086 . -1066) 54314) ((-294 . -27) 54293) ((-987 . -97) T) ((-757 . -213) 54246) ((-220 . -787) 54225) ((-886 . -97) T) ((-656 . -97) T) ((-274 . -464) 54162) ((-457 . -97) T) ((-674 . -983) T) ((-565 . -566) 54144) ((-565 . -567) 54005) ((-385 . -355) 53989) ((-385 . -316) 53973) ((-1086 . -37) 53802) ((-1042 . -37) 53651) ((-793 . -37) 53621) ((-368 . -594) 53605) ((-592 . -288) 53543) ((-896 . -660) 53440) ((-202 . -102) 53424) ((-44 . -265) 53349) ((-678 . -660) 53319) ((-571 . -594) 53293) ((-290 . -1019) T) ((-268 . -982) 53280) ((-106 . -566) 53262) ((-106 . -567) 53244) ((-430 . -660) 53214) ((-758 . -232) 53153) ((-632 . -1019) 53131) ((-511 . -1019) T) ((-1088 . -983) T) ((-1087 . -983) T) ((-268 . -107) 53116) ((-1081 . -983) T) ((-1043 . -983) T) ((-511 . -563) 53095) ((-935 . -787) T) ((-207 . -630) 53053) ((-636 . -1031) T) ((-1121 . -683) 53029) ((-297 . -976) T) ((-321 . -25) T) ((-321 . -21) T) ((-385 . -834) 52988) ((-66 . -1126) T) ((-775 . -736) 52967) ((-396 . -660) 52941) ((-741 . -1019) T) ((-775 . -733) 52920) ((-641 . -126) T) ((-655 . -854) 52899) ((-636 . -23) T) ((-462 . -269) T) ((-775 . -669) 52878) ((-297 . -213) 52830) ((-297 . -223) 52809) ((-198 . -269) T) ((-954 . -341) T) ((-1156 . -429) 52788) ((-1135 . -429) 52767) ((-332 . -307) 52744) ((-332 . -341) T) ((-1055 . -566) 52726) ((-44 . -1160) 52676) ((-805 . -97) T) ((-592 . -261) 52660) ((-641 . -985) T) ((-454 . -594) 52625) ((-445 . -1019) T) ((-44 . -558) 52550) ((-1073 . -267) 52525) ((-39 . -588) 52464) ((-47 . -341) T) ((-1025 . -566) 52446) ((-1008 . -789) 52425) ((-581 . -267) 52400) ((-724 . -789) 52379) ((-722 . -789) 52358) ((-458 . -566) 52110) ((-220 . -389) 52079) ((-886 . -288) 52066) ((-431 . -789) 52045) ((-63 . -1126) T) ((-573 . -126) T) ((-457 . -288) 52032) ((-988 . -486) 51876) ((-268 . -976) T) ((-113 . -126) T) ((-430 . -704) T) ((-896 . -160) 51827) ((-1002 . -982) 51737) ((-571 . -736) 51716) ((-548 . -1019) T) ((-571 . -733) 51695) ((-571 . -669) T) ((-274 . -265) 51674) ((-273 . -1126) T) ((-980 . -566) 51636) ((-980 . -567) 51597) ((-954 . -1031) T) ((-157 . -97) T) ((-254 . -789) T) ((-1080 . -1019) T) ((-760 . -566) 51579) ((-1032 . -267) 51556) ((-1021 . -209) 51540) ((-934 . -286) T) ((-741 . -660) 51524) ((-337 . -982) 51476) ((-332 . -1031) T) ((-331 . -982) 51428) ((-392 . -566) 51410) ((-363 . -566) 51392) ((-323 . -982) 51344) ((-207 . -566) 51276) ((-1002 . -107) 51172) ((-954 . -23) T) ((-103 . -982) 51122) ((-832 . -97) T) ((-780 . -97) T) ((-750 . -97) T) ((-711 . -97) T) ((-621 . -97) T) ((-451 . -429) 51101) ((-396 . -160) T) ((-337 . -107) 51039) ((-331 . -107) 50977) ((-323 . -107) 50915) ((-230 . -211) 50885) ((-229 . -211) 50855) ((-332 . -23) T) ((-69 . -1126) T) ((-205 . -37) 50820) ((-103 . -107) 50754) ((-39 . -25) T) ((-39 . -21) T) ((-616 . -663) T) ((-157 . -263) 50732) ((-47 . -1031) T) ((-855 . -25) T) ((-713 . -25) T) ((-1065 . -464) 50669) ((-460 . -1019) T) ((-1194 . -594) 50643) ((-1145 . -97) T) ((-794 . -97) T) ((-220 . -983) 50574) ((-987 . -1066) T) ((-897 . -734) 50527) ((-359 . -594) 50511) ((-47 . -23) T) ((-897 . -737) 50464) ((-757 . -737) 50415) ((-757 . -734) 50366) ((-274 . -558) 50345) ((-454 . -669) T) ((-532 . -97) T) ((-805 . -288) 50302) ((-599 . -265) 50281) ((-108 . -607) T) ((-74 . -1126) T) ((-987 . -37) 50268) ((-610 . -352) 50247) ((-886 . -37) 50096) ((-674 . -1019) T) ((-457 . -37) 49945) ((-84 . -1126) T) ((-532 . -263) T) ((-1136 . -787) NIL) ((-1088 . -1019) T) ((-1087 . -1019) T) ((-1081 . -1019) T) ((-329 . -967) 49922) ((-1002 . -976) T) ((-935 . -983) T) ((-44 . -566) 49904) ((-44 . -567) NIL) ((-848 . -983) T) ((-759 . -566) 49886) ((-1062 . -97) 49864) ((-1002 . -223) 49815) ((-405 . -983) T) ((-337 . -976) T) ((-331 . -976) T) ((-343 . -342) 49792) ((-323 . -976) T) ((-230 . -218) 49771) ((-229 . -218) 49750) ((-105 . -342) 49724) ((-1002 . -213) 49649) ((-1043 . -1019) T) ((-273 . -834) 49608) ((-103 . -976) T) ((-636 . -126) T) ((-396 . -486) 49450) ((-337 . -213) 49429) ((-337 . -223) T) ((-43 . -663) T) ((-331 . -213) 49408) ((-331 . -223) T) ((-323 . -213) 49387) ((-323 . -223) T) ((-157 . -288) 49352) ((-103 . -223) T) ((-103 . -213) T) ((-297 . -734) T) ((-804 . -21) T) ((-804 . -25) T) ((-385 . -286) T) ((-473 . -33) T) ((-106 . -267) 49327) ((-1032 . -982) 49225) ((-805 . -1066) NIL) ((-308 . -566) 49207) ((-385 . -952) 49186) ((-1032 . -107) 49077) ((-414 . -1019) T) ((-1194 . -669) T) ((-61 . -566) 49059) ((-805 . -37) 49004) ((-494 . -1126) T) ((-556 . -142) 48988) ((-484 . -566) 48970) ((-1145 . -288) 48957) ((-674 . -660) 48806) ((-497 . -735) T) ((-497 . -736) T) ((-525 . -588) 48788) ((-468 . -588) 48748) ((-333 . -429) T) ((-330 . -429) T) ((-322 . -429) T) ((-243 . -429) 48699) ((-491 . -1019) 48649) ((-227 . -429) 48600) ((-1065 . -265) 48579) ((-1092 . -566) 48561) ((-632 . -486) 48494) ((-896 . -269) 48473) ((-511 . -486) 48265) ((-1086 . -211) 48249) ((-157 . -1066) 48228) ((-1182 . -566) 48210) ((-1088 . -660) 48107) ((-1087 . -660) 47948) ((-826 . -97) T) ((-1081 . -660) 47744) ((-1043 . -660) 47641) ((-1071 . -619) 47625) ((-333 . -380) 47576) ((-330 . -380) 47527) ((-322 . -380) 47478) ((-954 . -126) T) ((-741 . -486) 47390) ((-274 . -567) NIL) ((-274 . -566) 47372) ((-844 . -429) T) ((-897 . -346) 47325) ((-757 . -346) 47304) ((-482 . -481) 47283) ((-480 . -481) 47262) ((-462 . -265) NIL) ((-458 . -267) 47239) ((-396 . -269) T) ((-332 . -126) T) ((-198 . -265) NIL) ((-636 . -466) NIL) ((-94 . -1031) T) ((-157 . -37) 47067) ((-1156 . -905) 47029) ((-1062 . -288) 46967) ((-1135 . -905) 46936) ((-844 . -380) T) ((-1032 . -976) 46867) ((-1158 . -517) T) ((-1065 . -558) 46846) ((-108 . -789) T) ((-988 . -464) 46777) ((-537 . -21) T) ((-537 . -25) T) ((-525 . -21) T) ((-525 . -25) T) ((-468 . -25) T) ((-468 . -21) T) ((-1145 . -1066) 46755) ((-1032 . -213) 46708) ((-47 . -126) T) ((-1108 . -97) T) ((-220 . -1019) 46519) ((-805 . -378) 46496) ((-1009 . -97) T) ((-998 . -97) T) ((-561 . -97) T) ((-452 . -97) T) ((-1145 . -37) 46325) ((-794 . -37) 46295) ((-674 . -160) 46206) ((-599 . -566) 46188) ((-532 . -37) 46175) ((-891 . -97) 46125) ((-799 . -566) 46107) ((-799 . -567) 46029) ((-548 . -486) NIL) ((-1164 . -983) T) ((-1157 . -983) T) ((-1136 . -983) T) ((-551 . -983) T) ((-550 . -983) T) ((-1198 . -1031) T) ((-1088 . -160) 45980) ((-1087 . -160) 45911) ((-1081 . -160) 45842) ((-1043 . -160) 45793) ((-935 . -1019) T) ((-903 . -1019) T) ((-848 . -1019) T) ((-1121 . -138) 45772) ((-741 . -739) 45756) ((-641 . -25) T) ((-641 . -21) T) ((-113 . -588) 45733) ((-643 . -820) 45715) ((-405 . -1019) T) ((-294 . -1130) 45694) ((-291 . -1130) T) ((-157 . -378) 45678) ((-1121 . -136) 45657) ((-451 . -905) 45619) ((-124 . -1019) T) ((-70 . -566) 45601) ((-103 . -737) T) ((-103 . -734) T) ((-294 . -517) 45580) ((-643 . -967) 45562) ((-291 . -517) T) ((-1198 . -23) T) ((-128 . -967) 45544) ((-458 . -982) 45442) ((-44 . -267) 45367) ((-220 . -660) 45309) ((-458 . -107) 45200) ((-1012 . -97) 45178) ((-964 . -97) T) ((-592 . -770) 45157) ((-674 . -486) 45100) ((-980 . -982) 45084) ((-573 . -21) T) ((-573 . -25) T) ((-988 . -265) 45059) ((-339 . -97) T) ((-300 . -97) T) ((-616 . -594) 45033) ((-363 . -982) 45017) ((-980 . -107) 44996) ((-758 . -389) 44980) ((-113 . -25) T) ((-87 . -566) 44962) ((-113 . -21) T) ((-561 . -288) 44757) ((-452 . -288) 44561) ((-1065 . -567) NIL) ((-363 . -107) 44540) ((-357 . -97) T) ((-195 . -566) 44522) ((-1065 . -566) 44504) ((-935 . -660) 44454) ((-1081 . -486) 44223) ((-848 . -660) 44175) ((-1043 . -486) 44145) ((-329 . -286) T) ((-1100 . -142) 44095) ((-891 . -288) 44033) ((-776 . -97) T) ((-405 . -660) 44017) ((-205 . -770) T) ((-769 . -97) T) ((-767 . -97) T) ((-455 . -142) 43967) ((-1156 . -1155) 43946) ((-1037 . -1130) T) ((-317 . -967) 43913) ((-1156 . -1150) 43883) ((-1156 . -1153) 43867) ((-1135 . -1134) 43846) ((-78 . -566) 43828) ((-839 . -566) 43810) ((-1135 . -1150) 43787) ((-1037 . -517) T) ((-855 . -789) T) ((-462 . -567) 43717) ((-462 . -566) 43699) ((-713 . -789) T) ((-357 . -263) T) ((-617 . -789) T) ((-1135 . -1132) 43683) ((-1158 . -1031) T) ((-198 . -567) 43613) ((-198 . -566) 43595) ((-988 . -558) 43570) ((-57 . -142) 43554) ((-488 . -142) 43538) ((-469 . -142) 43522) ((-337 . -1189) 43506) ((-331 . -1189) 43490) ((-323 . -1189) 43474) ((-294 . -341) 43453) ((-291 . -341) T) ((-458 . -976) 43384) ((-636 . -588) 43366) ((-1192 . -594) 43340) ((-1190 . -594) 43314) ((-1158 . -23) T) ((-632 . -464) 43298) ((-62 . -566) 43280) ((-1032 . -737) 43231) ((-1032 . -734) 43182) ((-511 . -464) 43119) ((-616 . -33) T) ((-458 . -213) 43072) ((-274 . -267) 43051) ((-220 . -160) 43030) ((-758 . -983) T) ((-43 . -594) 42988) ((-1002 . -346) 42939) ((-674 . -269) 42870) ((-491 . -486) 42803) ((-759 . -982) 42754) ((-1008 . -136) 42733) ((-337 . -346) 42712) ((-331 . -346) 42691) ((-323 . -346) 42670) ((-1008 . -138) 42649) ((-805 . -211) 42626) ((-759 . -107) 42568) ((-724 . -136) 42547) ((-724 . -138) 42526) ((-243 . -883) 42493) ((-230 . -787) 42472) ((-227 . -883) 42417) ((-229 . -787) 42396) ((-722 . -136) 42375) ((-722 . -138) 42354) ((-143 . -594) 42328) ((-431 . -138) 42307) ((-431 . -136) 42286) ((-616 . -669) T) ((-765 . -566) 42268) ((-1164 . -1019) T) ((-1157 . -1019) T) ((-1136 . -1019) T) ((-1121 . -1115) 42234) ((-1121 . -1112) 42200) ((-1088 . -269) 42179) ((-1087 . -269) 42130) ((-1081 . -269) 42081) ((-1043 . -269) 42060) ((-317 . -834) 42041) ((-935 . -160) T) ((-848 . -160) T) ((-551 . -1019) T) ((-550 . -1019) T) ((-636 . -21) T) ((-636 . -25) T) ((-451 . -1153) 42025) ((-451 . -1150) 41995) ((-396 . -265) 41923) ((-294 . -1031) 41773) ((-291 . -1031) T) ((-1121 . -34) 41739) ((-1121 . -91) 41705) ((-82 . -566) 41687) ((-89 . -97) 41665) ((-1198 . -126) T) ((-538 . -136) T) ((-538 . -138) 41647) ((-489 . -138) 41629) ((-489 . -136) T) ((-294 . -23) 41482) ((-39 . -320) 41456) ((-291 . -23) T) ((-1073 . -597) 41438) ((-757 . -594) 41288) ((-1185 . -983) T) ((-1073 . -351) 41270) ((-157 . -211) 41254) ((-548 . -464) 41236) ((-220 . -486) 41169) ((-1192 . -669) T) ((-1190 . -669) T) ((-1092 . -982) 41052) ((-1092 . -107) 40921) ((-759 . -976) T) ((-487 . -97) T) ((-47 . -588) 40881) ((-482 . -97) T) ((-480 . -97) T) ((-1182 . -982) 40851) ((-964 . -37) 40835) ((-759 . -213) T) ((-759 . -223) 40814) ((-511 . -265) 40793) ((-1182 . -107) 40758) ((-1145 . -211) 40742) ((-1164 . -660) 40639) ((-988 . -567) NIL) ((-988 . -566) 40621) ((-1157 . -660) 40462) ((-1136 . -660) 40258) ((-934 . -854) T) ((-645 . -566) 40227) ((-143 . -669) T) ((-1032 . -346) 40206) ((-935 . -486) NIL) ((-230 . -389) 40175) ((-229 . -389) 40144) ((-954 . -25) T) ((-954 . -21) T) ((-551 . -660) 40117) ((-550 . -660) 40014) ((-741 . -265) 39972) ((-122 . -97) 39950) ((-775 . -967) 39848) ((-157 . -770) 39827) ((-297 . -594) 39724) ((-757 . -33) T) ((-657 . -97) T) ((-1037 . -1031) T) ((-124 . -486) NIL) ((-956 . -1126) T) ((-357 . -37) 39689) ((-332 . -25) T) ((-332 . -21) T) ((-150 . -97) T) ((-146 . -97) T) ((-333 . -1179) 39673) ((-330 . -1179) 39657) ((-322 . -1179) 39641) ((-157 . -327) 39620) ((-525 . -789) T) ((-468 . -789) T) ((-1037 . -23) T) ((-85 . -566) 39602) ((-643 . -286) T) ((-776 . -37) 39572) ((-769 . -37) 39542) ((-1158 . -126) T) ((-1065 . -267) 39521) ((-897 . -735) 39474) ((-897 . -736) 39427) ((-757 . -733) 39406) ((-112 . -286) T) ((-89 . -288) 39344) ((-620 . -33) T) ((-511 . -558) 39323) ((-47 . -25) T) ((-47 . -21) T) ((-757 . -736) 39274) ((-757 . -735) 39253) ((-643 . -952) T) ((-599 . -982) 39237) ((-897 . -669) 39136) ((-757 . -669) 39067) ((-897 . -450) 39020) ((-458 . -737) 38971) ((-458 . -734) 38922) ((-844 . -1179) 38909) ((-1092 . -976) T) ((-599 . -107) 38888) ((-1092 . -304) 38865) ((-1113 . -97) 38843) ((-1020 . -566) 38825) ((-643 . -510) T) ((-758 . -1019) T) ((-1182 . -976) T) ((-391 . -1019) T) ((-230 . -983) 38756) ((-229 . -983) 38687) ((-268 . -594) 38674) ((-548 . -265) 38649) ((-632 . -630) 38607) ((-896 . -566) 38589) ((-806 . -97) T) ((-678 . -566) 38571) ((-658 . -566) 38553) ((-1164 . -160) 38504) ((-1157 . -160) 38435) ((-1136 . -160) 38366) ((-641 . -789) T) ((-935 . -269) T) ((-430 . -566) 38348) ((-576 . -669) T) ((-58 . -1019) 38326) ((-225 . -142) 38310) ((-848 . -269) T) ((-954 . -943) T) ((-576 . -450) T) ((-655 . -1130) 38289) ((-551 . -160) 38268) ((-550 . -160) 38219) ((-1172 . -789) 38198) ((-655 . -517) 38109) ((-385 . -854) T) ((-385 . -762) 38088) ((-297 . -736) T) ((-297 . -669) T) ((-396 . -566) 38070) ((-396 . -567) 37978) ((-592 . -1064) 37962) ((-106 . -597) 37944) ((-122 . -288) 37882) ((-106 . -351) 37864) ((-161 . -286) T) ((-376 . -1126) T) ((-294 . -126) 37736) ((-291 . -126) T) ((-67 . -373) T) ((-106 . -119) T) ((-491 . -464) 37720) ((-600 . -1031) T) ((-548 . -19) 37702) ((-59 . -418) T) ((-59 . -373) T) ((-766 . -1019) T) ((-548 . -558) 37677) ((-454 . -967) 37637) ((-599 . -976) T) ((-600 . -23) T) ((-1185 . -1019) T) ((-758 . -660) 37486) ((-113 . -789) NIL) ((-1086 . -389) 37470) ((-1042 . -389) 37454) ((-793 . -389) 37438) ((-807 . -97) 37389) ((-1156 . -97) T) ((-1136 . -486) 37158) ((-1113 . -288) 37096) ((-290 . -566) 37078) ((-1135 . -97) T) ((-1021 . -1019) T) ((-1088 . -265) 37063) ((-1087 . -265) 37048) ((-268 . -669) T) ((-103 . -843) NIL) ((-632 . -566) 36980) ((-632 . -567) 36941) ((-1002 . -594) 36851) ((-555 . -566) 36833) ((-511 . -567) NIL) ((-511 . -566) 36815) ((-1081 . -265) 36663) ((-462 . -982) 36613) ((-654 . -429) T) ((-483 . -481) 36592) ((-479 . -481) 36571) ((-198 . -982) 36521) ((-337 . -594) 36473) ((-331 . -594) 36425) ((-205 . -787) T) ((-323 . -594) 36377) ((-556 . -97) 36327) ((-458 . -346) 36306) ((-103 . -594) 36256) ((-462 . -107) 36190) ((-220 . -464) 36174) ((-321 . -138) 36156) ((-321 . -136) T) ((-157 . -348) 36127) ((-877 . -1170) 36111) ((-198 . -107) 36045) ((-806 . -288) 36010) ((-877 . -1019) 35960) ((-741 . -567) 35921) ((-741 . -566) 35903) ((-661 . -97) T) ((-309 . -1019) T) ((-1037 . -126) T) ((-657 . -37) 35873) ((-294 . -466) 35852) ((-473 . -1126) T) ((-1156 . -263) 35818) ((-1135 . -263) 35784) ((-305 . -142) 35768) ((-988 . -267) 35743) ((-1185 . -660) 35713) ((-1074 . -33) T) ((-1194 . -967) 35690) ((-445 . -566) 35672) ((-459 . -33) T) ((-359 . -967) 35656) ((-1086 . -983) T) ((-1042 . -983) T) ((-793 . -983) T) ((-987 . -787) T) ((-758 . -160) 35567) ((-491 . -265) 35544) ((-124 . -464) 35526) ((-113 . -924) 35503) ((-1164 . -269) 35482) ((-1108 . -342) 35456) ((-1009 . -245) 35440) ((-451 . -97) T) ((-343 . -1019) T) ((-230 . -1019) T) ((-229 . -1019) T) ((-1157 . -269) 35391) ((-105 . -1019) T) ((-1136 . -269) 35342) ((-806 . -1066) 35320) ((-1088 . -933) 35286) ((-561 . -342) 35226) ((-1087 . -933) 35192) ((-561 . -209) 35139) ((-548 . -566) 35121) ((-548 . -567) NIL) ((-636 . -789) T) ((-452 . -209) 35071) ((-462 . -976) T) ((-1081 . -933) 35037) ((-86 . -417) T) ((-86 . -373) T) ((-198 . -976) T) ((-1043 . -933) 35003) ((-1002 . -669) T) ((-655 . -1031) T) ((-551 . -269) 34982) ((-550 . -269) 34961) ((-462 . -223) T) ((-462 . -213) T) ((-198 . -223) T) ((-198 . -213) T) ((-1080 . -566) 34943) ((-806 . -37) 34895) ((-337 . -669) T) ((-331 . -669) T) ((-323 . -669) T) ((-103 . -736) T) ((-103 . -733) T) ((-491 . -1160) 34879) ((-103 . -669) T) ((-655 . -23) T) ((-1198 . -25) T) ((-451 . -263) 34845) ((-1198 . -21) T) ((-1135 . -288) 34784) ((-1090 . -97) T) ((-39 . -136) 34756) ((-39 . -138) 34728) ((-491 . -558) 34705) ((-1032 . -594) 34555) ((-556 . -288) 34493) ((-44 . -597) 34443) ((-44 . -612) 34393) ((-44 . -351) 34343) ((-1073 . -33) T) ((-805 . -787) NIL) ((-600 . -126) T) ((-460 . -566) 34325) ((-220 . -265) 34302) ((-593 . -33) T) ((-581 . -33) T) ((-1008 . -429) 34253) ((-758 . -486) 34127) ((-724 . -429) 34058) ((-722 . -429) 34009) ((-431 . -429) 33960) ((-886 . -389) 33944) ((-674 . -566) 33926) ((-230 . -660) 33868) ((-229 . -660) 33810) ((-674 . -567) 33671) ((-457 . -389) 33655) ((-317 . -281) T) ((-329 . -854) T) ((-931 . -97) 33633) ((-954 . -789) T) ((-58 . -486) 33566) ((-1135 . -1066) 33518) ((-935 . -265) NIL) ((-205 . -983) T) ((-357 . -770) T) ((-1032 . -33) T) ((-1139 . -1013) 33502) ((-538 . -429) T) ((-489 . -429) T) ((-1139 . -1019) 33480) ((-1139 . -1015) 33437) ((-220 . -558) 33414) ((-1088 . -566) 33396) ((-1087 . -566) 33378) ((-1081 . -566) 33360) ((-1081 . -567) NIL) ((-1043 . -566) 33342) ((-124 . -265) 33317) ((-806 . -378) 33301) ((-501 . -97) T) ((-1156 . -37) 33142) ((-1135 . -37) 32956) ((-804 . -138) T) ((-538 . -380) T) ((-47 . -789) T) ((-489 . -380) T) ((-1158 . -21) T) ((-1158 . -25) T) ((-1032 . -733) 32935) ((-1032 . -736) 32886) ((-1032 . -735) 32865) ((-925 . -1019) T) ((-957 . -33) T) ((-797 . -1019) T) ((-1168 . -97) T) ((-1032 . -669) 32796) ((-610 . -97) T) ((-511 . -267) 32775) ((-1100 . -97) T) ((-453 . -33) T) ((-440 . -33) T) ((-333 . -97) T) ((-330 . -97) T) ((-322 . -97) T) ((-243 . -97) T) ((-227 . -97) T) ((-454 . -286) T) ((-987 . -983) T) ((-886 . -983) T) ((-294 . -588) 32683) ((-291 . -588) 32644) ((-457 . -983) T) ((-455 . -97) T) ((-414 . -566) 32626) ((-1086 . -1019) T) ((-1042 . -1019) T) ((-793 . -1019) T) ((-1056 . -97) T) ((-758 . -269) 32557) ((-896 . -982) 32440) ((-454 . -952) T) ((-124 . -19) 32422) ((-678 . -982) 32392) ((-124 . -558) 32367) ((-430 . -982) 32337) ((-1062 . -1038) 32321) ((-1021 . -486) 32254) ((-896 . -107) 32123) ((-844 . -97) T) ((-678 . -107) 32088) ((-57 . -97) 32038) ((-491 . -567) 31999) ((-491 . -566) 31911) ((-490 . -97) 31889) ((-488 . -97) 31839) ((-470 . -97) 31817) ((-469 . -97) 31767) ((-430 . -107) 31730) ((-230 . -160) 31709) ((-229 . -160) 31688) ((-396 . -982) 31662) ((-1121 . -905) 31624) ((-930 . -1031) T) ((-877 . -486) 31557) ((-462 . -737) T) ((-451 . -37) 31398) ((-396 . -107) 31365) ((-462 . -734) T) ((-931 . -288) 31303) ((-198 . -737) T) ((-198 . -734) T) ((-930 . -23) T) ((-655 . -126) T) ((-1135 . -378) 31273) ((-294 . -25) 31126) ((-157 . -389) 31110) ((-294 . -21) 30982) ((-291 . -25) T) ((-291 . -21) T) ((-799 . -346) T) ((-106 . -33) T) ((-458 . -594) 30832) ((-805 . -983) T) ((-548 . -267) 30807) ((-537 . -138) T) ((-525 . -138) T) ((-468 . -138) T) ((-1086 . -660) 30636) ((-1042 . -660) 30485) ((-1037 . -588) 30467) ((-793 . -660) 30437) ((-616 . -1126) T) ((-1 . -97) T) ((-220 . -566) 30189) ((-1145 . -389) 30173) ((-1100 . -288) 29977) ((-896 . -976) T) ((-678 . -976) T) ((-658 . -976) T) ((-592 . -1019) 29927) ((-980 . -594) 29911) ((-794 . -389) 29895) ((-483 . -97) T) ((-479 . -97) T) ((-227 . -288) 29882) ((-243 . -288) 29869) ((-896 . -304) 29848) ((-363 . -594) 29832) ((-455 . -288) 29636) ((-230 . -486) 29569) ((-616 . -967) 29467) ((-229 . -486) 29400) ((-1056 . -288) 29326) ((-761 . -1019) T) ((-741 . -982) 29310) ((-1164 . -265) 29295) ((-1157 . -265) 29280) ((-1136 . -265) 29128) ((-364 . -1019) T) ((-302 . -1019) T) ((-396 . -976) T) ((-157 . -983) T) ((-57 . -288) 29066) ((-741 . -107) 29045) ((-550 . -265) 29030) ((-490 . -288) 28968) ((-488 . -288) 28906) ((-470 . -288) 28844) ((-469 . -288) 28782) ((-396 . -213) 28761) ((-458 . -33) T) ((-935 . -567) 28691) ((-205 . -1019) T) ((-935 . -566) 28673) ((-903 . -566) 28655) ((-903 . -567) 28630) ((-848 . -566) 28612) ((-641 . -138) T) ((-643 . -854) T) ((-643 . -762) T) ((-405 . -566) 28594) ((-1037 . -21) T) ((-124 . -567) NIL) ((-124 . -566) 28576) ((-1037 . -25) T) ((-616 . -355) 28560) ((-112 . -854) T) ((-806 . -211) 28544) ((-76 . -1126) T) ((-122 . -121) 28528) ((-980 . -33) T) ((-1192 . -967) 28502) ((-1190 . -967) 28459) ((-1145 . -983) T) ((-794 . -983) T) ((-458 . -733) 28438) ((-333 . -1066) 28417) ((-330 . -1066) 28396) ((-322 . -1066) 28375) ((-458 . -736) 28326) ((-458 . -735) 28305) ((-207 . -33) T) ((-458 . -669) 28236) ((-58 . -464) 28220) ((-532 . -983) T) ((-1086 . -160) 28111) ((-1042 . -160) 28022) ((-987 . -1019) T) ((-1008 . -883) 27967) ((-886 . -1019) T) ((-759 . -594) 27918) ((-724 . -883) 27887) ((-656 . -1019) T) ((-722 . -883) 27854) ((-488 . -261) 27838) ((-616 . -834) 27797) ((-457 . -1019) T) ((-431 . -883) 27764) ((-77 . -1126) T) ((-333 . -37) 27729) ((-330 . -37) 27694) ((-322 . -37) 27659) ((-243 . -37) 27508) ((-227 . -37) 27357) ((-844 . -1066) T) ((-573 . -138) 27336) ((-573 . -136) 27315) ((-113 . -138) T) ((-113 . -136) NIL) ((-392 . -669) T) ((-741 . -976) T) ((-321 . -429) T) ((-1164 . -933) 27281) ((-1157 . -933) 27247) ((-1136 . -933) 27213) ((-844 . -37) 27178) ((-205 . -660) 27143) ((-297 . -46) 27113) ((-39 . -387) 27085) ((-131 . -566) 27067) ((-930 . -126) T) ((-757 . -1126) T) ((-161 . -854) T) ((-321 . -380) T) ((-491 . -267) 27044) ((-44 . -33) T) ((-757 . -967) 26873) ((-608 . -97) T) ((-600 . -21) T) ((-600 . -25) T) ((-1021 . -464) 26857) ((-1135 . -211) 26827) ((-620 . -1126) T) ((-225 . -97) 26777) ((-805 . -1019) T) ((-1092 . -594) 26702) ((-987 . -660) 26689) ((-674 . -982) 26532) ((-1086 . -486) 26479) ((-886 . -660) 26328) ((-1042 . -486) 26280) ((-457 . -660) 26129) ((-65 . -566) 26111) ((-674 . -107) 25940) ((-877 . -464) 25924) ((-1182 . -594) 25884) ((-759 . -669) T) ((-1088 . -982) 25767) ((-1087 . -982) 25602) ((-1081 . -982) 25392) ((-1043 . -982) 25275) ((-934 . -1130) T) ((-1014 . -97) 25253) ((-757 . -355) 25223) ((-934 . -517) T) ((-1088 . -107) 25092) ((-1087 . -107) 24913) ((-1081 . -107) 24682) ((-1043 . -107) 24551) ((-1024 . -1022) 24515) ((-357 . -787) T) ((-1164 . -566) 24497) ((-1157 . -566) 24479) ((-1136 . -566) 24461) ((-1136 . -567) NIL) ((-220 . -267) 24438) ((-39 . -429) T) ((-205 . -160) T) ((-157 . -1019) T) ((-636 . -138) T) ((-636 . -136) NIL) ((-551 . -566) 24420) ((-550 . -566) 24402) ((-832 . -1019) T) ((-780 . -1019) T) ((-750 . -1019) T) ((-711 . -1019) T) ((-604 . -791) 24386) ((-621 . -1019) T) ((-757 . -834) 24319) ((-39 . -380) NIL) ((-1037 . -607) T) ((-805 . -660) 24264) ((-230 . -464) 24248) ((-229 . -464) 24232) ((-655 . -588) 24180) ((-599 . -594) 24154) ((-274 . -33) T) ((-674 . -976) T) ((-538 . -1179) 24141) ((-489 . -1179) 24118) ((-1145 . -1019) T) ((-1086 . -269) 24029) ((-1042 . -269) 23960) ((-987 . -160) T) ((-794 . -1019) T) ((-886 . -160) 23871) ((-724 . -1148) 23855) ((-592 . -486) 23788) ((-75 . -566) 23770) ((-674 . -304) 23735) ((-1092 . -669) T) ((-532 . -1019) T) ((-457 . -160) 23646) ((-225 . -288) 23584) ((-124 . -267) 23559) ((-1057 . -1031) T) ((-68 . -566) 23541) ((-1182 . -669) T) ((-1088 . -976) T) ((-1087 . -976) T) ((-305 . -97) 23491) ((-1081 . -976) T) ((-1057 . -23) T) ((-1043 . -976) T) ((-89 . -1038) 23475) ((-800 . -1031) T) ((-1088 . -213) 23434) ((-1087 . -223) 23413) ((-1087 . -213) 23365) ((-1081 . -213) 23252) ((-1081 . -223) 23231) ((-297 . -834) 23137) ((-800 . -23) T) ((-157 . -660) 22965) ((-385 . -1130) T) ((-1020 . -346) T) ((-954 . -138) T) ((-934 . -341) T) ((-804 . -429) T) ((-877 . -265) 22942) ((-294 . -789) T) ((-291 . -789) NIL) ((-808 . -97) T) ((-655 . -25) T) ((-385 . -517) T) ((-655 . -21) T) ((-332 . -138) 22924) ((-332 . -136) T) ((-1062 . -1019) 22902) ((-430 . -663) T) ((-73 . -566) 22884) ((-110 . -789) T) ((-225 . -261) 22868) ((-220 . -982) 22766) ((-79 . -566) 22748) ((-678 . -346) 22701) ((-1090 . -770) T) ((-680 . -215) 22685) ((-1074 . -1126) T) ((-132 . -215) 22667) ((-220 . -107) 22558) ((-1145 . -660) 22387) ((-47 . -138) T) ((-805 . -160) T) ((-794 . -660) 22357) ((-459 . -1126) T) ((-886 . -486) 22304) ((-599 . -669) T) ((-532 . -660) 22291) ((-964 . -983) T) ((-457 . -486) 22234) ((-877 . -19) 22218) ((-877 . -558) 22195) ((-758 . -567) NIL) ((-758 . -566) 22177) ((-935 . -982) 22127) ((-391 . -566) 22109) ((-230 . -265) 22086) ((-229 . -265) 22063) ((-462 . -843) NIL) ((-294 . -29) 22033) ((-103 . -1126) T) ((-934 . -1031) T) ((-198 . -843) NIL) ((-848 . -982) 21985) ((-1002 . -967) 21883) ((-935 . -107) 21817) ((-243 . -211) 21801) ((-680 . -637) 21785) ((-405 . -982) 21769) ((-357 . -983) T) ((-934 . -23) T) ((-848 . -107) 21707) ((-636 . -1115) NIL) ((-462 . -594) 21657) ((-103 . -818) 21639) ((-103 . -820) 21621) ((-636 . -1112) NIL) ((-198 . -594) 21571) ((-337 . -967) 21555) ((-331 . -967) 21539) ((-305 . -288) 21477) ((-323 . -967) 21461) ((-205 . -269) T) ((-405 . -107) 21440) ((-58 . -566) 21372) ((-157 . -160) T) ((-1037 . -789) T) ((-103 . -967) 21332) ((-826 . -1019) T) ((-776 . -983) T) ((-769 . -983) T) ((-636 . -34) NIL) ((-636 . -91) NIL) ((-291 . -924) 21293) ((-537 . -429) T) ((-525 . -429) T) ((-468 . -429) T) ((-385 . -341) T) ((-220 . -976) 21224) ((-1065 . -33) T) ((-454 . -854) T) ((-930 . -588) 21172) ((-230 . -558) 21149) ((-229 . -558) 21126) ((-1002 . -355) 21110) ((-805 . -486) 21018) ((-220 . -213) 20971) ((-1073 . -1126) T) ((-766 . -566) 20953) ((-1193 . -1031) T) ((-1185 . -566) 20935) ((-1145 . -160) 20826) ((-103 . -355) 20808) ((-103 . -316) 20790) ((-987 . -269) T) ((-886 . -269) 20721) ((-741 . -346) 20700) ((-593 . -1126) T) ((-581 . -1126) T) ((-457 . -269) 20631) ((-532 . -160) T) ((-305 . -261) 20615) ((-1193 . -23) T) ((-1121 . -97) T) ((-1108 . -1019) T) ((-1009 . -1019) T) ((-998 . -1019) T) ((-81 . -566) 20597) ((-654 . -97) T) ((-333 . -327) 20576) ((-561 . -1019) T) ((-330 . -327) 20555) ((-322 . -327) 20534) ((-452 . -1019) T) ((-1100 . -209) 20484) ((-243 . -232) 20446) ((-1057 . -126) T) ((-561 . -563) 20422) ((-1002 . -834) 20355) ((-935 . -976) T) ((-848 . -976) T) ((-452 . -563) 20334) ((-1081 . -734) NIL) ((-1081 . -737) NIL) ((-1021 . -567) 20295) ((-455 . -209) 20245) ((-1021 . -566) 20227) ((-935 . -223) T) ((-935 . -213) T) ((-405 . -976) T) ((-891 . -1019) 20177) ((-848 . -223) T) ((-800 . -126) T) ((-641 . -429) T) ((-782 . -1031) 20156) ((-103 . -834) NIL) ((-1121 . -263) 20122) ((-806 . -787) 20101) ((-1032 . -1126) T) ((-839 . -669) T) ((-157 . -486) 20013) ((-930 . -25) T) ((-839 . -450) T) ((-385 . -1031) T) ((-462 . -736) T) ((-462 . -733) T) ((-844 . -327) T) ((-462 . -669) T) ((-198 . -736) T) ((-198 . -733) T) ((-930 . -21) T) ((-198 . -669) T) ((-782 . -23) 19965) ((-297 . -286) 19944) ((-965 . -215) 19890) ((-385 . -23) T) ((-877 . -567) 19851) ((-877 . -566) 19763) ((-592 . -464) 19747) ((-44 . -941) 19697) ((-309 . -566) 19679) ((-1032 . -967) 19508) ((-548 . -597) 19490) ((-548 . -351) 19472) ((-321 . -1179) 19449) ((-957 . -1126) T) ((-805 . -269) T) ((-1145 . -486) 19396) ((-453 . -1126) T) ((-440 . -1126) T) ((-542 . -97) T) ((-1086 . -265) 19323) ((-573 . -429) 19302) ((-931 . -926) 19286) ((-1185 . -360) 19258) ((-113 . -429) T) ((-1107 . -97) T) ((-1012 . -1019) 19236) ((-964 . -1019) T) ((-827 . -789) T) ((-329 . -1130) T) ((-1164 . -982) 19119) ((-1032 . -355) 19089) ((-1157 . -982) 18924) ((-1136 . -982) 18714) ((-1164 . -107) 18583) ((-1157 . -107) 18404) ((-1136 . -107) 18173) ((-1121 . -288) 18160) ((-329 . -517) T) ((-343 . -566) 18142) ((-268 . -286) T) ((-551 . -982) 18115) ((-550 . -982) 17998) ((-339 . -1019) T) ((-300 . -1019) T) ((-230 . -566) 17959) ((-229 . -566) 17920) ((-934 . -126) T) ((-105 . -566) 17902) ((-584 . -23) T) ((-636 . -387) 17869) ((-560 . -23) T) ((-604 . -97) T) ((-551 . -107) 17840) ((-550 . -107) 17709) ((-357 . -1019) T) ((-314 . -97) T) ((-157 . -269) 17620) ((-1135 . -787) 17573) ((-657 . -983) T) ((-1062 . -486) 17506) ((-1032 . -834) 17439) ((-776 . -1019) T) ((-769 . -1019) T) ((-767 . -1019) T) ((-92 . -97) T) ((-135 . -789) T) ((-565 . -818) 17423) ((-106 . -1126) T) ((-1008 . -97) T) ((-988 . -33) T) ((-724 . -97) T) ((-722 . -97) T) ((-438 . -97) T) ((-431 . -97) T) ((-220 . -737) 17374) ((-220 . -734) 17325) ((-595 . -97) T) ((-1145 . -269) 17236) ((-610 . -583) 17220) ((-592 . -265) 17197) ((-964 . -660) 17181) ((-532 . -269) T) ((-896 . -594) 17106) ((-1193 . -126) T) ((-678 . -594) 17066) ((-658 . -594) 17053) ((-254 . -97) T) ((-430 . -594) 16983) ((-49 . -97) T) ((-538 . -97) T) ((-489 . -97) T) ((-1164 . -976) T) ((-1157 . -976) T) ((-1136 . -976) T) ((-1164 . -213) 16942) ((-300 . -660) 16924) ((-1157 . -223) 16903) ((-1157 . -213) 16855) ((-1136 . -213) 16742) ((-1136 . -223) 16721) ((-1121 . -37) 16618) ((-935 . -737) T) ((-551 . -976) T) ((-550 . -976) T) ((-935 . -734) T) ((-903 . -737) T) ((-903 . -734) T) ((-806 . -983) T) ((-804 . -803) 16602) ((-104 . -566) 16584) ((-636 . -429) T) ((-357 . -660) 16549) ((-396 . -594) 16523) ((-655 . -789) 16502) ((-654 . -37) 16467) ((-550 . -213) 16426) ((-39 . -667) 16398) ((-329 . -307) 16375) ((-329 . -341) T) ((-1002 . -286) 16326) ((-273 . -1031) 16208) ((-1025 . -1126) T) ((-159 . -97) T) ((-1139 . -566) 16175) ((-782 . -126) 16127) ((-592 . -1160) 16111) ((-776 . -660) 16081) ((-769 . -660) 16051) ((-458 . -1126) T) ((-337 . -286) T) ((-331 . -286) T) ((-323 . -286) T) ((-592 . -558) 16028) ((-385 . -126) T) ((-491 . -612) 16012) ((-103 . -286) T) ((-273 . -23) 15896) ((-491 . -597) 15880) ((-636 . -380) NIL) ((-491 . -351) 15864) ((-270 . -566) 15846) ((-89 . -1019) 15824) ((-103 . -952) T) ((-525 . -134) T) ((-1172 . -142) 15808) ((-458 . -967) 15637) ((-1158 . -136) 15598) ((-1158 . -138) 15559) ((-980 . -1126) T) ((-925 . -566) 15541) ((-797 . -566) 15523) ((-758 . -982) 15366) ((-1008 . -288) 15353) ((-207 . -1126) T) ((-724 . -288) 15340) ((-722 . -288) 15327) ((-758 . -107) 15156) ((-431 . -288) 15143) ((-1086 . -567) NIL) ((-1086 . -566) 15125) ((-1042 . -566) 15107) ((-1042 . -567) 14855) ((-964 . -160) T) ((-793 . -566) 14837) ((-877 . -267) 14814) ((-561 . -486) 14597) ((-760 . -967) 14581) ((-452 . -486) 14373) ((-896 . -669) T) ((-678 . -669) T) ((-658 . -669) T) ((-329 . -1031) T) ((-1093 . -566) 14355) ((-203 . -97) T) ((-458 . -355) 14325) ((-487 . -1019) T) ((-482 . -1019) T) ((-480 . -1019) T) ((-741 . -594) 14299) ((-954 . -429) T) ((-891 . -486) 14232) ((-329 . -23) T) ((-584 . -126) T) ((-560 . -126) T) ((-332 . -429) T) ((-220 . -346) 14211) ((-357 . -160) T) ((-1156 . -983) T) ((-1135 . -983) T) ((-205 . -933) T) ((-641 . -365) T) ((-396 . -669) T) ((-643 . -1130) T) ((-1057 . -588) 14159) ((-537 . -803) 14143) ((-1074 . -1103) 14119) ((-643 . -517) T) ((-122 . -1019) 14097) ((-1185 . -982) 14081) ((-657 . -1019) T) ((-458 . -834) 14014) ((-604 . -37) 13984) ((-332 . -380) T) ((-294 . -138) 13963) ((-294 . -136) 13942) ((-112 . -517) T) ((-291 . -138) 13898) ((-291 . -136) 13854) ((-47 . -429) T) ((-150 . -1019) T) ((-146 . -1019) T) ((-1074 . -102) 13801) ((-724 . -1066) 13779) ((-632 . -33) T) ((-1185 . -107) 13758) ((-511 . -33) T) ((-459 . -102) 13742) ((-230 . -267) 13719) ((-229 . -267) 13696) ((-805 . -265) 13647) ((-44 . -1126) T) ((-758 . -976) T) ((-1092 . -46) 13624) ((-758 . -304) 13586) ((-1008 . -37) 13435) ((-758 . -213) 13414) ((-724 . -37) 13243) ((-722 . -37) 13092) ((-124 . -597) 13074) ((-431 . -37) 12923) ((-124 . -351) 12905) ((-592 . -567) 12866) ((-592 . -566) 12778) ((-538 . -1066) T) ((-489 . -1066) T) ((-1062 . -464) 12762) ((-1113 . -1019) 12740) ((-1057 . -25) T) ((-1057 . -21) T) ((-451 . -983) T) ((-1136 . -734) NIL) ((-1136 . -737) NIL) ((-930 . -789) 12719) ((-761 . -566) 12701) ((-800 . -21) T) ((-800 . -25) T) ((-741 . -669) T) ((-161 . -1130) T) ((-538 . -37) 12666) ((-489 . -37) 12631) ((-364 . -566) 12613) ((-302 . -566) 12595) ((-157 . -265) 12553) ((-61 . -1126) T) ((-108 . -97) T) ((-806 . -1019) T) ((-161 . -517) T) ((-657 . -660) 12523) ((-273 . -126) 12407) ((-205 . -566) 12389) ((-205 . -567) 12319) ((-934 . -588) 12258) ((-1185 . -976) T) ((-1037 . -138) T) ((-581 . -1103) 12233) ((-674 . -843) 12212) ((-548 . -33) T) ((-593 . -102) 12196) ((-581 . -102) 12142) ((-1145 . -265) 12069) ((-674 . -594) 11994) ((-274 . -1126) T) ((-1092 . -967) 11892) ((-1081 . -843) NIL) ((-987 . -567) 11807) ((-987 . -566) 11789) ((-321 . -97) T) ((-229 . -982) 11687) ((-230 . -982) 11585) ((-372 . -97) T) ((-886 . -566) 11567) ((-886 . -567) 11428) ((-656 . -566) 11410) ((-1183 . -1120) 11379) ((-457 . -566) 11361) ((-457 . -567) 11222) ((-227 . -389) 11206) ((-243 . -389) 11190) ((-229 . -107) 11081) ((-230 . -107) 10972) ((-1088 . -594) 10897) ((-1087 . -594) 10794) ((-1081 . -594) 10646) ((-1043 . -594) 10571) ((-329 . -126) T) ((-80 . -418) T) ((-80 . -373) T) ((-934 . -25) T) ((-934 . -21) T) ((-807 . -1019) 10522) ((-806 . -660) 10474) ((-357 . -269) T) ((-157 . -933) 10426) ((-636 . -365) T) ((-930 . -928) 10410) ((-643 . -1031) T) ((-636 . -154) 10392) ((-1156 . -1019) T) ((-1135 . -1019) T) ((-294 . -1112) 10371) ((-294 . -1115) 10350) ((-1079 . -97) T) ((-294 . -892) 10329) ((-128 . -1031) T) ((-112 . -1031) T) ((-556 . -1170) 10313) ((-643 . -23) T) ((-556 . -1019) 10263) ((-89 . -486) 10196) ((-161 . -341) T) ((-294 . -91) 10175) ((-294 . -34) 10154) ((-561 . -464) 10088) ((-128 . -23) T) ((-112 . -23) T) ((-661 . -1019) T) ((-452 . -464) 10025) ((-385 . -588) 9973) ((-599 . -967) 9871) ((-891 . -464) 9855) ((-333 . -983) T) ((-330 . -983) T) ((-322 . -983) T) ((-243 . -983) T) ((-227 . -983) T) ((-805 . -567) NIL) ((-805 . -566) 9837) ((-1193 . -21) T) ((-532 . -933) T) ((-674 . -669) T) ((-1193 . -25) T) ((-230 . -976) 9768) ((-229 . -976) 9699) ((-70 . -1126) T) ((-230 . -213) 9652) ((-229 . -213) 9605) ((-39 . -97) T) ((-844 . -983) T) ((-1095 . -97) T) ((-1088 . -669) T) ((-1087 . -669) T) ((-1081 . -669) T) ((-1081 . -733) NIL) ((-1081 . -736) NIL) ((-855 . -97) T) ((-1043 . -669) T) ((-713 . -97) T) ((-617 . -97) T) ((-451 . -1019) T) ((-317 . -1031) T) ((-161 . -1031) T) ((-297 . -854) 9584) ((-1156 . -660) 9425) ((-806 . -160) T) ((-1135 . -660) 9239) ((-782 . -21) 9191) ((-782 . -25) 9143) ((-225 . -1064) 9127) ((-122 . -486) 9060) ((-385 . -25) T) ((-385 . -21) T) ((-317 . -23) T) ((-157 . -566) 9042) ((-157 . -567) 8810) ((-161 . -23) T) ((-592 . -267) 8787) ((-491 . -33) T) ((-832 . -566) 8769) ((-87 . -1126) T) ((-780 . -566) 8751) ((-750 . -566) 8733) ((-711 . -566) 8715) ((-621 . -566) 8697) ((-220 . -594) 8547) ((-1090 . -1019) T) ((-1086 . -982) 8370) ((-1065 . -1126) T) ((-1042 . -982) 8213) ((-793 . -982) 8197) ((-1086 . -107) 8006) ((-1042 . -107) 7835) ((-793 . -107) 7814) ((-1145 . -567) NIL) ((-1145 . -566) 7796) ((-321 . -1066) T) ((-794 . -566) 7778) ((-998 . -265) 7757) ((-78 . -1126) T) ((-935 . -843) NIL) ((-561 . -265) 7733) ((-1113 . -486) 7666) ((-462 . -1126) T) ((-532 . -566) 7648) ((-452 . -265) 7627) ((-198 . -1126) T) ((-1008 . -211) 7611) ((-268 . -854) T) ((-759 . -286) 7590) ((-804 . -97) T) ((-724 . -211) 7574) ((-935 . -594) 7524) ((-891 . -265) 7501) ((-848 . -594) 7453) ((-584 . -21) T) ((-584 . -25) T) ((-560 . -21) T) ((-321 . -37) 7418) ((-636 . -667) 7385) ((-462 . -818) 7367) ((-462 . -820) 7349) ((-451 . -660) 7190) ((-198 . -818) 7172) ((-62 . -1126) T) ((-198 . -820) 7154) ((-560 . -25) T) ((-405 . -594) 7128) ((-462 . -967) 7088) ((-806 . -486) 7000) ((-198 . -967) 6960) ((-220 . -33) T) ((-931 . -1019) 6938) ((-1156 . -160) 6869) ((-1135 . -160) 6800) ((-655 . -136) 6779) ((-655 . -138) 6758) ((-643 . -126) T) ((-130 . -442) 6735) ((-604 . -602) 6719) ((-1062 . -566) 6651) ((-112 . -126) T) ((-454 . -1130) T) ((-561 . -558) 6627) ((-452 . -558) 6606) ((-314 . -313) 6575) ((-501 . -1019) T) ((-454 . -517) T) ((-1086 . -976) T) ((-1042 . -976) T) ((-793 . -976) T) ((-220 . -733) 6554) ((-220 . -736) 6505) ((-220 . -735) 6484) ((-1086 . -304) 6461) ((-220 . -669) 6392) ((-891 . -19) 6376) ((-462 . -355) 6358) ((-462 . -316) 6340) ((-1042 . -304) 6312) ((-332 . -1179) 6289) ((-198 . -355) 6271) ((-198 . -316) 6253) ((-891 . -558) 6230) ((-1086 . -213) T) ((-610 . -1019) T) ((-1168 . -1019) T) ((-1100 . -1019) T) ((-1008 . -232) 6167) ((-333 . -1019) T) ((-330 . -1019) T) ((-322 . -1019) T) ((-243 . -1019) T) ((-227 . -1019) T) ((-82 . -1126) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-124 . -33) T) ((-1100 . -563) 6102) ((-455 . -1019) T) ((-1056 . -1019) T) ((-455 . -563) 6081) ((-230 . -737) 6032) ((-230 . -734) 5983) ((-229 . -737) 5934) ((-39 . -1066) NIL) ((-229 . -734) 5885) ((-1002 . -854) 5836) ((-935 . -736) T) ((-935 . -733) T) ((-935 . -669) T) ((-903 . -736) T) ((-848 . -669) T) ((-89 . -464) 5820) ((-462 . -834) NIL) ((-844 . -1019) T) ((-205 . -982) 5785) ((-806 . -269) T) ((-198 . -834) NIL) ((-775 . -1031) 5764) ((-57 . -1019) 5714) ((-490 . -1019) 5692) ((-488 . -1019) 5642) ((-470 . -1019) 5620) ((-469 . -1019) 5570) ((-537 . -97) T) ((-525 . -97) T) ((-468 . -97) T) ((-451 . -160) 5501) ((-337 . -854) T) ((-331 . -854) T) ((-323 . -854) T) ((-205 . -107) 5457) ((-775 . -23) 5409) ((-405 . -669) T) ((-103 . -854) T) ((-39 . -37) 5354) ((-103 . -762) T) ((-538 . -327) T) ((-489 . -327) T) ((-1135 . -486) 5214) ((-294 . -429) 5193) ((-291 . -429) T) ((-776 . -265) 5172) ((-317 . -126) T) ((-161 . -126) T) ((-273 . -25) 5037) ((-273 . -21) 4921) ((-44 . -1103) 4900) ((-64 . -566) 4882) ((-826 . -566) 4864) ((-556 . -486) 4797) ((-44 . -102) 4747) ((-1021 . -403) 4731) ((-1021 . -346) 4710) ((-988 . -1126) T) ((-987 . -982) 4697) ((-886 . -982) 4540) ((-457 . -982) 4383) ((-610 . -660) 4367) ((-987 . -107) 4352) ((-886 . -107) 4181) ((-454 . -341) T) ((-333 . -660) 4133) ((-330 . -660) 4085) ((-322 . -660) 4037) ((-243 . -660) 3886) ((-227 . -660) 3735) ((-877 . -597) 3719) ((-457 . -107) 3548) ((-1173 . -97) T) ((-877 . -351) 3532) ((-1136 . -843) NIL) ((-72 . -566) 3514) ((-896 . -46) 3493) ((-571 . -1031) T) ((-1 . -1019) T) ((-653 . -97) T) ((-641 . -97) T) ((-1172 . -97) 3443) ((-1164 . -594) 3368) ((-1157 . -594) 3265) ((-122 . -464) 3249) ((-1108 . -566) 3231) ((-1009 . -566) 3213) ((-368 . -23) T) ((-998 . -566) 3195) ((-85 . -1126) T) ((-1136 . -594) 3047) ((-844 . -660) 3012) ((-571 . -23) T) ((-561 . -566) 2994) ((-561 . -567) NIL) ((-452 . -567) NIL) ((-452 . -566) 2976) ((-483 . -1019) T) ((-479 . -1019) T) ((-329 . -25) T) ((-329 . -21) T) ((-123 . -288) 2914) ((-117 . -288) 2852) ((-551 . -594) 2839) ((-205 . -976) T) ((-550 . -594) 2764) ((-357 . -933) T) ((-205 . -223) T) ((-205 . -213) T) ((-891 . -567) 2725) ((-891 . -566) 2637) ((-804 . -37) 2624) ((-1156 . -269) 2575) ((-1135 . -269) 2526) ((-1037 . -429) T) ((-475 . -789) T) ((-294 . -1054) 2505) ((-930 . -138) 2484) ((-930 . -136) 2463) ((-468 . -288) 2450) ((-274 . -1103) 2429) ((-454 . -1031) T) ((-805 . -982) 2374) ((-573 . -97) T) ((-1113 . -464) 2358) ((-230 . -346) 2337) ((-229 . -346) 2316) ((-274 . -102) 2266) ((-987 . -976) T) ((-113 . -97) T) ((-886 . -976) T) ((-805 . -107) 2195) ((-454 . -23) T) ((-457 . -976) T) ((-987 . -213) T) ((-886 . -304) 2164) ((-457 . -304) 2121) ((-333 . -160) T) ((-330 . -160) T) ((-322 . -160) T) ((-243 . -160) 2032) ((-227 . -160) 1943) ((-896 . -967) 1841) ((-678 . -967) 1812) ((-1024 . -97) T) ((-1012 . -566) 1779) ((-964 . -566) 1761) ((-1164 . -669) T) ((-1157 . -669) T) ((-1136 . -733) NIL) ((-157 . -982) 1671) ((-1136 . -736) NIL) ((-844 . -160) T) ((-1136 . -669) T) ((-1183 . -142) 1655) ((-934 . -320) 1629) ((-931 . -486) 1562) ((-782 . -789) 1541) ((-525 . -1066) T) ((-451 . -269) 1492) ((-551 . -669) T) ((-339 . -566) 1474) ((-300 . -566) 1456) ((-396 . -967) 1354) ((-550 . -669) T) ((-385 . -789) 1305) ((-157 . -107) 1201) ((-775 . -126) 1153) ((-680 . -142) 1137) ((-1172 . -288) 1075) ((-462 . -286) T) ((-357 . -566) 1042) ((-491 . -941) 1026) ((-357 . -567) 940) ((-198 . -286) T) ((-132 . -142) 922) ((-657 . -265) 901) ((-462 . -952) T) ((-537 . -37) 888) ((-525 . -37) 875) ((-468 . -37) 840) ((-198 . -952) T) ((-805 . -976) T) ((-776 . -566) 822) ((-769 . -566) 804) ((-767 . -566) 786) ((-758 . -843) 765) ((-1194 . -1031) T) ((-1145 . -982) 588) ((-794 . -982) 572) ((-805 . -223) T) ((-805 . -213) NIL) ((-632 . -1126) T) ((-1194 . -23) T) ((-758 . -594) 497) ((-511 . -1126) T) ((-396 . -316) 481) ((-532 . -982) 468) ((-1145 . -107) 277) ((-643 . -588) 259) ((-794 . -107) 238) ((-359 . -23) T) ((-1100 . -486) 30))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 489ad68d..09609645 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3419169920) -(4253 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3419278778) +(4257 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -205,11 +205,11 @@ |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| - |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| - |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| - |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| - |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| - |LaurentPolynomial| |LazardSetSolvingPackage| + |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| + |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| + |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| + |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| + |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| @@ -460,647 +460,650 @@ |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |extendedint| |lifting| |addPoint| - |numberOfVariables| |ksec| |iiperm| |leadingCoefficientRicDE| |Lazard| - |showAll?| |makeFloatFunction| |powers| |condition| |LyndonBasis| - |e02zaf| |balancedBinaryTree| |continuedFraction| |dfRange| - |lieAdmissible?| |simplifyLog| |splitDenominator| |setFormula!| - |denomLODE| |cyclotomicDecomposition| |s13adf| |mainForm| |delete!| - |width| |Ei| |s17dlf| |OMunhandledSymbol| |flexibleArray| |modulus| - |acsch| |iicos| |ruleset| |po| |linearlyDependentOverZ?| |optimize| - |linearDependenceOverZ| |unitNormalize| |leadingExponent| |s19adf| - |removeRedundantFactorsInContents| |OMencodingUnknown| |fractRagits| - |sin?| |cycleLength| |getMultiplicationTable| |nonQsign| |e04fdf| - |generators| |rightRemainder| |rootOf| |exists?| |column| |map| - |leadingSupport| |d01asf| |innerSolve| |suchThat| |cAsech| - |coefficient| |outputArgs| |key| |mapUnivariate| |increment| - |primitiveElement| |close| |appendPoint| |c06gbf| - |semiResultantEuclideannaif| |unvectorise| |options| |optional| - |getlo| |differentialVariables| |radicalSolve| |setEpilogue!| - |getCurve| |splitLinear| |sort| |fortranCharacter| |factorsOfDegree| - |display| |semiSubResultantGcdEuclidean1| |direction| |select!| - |filename| |varselect| |id| |hermiteH| |fractionFreeGauss!| |s20acf| - |constantOperator| |createMultiplicationTable| |normalize| |omError| - |selectOptimizationRoutines| |convert| |UP2ifCan| |c05adf| - |nextPrimitiveNormalPoly| |integerIfCan| |not?| |zero?| - |initiallyReduced?| |table| |changeWeightLevel| |completeEval| |ptree| - |leftAlternative?| |double| |weight| |parse| |new| |setTopPredicate| - |rightExtendedGcd| |sin2csc| |connect| |rightDiscriminant| - |makeYoungTableau| |e02ddf| |s21baf| |random| |inGroundField?| - |expenseOfEvaluation| |identification| |input| |fixedPoints| |rCoord| - |printStats!| |cot2trig| |redPo| |hasSolution?| |stopTable!| |library| - |stoseInternalLastSubResultant| |cothIfCan| |nlde| - |definingPolynomial| |errorInfo| |vspace| |curveColorPalette| - |localReal?| |compile| |FormatRoman| |nextsubResultant2| |ricDsolve| - |scan| |Ci| |rowEchelon| |Gamma| |binaryTree| |sparsityIF| |zerosOf| - |linearPolynomials| |e02akf| |outputAsTex| |s01eaf| |shuffle| |null?| - |beauzamyBound| |groebSolve| |rowEch| |minPoints| |pureLex| - |fixedDivisor| |rootRadius| |abelianGroup| |primes| |solve1| |set| - |limitedint| |pushup| |point?| |declare!| |s17ahf| |cotIfCan| - |mapBivariate| |medialSet| |var1Steps| |e02bdf| |numer| |lazyEvaluate| - |e02def| |root| |internal?| Y |distribute| |interpret| |partitions| - |baseRDEsys| |antiAssociative?| |curryRight| |denom| |randomR| - |mirror| |OMputAtp| |karatsubaDivide| ^ |randomLC| |trapezoidal| - |univariateSolve| |mapDown!| |stoseInvertible?reg| |clearTheIFTable| - |graphStates| |lexGroebner| |completeHermite| |void| - |internalSubPolSet?| |hexDigit?| |cyclotomicFactorization| |reflect| - |scalarMatrix| |pi| |fglmIfCan| |viewport2D| |yCoord| |int| |monomial| - |fprindINFO| |iisqrt3| |branchPointAtInfinity?| ~ |simpleBounds?| - |lowerPolynomial| |infinity| |scaleRoots| |UnVectorise| |ideal| - |showScalarValues| |multivariate| |compose| |OMmakeConn| - |viewWriteAvailable| |iisinh| |clikeUniv| |moduleSum| - |getExplanations| |quasiAlgebraicSet| |getGraph| |variables| - |realRoots| |redmat| |plenaryPower| |failed?| |nativeModuleExtension| - |unrankImproperPartitions1| |extractIfCan| |d01anf| |regime| |dmpToP| - |head| |makeCrit| |f01qef| |euler| |virtualDegree| |abs| |ramified?| - |upperCase| |f02bjf| |show| |identitySquareMatrix| |reduction| - |OMputAttr| |cExp| |leftFactorIfCan| |edf2ef| |setPredicates| |open| - |pop!| |factorGroebnerBasis| |any?| |normalizedDivide| |trueEqual| - |square?| |getZechTable| |zeroDimensional?| |trace| |exprToXXP| - |e04jaf| |realEigenvalues| |quoted?| |implies?| |taylor| |output| - |shallowExpand| |variable?| |sinh2csch| |flexible?| |powmod| |f01ref| - |e01sef| |minset| |laurent| |putColorInfo| |acoshIfCan| - |optAttributes| |bringDown| |assign| |segment| UTS2UP |top| - |repeating?| |puiseux| |tryFunctionalDecomposition?| - |pointColorDefault| |bfKeys| |dn| |predicates| |acschIfCan| |continue| - |showRegion| |rarrow| |tanh2trigh| |iroot| |trapezoidalo| |insert!| - |closedCurve?| |recip| |inv| |semiSubResultantGcdEuclidean2| |norm| - |mapCoef| |clearTheFTable| |setMinPoints3D| |leftTraceMatrix| |cSec| - |ground?| |rightAlternative?| |rewriteIdealWithRemainder| |label| - |basisOfCenter| |ef2edf| |rightLcm| |d02gaf| |commaSeparate| |ground| - |shufflein| |cosIfCan| |finiteBound| |block| |exQuo| |expintegrate| - |karatsubaOnce| |leadingMonomial| |monomialIntPoly| |principalIdeal| - |idealiser| |f02aaf| |bfEntry| |represents| |expr| - |leadingCoefficient| |setRow!| |completeEchelonBasis| |lSpaceBasis| - |semiResultantReduitEuclidean| |quoByVar| |setFieldInfo| |csubst| - |primitiveMonomials| |infix?| |equivOperands| |children| |entry| - |d01ajf| |d01apf| |se2rfi| |matrix| |normInvertible?| |mainVariable?| - |reductum| |mask| |cCsch| |d02cjf| |parabolic| |linearMatrix| |sncndn| - |prod| |fractionPart| |ceiling| |mainContent| |option| |setnext!| - |rootOfIrreduciblePoly| |f02xef| |atanhIfCan| |extendIfCan| |variable| - |push!| |inHallBasis?| |idealSimplify| |showTypeInOutput| |intChoose| - |usingTable?| |hcrf| |crushedSet| |powerSum| |doubleResultant| - |wronskianMatrix| |cPower| |s18acf| |d02ejf| - |standardBasisOfCyclicSubmodule| |read!| |leadingTerm| |tan2cot| - |socf2socdf| |whatInfinity| |nullity| |difference| |powern| - |transpose| |curve?| |extend| |realElementary| |s15aef| - |wordInStrongGenerators| |explicitlyFinite?| |child| |concat| - |certainlySubVariety?| |toroidal| |pseudoDivide| |key?| |nullary| - |mantissa| |conjug| |degreeSubResultantEuclidean| |inverseColeman| - |allRootsOf| |basisOfLeftAnnihilator| |compdegd| |HenselLift| - |reshape| |pushuconst| |bivariatePolynomials| |lazyPseudoDivide| - |clipSurface| |quasiMonicPolynomials| |semiDiscriminantEuclidean| - |split| |meshPar1Var| |s18adf| |numericalIntegration| |factorFraction| - |selectODEIVPRoutines| |sts2stst| |integralDerivationMatrix| |OMsend| - |nextPrimitivePoly| |goodnessOfFit| |collectQuasiMonic| |linSolve| - |repeating| |argscript| |setClipValue| |coord| |complexZeros| |f04arf| - |complete| |roughBasicSet| |pseudoRemainder| |tubePoints| - |exprHasLogarithmicWeights| |algebraicVariables| |algintegrate| - |coordinates| RF2UTS |d02raf| |linear?| |index?| |order| - |clipParametric| |changeName| |whileLoop| |update| |changeBase| - |create| |redpps| |swap| |wholeRadix| |accuracyIF| - |generalizedInverse| |constantKernel| |numberOfComputedEntries| - |clearCache| |mindeg| |bombieriNorm| |intPatternMatch| - |complexElementary| |makeVariable| |zeroDimPrimary?| |s17aef| - |multiplyExponents| UP2UTS |setOrder| |moduloP| |qfactor| |badNum| - |doubleRank| |inverseIntegralMatrixAtInfinity| - |countRealRootsMultiple| |userOrdered?| |center| |setStatus!| - |graphState| |symmetric?| |traceMatrix| |isPower| |domainOf| - |halfExtendedSubResultantGcd1| |prologue| |toseInvertibleSet| - |decomposeFunc| |rquo| |squareFreePart| |hdmpToDmp| |iteratedInitials| - |character?| |associates?| |divideExponents| |polyred| |deref| - |ellipticCylindrical| |skewSFunction| F |genericRightTraceForm| - |s21bdf| |nil?| |position| |scale| |oblateSpheroidal| |iidsum| - |s17adf| |atom?| |uncouplingMatrices| |safeFloor| |randnum| - |monicRightDivide| |removeRoughlyRedundantFactorsInPols| |scopes| - |invertIfCan| |definingEquations| |ipow| |trigs2explogs| - |impliesOperands| |zCoord| |iCompose| |outlineRender| |OMgetError| - |f01brf| |sinhcosh| |fortranCompilerName| |padicallyExpand| - |subPolSet?| |wordsForStrongGenerators| |contractSolve| |viewport3D| - |bat| |parabolicCylindrical| |zag| |iisqrt2| |iiacot| - |createGenericMatrix| |complexNumericIfCan| |zeroDimPrime?| |plot| - |viewPosDefault| |s19acf| |OMcloseConn| |constantOpIfCan| - |algSplitSimple| |extendedIntegrate| |pquo| |leftUnits| |e01daf| - |setProperty!| |ldf2lst| |sn| |iidprod| |doubleDisc| |findBinding| - |absolutelyIrreducible?| |resultant| |setProperties| |OMputEndAttr| - |cot2tan| |scalarTypeOf| |factorList| |cAsinh| |pole?| D - |strongGenerators| |resultantEuclideannaif| |getCode| |figureUnits| - |zeroMatrix| |c06ecf| |df2fi| |cross| |SturmHabichtSequence| - |minordet| |denominators| |LyndonCoordinates| |rk4a| - |factorByRecursion| |normDeriv2| |symmetricTensors| |null| |vconcat| - |insertionSort!| |generalSqFr| |midpoint| |adjoint| |ref| |case| - |jacobiIdentity?| |gramschmidt| LE |ignore?| |addmod| |maxIndex| - |besselI| |fullPartialFraction| |symFunc| |Zero| |blue| - |internalAugment| LT |palglimint| |s17dhf| |cRationalPower| |d01fcf| - |radicalEigenvalues| |One| |OMgetBVar| |characteristicSerie| - |cscIfCan| |supRittWu?| |cubic| |adaptive?| |getProperty| |flagFactor| - |rootProduct| |numerators| |createIrreduciblePoly| |unit| - |mainDefiningPolynomial| |dec| |complexEigenvectors| |gradient| - |graphCurves| |palgLODE| |fill!| |rename!| |optional?| |lazyPquo| - |replace| |polarCoordinates| |rightOne| |rightMinimalPolynomial| - |quickSort| |point| |symmetricPower| |s18dcf| |listBranches| - |extractSplittingLeaf| |print| |minPoly| |lexTriangular| |recur| - |rotate!| |aQuadratic| |llprop| |oddintegers| |infLex?| |elt| - |leviCivitaSymbol| |coerceS| |unravel| |iiasinh| |s18def| - |OMconnOutDevice| |plusInfinity| |radicalEigenvectors| |homogeneous?| - |tensorProduct| |alphanumeric| |palgint0| |associator| |series| - |laurentIfCan| |minusInfinity| |showArrayValues| |triangSolve| - |computeCycleEntry| |permanent| |sumOfDivisors| |cAcos| |OMconnectTCP| - |pushucoef| |optpair| |elementary| |factors| |e02ahf| |OMclose| - |singular?| |inR?| |argumentList!| |perspective| |showTheFTable| - |aspFilename| |contours| |collect| |realSolve| - |isAbsolutelyIrreducible?| |morphism| |product| |min| |high| |besselK| - |nullary?| |radix| |lp| |invertibleElseSplit?| |ran| |mathieu22| - |binding| |viewWriteDefault| |qPot| |polygon| |endSubProgram| - |nilFactor| |diag| |type| |OMencodingXML| |monicModulo| |atanIfCan| - |roman| |f01maf| |elliptic| |OMopenString| |calcRanges| - |selectSumOfSquaresRoutines| |purelyAlgebraicLeadingMonomial?| - |rootPower| |toseSquareFreePart| |component| |relativeApprox| - |function| |bubbleSort!| |nthFlag| |tubePointsDefault| - |deepestInitial| |elements| |mergeDifference| |intensity| |declare| - |choosemon| |super| |sizeLess?| |physicalLength!| - |eisensteinIrreducible?| |diagonalMatrix| |intermediateResultsIF| - |lookup| |antiCommutator| |lazyIntegrate| |pointColor| - |fortranLogical| |resetBadValues| |gbasis| |OMputEndApp| |totalDegree| - |numberOfChildren| |eval| |makeSketch| |slash| |clipWithRanges| - |leftNorm| |factorSFBRlcUnit| |antisymmetric?| |purelyTranscendental?| - |ScanRoman| |sinhIfCan| |highCommonTerms| |coleman| |modTree| - |iiacsch| |ListOfTerms| |getMatch| |triangular?| |curveColor| - |OMputError| |rightRank| |leftRegularRepresentation| - |lastSubResultantElseSplit| |newLine| |commutative?| - |rightTraceMatrix| |rewriteIdealWithQuasiMonicGenerators| |rischDEsys| - |rectangularMatrix| |precision| |radicalRoots| |structuralConstants| - |universe| |stoseIntegralLastSubResultant| |cup| |drawToScale| - |removeIrreducibleRedundantFactors| |halfExtendedResultant1| - |removeSuperfluousCases| |expressIdealMember| |degreeSubResultant| - |localUnquote| |rangeIsFinite| |constantLeft| |eq?| |palglimint0| - |mapExpon| |eigenMatrix| |imagJ| |#| |coerceL| |clearTable!| |f02wef| - |chineseRemainder| |computePowers| |f04axf| |firstNumer| - |setVariableOrder| |composite| |hconcat| |sech2cosh| |normalized?| - |gethi| |imagI| |removeRedundantFactors| |sincos| - |integralBasisAtInfinity| |groebner?| |mindegTerm| - |variationOfParameters| |rightQuotient| |coerceListOfPairs| |delay| - |reduceBasisAtInfinity| |reducedContinuedFraction| |multMonom| - |sample| |nonSingularModel| |nextSubsetGray| |dim| |insert| |aromberg| - |deriv| |fortranTypeOf| |expt| |parent| |leaves| |stack| - |evaluateInverse| |setErrorBound| |getProperties| |sub| |ord| - |repeatUntilLoop| |complexLimit| |defineProperty| |bracket| |routines| - |empty?| |factorOfDegree| |polynomialZeros| |simplifyPower| |lcm| - |quasiComponent| |comparison| |generateIrredPoly| |arg1| - |unrankImproperPartitions0| |setMaxPoints3D| |setMinPoints| |rotatex| - |wrregime| |finite?| |preprocess| |c06fuf| |outputGeneral| |corrPoly| - |primitive?| |arg2| |symbolTable| |squareMatrix| |setAdaptive3D| - |screenResolution| |diagonalProduct| |complement| |modularGcd| - |coefChoose| |factorial| |internalSubQuasiComponent?| |logpart| - |dimensionsOf| |basisOfCentroid| |constructorName| - |useEisensteinCriterion?| |groebnerIdeal| |setClosed| |nextItem| - |odd?| |bernoulli| |tanh2coth| |d01amf| |asinhIfCan| |ratDsolve| - |overbar| |symbol| |gcd| |aLinear| |pushFortranOutputStack| - |subscript| |OMputEndBVar| |conditions| |rk4f| |diophantineSystem| - |pointData| |basisOfRightAnnihilator| |noLinearFactor?| |false| - |OMlistCDs| |integralCoordinates| |KrullNumber| |rspace| - |integralLastSubResultant| |union| |laguerre| |numberOfHues| - |popFortranOutputStack| |genericLeftTrace| |ode| |match| |float?| - |evaluate| |trim| |removeCosSq| |closed?| |Nul| |linears| |groebner| - |expIfCan| |rational?| |integer| |keys| |pastel| |multinomial| - |convergents| |outputAsFortran| |complexExpand| |readLine!| - |probablyZeroDim?| |roughBase?| |integral| |completeSmith| |findCycle| - |setImagSteps| |topFortranOutputStack| |characteristicPolynomial| - |real?| |setright!| |palgRDE0| |d02kef| |nthFactor| - |squareFreePolynomial| |rk4qc| |rootDirectory| |explicitlyEmpty?| - |subSet| |green| |orbits| |jacobi| |hasHi| |dom| |partialNumerators| - |singularAtInfinity?| |unitVector| |vector| |rank| |distance| - |modifyPointData| |ddFact| |indicialEquation| |associatedEquations| - |ptFunc| |createNormalElement| |implies| |numberOfPrimitivePoly| |eq| - |bipolarCylindrical| |rroot| |irreducible?| |eigenvector| |forLoop| - |differentiate| |typeLists| |tanNa| |mkPrim| |f04faf| - |nextsousResultant2| |cAcot| |xor| |pol| |iter| |rowEchelonLocal| - |e02gaf| |exponents| |readable?| |pmintegrate| |linearAssociatedLog| - |hessian| |body| |extendedResultant| |setAttributeButtonStep| - |mightHaveRoots| |resetVariableOrder| |mesh?| |bumptab| |initial| - |top!| |nthCoef| |e01bgf| |components| |shrinkable| |primintegrate| - |bat1| |any| |option?| |separant| |internalIntegrate| |algebraicOf| - |headReduce| |mapMatrixIfCan| |baseRDE| |drawStyle| |quadratic?| - |setref| |cosSinInfo| |reindex| |diagonals| |cSech| |negative?| - |useNagFunctions| |append| |coshIfCan| |chiSquare1| - |createPrimitiveNormalPoly| |qroot| |OMputBVar| |title| - |matrixConcat3D| |rootsOf| |rombergo| |incrementKthElement| |pair?| - |setOfMinN| |lists| |BumInSepFFE| |ode1| |iiasec| |nodes| |mkcomm| - |constant| |setelt!| |OMputInteger| |makeSin| |e02daf| |measure| - |positiveRemainder| |multiple?| |particularSolution| |comment| - |swapRows!| |exp| |dequeue| |lex| |push| |pascalTriangle| - |getSyntaxFormsFromFile| |lazyVariations| - |unprotectedRemoveRedundantFactors| |rightFactorIfCan| |e| |changeVar| - |colorFunction| |pointPlot| |yCoordinates| |removeZero| |leadingIdeal| - |supersub| |closedCurve| |besselJ| |csc2sin| |viewDeltaXDefault| - |digit| |erf| |subCase?| |tablePow| - |zeroSetSplitIntoTriangularSystems| |wholePart| |btwFact| |fTable| - |s17def| |intersect| |infinityNorm| |subNode?| |subresultantSequence| - |stFunc1| |lazyPseudoRemainder| |complexForm| |constDsolve| - |arrayStack| |bezoutResultant| |idealiserMatrix| |inf| |leftFactor| - |smith| |sturmVariationsOf| |depth| |obj| |lyndonIfCan| - |leftDiscriminant| |rightScalarTimes!| |prepareSubResAlgo| - |inRadical?| |basisOfNucleus| |computeBasis| |roughSubIdeal?| - |positiveSolve| |d03edf| |bumprow| |cache| |dilog| |diagonal?| - |cycleTail| |rationalIfCan| |setRealSteps| |validExponential| - |integral?| |harmonic| |mathieu24| |log| |internalInfRittWu?| - |lineColorDefault| |OMputFloat| |sin| |patternMatchTimes| |power| - |pmComplexintegrate| |ratPoly| |lepol| |charpol| |polCase| |getStream| - |airyAi| |cos| |insertBottom!| |opeval| |subresultantVector| - |knownInfBasis| |reopen!| |reset| |Vectorise| |mathieu23| |pack!| - |magnitude| |tan| |basisOfRightNucloid| |mkAnswer| |exponential1| - |degreePartition| |prinpolINFO| |c06eaf| |splitNodeOf!| - |leftScalarTimes!| |binaryFunction| |cot| |tanIfCan| |prime?| |imagE| - |write| |critMonD1| |rightRecip| |numFunEvals| |generate| |sec| - |normalizedAssociate| |fintegrate| |useSingleFactorBound?| |rules| - |factor1| |messagePrint| |e04naf| |npcoef| |quotientByP| |csc| - |simpson| |check| |cyclic| |save| |restorePrecision| |viewZoomDefault| - |double?| |f01bsf| |dark| |incrementBy| |printStatement| - |cyclicEqual?| |Aleph| |second| |sdf2lst| |tubeRadiusDefault| - |musserTrials| |ratpart| |search| |maximumExponent| |expand| |asin| - |equiv| |third| |principal?| |OMencodingSGML| |cAtan| |cAsin| |hclf| - |getMultiplicationMatrix| |modifyPoint| |filterWhile| |printInfo!| - |acos| |length| |middle| ** |doubleComplex?| |remainder| |e02dcf| - |indiceSubResultantEuclidean| |integrate| |bag| |sPol| |filterUntil| - |lastSubResultant| |atan| |scripts| |leastAffineMultiple| |flatten| - |rightMult| |pleskenSplit| |OMputObject| |maxrow| - |rightRegularRepresentation| |splitSquarefree| |select| - |mainPrimitivePart| |acot| |e02adf| |df2ef| |d03faf| EQ |has?| - |BasicMethod| |color| |asec| |numberOfCycles| |returns| |f02ajf| - |createLowComplexityNormalBasis| |singleFactorBound| |cCsc| |iExquo| - |resultantEuclidean| |acscIfCan| |complexNumeric| |coerceImages| - |rischDE| |reduceByQuasiMonic| |graphs| |sizeMultiplication| |testDim| - |maxColIndex| |acsc| |makeSUP| |extendedSubResultantGcd| |csch2sinh| - |headRemainder| |solveLinearlyOverQ| |cLog| |internalZeroSetSplit| - |addPoint2| |kernels| |badValues| |showTheRoutinesTable| |lowerCase?| - |mapExponents| |reciprocalPolynomial| |expintfldpoly| |addPointLast| - |fortran| SEGMENT |univariate| |interReduce| |countRealRoots| - |topPredicate| |solveRetract| |rightTrim| |cCoth| |makeRecord| - |torsion?| |nullSpace| |extractBottom!| |s19aaf| - |radicalOfLeftTraceForm| |OMsupportsSymbol?| |leftTrim| |zeroOf| - |divisorCascade| |OMgetEndBind| |iilog| |outerProduct| |cfirst| - |associative?| |rename| |remove| |stiffnessAndStabilityOfODEIF| - |setProperties!| |parametric?| |summation| |factor| |overlabel| - |eigenvalues| |consnewpol| |octon| |conjugates| |lazyGintegrate| - |saturate| |critMTonD1| |sqrt| |stopTableInvSet!| |zeroVector| - |ReduceOrder| |last| |iFTable| |dequeue!| |exactQuotient| |enqueue!| - |real| |leftLcm| |padecf| |linearlyDependent?| |e04ucf| |assoc| - |firstSubsetGray| |myDegree| |setlast!| |extractIndex| |plus!| |imag| - |moreAlgebraic?| |minPol| |bsolve| |OMputEndAtp| - |drawComplexVectorField| |updatD| |row| |fortranDoubleComplex| - |directProduct| |cAtanh| |s18aff| |sylvesterMatrix| |subResultantGcd| - |primPartElseUnitCanonical!| |limit| |f04asf| |algebraic?| |df2st| - |s21bcf| |normalise| |duplicates| |orOperands| |linearAssociatedExp| - |diff| |resultantReduit| |wholeRagits| |substring?| - |decreasePrecision| |numberOfOperations| |destruct| |debug3D| - |permutationGroup| |resultantReduitEuclidean| |roughEqualIdeals?| - |nonLinearPart| |OMputString| |OMgetBind| |evenlambert| |string| - |nextPrime| |or?| |sort!| |writeLine!| |pomopo!| |gcdcofactprim| - |hasTopPredicate?| |phiCoord| |suffix?| |physicalLength| |latex| - |complexNormalize| |nodeOf?| |extractProperty| |divideIfCan!| |d01alf| - |semiIndiceSubResultantEuclidean| |viewpoint| - |indicialEquationAtInfinity| |script| |approximants| |branchIfCan| - |iipow| |quadraticNorm| |simpsono| |inverseIntegralMatrix| |mapGen| - |mpsode| |prefix?| |extractTop!| |makeFR| |parametersOf| - |stiffnessAndStabilityFactor| |setMaxPoints| |getMeasure| - |integralMatrix| |e04dgf| |chiSquare| |slex| |computeInt| - |normalDeriv| |discreteLog| |equiv?| |maxPoints| |test| |reducedForm| - |iiexp| |genus| |alternative?| |tex| |clearFortranOutputStack| - |solveid| |LiePoly| |Hausdorff| |imagK| |tableForDiscreteLogarithm| - |e04gcf| |sinIfCan| |relationsIdeal| |binary| |leftTrace| |sequences| - ~= |monicDecomposeIfCan| |cond| |lflimitedint| |f02axf| - |stripCommentsAndBlanks| |leftRankPolynomial| |status| |rightPower| - |chainSubResultants| |doubleFloatFormat| |repSq| |viewThetaDefault| - |coerce| |partialQuotients| |subMatrix| |zoom| |coth2trigh| - |legendreP| |tab1| |hMonic| |removeRedundantFactorsInPols| |construct| - LODO2FUN |symbol?| |list?| |rewriteSetWithReduction| - |removeSquaresIfCan| |firstDenom| |screenResolution3D| - |genericLeftDiscriminant| |clipPointsDefault| |iicot| |derivative| - |processTemplate| |monicCompleteDecompose| |signAround| - |mapUnivariateIfCan| |getOperands| |cAsec| |refine| |find| |twist| - |acotIfCan| |prem| |B1solve| |digit?| |explicitEntries?| - |numberOfImproperPartitions| |showClipRegion| |bivariate?| - |getVariableOrder| |OMReadError?| |countable?| |leftUnit| |c06frf| - |iiacsc| |exponential| |mr| |checkForZero| |exprToUPS| |palgintegrate| - |hasoln| |matrixGcd| |cons| |nthr| |packageCall| |mainSquareFreePart| - |withPredicates| |removeZeroes| |degree| |t| |createPrimitivePoly| - |quotient| |reverse| |leftGcd| |subspace| |list| |solve| |stop| - |airyBi| |belong?| |minus!| |setfirst!| |error| |varList| - |useSingleFactorBound| |const| |pile| |compound?| |car| |makingStats?| - |patternVariable| |poisson| |floor| |deepCopy| |bezoutMatrix| |vark| - |c06gsf| |assert| |integralBasis| |denominator| |cdr| |printCode| - |iibinom| |central?| |upperCase!| |leftOne| |setLabelValue| |presuper| - |companionBlocks| |extension| |setDifference| |ravel| |e04ycf| - |cylindrical| |genericRightDiscriminant| |rk4| |solid?| - |normalizeAtInfinity| |permutations| |collectUnder| |setIntersection| - |f02fjf| |OMread| |identityMatrix| |secIfCan| |subQuasiComponent?| - |basisOfCommutingElements| |colorDef| |LowTriBddDenomInv| - |eyeDistance| |normalElement| |setUnion| |gcdPrimitive| |nthRootIfCan| - |integer?| |iisin| |createMultiplicationMatrix| - |stoseInvertibleSetreg| |e02agf| |apply| |nsqfree| |element?| - |distFact| |chebyshevU| |graeffe| |minimumExponent| |returnType!| - |triangulate| |largest| |ffactor| |debug| |cyclicGroup| |content| - |semiResultantEuclidean2| |showSummary| |neglist| |isMult| |leftPower| - |OMputEndBind| |size| |startTableGcd!| |backOldPos| |explimitedint| - |ScanArabic| |unitsColorDefault| |bindings| |f2df| |e02aef| |e02bef| - |iprint| |asinIfCan| |showAllElements| |setelt| |bottom!| F2FG - |hostPlatform| |tanSum| |showAttributes| |transform| |f07aef| - |OMgetInteger| |univariatePolynomial| |s14aaf| |discriminant| - |bitCoef| |li| |anfactor| |transcendent?| |OMreadStr| |htrigs| - |semiDegreeSubResultantEuclidean| |seriesSolve| |unitNormal| - |multiset| |lowerCase!| |OMencodingBinary| |complexEigenvalues| - |first| |copy| |char| |cAcosh| |dmp2rfi| |numberOfComposites| |leaf?| - |rootSplit| |var2Steps| |makeSeries| |even?| |removeCoshSq| |rest| - |midpoints| |insertTop!| |lllp| |OMputVariable| |tValues| |fixedPoint| - |substitute| |brace| |commutativeEquality| |pr2dmp| |hdmpToP| - |removeSuperfluousQuasiComponents| |s13aaf| |getOperator| |kernel| - |autoCoerce| |bits| |inverse| |stFunc2| |rationalPoints| |plus| - |integerBound| |hexDigit| |removeDuplicates| |toScale| |solveInField| - |lighting| |draw| |setButtonValue| |elem?| |curry| |parts| |imagk| - |totalDifferential| |constantIfCan| |numerator| |OMgetEndAttr| - |RemainderList| |OMgetString| |areEquivalent?| |float| |cos2sec| - |numericIfCan| |mat| |s15adf| |radicalEigenvector| |binomThmExpt| - |primlimintfrac| |exprHasAlgebraicWeight| |power!| |numeric| |ParCond| - |hash| |removeSinSq| |say| |value| |zeroDim?| |e02bcf| - |realEigenvectors| |totalGroebner| |UpTriBddDenomInv| - |showFortranOutputStack| |radical| |compiledFunction| |lagrange| - |droot| |times| |functionIsFracPolynomial?| |leftExtendedGcd| - |createRandomElement| |frobenius| |internalLastSubResultant| - |makeObject| |goodPoint| |decimal| |count| |OMlistSymbols| |yellow| - |leftDivide| |rubiksGroup| |errorKind| |expandLog| |edf2efi| - |genericLeftMinimalPolynomial| |viewDeltaYDefault| |RittWuCompare| - |basisOfLeftNucleus| |unparse| |c06gqf| |e01baf| |rationalPower| - |coef| |makeUnit| |rewriteIdealWithHeadRemainder| |qqq| |clip| - |radPoly| |movedPoints| |split!| |bitTruth| |elColumn2!| |s17akf| - |monomials| |var2StepsDefault| |taylorRep| |monom| |divisor| - |copyInto!| |radicalSimplify| |space| |setsubMatrix!| |controlPanel| - |f02agf| |entries| |torsionIfCan| |lfunc| |pushdterm| - |primPartElseUnitCanonical| |iicosh| |linearAssociatedOrder| GE - |LiePolyIfCan| |permutationRepresentation| - |solveLinearPolynomialEquation| |makeprod| |complementaryBasis| - |moebiusMu| |selectOrPolynomials| |asimpson| GT |limitPlus| - |leadingBasisTerm| |common| |alphanumeric?| - |leftCharacteristicPolynomial| |getConstant| |lyndon| - |initiallyReduce| |prefix| |generic| |useEisensteinCriterion| |tRange| - |mainVariable| |meshFun2Var| |is?| |diagonal| |setColumn!| |round| - |factorSquareFree| |singularitiesOf| |sortConstraints| |normal01| - |quasiRegular| |nextColeman| |match?| |sec2cos| |credPol| |OMwrite| - |dominantTerm| |jacobian| |equation| |elRow1!| |froot| |euclideanSize| - |selectPolynomials| |printHeader| |rst| |asechIfCan| |deleteRoutine!| - |addBadValue| |iiasech| |atoms| |numberOfIrreduciblePoly| |coerceP| - |c02aff| |acothIfCan| |move| |binarySearchTree| |rotatey| - |clipBoolean| |property| |directory| |e01saf| |log2| - |hypergeometric0F1| |antisymmetricTensors| - |halfExtendedSubResultantGcd2| |setPosition| |selectPDERoutines| - |taylorIfCan| |iitan| |cycles| |unit?| |kmax| |newSubProgram| - |meatAxe| |SturmHabichtMultiple| |e02ajf| |level| - |SturmHabichtCoefficients| |safetyMargin| |recoverAfterFail| |setPoly| - |matrixDimensions| |lambert| |weierstrass| - |semiLastSubResultantEuclidean| |associatedSystem| |listOfLists| - |units| |selectsecond| |crest| |orbit| |fortranDouble| |OMgetApp| - |isList| |integralMatrixAtInfinity| |style| |resultantnaif| - |bezoutDiscriminant| |tubePlot| |tab| |number?| |normal?| - |coefficients| |sorted?| |modularFactor| |quadratic| |bivariateSLPEBR| - |createThreeSpace| |reverseLex| |trailingCoefficient| |checkPrecision| - |makeViewport2D| |upDateBranches| |removeSinhSq| |padicFraction| - |currentEnv| |callForm?| |conditionP| |polyPart| |nthRoot| |string?| - |setleaves!| |edf2fi| |vertConcat| |pdf2df| |tubeRadius| - |halfExtendedResultant2| |mapmult| |expandTrigProducts| |noKaratsuba| - |printInfo| |shiftRoots| NOT |brillhartIrreducible?| |intcompBasis| - |minRowIndex| |queue| |linearPart| |code| |OMUnknownSymbol?| |e01bff| - |monicDivide| |leftMult| OR |elRow2!| |f07fdf| |primitivePart| - |extractClosed| |tryFunctionalDecomposition| |c06ekf| - |balancedFactorisation| |uniform| |selectAndPolynomials| AND - |directSum| |selectMultiDimensionalRoutines| |birth| |empty| - |alternating| |inrootof| |completeHensel| |makeGraphImage| |bright| - |surface| |pushdown| |solveLinearPolynomialEquationByRecursion| |sum| - |lllip| |points| |equality| |tanintegrate| |left| |alphabetic| - |f04qaf| |rur| |generalizedEigenvectors| |dot| |rational| |nand| - |node| |trace2PowMod| |multiEuclidean| |numericalOptimization| |term?| - |setrest!| |right| |updateStatus!| |SFunction| |OMconnInDevice| - |besselY| |showIntensityFunctions| |mainCharacterization| |elliptic?| - |nor| |notelem| |s17dcf| |perfectNthPower?| |curryLeft| - |minimalPolynomial| |derivationCoordinates| |iiasin| |factorAndSplit| - |e02dff| |exquo| |cyclicEntries| |OMgetFloat| |solveLinear| - |drawComplex| |lazyPseudoQuotient| |satisfy?| |rdHack1| |subset?| - |node?| |constant?| |selectfirst| |invmod| |fibonacci| |div| - |pseudoQuotient| |delete| |zeroSetSplit| |reduceLODE| |index| - |closeComponent| |listLoops| |subTriSet?| |hitherPlane| |An| - |numberOfFractionalTerms| |close!| |complexRoots| |sizePascalTriangle| - |quo| |graphImage| |cschIfCan| |d01gaf| |LazardQuotient| |psolve| - |setchildren!| |expextendedint| |mainCoefficients| |s14abf| - |cycleEntry| |changeNameToObjf| |fillPascalTriangle| |comp| - |quasiRegular?| |makeResult| |headReduced?| |purelyAlgebraic?| - |resetAttributeButtons| |multisect| |operator| - |subResultantGcdEuclidean| |mapUp!| |vedf2vef| |properties| |iiatanh| - |rem| |PDESolve| |ODESolve| |lastSubResultantEuclidean| |tube| - |constantToUnaryFunction| |lfinfieldint| |linear| |irreducibleFactors| - |f01rdf| |pair| |upperCase?| |conditionsForIdempotents| |translate| - |contains?| |divergence| |makeop| |polygon?| |currentCategoryFrame| * - |rightZero| |primitivePart!| |increase| |c06ebf| |next| |unmakeSUP| - |d02bbf| |d03eef| |showTheSymbolTable| |prevPrime| |less?| - |partialDenominators| |frst| |polynomial| |stoseInvertible?sqfreg| - |infRittWu?| |stirling2| |minimize| |rangePascalTriangle| - |listRepresentation| |perfectNthRoot| |mix| |triangularSystems| - |createNormalPrimitivePoly| |partition| |fortranLiteralLine| - |coHeight| |pade| |fortranLiteral| |removeConstantTerm| - |changeMeasure| |f04atf| |initializeGroupForWordProblem| |alphabetic?| - |lieAlgebra?| |karatsuba| |edf2df| |setStatus| |rootPoly| |iisech| - |listConjugateBases| |polyRDE| |leftRemainder| |truncate| |submod| - GF2FG |rewriteSetByReducingWithParticularGenerators| |subtractIfCan| - |digamma| |s17agf| |duplicates?| |laplacian| |minPoints3D| |mainValue| - |basicSet| |numberOfComponents| |retract| |prolateSpheroidal| |sup| - |shanksDiscLogAlgorithm| |cSin| |createNormalPoly| |log10| - |genericRightMinimalPolynomial| |integers| |mainMonomial| |dimensions| - |enumerate| |functionIsOscillatory| |iiGamma| |makeEq| - |irreducibleRepresentation| |f04mbf| |argument| |leftQuotient| - |palgextint0| |f07adf| |enterPointData| |perfectSquare?| - |fixPredicate| |fi2df| |kovacic| |message| |stopTableGcd!| |conjugate| - |rightDivide| |expandPower| |twoFactor| |build| |separate| |pdct| - |logical?| |s18aef| |univariatePolynomialsGcds| |adaptive| |cTan| - |fmecg| |cCosh| |extensionDegree| |entry?| |ScanFloatIgnoreSpaces| - |solid| |extendedEuclidean| |plotPolar| |not| |primeFactor| - |showTheIFTable| |tracePowMod| |lazyPrem| |objectOf| |e01bef| - |createLowComplexityTable| |e02baf| |oneDimensionalArray| |isQuotient| - |hex| |isTimes| |genericPosition| |eulerPhi| |groebnerFactorize| - |reverse!| |expenseOfEvaluationIF| |gcdprim| |Beta| - |algebraicDecompose| |isExpt| |reseed| |OMgetEndApp| |infix| - |drawCurves| |mainKernel| |makeMulti| |retractable?| |cAcsch| |name| - |palgLODE0| |simplify| |innerint| |shift| |term| |characteristic| - |genericRightNorm| |OMgetObject| |dioSolve| |generalInfiniteProduct| - |specialTrigs| |chebyshevT| |relerror| |invertible?| |fortranInteger| - |roughUnitIdeal?| |fortranReal| |quadraticForm| |divisors| |digits| - |jordanAlgebra?| |separateFactors| |light| |thetaCoord| - |nextNormalPoly| |d01bbf| |atrapezoidal| |logGamma| |compBound| - |subst| |rowEchLocal| |oddInfiniteProduct| |leftZero| |printingInfo?| - |leadingIndex| |uniform01| |semicolonSeparate| |height| |setEmpty!| - |merge| |symmetricProduct| |constantCoefficientRicDE| |biRank| - |superscript| |rootKerSimp| |every?| |outputAsScript| |d02gbf| - |mapdiv| |pointSizeDefault| |integralRepresents| |sumSquares| - |deepExpand| |meshPar2Var| |increasePrecision| |max| |outputSpacing| - |primeFrobenius| |testModulus| |factorSquareFreeByRecursion| |mulmod| - |aCubic| |combineFeatureCompatibility| |someBasis| |fracPart| - |monicLeftDivide| |in?| |nextNormalPrimitivePoly| |sqfrFactor| - |positive?| |c06fqf| |more?| |init| |critT| |cycleSplit!| - |alternatingGroup| |OMParseError?| |cycleRagits| - |generalizedContinuumHypothesisAssumed| |fortranCarriageReturn| - |generalizedContinuumHypothesisAssumed?| |s17acf| |reify| - |invmultisect| |currentScope| |iitanh| |ramifiedAtInfinity?| |exp1| - |PollardSmallFactor| |factorials| |numFunEvals3D| |contract| |shade| - |objects| |cAcoth| |scripted?| |newTypeLists| |symmetricRemainder| - |region| |swapColumns!| |mainVariables| |decrease| |symmetricSquare| - |base| |semiResultantEuclidean1| |ode2| |imaginary| |normalizeIfCan| - |cyclicParents| |groebgen| |addMatchRestricted| |hspace| |or| - |fractRadix| |factorPolynomial| |rotate| |localAbs| |leastPower| - |newReduc| |OMputBind| |FormatArabic| |toseLastSubResultant| - |sumOfSquares| |and| |wordInGenerators| |romberg| |laguerreL| - |numberOfNormalPoly| |polygamma| |rightNorm| - |factorSquareFreePolynomial| |raisePolynomial| |primextintfrac| - |unexpand| |linearDependence| |nextIrreduciblePoly| |outputFloating| - |cAcsc| |addiag| |zero| |createPrimitiveElement| - |setLegalFortranSourceExtensions| |f02akf| |zeroSquareMatrix| - |systemCommand| |outputFixed| |rootBound| |e04mbf| |xCoord| - |euclideanNormalForm| |e01sff| |legendre| |getRef| |polar| |leader| - |f07fef| |divide| |makeViewport3D| |And| |stosePrepareSubResAlgo| - |resize| |terms| |critBonD| |dictionary| |cn| |tower| |complex?| - |expPot| |gcdcofact| |Or| |front| |endOfFile?| |child?| |geometric| - |unary?| |powerAssociative?| |c05pbf| |merge!| |Not| |iicsc| - |minGbasis| |decompose| |f02awf| |d02bhf| |insertMatch| |ratDenom| - |iicoth| |eigenvectors| |primaryDecomp| |maxrank| |lift| - |LagrangeInterpolation| |basis| |setAdaptive| |f01rcf| - |jordanAdmissible?| |infieldint| |over| |reduce| - |multiplyCoefficients| |bipolar| |external?| |trigs| |complexSolve| - |bumptab1| |paren| |previous| |iiacosh| |safeCeiling| |minimumDegree| - |pow| |pattern| |totolex| |HermiteIntegrate| |c05nbf| |iiabs| - |genericLeftTraceForm| |argumentListOf| |arguments| |iiacoth| - |representationType| |unitCanonical| |rationalFunction| |s13acf| - |d01akf| |rightFactorCandidate| |listOfMonoms| |e02bbf| |algDsolve| - |viewSizeDefault| |sturmSequence| |qinterval| |f01qdf| - |functionIsContinuousAtEndPoints| |outputForm| |discriminantEuclidean| - |iisec| |cCos| FG2F |cyclePartition| |minColIndex| |exprToGenUPS| - |localIntegralBasis| |times!| |initials| |insertRoot!| |identity| - |numberOfMonomials| |univariatePolynomials| |predicate| |approxSqrt| - |overlap| |leastMonomial| |tree| |associatorDependence| |interval| - |iiatan| |/\\| |OMUnknownCD?| |coercePreimagesImages| |ldf2vmf| - |rightTrace| |writable?| |bandedHessian| |f02abf| |cosh2sech| - |stFuncN| |s19abf| |palgRDE| |primlimitedint| |loadNativeModule| |\\/| - |linGenPos| |shallowCopy| |modularGcdPrimitive| |hyperelliptic| - |boundOfCauchy| |d01gbf| |nextPartition| |OMputApp| |squareFreePrim| - |axes| |numberOfFactors| |univariate?| |dihedral| |totalLex| |wreath| - |critB| |moebius| |result| |removeRoughlyRedundantFactorsInContents| - |univcase| BY |trivialIdeal?| |operators| |outputMeasure| |OMreceive| - |clearDenominator| |startTableInvSet!| |systemSizeIF| - |pointColorPalette| |denomRicDE| |infinite?| |mainMonomials| |xn| - |goto| |primintfldpoly| |size?| |selectNonFiniteRoutines| |concat!| - |internalIntegrate0| |quasiMonic?| |externalList| |generalTwoFactor| - |linkToFortran| |euclideanGroebner| |Is| |palginfieldint| - |returnTypeOf| |iiacos| |lquo| |cartesian| |reorder| |OMserve| - |algebraicCoefficients?| |startStats!| |trunc| |autoReduced?| - |maxPoints3D| |normal| |stronglyReduced?| |charthRoot| |cCot| - |mapSolve| |subscriptedVariables| |f2st| |range| |ocf2ocdf| - |rischNormalize| |rationalPoint?| |bit?| |indices| |cyclotomic| - |typeList| |rdregime| |constantRight| |cyclicSubmodule| |dmpToHdmp| - |untab| |parameters| |cardinality| |listexp| |symmetricDifference| - |hermite| |OMputEndObject| |back| |position!| |simplifyExp| - |subHeight| |lowerCase| |f01mcf| |squareFreeFactors| |nthExpon| - |invertibleSet| |readLineIfCan!| |coordinate| |collectUpper| |seed| - |stoseInvertibleSet| |kroneckerDelta| |integralAtInfinity?| - |setCondition!| |readIfCan!| |quote| |palgextint| |Si| - |changeThreshhold| |reduced?| |putGraph| |genericRightTrace| |box| - |prepareDecompose| |monomial?| |selectFiniteRoutines| - |lazyResidueClass| |clearTheSymbolTable| |write!| |lifting1| - |binomial| |imagi| |OMsetEncoding| |evenInfiniteProduct| |superHeight| - |interpolate| |applyRules| |OMbindTCP| |cTanh| |lintgcd| - |innerEigenvectors| |addMatch| |presub| |prefixRagits| - |symmetricGroup| |sylvesterSequence| |palgint| |setScreenResolution| - |blankSeparate| |weights| |irreducibleFactor| |fullDisplay| |ranges| - |perfectSqrt| |swap!| |s21bbf| |d01aqf| |replaceKthElement| |iifact| - |copies| |finiteBasis| |s20adf| |dimension| |f02aef| - |subResultantChain| |GospersMethod| |remove!| |iicsch| |rotatez| - |att2Result| |f02bbf| |f04maf| |initTable!| |problemPoints| - |lfextendedint| |normalForm| |op| |subNodeOf?| |tail| |OMgetSymbol| - |sqfree| |enterInCache| |cyclicCopy| |Frobenius| |horizConcat| - |janko2| |approxNthRoot| |one?| |recolor| |printTypes| |spherical| - |operation| |critpOrder| |stoseInvertibleSetsqfreg| |prime| |lprop| - |e01sbf| |setValue!| |subResultantsChain| |schema| |getButtonValue| - |tanhIfCan| |open?| |monomRDE| |maxRowIndex| |divideIfCan| - |deleteProperty!| |df2mf| |definingInequation| |antiCommutative?| - |dAndcExp| |singRicDE| |pdf2ef| |s17aff| |red| |leftExactQuotient| - |fortranComplex| |critM| |s17dgf| |mathieu11| |squareFree| - |lazyPremWithDefault| |reducedQPowers| |nthFractionalTerm| - |separateDegrees| |taylorQuoByVar| |toseInvertible?| |minrank| - |deepestTail| |setTex!| |OMgetEndAtp| |OMgetEndBVar| |gcdPolynomial| - |symbolIfCan| |setvalue!| |charClass| |exprHasWeightCosWXorSinWX| - |iflist2Result| |monomialIntegrate| |leftRecip| |f04jgf| |isOp| - |stoseSquareFreePart| |f04mcf| |ScanFloatIgnoreSpacesIfCan| - |OMputSymbol| |OMsupportsCD?| |reducedSystem| |s17ajf| |getGoodPrime| - |asecIfCan| |OMgetAttr| |expint| |loopPoints| |sumOfKthPowerDivisors| - |realZeros| |setleft!| |indicialEquations| |rootSimp| - |complexIntegrate| |unaryFunction| |getOrder| |orthonormalBasis| - |hasPredicate?| |composites| |selectIntegrationRoutines| = - |removeDuplicates!| |var1StepsDefault| |explogs2trigs| |logIfCan| - |inspect| |nary?| |chvar| |startPolynomial| |OMopenFile| - |quotedOperators| |LyndonWordsList| |member?| |basisOfRightNucleus| - |binaryTournament| |rationalApproximation| |henselFact| - |fixedPointExquo| |schwerpunkt| |distdfact| |primextendedint| - |generator| |symbolTableOf| |revert| |OMgetVariable| - |supDimElseRittWu?| |delta| < |prinb| |numberOfDivisors| - |compactFraction| |pointLists| |leftRank| |branchPoint?| |anticoord| - |s14baf| |mesh| |transcendenceDegree| > |transcendentalDecompose| - |resetNew| |rightCharacteristicPolynomial| |viewPhiDefault| |exponent| - |limitedIntegrate| |c06fpf| |polyRicDE| |rightExactQuotient| - |epilogue| |commonDenominator| <= |heapSort| |augment| |shiftLeft| - |mvar| |noncommutativeJordanAlgebra?| |normalDenom| |algebraicSort| - |c02agf| |pToHdmp| >= |OMgetAtp| |infiniteProduct| |rightUnits| - |isPlus| |makeCos| |create3Space| |lazy?| |characteristicSet| - |genericLeftNorm| |fortranLinkerArgs| |setprevious!| |splitConstant| - |c06gcf| |patternMatch| |exteriorDifferential| |ridHack1| |traverse| - |algint| |seriesToOutputForm| |datalist| |inc| |rule| |commutator| - |getPickedPoints| |paraboloidal| |createZechTable| |LyndonWordsList1| - |rightGcd| |possiblyNewVariety?| |totalfract| |LazardQuotient2| + - |mdeg| |pushNewContour| |exprex| |f02aff| |maxint| |eulerE| - |ParCondList| |OMgetEndError| |gderiv| |lambda| - - |lazyIrreducibleFactors| |generalLambert| |OMgetEndObject| |cap| - |iomode| |lo| |regularRepresentation| |andOperands| |exactQuotient!| - |laurentRep| |sinh| / |cSinh| |generic?| |call| |quartic| |freeOf?| - |notOperand| |lexico| |incr| |youngGroup| |shiftRight| |overset?| - |monicRightFactorIfCan| |tanQ| |cosh| |measure2Result| |extractPoint| - |formula| |normFactors| |nthExponent| |startTable!| |hi| |failed| - |postfix| |listYoungTableaus| |OMgetType| |internalDecompose| |true| - |tanh| |rightUnit| |checkRur| |exponentialOrder| |tan2trig| - |computeCycleLength| |innerSolve1| |squareTop| |OMreadFile| - |sayLength| |SturmHabicht| |coth| |infieldIntegrate| |bernoulliB| - |and?| |scanOneDimSubspaces| |categoryFrame| |f04adf| |OMputEndError| - |setPrologue!| |factorsOfCyclicGroupSize| |prinshINFO| |sech| - |buildSyntax| |partialFraction| |sh| |mergeFactors| |tableau| - |doublyTransitive?| |conical| |dflist| |curve| |f01qcf| |adaptive3D?| - |qelt| |csch| |stronglyReduce| |bandedJacobian| |weighted| - |solveLinearPolynomialEquationByFractions| |nrows| - |basisOfMiddleNucleus| |generalPosition| |leftMinimalPolynomial| |nil| - |currentSubProgram| |cyclic?| |bitLength| |vectorise| |exptMod| - |asinh| |monomRDEsys| |possiblyInfinite?| |ncols| |oddlambert| - |permutation| |prindINFO| |sechIfCan| |determinant| |laplace| |e01bhf| - |xRange| |acosh| |root?| |lhs| |minIndex| - |removeRoughlyRedundantFactorsInPol| |axesColorDefault| |factorset| - |isobaric?| |stopMusserTrials| |inverseLaplace| |quatern| |monic?| - |nextLatticePermutation| |yRange| |atanh| |imagj| |rhs| |extract!| - |mkIntegral| |weakBiRank| |tanAn| |basisOfLeftNucloid| |low| |lyndon?| - |approximate| |retractIfCan| |aQuartic| |brillhartTrials| |Lazard2| - |zRange| |acoth| |getDatabase| |shellSort| |rightRankPolynomial| - |module| |maxdeg| |complex| |squareFreeLexTriangular| |f02adf| |sign| - |cycle| |hue| |updatF| |map!| |asech| |stoseLastSubResultant| - |dimensionOfIrreducibleRepresentation| |outputList| |acosIfCan| - |inconsistent?| |cycleElt| |heap| |makeTerm| |coth2tanh| - |generalizedEigenvector| |interpretString| |qsetelt!| - |indiceSubResultant| |members| |dihedralGroup| |rootNormalize| - |firstUncouplingMatrix| |setProperty| |arity| |mathieu12| - |reducedDiscriminant| |multiEuclideanTree| |setScreenResolution3D| - |multiple| |getBadValues| |pToDmp| |viewDefaults| |escape| - |lfextlimint| |stirling1| |getIdentifier| |lfintegrate| |nextSublist| - |redPol| |stoseInvertible?| |applyQuote| |copy!| |nil| |infinite| - |arbitraryExponent| |approximate| |complex| |shallowMutable| - |canonical| |noetherian| |central| |partiallyOrderedSet| - |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| - |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| - |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| - |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |expand| |fractRagits| |OMsupportsCD?| |lex| + |tableForDiscreteLogarithm| |Beta| |recur| |numberOfFractionalTerms| + |currentSubProgram| |third| |sumSquares| |jacobi| |highCommonTerms| + |dec| |filterWhile| |OMread| |PDESolve| |unit?| |infix| |lazyPquo| + |cExp| |setMinPoints3D| |choosemon| |internal?| |listRepresentation| + |airyAi| |quickSort| |setelt| + |solveLinearPolynomialEquationByFractions| |filterUntil| + |torsionIfCan| |lexGroebner| |subNodeOf?| |c05nbf| |viewDeltaXDefault| + |redPo| |expandLog| |cAcos| |rewriteIdealWithHeadRemainder| |const| + |qroot| |flatten| |e02bef| |has?| |triangSolve| |contains?| |select| + |iFTable| |OMsetEncoding| |computeInt| |outputMeasure| |ParCondList| + |diagonalProduct| |expandPower| |lquo| |extractPoint| |squareFree| + |min| |copy| |SFunction| |intermediateResultsIF| |nextIrreduciblePoly| + |complexExpand| |symmetricPower| |withPredicates| |roman| |pointColor| + |primintfldpoly| |position!| |parent| |mapExpon| |sequences| + |normInvertible?| |mindeg| |cubic| |closedCurve?| |charthRoot| |iicot| + |complexNumeric| |zag| |autoCoerce| |conical| |trunc| |lyndon?| + |collectQuasiMonic| |pointColorPalette| |exponents| |mpsode| |c05adf| + |stripCommentsAndBlanks| |insertBottom!| |implies?| |exp1| + |inverseColeman| |reverseLex| |makeSUP| + |rewriteSetByReducingWithParticularGenerators| |setMaxPoints| + |leftTraceMatrix| |minordet| |extractBottom!| |kernels| |deepExpand| + |df2fi| |reducedSystem| |tValues| |calcRanges| |check| + |linearAssociatedOrder| |fTable| |normFactors| |insertMatch| + |univariate| |solve1| |radicalRoots| |makeRecord| |algDsolve| + |hypergeometric0F1| |dmp2rfi| |compdegd| |atrapezoidal| |stirling1| + |round| |bag| |hconcat| |constantOperator| |moreAlgebraic?| |iiabs| + |OMmakeConn| |splitConstant| |roughSubIdeal?| |derivative| |birth| + |outerProduct| |modularGcdPrimitive| |FormatArabic| |iiasin| + |dequeue!| |fractionPart| |transpose| |datalist| + |integralMatrixAtInfinity| |hasTopPredicate?| |cSin| |coleman| |width| + |shuffle| |OMconnectTCP| |simplify| |setEmpty!| |addPointLast| + |iiperm| |factorset| |fixedPoint| |OMconnInDevice| |getCurve| + |OMgetEndError| |reducedDiscriminant| |connect| |setLabelValue| + |makeResult| |e01bgf| |adaptive?| |evenInfiniteProduct| + |fortranLogical| |intcompBasis| |extractClosed| |clearTheIFTable| + |ratDsolve| |unaryFunction| |removeZeroes| |polarCoordinates| + |OMputVariable| |leftRankPolynomial| |localUnquote| |coth2tanh| + |whileLoop| |formula| |cAsech| |minPol| |rightQuotient| |setPrologue!| + |cyclic| |edf2efi| |plus!| |cCot| |OMunhandledSymbol| |legendreP| + |eigenvector| |f02aef| |measure| |appendPoint| |viewSizeDefault| + |dflist| |optional| |e02bbf| |supersub| |logGamma| + |partialDenominators| |cyclotomic| |factorAndSplit| |plenaryPower| + |plotPolar| |Gamma| |karatsuba| |PollardSmallFactor| |null| + |derivationCoordinates| |algebraicDecompose| |pushucoef| |backOldPos| + |f02aaf| |exprHasWeightCosWXorSinWX| |checkForZero| |sPol| + |totalGroebner| |shanksDiscLogAlgorithm| |createNormalPoly| |id| + |antisymmetricTensors| |case| |OMgetAtp| |positiveSolve| + |squareFreePolynomial| |mathieu24| |commutativeEquality| + |toseLastSubResultant| |resetNew| |nrows| |monomial?| |transcendent?| + |nthCoef| |viewWriteAvailable| |Zero| |tanh2trigh| |curve?| |s17aff| + |merge| |isobaric?| |extractTop!| |hyperelliptic| |ncols| + |eigenvalues| |branchPointAtInfinity?| |complexIntegrate| |ceiling| + |One| |table| |gderiv| |rightDiscriminant| |countRealRootsMultiple| + |style| |fortranCarriageReturn| |sech2cosh| |trigs| |components| + |splitLinear| |LiePolyIfCan| |deriv| |typeList| + |generalizedEigenvectors| |overbar| |phiCoord| |fintegrate| |getOrder| + |null?| |rightPower| |padicallyExpand| |tab1| + |factorsOfCyclicGroupSize| |sort| |leadingCoefficientRicDE| |presuper| + |internalAugment| |bsolve| |superHeight| |bfEntry| |algintegrate| + |c02aff| |subResultantChain| |headReduced?| |coerceListOfPairs| + |sturmSequence| |degree| |resetBadValues| + |leftCharacteristicPolynomial| |c05pbf| |binaryTree| |sumOfSquares| + |rightCharacteristicPolynomial| |edf2df| |e02dff| |e01sef| |elt| + |mapSolve| |symmetricProduct| |interReduce| |diag| |computeCycleEntry| + |primeFactor| |lastSubResultant| |forLoop| |c06gbf| |mainVariable?| Y + |compBound| |multiEuclideanTree| |makeYoungTableau| |moebius| + |iflist2Result| |stopMusserTrials| |positiveRemainder| + |removeRedundantFactors| |exprToUPS| |genericRightMinimalPolynomial| + |d03edf| |tryFunctionalDecomposition| |internalInfRittWu?| |matrix| + |colorFunction| |OMreadStr| |resultantnaif| |UpTriBddDenomInv| |light| + |random| |selectFiniteRoutines| |flexibleArray| |generic?| + |groebnerFactorize| |changeBase| |aLinear| |prepareSubResAlgo| + |generalizedContinuumHypothesisAssumed?| |reduceBasisAtInfinity| + |factorials| |print| |extend| |frst| |mainDefiningPolynomial| |yellow| + |GospersMethod| |lfunc| |structuralConstants| |simpleBounds?| + |complexSolve| |iisinh| |optpair| |hMonic| |rk4qc| + |noncommutativeJordanAlgebra?| |list| |physicalLength| |f02aff| + |companionBlocks| |useSingleFactorBound?| |consnewpol| |red| + |lazyIrreducibleFactors| |comment| |varList| |rdregime| |complexForm| + |car| |leastAffineMultiple| |boundOfCauchy| |prinshINFO| |palglimint| + |restorePrecision| |getConstant| |explimitedint| |commutator| + |quadraticNorm| |cdr| |differentiate| |wordInGenerators| |Lazard| + |acothIfCan| |dot| |digit| |halfExtendedSubResultantGcd2| + |permutationRepresentation| |e02ddf| |monomials| |userOrdered?| + |setDifference| |OMencodingXML| |bezoutDiscriminant| |sparsityIF| + |purelyAlgebraic?| |unparse| |setStatus| ^ |curve| + |subscriptedVariables| |constantCoefficientRicDE| |hcrf| |subPolSet?| + |setIntersection| |leftFactor| + |removeRoughlyRedundantFactorsInContents| |showFortranOutputStack| + |inverseLaplace| |semiResultantEuclideannaif| |typeLists| + |beauzamyBound| |s18dcf| |gbasis| |clearFortranOutputStack| + |zeroDimensional?| |lineColorDefault| |block| |fill!| |setUnion| + |showTheIFTable| |subscript| |palgintegrate| |monomialIntegrate| + |createPrimitivePoly| |drawCurves| |chainSubResultants| + |euclideanGroebner| |complexEigenvectors| |coordinates| |reverse!| + |apply| |possiblyNewVariety?| |extension| |multiple?| + |lazyResidueClass| |htrigs| |interpolate| |create3Space| |elementary| + |merge!| |quartic| |tubePointsDefault| |s18acf| |remove!| + |viewPhiDefault| |lowerPolynomial| |octon| |minset| |recip| + |scalarTypeOf| |constantRight| |countRealRoots| |cartesian| + |normalDenom| |size| |rightMult| |create| |factor1| |bumptab1| + |denomRicDE| |numFunEvals3D| |realElementary| |meshPar1Var| |c06ekf| + |removeRedundantFactorsInPols| |e04gcf| |resetAttributeButtons| + |romberg| |s17acf| |s17dhf| |getMeasure| |biRank| |s18def| + |setScreenResolution3D| |super| |li| |tubePlot| |universe| |rational| + |buildSyntax| |constructorName| |createMultiplicationTable| + |rangeIsFinite| |freeOf?| |constDsolve| |getCode| |first| |d01gbf| + |quatern| |delay| |move| |mainKernel| |represents| |modulus| + |chebyshevT| |palgint0| |rest| |OMputEndBVar| |normalized?| |#| + |rootPoly| |cCsch| |lazy?| |sizeLess?| |lyndon| |commaSeparate| + |stoseInvertible?sqfreg| |substitute| |sts2stst| |iicsch| |latex| + |zerosOf| |leftRecip| |c06gqf| |reorder| |plus| |OMputFloat| + |rootDirectory| |label| |removeDuplicates| |quadraticForm| |e04ycf| + |showAll?| |unvectorise| |tanNa| |subCase?| |gradient| |sinIfCan| + |ScanArabic| |getPickedPoints| |smith| |pleskenSplit| + |compiledFunction| |bracket| |hasoln| |figureUnits| |s21baf| + |leftExactQuotient| |var2StepsDefault| |setsubMatrix!| |exponent| + |laguerreL| |semiDegreeSubResultantEuclidean| |clearTheSymbolTable| + |say| |integralDerivationMatrix| |crushedSet| |cyclicSubmodule| + |setStatus!| |redpps| |monic?| |binarySearchTree| |clipWithRanges| + |solveid| |divisors| |times| |wordsForStrongGenerators| LODO2FUN + |totalfract| |stoseIntegralLastSubResultant| |tab| |reify| |paren| + |setRow!| |exprToXXP| |associator| |Is| |cylindrical| |gethi| + |messagePrint| |conjugates| |iicsc| |inGroundField?| |option| |rk4f| + |nextPartition| |nand| |scaleRoots| |sturmVariationsOf| |topPredicate| + |patternMatchTimes| |deepestInitial| |rotatez| |complexNormalize| + |cRationalPower| |partialFraction| |balancedFactorisation| |monom| + |LazardQuotient2| |superscript| |numberOfNormalPoly| + |makeFloatFunction| |iisech| |d02cjf| |controlPanel| |stronglyReduce| + |getBadValues| |notOperand| |lhs| |OMputObject| |multisect| |getlo| + |mkPrim| |iicos| |taylorIfCan| |d02ejf| |initiallyReduce| |rhs| + |number?| |seriesSolve| |constantToUnaryFunction| |f01maf| + |linearPolynomials| |concat| |common| |rootOfIrreduciblePoly| + |relationsIdeal| |explicitlyEmpty?| |graphCurves| |ravel| |write!| + |implies| |prefix| |groebner| |nextLatticePermutation| |f04jgf| + |OMreceive| |rowEch| |dmpToHdmp| |infRittWu?| |iroot| + |reducedContinuedFraction| |xor| |swap| |att2Result| |matrixGcd| + |reshape| |fortranComplex| |cTanh| |physicalLength!| |symbol?| + |trace2PowMod| |limitedIntegrate| |diophantineSystem| |rotatey| + |rightOne| |subspace| |rootKerSimp| |unitsColorDefault| |iiacosh| + |genericRightDiscriminant| |lagrange| |e04naf| |isExpt| + |optAttributes| |expenseOfEvaluation| |graphState| |cup| |leftNorm| + |append| |polygamma| |closedCurve| |invmultisect| |swapRows!| + |completeEchelonBasis| |contractSolve| |genericLeftMinimalPolynomial| + |OMputApp| |maxrow| |UnVectorise| |lazyGintegrate| |lazyPrem| |e04jaf| + |power| |elem?| |normal?| |d01fcf| |update| |nodeOf?| + |infiniteProduct| |sh| |iitan| |generic| |delta| |level| RF2UTS + |member?| |parabolic| |operator| |imagj| |elliptic| + |listConjugateBases| |minGbasis| |lexico| |identity| |makeFR| + |unitNormal| |e02akf| |bandedJacobian| F |solveRetract| |list?| + |normalise| |trapezoidal| |setClosed| |lifting1| |f04faf| + |clearDenominator| |getExplanations| |pToDmp| |untab| |digit?| + |anticoord| |d01aqf| |rightMinimalPolynomial| |checkPrecision| |nthr| + |routines| |currentEnv| |f02xef| |lSpaceBasis| |uniform| |ParCond| + |integralBasis| |clipBoolean| |rightUnits| |isOp| |lintgcd| |pureLex| + |condition| |extensionDegree| |safeCeiling| |npcoef| |position| + |updatF| |solve| |moduloP| |uncouplingMatrices| |linear?| |numer| + |saturate| |reseed| |currentScope| |interpret| |e02agf| |real?| + |sort!| |factorPolynomial| |denom| |binding| |mergeFactors| + |factorSFBRlcUnit| |besselJ| |bringDown| |prime| |definingInequation| + |rightTraceMatrix| |middle| |numberOfFactors| |getRef| |sample| + |laplace| |rst| |firstNumer| |pi| |d01alf| |OMgetEndAtp| |properties| + |f02wef| |outlineRender| |localReal?| |infinity| |selectsecond| + |csubst| |OMgetInteger| |repeating?| |translate| |pseudoRemainder| + |graphs| |pascalTriangle| |palgRDE| |nextItem| |palgextint| + |OMcloseConn| |lowerCase?| |tubeRadius| GE |stop| |jordanAdmissible?| + |fractionFreeGauss!| |denominator| |e02baf| |getVariableOrder| D + |stoseLastSubResultant| GT |endOfFile?| |pushuconst| |realRoots| + |kernel| |lifting| |replaceKthElement| |tanIfCan| |rename| |leftMult| + |nsqfree| LE |term| |draw| |generalPosition| |fixedDivisor| + |cycleEntry| |addmod| |more?| |firstUncouplingMatrix| |lprop| LT + |doubleComplex?| |univariateSolve| |bernoulliB| |points| + |newSubProgram| |setright!| |chineseRemainder| |intersect| |safeFloor| + |generateIrredPoly| |entry?| |asechIfCan| + |semiIndiceSubResultantEuclidean| |nonSingularModel| + |dimensionOfIrreducibleRepresentation| |patternMatch| |index?| + |rotate| |FormatRoman| |match?| |tan2cot| |univariate?| |d03eef| + |halfExtendedResultant2| |llprop| |init| |makeObject| + |createNormalElement| |setelt!| |e01bhf| |Si| |viewWriteDefault| + |antiCommutative?| |element?| |push!| |tryFunctionalDecomposition?| + |s14baf| |crest| |OMReadError?| |abs| |isMult| |e01sbf| |rootPower| + |odd?| |removeSinSq| |coef| |critT| |defineProperty| |leftZero| + |qfactor| |oneDimensionalArray| |iifact| + |rewriteIdealWithQuasiMonicGenerators| |changeMeasure| |retract| + |prime?| |exQuo| |OMgetError| |equiv?| |printCode| |setVariableOrder| + |OMgetEndBVar| |and?| |getSyntaxFormsFromFile| |mapExponents| + |cycleTail| |rootRadius| |dihedral| |equivOperands| |deleteRoutine!| + |univariatePolynomial| |leftAlternative?| |child?| + |stiffnessAndStabilityOfODEIF| |localAbs| |qPot| |primlimitedint| + |plusInfinity| |nextsubResultant2| |fortran| |setProperty| |acosIfCan| + |infieldint| |remainder| |writeLine!| |minusInfinity| |coefficient| + |viewpoint| |elRow2!| |isQuotient| |mapmult| |changeNameToObjf| + |randnum| |equality| |countable?| |distFact| |Ei| |lookup| |maxIndex| + |orbit| |addPoint| |changeThreshhold| |pointColorDefault| + |nextSubsetGray| |setValue!| |mapDown!| |root?| |socf2socdf| |imagE| + |dAndcExp| |expintegrate| |autoReduced?| |zeroDim?| |bernoulli| + |unrankImproperPartitions0| |cycleSplit!| |palgRDE0| |function| + |rationalIfCan| |iibinom| |ScanFloatIgnoreSpaces| + |numberOfPrimitivePoly| |addBadValue| |invertIfCan| |height| + |showTheSymbolTable| |printingInfo?| |copies| |type| |OMputInteger| + |f04atf| |scanOneDimSubspaces| |f04asf| |weight| |leftPower| + |abelianGroup| |mesh| |s14aaf| |outputArgs| |cond| |max| + |computePowers| |f01brf| |fortranDouble| |order| |ricDsolve| + |gcdPolynomial| |localIntegralBasis| |badNum| |inconsistent?| + |leastPower| |rischDEsys| |constantOpIfCan| |leftUnit| |eval| |invmod| + |tubePoints| |expandTrigProducts| |e02dcf| |composite| + |setProperties!| |reduced?| |point?| |reciprocalPolynomial| + |subResultantsChain| |minIndex| |children| |critMonD1| |over| |keys| + |palgextint0| |chebyshevU| |geometric| |pomopo!| |tanh2coth| + |tanintegrate| |alternatingGroup| |arity| |setref| |setRealSteps| + |semiSubResultantGcdEuclidean2| |replace| |lp| |central?| |linGenPos| + |iiasech| |besselI| |leadingIndex| |solveInField| |f07fdf| + |listBranches| |finiteBasis| |fillPascalTriangle| |categoryFrame| + |whatInfinity| |integralMatrix| |OMopenFile| |s17dlf| |karatsubaOnce| + |primes| |numberOfVariables| |mapUnivariate| |setMaxPoints3D| + |doubleRank| |cycleElt| |definingEquations| |infinite?| |script| + |newReduc| |stoseInvertible?reg| |bipolarCylindrical| |scan| |lcm| + |times!| |systemCommand| |precision| |d02kef| |normalize| + |setTopPredicate| |clipParametric| |insert| + |indiceSubResultantEuclidean| |c06frf| |initializeGroupForWordProblem| + |algebraic?| |prevPrime| |noKaratsuba| |leader| |solid| |mantissa| + |OMgetApp| |symbolIfCan| |putGraph| |validExponential| |cn| |tower| + |tablePow| |fibonacci| |singRicDE| |tex| |makeSin| + |removeRoughlyRedundantFactorsInPol| |rightRecip| |discriminant| + |monomialIntPoly| |makeMulti| |s17ahf| |OMputEndBind| |gcd| |error| + |d01amf| |e02bcf| |OMParseError?| |parametric?| |e01baf| |f07adf| + |aromberg| |uniform01| |union| |d01asf| |assert| |transcendenceDegree| + |f04adf| |multiplyCoefficients| |false| |rightExtendedGcd| |sinhcosh| + |norm| |s20adf| |rectangularMatrix| |alphabetic| |atoms| + |exprHasLogarithmicWeights| |cosSinInfo| |shiftRoots| + |extractSplittingLeaf| |d01ajf| |upperCase!| |fullPartialFraction| + |increment| |quotedOperators| |unary?| |heap| |gcdcofactprim| |redmat| + |alphabetic?| |Ci| |bit?| |lighting| |expintfldpoly| + |characteristicSet| |OMputBind| |shallowCopy| |iiacsc| |rroot| |ipow| + |mathieu12| |zoom| |ksec| |integrate| |genericRightTrace| |bitCoef| + |dom| |df2st| |integral?| |primitivePart| |rdHack1| + |numberOfIrreduciblePoly| |monicDecomposeIfCan| |isList| + |quasiRegular?| |setvalue!| |tree| |/\\| |semicolonSeparate| + |degreeSubResultant| |makeEq| |cross| |changeName| |axesColorDefault| + |summation| |numFunEvals| |body| |\\/| |initials| |nthFactor| + |principalIdeal| |nil| |headReduce| |inRadical?| |leftOne| + |extendedEuclidean| |bipolar| |cycleRagits| |any| |sin2csc| |less?| + |logIfCan| |maxint| |innerSolve| |e02daf| |fprindINFO| |f04qaf| + |normal| |brillhartIrreducible?| |pdf2ef| |equation| |stFunc2| + |thetaCoord| |realEigenvectors| |asinhIfCan| |OMputEndError| |symFunc| + |title| |makeTerm| |startTableGcd!| |monicRightDivide| |approximate| + |nullity| |transcendentalDecompose| |dimension| |irreducible?| + |primitiveElement| |or| |inverseIntegralMatrixAtInfinity| |indices| + |sylvesterMatrix| |complex| |pushdterm| |lieAlgebra?| |rowEchelon| + |and| |fortranCompilerName| |coth2trigh| |factorsOfDegree| FG2F + |cAtan| |permanent| |charClass| |exponential| |e| |idealiser| + |algebraicVariables| |lflimitedint| |subset?| |normalizeIfCan| + |d02raf| |leaves| |anfactor| |prepareDecompose| |powerAssociative?| + |harmonic| |mapMatrixIfCan| |antiCommutator| |LazardQuotient| |scale| + |generalizedContinuumHypothesisAssumed| |blue| |log| + |matrixDimensions| |mirror| |maxPoints3D| |shrinkable| |coerceP| + |external?| |obj| |conditionP| |queue| ** |irreducibleRepresentation| + |univariatePolynomialsGcds| |SturmHabichtSequence| |possiblyInfinite?| + |pr2dmp| |normalizedAssociate| |overlabel| |cache| |normalElement| + |interpretString| |basisOfNucleus| |inspect| |nullary?| |setOfMinN| + |orthonormalBasis| |iisqrt3| |rur| |cyclotomicDecomposition| |trim| + |rationalPoints| |any?| |numberOfDivisors| |qinterval| EQ + |approxNthRoot| |scalarMatrix| |nextNormalPoly| |makeGraphImage| + |logpart| |removeRoughlyRedundantFactorsInPols| |OMwrite| + |radicalEigenvector| |concat!| |OMputEndAtp| |rightRemainder| + |primitivePart!| |rightRank| |fullDisplay| |sumOfDivisors| + |cyclePartition| |maxrank| |zero?| |stopTable!| |cyclicEntries| + |outputFixed| |findCycle| |exteriorDifferential| |primintegrate| + |bandedHessian| |difference| |floor| |twist| |stoseInvertible?| + |ffactor| |cCsc| |ord| |oblateSpheroidal| |infinityNorm| + |subResultantGcd| |eulerE| |OMputString| |collectUpper| |integers| + |polyPart| |maxRowIndex| |qelt| |someBasis| |makeCrit| |powmod| + |primPartElseUnitCanonical| |semiSubResultantGcdEuclidean1| + |bivariatePolynomials| |hasPredicate?| |s17aef| |maxdeg| + |fortranLiteralLine| |mkAnswer| |cAsin| |psolve| |characteristic| + |hdmpToP| |search| |complexZeros| |lambda| |one?| |xRange| |pattern| + |drawComplexVectorField| |f02axf| |movedPoints| |OMputAtp| + |cyclicParents| |tan2trig| |modifyPointData| |complex?| |removeCosSq| + |yRange| |length| |adaptive| |f01qdf| |rewriteIdealWithRemainder| + |oddlambert| |toseInvertible?| |dominantTerm| |gcdPrimitive| + |internalZeroSetSplit| |zRange| |scripts| + |stoseInternalLastSubResultant| |oddintegers| |BumInSepFFE| |lambert| + |hostPlatform| |OMgetFloat| |enterPointData| |linearPart| |rootOf| + |map!| |binomThmExpt| |ranges| |inHallBasis?| |zeroDimPrime?| + |acotIfCan| |setButtonValue| |rootBound| |indiceSubResultant| + |qsetelt!| |internalIntegrate0| |dimensionsOf| |seed| + |compactFraction| |rquo| |mainMonomial| |LyndonWordsList| |iExquo| + |s13adf| |computeCycleLength| |laplacian| |rotate!| + |leftRegularRepresentation| |copy!| |lazyIntegrate| |radix| + |maxPoints| |bat1| |trigs2explogs| |increase| + |squareFreeLexTriangular| |fracPart| |extendedResultant| |qqq| + |f02abf| |OMgetEndBind| |stronglyReduced?| |deepCopy| + |toseSquareFreePart| |removeSuperfluousQuasiComponents| |fglmIfCan| + |nthRoot| |mainMonomials| |size?| |leadingBasisTerm| |iidsum| |iicosh| + |LagrangeInterpolation| |OMgetBind| |exponential1| |composites| + |remove| |recolor| |setImagSteps| |omError| + |functionIsContinuousAtEndPoints| |normalDeriv| |laurentRep| + |absolutelyIrreducible?| |computeBasis| |f01ref| |direction| + |jacobian| |surface| |rightTrim| |minPoly| |cyclicGroup| |closed?| + |acsch| |unitCanonical| |selectSumOfSquaresRoutines| |groebgen| + |d01bbf| |cothIfCan| |setchildren!| |ref| |initiallyReduced?| + |leftTrim| |last| |mapCoef| |exists?| |divideIfCan| |basisOfCenter| + |nextPrimitiveNormalPoly| |linearlyDependent?| |repeatUntilLoop| + |powern| |hclf| |karatsubaDivide| |updatD| |prem| |assoc| + |nthRootIfCan| |multiplyExponents| |retractable?| |permutation| + |innerint| |vconcat| |genericRightNorm| |pointLists| |inc| |f01qef| + |stoseInvertibleSet| |rule| |e04mbf| |f04arf| + |zeroSetSplitIntoTriangularSystems| |getGraph| + |setAttributeButtonStep| |clip| |degreePartition| |cTan| |ddFact| + |weierstrass| |bright| |lazyPseudoDivide| |genericLeftNorm| |expPot| + |eigenMatrix| |divideIfCan!| |HenselLift| |minPoints3D| + |basisOfCentroid| |ode1| |monicLeftDivide| |coHeight| + |resultantEuclidean| |addPoint2| |rationalPower| |mathieu22| + |alphanumeric?| |cSec| |bezoutMatrix| |innerSolve1| |primlimintfrac| + |exquo| |minrank| |subNode?| |call| |members| |f02adf| |axes| |s17def| + |pseudoDivide| |perfectSqrt| |div| |lastSubResultantElseSplit| + |elRow1!| |tanSum| |insertRoot!| |OMUnknownSymbol?| |string?| |next| + UTS2UP |cSinh| |c06gcf| |select!| |delete| |normalizedDivide| |quo| + |nlde| |squareFreePart| |previous| |s21bcf| |Nul| |mainForm| |push| + |aQuadratic| |perspective| |invertibleElseSplit?| |cosh2sech| + |kroneckerDelta| |plot| |zeroSetSplit| |integer?| |viewport2D| + |createLowComplexityTable| |string| |e04ucf| |getMultiplicationMatrix| + |rem| |evenlambert| |iilog| |B1solve| |mapBivariate| |rowEchLocal| + |topFortranOutputStack| |printTypes| |basisOfMiddleNucleus| + |discreteLog| |rationalFunction| |expextendedint| |addMatchRestricted| + |prinpolINFO| |basis| |perfectSquare?| |bumprow| |c06ebf| |column| + |kmax| |selectNonFiniteRoutines| |leftRank| |prindINFO| |predicate| + |jacobiIdentity?| |in?| |solveLinearPolynomialEquation| + |deleteProperty!| |xCoord| |e04dgf| |extendIfCan| + |purelyAlgebraicLeadingMonomial?| |insertionSort!| + |exprHasAlgebraicWeight| |semiLastSubResultantEuclidean| |squareTop| + |pushdown| |generalLambert| |content| |acscIfCan| |integerIfCan| + |mainValue| |iiasec| |useEisensteinCriterion?| |transform| |froot| + |doubleFloatFormat| |setleaves!| UP2UTS |retractIfCan| |radPoly| + |mightHaveRoots| |trueEqual| |fmecg| |euler| |definingPolynomial| + |f2st| |status| |expr| |zCoord| |sign| |key?| |newLine| |vark| + |integralAtInfinity?| |indicialEquation| |OMputEndApp| |diagonals| + |linears| |complete| |rightAlternative?| |firstSubsetGray| |swap!| + |nextPrime| |explicitEntries?| |pade| |s15aef| |spherical| |gcdcofact| + |nextNormalPrimitivePoly| |minPoints| |stFuncN| |log10| |hdmpToDmp| + |diagonal?| |iisin| |viewZoomDefault| |badValues| |s13acf| |bitand| + |varselect| |s17adf| |c06eaf| |deepestTail| |oddInfiniteProduct| + |setPosition| |euclideanNormalForm| |e01bff| |variable| |parameters| + |bitior| |hspace| |mainCoefficients| |not| |euclideanSize| + |viewPosDefault| |factors| |f01qcf| |dihedralGroup| |imagJ| |randomLC| + |modifyPoint| |OMreadFile| |setAdaptive| |OMgetEndObject| |delete!| + |mainContent| |coerceImages| |associatedSystem| |cCosh| |exp| + |errorInfo| |cons| |cfirst| |makeprod| |optimize| |edf2fi| |df2mf| + |fortranCharacter| |sechIfCan| |nodes| + |solveLinearPolynomialEquationByRecursion| + |numberOfImproperPartitions| |range| |groebSolve| |symbol| |cycle| + |yCoord| |t| |ran| |branchPoint?| |solveLinear| |gramschmidt| + |setCondition!| |repSq| |applyRules| |createMultiplicationMatrix| + |characteristicPolynomial| |map| |option?| |groebnerIdeal| |power!| + |read!| |sqfrFactor| |totalDegree| |critpOrder| |integer| |quotient| + |unmakeSUP| |generalSqFr| |commutative?| |dimensions| |square?| + |splitNodeOf!| |quasiComponent| |denominators| |multMonom| + |putColorInfo| |leadingSupport| |generalTwoFactor| |nullary| + |setFieldInfo| |c06gsf| |s13aaf| |sayLength| |virtualDegree| |cap| + |coerceL| |adaptive3D?| |semiResultantEuclidean2| |completeEval| + |basicSet| |extendedint| |s21bbf| |selectIntegrationRoutines| + |associatedEquations| |selectPolynomials| |wordInStrongGenerators| + |iCompose| |e01sff| |selectPDERoutines| |OMputEndAttr| + |resetVariableOrder| |f04axf| |row| |fractRadix| |fortranLiteral| + |vspace| |complementaryBasis| |clikeUniv| |rischDE| |setOrder| + |unravel| |convert| |midpoints| |s19abf| |outputForm| |printInfo!| + |f07aef| |readIfCan!| |e02ahf| |setnext!| |pseudoQuotient| + |vertConcat| |roughBasicSet| |drawComplex| |semiDiscriminantEuclidean| + |double| |realZeros| |ridHack1| |ptree| |or?| |atom?| |setTex!| + |showClipRegion| |separant| |ocf2ocdf| |compile| |cotIfCan| |hue| + |front| |complexLimit| |lazyPseudoRemainder| |leftScalarTimes!| + |myDegree| |s14abf| SEGMENT |zero| |determinant| |result| |infLex?| + |factor| |numberOfChildren| |char| |OMbindTCP| |showTheRoutinesTable| + |stoseInvertibleSetsqfreg| |generalInfiniteProduct| |d01akf| |s19acf| + |enumerate| |hermiteH| |listOfLists| |positive?| |split!| |sqrt| + |viewThetaDefault| |reindex| |rootNormalize| |leftGcd| + |stoseInvertibleSetreg| |mkcomm| |seriesToOutputForm| |node?| + |midpoint| |getZechTable| |associative?| |removeDuplicates!| |And| + |idealSimplify| |SturmHabicht| |LyndonCoordinates| |real| |acoshIfCan| + |clearTable!| |monicDivide| |s17akf| |nary?| |setleft!| |reducedForm| + |Or| |getOperator| |f01rcf| |printHeader| |subtractIfCan| |imag| + |distdfact| |tracePowMod| |neglist| |legendre| |f04mbf| |usingTable?| + |brace| |mesh?| |ignore?| |sylvesterSequence| |fortranDoubleComplex| + |Not| |curveColorPalette| |component| |directProduct| |readable?| + |d02bbf| |particularSolution| |float| |reduceByQuasiMonic| + |alternative?| |hash| |baseRDE| |numberOfComponents| + |isAbsolutelyIrreducible?| |RemainderList| |quote| + |discriminantEuclidean| |quasiMonic?| |lllip| |iomode| |pdf2df| |int| + |comparison| |linkToFortran| |integerBound| |insertTop!| + |decreasePrecision| |findBinding| |declare!| |lazyPseudoQuotient| + |bivariate?| |resultant| |destruct| |explicitlyFinite?| |moduleSum| + |nthFlag| |count| |minColIndex| |conjug| |decrease| |interval| + |leviCivitaSymbol| |functionIsOscillatory| |leadingTerm| + |binaryFunction| |moebiusMu| |eq?| |makeViewport3D| + |primPartElseUnitCanonical!| |rightFactorCandidate| |value| + |ellipticCylindrical| |close!| |ef2edf| |internalIntegrate| + |removeConstantTerm| |c06fqf| |OMclose| |sin?| |lieAdmissible?| + |cot2tan| |constant?| |setlast!| |distribute| |ratpart| |bits| + |infieldIntegrate| |ptFunc| |clipSurface| |empty?| |ODESolve| + |integralLastSubResultant| |void| |iiasinh| |limitedint| |adjoint| + |e02ajf| |OMputBVar| |var1StepsDefault| |makeSketch| |monomial| + |identityMatrix| |completeHermite| |prolateSpheroidal| |iisec| + |specialTrigs| |argument| |symbolTable| |cyclic?| |twoFactor| + |groebner?| |simplifyExp| |partialQuotients| |multivariate| + |divergence| |OMgetSymbol| |morphism| |split| |drawStyle| + |degreeSubResultantEuclidean| |iisqrt2| |primextendedint| + |nthExponent| |cAtanh| |rischNormalize| |variables| |outputFloating| + |readLine!| |hexDigit| |pushFortranOutputStack| |d02gaf| |complement| + |bumptab| |meshPar2Var| |OMgetString| |d01anf| |satisfy?| |tail| + |rk4a| |graeffe| |BasicMethod| |chvar| |iiatan| |indicialEquations| + |popFortranOutputStack| |leftFactorIfCan| |perfectNthRoot| |opeval| + |pmintegrate| |trailingCoefficient| |schema| |s17ajf| + |numberOfOperations| |iiGamma| |lllp| |palgint| |outputAsFortran| + |hasSolution?| |hasHi| |digamma| |bombieriNorm| |aQuartic| + |numberOfComposites| |key| |scopes| |complexRoots| |listOfMonoms| + |iprint| |pile| |algebraicOf| |factorSquareFree| |modTree| |singular?| + |linSolve| |laguerre| |substring?| |options| |skewSFunction| + |exprToGenUPS| |extractIndex| |processTemplate| |partitions| + |explogs2trigs| |lazyPremWithDefault| |taylor| |child| + |extendedSubResultantGcd| |output| |cycleLength| + |genericLeftTraceForm| |top!| |build| |limit| |OMgetObject| + |symmetricSquare| |evaluateInverse| |subHeight| |inverse| |filename| + |increasePrecision| NOT |regularRepresentation| |laurent| |sqfree| + |stosePrepareSubResAlgo| |exactQuotient| |suffix?| |cCos| + |selectfirst| |subresultantSequence| |sup| |matrixConcat3D| + |maximumExponent| |bubbleSort!| |halfExtendedSubResultantGcd1| + |segment| |puiseux| |top| OR |selectOrPolynomials| |secIfCan| + |simplifyLog| |constant| |besselY| |rootSimp| |bitTruth| |pushup| + |bitLength| |areEquivalent?| |ratDenom| |subresultantVector| + |continue| AND |factorOfDegree| |cAcsc| |setMinPoints| + |lastSubResultantEuclidean| |not?| |prefix?| |getIdentifier| + |traverse| |SturmHabichtCoefficients| |symbolTableOf| + |singularitiesOf| |s18aff| |rationalPoint?| |inv| |color| + |internalSubPolSet?| |getGoodPrime| |parse| |new| |showTypeInOutput| + |quadratic?| |edf2ef| |OMUnknownCD?| |s19aaf| |startTable!| + |brillhartTrials| |ground?| |subMatrix| |generator| |makeop| |leaf?| + |setProperties| |modularGcd| |reverse| |debug3D| |lowerCase| |empty| + |ground| |slash| |probablyZeroDim?| |makeViewport2D| |iiacsch| |iiexp| + |sizePascalTriangle| |setScreenResolution| |monicCompleteDecompose| + |mindegTerm| |leadingMonomial| |getButtonValue| |palglimint0| + |enqueue!| |relativeApprox| |baseRDEsys| |compound?| |knownInfBasis| + |partialNumerators| |leadingCoefficient| |numberOfHues| + |minimumExponent| |argumentListOf| |externalList| |rootsOf| |product| + |outputSpacing| |regime| |primitiveMonomials| |getMultiplicationTable| + |intPatternMatch| |getProperty| |infix?| |shallowExpand| + |changeWeightLevel| |separate| |vector| |setErrorBound| + |sortConstraints| |reductum| |enterInCache| |repeating| |mask| + |showIntensityFunctions| |dioSolve| |genericRightTraceForm| |cos2sec| + |postfix| |mix| |subQuasiComponent?| |csch2sinh| |rotatex| |algint| + |equiv| |revert| |reducedQPowers| |signAround| * |lift| + |numberOfCycles| |resize| |rootSplit| |byte| |quasiMonicPolynomials| + |getMatch| |semiResultantEuclidean1| |f01mcf| |asinIfCan| |lo| + |reduce| |addiag| |splitDenominator| |asecIfCan| |safetyMargin| + |permutationGroup| |iiacot| |reopen!| |Lazard2| |tube| |iiacoth| + |left| |elColumn2!| |coercePreimagesImages| |vectorise| + |primeFrobenius| |prologue| |hexDigit?| |upDateBranches| |leftLcm| + |right| |stFunc1| |graphImage| |coefChoose| |radicalOfLeftTraceForm| + |normal01| |arguments| |basisOfCommutingElements| |roughBase?| + |ListOfTerms| |coerceS| |antiAssociative?| |setPredicates| |iicoth| + |listYoungTableaus| |genericLeftTrace| |polygon?| |flagFactor| + |rightLcm| |rombergo| |blankSeparate| |alternating| + |halfExtendedResultant1| |tanhIfCan| |nonQsign| |index| + |mainCharacterization| |intChoose| |pdct| |makingStats?| + |mapUnivariateIfCan| |lfintegrate| |returnType!| |cyclicCopy| + |wrregime| |principal?| |numericIfCan| |dmpToP| |squareFreeFactors| + |hex| |returns| |complexElementary| |var2Steps| |genus| + |OMgetVariable| |variable?| |singularAtInfinity?| |testModulus| + |lazyVariations| |createPrimitiveElement| |argscript| |OMgetAttr| + |pair| |s21bdf| |triangular?| |Vectorise| |triangularSystems| + |heapSort| |getDatabase| |headRemainder| |algSplitSimple| |ldf2vmf| + |ode2| |OMgetType| |nthFractionalTerm| |internalLastSubResultant| + |removeSinhSq| |terms| |rootProduct| |exptMod| + |resultantReduitEuclidean| |showAllElements| |quasiRegular| + |clearCache| |indicialEquationAtInfinity| |cyclotomicFactorization| + |e04fdf| |elliptic?| |mr| |cschIfCan| |recoverAfterFail| + |getProperties| |removeSuperfluousCases| |rank| |totalLex| + |setFormula!| |ode| |finite?| |factorial| |curryRight| |nthExpon| + |createGenericMatrix| |center| |polygon| |integral| |colorDef| + |makeSeries| |weights| |logical?| |eigenvectors| |getOperands| + |bfKeys| |currentCategoryFrame| |Frobenius| |expint| + |incrementKthElement| |pop!| |OMsupportsSymbol?| + |factorSquareFreeByRecursion| |depth| |isTimes| + |setLegalFortranSourceExtensions| |triangulate| |extendedIntegrate| + |printInfo| |mat| |patternVariable| |inrootof| |mathieu23| + |unprotectedRemoveRedundantFactors| |f02ajf| |open?| |double?| + |message| |high| |supDimElseRittWu?| |nextSublist| |nextColeman| + |goodPoint| |makeVariable| |shellSort| |contract| |imaginary| + |curveColor| |separateDegrees| |internalDecompose| |lists| |augment| + |setClipValue| |padicFraction| |nor| |rightTrace| |sinh2csch| + |createNormalPrimitivePoly| |cAsec| |approximants| |critBonD| |float?| + |numerators| |operation| |leftQuotient| |OMencodingSGML| + |roughEqualIdeals?| |invertibleSet| |unitVector| |wreath| + |horizConcat| |solveLinearlyOverQ| |preprocess| |name| + |startPolynomial| |d01gaf| |nil?| |bottom!| |mulmod| |endSubProgram| + |generalizedEigenvector| |LowTriBddDenomInv| |even?| |toScale| |prinb| + |setPoly| |pack!| |sub| |true| |dn| |createLowComplexityNormalBasis| + |minRowIndex| |loopPoints| |randomR| |monomRDEsys| |rightUnit| + |toseInvertibleSet| |genericPosition| |f02akf| |denomLODE| |pquo| + |irreducibleFactor| |s18aef| |complexNumericIfCan| |sec2cos| + |rightFactorIfCan| |reflect| |callForm?| |f01bsf| + |factorGroebnerBasis| |pair?| |zeroOf| |expressIdealMember| |debug| + |decimal| |rightZero| |rightRankPolynomial| |shade| |s15adf| + |internalSubQuasiComponent?| |primaryDecomp| |refine| |shiftLeft| + |janko2| |completeSmith| |createIrreduciblePoly| |OMputError| + |poisson| |redPol| |readLineIfCan!| |showSummary| + |resultantEuclideannaif| |nilFactor| |evaluate| |monomRDE| |notelem| + |nonLinearPart| |besselK| |credPol| |completeHensel| |alphanumeric| + |critB| |largest| |eyeDistance| |c06fuf| |flexible?| |writable?| + |variationOfParameters| |aCubic| |space| |showAttributes| + |zeroDimPrimary?| |generators| |sumOfKthPowerDivisors| |head| + |magnitude| |selectODEIVPRoutines| |branchIfCan| |zeroSquareMatrix| + |coord| |removeCoshSq| |unit| |checkRur| |partition| |eulerPhi| + |dictionary| |singleFactorBound| |leftUnits| |perfectNthPower?| |find| + |distance| |fortranReal| |changeVar| |module| |cLog| |cAcoth| + |innerEigenvectors| |reduceLODE| |taylorQuoByVar| |coordinate| + |OMlistSymbols| |dark| |corrPoly| |medialSet| |basisOfRightNucloid| + F2FG |factorList| |powers| |linear| |pointData| |mvar| |s17dcf| + |basisOfRightNucleus| |upperCase| |combineFeatureCompatibility| + |decomposeFunc| |arrayStack| |lfinfieldint| |f02bbf| |ramified?| + |showTheFTable| |cSech| |divisorCascade| |exponentialOrder| |iipow| + |paraboloidal| |polynomial| |rk4| |expIfCan| |outputGeneral| + |fixPredicate| |airyBi| |droot| |rightNorm| |s18adf| |e01daf| + |loadNativeModule| |setProperty!| |curry| |useEisensteinCriterion| + |po| |rightRegularRepresentation| |c06fpf| |printStatement| BY + |character?| |impliesOperands| |every?| |failed?| |close| |extract!| + |relerror| |wholeRadix| |scripted?| |duplicates| |newTypeLists| + |stirling2| |palgLODE| |drawToScale| |coefficients| + |numberOfMonomials| |cyclicEqual?| |pmComplexintegrate| |subSet| + |display| |subst| |basisOfRightAnnihilator| |squareFreePrim| + |multiEuclidean| |ideal| |curryLeft| |closeComponent| |bindings| + |identification| |node| |solid?| |erf| |imagI| |linearMatrix| + |radicalEigenvalues| |var1Steps| |primitive?| |critM| |youngGroup| + |differentialVariables| |f04maf| |extractProperty| |declare| + |nextsousResultant2| |fi2df| |belong?| |cardinality| |symmetric?| + |LyndonBasis| |splitSquarefree| |polyRDE| |outputAsTex| |f02bjf| + |OMconnOutDevice| |negative?| |rewriteSetWithReduction| |viewport3D| + |dilog| |factorSquareFreePolynomial| |subResultantGcdEuclidean| + |packageCall| |multiset| |binaryTournament| |aspFilename| |shufflein| + |ratPoly| |realEigenvalues| |input| |mkIntegral| |irreducibleFactors| + |sin| |binomial| |stoseSquareFreePart| |imagk| |addMatch| |taylorRep| + |cCoth| |semiResultantReduitEuclidean| |library| |sorted?| |objects| + |rational?| |cos| |critMTonD1| |d01apf| |powerSum| |ldf2lst| + |orOperands| |outputAsScript| |decompose| |noLinearFactor?| |base| + |accuracyIF| |tan| |iitanh| |minimumDegree| |pointPlot| |Aleph| + |LiePoly| |univariatePolynomials| |tRange| |selectAndPolynomials| + |functionIsFracPolynomial?| |normalizeAtInfinity| |cot| |e01saf| + |antisymmetric?| |leftDivide| |symmetricRemainder| |palginfieldint| + |listLoops| |shiftRight| |viewDefaults| |leadingExponent| |parts| + |polyRicDE| |sec| |OMgetBVar| |quotientByP| |predicates| |associates?| + |e02bdf| |elements| |listexp| |linearlyDependentOverZ?| |set| |mapUp!| + |initTable!| |csc| |numericalOptimization| |showScalarValues| |green| + |useNagFunctions| |minimalPolynomial| |cAsinh| |removeSquaresIfCan| ~ + |factorByRecursion| |raisePolynomial| |numeric| |e02zaf| |asin| + |cAcot| |tableau| |bezoutResultant| |univcase| |identitySquareMatrix| + |kovacic| |dim| |property| |lepol| |nativeModuleExtension| + |linearAssociatedLog| |radical| |f01rdf| |mainPrimitivePart| |acos| + |stack| |sncndn| |leftRemainder| |directory| |totalDifferential| + |divisor| |minus!| |f2df| |d02gbf| |s17agf| |weakBiRank| |pastel| + |atan| |f04mcf| |radicalSolve| |createZechTable| + |rationalApproximation| |minimize| |squareMatrix| |arg1| |fixedPoints| + |certainlySubVariety?| |modularFactor| |generalizedInverse| |acot| + |imagi| |lowerCase!| |linearAssociatedExp| |traceMatrix| |presub| + |invertible?| |units| |arg2| |overset?| |asimpson| |problemPoints| + |rightExactQuotient| |asec| |pow| |mainSquareFreePart| |open| + |approxSqrt| |cosIfCan| |contours| |s17dgf| |mainVariable| |inR?| + |OMlistCDs| |leftExtendedGcd| |acsc| |se2rfi| |purelyTranscendental?| + |sn| |firstDenom| |conditions| |radicalEigenvectors| |subTriSet?| + |fortranTypeOf| |box| |andOperands| |polar| |s19adf| |sinh| + |doublyTransitive?| |stopTableInvSet!| |doubleResultant| |sdf2lst| + |lazyEvaluate| |op| |symmetricDifference| |match| |bat| + |polynomialZeros| |permutations| |OMserve| = + |removeIrreducibleRedundantFactors| |cosh| |ramifiedAtInfinity?| + |term?| |simpsono| |mergeDifference| |coshIfCan| |divideExponents| + |charpol| |quoted?| |normDeriv2| |show| |sizeMultiplication| + |lyndonIfCan| |primextintfrac| |tanh| |simpson| |characteristicSerie| + |monicModulo| |code| |stopTableGcd!| |returnTypeOf| |region| |escape| + |meshFun2Var| |balancedBinaryTree| |toroidal| |f02agf| < |e02adf| + |coth| |log2| |pol| |expenseOfEvaluationIF| |reduction| + |constantIfCan| |Hausdorff| |f02awf| |mapdiv| |vedf2vef| |duplicates?| + |eq| |trace| |digits| > |quadratic| |sech| |compose| |truncate| + |yCoordinates| |setAdaptive3D| |pole?| |henselFact| |torsion?| + |quoByVar| |upperCase?| |iter| |hessian| |mdeg| <= |csch| |tanAn| + |ScanFloatIgnoreSpacesIfCan| |prod| |rubiksGroup| |homogeneous?| + |diff| |collect| |directSum| |rCoord| |multinomial| |exactQuotient!| + |laurentIfCan| >= |integralCoordinates| |asinh| |s01eaf| + |OMencodingBinary| |entry| |acschIfCan| |initial| |finiteBound| + |overlap| |prefixRagits| |monicRightFactorIfCan| + |linearDependenceOverZ| |lfextendedint| + |standardBasisOfCyclicSubmodule| |constantKernel| |acosh| |zeroVector| + |setEpilogue!| |rename!| |xn| |numericalIntegration| |setfirst!| + |hitherPlane| |screenResolution3D| |sincos| |eisensteinIrreducible?| + |argumentList!| |incr| |removeRedundantFactorsInContents| + |createRandomElement| |atanh| |totolex| |algebraicSort| |iidprod| + |chiSquare| |fortranInteger| |e02def| |parabolicCylindrical| |hermite| + |binary| |limitPlus| |hi| |collectUnder| + |acoth| |epilogue| + |ScanRoman| |inverseIntegralMatrix| |idealiserMatrix| + |selectOptimizationRoutines| |swapColumns!| |conjugate| |tanQ| + |unrankImproperPartitions1| ~= |outputList| |df2ef| |simplifyPower| + |algebraicCoefficients?| - |nextPrimitivePoly| |asech| |cscIfCan| + |trivialIdeal?| |copyInto!| |clearTheFTable| |polyred| |chiSquare1| + |rangePascalTriangle| |polCase| |coerce| |representationType| + |zeroMatrix| / |testDim| |unexpand| |setrest!| |gcdprim| |cAcsch| + |LyndonWordsList1| |comp| |numerator| |tubeRadiusDefault| |orbits| + |pointSizeDefault| |construct| |padecf| |basisOfLeftNucloid| + |jordanAlgebra?| |f07fef| |multiple| |submod| |c02agf| + |leftMinimalPolynomial| |allRootsOf| |wronskianMatrix| + |fixedPointExquo| |e02aef| |printStats!| |iiatanh| |OMsend| + |applyQuote| |bivariateSLPEBR| |rowEchelonLocal| |iiacos| |errorKind| + |lexTriangular| |failed| |resultantReduit| |meatAxe| |is?| |mathieu11| + |symmetricTensors| |leftDiscriminant| |f02fjf| |continuedFraction| + |test| |complexEigenvalues| |removeZero| |useSingleFactorBound| + |wholePart| |imagK| |leastMonomial| |genericLeftDiscriminant| + |isPower| |objectOf| |entries| |KrullNumber| |graphStates| |isPlus| + |OMputSymbol| |optional?| |makeUnit| |An| |screenResolution| + |intensity| |OMputEndObject| |expt| |convergents| |showArrayValues| + |dequeue| |OMencodingUnknown| |HermiteIntegrate| |OMgetEndApp| + |showRegion| |fortranLinkerArgs| |OMputAttr| |root| |strongGenerators| + |measure2Result| |integralBasisAtInfinity| |conditionsForIdempotents| + |pushNewContour| |normalForm| |ruleset| |csc2sin| |sinhIfCan| + |operators| |goto| |createPrimitiveNormalPoly| |inf| |symmetricGroup| + |integralRepresents| |d02bhf| |sum| |leftTrace| |linearDependence| + |numberOfComputedEntries| |cycles| |RittWuCompare| |ReduceOrder| + |getStream| |mapGen| |rightDivide| |slex| |factorFraction| |realSolve| + |nullSpace| |reset| |frobenius| |diagonalMatrix| |d03faf| + |quasiAlgebraicSet| |insert!| |supRittWu?| |schwerpunkt| |atanIfCan| + |UP2ifCan| |shift| |doubleDisc| |roughUnitIdeal?| |lfextlimint| + |cot2trig| |trapezoidalo| |stiffnessAndStabilityFactor| |suchThat| + |startStats!| |low| |commonDenominator| |weighted| |updateStatus!| + |basisOfLeftAnnihilator| |leadingIdeal| |musserTrials| + |selectMultiDimensionalRoutines| |OMgetEndAttr| |rightGcd| |diagonal| + |write| |point| |viewDeltaYDefault| |systemSizeIF| |c06ecf| |generate| + |goodnessOfFit| |createThreeSpace| GF2FG |atanhIfCan| |setprevious!| + |rarrow| |associatorDependence| |rules| |radicalSimplify| |deref| + |unitNormalize| |clipPointsDefault| |OMopenString| |constantLeft| + |rightScalarTimes!| |e02gaf| |divide| |s20acf| |assign| |domainOf| + |pToHdmp| |btwFact| |mainVariables| |tensorProduct| |iteratedInitials| + |save| |back| |startTableInvSet!| |basisOfLeftNucleus| |incrementBy| + |separateFactors| |rspace| |maxColIndex| |cAcosh| |e01bef| |palgLODE0| + |cPower| |wholeRagits| |SturmHabichtMultiple| |second| |setColumn!| + |extractIfCan| |parametersOf| |series| |dfRange| |makeCos| |exprex| + |nil| |infinite| |arbitraryExponent| |approximate| |complex| + |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 471d192f..4326de1e 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4920 +1,4924 @@ -(3144497 . 3419169950) -((-3110 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-2613 (($ (-1 (-108) |#2| |#2|) $) 18) (($ $) NIL)) (-2847 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-1138 (-525)) |#2|) 34)) (-3405 (($ $) 59)) (-3618 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1734 (((-525) (-1 (-108) |#2|) $) 22) (((-525) |#2| $) NIL) (((-525) |#2| $ (-525)) 73)) (-2916 (((-591 |#2|) $) 13)) (-3459 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-4192 (($ (-1 |#2| |#2|) $) 29)) (-1257 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2059 (($ |#2| $ (-525)) NIL) (($ $ $ (-525)) 50)) (-2714 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-3465 (((-108) (-1 (-108) |#2|) $) 21)) (-1881 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL) (($ $ (-1138 (-525))) 49)) (-3226 (($ $ (-525)) 56) (($ $ (-1138 (-525))) 55)) (-2960 (((-712) (-1 (-108) |#2|) $) 26) (((-712) |#2| $) NIL)) (-2992 (($ $ $ (-525)) 52)) (-2873 (($ $) 51)) (-2695 (($ (-591 |#2|)) 53)) (-1624 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-591 $)) 62)) (-2686 (((-796) $) 69)) (-1475 (((-108) (-1 (-108) |#2|) $) 20)) (-3944 (((-108) $ $) 72)) (-3971 (((-108) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3944 ((-108) |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -2613 (|#1| |#1|)) (-15 -2613 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3405 (|#1| |#1|)) (-15 -2992 (|#1| |#1| |#1| (-525))) (-15 -3110 ((-108) |#1|)) (-15 -3459 (|#1| |#1| |#1|)) (-15 -1734 ((-525) |#2| |#1| (-525))) (-15 -1734 ((-525) |#2| |#1|)) (-15 -1734 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3110 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3459 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2847 (|#2| |#1| (-1138 (-525)) |#2|)) (-15 -2059 (|#1| |#1| |#1| (-525))) (-15 -2059 (|#1| |#2| |#1| (-525))) (-15 -3226 (|#1| |#1| (-1138 (-525)))) (-15 -3226 (|#1| |#1| (-525))) (-15 -1881 (|#1| |#1| (-1138 (-525)))) (-15 -1257 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1624 (|#1| (-591 |#1|))) (-15 -1624 (|#1| |#1| |#1|)) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#2|)) (-15 -2695 (|#1| (-591 |#2|))) (-15 -2714 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1881 (|#2| |#1| (-525))) (-15 -1881 (|#2| |#1| (-525) |#2|)) (-15 -2847 (|#2| |#1| (-525) |#2|)) (-15 -2960 ((-712) |#2| |#1|)) (-15 -2916 ((-591 |#2|) |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -4192 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2873 (|#1| |#1|))) (-19 |#2|) (-1125)) (T -18)) +(3145093 . 3419278800) +((-3746 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-1943 (($ (-1 (-108) |#2| |#2|) $) 18) (($ $) NIL)) (-1230 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-1139 (-525)) |#2|) 34)) (-1626 (($ $) 59)) (-3336 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1930 (((-525) (-1 (-108) |#2|) $) 22) (((-525) |#2| $) NIL) (((-525) |#2| $ (-525)) 73)) (-3781 (((-592 |#2|) $) 13)) (-1440 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) 29)) (-2868 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2234 (($ |#2| $ (-525)) NIL) (($ $ $ (-525)) 50)) (-3611 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-3669 (((-108) (-1 (-108) |#2|) $) 21)) (-1496 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL) (($ $ (-1139 (-525))) 49)) (-2697 (($ $ (-525)) 56) (($ $ (-1139 (-525))) 55)) (-3053 (((-713) (-1 (-108) |#2|) $) 26) (((-713) |#2| $) NIL)) (-4038 (($ $ $ (-525)) 52)) (-1261 (($ $) 51)) (-4059 (($ (-592 |#2|)) 53)) (-1810 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-592 $)) 62)) (-4044 (((-797) $) 69)) (-2443 (((-108) (-1 (-108) |#2|) $) 20)) (-3899 (((-108) $ $) 72)) (-3928 (((-108) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3899 ((-108) |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -4038 (|#1| |#1| |#1| (-525))) (-15 -3746 ((-108) |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1930 ((-525) |#2| |#1| (-525))) (-15 -1930 ((-525) |#2| |#1|)) (-15 -1930 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3746 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1440 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1230 (|#2| |#1| (-1139 (-525)) |#2|)) (-15 -2234 (|#1| |#1| |#1| (-525))) (-15 -2234 (|#1| |#2| |#1| (-525))) (-15 -2697 (|#1| |#1| (-1139 (-525)))) (-15 -2697 (|#1| |#1| (-525))) (-15 -1496 (|#1| |#1| (-1139 (-525)))) (-15 -2868 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1810 (|#1| (-592 |#1|))) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 -4059 (|#1| (-592 |#2|))) (-15 -3611 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1496 (|#2| |#1| (-525))) (-15 -1496 (|#2| |#1| (-525) |#2|)) (-15 -1230 (|#2| |#1| (-525) |#2|)) (-15 -3053 ((-713) |#2| |#1|)) (-15 -3781 ((-592 |#2|) |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1261 (|#1| |#1|))) (-19 |#2|) (-1126)) (T -18)) NIL -(-10 -8 (-15 -3944 ((-108) |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -2613 (|#1| |#1|)) (-15 -2613 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3405 (|#1| |#1|)) (-15 -2992 (|#1| |#1| |#1| (-525))) (-15 -3110 ((-108) |#1|)) (-15 -3459 (|#1| |#1| |#1|)) (-15 -1734 ((-525) |#2| |#1| (-525))) (-15 -1734 ((-525) |#2| |#1|)) (-15 -1734 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3110 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3459 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2847 (|#2| |#1| (-1138 (-525)) |#2|)) (-15 -2059 (|#1| |#1| |#1| (-525))) (-15 -2059 (|#1| |#2| |#1| (-525))) (-15 -3226 (|#1| |#1| (-1138 (-525)))) (-15 -3226 (|#1| |#1| (-525))) (-15 -1881 (|#1| |#1| (-1138 (-525)))) (-15 -1257 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1624 (|#1| (-591 |#1|))) (-15 -1624 (|#1| |#1| |#1|)) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#2|)) (-15 -2695 (|#1| (-591 |#2|))) (-15 -2714 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1881 (|#2| |#1| (-525))) (-15 -1881 (|#2| |#1| (-525) |#2|)) (-15 -2847 (|#2| |#1| (-525) |#2|)) (-15 -2960 ((-712) |#2| |#1|)) (-15 -2916 ((-591 |#2|) |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -4192 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2873 (|#1| |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3832 (((-1176) $ (-525) (-525)) 40 (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4251))) (($ $) 88 (-12 (|has| |#1| (-788)) (|has| $ (-6 -4251))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) 8)) (-2847 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 58 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-3405 (($ $) 90 (|has| $ (-6 -4251)))) (-2747 (($ $) 100)) (-2908 (($ $) 78 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#1| $) 77 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 51)) (-1734 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1018)))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-1316 (($ (-712) |#1|) 69)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 43 (|has| (-525) (-788)))) (-1923 (($ $ $) 87 (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 44 (|has| (-525) (-788)))) (-3475 (($ $ $) 86 (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3761 (((-591 (-525)) $) 46)) (-1675 (((-108) (-525) $) 47)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2872 ((|#1| $) 42 (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1858 (($ $ |#1|) 41 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1138 (-525))) 63)) (-3226 (($ $ (-525)) 62) (($ $ (-1138 (-525))) 61)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2992 (($ $ $ (-525)) 91 (|has| $ (-6 -4251)))) (-2873 (($ $) 13)) (-1300 (((-501) $) 79 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 70)) (-1624 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-591 $)) 65)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) 84 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 83 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-3994 (((-108) $ $) 85 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 82 (|has| |#1| (-788)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-19 |#1|) (-131) (-1125)) (T -19)) +(-10 -8 (-15 -3899 ((-108) |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -4038 (|#1| |#1| |#1| (-525))) (-15 -3746 ((-108) |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1930 ((-525) |#2| |#1| (-525))) (-15 -1930 ((-525) |#2| |#1|)) (-15 -1930 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3746 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1440 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1230 (|#2| |#1| (-1139 (-525)) |#2|)) (-15 -2234 (|#1| |#1| |#1| (-525))) (-15 -2234 (|#1| |#2| |#1| (-525))) (-15 -2697 (|#1| |#1| (-1139 (-525)))) (-15 -2697 (|#1| |#1| (-525))) (-15 -1496 (|#1| |#1| (-1139 (-525)))) (-15 -2868 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1810 (|#1| (-592 |#1|))) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 -4059 (|#1| (-592 |#2|))) (-15 -3611 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1496 (|#2| |#1| (-525))) (-15 -1496 (|#2| |#1| (-525) |#2|)) (-15 -1230 (|#2| |#1| (-525) |#2|)) (-15 -3053 ((-713) |#2| |#1|)) (-15 -3781 ((-592 |#2|) |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1261 (|#1| |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2792 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) 8)) (-1230 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-1626 (($ $) 90 (|has| $ (-6 -4255)))) (-3263 (($ $) 100)) (-1716 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 51)) (-1930 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1019)))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3248 (($ (-713) |#1|) 69)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 43 (|has| (-525) (-789)))) (-1260 (($ $ $) 87 (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 44 (|has| (-525) (-789)))) (-2154 (($ $ $) 86 (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2379 (((-592 (-525)) $) 46)) (-2030 (((-108) (-525) $) 47)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1683 ((|#1| $) 42 (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1614 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-2697 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-4038 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-1261 (($ $) 13)) (-2923 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 70)) (-1810 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-3959 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 82 (|has| |#1| (-789)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-19 |#1|) (-131) (-1126)) (T -19)) NIL -(-13 (-351 |t#1|) (-10 -7 (-6 -4251))) -(((-33) . T) ((-97) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-596 |#1|) . T) ((-788) |has| |#1| (-788)) ((-1018) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-1125) . T)) -((-3332 (((-3 $ "failed") $ $) 12)) (-4047 (($ $) NIL) (($ $ $) 9)) (* (($ (-854) $) NIL) (($ (-712) $) 16) (($ (-525) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -3332 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) (-21)) (T -20)) +(-13 (-351 |t#1|) (-10 -7 (-6 -4255))) +(((-33) . T) ((-97) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1019) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1126) . T)) +((-3004 (((-3 $ "failed") $ $) 12)) (-4033 (($ $) NIL) (($ $ $) 9)) (* (($ (-855) $) NIL) (($ (-713) $) 16) (($ (-525) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 -3004 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -3332 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20))) +(-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 -3004 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20))) (((-21) (-131)) (T -21)) -((-4047 (*1 *1 *1) (-4 *1 (-21))) (-4047 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525))))) -(-13 (-126) (-10 -8 (-15 -4047 ($ $)) (-15 -4047 ($ $ $)) (-15 * ($ (-525) $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-1306 (((-108) $) 10)) (-2055 (($) 15)) (* (($ (-854) $) 14) (($ (-712) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-712) |#1|)) (-15 -1306 ((-108) |#1|)) (-15 -2055 (|#1|)) (-15 * (|#1| (-854) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-712) |#1|)) (-15 -1306 ((-108) |#1|)) (-15 -2055 (|#1|)) (-15 * (|#1| (-854) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15))) +((-4033 (*1 *1 *1) (-4 *1 (-21))) (-4033 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525))))) +(-13 (-126) (-10 -8 (-15 -4033 ($ $)) (-15 -4033 ($ $ $)) (-15 * ($ (-525) $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-2464 (((-108) $) 10)) (-1957 (($) 15)) (* (($ (-855) $) 14) (($ (-713) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 -1957 (|#1|)) (-15 * (|#1| (-855) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 -1957 (|#1|)) (-15 * (|#1| (-855) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15))) (((-23) (-131)) (T -23)) -((-1830 (*1 *1) (-4 *1 (-23))) (-2055 (*1 *1) (-4 *1 (-23))) (-1306 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-712))))) -(-13 (-25) (-10 -8 (-15 (-1830) ($) -2277) (-15 -2055 ($) -2277) (-15 -1306 ((-108) $)) (-15 * ($ (-712) $)))) -(((-25) . T) ((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((* (($ (-854) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-854) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-854) |#1|))) -((-2673 (((-108) $ $) 7)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 6)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13))) +((-1436 (*1 *1) (-4 *1 (-23))) (-1957 (*1 *1) (-4 *1 (-23))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-713))))) +(-13 (-25) (-10 -8 (-15 (-1436) ($) -3219) (-15 -1957 ($) -3219) (-15 -2464 ((-108) $)) (-15 * ($ (-713) $)))) +(((-25) . T) ((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((* (($ (-855) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-855) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-855) |#1|))) +((-4028 (((-108) $ $) 7)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 6)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13))) (((-25) (-131)) (T -25)) -((-4036 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-854))))) -(-13 (-1018) (-10 -8 (-15 -4036 ($ $ $)) (-15 * ($ (-854) $)))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-1356 (((-591 $) (-885 $)) 29) (((-591 $) (-1085 $)) 16) (((-591 $) (-1085 $) (-1089)) 20)) (-2529 (($ (-885 $)) 27) (($ (-1085 $)) 11) (($ (-1085 $) (-1089)) 54)) (-2266 (((-591 $) (-885 $)) 30) (((-591 $) (-1085 $)) 18) (((-591 $) (-1085 $) (-1089)) 19)) (-1254 (($ (-885 $)) 28) (($ (-1085 $)) 13) (($ (-1085 $) (-1089)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1356 ((-591 |#1|) (-1085 |#1|) (-1089))) (-15 -1356 ((-591 |#1|) (-1085 |#1|))) (-15 -1356 ((-591 |#1|) (-885 |#1|))) (-15 -2529 (|#1| (-1085 |#1|) (-1089))) (-15 -2529 (|#1| (-1085 |#1|))) (-15 -2529 (|#1| (-885 |#1|))) (-15 -2266 ((-591 |#1|) (-1085 |#1|) (-1089))) (-15 -2266 ((-591 |#1|) (-1085 |#1|))) (-15 -2266 ((-591 |#1|) (-885 |#1|))) (-15 -1254 (|#1| (-1085 |#1|) (-1089))) (-15 -1254 (|#1| (-1085 |#1|))) (-15 -1254 (|#1| (-885 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1356 ((-591 |#1|) (-1085 |#1|) (-1089))) (-15 -1356 ((-591 |#1|) (-1085 |#1|))) (-15 -1356 ((-591 |#1|) (-885 |#1|))) (-15 -2529 (|#1| (-1085 |#1|) (-1089))) (-15 -2529 (|#1| (-1085 |#1|))) (-15 -2529 (|#1| (-885 |#1|))) (-15 -2266 ((-591 |#1|) (-1085 |#1|) (-1089))) (-15 -2266 ((-591 |#1|) (-1085 |#1|))) (-15 -2266 ((-591 |#1|) (-885 |#1|))) (-15 -1254 (|#1| (-1085 |#1|) (-1089))) (-15 -1254 (|#1| (-1085 |#1|))) (-15 -1254 (|#1| (-885 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1356 (((-591 $) (-885 $)) 80) (((-591 $) (-1085 $)) 79) (((-591 $) (-1085 $) (-1089)) 78)) (-2529 (($ (-885 $)) 83) (($ (-1085 $)) 82) (($ (-1085 $) (-1089)) 81)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-2551 (($ $) 92)) (-1965 (((-108) $ $) 59)) (-2055 (($) 17 T CONST)) (-2266 (((-591 $) (-885 $)) 86) (((-591 $) (-1085 $)) 85) (((-591 $) (-1085 $) (-1089)) 84)) (-1254 (($ (-885 $)) 89) (($ (-1085 $)) 88) (($ (-1085 $) (-1089)) 87)) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-2393 (((-108) $) 71)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 91)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 70)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-2542 (((-396 $) $) 74)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ $) 64)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) +((-4017 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-855))))) +(-13 (-1019) (-10 -8 (-15 -4017 ($ $ $)) (-15 * ($ (-855) $)))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-1708 (((-592 $) (-886 $)) 29) (((-592 $) (-1086 $)) 16) (((-592 $) (-1086 $) (-1090)) 20)) (-3553 (($ (-886 $)) 27) (($ (-1086 $)) 11) (($ (-1086 $) (-1090)) 54)) (-3291 (((-592 $) (-886 $)) 30) (((-592 $) (-1086 $)) 18) (((-592 $) (-1086 $) (-1090)) 19)) (-2539 (($ (-886 $)) 28) (($ (-1086 $)) 13) (($ (-1086 $) (-1090)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1708 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -1708 ((-592 |#1|) (-1086 |#1|))) (-15 -1708 ((-592 |#1|) (-886 |#1|))) (-15 -3553 (|#1| (-1086 |#1|) (-1090))) (-15 -3553 (|#1| (-1086 |#1|))) (-15 -3553 (|#1| (-886 |#1|))) (-15 -3291 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -3291 ((-592 |#1|) (-1086 |#1|))) (-15 -3291 ((-592 |#1|) (-886 |#1|))) (-15 -2539 (|#1| (-1086 |#1|) (-1090))) (-15 -2539 (|#1| (-1086 |#1|))) (-15 -2539 (|#1| (-886 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1708 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -1708 ((-592 |#1|) (-1086 |#1|))) (-15 -1708 ((-592 |#1|) (-886 |#1|))) (-15 -3553 (|#1| (-1086 |#1|) (-1090))) (-15 -3553 (|#1| (-1086 |#1|))) (-15 -3553 (|#1| (-886 |#1|))) (-15 -3291 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -3291 ((-592 |#1|) (-1086 |#1|))) (-15 -3291 ((-592 |#1|) (-886 |#1|))) (-15 -2539 (|#1| (-1086 |#1|) (-1090))) (-15 -2539 (|#1| (-1086 |#1|))) (-15 -2539 (|#1| (-886 |#1|)))) +((-4028 (((-108) $ $) 7)) (-1708 (((-592 $) (-886 $)) 80) (((-592 $) (-1086 $)) 79) (((-592 $) (-1086 $) (-1090)) 78)) (-3553 (($ (-886 $)) 83) (($ (-1086 $)) 82) (($ (-1086 $) (-1090)) 81)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-2975 (($ $) 92)) (-1700 (((-108) $ $) 59)) (-1957 (($) 17 T CONST)) (-3291 (((-592 $) (-886 $)) 86) (((-592 $) (-1086 $)) 85) (((-592 $) (-1086 $) (-1090)) 84)) (-2539 (($ (-886 $)) 89) (($ (-1086 $)) 88) (($ (-1086 $) (-1090)) 87)) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2069 (((-108) $) 71)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 91)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 70)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2961 (((-396 $) $) 74)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ $) 64)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) (((-27) (-131)) (T -27)) -((-1254 (*1 *1 *2) (-12 (-5 *2 (-885 *1)) (-4 *1 (-27)))) (-1254 (*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) (-1254 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-885 *1)) (-4 *1 (-27)) (-5 *2 (-591 *1)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-591 *1)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-591 *1)))) (-2529 (*1 *1 *2) (-12 (-5 *2 (-885 *1)) (-4 *1 (-27)))) (-2529 (*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) (-2529 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-885 *1)) (-4 *1 (-27)) (-5 *2 (-591 *1)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-591 *1)))) (-1356 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-591 *1))))) -(-13 (-341) (-932) (-10 -8 (-15 -1254 ($ (-885 $))) (-15 -1254 ($ (-1085 $))) (-15 -1254 ($ (-1085 $) (-1089))) (-15 -2266 ((-591 $) (-885 $))) (-15 -2266 ((-591 $) (-1085 $))) (-15 -2266 ((-591 $) (-1085 $) (-1089))) (-15 -2529 ($ (-885 $))) (-15 -2529 ($ (-1085 $))) (-15 -2529 ($ (-1085 $) (-1089))) (-15 -1356 ((-591 $) (-885 $))) (-15 -1356 ((-591 $) (-1085 $))) (-15 -1356 ((-591 $) (-1085 $) (-1089))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-593 #0#) . T) ((-593 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-668) . T) ((-853) . T) ((-932) . T) ((-981 #0#) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) . T)) -((-1356 (((-591 $) (-885 $)) NIL) (((-591 $) (-1085 $)) NIL) (((-591 $) (-1085 $) (-1089)) 50) (((-591 $) $) 19) (((-591 $) $ (-1089)) 41)) (-2529 (($ (-885 $)) NIL) (($ (-1085 $)) NIL) (($ (-1085 $) (-1089)) 52) (($ $) 17) (($ $ (-1089)) 37)) (-2266 (((-591 $) (-885 $)) NIL) (((-591 $) (-1085 $)) NIL) (((-591 $) (-1085 $) (-1089)) 48) (((-591 $) $) 15) (((-591 $) $ (-1089)) 43)) (-1254 (($ (-885 $)) NIL) (($ (-1085 $)) NIL) (($ (-1085 $) (-1089)) NIL) (($ $) 12) (($ $ (-1089)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1356 ((-591 |#1|) |#1| (-1089))) (-15 -2529 (|#1| |#1| (-1089))) (-15 -1356 ((-591 |#1|) |#1|)) (-15 -2529 (|#1| |#1|)) (-15 -2266 ((-591 |#1|) |#1| (-1089))) (-15 -1254 (|#1| |#1| (-1089))) (-15 -2266 ((-591 |#1|) |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -1356 ((-591 |#1|) (-1085 |#1|) (-1089))) (-15 -1356 ((-591 |#1|) (-1085 |#1|))) (-15 -1356 ((-591 |#1|) (-885 |#1|))) (-15 -2529 (|#1| (-1085 |#1|) (-1089))) (-15 -2529 (|#1| (-1085 |#1|))) (-15 -2529 (|#1| (-885 |#1|))) (-15 -2266 ((-591 |#1|) (-1085 |#1|) (-1089))) (-15 -2266 ((-591 |#1|) (-1085 |#1|))) (-15 -2266 ((-591 |#1|) (-885 |#1|))) (-15 -1254 (|#1| (-1085 |#1|) (-1089))) (-15 -1254 (|#1| (-1085 |#1|))) (-15 -1254 (|#1| (-885 |#1|)))) (-29 |#2|) (-13 (-788) (-517))) (T -28)) -NIL -(-10 -8 (-15 -1356 ((-591 |#1|) |#1| (-1089))) (-15 -2529 (|#1| |#1| (-1089))) (-15 -1356 ((-591 |#1|) |#1|)) (-15 -2529 (|#1| |#1|)) (-15 -2266 ((-591 |#1|) |#1| (-1089))) (-15 -1254 (|#1| |#1| (-1089))) (-15 -2266 ((-591 |#1|) |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -1356 ((-591 |#1|) (-1085 |#1|) (-1089))) (-15 -1356 ((-591 |#1|) (-1085 |#1|))) (-15 -1356 ((-591 |#1|) (-885 |#1|))) (-15 -2529 (|#1| (-1085 |#1|) (-1089))) (-15 -2529 (|#1| (-1085 |#1|))) (-15 -2529 (|#1| (-885 |#1|))) (-15 -2266 ((-591 |#1|) (-1085 |#1|) (-1089))) (-15 -2266 ((-591 |#1|) (-1085 |#1|))) (-15 -2266 ((-591 |#1|) (-885 |#1|))) (-15 -1254 (|#1| (-1085 |#1|) (-1089))) (-15 -1254 (|#1| (-1085 |#1|))) (-15 -1254 (|#1| (-885 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1356 (((-591 $) (-885 $)) 80) (((-591 $) (-1085 $)) 79) (((-591 $) (-1085 $) (-1089)) 78) (((-591 $) $) 126) (((-591 $) $ (-1089)) 124)) (-2529 (($ (-885 $)) 83) (($ (-1085 $)) 82) (($ (-1085 $) (-1089)) 81) (($ $) 127) (($ $ (-1089)) 125)) (-1306 (((-108) $) 16)) (-1444 (((-591 (-1089)) $) 201)) (-2514 (((-385 (-1085 $)) $ (-564 $)) 233 (|has| |#1| (-517)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3585 (((-591 (-564 $)) $) 164)) (-3332 (((-3 $ "failed") $ $) 19)) (-3449 (($ $ (-591 (-564 $)) (-591 $)) 154) (($ $ (-591 (-273 $))) 153) (($ $ (-273 $)) 152)) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-2551 (($ $) 92)) (-1965 (((-108) $ $) 59)) (-2055 (($) 17 T CONST)) (-2266 (((-591 $) (-885 $)) 86) (((-591 $) (-1085 $)) 85) (((-591 $) (-1085 $) (-1089)) 84) (((-591 $) $) 130) (((-591 $) $ (-1089)) 128)) (-1254 (($ (-885 $)) 89) (($ (-1085 $)) 88) (($ (-1085 $) (-1089)) 87) (($ $) 131) (($ $ (-1089)) 129)) (-4174 (((-3 (-885 |#1|) "failed") $) 251 (|has| |#1| (-975))) (((-3 (-385 (-885 |#1|)) "failed") $) 235 (|has| |#1| (-517))) (((-3 |#1| "failed") $) 197) (((-3 (-525) "failed") $) 195 (|has| |#1| (-966 (-525)))) (((-3 (-1089) "failed") $) 188) (((-3 (-564 $) "failed") $) 139) (((-3 (-385 (-525)) "failed") $) 123 (-3150 (-12 (|has| |#1| (-966 (-525))) (|has| |#1| (-517))) (|has| |#1| (-966 (-385 (-525))))))) (-3341 (((-885 |#1|) $) 252 (|has| |#1| (-975))) (((-385 (-885 |#1|)) $) 236 (|has| |#1| (-517))) ((|#1| $) 198) (((-525) $) 194 (|has| |#1| (-966 (-525)))) (((-1089) $) 189) (((-564 $) $) 140) (((-385 (-525)) $) 122 (-3150 (-12 (|has| |#1| (-966 (-525))) (|has| |#1| (-517))) (|has| |#1| (-966 (-385 (-525))))))) (-3265 (($ $ $) 55)) (-3925 (((-631 |#1|) (-631 $)) 241 (|has| |#1| (-975))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 240 (|has| |#1| (-975))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 121 (-3150 (-3543 (|has| |#1| (-975)) (|has| |#1| (-587 (-525)))) (-3543 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))))) (((-631 (-525)) (-631 $)) 120 (-3150 (-3543 (|has| |#1| (-975)) (|has| |#1| (-587 (-525)))) (-3543 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))))) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-2393 (((-108) $) 71)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 193 (|has| |#1| (-819 (-357)))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 192 (|has| |#1| (-819 (-525))))) (-3625 (($ (-591 $)) 158) (($ $) 157)) (-3714 (((-591 (-110)) $) 165)) (-3259 (((-110) (-110)) 166)) (-3865 (((-108) $) 31)) (-2116 (((-108) $) 186 (|has| $ (-966 (-525))))) (-2920 (($ $) 218 (|has| |#1| (-975)))) (-1384 (((-1041 |#1| (-564 $)) $) 217 (|has| |#1| (-975)))) (-3126 (($ $ (-525)) 91)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-1873 (((-1085 $) (-564 $)) 183 (|has| $ (-975)))) (-1923 (($ $ $) 137)) (-3475 (($ $ $) 136)) (-1257 (($ (-1 $ $) (-564 $)) 172)) (-3415 (((-3 (-564 $) "failed") $) 162)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-2504 (((-591 (-564 $)) $) 163)) (-2899 (($ (-110) (-591 $)) 171) (($ (-110) $) 170)) (-3401 (((-3 (-591 $) "failed") $) 212 (|has| |#1| (-1030)))) (-1713 (((-3 (-2 (|:| |val| $) (|:| -3987 (-525))) "failed") $) 221 (|has| |#1| (-975)))) (-4008 (((-3 (-591 $) "failed") $) 214 (|has| |#1| (-25)))) (-2831 (((-3 (-2 (|:| -2976 (-525)) (|:| |var| (-564 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3410 (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-1089)) 220 (|has| |#1| (-975))) (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-110)) 219 (|has| |#1| (-975))) (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $) 213 (|has| |#1| (-1030)))) (-3029 (((-108) $ (-1089)) 169) (((-108) $ (-110)) 168)) (-1523 (($ $) 70)) (-3457 (((-712) $) 161)) (-2937 (((-1036) $) 10)) (-1531 (((-108) $) 199)) (-1540 ((|#1| $) 200)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-4064 (((-108) $ (-1089)) 174) (((-108) $ $) 173)) (-2542 (((-396 $) $) 74)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-2882 (((-108) $) 185 (|has| $ (-966 (-525))))) (-1980 (($ $ (-1089) (-712) (-1 $ $)) 225 (|has| |#1| (-975))) (($ $ (-1089) (-712) (-1 $ (-591 $))) 224 (|has| |#1| (-975))) (($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ (-591 $)))) 223 (|has| |#1| (-975))) (($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ $))) 222 (|has| |#1| (-975))) (($ $ (-591 (-110)) (-591 $) (-1089)) 211 (|has| |#1| (-566 (-501)))) (($ $ (-110) $ (-1089)) 210 (|has| |#1| (-566 (-501)))) (($ $) 209 (|has| |#1| (-566 (-501)))) (($ $ (-591 (-1089))) 208 (|has| |#1| (-566 (-501)))) (($ $ (-1089)) 207 (|has| |#1| (-566 (-501)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-591 $))) 181) (($ $ (-591 (-110)) (-591 (-1 $ (-591 $)))) 180) (($ $ (-591 (-110)) (-591 (-1 $ $))) 179) (($ $ (-1089) (-1 $ $)) 178) (($ $ (-1089) (-1 $ (-591 $))) 177) (($ $ (-591 (-1089)) (-591 (-1 $ (-591 $)))) 176) (($ $ (-591 (-1089)) (-591 (-1 $ $))) 175) (($ $ (-591 $) (-591 $)) 146) (($ $ $ $) 145) (($ $ (-273 $)) 144) (($ $ (-591 (-273 $))) 143) (($ $ (-591 (-564 $)) (-591 $)) 142) (($ $ (-564 $) $) 141)) (-3048 (((-712) $) 58)) (-1881 (($ (-110) (-591 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-1390 (($ $ $) 160) (($ $) 159)) (-2209 (($ $ (-1089)) 249 (|has| |#1| (-975))) (($ $ (-591 (-1089))) 248 (|has| |#1| (-975))) (($ $ (-1089) (-712)) 247 (|has| |#1| (-975))) (($ $ (-591 (-1089)) (-591 (-712))) 246 (|has| |#1| (-975)))) (-2774 (($ $) 228 (|has| |#1| (-517)))) (-1396 (((-1041 |#1| (-564 $)) $) 227 (|has| |#1| (-517)))) (-1341 (($ $) 184 (|has| $ (-975)))) (-1300 (((-501) $) 255 (|has| |#1| (-566 (-501)))) (($ (-396 $)) 226 (|has| |#1| (-517))) (((-825 (-357)) $) 191 (|has| |#1| (-566 (-825 (-357))))) (((-825 (-525)) $) 190 (|has| |#1| (-566 (-825 (-525)))))) (-3369 (($ $ $) 254 (|has| |#1| (-450)))) (-4027 (($ $ $) 253 (|has| |#1| (-450)))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-885 |#1|)) 250 (|has| |#1| (-975))) (($ (-385 (-885 |#1|))) 234 (|has| |#1| (-517))) (($ (-385 (-885 (-385 |#1|)))) 232 (|has| |#1| (-517))) (($ (-885 (-385 |#1|))) 231 (|has| |#1| (-517))) (($ (-385 |#1|)) 230 (|has| |#1| (-517))) (($ (-1041 |#1| (-564 $))) 216 (|has| |#1| (-975))) (($ |#1|) 196) (($ (-1089)) 187) (($ (-564 $)) 138)) (-3751 (((-3 $ "failed") $) 239 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-3800 (($ (-591 $)) 156) (($ $) 155)) (-2754 (((-108) (-110)) 167)) (-1724 (((-108) $ $) 39)) (-4229 (($ (-1089) (-591 $)) 206) (($ (-1089) $ $ $ $) 205) (($ (-1089) $ $ $) 204) (($ (-1089) $ $) 203) (($ (-1089) $) 202)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-1089)) 245 (|has| |#1| (-975))) (($ $ (-591 (-1089))) 244 (|has| |#1| (-975))) (($ $ (-1089) (-712)) 243 (|has| |#1| (-975))) (($ $ (-591 (-1089)) (-591 (-712))) 242 (|has| |#1| (-975)))) (-4004 (((-108) $ $) 134)) (-3982 (((-108) $ $) 133)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 135)) (-3971 (((-108) $ $) 132)) (-4059 (($ $ $) 64) (($ (-1041 |#1| (-564 $)) (-1041 |#1| (-564 $))) 229 (|has| |#1| (-517)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-160))) (($ |#1| $) 237 (|has| |#1| (-160))))) -(((-29 |#1|) (-131) (-13 (-788) (-517))) (T -29)) -((-1254 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-788) (-517))))) (-2266 (*1 *2 *1) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *2 (-591 *1)) (-4 *1 (-29 *3)))) (-1254 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-788) (-517))))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-591 *1)) (-4 *1 (-29 *4)))) (-2529 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-788) (-517))))) (-1356 (*1 *2 *1) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *2 (-591 *1)) (-4 *1 (-29 *3)))) (-2529 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-788) (-517))))) (-1356 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-591 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-408 |t#1|) (-10 -8 (-15 -1254 ($ $)) (-15 -2266 ((-591 $) $)) (-15 -1254 ($ $ (-1089))) (-15 -2266 ((-591 $) $ (-1089))) (-15 -2529 ($ $)) (-15 -1356 ((-591 $) $)) (-15 -2529 ($ $ (-1089))) (-15 -1356 ((-591 $) $ (-1089))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-566 (-825 (-357))) |has| |#1| (-566 (-825 (-357)))) ((-566 (-825 (-525))) |has| |#1| (-566 (-825 (-525)))) ((-223) . T) ((-269) . T) ((-286) . T) ((-288 $) . T) ((-281) . T) ((-341) . T) ((-355 |#1|) |has| |#1| (-975)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-408 |#1|) . T) ((-429) . T) ((-450) |has| |#1| (-450)) ((-486 (-564 $) $) . T) ((-486 $ $) . T) ((-517) . T) ((-593 #0#) . T) ((-593 |#1|) |has| |#1| (-160)) ((-593 $) . T) ((-587 (-525)) -12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) ((-587 |#1|) |has| |#1| (-975)) ((-659 #0#) . T) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) . T) ((-668) . T) ((-788) . T) ((-833 (-1089)) |has| |#1| (-975)) ((-819 (-357)) |has| |#1| (-819 (-357))) ((-819 (-525)) |has| |#1| (-819 (-525))) ((-817 |#1|) . T) ((-853) . T) ((-932) . T) ((-966 (-385 (-525))) -3150 (|has| |#1| (-966 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-966 (-525))))) ((-966 (-385 (-885 |#1|))) |has| |#1| (-517)) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 (-564 $)) . T) ((-966 (-885 |#1|)) |has| |#1| (-975)) ((-966 (-1089)) . T) ((-966 |#1|) . T) ((-981 #0#) . T) ((-981 |#1|) |has| |#1| (-160)) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1125) . T) ((-1129) . T)) -((-4162 (((-1013 (-205)) $) NIL)) (-4148 (((-1013 (-205)) $) NIL)) (-2713 (($ $ (-205)) 123)) (-1981 (($ (-885 (-525)) (-1089) (-1089) (-1013 (-385 (-525))) (-1013 (-385 (-525)))) 85)) (-1870 (((-591 (-591 (-876 (-205)))) $) 135)) (-2686 (((-796) $) 147))) -(((-30) (-13 (-887) (-10 -8 (-15 -1981 ($ (-885 (-525)) (-1089) (-1089) (-1013 (-385 (-525))) (-1013 (-385 (-525))))) (-15 -2713 ($ $ (-205)))))) (T -30)) -((-1981 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-885 (-525))) (-5 *3 (-1089)) (-5 *4 (-1013 (-385 (-525)))) (-5 *1 (-30)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30))))) -(-13 (-887) (-10 -8 (-15 -1981 ($ (-885 (-525)) (-1089) (-1089) (-1013 (-385 (-525))) (-1013 (-385 (-525))))) (-15 -2713 ($ $ (-205))))) -((-1254 ((|#2| (-1085 |#2|) (-1089)) 43)) (-3259 (((-110) (-110)) 56)) (-1873 (((-1085 |#2|) (-564 |#2|)) 131 (|has| |#1| (-966 (-525))))) (-1518 ((|#2| |#1| (-525)) 109 (|has| |#1| (-966 (-525))))) (-3166 ((|#2| (-1085 |#2|) |#2|) 30)) (-2950 (((-796) (-591 |#2|)) 85)) (-1341 ((|#2| |#2|) 127 (|has| |#1| (-966 (-525))))) (-2754 (((-108) (-110)) 18)) (** ((|#2| |#2| (-385 (-525))) 90 (|has| |#1| (-966 (-525)))))) -(((-31 |#1| |#2|) (-10 -7 (-15 -1254 (|#2| (-1085 |#2|) (-1089))) (-15 -3259 ((-110) (-110))) (-15 -2754 ((-108) (-110))) (-15 -3166 (|#2| (-1085 |#2|) |#2|)) (-15 -2950 ((-796) (-591 |#2|))) (IF (|has| |#1| (-966 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -1873 ((-1085 |#2|) (-564 |#2|))) (-15 -1341 (|#2| |#2|)) (-15 -1518 (|#2| |#1| (-525)))) |%noBranch|)) (-13 (-788) (-517)) (-408 |#1|)) (T -31)) -((-1518 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-966 *4)) (-4 *3 (-13 (-788) (-517))))) (-1341 (*1 *2 *2) (-12 (-4 *3 (-966 (-525))) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-564 *5)) (-4 *5 (-408 *4)) (-4 *4 (-966 (-525))) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-1085 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-966 (-525))) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-796)) (-5 *1 (-31 *4 *5)))) (-3166 (*1 *2 *3 *2) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-31 *4 *2)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-31 *3 *4)) (-4 *4 (-408 *3)))) (-1254 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *2)) (-5 *4 (-1089)) (-4 *2 (-408 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-788) (-517)))))) -(-10 -7 (-15 -1254 (|#2| (-1085 |#2|) (-1089))) (-15 -3259 ((-110) (-110))) (-15 -2754 ((-108) (-110))) (-15 -3166 (|#2| (-1085 |#2|) |#2|)) (-15 -2950 ((-796) (-591 |#2|))) (IF (|has| |#1| (-966 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -1873 ((-1085 |#2|) (-564 |#2|))) (-15 -1341 (|#2| |#2|)) (-15 -1518 (|#2| |#1| (-525)))) |%noBranch|)) -((-3727 (((-108) $ (-712)) 16)) (-2055 (($) 10)) (-3491 (((-108) $ (-712)) 15)) (-3295 (((-108) $ (-712)) 14)) (-2023 (((-108) $ $) 8)) (-2077 (((-108) $) 13))) -(((-32 |#1|) (-10 -8 (-15 -2055 (|#1|)) (-15 -3727 ((-108) |#1| (-712))) (-15 -3491 ((-108) |#1| (-712))) (-15 -3295 ((-108) |#1| (-712))) (-15 -2077 ((-108) |#1|)) (-15 -2023 ((-108) |#1| |#1|))) (-33)) (T -32)) -NIL -(-10 -8 (-15 -2055 (|#1|)) (-15 -3727 ((-108) |#1| (-712))) (-15 -3491 ((-108) |#1| (-712))) (-15 -3295 ((-108) |#1| (-712))) (-15 -2077 ((-108) |#1|)) (-15 -2023 ((-108) |#1| |#1|))) -((-3727 (((-108) $ (-712)) 8)) (-2055 (($) 7 T CONST)) (-3491 (((-108) $ (-712)) 9)) (-3295 (((-108) $ (-712)) 10)) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2873 (($ $) 13)) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) +((-2539 (*1 *1 *2) (-12 (-5 *2 (-886 *1)) (-4 *1 (-27)))) (-2539 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-886 *1)) (-4 *1 (-27)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-3553 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-1708 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-592 *1))))) +(-13 (-341) (-933) (-10 -8 (-15 -2539 ($ (-886 $))) (-15 -2539 ($ (-1086 $))) (-15 -2539 ($ (-1086 $) (-1090))) (-15 -3291 ((-592 $) (-886 $))) (-15 -3291 ((-592 $) (-1086 $))) (-15 -3291 ((-592 $) (-1086 $) (-1090))) (-15 -3553 ($ (-886 $))) (-15 -3553 ($ (-1086 $))) (-15 -3553 ($ (-1086 $) (-1090))) (-15 -1708 ((-592 $) (-886 $))) (-15 -1708 ((-592 $) (-1086 $))) (-15 -1708 ((-592 $) (-1086 $) (-1090))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-933) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T)) +((-1708 (((-592 $) (-886 $)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-1086 $) (-1090)) 50) (((-592 $) $) 19) (((-592 $) $ (-1090)) 41)) (-3553 (($ (-886 $)) NIL) (($ (-1086 $)) NIL) (($ (-1086 $) (-1090)) 52) (($ $) 17) (($ $ (-1090)) 37)) (-3291 (((-592 $) (-886 $)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-1086 $) (-1090)) 48) (((-592 $) $) 15) (((-592 $) $ (-1090)) 43)) (-2539 (($ (-886 $)) NIL) (($ (-1086 $)) NIL) (($ (-1086 $) (-1090)) NIL) (($ $) 12) (($ $ (-1090)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1708 ((-592 |#1|) |#1| (-1090))) (-15 -3553 (|#1| |#1| (-1090))) (-15 -1708 ((-592 |#1|) |#1|)) (-15 -3553 (|#1| |#1|)) (-15 -3291 ((-592 |#1|) |#1| (-1090))) (-15 -2539 (|#1| |#1| (-1090))) (-15 -3291 ((-592 |#1|) |#1|)) (-15 -2539 (|#1| |#1|)) (-15 -1708 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -1708 ((-592 |#1|) (-1086 |#1|))) (-15 -1708 ((-592 |#1|) (-886 |#1|))) (-15 -3553 (|#1| (-1086 |#1|) (-1090))) (-15 -3553 (|#1| (-1086 |#1|))) (-15 -3553 (|#1| (-886 |#1|))) (-15 -3291 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -3291 ((-592 |#1|) (-1086 |#1|))) (-15 -3291 ((-592 |#1|) (-886 |#1|))) (-15 -2539 (|#1| (-1086 |#1|) (-1090))) (-15 -2539 (|#1| (-1086 |#1|))) (-15 -2539 (|#1| (-886 |#1|)))) (-29 |#2|) (-13 (-789) (-517))) (T -28)) +NIL +(-10 -8 (-15 -1708 ((-592 |#1|) |#1| (-1090))) (-15 -3553 (|#1| |#1| (-1090))) (-15 -1708 ((-592 |#1|) |#1|)) (-15 -3553 (|#1| |#1|)) (-15 -3291 ((-592 |#1|) |#1| (-1090))) (-15 -2539 (|#1| |#1| (-1090))) (-15 -3291 ((-592 |#1|) |#1|)) (-15 -2539 (|#1| |#1|)) (-15 -1708 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -1708 ((-592 |#1|) (-1086 |#1|))) (-15 -1708 ((-592 |#1|) (-886 |#1|))) (-15 -3553 (|#1| (-1086 |#1|) (-1090))) (-15 -3553 (|#1| (-1086 |#1|))) (-15 -3553 (|#1| (-886 |#1|))) (-15 -3291 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -3291 ((-592 |#1|) (-1086 |#1|))) (-15 -3291 ((-592 |#1|) (-886 |#1|))) (-15 -2539 (|#1| (-1086 |#1|) (-1090))) (-15 -2539 (|#1| (-1086 |#1|))) (-15 -2539 (|#1| (-886 |#1|)))) +((-4028 (((-108) $ $) 7)) (-1708 (((-592 $) (-886 $)) 80) (((-592 $) (-1086 $)) 79) (((-592 $) (-1086 $) (-1090)) 78) (((-592 $) $) 126) (((-592 $) $ (-1090)) 124)) (-3553 (($ (-886 $)) 83) (($ (-1086 $)) 82) (($ (-1086 $) (-1090)) 81) (($ $) 127) (($ $ (-1090)) 125)) (-2464 (((-108) $) 16)) (-3122 (((-592 (-1090)) $) 201)) (-1315 (((-385 (-1086 $)) $ (-565 $)) 233 (|has| |#1| (-517)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-2249 (((-592 (-565 $)) $) 164)) (-3004 (((-3 $ "failed") $ $) 19)) (-3687 (($ $ (-592 (-565 $)) (-592 $)) 154) (($ $ (-592 (-273 $))) 153) (($ $ (-273 $)) 152)) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-2975 (($ $) 92)) (-1700 (((-108) $ $) 59)) (-1957 (($) 17 T CONST)) (-3291 (((-592 $) (-886 $)) 86) (((-592 $) (-1086 $)) 85) (((-592 $) (-1086 $) (-1090)) 84) (((-592 $) $) 130) (((-592 $) $ (-1090)) 128)) (-2539 (($ (-886 $)) 89) (($ (-1086 $)) 88) (($ (-1086 $) (-1090)) 87) (($ $) 131) (($ $ (-1090)) 129)) (-2769 (((-3 (-886 |#1|) "failed") $) 251 (|has| |#1| (-976))) (((-3 (-385 (-886 |#1|)) "failed") $) 235 (|has| |#1| (-517))) (((-3 |#1| "failed") $) 197) (((-3 (-525) "failed") $) 195 (|has| |#1| (-967 (-525)))) (((-3 (-1090) "failed") $) 188) (((-3 (-565 $) "failed") $) 139) (((-3 (-385 (-525)) "failed") $) 123 (-3215 (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525))))))) (-2068 (((-886 |#1|) $) 252 (|has| |#1| (-976))) (((-385 (-886 |#1|)) $) 236 (|has| |#1| (-517))) ((|#1| $) 198) (((-525) $) 194 (|has| |#1| (-967 (-525)))) (((-1090) $) 189) (((-565 $) $) 140) (((-385 (-525)) $) 122 (-3215 (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525))))))) (-2720 (($ $ $) 55)) (-1307 (((-632 |#1|) (-632 $)) 241 (|has| |#1| (-976))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 240 (|has| |#1| (-976))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 121 (-3215 (-2385 (|has| |#1| (-976)) (|has| |#1| (-588 (-525)))) (-2385 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (((-632 (-525)) (-632 $)) 120 (-3215 (-2385 (|has| |#1| (-976)) (|has| |#1| (-588 (-525)))) (-2385 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2069 (((-108) $) 71)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 193 (|has| |#1| (-820 (-357)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 192 (|has| |#1| (-820 (-525))))) (-1759 (($ (-592 $)) 158) (($ $) 157)) (-4131 (((-592 (-110)) $) 165)) (-1885 (((-110) (-110)) 166)) (-2507 (((-108) $) 31)) (-2057 (((-108) $) 186 (|has| $ (-967 (-525))))) (-4055 (($ $) 218 (|has| |#1| (-976)))) (-1936 (((-1042 |#1| (-565 $)) $) 217 (|has| |#1| (-976)))) (-2581 (($ $ (-525)) 91)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2605 (((-1086 $) (-565 $)) 183 (|has| $ (-976)))) (-1260 (($ $ $) 137)) (-2154 (($ $ $) 136)) (-2868 (($ (-1 $ $) (-565 $)) 172)) (-1688 (((-3 (-565 $) "failed") $) 162)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-1304 (((-592 (-565 $)) $) 163)) (-1996 (($ (-110) (-592 $)) 171) (($ (-110) $) 170)) (-3466 (((-3 (-592 $) "failed") $) 212 (|has| |#1| (-1031)))) (-4098 (((-3 (-2 (|:| |val| $) (|:| -1737 (-525))) "failed") $) 221 (|has| |#1| (-976)))) (-4103 (((-3 (-592 $) "failed") $) 214 (|has| |#1| (-25)))) (-2054 (((-3 (-2 (|:| -2059 (-525)) (|:| |var| (-565 $))) "failed") $) 215 (|has| |#1| (-25)))) (-1850 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-1090)) 220 (|has| |#1| (-976))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-110)) 219 (|has| |#1| (-976))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $) 213 (|has| |#1| (-1031)))) (-4084 (((-108) $ (-1090)) 169) (((-108) $ (-110)) 168)) (-3243 (($ $) 70)) (-2138 (((-713) $) 161)) (-3027 (((-1037) $) 10)) (-3256 (((-108) $) 199)) (-3267 ((|#1| $) 200)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-1680 (((-108) $ (-1090)) 174) (((-108) $ $) 173)) (-2961 (((-396 $) $) 74)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3524 (((-108) $) 185 (|has| $ (-967 (-525))))) (-2168 (($ $ (-1090) (-713) (-1 $ $)) 225 (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ (-592 $))) 224 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 223 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $))) 222 (|has| |#1| (-976))) (($ $ (-592 (-110)) (-592 $) (-1090)) 211 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1090)) 210 (|has| |#1| (-567 (-501)))) (($ $) 209 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090))) 208 (|has| |#1| (-567 (-501)))) (($ $ (-1090)) 207 (|has| |#1| (-567 (-501)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-592 $))) 181) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 180) (($ $ (-592 (-110)) (-592 (-1 $ $))) 179) (($ $ (-1090) (-1 $ $)) 178) (($ $ (-1090) (-1 $ (-592 $))) 177) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) 176) (($ $ (-592 (-1090)) (-592 (-1 $ $))) 175) (($ $ (-592 $) (-592 $)) 146) (($ $ $ $) 145) (($ $ (-273 $)) 144) (($ $ (-592 (-273 $))) 143) (($ $ (-592 (-565 $)) (-592 $)) 142) (($ $ (-565 $) $) 141)) (-2824 (((-713) $) 58)) (-1496 (($ (-110) (-592 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-3080 (($ $ $) 160) (($ $) 159)) (-1576 (($ $ (-1090)) 249 (|has| |#1| (-976))) (($ $ (-592 (-1090))) 248 (|has| |#1| (-976))) (($ $ (-1090) (-713)) 247 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) 246 (|has| |#1| (-976)))) (-1987 (($ $) 228 (|has| |#1| (-517)))) (-1945 (((-1042 |#1| (-565 $)) $) 227 (|has| |#1| (-517)))) (-2775 (($ $) 184 (|has| $ (-976)))) (-2923 (((-501) $) 255 (|has| |#1| (-567 (-501)))) (($ (-396 $)) 226 (|has| |#1| (-517))) (((-826 (-357)) $) 191 (|has| |#1| (-567 (-826 (-357))))) (((-826 (-525)) $) 190 (|has| |#1| (-567 (-826 (-525)))))) (-4025 (($ $ $) 254 (|has| |#1| (-450)))) (-1573 (($ $ $) 253 (|has| |#1| (-450)))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-886 |#1|)) 250 (|has| |#1| (-976))) (($ (-385 (-886 |#1|))) 234 (|has| |#1| (-517))) (($ (-385 (-886 (-385 |#1|)))) 232 (|has| |#1| (-517))) (($ (-886 (-385 |#1|))) 231 (|has| |#1| (-517))) (($ (-385 |#1|)) 230 (|has| |#1| (-517))) (($ (-1042 |#1| (-565 $))) 216 (|has| |#1| (-976))) (($ |#1|) 196) (($ (-1090)) 187) (($ (-565 $)) 138)) (-1279 (((-3 $ "failed") $) 239 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-3882 (($ (-592 $)) 156) (($ $) 155)) (-3712 (((-108) (-110)) 167)) (-3787 (((-108) $ $) 39)) (-4075 (($ (-1090) (-592 $)) 206) (($ (-1090) $ $ $ $) 205) (($ (-1090) $ $ $) 204) (($ (-1090) $ $) 203) (($ (-1090) $) 202)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-1090)) 245 (|has| |#1| (-976))) (($ $ (-592 (-1090))) 244 (|has| |#1| (-976))) (($ $ (-1090) (-713)) 243 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) 242 (|has| |#1| (-976)))) (-3973 (((-108) $ $) 134)) (-3944 (((-108) $ $) 133)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 135)) (-3928 (((-108) $ $) 132)) (-4047 (($ $ $) 64) (($ (-1042 |#1| (-565 $)) (-1042 |#1| (-565 $))) 229 (|has| |#1| (-517)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-160))) (($ |#1| $) 237 (|has| |#1| (-160))))) +(((-29 |#1|) (-131) (-13 (-789) (-517))) (T -29)) +((-2539 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-3291 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-2539 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-3291 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4)))) (-3553 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-1708 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-3553 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-1708 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-408 |t#1|) (-10 -8 (-15 -2539 ($ $)) (-15 -3291 ((-592 $) $)) (-15 -2539 ($ $ (-1090))) (-15 -3291 ((-592 $) $ (-1090))) (-15 -3553 ($ $)) (-15 -1708 ((-592 $) $)) (-15 -3553 ($ $ (-1090))) (-15 -1708 ((-592 $) $ (-1090))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525)))) ((-223) . T) ((-269) . T) ((-286) . T) ((-288 $) . T) ((-281) . T) ((-341) . T) ((-355 |#1|) |has| |#1| (-976)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-408 |#1|) . T) ((-429) . T) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) ((-588 |#1|) |has| |#1| (-976)) ((-660 #0#) . T) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-834 (-1090)) |has| |#1| (-976)) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-818 |#1|) . T) ((-854) . T) ((-933) . T) ((-967 (-385 (-525))) -3215 (|has| |#1| (-967 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) ((-967 (-385 (-886 |#1|))) |has| |#1| (-517)) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 (-565 $)) . T) ((-967 (-886 |#1|)) |has| |#1| (-976)) ((-967 (-1090)) . T) ((-967 |#1|) . T) ((-982 #0#) . T) ((-982 |#1|) |has| |#1| (-160)) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1126) . T) ((-1130) . T)) +((-2519 (((-1014 (-205)) $) NIL)) (-2508 (((-1014 (-205)) $) NIL)) (-3563 (($ $ (-205)) 123)) (-3096 (($ (-886 (-525)) (-1090) (-1090) (-1014 (-385 (-525))) (-1014 (-385 (-525)))) 85)) (-2204 (((-592 (-592 (-877 (-205)))) $) 135)) (-4044 (((-797) $) 147))) +(((-30) (-13 (-888) (-10 -8 (-15 -3096 ($ (-886 (-525)) (-1090) (-1090) (-1014 (-385 (-525))) (-1014 (-385 (-525))))) (-15 -3563 ($ $ (-205)))))) (T -30)) +((-3096 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-886 (-525))) (-5 *3 (-1090)) (-5 *4 (-1014 (-385 (-525)))) (-5 *1 (-30)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30))))) +(-13 (-888) (-10 -8 (-15 -3096 ($ (-886 (-525)) (-1090) (-1090) (-1014 (-385 (-525))) (-1014 (-385 (-525))))) (-15 -3563 ($ $ (-205))))) +((-2539 ((|#2| (-1086 |#2|) (-1090)) 43)) (-1885 (((-110) (-110)) 56)) (-2605 (((-1086 |#2|) (-565 |#2|)) 131 (|has| |#1| (-967 (-525))))) (-1827 ((|#2| |#1| (-525)) 109 (|has| |#1| (-967 (-525))))) (-3473 ((|#2| (-1086 |#2|) |#2|) 30)) (-3654 (((-797) (-592 |#2|)) 85)) (-2775 ((|#2| |#2|) 127 (|has| |#1| (-967 (-525))))) (-3712 (((-108) (-110)) 18)) (** ((|#2| |#2| (-385 (-525))) 90 (|has| |#1| (-967 (-525)))))) +(((-31 |#1| |#2|) (-10 -7 (-15 -2539 (|#2| (-1086 |#2|) (-1090))) (-15 -1885 ((-110) (-110))) (-15 -3712 ((-108) (-110))) (-15 -3473 (|#2| (-1086 |#2|) |#2|)) (-15 -3654 ((-797) (-592 |#2|))) (IF (|has| |#1| (-967 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -2605 ((-1086 |#2|) (-565 |#2|))) (-15 -2775 (|#2| |#2|)) (-15 -1827 (|#2| |#1| (-525)))) |%noBranch|)) (-13 (-789) (-517)) (-408 |#1|)) (T -31)) +((-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-967 *4)) (-4 *3 (-13 (-789) (-517))))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-967 (-525))) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-967 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1086 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-967 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-797)) (-5 *1 (-31 *4 *5)))) (-3473 (*1 *2 *3 *2) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4)) (-4 *4 (-408 *3)))) (-2539 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1090)) (-4 *2 (-408 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517)))))) +(-10 -7 (-15 -2539 (|#2| (-1086 |#2|) (-1090))) (-15 -1885 ((-110) (-110))) (-15 -3712 ((-108) (-110))) (-15 -3473 (|#2| (-1086 |#2|) |#2|)) (-15 -3654 ((-797) (-592 |#2|))) (IF (|has| |#1| (-967 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -2605 ((-1086 |#2|) (-565 |#2|))) (-15 -2775 (|#2| |#2|)) (-15 -1827 (|#2| |#1| (-525)))) |%noBranch|)) +((-2583 (((-108) $ (-713)) 16)) (-1957 (($) 10)) (-2010 (((-108) $ (-713)) 15)) (-2350 (((-108) $ (-713)) 14)) (-3063 (((-108) $ $) 8)) (-3086 (((-108) $) 13))) +(((-32 |#1|) (-10 -8 (-15 -1957 (|#1|)) (-15 -2583 ((-108) |#1| (-713))) (-15 -2010 ((-108) |#1| (-713))) (-15 -2350 ((-108) |#1| (-713))) (-15 -3086 ((-108) |#1|)) (-15 -3063 ((-108) |#1| |#1|))) (-33)) (T -32)) +NIL +(-10 -8 (-15 -1957 (|#1|)) (-15 -2583 ((-108) |#1| (-713))) (-15 -2010 ((-108) |#1| (-713))) (-15 -2350 ((-108) |#1| (-713))) (-15 -3086 ((-108) |#1|)) (-15 -3063 ((-108) |#1| |#1|))) +((-2583 (((-108) $ (-713)) 8)) (-1957 (($) 7 T CONST)) (-2010 (((-108) $ (-713)) 9)) (-2350 (((-108) $ (-713)) 10)) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1261 (($ $) 13)) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) (((-33) (-131)) (T -33)) -((-2023 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2873 (*1 *1 *1) (-4 *1 (-33))) (-3164 (*1 *1) (-4 *1 (-33))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-3295 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-712)) (-5 *2 (-108)))) (-3491 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-712)) (-5 *2 (-108)))) (-3727 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-712)) (-5 *2 (-108)))) (-2055 (*1 *1) (-4 *1 (-33))) (-2028 (*1 *2 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-33)) (-5 *2 (-712))))) -(-13 (-1125) (-10 -8 (-15 -2023 ((-108) $ $)) (-15 -2873 ($ $)) (-15 -3164 ($)) (-15 -2077 ((-108) $)) (-15 -3295 ((-108) $ (-712))) (-15 -3491 ((-108) $ (-712))) (-15 -3727 ((-108) $ (-712))) (-15 -2055 ($) -2277) (IF (|has| $ (-6 -4250)) (-15 -2028 ((-712) $)) |%noBranch|))) -(((-1125) . T)) -((-4163 (($ $) 11)) (-4137 (($ $) 10)) (-4193 (($ $) 9)) (-1234 (($ $) 8)) (-4179 (($ $) 7)) (-4149 (($ $) 6))) +((-3063 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-1261 (*1 *1 *1) (-4 *1 (-33))) (-3266 (*1 *1) (-4 *1 (-33))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2350 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-2010 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-2583 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-1957 (*1 *1) (-4 *1 (-33))) (-1696 (*1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-33)) (-5 *2 (-713))))) +(-13 (-1126) (-10 -8 (-15 -3063 ((-108) $ $)) (-15 -1261 ($ $)) (-15 -3266 ($)) (-15 -3086 ((-108) $)) (-15 -2350 ((-108) $ (-713))) (-15 -2010 ((-108) $ (-713))) (-15 -2583 ((-108) $ (-713))) (-15 -1957 ($) -3219) (IF (|has| $ (-6 -4254)) (-15 -1696 ((-713) $)) |%noBranch|))) +(((-1126) . T)) +((-4004 (($ $) 11)) (-3975 (($ $) 10)) (-4035 (($ $) 9)) (-2608 (($ $) 8)) (-4018 (($ $) 7)) (-3989 (($ $) 6))) (((-34) (-131)) (T -34)) -((-4163 (*1 *1 *1) (-4 *1 (-34))) (-4137 (*1 *1 *1) (-4 *1 (-34))) (-4193 (*1 *1 *1) (-4 *1 (-34))) (-1234 (*1 *1 *1) (-4 *1 (-34))) (-4179 (*1 *1 *1) (-4 *1 (-34))) (-4149 (*1 *1 *1) (-4 *1 (-34)))) -(-13 (-10 -8 (-15 -4149 ($ $)) (-15 -4179 ($ $)) (-15 -1234 ($ $)) (-15 -4193 ($ $)) (-15 -4137 ($ $)) (-15 -4163 ($ $)))) -((-2673 (((-108) $ $) 19 (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2940 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 125)) (-2434 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 148)) (-3856 (($ $) 146)) (-1308 (($) 72) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 71)) (-3832 (((-1176) $ |#1| |#1|) 99 (|has| $ (-6 -4251))) (((-1176) $ (-525) (-525)) 178 (|has| $ (-6 -4251)))) (-2983 (($ $ (-525)) 159 (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-2613 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 200 (|has| $ (-6 -4251))) (($ $) 199 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)) (|has| $ (-6 -4251))))) (-1282 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3727 (((-108) $ (-712)) 8)) (-3912 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 134 (|has| $ (-6 -4251)))) (-3191 (($ $ $) 155 (|has| $ (-6 -4251)))) (-2568 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 157 (|has| $ (-6 -4251)))) (-2756 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 153 (|has| $ (-6 -4251)))) (-2847 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 189 (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-1138 (-525)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 160 (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "last" (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 158 (|has| $ (-6 -4251))) (($ $ "rest" $) 156 (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "first" (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 154 (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "value" (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 133 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 132 (|has| $ (-6 -4251)))) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 45 (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 216)) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 55 (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 175 (|has| $ (-6 -4250)))) (-2424 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 147)) (-2429 (((-3 |#2| "failed") |#1| $) 61)) (-2055 (($) 7 T CONST)) (-3405 (($ $) 201 (|has| $ (-6 -4251)))) (-2747 (($ $) 211)) (-2884 (($ $ (-712)) 142) (($ $) 140)) (-3945 (($ $) 214 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2908 (($ $) 58 (-3150 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250))) (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 47 (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 46 (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 220) (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 215 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 54 (|has| $ (-6 -4250))) (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 177 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 174 (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 56 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 53 (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 52 (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 176 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 173 (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 172 (|has| $ (-6 -4250)))) (-4205 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 190 (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) 88) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) 188)) (-4139 (((-108) $) 192)) (-1734 (((-525) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 208) (((-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 207 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) (((-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) 206 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 30 (|has| $ (-6 -4250))) (((-591 |#2|) $) 79 (|has| $ (-6 -4250))) (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 114 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 123)) (-3219 (((-108) $ $) 131 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-1316 (($ (-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 169)) (-3491 (((-108) $ (-712)) 9)) (-4152 ((|#1| $) 96 (|has| |#1| (-788))) (((-525) $) 180 (|has| (-525) (-788)))) (-1923 (($ $ $) 198 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3597 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3459 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 29 (|has| $ (-6 -4250))) (((-591 |#2|) $) 80 (|has| $ (-6 -4250))) (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 115 (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250)))) (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250))))) (-1826 ((|#1| $) 95 (|has| |#1| (-788))) (((-525) $) 181 (|has| (-525) (-788)))) (-3475 (($ $ $) 197 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 34 (|has| $ (-6 -4251))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4251))) (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 110 (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 109)) (-2750 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 225)) (-3295 (((-108) $ (-712)) 10)) (-2065 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 128)) (-2878 (((-108) $) 124)) (-2621 (((-1072) $) 22 (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2555 (($ $ (-712)) 145) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 143)) (-2159 (((-591 |#1|) $) 63)) (-1628 (((-108) |#1| $) 64)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 39)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 40) (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) 219) (($ $ $ (-525)) 218)) (-2059 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) 162) (($ $ $ (-525)) 161)) (-3761 (((-591 |#1|) $) 93) (((-591 (-525)) $) 183)) (-1675 (((-108) |#1| $) 92) (((-108) (-525) $) 184)) (-2937 (((-1036) $) 21 (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2872 ((|#2| $) 97 (|has| |#1| (-788))) (($ $ (-712)) 139) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 137)) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 51) (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 171)) (-1858 (($ $ |#2|) 98 (|has| $ (-6 -4251))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 179 (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 41)) (-1622 (((-108) $) 191)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 32 (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 112 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) 26 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 25 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 24 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 23 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 121 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 120 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 119 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) 118 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 182 (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2998 (((-591 |#2|) $) 91) (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 185)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 187) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) 186) (($ $ (-1138 (-525))) 165) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "first") 138) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "value") 126)) (-2194 (((-525) $ $) 129)) (-3583 (($) 49) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 48)) (-1227 (($ $ (-525)) 222) (($ $ (-1138 (-525))) 221)) (-3226 (($ $ (-525)) 164) (($ $ (-1138 (-525))) 163)) (-4133 (((-108) $) 127)) (-2349 (($ $) 151)) (-3494 (($ $) 152 (|has| $ (-6 -4251)))) (-1248 (((-712) $) 150)) (-3249 (($ $) 149)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 31 (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (((-712) |#2| $) 81 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 116 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 113 (|has| $ (-6 -4250)))) (-2992 (($ $ $ (-525)) 202 (|has| $ (-6 -4251)))) (-2873 (($ $) 13)) (-1300 (((-501) $) 59 (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501)))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 50) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 170)) (-3729 (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 224) (($ $ $) 223)) (-1624 (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 168) (($ (-591 $)) 167) (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 136) (($ $ $) 135)) (-2686 (((-796) $) 18 (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796))) (|has| |#2| (-565 (-796))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796)))))) (-1567 (((-591 $) $) 122)) (-3592 (((-108) $ $) 130 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 42)) (-2565 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") |#1| $) 108)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 33 (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 111 (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) 195 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3982 (((-108) $ $) 194 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3944 (((-108) $ $) 20 (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-3994 (((-108) $ $) 196 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3971 (((-108) $ $) 193 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-35 |#1| |#2|) (-131) (-1018) (-1018)) (T -35)) -((-2565 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| -1265 *3) (|:| -1568 *4)))))) -(-13 (-1102 |t#1| |t#2|) (-611 (-2 (|:| -1265 |t#1|) (|:| -1568 |t#2|))) (-10 -8 (-15 -2565 ((-3 (-2 (|:| -1265 |t#1|) (|:| -1568 |t#2|)) "failed") |t#1| $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T) ((-97) -3150 (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788))) ((-565 (-796)) -3150 (|has| |#2| (-1018)) (|has| |#2| (-565 (-796))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796)))) ((-142 #1=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T) ((-566 (-501)) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 #2=(-525) #1#) . T) ((-265 |#1| |#2|) . T) ((-267 #2# #1#) . T) ((-267 |#1| |#2|) . T) ((-288 #1#) -12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-261 #1#) . T) ((-351 #1#) . T) ((-464 #1#) . T) ((-464 |#2|) . T) ((-558 #2# #1#) . T) ((-558 |#1| |#2|) . T) ((-486 #1# #1#) -12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-562 |#1| |#2|) . T) ((-596 #1#) . T) ((-611 #1#) . T) ((-788) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)) ((-940 #1#) . T) ((-1018) -3150 (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788))) ((-1063 #1#) . T) ((-1102 |#1| |#2|) . T) ((-1125) . T) ((-1159 #1#) . T)) -((-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#2|) 10))) -(((-36 |#1| |#2|) (-10 -8 (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) (-37 |#2|) (-160)) (T -36)) -NIL -(-10 -8 (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +((-4004 (*1 *1 *1) (-4 *1 (-34))) (-3975 (*1 *1 *1) (-4 *1 (-34))) (-4035 (*1 *1 *1) (-4 *1 (-34))) (-2608 (*1 *1 *1) (-4 *1 (-34))) (-4018 (*1 *1 *1) (-4 *1 (-34))) (-3989 (*1 *1 *1) (-4 *1 (-34)))) +(-13 (-10 -8 (-15 -3989 ($ $)) (-15 -4018 ($ $)) (-15 -2608 ($ $)) (-15 -4035 ($ $)) (-15 -3975 ($ $)) (-15 -4004 ($ $)))) +((-4028 (((-108) $ $) 19 (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-3067 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 125)) (-1212 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 148)) (-3134 (($ $) 146)) (-1450 (($) 72) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 71)) (-2792 (((-1177) $ |#1| |#1|) 99 (|has| $ (-6 -4255))) (((-1177) $ (-525) (-525)) 178 (|has| $ (-6 -4255)))) (-2974 (($ $ (-525)) 159 (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-1943 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 200 (|has| $ (-6 -4255))) (($ $) 199 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)) (|has| $ (-6 -4255))))) (-1473 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-2583 (((-108) $ (-713)) 8)) (-2325 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 134 (|has| $ (-6 -4255)))) (-4050 (($ $ $) 155 (|has| $ (-6 -4255)))) (-3079 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 157 (|has| $ (-6 -4255)))) (-3995 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 153 (|has| $ (-6 -4255)))) (-1230 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 189 (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-1139 (-525)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 160 (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "last" (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 158 (|has| $ (-6 -4255))) (($ $ "rest" $) 156 (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "first" (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 154 (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "value" (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 133 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 132 (|has| $ (-6 -4255)))) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 45 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 216)) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 55 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 175 (|has| $ (-6 -4254)))) (-4227 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 147)) (-2504 (((-3 |#2| "failed") |#1| $) 61)) (-1957 (($) 7 T CONST)) (-1626 (($ $) 201 (|has| $ (-6 -4255)))) (-3263 (($ $) 211)) (-1693 (($ $ (-713)) 142) (($ $) 140)) (-2987 (($ $) 214 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-1716 (($ $) 58 (-3215 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254))) (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 46 (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 220) (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 54 (|has| $ (-6 -4254))) (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 174 (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 56 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 53 (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 52 (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 176 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 173 (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 172 (|has| $ (-6 -4254)))) (-2549 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 190 (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) 88) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) 188)) (-2426 (((-108) $) 192)) (-1930 (((-525) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 208) (((-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 207 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) (((-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) 206 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 30 (|has| $ (-6 -4254))) (((-592 |#2|) $) 79 (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 114 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 123)) (-2983 (((-108) $ $) 131 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-3248 (($ (-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 169)) (-2010 (((-108) $ (-713)) 9)) (-2179 ((|#1| $) 96 (|has| |#1| (-789))) (((-525) $) 180 (|has| (-525) (-789)))) (-1260 (($ $ $) 198 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-1636 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-1440 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 29 (|has| $ (-6 -4254))) (((-592 |#2|) $) 80 (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 115 (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254)))) (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-2112 ((|#1| $) 95 (|has| |#1| (-789))) (((-525) $) 181 (|has| (-525) (-789)))) (-2154 (($ $ $) 197 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 34 (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4255))) (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 110 (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 109)) (-1553 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 225)) (-2350 (((-108) $ (-713)) 10)) (-2401 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 128)) (-3260 (((-108) $) 124)) (-1707 (((-1073) $) 22 (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-2618 (($ $ (-713)) 145) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 143)) (-2183 (((-592 |#1|) $) 63)) (-2781 (((-108) |#1| $) 64)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 39)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 40) (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) 219) (($ $ $ (-525)) 218)) (-2234 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) 162) (($ $ $ (-525)) 161)) (-2379 (((-592 |#1|) $) 93) (((-592 (-525)) $) 183)) (-2030 (((-108) |#1| $) 92) (((-108) (-525) $) 184)) (-3027 (((-1037) $) 21 (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1683 ((|#2| $) 97 (|has| |#1| (-789))) (($ $ (-713)) 139) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 137)) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 51) (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 171)) (-1614 (($ $ |#2|) 98 (|has| $ (-6 -4255))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 179 (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 41)) (-3050 (((-108) $) 191)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 32 (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 112 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) 26 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 25 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 24 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 23 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 121 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 120 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 119 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) 118 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 182 (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-4100 (((-592 |#2|) $) 91) (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 185)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 187) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) 186) (($ $ (-1139 (-525))) 165) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "first") 138) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "value") 126)) (-3612 (((-525) $ $) 129)) (-3607 (($) 49) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 48)) (-2835 (($ $ (-525)) 222) (($ $ (-1139 (-525))) 221)) (-2697 (($ $ (-525)) 164) (($ $ (-1139 (-525))) 163)) (-3105 (((-108) $) 127)) (-2079 (($ $) 151)) (-2129 (($ $) 152 (|has| $ (-6 -4255)))) (-3185 (((-713) $) 150)) (-2008 (($ $) 149)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 31 (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 113 (|has| $ (-6 -4254)))) (-4038 (($ $ $ (-525)) 202 (|has| $ (-6 -4255)))) (-1261 (($ $) 13)) (-2923 (((-501) $) 59 (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501)))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 50) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 170)) (-2455 (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 224) (($ $ $) 223)) (-1810 (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 168) (($ (-592 $)) 167) (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 136) (($ $ $) 135)) (-4044 (((-797) $) 18 (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797)))))) (-2180 (((-592 $) $) 122)) (-2086 (((-108) $ $) 130 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 42)) (-2631 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") |#1| $) 108)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 33 (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 111 (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) 195 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-3944 (((-108) $ $) 194 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-3899 (((-108) $ $) 20 (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-3959 (((-108) $ $) 196 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-3928 (((-108) $ $) 193 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-35 |#1| |#2|) (-131) (-1019) (-1019)) (T -35)) +((-2631 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-5 *2 (-2 (|:| -3160 *3) (|:| -3978 *4)))))) +(-13 (-1103 |t#1| |t#2|) (-612 (-2 (|:| -3160 |t#1|) (|:| -3978 |t#2|))) (-10 -8 (-15 -2631 ((-3 (-2 (|:| -3160 |t#1|) (|:| -3978 |t#2|)) "failed") |t#1| $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T) ((-97) -3215 (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789))) ((-566 (-797)) -3215 (|has| |#2| (-1019)) (|has| |#2| (-566 (-797))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797)))) ((-142 #1=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T) ((-567 (-501)) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 #2=(-525) #1#) . T) ((-265 |#1| |#2|) . T) ((-267 #2# #1#) . T) ((-267 |#1| |#2|) . T) ((-288 #1#) -12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-261 #1#) . T) ((-351 #1#) . T) ((-464 #1#) . T) ((-464 |#2|) . T) ((-558 #2# #1#) . T) ((-558 |#1| |#2|) . T) ((-486 #1# #1#) -12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-563 |#1| |#2|) . T) ((-597 #1#) . T) ((-612 #1#) . T) ((-789) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)) ((-941 #1#) . T) ((-1019) -3215 (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789))) ((-1064 #1#) . T) ((-1103 |#1| |#2|) . T) ((-1126) . T) ((-1160 #1#) . T)) +((-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) 10))) +(((-36 |#1| |#2|) (-10 -8 (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) (-37 |#2|) (-160)) (T -36)) +NIL +(-10 -8 (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) (((-37 |#1|) (-131) (-160)) (T -37)) -((-2686 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160))))) -(-13 (-975) (-659 |t#1|) (-10 -8 (-15 -2686 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-659 |#1|) . T) ((-668) . T) ((-981 |#1|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1645 (((-396 |#1|) |#1|) 41)) (-2542 (((-396 |#1|) |#1|) 30) (((-396 |#1|) |#1| (-591 (-47))) 33)) (-4115 (((-108) |#1|) 56))) -(((-38 |#1|) (-10 -7 (-15 -2542 ((-396 |#1|) |#1| (-591 (-47)))) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -1645 ((-396 |#1|) |#1|)) (-15 -4115 ((-108) |#1|))) (-1147 (-47))) (T -38)) -((-4115 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1147 (-47))))) (-1645 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1147 (-47))))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1147 (-47))))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1147 (-47)))))) -(-10 -7 (-15 -2542 ((-396 |#1|) |#1| (-591 (-47)))) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -1645 ((-396 |#1|) |#1|)) (-15 -4115 ((-108) |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2301 (((-2 (|:| |num| (-1171 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-3641 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3077 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1712 (((-631 (-385 |#2|)) (-1171 $)) NIL) (((-631 (-385 |#2|))) NIL)) (-1481 (((-385 |#2|) $) NIL)) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3898 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1965 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2834 (((-712)) NIL (|has| (-385 |#2|) (-346)))) (-2190 (((-108)) NIL)) (-1911 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-966 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| (-385 |#2|) (-966 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-966 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-1554 (($ (-1171 (-385 |#2|)) (-1171 $)) NIL) (($ (-1171 (-385 |#2|))) 57) (($ (-1171 |#2|) |#2|) 125)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-3265 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4054 (((-631 (-385 |#2|)) $ (-1171 $)) NIL) (((-631 (-385 |#2|)) $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| (-385 |#2|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-385 |#2|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-385 |#2|))) (|:| |vec| (-1171 (-385 |#2|)))) (-631 $) (-1171 $)) NIL) (((-631 (-385 |#2|)) (-631 $)) NIL)) (-2052 (((-1171 $) (-1171 $)) NIL)) (-3618 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-1522 (((-3 $ "failed") $) NIL)) (-2904 (((-591 (-591 |#1|))) NIL (|has| |#1| (-346)))) (-3759 (((-108) |#1| |#1|) NIL)) (-2193 (((-854)) NIL)) (-1325 (($) NIL (|has| (-385 |#2|) (-346)))) (-3506 (((-108)) NIL)) (-1461 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-3239 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| (-385 |#2|) (-341)))) (-3153 (($ $) NIL)) (-1268 (($) NIL (|has| (-385 |#2|) (-327)))) (-2096 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-3477 (($ $ (-712)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-2393 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1676 (((-854) $) NIL (|has| (-385 |#2|) (-327))) (((-774 (-854)) $) NIL (|has| (-385 |#2|) (-327)))) (-3865 (((-108) $) NIL)) (-3340 (((-712)) NIL)) (-2792 (((-1171 $) (-1171 $)) 102)) (-1525 (((-385 |#2|) $) NIL)) (-2056 (((-591 (-885 |#1|)) (-1089)) NIL (|has| |#1| (-341)))) (-2115 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3205 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-1970 (((-854) $) NIL (|has| (-385 |#2|) (-346)))) (-3610 ((|#3| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2621 (((-1072) $) NIL)) (-2374 (((-1176) (-712)) 79)) (-1705 (((-631 (-385 |#2|))) 51)) (-2636 (((-631 (-385 |#2|))) 44)) (-1523 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3470 (($ (-1171 |#2|) |#2|) 126)) (-3101 (((-631 (-385 |#2|))) 45)) (-2646 (((-631 (-385 |#2|))) 43)) (-1652 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-2137 (((-2 (|:| |num| (-1171 |#2|)) (|:| |den| |#2|)) $) 64)) (-2045 (((-1171 $)) 42)) (-2773 (((-1171 $)) 41)) (-3790 (((-108) $) NIL)) (-2353 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3492 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-3229 (($ (-854)) NIL (|has| (-385 |#2|) (-346)))) (-3695 (((-3 |#2| "failed")) NIL)) (-2937 (((-1036) $) NIL)) (-2658 (((-712)) NIL)) (-3965 (($) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| (-385 |#2|) (-341)))) (-2124 (($ (-591 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-2542 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-3210 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3048 (((-712) $) NIL (|has| (-385 |#2|) (-341)))) (-1881 ((|#1| $ |#1| |#1|) NIL)) (-1945 (((-3 |#2| "failed")) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2858 (((-385 |#2|) (-1171 $)) NIL) (((-385 |#2|)) 39)) (-2652 (((-712) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-712) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-2209 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-712)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-712)) NIL (-3150 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3150 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3206 (((-631 (-385 |#2|)) (-1171 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-1341 ((|#3|) 50)) (-3560 (($) NIL (|has| (-385 |#2|) (-327)))) (-1671 (((-1171 (-385 |#2|)) $ (-1171 $)) NIL) (((-631 (-385 |#2|)) (-1171 $) (-1171 $)) NIL) (((-1171 (-385 |#2|)) $) 58) (((-631 (-385 |#2|)) (-1171 $)) 103)) (-1300 (((-1171 (-385 |#2|)) $) NIL) (($ (-1171 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| (-385 |#2|) (-327)))) (-3010 (((-1171 $) (-1171 $)) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3150 (|has| (-385 |#2|) (-966 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3751 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-2173 ((|#3| $) NIL)) (-3425 (((-712)) NIL)) (-1425 (((-108)) 37)) (-3977 (((-108) |#1|) 49) (((-108) |#2|) 132)) (-3612 (((-1171 $)) 93)) (-1724 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1776 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1787 (((-108)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-1830 (($) 16 T CONST)) (-1839 (($) 26 T CONST)) (-1796 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-712)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-712)) NIL (-3150 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3150 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341))))) -(((-39 |#1| |#2| |#3| |#4|) (-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -2374 ((-1176) (-712))))) (-341) (-1147 |#1|) (-1147 (-385 |#2|)) |#3|) (T -39)) -((-2374 (*1 *2 *3) (-12 (-5 *3 (-712)) (-4 *4 (-341)) (-4 *5 (-1147 *4)) (-5 *2 (-1176)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1147 (-385 *5))) (-14 *7 *6)))) -(-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -2374 ((-1176) (-712))))) -((-2879 ((|#2| |#2|) 48)) (-3936 ((|#2| |#2|) 119 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-788)) (|has| |#1| (-966 (-525)))))) (-1848 ((|#2| |#2|) 87 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-788)) (|has| |#1| (-966 (-525)))))) (-1950 ((|#2| |#2|) 88 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-788)) (|has| |#1| (-966 (-525)))))) (-3464 ((|#2| (-110) |#2| (-712)) 75 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-788)) (|has| |#1| (-966 (-525)))))) (-2364 (((-1085 |#2|) |#2|) 45)) (-3605 ((|#2| |#2| (-591 (-564 |#2|))) 18) ((|#2| |#2| (-591 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-40 |#1| |#2|) (-10 -7 (-15 -2879 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -3605 (|#2| |#2| |#2|)) (-15 -3605 (|#2| |#2| (-591 |#2|))) (-15 -3605 (|#2| |#2| (-591 (-564 |#2|)))) (-15 -2364 ((-1085 |#2|) |#2|)) (IF (|has| |#1| (-788)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-966 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -1950 (|#2| |#2|)) (-15 -1848 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -3464 (|#2| (-110) |#2| (-712)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-517) (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 |#1| (-564 $)) $)) (-15 -1396 ((-1041 |#1| (-564 $)) $)) (-15 -2686 ($ (-1041 |#1| (-564 $))))))) (T -40)) -((-3464 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-712)) (-4 *5 (-429)) (-4 *5 (-788)) (-4 *5 (-966 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2)) (-4 *2 (-408 *5)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *5 (-564 $)) $)) (-15 -1396 ((-1041 *5 (-564 $)) $)) (-15 -2686 ($ (-1041 *5 (-564 $))))))))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-788)) (-4 *3 (-966 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) (-15 -1396 ((-1041 *3 (-564 $)) $)) (-15 -2686 ($ (-1041 *3 (-564 $))))))))) (-1848 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-788)) (-4 *3 (-966 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) (-15 -1396 ((-1041 *3 (-564 $)) $)) (-15 -2686 ($ (-1041 *3 (-564 $))))))))) (-1950 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-788)) (-4 *3 (-966 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) (-15 -1396 ((-1041 *3 (-564 $)) $)) (-15 -2686 ($ (-1041 *3 (-564 $))))))))) (-2364 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1085 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *4 (-564 $)) $)) (-15 -1396 ((-1041 *4 (-564 $)) $)) (-15 -2686 ($ (-1041 *4 (-564 $))))))))) (-3605 (*1 *2 *2 *3) (-12 (-5 *3 (-591 (-564 *2))) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *4 (-564 $)) $)) (-15 -1396 ((-1041 *4 (-564 $)) $)) (-15 -2686 ($ (-1041 *4 (-564 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3605 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *4 (-564 $)) $)) (-15 -1396 ((-1041 *4 (-564 $)) $)) (-15 -2686 ($ (-1041 *4 (-564 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3605 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) (-15 -1396 ((-1041 *3 (-564 $)) $)) (-15 -2686 ($ (-1041 *3 (-564 $))))))))) (-3605 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) (-15 -1396 ((-1041 *3 (-564 $)) $)) (-15 -2686 ($ (-1041 *3 (-564 $))))))))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) (-15 -1396 ((-1041 *3 (-564 $)) $)) (-15 -2686 ($ (-1041 *3 (-564 $)))))))))) -(-10 -7 (-15 -2879 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -3605 (|#2| |#2| |#2|)) (-15 -3605 (|#2| |#2| (-591 |#2|))) (-15 -3605 (|#2| |#2| (-591 (-564 |#2|)))) (-15 -2364 ((-1085 |#2|) |#2|)) (IF (|has| |#1| (-788)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-966 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -1950 (|#2| |#2|)) (-15 -1848 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -3464 (|#2| (-110) |#2| (-712)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2542 (((-396 (-1085 |#3|)) (-1085 |#3|) (-591 (-47))) 23) (((-396 |#3|) |#3| (-591 (-47))) 19))) -(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2542 ((-396 |#3|) |#3| (-591 (-47)))) (-15 -2542 ((-396 (-1085 |#3|)) (-1085 |#3|) (-591 (-47))))) (-788) (-734) (-882 (-47) |#2| |#1|)) (T -41)) -((-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-47))) (-4 *5 (-788)) (-4 *6 (-734)) (-4 *7 (-882 (-47) *6 *5)) (-5 *2 (-396 (-1085 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-47))) (-4 *5 (-788)) (-4 *6 (-734)) (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-882 (-47) *6 *5))))) -(-10 -7 (-15 -2542 ((-396 |#3|) |#3| (-591 (-47)))) (-15 -2542 ((-396 (-1085 |#3|)) (-1085 |#3|) (-591 (-47))))) -((-4168 (((-712) |#2|) 65)) (-1999 (((-712) |#2|) 68)) (-2526 (((-591 |#2|)) 33)) (-3976 (((-712) |#2|) 67)) (-1704 (((-712) |#2|) 64)) (-3462 (((-712) |#2|) 66)) (-2382 (((-591 (-631 |#1|))) 60)) (-3957 (((-591 |#2|)) 55)) (-2133 (((-591 |#2|) |#2|) 43)) (-2340 (((-591 |#2|)) 57)) (-4128 (((-591 |#2|)) 56)) (-4170 (((-591 (-631 |#1|))) 48)) (-2971 (((-591 |#2|)) 54)) (-1635 (((-591 |#2|) |#2|) 42)) (-2801 (((-591 |#2|)) 50)) (-2110 (((-591 (-631 |#1|))) 61)) (-1535 (((-591 |#2|)) 59)) (-3612 (((-1171 |#2|) (-1171 |#2|)) 84 (|has| |#1| (-286))))) -(((-42 |#1| |#2|) (-10 -7 (-15 -3976 ((-712) |#2|)) (-15 -1999 ((-712) |#2|)) (-15 -1704 ((-712) |#2|)) (-15 -4168 ((-712) |#2|)) (-15 -3462 ((-712) |#2|)) (-15 -2801 ((-591 |#2|))) (-15 -1635 ((-591 |#2|) |#2|)) (-15 -2133 ((-591 |#2|) |#2|)) (-15 -2971 ((-591 |#2|))) (-15 -3957 ((-591 |#2|))) (-15 -4128 ((-591 |#2|))) (-15 -2340 ((-591 |#2|))) (-15 -1535 ((-591 |#2|))) (-15 -4170 ((-591 (-631 |#1|)))) (-15 -2382 ((-591 (-631 |#1|)))) (-15 -2110 ((-591 (-631 |#1|)))) (-15 -2526 ((-591 |#2|))) (IF (|has| |#1| (-286)) (-15 -3612 ((-1171 |#2|) (-1171 |#2|))) |%noBranch|)) (-517) (-395 |#1|)) (T -42)) -((-3612 (*1 *2 *2) (-12 (-5 *2 (-1171 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-42 *3 *4)))) (-2526 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2110 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 (-631 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2382 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 (-631 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-4170 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 (-631 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-1535 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2340 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-4128 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3957 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2971 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2133 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-591 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-591 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2801 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3462 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-4168 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-1704 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-1999 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3976 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4))))) -(-10 -7 (-15 -3976 ((-712) |#2|)) (-15 -1999 ((-712) |#2|)) (-15 -1704 ((-712) |#2|)) (-15 -4168 ((-712) |#2|)) (-15 -3462 ((-712) |#2|)) (-15 -2801 ((-591 |#2|))) (-15 -1635 ((-591 |#2|) |#2|)) (-15 -2133 ((-591 |#2|) |#2|)) (-15 -2971 ((-591 |#2|))) (-15 -3957 ((-591 |#2|))) (-15 -4128 ((-591 |#2|))) (-15 -2340 ((-591 |#2|))) (-15 -1535 ((-591 |#2|))) (-15 -4170 ((-591 (-631 |#1|)))) (-15 -2382 ((-591 (-631 |#1|)))) (-15 -2110 ((-591 (-631 |#1|)))) (-15 -2526 ((-591 |#2|))) (IF (|has| |#1| (-286)) (-15 -3612 ((-1171 |#2|) (-1171 |#2|))) |%noBranch|)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1851 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2010 (((-1171 (-631 |#1|)) (-1171 $)) NIL) (((-1171 (-631 |#1|))) 24)) (-3483 (((-1171 $)) 51)) (-2055 (($) NIL T CONST)) (-4007 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL (|has| |#1| (-517)))) (-4088 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-2004 (((-631 |#1|) (-1171 $)) NIL) (((-631 |#1|)) NIL)) (-3681 ((|#1| $) NIL)) (-2465 (((-631 |#1|) $ (-1171 $)) NIL) (((-631 |#1|) $) NIL)) (-2397 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-4182 (((-1085 (-885 |#1|))) NIL (|has| |#1| (-341)))) (-2681 (($ $ (-854)) NIL)) (-3549 ((|#1| $) NIL)) (-1865 (((-1085 |#1|) $) NIL (|has| |#1| (-517)))) (-1321 ((|#1| (-1171 $)) NIL) ((|#1|) NIL)) (-3985 (((-1085 |#1|) $) NIL)) (-1532 (((-108)) 87)) (-1554 (($ (-1171 |#1|) (-1171 $)) NIL) (($ (-1171 |#1|)) NIL)) (-1522 (((-3 $ "failed") $) 14 (|has| |#1| (-517)))) (-2193 (((-854)) 52)) (-3595 (((-108)) NIL)) (-1447 (($ $ (-854)) NIL)) (-3999 (((-108)) NIL)) (-3319 (((-108)) NIL)) (-1219 (((-108)) 89)) (-1779 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL (|has| |#1| (-517)))) (-2727 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-1529 (((-631 |#1|) (-1171 $)) NIL) (((-631 |#1|)) NIL)) (-2671 ((|#1| $) NIL)) (-2000 (((-631 |#1|) $ (-1171 $)) NIL) (((-631 |#1|) $) NIL)) (-3917 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-2679 (((-1085 (-885 |#1|))) NIL (|has| |#1| (-341)))) (-2832 (($ $ (-854)) NIL)) (-1984 ((|#1| $) NIL)) (-4130 (((-1085 |#1|) $) NIL (|has| |#1| (-517)))) (-2336 ((|#1| (-1171 $)) NIL) ((|#1|) NIL)) (-3019 (((-1085 |#1|) $) NIL)) (-1312 (((-108)) 86)) (-2621 (((-1072) $) NIL)) (-3440 (((-108)) 93)) (-3615 (((-108)) 92)) (-1821 (((-108)) 94)) (-2937 (((-1036) $) NIL)) (-1492 (((-108)) 88)) (-1881 ((|#1| $ (-525)) 54)) (-1671 (((-1171 |#1|) $ (-1171 $)) 48) (((-631 |#1|) (-1171 $) (-1171 $)) NIL) (((-1171 |#1|) $) 28) (((-631 |#1|) (-1171 $)) NIL)) (-1300 (((-1171 |#1|) $) NIL) (($ (-1171 |#1|)) NIL)) (-3277 (((-591 (-885 |#1|)) (-1171 $)) NIL) (((-591 (-885 |#1|))) NIL)) (-4027 (($ $ $) NIL)) (-2003 (((-108)) 84)) (-2686 (((-796) $) 69) (($ (-1171 |#1|)) 22)) (-3612 (((-1171 $)) 45)) (-3674 (((-591 (-1171 |#1|))) NIL (|has| |#1| (-517)))) (-1894 (($ $ $ $) NIL)) (-2535 (((-108)) 82)) (-2814 (($ (-631 |#1|) $) 18)) (-1971 (($ $ $) NIL)) (-3887 (((-108)) 85)) (-1394 (((-108)) 83)) (-2659 (((-108)) 81)) (-1830 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1056 |#2| |#1|) $) 19))) -(((-43 |#1| |#2| |#3| |#4|) (-13 (-395 |#1|) (-593 (-1056 |#2| |#1|)) (-10 -8 (-15 -2686 ($ (-1171 |#1|))))) (-341) (-854) (-591 (-1089)) (-1171 (-631 |#1|))) (T -43)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-341)) (-14 *6 (-1171 (-631 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-854)) (-14 *5 (-591 (-1089)))))) -(-13 (-395 |#1|) (-593 (-1056 |#2| |#1|)) (-10 -8 (-15 -2686 ($ (-1171 |#1|))))) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2940 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-2434 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3856 (($ $) NIL)) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-3832 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -4251))) (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-2983 (($ $ (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-2613 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788))))) (-1282 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-3912 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4251)))) (-3191 (($ $ $) 27 (|has| $ (-6 -4251)))) (-2568 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4251)))) (-2756 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 29 (|has| $ (-6 -4251)))) (-2847 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-1138 (-525)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "last" (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4251))) (($ $ "rest" $) NIL (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "first" (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "value" (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2424 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-2429 (((-3 |#2| "failed") |#1| $) 37)) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2884 (($ $ (-712)) NIL) (($ $) 24)) (-3945 (($ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4251))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) NIL) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) NIL)) (-4139 (((-108) $) NIL)) (-1734 (((-525) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (((-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) (((-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 18 (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250))) (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 18 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-1316 (($ (-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 ((|#1| $) NIL (|has| |#1| (-788))) (((-525) $) 32 (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3597 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3459 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250))) (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-1826 ((|#1| $) NIL (|has| |#1| (-788))) (((-525) $) 34 (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4251))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251))) (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-2750 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2065 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-2878 (((-108) $) NIL)) (-2621 (((-1072) $) 42 (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2555 (($ $ (-712)) NIL) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-2159 (((-591 |#1|) $) 20)) (-1628 (((-108) |#1| $) NIL)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL) (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2059 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 |#1|) $) NIL) (((-591 (-525)) $) NIL)) (-1675 (((-108) |#1| $) NIL) (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2872 ((|#2| $) NIL (|has| |#1| (-788))) (($ $ (-712)) NIL) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 23)) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-1622 (((-108) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2998 (((-591 |#2|) $) NIL) (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 17)) (-2077 (((-108) $) 16)) (-3164 (($) 13)) (-1881 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ (-525)) NIL) (($ $ (-1138 (-525))) NIL) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "first") NIL) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $ "value") NIL)) (-2194 (((-525) $ $) NIL)) (-3583 (($) 12) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-1227 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-4133 (((-108) $) NIL)) (-2349 (($ $) NIL)) (-3494 (($ $) NIL (|has| $ (-6 -4251)))) (-1248 (((-712) $) NIL)) (-3249 (($ $) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-3729 (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL) (($ $ $) NIL)) (-1624 (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL) (($ (-591 $)) NIL) (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 25) (($ $ $) NIL)) (-2686 (((-796) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796))) (|has| |#2| (-565 (-796)))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2565 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") |#1| $) 44)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-3994 (((-108) $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-3971 (((-108) $ $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-788)))) (-2028 (((-712) $) 22 (|has| $ (-6 -4250))))) -(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1018) (-1018)) (T -44)) +((-4044 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160))))) +(-13 (-976) (-660 |t#1|) (-10 -8 (-15 -4044 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-3114 (((-396 |#1|) |#1|) 41)) (-2961 (((-396 |#1|) |#1|) 30) (((-396 |#1|) |#1| (-592 (-47))) 33)) (-3887 (((-108) |#1|) 56))) +(((-38 |#1|) (-10 -7 (-15 -2961 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -3114 ((-396 |#1|) |#1|)) (-15 -3887 ((-108) |#1|))) (-1148 (-47))) (T -38)) +((-3887 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))) (-3114 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))) (-2961 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47)))))) +(-10 -7 (-15 -2961 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -3114 ((-396 |#1|) |#1|)) (-15 -3887 ((-108) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3949 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-2609 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1220 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-3852 (((-632 (-385 |#2|)) (-1172 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-3942 (((-385 |#2|) $) NIL)) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1259 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1700 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1651 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-3402 (((-108)) NIL)) (-3169 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| (-385 |#2|) (-967 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-1689 (($ (-1172 (-385 |#2|)) (-1172 $)) NIL) (($ (-1172 (-385 |#2|))) 57) (($ (-1172 |#2|) |#2|) 125)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-2720 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3198 (((-632 (-385 |#2|)) $ (-1172 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-385 |#2|))) (|:| |vec| (-1172 (-385 |#2|)))) (-632 $) (-1172 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-1536 (((-1172 $) (-1172 $)) NIL)) (-3336 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-1645 (((-3 $ "failed") $) NIL)) (-2442 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-3242 (((-108) |#1| |#1|) NIL)) (-3439 (((-855)) NIL)) (-1527 (($) NIL (|has| (-385 |#2|) (-346)))) (-3902 (((-108)) NIL)) (-3641 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2699 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-2319 (($ $) NIL)) (-2376 (($) NIL (|has| (-385 |#2|) (-327)))) (-3703 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-3351 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-2069 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-2158 (((-855) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-855)) $) NIL (|has| (-385 |#2|) (-327)))) (-2507 (((-108) $) NIL)) (-3029 (((-713)) NIL)) (-3770 (((-1172 $) (-1172 $)) 102)) (-2281 (((-385 |#2|) $) NIL)) (-2027 (((-592 (-886 |#1|)) (-1090)) NIL (|has| |#1| (-341)))) (-1978 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3800 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-2111 (((-855) $) NIL (|has| (-385 |#2|) (-346)))) (-3325 ((|#3| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1707 (((-1073) $) NIL)) (-3284 (((-1177) (-713)) 79)) (-2378 (((-632 (-385 |#2|))) 51)) (-4021 (((-632 (-385 |#2|))) 44)) (-3243 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-4136 (($ (-1172 |#2|) |#2|) 126)) (-1344 (((-632 (-385 |#2|))) 45)) (-2209 (((-632 (-385 |#2|))) 43)) (-1742 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3974 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) 64)) (-4124 (((-1172 $)) 42)) (-1920 (((-1172 $)) 41)) (-2784 (((-108) $) NIL)) (-2318 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2039 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-3381 (($ (-855)) NIL (|has| (-385 |#2|) (-346)))) (-1443 (((-3 |#2| "failed")) NIL)) (-3027 (((-1037) $) NIL)) (-3399 (((-713)) NIL)) (-3258 (($) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-385 |#2|) (-341)))) (-2262 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-2961 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2675 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2824 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-1496 ((|#1| $ |#1| |#1|) NIL)) (-1887 (((-3 |#2| "failed")) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2257 (((-385 |#2|) (-1172 $)) NIL) (((-385 |#2|)) 39)) (-2729 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-1576 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-713)) NIL (-3215 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3215 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-1410 (((-632 (-385 |#2|)) (-1172 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-2775 ((|#3|) 50)) (-3405 (($) NIL (|has| (-385 |#2|) (-327)))) (-1625 (((-1172 (-385 |#2|)) $ (-1172 $)) NIL) (((-632 (-385 |#2|)) (-1172 $) (-1172 $)) NIL) (((-1172 (-385 |#2|)) $) 58) (((-632 (-385 |#2|)) (-1172 $)) 103)) (-2923 (((-1172 (-385 |#2|)) $) NIL) (($ (-1172 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-2918 (((-1172 $) (-1172 $)) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3215 (|has| (-385 |#2|) (-967 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1279 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-2867 ((|#3| $) NIL)) (-2502 (((-713)) NIL)) (-1446 (((-108)) 37)) (-2860 (((-108) |#1|) 49) (((-108) |#2|) 132)) (-2734 (((-1172 $)) 93)) (-3787 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-3416 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2598 (((-108)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-1436 (($) 16 T CONST)) (-1449 (($) 26 T CONST)) (-1990 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-713)) NIL (-3215 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3215 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341))))) +(((-39 |#1| |#2| |#3| |#4|) (-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -3284 ((-1177) (-713))))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) |#3|) (T -39)) +((-3284 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1148 *4)) (-5 *2 (-1177)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1148 (-385 *5))) (-14 *7 *6)))) +(-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -3284 ((-1177) (-713))))) +((-3328 ((|#2| |#2|) 48)) (-3221 ((|#2| |#2|) 119 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-967 (-525)))))) (-3424 ((|#2| |#2|) 87 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-967 (-525)))))) (-2056 ((|#2| |#2|) 88 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-967 (-525)))))) (-1844 ((|#2| (-110) |#2| (-713)) 75 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-967 (-525)))))) (-3732 (((-1086 |#2|) |#2|) 45)) (-3226 ((|#2| |#2| (-592 (-565 |#2|))) 18) ((|#2| |#2| (-592 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-40 |#1| |#2|) (-10 -7 (-15 -3328 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -3226 (|#2| |#2| |#2|)) (-15 -3226 (|#2| |#2| (-592 |#2|))) (-15 -3226 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -3732 ((-1086 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-967 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -2056 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -1844 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-517) (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 |#1| (-565 $)) $)) (-15 -1945 ((-1042 |#1| (-565 $)) $)) (-15 -4044 ($ (-1042 |#1| (-565 $))))))) (T -40)) +((-1844 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789)) (-4 *5 (-967 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2)) (-4 *2 (-408 *5)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *5 (-565 $)) $)) (-15 -1945 ((-1042 *5 (-565 $)) $)) (-15 -4044 ($ (-1042 *5 (-565 $))))))))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) (-15 -1945 ((-1042 *3 (-565 $)) $)) (-15 -4044 ($ (-1042 *3 (-565 $))))))))) (-3424 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) (-15 -1945 ((-1042 *3 (-565 $)) $)) (-15 -4044 ($ (-1042 *3 (-565 $))))))))) (-2056 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) (-15 -1945 ((-1042 *3 (-565 $)) $)) (-15 -4044 ($ (-1042 *3 (-565 $))))))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1086 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *4 (-565 $)) $)) (-15 -1945 ((-1042 *4 (-565 $)) $)) (-15 -4044 ($ (-1042 *4 (-565 $))))))))) (-3226 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-565 *2))) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *4 (-565 $)) $)) (-15 -1945 ((-1042 *4 (-565 $)) $)) (-15 -4044 ($ (-1042 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3226 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *4 (-565 $)) $)) (-15 -1945 ((-1042 *4 (-565 $)) $)) (-15 -4044 ($ (-1042 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3226 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) (-15 -1945 ((-1042 *3 (-565 $)) $)) (-15 -4044 ($ (-1042 *3 (-565 $))))))))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) (-15 -1945 ((-1042 *3 (-565 $)) $)) (-15 -4044 ($ (-1042 *3 (-565 $))))))))) (-3328 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) (-15 -1945 ((-1042 *3 (-565 $)) $)) (-15 -4044 ($ (-1042 *3 (-565 $)))))))))) +(-10 -7 (-15 -3328 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -3226 (|#2| |#2| |#2|)) (-15 -3226 (|#2| |#2| (-592 |#2|))) (-15 -3226 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -3732 ((-1086 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-967 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -2056 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -1844 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2961 (((-396 (-1086 |#3|)) (-1086 |#3|) (-592 (-47))) 23) (((-396 |#3|) |#3| (-592 (-47))) 19))) +(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2961 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -2961 ((-396 (-1086 |#3|)) (-1086 |#3|) (-592 (-47))))) (-789) (-735) (-883 (-47) |#2| |#1|)) (T -41)) +((-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *7 (-883 (-47) *6 *5)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-883 (-47) *6 *5))))) +(-10 -7 (-15 -2961 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -2961 ((-396 (-1086 |#3|)) (-1086 |#3|) (-592 (-47))))) +((-3834 (((-713) |#2|) 65)) (-2459 (((-713) |#2|) 68)) (-3360 (((-592 |#2|)) 33)) (-2741 (((-713) |#2|) 67)) (-2217 (((-713) |#2|) 64)) (-1668 (((-713) |#2|) 66)) (-3626 (((-592 (-632 |#1|))) 60)) (-3634 (((-592 |#2|)) 55)) (-3688 (((-592 |#2|) |#2|) 43)) (-2433 (((-592 |#2|)) 57)) (-2728 (((-592 |#2|)) 56)) (-4061 (((-592 (-632 |#1|))) 48)) (-4216 (((-592 |#2|)) 54)) (-4175 (((-592 |#2|) |#2|) 42)) (-3363 (((-592 |#2|)) 50)) (-2662 (((-592 (-632 |#1|))) 61)) (-2622 (((-592 |#2|)) 59)) (-2734 (((-1172 |#2|) (-1172 |#2|)) 84 (|has| |#1| (-286))))) +(((-42 |#1| |#2|) (-10 -7 (-15 -2741 ((-713) |#2|)) (-15 -2459 ((-713) |#2|)) (-15 -2217 ((-713) |#2|)) (-15 -3834 ((-713) |#2|)) (-15 -1668 ((-713) |#2|)) (-15 -3363 ((-592 |#2|))) (-15 -4175 ((-592 |#2|) |#2|)) (-15 -3688 ((-592 |#2|) |#2|)) (-15 -4216 ((-592 |#2|))) (-15 -3634 ((-592 |#2|))) (-15 -2728 ((-592 |#2|))) (-15 -2433 ((-592 |#2|))) (-15 -2622 ((-592 |#2|))) (-15 -4061 ((-592 (-632 |#1|)))) (-15 -3626 ((-592 (-632 |#1|)))) (-15 -2662 ((-592 (-632 |#1|)))) (-15 -3360 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -2734 ((-1172 |#2|) (-1172 |#2|))) |%noBranch|)) (-517) (-395 |#1|)) (T -42)) +((-2734 (*1 *2 *2) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-42 *3 *4)))) (-3360 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2662 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3626 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-4061 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2622 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2433 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2728 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3634 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-4216 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-4175 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3363 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-1668 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3834 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2217 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2459 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2741 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4))))) +(-10 -7 (-15 -2741 ((-713) |#2|)) (-15 -2459 ((-713) |#2|)) (-15 -2217 ((-713) |#2|)) (-15 -3834 ((-713) |#2|)) (-15 -1668 ((-713) |#2|)) (-15 -3363 ((-592 |#2|))) (-15 -4175 ((-592 |#2|) |#2|)) (-15 -3688 ((-592 |#2|) |#2|)) (-15 -4216 ((-592 |#2|))) (-15 -3634 ((-592 |#2|))) (-15 -2728 ((-592 |#2|))) (-15 -2433 ((-592 |#2|))) (-15 -2622 ((-592 |#2|))) (-15 -4061 ((-592 (-632 |#1|)))) (-15 -3626 ((-592 (-632 |#1|)))) (-15 -2662 ((-592 (-632 |#1|)))) (-15 -3360 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -2734 ((-1172 |#2|) (-1172 |#2|))) |%noBranch|)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3603 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1545 (((-1172 (-632 |#1|)) (-1172 $)) NIL) (((-1172 (-632 |#1|))) 24)) (-2489 (((-1172 $)) 51)) (-1957 (($) NIL T CONST)) (-1922 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-3537 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-1953 (((-632 |#1|) (-1172 $)) NIL) (((-632 |#1|)) NIL)) (-3497 ((|#1| $) NIL)) (-3663 (((-632 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) $) NIL)) (-2256 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-3558 (((-1086 (-886 |#1|))) NIL (|has| |#1| (-341)))) (-1469 (($ $ (-855)) NIL)) (-3655 ((|#1| $) NIL)) (-1911 (((-1086 |#1|) $) NIL (|has| |#1| (-517)))) (-1452 ((|#1| (-1172 $)) NIL) ((|#1|) NIL)) (-1492 (((-1086 |#1|) $) NIL)) (-2790 (((-108)) 87)) (-1689 (($ (-1172 |#1|) (-1172 $)) NIL) (($ (-1172 |#1|)) NIL)) (-1645 (((-3 $ "failed") $) 14 (|has| |#1| (-517)))) (-3439 (((-855)) 52)) (-2404 (((-108)) NIL)) (-1404 (($ $ (-855)) NIL)) (-1552 (((-108)) NIL)) (-2383 (((-108)) NIL)) (-3076 (((-108)) 89)) (-3609 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-2167 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-1301 (((-632 |#1|) (-1172 $)) NIL) (((-632 |#1|)) NIL)) (-4139 ((|#1| $) NIL)) (-2562 (((-632 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) $) NIL)) (-1709 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-1376 (((-1086 (-886 |#1|))) NIL (|has| |#1| (-341)))) (-2148 (($ $ (-855)) NIL)) (-1855 ((|#1| $) NIL)) (-4067 (((-1086 |#1|) $) NIL (|has| |#1| (-517)))) (-4087 ((|#1| (-1172 $)) NIL) ((|#1|) NIL)) (-1488 (((-1086 |#1|) $) NIL)) (-2085 (((-108)) 86)) (-1707 (((-1073) $) NIL)) (-4062 (((-108)) 93)) (-1985 (((-108)) 92)) (-2744 (((-108)) 94)) (-3027 (((-1037) $) NIL)) (-3587 (((-108)) 88)) (-1496 ((|#1| $ (-525)) 54)) (-1625 (((-1172 |#1|) $ (-1172 $)) 48) (((-632 |#1|) (-1172 $) (-1172 $)) NIL) (((-1172 |#1|) $) 28) (((-632 |#1|) (-1172 $)) NIL)) (-2923 (((-1172 |#1|) $) NIL) (($ (-1172 |#1|)) NIL)) (-4125 (((-592 (-886 |#1|)) (-1172 $)) NIL) (((-592 (-886 |#1|))) NIL)) (-1573 (($ $ $) NIL)) (-2880 (((-108)) 84)) (-4044 (((-797) $) 69) (($ (-1172 |#1|)) 22)) (-2734 (((-1172 $)) 45)) (-4194 (((-592 (-1172 |#1|))) NIL (|has| |#1| (-517)))) (-1762 (($ $ $ $) NIL)) (-2986 (((-108)) 82)) (-1627 (($ (-632 |#1|) $) 18)) (-2407 (($ $ $) NIL)) (-2046 (((-108)) 85)) (-3367 (((-108)) 83)) (-3026 (((-108)) 81)) (-1436 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1057 |#2| |#1|) $) 19))) +(((-43 |#1| |#2| |#3| |#4|) (-13 (-395 |#1|) (-594 (-1057 |#2| |#1|)) (-10 -8 (-15 -4044 ($ (-1172 |#1|))))) (-341) (-855) (-592 (-1090)) (-1172 (-632 |#1|))) (T -43)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-341)) (-14 *6 (-1172 (-632 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-855)) (-14 *5 (-592 (-1090)))))) +(-13 (-395 |#1|) (-594 (-1057 |#2| |#1|)) (-10 -8 (-15 -4044 ($ (-1172 |#1|))))) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3067 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-1212 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-3134 (($ $) NIL)) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2792 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255))) (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-2974 (($ $ (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-1943 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789))))) (-1473 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-2325 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4255)))) (-4050 (($ $ $) 27 (|has| $ (-6 -4255)))) (-3079 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4255)))) (-3995 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 29 (|has| $ (-6 -4255)))) (-1230 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-1139 (-525)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "last" (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4255))) (($ $ "rest" $) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "first" (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "value" (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4227 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-2504 (((-3 |#2| "failed") |#1| $) 37)) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1693 (($ $ (-713)) NIL) (($ $) 24)) (-2987 (($ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) NIL) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) NIL)) (-2426 (((-108) $) NIL)) (-1930 (((-525) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (((-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) (((-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 18 (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 18 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-3248 (($ (-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 32 (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-1636 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-1440 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-2112 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 34 (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-1553 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-2401 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-3260 (((-108) $) NIL)) (-1707 (((-1073) $) 42 (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-2618 (($ $ (-713)) NIL) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-2183 (((-592 |#1|) $) 20)) (-2781 (((-108) |#1| $) NIL)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL) (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2234 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 |#1|) $) NIL) (((-592 (-525)) $) NIL)) (-2030 (((-108) |#1| $) NIL) (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1683 ((|#2| $) NIL (|has| |#1| (-789))) (($ $ (-713)) NIL) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 23)) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-3050 (((-108) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-4100 (((-592 |#2|) $) NIL) (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 17)) (-3086 (((-108) $) 16)) (-3266 (($) 13)) (-1496 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ (-525)) NIL) (($ $ (-1139 (-525))) NIL) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "first") NIL) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $ "value") NIL)) (-3612 (((-525) $ $) NIL)) (-3607 (($) 12) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2835 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3105 (((-108) $) NIL)) (-2079 (($ $) NIL)) (-2129 (($ $) NIL (|has| $ (-6 -4255)))) (-3185 (((-713) $) NIL)) (-2008 (($ $) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2455 (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL) (($ $ $) NIL)) (-1810 (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL) (($ (-592 $)) NIL) (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 25) (($ $ $) NIL)) (-4044 (((-797) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2631 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") |#1| $) 44)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3959 (((-108) $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-3928 (((-108) $ $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-789)))) (-1696 (((-713) $) 22 (|has| $ (-6 -4254))))) +(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1019) (-1019)) (T -44)) NIL (-35 |#1| |#2|) -((-3802 (((-108) $) 12)) (-1257 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL))) -(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -3802 ((-108) |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) (-46 |#2| |#3|) (-975) (-733)) (T -45)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -3802 ((-108) |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3641 (($ $) 52 (|has| |#1| (-517)))) (-3077 (((-108) $) 54 (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1575 (($ $) 60)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-3802 (((-108) $) 62)) (-1422 (($ |#1| |#2|) 61)) (-1257 (($ (-1 |#1| |#1|) $) 63)) (-1548 (($ $) 65)) (-1556 ((|#1| $) 66)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3210 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2743 ((|#2| $) 64)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1263 ((|#1| $ |#2|) 59)) (-3751 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) -(((-46 |#1| |#2|) (-131) (-975) (-733)) (T -46)) -((-1556 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)))) (-1548 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) (-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) (-5 *2 (-108)))) (-1422 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)))) (-1575 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)))) (-1263 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)))) (-4059 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)) (-4 *2 (-341))))) -(-13 (-975) (-107 |t#1| |t#1|) (-10 -8 (-15 -1556 (|t#1| $)) (-15 -1548 ($ $)) (-15 -2743 (|t#2| $)) (-15 -1257 ($ (-1 |t#1| |t#1|) $)) (-15 -3802 ((-108) $)) (-15 -1422 ($ |t#1| |t#2|)) (-15 -1575 ($ $)) (-15 -1263 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-341)) (-15 -4059 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-6 (-160)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-517)) (-6 (-517)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-6 (-37 (-385 (-525)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-593 #0#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #0#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) |has| |#1| (-517)) ((-668) . T) ((-981 #0#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1356 (((-591 $) (-1085 $) (-1089)) NIL) (((-591 $) (-1085 $)) NIL) (((-591 $) (-885 $)) NIL)) (-2529 (($ (-1085 $) (-1089)) NIL) (($ (-1085 $)) NIL) (($ (-885 $)) NIL)) (-1306 (((-108) $) 11)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3585 (((-591 (-564 $)) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-3449 (($ $ (-273 $)) NIL) (($ $ (-591 (-273 $))) NIL) (($ $ (-591 (-564 $)) (-591 $)) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-2551 (($ $) NIL)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-2266 (((-591 $) (-1085 $) (-1089)) NIL) (((-591 $) (-1085 $)) NIL) (((-591 $) (-885 $)) NIL)) (-1254 (($ (-1085 $) (-1089)) NIL) (($ (-1085 $)) NIL) (($ (-885 $)) NIL)) (-4174 (((-3 (-564 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-3341 (((-564 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-3265 (($ $ $) NIL)) (-3925 (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-631 (-525)) (-631 $)) NIL) (((-2 (|:| -2928 (-631 (-385 (-525)))) (|:| |vec| (-1171 (-385 (-525))))) (-631 $) (-1171 $)) NIL) (((-631 (-385 (-525))) (-631 $)) NIL)) (-3618 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3625 (($ $) NIL) (($ (-591 $)) NIL)) (-3714 (((-591 (-110)) $) NIL)) (-3259 (((-110) (-110)) NIL)) (-3865 (((-108) $) 14)) (-2116 (((-108) $) NIL (|has| $ (-966 (-525))))) (-1384 (((-1041 (-525) (-564 $)) $) NIL)) (-3126 (($ $ (-525)) NIL)) (-1525 (((-1085 $) (-1085 $) (-564 $)) NIL) (((-1085 $) (-1085 $) (-591 (-564 $))) NIL) (($ $ (-564 $)) NIL) (($ $ (-591 (-564 $))) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1873 (((-1085 $) (-564 $)) NIL (|has| $ (-975)))) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1257 (($ (-1 $ $) (-564 $)) NIL)) (-3415 (((-3 (-564 $) "failed") $) NIL)) (-2081 (($ (-591 $)) NIL) (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2504 (((-591 (-564 $)) $) NIL)) (-2899 (($ (-110) $) NIL) (($ (-110) (-591 $)) NIL)) (-3029 (((-108) $ (-110)) NIL) (((-108) $ (-1089)) NIL)) (-1523 (($ $) NIL)) (-3457 (((-712) $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ (-591 $)) NIL) (($ $ $) NIL)) (-4064 (((-108) $ $) NIL) (((-108) $ (-1089)) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2882 (((-108) $) NIL (|has| $ (-966 (-525))))) (-1980 (($ $ (-564 $) $) NIL) (($ $ (-591 (-564 $)) (-591 $)) NIL) (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ $))) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-1089) (-1 $ (-591 $))) NIL) (($ $ (-1089) (-1 $ $)) NIL) (($ $ (-591 (-110)) (-591 (-1 $ $))) NIL) (($ $ (-591 (-110)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-110) (-1 $ (-591 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3048 (((-712) $) NIL)) (-1881 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-591 $)) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-1390 (($ $) NIL) (($ $ $) NIL)) (-2209 (($ $ (-712)) NIL) (($ $) NIL)) (-1396 (((-1041 (-525) (-564 $)) $) NIL)) (-1341 (($ $) NIL (|has| $ (-975)))) (-1300 (((-357) $) NIL) (((-205) $) NIL) (((-157 (-357)) $) NIL)) (-2686 (((-796) $) NIL) (($ (-564 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1041 (-525) (-564 $))) NIL)) (-3425 (((-712)) NIL)) (-3800 (($ $) NIL) (($ (-591 $)) NIL)) (-2754 (((-108) (-110)) NIL)) (-1724 (((-108) $ $) NIL)) (-1401 (($ $ (-525)) NIL) (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (-1830 (($) 7 T CONST)) (-1839 (($) 12 T CONST)) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 16)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (-4047 (($ $ $) 15) (($ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) NIL) (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-712) $) NIL) (($ (-854) $) NIL))) -(((-47) (-13 (-281) (-27) (-966 (-525)) (-966 (-385 (-525))) (-587 (-525)) (-951) (-587 (-385 (-525))) (-138) (-566 (-157 (-357))) (-213) (-10 -8 (-15 -2686 ($ (-1041 (-525) (-564 $)))) (-15 -1384 ((-1041 (-525) (-564 $)) $)) (-15 -1396 ((-1041 (-525) (-564 $)) $)) (-15 -3618 ($ $)) (-15 -1525 ((-1085 $) (-1085 $) (-564 $))) (-15 -1525 ((-1085 $) (-1085 $) (-591 (-564 $)))) (-15 -1525 ($ $ (-564 $))) (-15 -1525 ($ $ (-591 (-564 $))))))) (T -47)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1041 (-525) (-564 (-47)))) (-5 *1 (-47)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1041 (-525) (-564 (-47)))) (-5 *1 (-47)))) (-1396 (*1 *2 *1) (-12 (-5 *2 (-1041 (-525) (-564 (-47)))) (-5 *1 (-47)))) (-3618 (*1 *1 *1) (-5 *1 (-47))) (-1525 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-47))) (-5 *3 (-564 (-47))) (-5 *1 (-47)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-47))) (-5 *3 (-591 (-564 (-47)))) (-5 *1 (-47)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-564 (-47))) (-5 *1 (-47)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-564 (-47)))) (-5 *1 (-47))))) -(-13 (-281) (-27) (-966 (-525)) (-966 (-385 (-525))) (-587 (-525)) (-951) (-587 (-385 (-525))) (-138) (-566 (-157 (-357))) (-213) (-10 -8 (-15 -2686 ($ (-1041 (-525) (-564 $)))) (-15 -1384 ((-1041 (-525) (-564 $)) $)) (-15 -1396 ((-1041 (-525) (-564 $)) $)) (-15 -3618 ($ $)) (-15 -1525 ((-1085 $) (-1085 $) (-564 $))) (-15 -1525 ((-1085 $) (-1085 $) (-591 (-564 $)))) (-15 -1525 ($ $ (-564 $))) (-15 -1525 ($ $ (-591 (-564 $)))))) -((-2673 (((-108) $ $) NIL)) (-3769 (((-591 (-1089)) $) 17)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 7)) (-2226 (((-1094) $) 18)) (-3944 (((-108) $ $) NIL))) -(((-48) (-13 (-1018) (-10 -8 (-15 -3769 ((-591 (-1089)) $)) (-15 -2226 ((-1094) $))))) (T -48)) -((-3769 (*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-48)))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-48))))) -(-13 (-1018) (-10 -8 (-15 -3769 ((-591 (-1089)) $)) (-15 -2226 ((-1094) $)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 62)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-3417 (((-108) $) 20)) (-4174 (((-3 |#1| "failed") $) 23)) (-3341 ((|#1| $) 24)) (-1575 (($ $) 28)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1556 ((|#1| $) 21)) (-3016 (($ $) 51)) (-2621 (((-1072) $) NIL)) (-1890 (((-108) $) 30)) (-2937 (((-1036) $) NIL)) (-3965 (($ (-712)) 49)) (-2288 (($ (-591 (-525))) 50)) (-2743 (((-712) $) 31)) (-2686 (((-796) $) 65) (($ (-525)) 46) (($ |#1|) 44)) (-1263 ((|#1| $ $) 19)) (-3425 (((-712)) 48)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 32 T CONST)) (-1839 (($) 14 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 41)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 42) (($ |#1| $) 36))) -(((-49 |#1| |#2|) (-13 (-569 |#1|) (-966 |#1|) (-10 -8 (-15 -1556 (|#1| $)) (-15 -3016 ($ $)) (-15 -1575 ($ $)) (-15 -1263 (|#1| $ $)) (-15 -3965 ($ (-712))) (-15 -2288 ($ (-591 (-525)))) (-15 -1890 ((-108) $)) (-15 -3417 ((-108) $)) (-15 -2743 ((-712) $)) (-15 -1257 ($ (-1 |#1| |#1|) $)))) (-975) (-591 (-1089))) (T -49)) -((-1556 (*1 *2 *1) (-12 (-4 *2 (-975)) (-5 *1 (-49 *2 *3)) (-14 *3 (-591 (-1089))))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-975)) (-14 *3 (-591 (-1089))))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-975)) (-14 *3 (-591 (-1089))))) (-1263 (*1 *2 *1 *1) (-12 (-4 *2 (-975)) (-5 *1 (-49 *2 *3)) (-14 *3 (-591 (-1089))))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) (-14 *4 (-591 (-1089))))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) (-14 *4 (-591 (-1089))))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) (-14 *4 (-591 (-1089))))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) (-14 *4 (-591 (-1089))))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) (-14 *4 (-591 (-1089))))) (-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-49 *3 *4)) (-14 *4 (-591 (-1089)))))) -(-13 (-569 |#1|) (-966 |#1|) (-10 -8 (-15 -1556 (|#1| $)) (-15 -3016 ($ $)) (-15 -1575 ($ $)) (-15 -1263 (|#1| $ $)) (-15 -3965 ($ (-712))) (-15 -2288 ($ (-591 (-525)))) (-15 -1890 ((-108) $)) (-15 -3417 ((-108) $)) (-15 -2743 ((-712) $)) (-15 -1257 ($ (-1 |#1| |#1|) $)))) -((-3417 (((-108) (-51)) 13)) (-4174 (((-3 |#1| "failed") (-51)) 21)) (-3341 ((|#1| (-51)) 22)) (-2686 (((-51) |#1|) 18))) -(((-50 |#1|) (-10 -7 (-15 -2686 ((-51) |#1|)) (-15 -4174 ((-3 |#1| "failed") (-51))) (-15 -3417 ((-108) (-51))) (-15 -3341 (|#1| (-51)))) (-1125)) (T -50)) -((-3341 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1125)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1125)))) (-4174 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1125)))) (-2686 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1125))))) -(-10 -7 (-15 -2686 ((-51) |#1|)) (-15 -4174 ((-3 |#1| "failed") (-51))) (-15 -3417 ((-108) (-51))) (-15 -3341 (|#1| (-51)))) -((-2673 (((-108) $ $) NIL)) (-1596 (((-1072) (-108)) 25)) (-3394 (((-796) $) 24)) (-2334 (((-715) $) 12)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1714 (((-796) $) 16)) (-2188 (((-1022) $) 14)) (-2686 (((-796) $) 32)) (-2241 (($ (-1022) (-715)) 33)) (-3944 (((-108) $ $) 18))) -(((-51) (-13 (-1018) (-10 -8 (-15 -2241 ($ (-1022) (-715))) (-15 -1714 ((-796) $)) (-15 -3394 ((-796) $)) (-15 -2188 ((-1022) $)) (-15 -2334 ((-715) $)) (-15 -1596 ((-1072) (-108)))))) (T -51)) -((-2241 (*1 *1 *2 *3) (-12 (-5 *2 (-1022)) (-5 *3 (-715)) (-5 *1 (-51)))) (-1714 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-51)))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-51)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-51)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-715)) (-5 *1 (-51)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1072)) (-5 *1 (-51))))) -(-13 (-1018) (-10 -8 (-15 -2241 ($ (-1022) (-715))) (-15 -1714 ((-796) $)) (-15 -3394 ((-796) $)) (-15 -2188 ((-1022) $)) (-15 -2334 ((-715) $)) (-15 -1596 ((-1072) (-108))))) -((-2814 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2814 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-975) (-593 |#1|) (-790 |#1|)) (T -52)) -((-2814 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-593 *5)) (-4 *5 (-975)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-790 *5))))) -(-10 -7 (-15 -2814 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2020 ((|#3| |#3| (-591 (-1089))) 35)) (-3814 ((|#3| (-591 (-997 |#1| |#2| |#3|)) |#3| (-854)) 22) ((|#3| (-591 (-997 |#1| |#2| |#3|)) |#3|) 20))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3814 (|#3| (-591 (-997 |#1| |#2| |#3|)) |#3|)) (-15 -3814 (|#3| (-591 (-997 |#1| |#2| |#3|)) |#3| (-854))) (-15 -2020 (|#3| |#3| (-591 (-1089))))) (-1018) (-13 (-975) (-819 |#1|) (-788) (-566 (-825 |#1|))) (-13 (-408 |#2|) (-819 |#1|) (-566 (-825 |#1|)))) (T -53)) -((-2020 (*1 *2 *2 *3) (-12 (-5 *3 (-591 (-1089))) (-4 *4 (-1018)) (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))))) (-3814 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-591 (-997 *5 *6 *2))) (-5 *4 (-854)) (-4 *5 (-1018)) (-4 *6 (-13 (-975) (-819 *5) (-788) (-566 (-825 *5)))) (-4 *2 (-13 (-408 *6) (-819 *5) (-566 (-825 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3814 (*1 *2 *3 *2) (-12 (-5 *3 (-591 (-997 *4 *5 *2))) (-4 *4 (-1018)) (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))) (-5 *1 (-53 *4 *5 *2))))) -(-10 -7 (-15 -3814 (|#3| (-591 (-997 |#1| |#2| |#3|)) |#3|)) (-15 -3814 (|#3| (-591 (-997 |#1| |#2| |#3|)) |#3| (-854))) (-15 -2020 (|#3| |#3| (-591 (-1089))))) -((-3727 (((-108) $ (-712)) 23)) (-1557 (($ $ (-525) |#3|) 46)) (-3031 (($ $ (-525) |#4|) 50)) (-2578 ((|#3| $ (-525)) 59)) (-2916 (((-591 |#2|) $) 30)) (-3491 (((-108) $ (-712)) 25)) (-3956 (((-108) |#2| $) 54)) (-4192 (($ (-1 |#2| |#2|) $) 37)) (-1257 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-3295 (((-108) $ (-712)) 24)) (-1858 (($ $ |#2|) 34)) (-3465 (((-108) (-1 (-108) |#2|) $) 19)) (-1881 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) 27)) (-2960 (((-712) (-1 (-108) |#2|) $) 28) (((-712) |#2| $) 56)) (-2873 (($ $) 33)) (-1256 ((|#4| $ (-525)) 62)) (-2686 (((-796) $) 68)) (-1475 (((-108) (-1 (-108) |#2|) $) 18)) (-3944 (((-108) $ $) 53)) (-2028 (((-712) $) 26))) -(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1257 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4192 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3031 (|#1| |#1| (-525) |#4|)) (-15 -1557 (|#1| |#1| (-525) |#3|)) (-15 -2916 ((-591 |#2|) |#1|)) (-15 -1256 (|#4| |#1| (-525))) (-15 -2578 (|#3| |#1| (-525))) (-15 -1881 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525) (-525))) (-15 -1858 (|#1| |#1| |#2|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -3956 ((-108) |#2| |#1|)) (-15 -2960 ((-712) |#2| |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2028 ((-712) |#1|)) (-15 -3727 ((-108) |#1| (-712))) (-15 -3491 ((-108) |#1| (-712))) (-15 -3295 ((-108) |#1| (-712))) (-15 -2873 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1125) (-351 |#2|) (-351 |#2|)) (T -54)) -NIL -(-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1257 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4192 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3031 (|#1| |#1| (-525) |#4|)) (-15 -1557 (|#1| |#1| (-525) |#3|)) (-15 -2916 ((-591 |#2|) |#1|)) (-15 -1256 (|#4| |#1| (-525))) (-15 -2578 (|#3| |#1| (-525))) (-15 -1881 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525) (-525))) (-15 -1858 (|#1| |#1| |#2|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -3956 ((-108) |#2| |#1|)) (-15 -2960 ((-712) |#2| |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2028 ((-712) |#1|)) (-15 -3727 ((-108) |#1| (-712))) (-15 -3491 ((-108) |#1| (-712))) (-15 -3295 ((-108) |#1| (-712))) (-15 -2873 (|#1| |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-2847 ((|#1| $ (-525) (-525) |#1|) 44)) (-1557 (($ $ (-525) |#2|) 42)) (-3031 (($ $ (-525) |#3|) 41)) (-2055 (($) 7 T CONST)) (-2578 ((|#2| $ (-525)) 46)) (-4205 ((|#1| $ (-525) (-525) |#1|) 43)) (-4121 ((|#1| $ (-525) (-525)) 48)) (-2916 (((-591 |#1|) $) 30)) (-4127 (((-712) $) 51)) (-1316 (($ (-712) (-712) |#1|) 57)) (-4140 (((-712) $) 50)) (-3491 (((-108) $ (-712)) 9)) (-3142 (((-525) $) 55)) (-3660 (((-525) $) 53)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3882 (((-525) $) 54)) (-2494 (((-525) $) 52)) (-4192 (($ (-1 |#1| |#1|) $) 34)) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-1858 (($ $ |#1|) 56)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1256 ((|#3| $ (-525)) 45)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-55 |#1| |#2| |#3|) (-131) (-1125) (-351 |t#1|) (-351 |t#1|)) (T -55)) -((-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1316 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-712)) (-4 *3 (-1125)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1858 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-3882 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-712)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-712)))) (-1881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1125)))) (-4121 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1125)))) (-1881 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1125)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-2578 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1125)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-1256 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1125)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-591 *3)))) (-2847 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1125)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-4205 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1125)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-1557 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1125)) (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))) (-3031 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1125)) (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))) (-4192 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1257 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1257 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) -(-13 (-464 |t#1|) (-10 -8 (-6 -4251) (-6 -4250) (-15 -1316 ($ (-712) (-712) |t#1|)) (-15 -1858 ($ $ |t#1|)) (-15 -3142 ((-525) $)) (-15 -3882 ((-525) $)) (-15 -3660 ((-525) $)) (-15 -2494 ((-525) $)) (-15 -4127 ((-712) $)) (-15 -4140 ((-712) $)) (-15 -1881 (|t#1| $ (-525) (-525))) (-15 -4121 (|t#1| $ (-525) (-525))) (-15 -1881 (|t#1| $ (-525) (-525) |t#1|)) (-15 -2578 (|t#2| $ (-525))) (-15 -1256 (|t#3| $ (-525))) (-15 -2916 ((-591 |t#1|) $)) (-15 -2847 (|t#1| $ (-525) (-525) |t#1|)) (-15 -4205 (|t#1| $ (-525) (-525) |t#1|)) (-15 -1557 ($ $ (-525) |t#2|)) (-15 -3031 ($ $ (-525) |t#3|)) (-15 -1257 ($ (-1 |t#1| |t#1|) $)) (-15 -4192 ($ (-1 |t#1| |t#1|) $)) (-15 -1257 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1257 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-1350 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3618 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1257 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) -(((-56 |#1| |#2|) (-10 -7 (-15 -1350 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3618 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1257 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1125) (-1125)) (T -56)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3618 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1125)) (-4 *2 (-1125)) (-5 *1 (-56 *5 *2)))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1125)) (-4 *5 (-1125)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) -(-10 -7 (-15 -1350 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3618 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1257 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-1734 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018)))) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3398 (($ (-591 |#1|)) 13) (($ (-712) |#1|) 14)) (-1316 (($ (-712) |#1|) 9)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2872 ((|#1| $) NIL (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) 7)) (-1881 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) NIL)) (-1624 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-591 $)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3398 ($ (-591 |#1|))) (-15 -3398 ($ (-712) |#1|)))) (-1125)) (T -57)) -((-3398 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-57 *3)))) (-3398 (*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-5 *1 (-57 *3)) (-4 *3 (-1125))))) -(-13 (-19 |#1|) (-10 -8 (-15 -3398 ($ (-591 |#1|))) (-15 -3398 ($ (-712) |#1|)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-525) (-525) |#1|) NIL)) (-1557 (($ $ (-525) (-57 |#1|)) NIL)) (-3031 (($ $ (-525) (-57 |#1|)) NIL)) (-2055 (($) NIL T CONST)) (-2578 (((-57 |#1|) $ (-525)) NIL)) (-4205 ((|#1| $ (-525) (-525) |#1|) NIL)) (-4121 ((|#1| $ (-525) (-525)) NIL)) (-2916 (((-591 |#1|) $) NIL)) (-4127 (((-712) $) NIL)) (-1316 (($ (-712) (-712) |#1|) NIL)) (-4140 (((-712) $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-3142 (((-525) $) NIL)) (-3660 (((-525) $) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3882 (((-525) $) NIL)) (-2494 (((-525) $) NIL)) (-4192 (($ (-1 |#1| |#1|) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-1858 (($ $ |#1|) NIL)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-1256 (((-57 |#1|) $ (-525)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4251))) (-1125)) (T -58)) -NIL -(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4251))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 74) (((-3 $ "failed") (-1171 (-294 (-525)))) 63) (((-3 $ "failed") (-1171 (-885 (-357)))) 94) (((-3 $ "failed") (-1171 (-885 (-525)))) 84) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 52) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 39)) (-3341 (($ (-1171 (-294 (-357)))) 70) (($ (-1171 (-294 (-525)))) 59) (($ (-1171 (-885 (-357)))) 90) (($ (-1171 (-885 (-525)))) 80) (($ (-1171 (-385 (-885 (-357))))) 48) (($ (-1171 (-385 (-885 (-525))))) 32)) (-2163 (((-1176) $) 120)) (-2686 (((-796) $) 113) (($ (-591 (-308))) 103) (($ (-308)) 97) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 101) (($ (-1171 (-317 (-2695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2695) (-640)))) 31))) -(((-59 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2695) (-640))))))) (-1089)) (T -59)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2695) (-640)))) (-5 *1 (-59 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2695) (-640))))))) -((-2163 (((-1176) $) 53) (((-1176)) 54)) (-2686 (((-796) $) 50))) -(((-60 |#1|) (-13 (-373) (-10 -7 (-15 -2163 ((-1176))))) (-1089)) (T -60)) -((-2163 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-60 *3)) (-14 *3 (-1089))))) -(-13 (-373) (-10 -7 (-15 -2163 ((-1176))))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 144) (((-3 $ "failed") (-1171 (-294 (-525)))) 134) (((-3 $ "failed") (-1171 (-885 (-357)))) 164) (((-3 $ "failed") (-1171 (-885 (-525)))) 154) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 123) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 111)) (-3341 (($ (-1171 (-294 (-357)))) 140) (($ (-1171 (-294 (-525)))) 130) (($ (-1171 (-885 (-357)))) 160) (($ (-1171 (-885 (-525)))) 150) (($ (-1171 (-385 (-885 (-357))))) 119) (($ (-1171 (-385 (-885 (-525))))) 104)) (-2163 (((-1176) $) 97)) (-2686 (((-796) $) 91) (($ (-591 (-308))) 29) (($ (-308)) 34) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 32) (($ (-1171 (-317 (-2695) (-2695 (QUOTE XC)) (-640)))) 89))) -(((-61 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE XC)) (-640))))))) (-1089)) (T -61)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 (QUOTE XC)) (-640)))) (-5 *1 (-61 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE XC)) (-640))))))) -((-4174 (((-3 $ "failed") (-294 (-357))) 41) (((-3 $ "failed") (-294 (-525))) 46) (((-3 $ "failed") (-885 (-357))) 50) (((-3 $ "failed") (-885 (-525))) 54) (((-3 $ "failed") (-385 (-885 (-357)))) 36) (((-3 $ "failed") (-385 (-885 (-525)))) 29)) (-3341 (($ (-294 (-357))) 39) (($ (-294 (-525))) 44) (($ (-885 (-357))) 48) (($ (-885 (-525))) 52) (($ (-385 (-885 (-357)))) 34) (($ (-385 (-885 (-525)))) 26)) (-2163 (((-1176) $) 76)) (-2686 (((-796) $) 69) (($ (-591 (-308))) 61) (($ (-308)) 66) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 64) (($ (-317 (-2695 (QUOTE X)) (-2695) (-640))) 25))) -(((-62 |#1|) (-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695 (QUOTE X)) (-2695) (-640)))))) (-1089)) (T -62)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-317 (-2695 (QUOTE X)) (-2695) (-640))) (-5 *1 (-62 *3)) (-14 *3 (-1089))))) -(-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695 (QUOTE X)) (-2695) (-640)))))) -((-4174 (((-3 $ "failed") (-631 (-294 (-357)))) 109) (((-3 $ "failed") (-631 (-294 (-525)))) 97) (((-3 $ "failed") (-631 (-885 (-357)))) 131) (((-3 $ "failed") (-631 (-885 (-525)))) 120) (((-3 $ "failed") (-631 (-385 (-885 (-357))))) 85) (((-3 $ "failed") (-631 (-385 (-885 (-525))))) 71)) (-3341 (($ (-631 (-294 (-357)))) 105) (($ (-631 (-294 (-525)))) 93) (($ (-631 (-885 (-357)))) 127) (($ (-631 (-885 (-525)))) 116) (($ (-631 (-385 (-885 (-357))))) 81) (($ (-631 (-385 (-885 (-525))))) 64)) (-2163 (((-1176) $) 139)) (-2686 (((-796) $) 133) (($ (-591 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 31) (($ (-631 (-317 (-2695) (-2695 (QUOTE X) (QUOTE HESS)) (-640)))) 54))) -(((-63 |#1|) (-13 (-362) (-10 -8 (-15 -2686 ($ (-631 (-317 (-2695) (-2695 (QUOTE X) (QUOTE HESS)) (-640))))))) (-1089)) (T -63)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-631 (-317 (-2695) (-2695 (QUOTE X) (QUOTE HESS)) (-640)))) (-5 *1 (-63 *3)) (-14 *3 (-1089))))) -(-13 (-362) (-10 -8 (-15 -2686 ($ (-631 (-317 (-2695) (-2695 (QUOTE X) (QUOTE HESS)) (-640))))))) -((-4174 (((-3 $ "failed") (-294 (-357))) 59) (((-3 $ "failed") (-294 (-525))) 64) (((-3 $ "failed") (-885 (-357))) 68) (((-3 $ "failed") (-885 (-525))) 72) (((-3 $ "failed") (-385 (-885 (-357)))) 54) (((-3 $ "failed") (-385 (-885 (-525)))) 47)) (-3341 (($ (-294 (-357))) 57) (($ (-294 (-525))) 62) (($ (-885 (-357))) 66) (($ (-885 (-525))) 70) (($ (-385 (-885 (-357)))) 52) (($ (-385 (-885 (-525)))) 44)) (-2163 (((-1176) $) 81)) (-2686 (((-796) $) 75) (($ (-591 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 31) (($ (-317 (-2695) (-2695 (QUOTE XC)) (-640))) 39))) -(((-64 |#1|) (-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695) (-2695 (QUOTE XC)) (-640)))))) (-1089)) (T -64)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-317 (-2695) (-2695 (QUOTE XC)) (-640))) (-5 *1 (-64 *3)) (-14 *3 (-1089))))) -(-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695) (-2695 (QUOTE XC)) (-640)))))) -((-2163 (((-1176) $) 63)) (-2686 (((-796) $) 57) (($ (-631 (-640))) 49) (($ (-591 (-308))) 48) (($ (-308)) 55) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 53))) -(((-65 |#1|) (-361) (-1089)) (T -65)) +((-1432 (((-108) $) 12)) (-2868 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL))) +(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1432 ((-108) |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-46 |#2| |#3|) (-976) (-734)) (T -45)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1432 ((-108) |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2609 (($ $) 52 (|has| |#1| (-517)))) (-1220 (((-108) $) 54 (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-3306 (($ $) 60)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1432 (((-108) $) 62)) (-3097 (($ |#1| |#2|) 61)) (-2868 (($ (-1 |#1| |#1|) $) 63)) (-3277 (($ $) 65)) (-3286 ((|#1| $) 66)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2675 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1486 ((|#2| $) 64)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-2100 ((|#1| $ |#2|) 59)) (-1279 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) +(((-46 |#1| |#2|) (-131) (-976) (-734)) (T -46)) +((-3286 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-3277 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)))) (-1432 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-108)))) (-3097 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) (-3306 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) (-2100 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *2 (-341))))) +(-13 (-976) (-107 |t#1| |t#1|) (-10 -8 (-15 -3286 (|t#1| $)) (-15 -3277 ($ $)) (-15 -1486 (|t#2| $)) (-15 -2868 ($ (-1 |t#1| |t#1|) $)) (-15 -1432 ((-108) $)) (-15 -3097 ($ |t#1| |t#2|)) (-15 -3306 ($ $)) (-15 -2100 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-341)) (-15 -4047 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-6 (-160)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-517)) (-6 (-517)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-6 (-37 (-385 (-525)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-1708 (((-592 $) (-1086 $) (-1090)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-886 $)) NIL)) (-3553 (($ (-1086 $) (-1090)) NIL) (($ (-1086 $)) NIL) (($ (-886 $)) NIL)) (-2464 (((-108) $) 11)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-2249 (((-592 (-565 $)) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-3687 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2975 (($ $) NIL)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-3291 (((-592 $) (-1086 $) (-1090)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-886 $)) NIL)) (-2539 (($ (-1086 $) (-1090)) NIL) (($ (-1086 $)) NIL) (($ (-886 $)) NIL)) (-2769 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-2068 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-2720 (($ $ $) NIL)) (-1307 (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3471 (-632 (-385 (-525)))) (|:| |vec| (-1172 (-385 (-525))))) (-632 $) (-1172 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-3336 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-1759 (($ $) NIL) (($ (-592 $)) NIL)) (-4131 (((-592 (-110)) $) NIL)) (-1885 (((-110) (-110)) NIL)) (-2507 (((-108) $) 14)) (-2057 (((-108) $) NIL (|has| $ (-967 (-525))))) (-1936 (((-1042 (-525) (-565 $)) $) NIL)) (-2581 (($ $ (-525)) NIL)) (-2281 (((-1086 $) (-1086 $) (-565 $)) NIL) (((-1086 $) (-1086 $) (-592 (-565 $))) NIL) (($ $ (-565 $)) NIL) (($ $ (-592 (-565 $))) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2605 (((-1086 $) (-565 $)) NIL (|has| $ (-976)))) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2868 (($ (-1 $ $) (-565 $)) NIL)) (-1688 (((-3 (-565 $) "failed") $) NIL)) (-2226 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-1304 (((-592 (-565 $)) $) NIL)) (-1996 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-4084 (((-108) $ (-110)) NIL) (((-108) $ (-1090)) NIL)) (-3243 (($ $) NIL)) (-2138 (((-713) $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1680 (((-108) $ $) NIL) (((-108) $ (-1090)) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3524 (((-108) $) NIL (|has| $ (-967 (-525))))) (-2168 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2824 (((-713) $) NIL)) (-1496 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-3080 (($ $) NIL) (($ $ $) NIL)) (-1576 (($ $ (-713)) NIL) (($ $) NIL)) (-1945 (((-1042 (-525) (-565 $)) $) NIL)) (-2775 (($ $) NIL (|has| $ (-976)))) (-2923 (((-357) $) NIL) (((-205) $) NIL) (((-157 (-357)) $) NIL)) (-4044 (((-797) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1042 (-525) (-565 $))) NIL)) (-2502 (((-713)) NIL)) (-3882 (($ $) NIL) (($ (-592 $)) NIL)) (-3712 (((-108) (-110)) NIL)) (-3787 (((-108) $ $) NIL)) (-1594 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-1436 (($) 7 T CONST)) (-1449 (($) 12 T CONST)) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 16)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (-4033 (($ $ $) 15) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL))) +(((-47) (-13 (-281) (-27) (-967 (-525)) (-967 (-385 (-525))) (-588 (-525)) (-952) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -4044 ($ (-1042 (-525) (-565 $)))) (-15 -1936 ((-1042 (-525) (-565 $)) $)) (-15 -1945 ((-1042 (-525) (-565 $)) $)) (-15 -3336 ($ $)) (-15 -2281 ((-1086 $) (-1086 $) (-565 $))) (-15 -2281 ((-1086 $) (-1086 $) (-592 (-565 $)))) (-15 -2281 ($ $ (-565 $))) (-15 -2281 ($ $ (-592 (-565 $))))))) (T -47)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-3336 (*1 *1 *1) (-5 *1 (-47))) (-2281 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47)))) (-2281 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47)))) (-2281 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-47))) (-5 *1 (-47)))) (-2281 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-47)))) (-5 *1 (-47))))) +(-13 (-281) (-27) (-967 (-525)) (-967 (-385 (-525))) (-588 (-525)) (-952) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -4044 ($ (-1042 (-525) (-565 $)))) (-15 -1936 ((-1042 (-525) (-565 $)) $)) (-15 -1945 ((-1042 (-525) (-565 $)) $)) (-15 -3336 ($ $)) (-15 -2281 ((-1086 $) (-1086 $) (-565 $))) (-15 -2281 ((-1086 $) (-1086 $) (-592 (-565 $)))) (-15 -2281 ($ $ (-565 $))) (-15 -2281 ($ $ (-592 (-565 $)))))) +((-4028 (((-108) $ $) NIL)) (-2819 (((-592 (-1090)) $) 17)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 7)) (-2336 (((-1095) $) 18)) (-3899 (((-108) $ $) NIL))) +(((-48) (-13 (-1019) (-10 -8 (-15 -2819 ((-592 (-1090)) $)) (-15 -2336 ((-1095) $))))) (T -48)) +((-2819 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-48)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-48))))) +(-13 (-1019) (-10 -8 (-15 -2819 ((-592 (-1090)) $)) (-15 -2336 ((-1095) $)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 62)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2634 (((-108) $) 20)) (-2769 (((-3 |#1| "failed") $) 23)) (-2068 ((|#1| $) 24)) (-3306 (($ $) 28)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3286 ((|#1| $) 21)) (-2584 (($ $) 51)) (-1707 (((-1073) $) NIL)) (-3965 (((-108) $) 30)) (-3027 (((-1037) $) NIL)) (-3258 (($ (-713)) 49)) (-2840 (($ (-592 (-525))) 50)) (-1486 (((-713) $) 31)) (-4044 (((-797) $) 65) (($ (-525)) 46) (($ |#1|) 44)) (-2100 ((|#1| $ $) 19)) (-2502 (((-713)) 48)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 32 T CONST)) (-1449 (($) 14 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 41)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 42) (($ |#1| $) 36))) +(((-49 |#1| |#2|) (-13 (-570 |#1|) (-967 |#1|) (-10 -8 (-15 -3286 (|#1| $)) (-15 -2584 ($ $)) (-15 -3306 ($ $)) (-15 -2100 (|#1| $ $)) (-15 -3258 ($ (-713))) (-15 -2840 ($ (-592 (-525)))) (-15 -3965 ((-108) $)) (-15 -2634 ((-108) $)) (-15 -1486 ((-713) $)) (-15 -2868 ($ (-1 |#1| |#1|) $)))) (-976) (-592 (-1090))) (T -49)) +((-3286 (*1 *2 *1) (-12 (-4 *2 (-976)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1090))))) (-2584 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-976)) (-14 *3 (-592 (-1090))))) (-3306 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-976)) (-14 *3 (-592 (-1090))))) (-2100 (*1 *2 *1 *1) (-12 (-4 *2 (-976)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1090))))) (-3258 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-2840 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-49 *3 *4)) (-14 *4 (-592 (-1090)))))) +(-13 (-570 |#1|) (-967 |#1|) (-10 -8 (-15 -3286 (|#1| $)) (-15 -2584 ($ $)) (-15 -3306 ($ $)) (-15 -2100 (|#1| $ $)) (-15 -3258 ($ (-713))) (-15 -2840 ($ (-592 (-525)))) (-15 -3965 ((-108) $)) (-15 -2634 ((-108) $)) (-15 -1486 ((-713) $)) (-15 -2868 ($ (-1 |#1| |#1|) $)))) +((-2634 (((-108) (-51)) 13)) (-2769 (((-3 |#1| "failed") (-51)) 21)) (-2068 ((|#1| (-51)) 22)) (-4044 (((-51) |#1|) 18))) +(((-50 |#1|) (-10 -7 (-15 -4044 ((-51) |#1|)) (-15 -2769 ((-3 |#1| "failed") (-51))) (-15 -2634 ((-108) (-51))) (-15 -2068 (|#1| (-51)))) (-1126)) (T -50)) +((-2068 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1126)))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1126)))) (-2769 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1126)))) (-4044 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1126))))) +(-10 -7 (-15 -4044 ((-51) |#1|)) (-15 -2769 ((-3 |#1| "failed") (-51))) (-15 -2634 ((-108) (-51))) (-15 -2068 (|#1| (-51)))) +((-4028 (((-108) $ $) NIL)) (-3249 (((-1073) (-108)) 25)) (-4099 (((-797) $) 24)) (-2419 (((-716) $) 12)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4207 (((-797) $) 16)) (-2316 (((-1023) $) 14)) (-4044 (((-797) $) 32)) (-2348 (($ (-1023) (-716)) 33)) (-3899 (((-108) $ $) 18))) +(((-51) (-13 (-1019) (-10 -8 (-15 -2348 ($ (-1023) (-716))) (-15 -4207 ((-797) $)) (-15 -4099 ((-797) $)) (-15 -2316 ((-1023) $)) (-15 -2419 ((-716) $)) (-15 -3249 ((-1073) (-108)))))) (T -51)) +((-2348 (*1 *1 *2 *3) (-12 (-5 *2 (-1023)) (-5 *3 (-716)) (-5 *1 (-51)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-51)))) (-4099 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-51)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-51)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1073)) (-5 *1 (-51))))) +(-13 (-1019) (-10 -8 (-15 -2348 ($ (-1023) (-716))) (-15 -4207 ((-797) $)) (-15 -4099 ((-797) $)) (-15 -2316 ((-1023) $)) (-15 -2419 ((-716) $)) (-15 -3249 ((-1073) (-108))))) +((-1627 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1627 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-976) (-594 |#1|) (-791 |#1|)) (T -52)) +((-1627 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-976)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-791 *5))))) +(-10 -7 (-15 -1627 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1377 ((|#3| |#3| (-592 (-1090))) 35)) (-2865 ((|#3| (-592 (-998 |#1| |#2| |#3|)) |#3| (-855)) 22) ((|#3| (-592 (-998 |#1| |#2| |#3|)) |#3|) 20))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2865 (|#3| (-592 (-998 |#1| |#2| |#3|)) |#3|)) (-15 -2865 (|#3| (-592 (-998 |#1| |#2| |#3|)) |#3| (-855))) (-15 -1377 (|#3| |#3| (-592 (-1090))))) (-1019) (-13 (-976) (-820 |#1|) (-789) (-567 (-826 |#1|))) (-13 (-408 |#2|) (-820 |#1|) (-567 (-826 |#1|)))) (T -53)) +((-1377 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))) (-2865 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-592 (-998 *5 *6 *2))) (-5 *4 (-855)) (-4 *5 (-1019)) (-4 *6 (-13 (-976) (-820 *5) (-789) (-567 (-826 *5)))) (-4 *2 (-13 (-408 *6) (-820 *5) (-567 (-826 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2865 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-998 *4 *5 *2))) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))) (-5 *1 (-53 *4 *5 *2))))) +(-10 -7 (-15 -2865 (|#3| (-592 (-998 |#1| |#2| |#3|)) |#3|)) (-15 -2865 (|#3| (-592 (-998 |#1| |#2| |#3|)) |#3| (-855))) (-15 -1377 (|#3| |#3| (-592 (-1090))))) +((-2583 (((-108) $ (-713)) 23)) (-1760 (($ $ (-525) |#3|) 46)) (-4228 (($ $ (-525) |#4|) 50)) (-2914 ((|#3| $ (-525)) 59)) (-3781 (((-592 |#2|) $) 30)) (-2010 (((-108) $ (-713)) 25)) (-1883 (((-108) |#2| $) 54)) (-2540 (($ (-1 |#2| |#2|) $) 37)) (-2868 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-2350 (((-108) $ (-713)) 24)) (-1614 (($ $ |#2|) 34)) (-3669 (((-108) (-1 (-108) |#2|) $) 19)) (-1496 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) 27)) (-3053 (((-713) (-1 (-108) |#2|) $) 28) (((-713) |#2| $) 56)) (-1261 (($ $) 33)) (-2738 ((|#4| $ (-525)) 62)) (-4044 (((-797) $) 68)) (-2443 (((-108) (-1 (-108) |#2|) $) 18)) (-3899 (((-108) $ $) 53)) (-1696 (((-713) $) 26))) +(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2868 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4228 (|#1| |#1| (-525) |#4|)) (-15 -1760 (|#1| |#1| (-525) |#3|)) (-15 -3781 ((-592 |#2|) |#1|)) (-15 -2738 (|#4| |#1| (-525))) (-15 -2914 (|#3| |#1| (-525))) (-15 -1496 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525) (-525))) (-15 -1614 (|#1| |#1| |#2|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -1883 ((-108) |#2| |#1|)) (-15 -3053 ((-713) |#2| |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1696 ((-713) |#1|)) (-15 -2583 ((-108) |#1| (-713))) (-15 -2010 ((-108) |#1| (-713))) (-15 -2350 ((-108) |#1| (-713))) (-15 -1261 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1126) (-351 |#2|) (-351 |#2|)) (T -54)) +NIL +(-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2868 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4228 (|#1| |#1| (-525) |#4|)) (-15 -1760 (|#1| |#1| (-525) |#3|)) (-15 -3781 ((-592 |#2|) |#1|)) (-15 -2738 (|#4| |#1| (-525))) (-15 -2914 (|#3| |#1| (-525))) (-15 -1496 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525) (-525))) (-15 -1614 (|#1| |#1| |#2|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -1883 ((-108) |#2| |#1|)) (-15 -3053 ((-713) |#2| |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1696 ((-713) |#1|)) (-15 -2583 ((-108) |#1| (-713))) (-15 -2010 ((-108) |#1| (-713))) (-15 -2350 ((-108) |#1| (-713))) (-15 -1261 (|#1| |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-1230 ((|#1| $ (-525) (-525) |#1|) 44)) (-1760 (($ $ (-525) |#2|) 42)) (-4228 (($ $ (-525) |#3|) 41)) (-1957 (($) 7 T CONST)) (-2914 ((|#2| $ (-525)) 46)) (-2549 ((|#1| $ (-525) (-525) |#1|) 43)) (-2488 ((|#1| $ (-525) (-525)) 48)) (-3781 (((-592 |#1|) $) 30)) (-1431 (((-713) $) 51)) (-3248 (($ (-713) (-713) |#1|) 57)) (-1444 (((-713) $) 50)) (-2010 (((-108) $ (-713)) 9)) (-3533 (((-525) $) 55)) (-3054 (((-525) $) 53)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2487 (((-525) $) 54)) (-4220 (((-525) $) 52)) (-2540 (($ (-1 |#1| |#1|) $) 34)) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1614 (($ $ |#1|) 56)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2738 ((|#3| $ (-525)) 45)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-55 |#1| |#2| |#3|) (-131) (-1126) (-351 |t#1|) (-351 |t#1|)) (T -55)) +((-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3248 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-1126)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1614 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-1496 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1126)))) (-2488 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1126)))) (-1496 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-2914 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1126)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-2738 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1126)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 *3)))) (-1230 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-2549 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-1760 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))) (-4228 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1126)) (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2868 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2868 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) +(-13 (-464 |t#1|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -3248 ($ (-713) (-713) |t#1|)) (-15 -1614 ($ $ |t#1|)) (-15 -3533 ((-525) $)) (-15 -2487 ((-525) $)) (-15 -3054 ((-525) $)) (-15 -4220 ((-525) $)) (-15 -1431 ((-713) $)) (-15 -1444 ((-713) $)) (-15 -1496 (|t#1| $ (-525) (-525))) (-15 -2488 (|t#1| $ (-525) (-525))) (-15 -1496 (|t#1| $ (-525) (-525) |t#1|)) (-15 -2914 (|t#2| $ (-525))) (-15 -2738 (|t#3| $ (-525))) (-15 -3781 ((-592 |t#1|) $)) (-15 -1230 (|t#1| $ (-525) (-525) |t#1|)) (-15 -2549 (|t#1| $ (-525) (-525) |t#1|)) (-15 -1760 ($ $ (-525) |t#2|)) (-15 -4228 ($ $ (-525) |t#3|)) (-15 -2868 ($ (-1 |t#1| |t#1|) $)) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (-15 -2868 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2868 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-2225 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3336 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-2868 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) +(((-56 |#1| |#2|) (-10 -7 (-15 -2225 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3336 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2868 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1126) (-1126)) (T -56)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-56 *5 *2)))) (-2225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) +(-10 -7 (-15 -2225 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3336 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2868 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-1930 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2064 (($ (-592 |#1|)) 13) (($ (-713) |#1|) 14)) (-3248 (($ (-713) |#1|) 9)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1683 ((|#1| $) NIL (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) 7)) (-1496 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) NIL)) (-1810 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2064 ($ (-592 |#1|))) (-15 -2064 ($ (-713) |#1|)))) (-1126)) (T -57)) +((-2064 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-57 *3)))) (-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1126))))) +(-13 (-19 |#1|) (-10 -8 (-15 -2064 ($ (-592 |#1|))) (-15 -2064 ($ (-713) |#1|)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-525) (-525) |#1|) NIL)) (-1760 (($ $ (-525) (-57 |#1|)) NIL)) (-4228 (($ $ (-525) (-57 |#1|)) NIL)) (-1957 (($) NIL T CONST)) (-2914 (((-57 |#1|) $ (-525)) NIL)) (-2549 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2488 ((|#1| $ (-525) (-525)) NIL)) (-3781 (((-592 |#1|) $) NIL)) (-1431 (((-713) $) NIL)) (-3248 (($ (-713) (-713) |#1|) NIL)) (-1444 (((-713) $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-3533 (((-525) $) NIL)) (-3054 (((-525) $) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2487 (((-525) $) NIL)) (-4220 (((-525) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1614 (($ $ |#1|) NIL)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-2738 (((-57 |#1|) $ (-525)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4255))) (-1126)) (T -58)) +NIL +(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4255))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 74) (((-3 $ "failed") (-1172 (-294 (-525)))) 63) (((-3 $ "failed") (-1172 (-886 (-357)))) 94) (((-3 $ "failed") (-1172 (-886 (-525)))) 84) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 52) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 39)) (-2068 (($ (-1172 (-294 (-357)))) 70) (($ (-1172 (-294 (-525)))) 59) (($ (-1172 (-886 (-357)))) 90) (($ (-1172 (-886 (-525)))) 80) (($ (-1172 (-385 (-886 (-357))))) 48) (($ (-1172 (-385 (-886 (-525))))) 32)) (-3153 (((-1177) $) 120)) (-4044 (((-797) $) 113) (($ (-592 (-308))) 103) (($ (-308)) 97) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 101) (($ (-1172 (-317 (-4059 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4059) (-641)))) 31))) +(((-59 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4059) (-641))))))) (-1090)) (T -59)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4059) (-641)))) (-5 *1 (-59 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4059) (-641))))))) +((-3153 (((-1177) $) 53) (((-1177)) 54)) (-4044 (((-797) $) 50))) +(((-60 |#1|) (-13 (-373) (-10 -7 (-15 -3153 ((-1177))))) (-1090)) (T -60)) +((-3153 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-60 *3)) (-14 *3 (-1090))))) +(-13 (-373) (-10 -7 (-15 -3153 ((-1177))))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 144) (((-3 $ "failed") (-1172 (-294 (-525)))) 134) (((-3 $ "failed") (-1172 (-886 (-357)))) 164) (((-3 $ "failed") (-1172 (-886 (-525)))) 154) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 123) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 111)) (-2068 (($ (-1172 (-294 (-357)))) 140) (($ (-1172 (-294 (-525)))) 130) (($ (-1172 (-886 (-357)))) 160) (($ (-1172 (-886 (-525)))) 150) (($ (-1172 (-385 (-886 (-357))))) 119) (($ (-1172 (-385 (-886 (-525))))) 104)) (-3153 (((-1177) $) 97)) (-4044 (((-797) $) 91) (($ (-592 (-308))) 29) (($ (-308)) 34) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 32) (($ (-1172 (-317 (-4059) (-4059 (QUOTE XC)) (-641)))) 89))) +(((-61 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE XC)) (-641))))))) (-1090)) (T -61)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 (QUOTE XC)) (-641)))) (-5 *1 (-61 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE XC)) (-641))))))) +((-2769 (((-3 $ "failed") (-294 (-357))) 41) (((-3 $ "failed") (-294 (-525))) 46) (((-3 $ "failed") (-886 (-357))) 50) (((-3 $ "failed") (-886 (-525))) 54) (((-3 $ "failed") (-385 (-886 (-357)))) 36) (((-3 $ "failed") (-385 (-886 (-525)))) 29)) (-2068 (($ (-294 (-357))) 39) (($ (-294 (-525))) 44) (($ (-886 (-357))) 48) (($ (-886 (-525))) 52) (($ (-385 (-886 (-357)))) 34) (($ (-385 (-886 (-525)))) 26)) (-3153 (((-1177) $) 76)) (-4044 (((-797) $) 69) (($ (-592 (-308))) 61) (($ (-308)) 66) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 64) (($ (-317 (-4059 (QUOTE X)) (-4059) (-641))) 25))) +(((-62 |#1|) (-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059 (QUOTE X)) (-4059) (-641)))))) (-1090)) (T -62)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-317 (-4059 (QUOTE X)) (-4059) (-641))) (-5 *1 (-62 *3)) (-14 *3 (-1090))))) +(-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059 (QUOTE X)) (-4059) (-641)))))) +((-2769 (((-3 $ "failed") (-632 (-294 (-357)))) 109) (((-3 $ "failed") (-632 (-294 (-525)))) 97) (((-3 $ "failed") (-632 (-886 (-357)))) 131) (((-3 $ "failed") (-632 (-886 (-525)))) 120) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 85) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 71)) (-2068 (($ (-632 (-294 (-357)))) 105) (($ (-632 (-294 (-525)))) 93) (($ (-632 (-886 (-357)))) 127) (($ (-632 (-886 (-525)))) 116) (($ (-632 (-385 (-886 (-357))))) 81) (($ (-632 (-385 (-886 (-525))))) 64)) (-3153 (((-1177) $) 139)) (-4044 (((-797) $) 133) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 31) (($ (-632 (-317 (-4059) (-4059 (QUOTE X) (QUOTE HESS)) (-641)))) 54))) +(((-63 |#1|) (-13 (-362) (-10 -8 (-15 -4044 ($ (-632 (-317 (-4059) (-4059 (QUOTE X) (QUOTE HESS)) (-641))))))) (-1090)) (T -63)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-4059) (-4059 (QUOTE X) (QUOTE HESS)) (-641)))) (-5 *1 (-63 *3)) (-14 *3 (-1090))))) +(-13 (-362) (-10 -8 (-15 -4044 ($ (-632 (-317 (-4059) (-4059 (QUOTE X) (QUOTE HESS)) (-641))))))) +((-2769 (((-3 $ "failed") (-294 (-357))) 59) (((-3 $ "failed") (-294 (-525))) 64) (((-3 $ "failed") (-886 (-357))) 68) (((-3 $ "failed") (-886 (-525))) 72) (((-3 $ "failed") (-385 (-886 (-357)))) 54) (((-3 $ "failed") (-385 (-886 (-525)))) 47)) (-2068 (($ (-294 (-357))) 57) (($ (-294 (-525))) 62) (($ (-886 (-357))) 66) (($ (-886 (-525))) 70) (($ (-385 (-886 (-357)))) 52) (($ (-385 (-886 (-525)))) 44)) (-3153 (((-1177) $) 81)) (-4044 (((-797) $) 75) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 31) (($ (-317 (-4059) (-4059 (QUOTE XC)) (-641))) 39))) +(((-64 |#1|) (-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059) (-4059 (QUOTE XC)) (-641)))))) (-1090)) (T -64)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-317 (-4059) (-4059 (QUOTE XC)) (-641))) (-5 *1 (-64 *3)) (-14 *3 (-1090))))) +(-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059) (-4059 (QUOTE XC)) (-641)))))) +((-3153 (((-1177) $) 63)) (-4044 (((-797) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 48) (($ (-308)) 55) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 53))) +(((-65 |#1|) (-361) (-1090)) (T -65)) NIL (-361) -((-2163 (((-1176) $) 64)) (-2686 (((-796) $) 58) (($ (-631 (-640))) 50) (($ (-591 (-308))) 49) (($ (-308)) 52) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 55))) -(((-66 |#1|) (-361) (-1089)) (T -66)) +((-3153 (((-1177) $) 64)) (-4044 (((-797) $) 58) (($ (-632 (-641))) 50) (($ (-592 (-308))) 49) (($ (-308)) 52) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 55))) +(((-66 |#1|) (-361) (-1090)) (T -66)) NIL (-361) -((-2163 (((-1176) $) NIL) (((-1176)) 32)) (-2686 (((-796) $) NIL))) -(((-67 |#1|) (-13 (-373) (-10 -7 (-15 -2163 ((-1176))))) (-1089)) (T -67)) -((-2163 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-67 *3)) (-14 *3 (-1089))))) -(-13 (-373) (-10 -7 (-15 -2163 ((-1176))))) -((-2163 (((-1176) $) 73)) (-2686 (((-796) $) 67) (($ (-631 (-640))) 59) (($ (-591 (-308))) 61) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 58))) -(((-68 |#1|) (-361) (-1089)) (T -68)) +((-3153 (((-1177) $) NIL) (((-1177)) 32)) (-4044 (((-797) $) NIL))) +(((-67 |#1|) (-13 (-373) (-10 -7 (-15 -3153 ((-1177))))) (-1090)) (T -67)) +((-3153 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-67 *3)) (-14 *3 (-1090))))) +(-13 (-373) (-10 -7 (-15 -3153 ((-1177))))) +((-3153 (((-1177) $) 73)) (-4044 (((-797) $) 67) (($ (-632 (-641))) 59) (($ (-592 (-308))) 61) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 58))) +(((-68 |#1|) (-361) (-1090)) (T -68)) NIL (-361) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 103) (((-3 $ "failed") (-1171 (-294 (-525)))) 92) (((-3 $ "failed") (-1171 (-885 (-357)))) 123) (((-3 $ "failed") (-1171 (-885 (-525)))) 113) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 81) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 68)) (-3341 (($ (-1171 (-294 (-357)))) 99) (($ (-1171 (-294 (-525)))) 88) (($ (-1171 (-885 (-357)))) 119) (($ (-1171 (-885 (-525)))) 109) (($ (-1171 (-385 (-885 (-357))))) 77) (($ (-1171 (-385 (-885 (-525))))) 61)) (-2163 (((-1176) $) 136)) (-2686 (((-796) $) 130) (($ (-591 (-308))) 125) (($ (-308)) 128) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 53) (($ (-1171 (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640)))) 54))) -(((-69 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640))))))) (-1089)) (T -69)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640)))) (-5 *1 (-69 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640))))))) -((-2163 (((-1176) $) 32) (((-1176)) 31)) (-2686 (((-796) $) 35))) -(((-70 |#1|) (-13 (-373) (-10 -7 (-15 -2163 ((-1176))))) (-1089)) (T -70)) -((-2163 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-70 *3)) (-14 *3 (-1089))))) -(-13 (-373) (-10 -7 (-15 -2163 ((-1176))))) -((-2163 (((-1176) $) 63)) (-2686 (((-796) $) 57) (($ (-631 (-640))) 49) (($ (-591 (-308))) 51) (($ (-308)) 54) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 48))) -(((-71 |#1|) (-361) (-1089)) (T -71)) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 103) (((-3 $ "failed") (-1172 (-294 (-525)))) 92) (((-3 $ "failed") (-1172 (-886 (-357)))) 123) (((-3 $ "failed") (-1172 (-886 (-525)))) 113) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 81) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 68)) (-2068 (($ (-1172 (-294 (-357)))) 99) (($ (-1172 (-294 (-525)))) 88) (($ (-1172 (-886 (-357)))) 119) (($ (-1172 (-886 (-525)))) 109) (($ (-1172 (-385 (-886 (-357))))) 77) (($ (-1172 (-385 (-886 (-525))))) 61)) (-3153 (((-1177) $) 136)) (-4044 (((-797) $) 130) (($ (-592 (-308))) 125) (($ (-308)) 128) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 53) (($ (-1172 (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641)))) 54))) +(((-69 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641))))))) (-1090)) (T -69)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641)))) (-5 *1 (-69 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641))))))) +((-3153 (((-1177) $) 32) (((-1177)) 31)) (-4044 (((-797) $) 35))) +(((-70 |#1|) (-13 (-373) (-10 -7 (-15 -3153 ((-1177))))) (-1090)) (T -70)) +((-3153 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-70 *3)) (-14 *3 (-1090))))) +(-13 (-373) (-10 -7 (-15 -3153 ((-1177))))) +((-3153 (((-1177) $) 63)) (-4044 (((-797) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 51) (($ (-308)) 54) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 48))) +(((-71 |#1|) (-361) (-1090)) (T -71)) NIL (-361) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 125) (((-3 $ "failed") (-1171 (-294 (-525)))) 115) (((-3 $ "failed") (-1171 (-885 (-357)))) 145) (((-3 $ "failed") (-1171 (-885 (-525)))) 135) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 105) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 93)) (-3341 (($ (-1171 (-294 (-357)))) 121) (($ (-1171 (-294 (-525)))) 111) (($ (-1171 (-885 (-357)))) 141) (($ (-1171 (-885 (-525)))) 131) (($ (-1171 (-385 (-885 (-357))))) 101) (($ (-1171 (-385 (-885 (-525))))) 86)) (-2163 (((-1176) $) 78)) (-2686 (((-796) $) 27) (($ (-591 (-308))) 68) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 71) (($ (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640)))) 65))) -(((-72 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640))))))) (-1089)) (T -72)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640)))) (-5 *1 (-72 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640))))))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 130) (((-3 $ "failed") (-1171 (-294 (-525)))) 119) (((-3 $ "failed") (-1171 (-885 (-357)))) 150) (((-3 $ "failed") (-1171 (-885 (-525)))) 140) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 108) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 95)) (-3341 (($ (-1171 (-294 (-357)))) 126) (($ (-1171 (-294 (-525)))) 115) (($ (-1171 (-885 (-357)))) 146) (($ (-1171 (-885 (-525)))) 136) (($ (-1171 (-385 (-885 (-357))))) 104) (($ (-1171 (-385 (-885 (-525))))) 88)) (-2163 (((-1176) $) 79)) (-2686 (((-796) $) 71) (($ (-591 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) NIL) (($ (-1171 (-317 (-2695 (QUOTE X) (QUOTE EPS)) (-2695 (QUOTE -1389)) (-640)))) 66))) -(((-73 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X) (QUOTE EPS)) (-2695 (QUOTE -1389)) (-640))))))) (-1089) (-1089) (-1089)) (T -73)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695 (QUOTE X) (QUOTE EPS)) (-2695 (QUOTE -1389)) (-640)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1089)) (-14 *4 (-1089)) (-14 *5 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X) (QUOTE EPS)) (-2695 (QUOTE -1389)) (-640))))))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 134) (((-3 $ "failed") (-1171 (-294 (-525)))) 123) (((-3 $ "failed") (-1171 (-885 (-357)))) 154) (((-3 $ "failed") (-1171 (-885 (-525)))) 144) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 112) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 99)) (-3341 (($ (-1171 (-294 (-357)))) 130) (($ (-1171 (-294 (-525)))) 119) (($ (-1171 (-885 (-357)))) 150) (($ (-1171 (-885 (-525)))) 140) (($ (-1171 (-385 (-885 (-357))))) 108) (($ (-1171 (-385 (-885 (-525))))) 92)) (-2163 (((-1176) $) 83)) (-2686 (((-796) $) 75) (($ (-591 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) NIL) (($ (-1171 (-317 (-2695 (QUOTE EPS)) (-2695 (QUOTE YA) (QUOTE YB)) (-640)))) 70))) -(((-74 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE EPS)) (-2695 (QUOTE YA) (QUOTE YB)) (-640))))))) (-1089) (-1089) (-1089)) (T -74)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695 (QUOTE EPS)) (-2695 (QUOTE YA) (QUOTE YB)) (-640)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1089)) (-14 *4 (-1089)) (-14 *5 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE EPS)) (-2695 (QUOTE YA) (QUOTE YB)) (-640))))))) -((-4174 (((-3 $ "failed") (-294 (-357))) 82) (((-3 $ "failed") (-294 (-525))) 87) (((-3 $ "failed") (-885 (-357))) 91) (((-3 $ "failed") (-885 (-525))) 95) (((-3 $ "failed") (-385 (-885 (-357)))) 77) (((-3 $ "failed") (-385 (-885 (-525)))) 70)) (-3341 (($ (-294 (-357))) 80) (($ (-294 (-525))) 85) (($ (-885 (-357))) 89) (($ (-885 (-525))) 93) (($ (-385 (-885 (-357)))) 75) (($ (-385 (-885 (-525)))) 67)) (-2163 (((-1176) $) 62)) (-2686 (((-796) $) 50) (($ (-591 (-308))) 46) (($ (-308)) 56) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 54) (($ (-317 (-2695) (-2695 (QUOTE X)) (-640))) 47))) -(((-75 |#1|) (-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695) (-2695 (QUOTE X)) (-640)))))) (-1089)) (T -75)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-317 (-2695) (-2695 (QUOTE X)) (-640))) (-5 *1 (-75 *3)) (-14 *3 (-1089))))) -(-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695) (-2695 (QUOTE X)) (-640)))))) -((-4174 (((-3 $ "failed") (-294 (-357))) 46) (((-3 $ "failed") (-294 (-525))) 51) (((-3 $ "failed") (-885 (-357))) 55) (((-3 $ "failed") (-885 (-525))) 59) (((-3 $ "failed") (-385 (-885 (-357)))) 41) (((-3 $ "failed") (-385 (-885 (-525)))) 34)) (-3341 (($ (-294 (-357))) 44) (($ (-294 (-525))) 49) (($ (-885 (-357))) 53) (($ (-885 (-525))) 57) (($ (-385 (-885 (-357)))) 39) (($ (-385 (-885 (-525)))) 31)) (-2163 (((-1176) $) 80)) (-2686 (((-796) $) 74) (($ (-591 (-308))) 66) (($ (-308)) 71) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 69) (($ (-317 (-2695) (-2695 (QUOTE X)) (-640))) 30))) -(((-76 |#1|) (-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695) (-2695 (QUOTE X)) (-640)))))) (-1089)) (T -76)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-317 (-2695) (-2695 (QUOTE X)) (-640))) (-5 *1 (-76 *3)) (-14 *3 (-1089))))) -(-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695) (-2695 (QUOTE X)) (-640)))))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 89) (((-3 $ "failed") (-1171 (-294 (-525)))) 78) (((-3 $ "failed") (-1171 (-885 (-357)))) 109) (((-3 $ "failed") (-1171 (-885 (-525)))) 99) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 67) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 54)) (-3341 (($ (-1171 (-294 (-357)))) 85) (($ (-1171 (-294 (-525)))) 74) (($ (-1171 (-885 (-357)))) 105) (($ (-1171 (-885 (-525)))) 95) (($ (-1171 (-385 (-885 (-357))))) 63) (($ (-1171 (-385 (-885 (-525))))) 47)) (-2163 (((-1176) $) 125)) (-2686 (((-796) $) 119) (($ (-591 (-308))) 112) (($ (-308)) 37) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 115) (($ (-1171 (-317 (-2695) (-2695 (QUOTE XC)) (-640)))) 38))) -(((-77 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE XC)) (-640))))))) (-1089)) (T -77)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 (QUOTE XC)) (-640)))) (-5 *1 (-77 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE XC)) (-640))))))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 142) (((-3 $ "failed") (-1171 (-294 (-525)))) 132) (((-3 $ "failed") (-1171 (-885 (-357)))) 162) (((-3 $ "failed") (-1171 (-885 (-525)))) 152) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 122) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 110)) (-3341 (($ (-1171 (-294 (-357)))) 138) (($ (-1171 (-294 (-525)))) 128) (($ (-1171 (-885 (-357)))) 158) (($ (-1171 (-885 (-525)))) 148) (($ (-1171 (-385 (-885 (-357))))) 118) (($ (-1171 (-385 (-885 (-525))))) 103)) (-2163 (((-1176) $) 96)) (-2686 (((-796) $) 90) (($ (-591 (-308))) 81) (($ (-308)) 88) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 86) (($ (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640)))) 82))) -(((-78 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640))))))) (-1089)) (T -78)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640)))) (-5 *1 (-78 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640))))))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 78) (((-3 $ "failed") (-1171 (-294 (-525)))) 67) (((-3 $ "failed") (-1171 (-885 (-357)))) 98) (((-3 $ "failed") (-1171 (-885 (-525)))) 88) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 56) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 43)) (-3341 (($ (-1171 (-294 (-357)))) 74) (($ (-1171 (-294 (-525)))) 63) (($ (-1171 (-885 (-357)))) 94) (($ (-1171 (-885 (-525)))) 84) (($ (-1171 (-385 (-885 (-357))))) 52) (($ (-1171 (-385 (-885 (-525))))) 36)) (-2163 (((-1176) $) 124)) (-2686 (((-796) $) 118) (($ (-591 (-308))) 109) (($ (-308)) 115) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 113) (($ (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640)))) 35))) -(((-79 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640))))))) (-1089)) (T -79)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640)))) (-5 *1 (-79 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695) (-2695 (QUOTE X)) (-640))))))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 95) (((-3 $ "failed") (-1171 (-294 (-525)))) 84) (((-3 $ "failed") (-1171 (-885 (-357)))) 115) (((-3 $ "failed") (-1171 (-885 (-525)))) 105) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 73) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 60)) (-3341 (($ (-1171 (-294 (-357)))) 91) (($ (-1171 (-294 (-525)))) 80) (($ (-1171 (-885 (-357)))) 111) (($ (-1171 (-885 (-525)))) 101) (($ (-1171 (-385 (-885 (-357))))) 69) (($ (-1171 (-385 (-885 (-525))))) 53)) (-2163 (((-1176) $) 45)) (-2686 (((-796) $) 39) (($ (-591 (-308))) 29) (($ (-308)) 32) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 35) (($ (-1171 (-317 (-2695 (QUOTE X) (QUOTE -1389)) (-2695) (-640)))) 30))) -(((-80 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X) (QUOTE -1389)) (-2695) (-640))))))) (-1089)) (T -80)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695 (QUOTE X) (QUOTE -1389)) (-2695) (-640)))) (-5 *1 (-80 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X) (QUOTE -1389)) (-2695) (-640))))))) -((-4174 (((-3 $ "failed") (-631 (-294 (-357)))) 115) (((-3 $ "failed") (-631 (-294 (-525)))) 104) (((-3 $ "failed") (-631 (-885 (-357)))) 137) (((-3 $ "failed") (-631 (-885 (-525)))) 126) (((-3 $ "failed") (-631 (-385 (-885 (-357))))) 93) (((-3 $ "failed") (-631 (-385 (-885 (-525))))) 80)) (-3341 (($ (-631 (-294 (-357)))) 111) (($ (-631 (-294 (-525)))) 100) (($ (-631 (-885 (-357)))) 133) (($ (-631 (-885 (-525)))) 122) (($ (-631 (-385 (-885 (-357))))) 89) (($ (-631 (-385 (-885 (-525))))) 73)) (-2163 (((-1176) $) 63)) (-2686 (((-796) $) 50) (($ (-591 (-308))) 57) (($ (-308)) 46) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 55) (($ (-631 (-317 (-2695 (QUOTE X) (QUOTE -1389)) (-2695) (-640)))) 47))) -(((-81 |#1|) (-13 (-362) (-10 -8 (-15 -2686 ($ (-631 (-317 (-2695 (QUOTE X) (QUOTE -1389)) (-2695) (-640))))))) (-1089)) (T -81)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-631 (-317 (-2695 (QUOTE X) (QUOTE -1389)) (-2695) (-640)))) (-5 *1 (-81 *3)) (-14 *3 (-1089))))) -(-13 (-362) (-10 -8 (-15 -2686 ($ (-631 (-317 (-2695 (QUOTE X) (QUOTE -1389)) (-2695) (-640))))))) -((-4174 (((-3 $ "failed") (-631 (-294 (-357)))) 112) (((-3 $ "failed") (-631 (-294 (-525)))) 100) (((-3 $ "failed") (-631 (-885 (-357)))) 134) (((-3 $ "failed") (-631 (-885 (-525)))) 123) (((-3 $ "failed") (-631 (-385 (-885 (-357))))) 88) (((-3 $ "failed") (-631 (-385 (-885 (-525))))) 74)) (-3341 (($ (-631 (-294 (-357)))) 108) (($ (-631 (-294 (-525)))) 96) (($ (-631 (-885 (-357)))) 130) (($ (-631 (-885 (-525)))) 119) (($ (-631 (-385 (-885 (-357))))) 84) (($ (-631 (-385 (-885 (-525))))) 67)) (-2163 (((-1176) $) 59)) (-2686 (((-796) $) 53) (($ (-591 (-308))) 47) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 44) (($ (-631 (-317 (-2695 (QUOTE X)) (-2695) (-640)))) 45))) -(((-82 |#1|) (-13 (-362) (-10 -8 (-15 -2686 ($ (-631 (-317 (-2695 (QUOTE X)) (-2695) (-640))))))) (-1089)) (T -82)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-631 (-317 (-2695 (QUOTE X)) (-2695) (-640)))) (-5 *1 (-82 *3)) (-14 *3 (-1089))))) -(-13 (-362) (-10 -8 (-15 -2686 ($ (-631 (-317 (-2695 (QUOTE X)) (-2695) (-640))))))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 104) (((-3 $ "failed") (-1171 (-294 (-525)))) 93) (((-3 $ "failed") (-1171 (-885 (-357)))) 124) (((-3 $ "failed") (-1171 (-885 (-525)))) 114) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 82) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 69)) (-3341 (($ (-1171 (-294 (-357)))) 100) (($ (-1171 (-294 (-525)))) 89) (($ (-1171 (-885 (-357)))) 120) (($ (-1171 (-885 (-525)))) 110) (($ (-1171 (-385 (-885 (-357))))) 78) (($ (-1171 (-385 (-885 (-525))))) 62)) (-2163 (((-1176) $) 46)) (-2686 (((-796) $) 40) (($ (-591 (-308))) 49) (($ (-308)) 36) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 52) (($ (-1171 (-317 (-2695 (QUOTE X)) (-2695) (-640)))) 37))) -(((-83 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X)) (-2695) (-640))))))) (-1089)) (T -83)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695 (QUOTE X)) (-2695) (-640)))) (-5 *1 (-83 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X)) (-2695) (-640))))))) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 79) (((-3 $ "failed") (-1171 (-294 (-525)))) 68) (((-3 $ "failed") (-1171 (-885 (-357)))) 99) (((-3 $ "failed") (-1171 (-885 (-525)))) 89) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 57) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 44)) (-3341 (($ (-1171 (-294 (-357)))) 75) (($ (-1171 (-294 (-525)))) 64) (($ (-1171 (-885 (-357)))) 95) (($ (-1171 (-885 (-525)))) 85) (($ (-1171 (-385 (-885 (-357))))) 53) (($ (-1171 (-385 (-885 (-525))))) 37)) (-2163 (((-1176) $) 125)) (-2686 (((-796) $) 119) (($ (-591 (-308))) 110) (($ (-308)) 116) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 114) (($ (-1171 (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640)))) 36))) -(((-84 |#1|) (-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640))))))) (-1089)) (T -84)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640)))) (-5 *1 (-84 *3)) (-14 *3 (-1089))))) -(-13 (-418) (-10 -8 (-15 -2686 ($ (-1171 (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640))))))) -((-4174 (((-3 $ "failed") (-631 (-294 (-357)))) 113) (((-3 $ "failed") (-631 (-294 (-525)))) 101) (((-3 $ "failed") (-631 (-885 (-357)))) 135) (((-3 $ "failed") (-631 (-885 (-525)))) 124) (((-3 $ "failed") (-631 (-385 (-885 (-357))))) 89) (((-3 $ "failed") (-631 (-385 (-885 (-525))))) 75)) (-3341 (($ (-631 (-294 (-357)))) 109) (($ (-631 (-294 (-525)))) 97) (($ (-631 (-885 (-357)))) 131) (($ (-631 (-885 (-525)))) 120) (($ (-631 (-385 (-885 (-357))))) 85) (($ (-631 (-385 (-885 (-525))))) 68)) (-2163 (((-1176) $) 59)) (-2686 (((-796) $) 53) (($ (-591 (-308))) 43) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 48) (($ (-631 (-317 (-2695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2695) (-640)))) 44))) -(((-85 |#1|) (-13 (-362) (-10 -8 (-15 -2686 ($ (-631 (-317 (-2695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2695) (-640))))))) (-1089)) (T -85)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-631 (-317 (-2695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2695) (-640)))) (-5 *1 (-85 *3)) (-14 *3 (-1089))))) -(-13 (-362) (-10 -8 (-15 -2686 ($ (-631 (-317 (-2695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2695) (-640))))))) -((-2163 (((-1176) $) 44)) (-2686 (((-796) $) 38) (($ (-1171 (-640))) 92) (($ (-591 (-308))) 30) (($ (-308)) 35) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 33))) -(((-86 |#1|) (-417) (-1089)) (T -86)) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 125) (((-3 $ "failed") (-1172 (-294 (-525)))) 115) (((-3 $ "failed") (-1172 (-886 (-357)))) 145) (((-3 $ "failed") (-1172 (-886 (-525)))) 135) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 105) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 93)) (-2068 (($ (-1172 (-294 (-357)))) 121) (($ (-1172 (-294 (-525)))) 111) (($ (-1172 (-886 (-357)))) 141) (($ (-1172 (-886 (-525)))) 131) (($ (-1172 (-385 (-886 (-357))))) 101) (($ (-1172 (-385 (-886 (-525))))) 86)) (-3153 (((-1177) $) 78)) (-4044 (((-797) $) 27) (($ (-592 (-308))) 68) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 71) (($ (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641)))) 65))) +(((-72 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641))))))) (-1090)) (T -72)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641)))) (-5 *1 (-72 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641))))))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 130) (((-3 $ "failed") (-1172 (-294 (-525)))) 119) (((-3 $ "failed") (-1172 (-886 (-357)))) 150) (((-3 $ "failed") (-1172 (-886 (-525)))) 140) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 108) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 95)) (-2068 (($ (-1172 (-294 (-357)))) 126) (($ (-1172 (-294 (-525)))) 115) (($ (-1172 (-886 (-357)))) 146) (($ (-1172 (-886 (-525)))) 136) (($ (-1172 (-385 (-886 (-357))))) 104) (($ (-1172 (-385 (-886 (-525))))) 88)) (-3153 (((-1177) $) 79)) (-4044 (((-797) $) 71) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) NIL) (($ (-1172 (-317 (-4059 (QUOTE X) (QUOTE EPS)) (-4059 (QUOTE -1507)) (-641)))) 66))) +(((-73 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X) (QUOTE EPS)) (-4059 (QUOTE -1507)) (-641))))))) (-1090) (-1090) (-1090)) (T -73)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059 (QUOTE X) (QUOTE EPS)) (-4059 (QUOTE -1507)) (-641)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1090)) (-14 *4 (-1090)) (-14 *5 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X) (QUOTE EPS)) (-4059 (QUOTE -1507)) (-641))))))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 134) (((-3 $ "failed") (-1172 (-294 (-525)))) 123) (((-3 $ "failed") (-1172 (-886 (-357)))) 154) (((-3 $ "failed") (-1172 (-886 (-525)))) 144) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 112) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 99)) (-2068 (($ (-1172 (-294 (-357)))) 130) (($ (-1172 (-294 (-525)))) 119) (($ (-1172 (-886 (-357)))) 150) (($ (-1172 (-886 (-525)))) 140) (($ (-1172 (-385 (-886 (-357))))) 108) (($ (-1172 (-385 (-886 (-525))))) 92)) (-3153 (((-1177) $) 83)) (-4044 (((-797) $) 75) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) NIL) (($ (-1172 (-317 (-4059 (QUOTE EPS)) (-4059 (QUOTE YA) (QUOTE YB)) (-641)))) 70))) +(((-74 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE EPS)) (-4059 (QUOTE YA) (QUOTE YB)) (-641))))))) (-1090) (-1090) (-1090)) (T -74)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059 (QUOTE EPS)) (-4059 (QUOTE YA) (QUOTE YB)) (-641)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1090)) (-14 *4 (-1090)) (-14 *5 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE EPS)) (-4059 (QUOTE YA) (QUOTE YB)) (-641))))))) +((-2769 (((-3 $ "failed") (-294 (-357))) 82) (((-3 $ "failed") (-294 (-525))) 87) (((-3 $ "failed") (-886 (-357))) 91) (((-3 $ "failed") (-886 (-525))) 95) (((-3 $ "failed") (-385 (-886 (-357)))) 77) (((-3 $ "failed") (-385 (-886 (-525)))) 70)) (-2068 (($ (-294 (-357))) 80) (($ (-294 (-525))) 85) (($ (-886 (-357))) 89) (($ (-886 (-525))) 93) (($ (-385 (-886 (-357)))) 75) (($ (-385 (-886 (-525)))) 67)) (-3153 (((-1177) $) 62)) (-4044 (((-797) $) 50) (($ (-592 (-308))) 46) (($ (-308)) 56) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 54) (($ (-317 (-4059) (-4059 (QUOTE X)) (-641))) 47))) +(((-75 |#1|) (-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059) (-4059 (QUOTE X)) (-641)))))) (-1090)) (T -75)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-317 (-4059) (-4059 (QUOTE X)) (-641))) (-5 *1 (-75 *3)) (-14 *3 (-1090))))) +(-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059) (-4059 (QUOTE X)) (-641)))))) +((-2769 (((-3 $ "failed") (-294 (-357))) 46) (((-3 $ "failed") (-294 (-525))) 51) (((-3 $ "failed") (-886 (-357))) 55) (((-3 $ "failed") (-886 (-525))) 59) (((-3 $ "failed") (-385 (-886 (-357)))) 41) (((-3 $ "failed") (-385 (-886 (-525)))) 34)) (-2068 (($ (-294 (-357))) 44) (($ (-294 (-525))) 49) (($ (-886 (-357))) 53) (($ (-886 (-525))) 57) (($ (-385 (-886 (-357)))) 39) (($ (-385 (-886 (-525)))) 31)) (-3153 (((-1177) $) 80)) (-4044 (((-797) $) 74) (($ (-592 (-308))) 66) (($ (-308)) 71) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 69) (($ (-317 (-4059) (-4059 (QUOTE X)) (-641))) 30))) +(((-76 |#1|) (-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059) (-4059 (QUOTE X)) (-641)))))) (-1090)) (T -76)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-317 (-4059) (-4059 (QUOTE X)) (-641))) (-5 *1 (-76 *3)) (-14 *3 (-1090))))) +(-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059) (-4059 (QUOTE X)) (-641)))))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 89) (((-3 $ "failed") (-1172 (-294 (-525)))) 78) (((-3 $ "failed") (-1172 (-886 (-357)))) 109) (((-3 $ "failed") (-1172 (-886 (-525)))) 99) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 67) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 54)) (-2068 (($ (-1172 (-294 (-357)))) 85) (($ (-1172 (-294 (-525)))) 74) (($ (-1172 (-886 (-357)))) 105) (($ (-1172 (-886 (-525)))) 95) (($ (-1172 (-385 (-886 (-357))))) 63) (($ (-1172 (-385 (-886 (-525))))) 47)) (-3153 (((-1177) $) 125)) (-4044 (((-797) $) 119) (($ (-592 (-308))) 112) (($ (-308)) 37) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 115) (($ (-1172 (-317 (-4059) (-4059 (QUOTE XC)) (-641)))) 38))) +(((-77 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE XC)) (-641))))))) (-1090)) (T -77)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 (QUOTE XC)) (-641)))) (-5 *1 (-77 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE XC)) (-641))))))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 142) (((-3 $ "failed") (-1172 (-294 (-525)))) 132) (((-3 $ "failed") (-1172 (-886 (-357)))) 162) (((-3 $ "failed") (-1172 (-886 (-525)))) 152) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 122) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 110)) (-2068 (($ (-1172 (-294 (-357)))) 138) (($ (-1172 (-294 (-525)))) 128) (($ (-1172 (-886 (-357)))) 158) (($ (-1172 (-886 (-525)))) 148) (($ (-1172 (-385 (-886 (-357))))) 118) (($ (-1172 (-385 (-886 (-525))))) 103)) (-3153 (((-1177) $) 96)) (-4044 (((-797) $) 90) (($ (-592 (-308))) 81) (($ (-308)) 88) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 86) (($ (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641)))) 82))) +(((-78 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641))))))) (-1090)) (T -78)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641)))) (-5 *1 (-78 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641))))))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 78) (((-3 $ "failed") (-1172 (-294 (-525)))) 67) (((-3 $ "failed") (-1172 (-886 (-357)))) 98) (((-3 $ "failed") (-1172 (-886 (-525)))) 88) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 56) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 43)) (-2068 (($ (-1172 (-294 (-357)))) 74) (($ (-1172 (-294 (-525)))) 63) (($ (-1172 (-886 (-357)))) 94) (($ (-1172 (-886 (-525)))) 84) (($ (-1172 (-385 (-886 (-357))))) 52) (($ (-1172 (-385 (-886 (-525))))) 36)) (-3153 (((-1177) $) 124)) (-4044 (((-797) $) 118) (($ (-592 (-308))) 109) (($ (-308)) 115) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 113) (($ (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641)))) 35))) +(((-79 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641))))))) (-1090)) (T -79)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641)))) (-5 *1 (-79 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059) (-4059 (QUOTE X)) (-641))))))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 95) (((-3 $ "failed") (-1172 (-294 (-525)))) 84) (((-3 $ "failed") (-1172 (-886 (-357)))) 115) (((-3 $ "failed") (-1172 (-886 (-525)))) 105) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 73) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 60)) (-2068 (($ (-1172 (-294 (-357)))) 91) (($ (-1172 (-294 (-525)))) 80) (($ (-1172 (-886 (-357)))) 111) (($ (-1172 (-886 (-525)))) 101) (($ (-1172 (-385 (-886 (-357))))) 69) (($ (-1172 (-385 (-886 (-525))))) 53)) (-3153 (((-1177) $) 45)) (-4044 (((-797) $) 39) (($ (-592 (-308))) 29) (($ (-308)) 32) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 35) (($ (-1172 (-317 (-4059 (QUOTE X) (QUOTE -1507)) (-4059) (-641)))) 30))) +(((-80 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X) (QUOTE -1507)) (-4059) (-641))))))) (-1090)) (T -80)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059 (QUOTE X) (QUOTE -1507)) (-4059) (-641)))) (-5 *1 (-80 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X) (QUOTE -1507)) (-4059) (-641))))))) +((-2769 (((-3 $ "failed") (-632 (-294 (-357)))) 115) (((-3 $ "failed") (-632 (-294 (-525)))) 104) (((-3 $ "failed") (-632 (-886 (-357)))) 137) (((-3 $ "failed") (-632 (-886 (-525)))) 126) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 93) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 80)) (-2068 (($ (-632 (-294 (-357)))) 111) (($ (-632 (-294 (-525)))) 100) (($ (-632 (-886 (-357)))) 133) (($ (-632 (-886 (-525)))) 122) (($ (-632 (-385 (-886 (-357))))) 89) (($ (-632 (-385 (-886 (-525))))) 73)) (-3153 (((-1177) $) 63)) (-4044 (((-797) $) 50) (($ (-592 (-308))) 57) (($ (-308)) 46) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 55) (($ (-632 (-317 (-4059 (QUOTE X) (QUOTE -1507)) (-4059) (-641)))) 47))) +(((-81 |#1|) (-13 (-362) (-10 -8 (-15 -4044 ($ (-632 (-317 (-4059 (QUOTE X) (QUOTE -1507)) (-4059) (-641))))))) (-1090)) (T -81)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-4059 (QUOTE X) (QUOTE -1507)) (-4059) (-641)))) (-5 *1 (-81 *3)) (-14 *3 (-1090))))) +(-13 (-362) (-10 -8 (-15 -4044 ($ (-632 (-317 (-4059 (QUOTE X) (QUOTE -1507)) (-4059) (-641))))))) +((-2769 (((-3 $ "failed") (-632 (-294 (-357)))) 112) (((-3 $ "failed") (-632 (-294 (-525)))) 100) (((-3 $ "failed") (-632 (-886 (-357)))) 134) (((-3 $ "failed") (-632 (-886 (-525)))) 123) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 88) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 74)) (-2068 (($ (-632 (-294 (-357)))) 108) (($ (-632 (-294 (-525)))) 96) (($ (-632 (-886 (-357)))) 130) (($ (-632 (-886 (-525)))) 119) (($ (-632 (-385 (-886 (-357))))) 84) (($ (-632 (-385 (-886 (-525))))) 67)) (-3153 (((-1177) $) 59)) (-4044 (((-797) $) 53) (($ (-592 (-308))) 47) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 44) (($ (-632 (-317 (-4059 (QUOTE X)) (-4059) (-641)))) 45))) +(((-82 |#1|) (-13 (-362) (-10 -8 (-15 -4044 ($ (-632 (-317 (-4059 (QUOTE X)) (-4059) (-641))))))) (-1090)) (T -82)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-4059 (QUOTE X)) (-4059) (-641)))) (-5 *1 (-82 *3)) (-14 *3 (-1090))))) +(-13 (-362) (-10 -8 (-15 -4044 ($ (-632 (-317 (-4059 (QUOTE X)) (-4059) (-641))))))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 104) (((-3 $ "failed") (-1172 (-294 (-525)))) 93) (((-3 $ "failed") (-1172 (-886 (-357)))) 124) (((-3 $ "failed") (-1172 (-886 (-525)))) 114) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 82) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 69)) (-2068 (($ (-1172 (-294 (-357)))) 100) (($ (-1172 (-294 (-525)))) 89) (($ (-1172 (-886 (-357)))) 120) (($ (-1172 (-886 (-525)))) 110) (($ (-1172 (-385 (-886 (-357))))) 78) (($ (-1172 (-385 (-886 (-525))))) 62)) (-3153 (((-1177) $) 46)) (-4044 (((-797) $) 40) (($ (-592 (-308))) 49) (($ (-308)) 36) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 52) (($ (-1172 (-317 (-4059 (QUOTE X)) (-4059) (-641)))) 37))) +(((-83 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X)) (-4059) (-641))))))) (-1090)) (T -83)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059 (QUOTE X)) (-4059) (-641)))) (-5 *1 (-83 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X)) (-4059) (-641))))))) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 79) (((-3 $ "failed") (-1172 (-294 (-525)))) 68) (((-3 $ "failed") (-1172 (-886 (-357)))) 99) (((-3 $ "failed") (-1172 (-886 (-525)))) 89) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 57) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 44)) (-2068 (($ (-1172 (-294 (-357)))) 75) (($ (-1172 (-294 (-525)))) 64) (($ (-1172 (-886 (-357)))) 95) (($ (-1172 (-886 (-525)))) 85) (($ (-1172 (-385 (-886 (-357))))) 53) (($ (-1172 (-385 (-886 (-525))))) 37)) (-3153 (((-1177) $) 125)) (-4044 (((-797) $) 119) (($ (-592 (-308))) 110) (($ (-308)) 116) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 114) (($ (-1172 (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641)))) 36))) +(((-84 |#1|) (-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641))))))) (-1090)) (T -84)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641)))) (-5 *1 (-84 *3)) (-14 *3 (-1090))))) +(-13 (-418) (-10 -8 (-15 -4044 ($ (-1172 (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641))))))) +((-2769 (((-3 $ "failed") (-632 (-294 (-357)))) 113) (((-3 $ "failed") (-632 (-294 (-525)))) 101) (((-3 $ "failed") (-632 (-886 (-357)))) 135) (((-3 $ "failed") (-632 (-886 (-525)))) 124) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 89) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 75)) (-2068 (($ (-632 (-294 (-357)))) 109) (($ (-632 (-294 (-525)))) 97) (($ (-632 (-886 (-357)))) 131) (($ (-632 (-886 (-525)))) 120) (($ (-632 (-385 (-886 (-357))))) 85) (($ (-632 (-385 (-886 (-525))))) 68)) (-3153 (((-1177) $) 59)) (-4044 (((-797) $) 53) (($ (-592 (-308))) 43) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 48) (($ (-632 (-317 (-4059 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4059) (-641)))) 44))) +(((-85 |#1|) (-13 (-362) (-10 -8 (-15 -4044 ($ (-632 (-317 (-4059 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4059) (-641))))))) (-1090)) (T -85)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-4059 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4059) (-641)))) (-5 *1 (-85 *3)) (-14 *3 (-1090))))) +(-13 (-362) (-10 -8 (-15 -4044 ($ (-632 (-317 (-4059 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4059) (-641))))))) +((-3153 (((-1177) $) 44)) (-4044 (((-797) $) 38) (($ (-1172 (-641))) 92) (($ (-592 (-308))) 30) (($ (-308)) 35) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 33))) +(((-86 |#1|) (-417) (-1090)) (T -86)) NIL (-417) -((-4174 (((-3 $ "failed") (-294 (-357))) 47) (((-3 $ "failed") (-294 (-525))) 52) (((-3 $ "failed") (-885 (-357))) 56) (((-3 $ "failed") (-885 (-525))) 60) (((-3 $ "failed") (-385 (-885 (-357)))) 42) (((-3 $ "failed") (-385 (-885 (-525)))) 35)) (-3341 (($ (-294 (-357))) 45) (($ (-294 (-525))) 50) (($ (-885 (-357))) 54) (($ (-885 (-525))) 58) (($ (-385 (-885 (-357)))) 40) (($ (-385 (-885 (-525)))) 32)) (-2163 (((-1176) $) 90)) (-2686 (((-796) $) 84) (($ (-591 (-308))) 78) (($ (-308)) 81) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 76) (($ (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640))) 31))) -(((-87 |#1|) (-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640)))))) (-1089)) (T -87)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640))) (-5 *1 (-87 *3)) (-14 *3 (-1089))))) -(-13 (-374) (-10 -8 (-15 -2686 ($ (-317 (-2695 (QUOTE X)) (-2695 (QUOTE -1389)) (-640)))))) -((-1740 (((-1171 (-631 |#1|)) (-631 |#1|)) 54)) (-3092 (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 (-591 (-854))))) |#2| (-854)) 44)) (-2198 (((-2 (|:| |minor| (-591 (-854))) (|:| -2203 |#2|) (|:| |minors| (-591 (-591 (-854)))) (|:| |ops| (-591 |#2|))) |#2| (-854)) 65 (|has| |#1| (-341))))) -(((-88 |#1| |#2|) (-10 -7 (-15 -3092 ((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 (-591 (-854))))) |#2| (-854))) (-15 -1740 ((-1171 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-341)) (-15 -2198 ((-2 (|:| |minor| (-591 (-854))) (|:| -2203 |#2|) (|:| |minors| (-591 (-591 (-854)))) (|:| |ops| (-591 |#2|))) |#2| (-854))) |%noBranch|)) (-517) (-601 |#1|)) (T -88)) -((-2198 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |minor| (-591 (-854))) (|:| -2203 *3) (|:| |minors| (-591 (-591 (-854)))) (|:| |ops| (-591 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-854)) (-4 *3 (-601 *5)))) (-1740 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1171 (-631 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))) (-3092 (*1 *2 *3 *4) (-12 (-4 *5 (-517)) (-5 *2 (-2 (|:| -2928 (-631 *5)) (|:| |vec| (-1171 (-591 (-854)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-854)) (-4 *3 (-601 *5))))) -(-10 -7 (-15 -3092 ((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 (-591 (-854))))) |#2| (-854))) (-15 -1740 ((-1171 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-341)) (-15 -2198 ((-2 (|:| |minor| (-591 (-854))) (|:| -2203 |#2|) (|:| |minors| (-591 (-591 (-854)))) (|:| |ops| (-591 |#2|))) |#2| (-854))) |%noBranch|)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1505 ((|#1| $) 35)) (-3727 (((-108) $ (-712)) NIL)) (-2055 (($) NIL T CONST)) (-1593 ((|#1| |#1| $) 30)) (-1473 ((|#1| $) 28)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-3949 ((|#1| $) NIL)) (-1520 (($ |#1| $) 31)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-4166 ((|#1| $) 29)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 16)) (-3164 (($) 39)) (-2333 (((-712) $) 26)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) 15)) (-2686 (((-796) $) 25 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) NIL)) (-2326 (($ (-591 |#1|)) 37)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 13 (|has| |#1| (-1018)))) (-2028 (((-712) $) 10 (|has| $ (-6 -4250))))) -(((-89 |#1|) (-13 (-1037 |#1|) (-10 -8 (-15 -2326 ($ (-591 |#1|))))) (-1018)) (T -89)) -((-2326 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-89 *3))))) -(-13 (-1037 |#1|) (-10 -8 (-15 -2326 ($ (-591 |#1|))))) -((-2477 (($ $) 10)) (-2495 (($ $) 12))) -(((-90 |#1|) (-10 -8 (-15 -2495 (|#1| |#1|)) (-15 -2477 (|#1| |#1|))) (-91)) (T -90)) -NIL -(-10 -8 (-15 -2495 (|#1| |#1|)) (-15 -2477 (|#1| |#1|))) -((-2457 (($ $) 11)) (-2432 (($ $) 10)) (-2477 (($ $) 9)) (-2495 (($ $) 8)) (-2469 (($ $) 7)) (-2444 (($ $) 6))) +((-2769 (((-3 $ "failed") (-294 (-357))) 47) (((-3 $ "failed") (-294 (-525))) 52) (((-3 $ "failed") (-886 (-357))) 56) (((-3 $ "failed") (-886 (-525))) 60) (((-3 $ "failed") (-385 (-886 (-357)))) 42) (((-3 $ "failed") (-385 (-886 (-525)))) 35)) (-2068 (($ (-294 (-357))) 45) (($ (-294 (-525))) 50) (($ (-886 (-357))) 54) (($ (-886 (-525))) 58) (($ (-385 (-886 (-357)))) 40) (($ (-385 (-886 (-525)))) 32)) (-3153 (((-1177) $) 90)) (-4044 (((-797) $) 84) (($ (-592 (-308))) 78) (($ (-308)) 81) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 76) (($ (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641))) 31))) +(((-87 |#1|) (-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641)))))) (-1090)) (T -87)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641))) (-5 *1 (-87 *3)) (-14 *3 (-1090))))) +(-13 (-374) (-10 -8 (-15 -4044 ($ (-317 (-4059 (QUOTE X)) (-4059 (QUOTE -1507)) (-641)))))) +((-1934 (((-1172 (-632 |#1|)) (-632 |#1|)) 54)) (-2838 (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 (-592 (-855))))) |#2| (-855)) 44)) (-2905 (((-2 (|:| |minor| (-592 (-855))) (|:| -3941 |#2|) (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 |#2|))) |#2| (-855)) 65 (|has| |#1| (-341))))) +(((-88 |#1| |#2|) (-10 -7 (-15 -2838 ((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 (-592 (-855))))) |#2| (-855))) (-15 -1934 ((-1172 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -2905 ((-2 (|:| |minor| (-592 (-855))) (|:| -3941 |#2|) (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 |#2|))) |#2| (-855))) |%noBranch|)) (-517) (-602 |#1|)) (T -88)) +((-2905 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |minor| (-592 (-855))) (|:| -3941 *3) (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-855)) (-4 *3 (-602 *5)))) (-1934 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))) (-2838 (*1 *2 *3 *4) (-12 (-4 *5 (-517)) (-5 *2 (-2 (|:| -3471 (-632 *5)) (|:| |vec| (-1172 (-592 (-855)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-855)) (-4 *3 (-602 *5))))) +(-10 -7 (-15 -2838 ((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 (-592 (-855))))) |#2| (-855))) (-15 -1934 ((-1172 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -2905 ((-2 (|:| |minor| (-592 (-855))) (|:| -3941 |#2|) (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 |#2|))) |#2| (-855))) |%noBranch|)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3214 ((|#1| $) 35)) (-2583 (((-108) $ (-713)) NIL)) (-1957 (($) NIL T CONST)) (-2048 ((|#1| |#1| $) 30)) (-3462 ((|#1| $) 28)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2434 ((|#1| $) NIL)) (-4157 (($ |#1| $) 31)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3672 ((|#1| $) 29)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 16)) (-3266 (($) 39)) (-3465 (((-713) $) 26)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) 15)) (-4044 (((-797) $) 25 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) NIL)) (-3638 (($ (-592 |#1|)) 37)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 13 (|has| |#1| (-1019)))) (-1696 (((-713) $) 10 (|has| $ (-6 -4254))))) +(((-89 |#1|) (-13 (-1038 |#1|) (-10 -8 (-15 -3638 ($ (-592 |#1|))))) (-1019)) (T -89)) +((-3638 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-89 *3))))) +(-13 (-1038 |#1|) (-10 -8 (-15 -3638 ($ (-592 |#1|))))) +((-3861 (($ $) 10)) (-3873 (($ $) 12))) +(((-90 |#1|) (-10 -8 (-15 -3873 (|#1| |#1|)) (-15 -3861 (|#1| |#1|))) (-91)) (T -90)) +NIL +(-10 -8 (-15 -3873 (|#1| |#1|)) (-15 -3861 (|#1| |#1|))) +((-3836 (($ $) 11)) (-3808 (($ $) 10)) (-3861 (($ $) 9)) (-3873 (($ $) 8)) (-3848 (($ $) 7)) (-3823 (($ $) 6))) (((-91) (-131)) (T -91)) -((-2457 (*1 *1 *1) (-4 *1 (-91))) (-2432 (*1 *1 *1) (-4 *1 (-91))) (-2477 (*1 *1 *1) (-4 *1 (-91))) (-2495 (*1 *1 *1) (-4 *1 (-91))) (-2469 (*1 *1 *1) (-4 *1 (-91))) (-2444 (*1 *1 *1) (-4 *1 (-91)))) -(-13 (-10 -8 (-15 -2444 ($ $)) (-15 -2469 ($ $)) (-15 -2495 ($ $)) (-15 -2477 ($ $)) (-15 -2432 ($ $)) (-15 -2457 ($ $)))) -((-2673 (((-108) $ $) NIL)) (-2913 (((-357) (-1072) (-357)) 42) (((-357) (-1072) (-1072) (-357)) 41)) (-2228 (((-357) (-357)) 33)) (-3257 (((-1176)) 36)) (-2621 (((-1072) $) NIL)) (-3287 (((-357) (-1072) (-1072)) 46) (((-357) (-1072)) 48)) (-2937 (((-1036) $) NIL)) (-3878 (((-357) (-1072) (-1072)) 47)) (-3521 (((-357) (-1072) (-1072)) 49) (((-357) (-1072)) 50)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-92) (-13 (-1018) (-10 -7 (-15 -3287 ((-357) (-1072) (-1072))) (-15 -3287 ((-357) (-1072))) (-15 -3521 ((-357) (-1072) (-1072))) (-15 -3521 ((-357) (-1072))) (-15 -3878 ((-357) (-1072) (-1072))) (-15 -3257 ((-1176))) (-15 -2228 ((-357) (-357))) (-15 -2913 ((-357) (-1072) (-357))) (-15 -2913 ((-357) (-1072) (-1072) (-357))) (-6 -4250)))) (T -92)) -((-3287 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3521 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3878 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3257 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-92)))) (-2228 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))) (-2913 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1072)) (-5 *1 (-92)))) (-2913 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1072)) (-5 *1 (-92))))) -(-13 (-1018) (-10 -7 (-15 -3287 ((-357) (-1072) (-1072))) (-15 -3287 ((-357) (-1072))) (-15 -3521 ((-357) (-1072) (-1072))) (-15 -3521 ((-357) (-1072))) (-15 -3878 ((-357) (-1072) (-1072))) (-15 -3257 ((-1176))) (-15 -2228 ((-357) (-357))) (-15 -2913 ((-357) (-1072) (-357))) (-15 -2913 ((-357) (-1072) (-1072) (-357))) (-6 -4250))) +((-3836 (*1 *1 *1) (-4 *1 (-91))) (-3808 (*1 *1 *1) (-4 *1 (-91))) (-3861 (*1 *1 *1) (-4 *1 (-91))) (-3873 (*1 *1 *1) (-4 *1 (-91))) (-3848 (*1 *1 *1) (-4 *1 (-91))) (-3823 (*1 *1 *1) (-4 *1 (-91)))) +(-13 (-10 -8 (-15 -3823 ($ $)) (-15 -3848 ($ $)) (-15 -3873 ($ $)) (-15 -3861 ($ $)) (-15 -3808 ($ $)) (-15 -3836 ($ $)))) +((-4028 (((-108) $ $) NIL)) (-2546 (((-357) (-1073) (-357)) 42) (((-357) (-1073) (-1073) (-357)) 41)) (-2648 (((-357) (-357)) 33)) (-1663 (((-1177)) 36)) (-1707 (((-1073) $) NIL)) (-2569 (((-357) (-1073) (-1073)) 46) (((-357) (-1073)) 48)) (-3027 (((-1037) $) NIL)) (-3278 (((-357) (-1073) (-1073)) 47)) (-3056 (((-357) (-1073) (-1073)) 49) (((-357) (-1073)) 50)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-92) (-13 (-1019) (-10 -7 (-15 -2569 ((-357) (-1073) (-1073))) (-15 -2569 ((-357) (-1073))) (-15 -3056 ((-357) (-1073) (-1073))) (-15 -3056 ((-357) (-1073))) (-15 -3278 ((-357) (-1073) (-1073))) (-15 -1663 ((-1177))) (-15 -2648 ((-357) (-357))) (-15 -2546 ((-357) (-1073) (-357))) (-15 -2546 ((-357) (-1073) (-1073) (-357))) (-6 -4254)))) (T -92)) +((-2569 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3056 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3278 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-1663 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-92)))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))) (-2546 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1073)) (-5 *1 (-92)))) (-2546 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1073)) (-5 *1 (-92))))) +(-13 (-1019) (-10 -7 (-15 -2569 ((-357) (-1073) (-1073))) (-15 -2569 ((-357) (-1073))) (-15 -3056 ((-357) (-1073) (-1073))) (-15 -3056 ((-357) (-1073))) (-15 -3278 ((-357) (-1073) (-1073))) (-15 -1663 ((-1177))) (-15 -2648 ((-357) (-357))) (-15 -2546 ((-357) (-1073) (-357))) (-15 -2546 ((-357) (-1073) (-1073) (-357))) (-6 -4254))) NIL (((-93) (-131)) (T -93)) NIL -(-13 (-10 -7 (-6 -4250) (-6 (-4252 "*")) (-6 -4251) (-6 -4247) (-6 -4245) (-6 -4244) (-6 -4243) (-6 -4248) (-6 -4242) (-6 -4241) (-6 -4240) (-6 -4239) (-6 -4238) (-6 -4246) (-6 -4249) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4237))) -((-2673 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-1921 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-525))) 22)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 14)) (-2937 (((-1036) $) NIL)) (-1881 ((|#1| $ |#1|) 11)) (-3369 (($ $ $) NIL)) (-4027 (($ $ $) NIL)) (-2686 (((-796) $) 20)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1839 (($) 8 T CONST)) (-3944 (((-108) $ $) 10)) (-4059 (($ $ $) NIL)) (** (($ $ (-854)) 28) (($ $ (-712)) NIL) (($ $ (-525)) 16)) (* (($ $ $) 29))) -(((-94 |#1|) (-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -1921 ($ (-1 |#1| |#1|))) (-15 -1921 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1921 ($ (-1 |#1| |#1| (-525)))))) (-975)) (T -94)) -((-1921 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-94 *3)))) (-1921 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-94 *3)))) (-1921 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-975)) (-5 *1 (-94 *3))))) -(-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -1921 ($ (-1 |#1| |#1|))) (-15 -1921 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1921 ($ (-1 |#1| |#1| (-525)))))) -((-3157 (((-396 |#2|) |#2| (-591 |#2|)) 10) (((-396 |#2|) |#2| |#2|) 11))) -(((-95 |#1| |#2|) (-10 -7 (-15 -3157 ((-396 |#2|) |#2| |#2|)) (-15 -3157 ((-396 |#2|) |#2| (-591 |#2|)))) (-13 (-429) (-138)) (-1147 |#1|)) (T -95)) -((-3157 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))) (-3157 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -3157 ((-396 |#2|) |#2| |#2|)) (-15 -3157 ((-396 |#2|) |#2| (-591 |#2|)))) -((-2673 (((-108) $ $) 10))) -(((-96 |#1|) (-10 -8 (-15 -2673 ((-108) |#1| |#1|))) (-97)) (T -96)) -NIL -(-10 -8 (-15 -2673 ((-108) |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-3944 (((-108) $ $) 6))) +(-13 (-10 -7 (-6 -4254) (-6 (-4256 "*")) (-6 -4255) (-6 -4251) (-6 -4249) (-6 -4248) (-6 -4247) (-6 -4252) (-6 -4246) (-6 -4245) (-6 -4244) (-6 -4243) (-6 -4242) (-6 -4250) (-6 -4253) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4241))) +((-4028 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-3113 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-525))) 22)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 14)) (-3027 (((-1037) $) NIL)) (-1496 ((|#1| $ |#1|) 11)) (-4025 (($ $ $) NIL)) (-1573 (($ $ $) NIL)) (-4044 (((-797) $) 20)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1449 (($) 8 T CONST)) (-3899 (((-108) $ $) 10)) (-4047 (($ $ $) NIL)) (** (($ $ (-855)) 28) (($ $ (-713)) NIL) (($ $ (-525)) 16)) (* (($ $ $) 29))) +(((-94 |#1|) (-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -3113 ($ (-1 |#1| |#1|))) (-15 -3113 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3113 ($ (-1 |#1| |#1| (-525)))))) (-976)) (T -94)) +((-3113 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-94 *3)))) (-3113 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-94 *3)))) (-3113 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-976)) (-5 *1 (-94 *3))))) +(-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -3113 ($ (-1 |#1| |#1|))) (-15 -3113 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3113 ($ (-1 |#1| |#1| (-525)))))) +((-1783 (((-396 |#2|) |#2| (-592 |#2|)) 10) (((-396 |#2|) |#2| |#2|) 11))) +(((-95 |#1| |#2|) (-10 -7 (-15 -1783 ((-396 |#2|) |#2| |#2|)) (-15 -1783 ((-396 |#2|) |#2| (-592 |#2|)))) (-13 (-429) (-138)) (-1148 |#1|)) (T -95)) +((-1783 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))) (-1783 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -1783 ((-396 |#2|) |#2| |#2|)) (-15 -1783 ((-396 |#2|) |#2| (-592 |#2|)))) +((-4028 (((-108) $ $) 10))) +(((-96 |#1|) (-10 -8 (-15 -4028 ((-108) |#1| |#1|))) (-97)) (T -96)) +NIL +(-10 -8 (-15 -4028 ((-108) |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-3899 (((-108) $ $) 6))) (((-97) (-131)) (T -97)) -((-2673 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-3944 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) -(-13 (-10 -8 (-15 -3944 ((-108) $ $)) (-15 -2673 ((-108) $ $)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-3912 ((|#1| $ |#1|) 13 (|has| $ (-6 -4251)))) (-2175 (($ $ $) NIL (|has| $ (-6 -4251)))) (-3934 (($ $ $) NIL (|has| $ (-6 -4251)))) (-3128 (($ $ (-591 |#1|)) 15)) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251))) (($ $ "left" $) NIL (|has| $ (-6 -4251))) (($ $ "right" $) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-3192 (($ $) 11)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3186 (($ $ |#1| $) 17)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3261 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1405 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-591 |#1|) |#1| |#1| |#1|)) 35)) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-3178 (($ $) 10)) (-2065 (((-591 |#1|) $) NIL)) (-2878 (((-108) $) 12)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 9)) (-3164 (($) 16)) (-1881 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2194 (((-525) $ $) NIL)) (-4133 (((-108) $) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1216 (($ (-712) |#1|) 19)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4250) (-6 -4251) (-15 -1216 ($ (-712) |#1|)) (-15 -3128 ($ $ (-591 |#1|))) (-15 -3261 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3261 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1405 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1405 ($ $ |#1| (-1 (-591 |#1|) |#1| |#1| |#1|))))) (-1018)) (T -98)) -((-1216 (*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-5 *1 (-98 *3)) (-4 *3 (-1018)))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1018)))) (-3261 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) (-1405 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1018)) (-5 *1 (-98 *2)))) (-1405 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-591 *2) *2 *2 *2)) (-4 *2 (-1018)) (-5 *1 (-98 *2))))) -(-13 (-121 |#1|) (-10 -8 (-6 -4250) (-6 -4251) (-15 -1216 ($ (-712) |#1|)) (-15 -3128 ($ $ (-591 |#1|))) (-15 -3261 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3261 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1405 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1405 ($ $ |#1| (-1 (-591 |#1|) |#1| |#1| |#1|))))) -((-2583 ((|#3| |#2| |#2|) 29)) (-2327 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4252 "*"))))) (-2769 ((|#3| |#2| |#2|) 30)) (-3104 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4252 "*")))))) -(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2583 (|#3| |#2| |#2|)) (-15 -2769 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4252 "*"))) (PROGN (-15 -2327 (|#1| |#2| |#2|)) (-15 -3104 (|#1| |#2|))) |%noBranch|)) (-975) (-1147 |#1|) (-629 |#1| |#4| |#5|) (-351 |#1|) (-351 |#1|)) (T -99)) -((-3104 (*1 *2 *3) (-12 (|has| *2 (-6 (-4252 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-975)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1147 *2)) (-4 *4 (-629 *2 *5 *6)))) (-2327 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4252 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-975)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1147 *2)) (-4 *4 (-629 *2 *5 *6)))) (-2769 (*1 *2 *3 *3) (-12 (-4 *4 (-975)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1147 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))) (-2583 (*1 *2 *3 *3) (-12 (-4 *4 (-975)) (-4 *2 (-629 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1147 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))))) -(-10 -7 (-15 -2583 (|#3| |#2| |#2|)) (-15 -2769 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4252 "*"))) (PROGN (-15 -2327 (|#1| |#2| |#2|)) (-15 -3104 (|#1| |#2|))) |%noBranch|)) -((-2673 (((-108) $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-1510 (((-591 (-1089))) 33)) (-1553 (((-2 (|:| |zeros| (-1070 (-205))) (|:| |ones| (-1070 (-205))) (|:| |singularities| (-1070 (-205)))) (-1089)) 35)) (-3944 (((-108) $ $) NIL))) -(((-100) (-13 (-1018) (-10 -7 (-15 -1510 ((-591 (-1089)))) (-15 -1553 ((-2 (|:| |zeros| (-1070 (-205))) (|:| |ones| (-1070 (-205))) (|:| |singularities| (-1070 (-205)))) (-1089))) (-6 -4250)))) (T -100)) -((-1510 (*1 *2) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-100)))) (-1553 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-2 (|:| |zeros| (-1070 (-205))) (|:| |ones| (-1070 (-205))) (|:| |singularities| (-1070 (-205))))) (-5 *1 (-100))))) -(-13 (-1018) (-10 -7 (-15 -1510 ((-591 (-1089)))) (-15 -1553 ((-2 (|:| |zeros| (-1070 (-205))) (|:| |ones| (-1070 (-205))) (|:| |singularities| (-1070 (-205)))) (-1089))) (-6 -4250))) -((-2453 (($ (-591 |#2|)) 11))) -(((-101 |#1| |#2|) (-10 -8 (-15 -2453 (|#1| (-591 |#2|)))) (-102 |#2|) (-1125)) (T -101)) -NIL -(-10 -8 (-15 -2453 (|#1| (-591 |#2|)))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-2055 (($) 7 T CONST)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) 42)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-102 |#1|) (-131) (-1125)) (T -102)) -((-2453 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-4 *1 (-102 *3)))) (-4166 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1125)))) (-1520 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1125)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1125))))) -(-13 (-464 |t#1|) (-10 -8 (-6 -4251) (-15 -2453 ($ (-591 |t#1|))) (-15 -4166 (|t#1| $)) (-15 -1520 ($ |t#1| $)) (-15 -3949 (|t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 (((-525) $) NIL (|has| (-525) (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL (|has| (-525) (-761)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-1089) "failed") $) NIL (|has| (-525) (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-966 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-966 (-525))))) (-3341 (((-525) $) NIL) (((-1089) $) NIL (|has| (-525) (-966 (-1089)))) (((-385 (-525)) $) NIL (|has| (-525) (-966 (-525)))) (((-525) $) NIL (|has| (-525) (-966 (-525))))) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| (-525) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-525) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-631 (-525)) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-525) (-510)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3489 (((-108) $) NIL (|has| (-525) (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| (-525) (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| (-525) (-819 (-357))))) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL)) (-1384 (((-525) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| (-525) (-1065)))) (-2256 (((-108) $) NIL (|has| (-525) (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| (-525) (-788)))) (-1257 (($ (-1 (-525) (-525)) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-525) (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2767 (((-525) $) NIL (|has| (-525) (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1980 (($ $ (-591 (-525)) (-591 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-591 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-591 (-1089)) (-591 (-525))) NIL (|has| (-525) (-486 (-1089) (-525)))) (($ $ (-1089) (-525)) NIL (|has| (-525) (-486 (-1089) (-525))))) (-3048 (((-712) $) NIL)) (-1881 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) NIL (|has| (-525) (-213))) (($ $ (-712)) NIL (|has| (-525) (-213))) (($ $ (-1089)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1 (-525) (-525)) (-712)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2774 (($ $) NIL)) (-1396 (((-525) $) NIL)) (-1300 (((-825 (-525)) $) NIL (|has| (-525) (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| (-525) (-566 (-825 (-357))))) (((-501) $) NIL (|has| (-525) (-566 (-501)))) (((-357) $) NIL (|has| (-525) (-951))) (((-205) $) NIL (|has| (-525) (-951)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1089)) NIL (|has| (-525) (-966 (-1089)))) (((-385 (-525)) $) NIL) (((-934 2) $) 10)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| (-525) (-842))) (|has| (-525) (-136))))) (-3425 (((-712)) NIL)) (-1584 (((-525) $) NIL (|has| (-525) (-510)))) (-2670 (($ (-385 (-525))) 9)) (-1724 (((-108) $ $) NIL)) (-1460 (($ $) NIL (|has| (-525) (-761)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $) NIL (|has| (-525) (-213))) (($ $ (-712)) NIL (|has| (-525) (-213))) (($ $ (-1089)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1 (-525) (-525)) (-712)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4004 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3971 (((-108) $ $) NIL (|has| (-525) (-788)))) (-4059 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL))) -(((-103) (-13 (-923 (-525)) (-10 -8 (-15 -2686 ((-385 (-525)) $)) (-15 -2686 ((-934 2) $)) (-15 -1583 ((-385 (-525)) $)) (-15 -2670 ($ (-385 (-525))))))) (T -103)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-934 2)) (-5 *1 (-103)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))) -(-13 (-923 (-525)) (-10 -8 (-15 -2686 ((-385 (-525)) $)) (-15 -2686 ((-934 2) $)) (-15 -1583 ((-385 (-525)) $)) (-15 -2670 ($ (-385 (-525)))))) -((-3263 (((-591 (-897)) $) 14)) (-3419 (((-1089) $) 10)) (-2686 (((-796) $) 23)) (-1932 (($ (-1089) (-591 (-897))) 15))) -(((-104) (-13 (-565 (-796)) (-10 -8 (-15 -3419 ((-1089) $)) (-15 -3263 ((-591 (-897)) $)) (-15 -1932 ($ (-1089) (-591 (-897))))))) (T -104)) -((-3419 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-104)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-591 (-897))) (-5 *1 (-104)))) (-1932 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-897))) (-5 *1 (-104))))) -(-13 (-565 (-796)) (-10 -8 (-15 -3419 ((-1089) $)) (-15 -3263 ((-591 (-897)) $)) (-15 -1932 ($ (-1089) (-591 (-897)))))) -((-2673 (((-108) $ $) NIL)) (-3806 (((-1036) $ (-1036)) 24)) (-2375 (($ $ (-1072)) 17)) (-3792 (((-3 (-1036) "failed") $) 23)) (-1608 (((-1036) $) 21)) (-3776 (((-1036) $ (-1036)) 26)) (-1734 (((-1036) $) 25)) (-1472 (($ (-366)) NIL) (($ (-366) (-1072)) 16)) (-3419 (((-366) $) NIL)) (-2621 (((-1072) $) NIL)) (-4052 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3236 (($ $) 18)) (-3944 (((-108) $ $) NIL))) -(((-105) (-13 (-342 (-366) (-1036)) (-10 -8 (-15 -3792 ((-3 (-1036) "failed") $)) (-15 -1734 ((-1036) $)) (-15 -3776 ((-1036) $ (-1036)))))) (T -105)) -((-3792 (*1 *2 *1) (|partial| -12 (-5 *2 (-1036)) (-5 *1 (-105)))) (-1734 (*1 *2 *1) (-12 (-5 *2 (-1036)) (-5 *1 (-105)))) (-3776 (*1 *2 *1 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-105))))) -(-13 (-342 (-366) (-1036)) (-10 -8 (-15 -3792 ((-3 (-1036) "failed") $)) (-15 -1734 ((-1036) $)) (-15 -3776 ((-1036) $ (-1036))))) -((-2673 (((-108) $ $) NIL)) (-1426 (($ $) NIL)) (-2216 (($ $ $) NIL)) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) $) NIL (|has| (-108) (-788))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2613 (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| (-108) (-788)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4251)))) (-1282 (($ $) NIL (|has| (-108) (-788))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2847 (((-108) $ (-1138 (-525)) (-108)) NIL (|has| $ (-6 -4251))) (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-2537 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-3618 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-4205 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4251)))) (-4121 (((-108) $ (-525)) NIL)) (-1734 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1018))) (((-525) (-108) $) NIL (|has| (-108) (-1018))) (((-525) (-1 (-108) (-108)) $) NIL)) (-2916 (((-591 (-108)) $) NIL (|has| $ (-6 -4250)))) (-3532 (($ $ $) NIL)) (-3389 (($ $) NIL)) (-3200 (($ $ $) NIL)) (-1316 (($ (-712) (-108)) 8)) (-3185 (($ $ $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL)) (-3459 (($ $ $) NIL (|has| (-108) (-788))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-4207 (((-591 (-108)) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL)) (-4192 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2059 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 (((-108) $) NIL (|has| (-525) (-788)))) (-2714 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1858 (($ $ (-108)) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-108)) (-591 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018)))) (($ $ (-591 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-2998 (((-591 (-108)) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 (($ $ (-1138 (-525))) NIL) (((-108) $ (-525)) NIL) (((-108) $ (-525) (-108)) NIL)) (-3226 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-2960 (((-712) (-108) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018)))) (((-712) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250)))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-108) (-566 (-501))))) (-2695 (($ (-591 (-108))) NIL)) (-1624 (($ (-591 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2686 (((-796) $) NIL)) (-2901 (($ (-712) (-108)) 9)) (-1475 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250)))) (-3543 (($ $ $) NIL)) (-1401 (($ $) NIL)) (-3691 (($ $ $) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-3677 (($ $ $) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-106) (-13 (-119) (-10 -8 (-15 -2901 ($ (-712) (-108)))))) (T -106)) -((-2901 (*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-5 *3 (-108)) (-5 *1 (-106))))) -(-13 (-119) (-10 -8 (-15 -2901 ($ (-712) (-108))))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-107 |#1| |#2|) (-131) (-975) (-975)) (T -107)) -NIL -(-13 (-593 |t#1|) (-981 |t#2|) (-10 -7 (-6 -4245) (-6 -4244))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-981 |#2|) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1426 (($ $) 11)) (-2216 (($ $ $) 16)) (-4086 (($) 7 T CONST)) (-2655 (($ $) 6)) (-2834 (((-712)) 25)) (-1325 (($) 31)) (-3532 (($ $ $) 14)) (-3389 (($ $) 9)) (-3200 (($ $ $) 17)) (-3185 (($ $ $) 18)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1970 (((-854) $) 30)) (-2621 (((-1072) $) NIL)) (-3229 (($ (-854)) 29)) (-2201 (($ $ $) 21)) (-2937 (((-1036) $) NIL)) (-2135 (($) 8 T CONST)) (-2433 (($ $ $) 22)) (-1300 (((-501) $) 37)) (-2686 (((-796) $) 40)) (-3543 (($ $ $) 12)) (-1401 (($ $) 10)) (-3691 (($ $ $) 15)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 20)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 23)) (-3677 (($ $ $) 13))) -(((-108) (-13 (-788) (-346) (-606) (-899) (-566 (-501)) (-10 -8 (-15 -4086 ($) -2277) (-15 -2135 ($) -2277) (-15 -1401 ($ $)) (-15 -2216 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3200 ($ $ $)) (-15 -2655 ($ $))))) (T -108)) -((-4086 (*1 *1) (-5 *1 (-108))) (-2135 (*1 *1) (-5 *1 (-108))) (-1401 (*1 *1 *1) (-5 *1 (-108))) (-2216 (*1 *1 *1 *1) (-5 *1 (-108))) (-3185 (*1 *1 *1 *1) (-5 *1 (-108))) (-3200 (*1 *1 *1 *1) (-5 *1 (-108))) (-2655 (*1 *1 *1) (-5 *1 (-108)))) -(-13 (-788) (-346) (-606) (-899) (-566 (-501)) (-10 -8 (-15 -4086 ($) -2277) (-15 -2135 ($) -2277) (-15 -1401 ($ $)) (-15 -2216 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3200 ($ $ $)) (-15 -2655 ($ $)))) -((-2149 (((-3 (-1 |#1| (-591 |#1|)) "failed") (-110)) 19) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-591 |#1|))) 11) (((-3 |#1| "failed") (-110) (-591 |#1|)) 21)) (-2706 (((-3 (-591 (-1 |#1| (-591 |#1|))) "failed") (-110)) 25) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-591 (-1 |#1| (-591 |#1|)))) 26)) (-1295 (((-110) |#1|) 56 (|has| |#1| (-788)))) (-1775 (((-3 |#1| "failed") (-110)) 50 (|has| |#1| (-788))))) -(((-109 |#1|) (-10 -7 (-15 -2149 ((-3 |#1| "failed") (-110) (-591 |#1|))) (-15 -2149 ((-110) (-110) (-1 |#1| (-591 |#1|)))) (-15 -2149 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2149 ((-3 (-1 |#1| (-591 |#1|)) "failed") (-110))) (-15 -2706 ((-110) (-110) (-591 (-1 |#1| (-591 |#1|))))) (-15 -2706 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2706 ((-3 (-591 (-1 |#1| (-591 |#1|))) "failed") (-110))) (IF (|has| |#1| (-788)) (PROGN (-15 -1295 ((-110) |#1|)) (-15 -1775 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1018)) (T -109)) -((-1775 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1018)) (-4 *2 (-788)) (-5 *1 (-109 *2)))) (-1295 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-788)) (-4 *3 (-1018)))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-591 (-1 *4 (-591 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1018)))) (-2706 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1018)) (-5 *1 (-109 *4)))) (-2706 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-591 (-1 *4 (-591 *4)))) (-4 *4 (-1018)) (-5 *1 (-109 *4)))) (-2149 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-591 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1018)))) (-2149 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1018)) (-5 *1 (-109 *4)))) (-2149 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-591 *4))) (-4 *4 (-1018)) (-5 *1 (-109 *4)))) (-2149 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-591 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1018))))) -(-10 -7 (-15 -2149 ((-3 |#1| "failed") (-110) (-591 |#1|))) (-15 -2149 ((-110) (-110) (-1 |#1| (-591 |#1|)))) (-15 -2149 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2149 ((-3 (-1 |#1| (-591 |#1|)) "failed") (-110))) (-15 -2706 ((-110) (-110) (-591 (-1 |#1| (-591 |#1|))))) (-15 -2706 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2706 ((-3 (-591 (-1 |#1| (-591 |#1|))) "failed") (-110))) (IF (|has| |#1| (-788)) (PROGN (-15 -1295 ((-110) |#1|)) (-15 -1775 ((-3 |#1| "failed") (-110)))) |%noBranch|)) -((-2673 (((-108) $ $) NIL)) (-1314 (((-712) $) 72) (($ $ (-712)) 30)) (-3594 (((-108) $) 32)) (-4211 (($ $ (-1072) (-715)) 26)) (-1789 (($ $ (-44 (-1072) (-715))) 15)) (-3065 (((-3 (-715) "failed") $ (-1072)) 25)) (-3263 (((-44 (-1072) (-715)) $) 14)) (-3259 (($ (-1089)) 17) (($ (-1089) (-712)) 22)) (-1926 (((-108) $) 31)) (-3950 (((-108) $) 33)) (-3419 (((-1089) $) 8)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-3029 (((-108) $ (-1089)) 10)) (-1329 (($ $ (-1 (-501) (-591 (-501)))) 52) (((-3 (-1 (-501) (-591 (-501))) "failed") $) 56)) (-2937 (((-1036) $) NIL)) (-2474 (((-108) $ (-1072)) 29)) (-3176 (($ $ (-1 (-108) $ $)) 35)) (-1285 (((-3 (-1 (-796) (-591 (-796))) "failed") $) 54) (($ $ (-1 (-796) (-591 (-796)))) 41) (($ $ (-1 (-796) (-796))) 43)) (-3884 (($ $ (-1072)) 45)) (-2873 (($ $) 63)) (-2083 (($ $ (-1 (-108) $ $)) 36)) (-2686 (((-796) $) 48)) (-2772 (($ $ (-1072)) 27)) (-4212 (((-3 (-712) "failed") $) 58)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 71)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 79))) -(((-110) (-13 (-788) (-10 -8 (-15 -3419 ((-1089) $)) (-15 -3263 ((-44 (-1072) (-715)) $)) (-15 -2873 ($ $)) (-15 -3259 ($ (-1089))) (-15 -3259 ($ (-1089) (-712))) (-15 -4212 ((-3 (-712) "failed") $)) (-15 -1926 ((-108) $)) (-15 -3594 ((-108) $)) (-15 -3950 ((-108) $)) (-15 -1314 ((-712) $)) (-15 -1314 ($ $ (-712))) (-15 -3176 ($ $ (-1 (-108) $ $))) (-15 -2083 ($ $ (-1 (-108) $ $))) (-15 -1285 ((-3 (-1 (-796) (-591 (-796))) "failed") $)) (-15 -1285 ($ $ (-1 (-796) (-591 (-796))))) (-15 -1285 ($ $ (-1 (-796) (-796)))) (-15 -1329 ($ $ (-1 (-501) (-591 (-501))))) (-15 -1329 ((-3 (-1 (-501) (-591 (-501))) "failed") $)) (-15 -3029 ((-108) $ (-1089))) (-15 -2474 ((-108) $ (-1072))) (-15 -2772 ($ $ (-1072))) (-15 -3884 ($ $ (-1072))) (-15 -3065 ((-3 (-715) "failed") $ (-1072))) (-15 -4211 ($ $ (-1072) (-715))) (-15 -1789 ($ $ (-44 (-1072) (-715))))))) (T -110)) -((-3419 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-110)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-44 (-1072) (-715))) (-5 *1 (-110)))) (-2873 (*1 *1 *1) (-5 *1 (-110))) (-3259 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-110)))) (-3259 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-712)) (-5 *1 (-110)))) (-4212 (*1 *2 *1) (|partial| -12 (-5 *2 (-712)) (-5 *1 (-110)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-110)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-110)))) (-3176 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1285 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-796) (-591 (-796)))) (-5 *1 (-110)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-796) (-591 (-796)))) (-5 *1 (-110)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-796) (-796))) (-5 *1 (-110)))) (-1329 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-591 (-501)))) (-5 *1 (-110)))) (-1329 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-501) (-591 (-501)))) (-5 *1 (-110)))) (-3029 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2474 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2772 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-110)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-110)))) (-3065 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-715)) (-5 *1 (-110)))) (-4211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-715)) (-5 *1 (-110)))) (-1789 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1072) (-715))) (-5 *1 (-110))))) -(-13 (-788) (-10 -8 (-15 -3419 ((-1089) $)) (-15 -3263 ((-44 (-1072) (-715)) $)) (-15 -2873 ($ $)) (-15 -3259 ($ (-1089))) (-15 -3259 ($ (-1089) (-712))) (-15 -4212 ((-3 (-712) "failed") $)) (-15 -1926 ((-108) $)) (-15 -3594 ((-108) $)) (-15 -3950 ((-108) $)) (-15 -1314 ((-712) $)) (-15 -1314 ($ $ (-712))) (-15 -3176 ($ $ (-1 (-108) $ $))) (-15 -2083 ($ $ (-1 (-108) $ $))) (-15 -1285 ((-3 (-1 (-796) (-591 (-796))) "failed") $)) (-15 -1285 ($ $ (-1 (-796) (-591 (-796))))) (-15 -1285 ($ $ (-1 (-796) (-796)))) (-15 -1329 ($ $ (-1 (-501) (-591 (-501))))) (-15 -1329 ((-3 (-1 (-501) (-591 (-501))) "failed") $)) (-15 -3029 ((-108) $ (-1089))) (-15 -2474 ((-108) $ (-1072))) (-15 -2772 ($ $ (-1072))) (-15 -3884 ($ $ (-1072))) (-15 -3065 ((-3 (-715) "failed") $ (-1072))) (-15 -4211 ($ $ (-1072) (-715))) (-15 -1789 ($ $ (-44 (-1072) (-715)))))) -((-2906 (((-525) |#2|) 37))) -(((-111 |#1| |#2|) (-10 -7 (-15 -2906 ((-525) |#2|))) (-13 (-341) (-966 (-385 (-525)))) (-1147 |#1|)) (T -111)) -((-2906 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-966 (-385 *2)))) (-5 *2 (-525)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -2906 ((-525) |#2|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2551 (($ $ (-525)) NIL)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-1387 (($ (-1085 (-525)) (-525)) NIL)) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2409 (($ $) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1676 (((-712) $) NIL)) (-3865 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1233 (((-525)) NIL)) (-1701 (((-525) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1618 (($ $ (-525)) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-3439 (((-1070 (-525)) $) NIL)) (-1664 (($ $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-3425 (((-712)) NIL)) (-1724 (((-108) $ $) NIL)) (-4173 (((-525) $ (-525)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL))) -(((-112 |#1|) (-802 |#1|) (-525)) (T -112)) -NIL -(-802 |#1|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-112 |#1|) (-842)))) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| (-112 |#1|) (-842)))) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL (|has| (-112 |#1|) (-761)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1089) "failed") $) NIL (|has| (-112 |#1|) (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-112 |#1|) (-966 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-112 |#1|) (-966 (-525))))) (-3341 (((-112 |#1|) $) NIL) (((-1089) $) NIL (|has| (-112 |#1|) (-966 (-1089)))) (((-385 (-525)) $) NIL (|has| (-112 |#1|) (-966 (-525)))) (((-525) $) NIL (|has| (-112 |#1|) (-966 (-525))))) (-2742 (($ $) NIL) (($ (-525) $) NIL)) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| (-112 |#1|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-112 |#1|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-112 |#1|))) (|:| |vec| (-1171 (-112 |#1|)))) (-631 $) (-1171 $)) NIL) (((-631 (-112 |#1|)) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-112 |#1|) (-510)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3489 (((-108) $) NIL (|has| (-112 |#1|) (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| (-112 |#1|) (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| (-112 |#1|) (-819 (-357))))) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL)) (-1384 (((-112 |#1|) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1065)))) (-2256 (((-108) $) NIL (|has| (-112 |#1|) (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL (|has| (-112 |#1|) (-788)))) (-3475 (($ $ $) NIL (|has| (-112 |#1|) (-788)))) (-1257 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-112 |#1|) (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL (|has| (-112 |#1|) (-286)))) (-2767 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-112 |#1|) (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-112 |#1|) (-842)))) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1980 (($ $ (-591 (-112 |#1|)) (-591 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-273 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-591 (-273 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-591 (-1089)) (-591 (-112 |#1|))) NIL (|has| (-112 |#1|) (-486 (-1089) (-112 |#1|)))) (($ $ (-1089) (-112 |#1|)) NIL (|has| (-112 |#1|) (-486 (-1089) (-112 |#1|))))) (-3048 (((-712) $) NIL)) (-1881 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-265 (-112 |#1|) (-112 |#1|))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-712)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1089)) NIL (|has| (-112 |#1|) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-112 |#1|) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-112 |#1|) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-112 |#1|) (-833 (-1089)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-712)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-2774 (($ $) NIL)) (-1396 (((-112 |#1|) $) NIL)) (-1300 (((-825 (-525)) $) NIL (|has| (-112 |#1|) (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| (-112 |#1|) (-566 (-825 (-357))))) (((-501) $) NIL (|has| (-112 |#1|) (-566 (-501)))) (((-357) $) NIL (|has| (-112 |#1|) (-951))) (((-205) $) NIL (|has| (-112 |#1|) (-951)))) (-1217 (((-161 (-385 (-525))) $) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-112 |#1|)) NIL) (($ (-1089)) NIL (|has| (-112 |#1|) (-966 (-1089))))) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-842))) (|has| (-112 |#1|) (-136))))) (-3425 (((-712)) NIL)) (-1584 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-1724 (((-108) $ $) NIL)) (-4173 (((-385 (-525)) $ (-525)) NIL)) (-1460 (($ $) NIL (|has| (-112 |#1|) (-761)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-712)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1089)) NIL (|has| (-112 |#1|) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-112 |#1|) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-112 |#1|) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-112 |#1|) (-833 (-1089)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-712)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-4004 (((-108) $ $) NIL (|has| (-112 |#1|) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-112 |#1|) (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| (-112 |#1|) (-788)))) (-3971 (((-108) $ $) NIL (|has| (-112 |#1|) (-788)))) (-4059 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL))) -(((-113 |#1|) (-13 (-923 (-112 |#1|)) (-10 -8 (-15 -4173 ((-385 (-525)) $ (-525))) (-15 -1217 ((-161 (-385 (-525))) $)) (-15 -2742 ($ $)) (-15 -2742 ($ (-525) $)))) (-525)) (T -113)) -((-4173 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-525)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525)))) (-2742 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525)))) (-2742 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 *2)))) -(-13 (-923 (-112 |#1|)) (-10 -8 (-15 -4173 ((-385 (-525)) $ (-525))) (-15 -1217 ((-161 (-385 (-525))) $)) (-15 -2742 ($ $)) (-15 -2742 ($ (-525) $)))) -((-2847 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2275 (((-591 $) $) 27)) (-3219 (((-108) $ $) 32)) (-3956 (((-108) |#2| $) 36)) (-2065 (((-591 |#2|) $) 22)) (-2878 (((-108) $) 16)) (-1881 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4133 (((-108) $) 45)) (-2686 (((-796) $) 41)) (-1567 (((-591 $) $) 28)) (-3944 (((-108) $ $) 34)) (-2028 (((-712) $) 43))) -(((-114 |#1| |#2|) (-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -2847 (|#1| |#1| "right" |#1|)) (-15 -2847 (|#1| |#1| "left" |#1|)) (-15 -1881 (|#1| |#1| "right")) (-15 -1881 (|#1| |#1| "left")) (-15 -2847 (|#2| |#1| "value" |#2|)) (-15 -3219 ((-108) |#1| |#1|)) (-15 -2065 ((-591 |#2|) |#1|)) (-15 -4133 ((-108) |#1|)) (-15 -1881 (|#2| |#1| "value")) (-15 -2878 ((-108) |#1|)) (-15 -2275 ((-591 |#1|) |#1|)) (-15 -1567 ((-591 |#1|) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -3956 ((-108) |#2| |#1|)) (-15 -2028 ((-712) |#1|))) (-115 |#2|) (-1125)) (T -114)) -NIL -(-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -2847 (|#1| |#1| "right" |#1|)) (-15 -2847 (|#1| |#1| "left" |#1|)) (-15 -1881 (|#1| |#1| "right")) (-15 -1881 (|#1| |#1| "left")) (-15 -2847 (|#2| |#1| "value" |#2|)) (-15 -3219 ((-108) |#1| |#1|)) (-15 -2065 ((-591 |#2|) |#1|)) (-15 -4133 ((-108) |#1|)) (-15 -1881 (|#2| |#1| "value")) (-15 -2878 ((-108) |#1|)) (-15 -2275 ((-591 |#1|) |#1|)) (-15 -1567 ((-591 |#1|) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -3956 ((-108) |#2| |#1|)) (-15 -2028 ((-712) |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-2940 ((|#1| $) 48)) (-3727 (((-108) $ (-712)) 8)) (-3912 ((|#1| $ |#1|) 39 (|has| $ (-6 -4251)))) (-2175 (($ $ $) 52 (|has| $ (-6 -4251)))) (-3934 (($ $ $) 54 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4251))) (($ $ "left" $) 55 (|has| $ (-6 -4251))) (($ $ "right" $) 53 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 41 (|has| $ (-6 -4251)))) (-2055 (($) 7 T CONST)) (-3192 (($ $) 57)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 50)) (-3219 (((-108) $ $) 42 (|has| |#1| (-1018)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-3178 (($ $) 59)) (-2065 (((-591 |#1|) $) 45)) (-2878 (((-108) $) 49)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2194 (((-525) $ $) 44)) (-4133 (((-108) $) 46)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) 51)) (-3592 (((-108) $ $) 43 (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-115 |#1|) (-131) (-1125)) (T -115)) -((-3178 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1125)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1125)))) (-3192 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1125)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1125)))) (-2847 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4251)) (-4 *1 (-115 *3)) (-4 *3 (-1125)))) (-3934 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-115 *2)) (-4 *2 (-1125)))) (-2847 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4251)) (-4 *1 (-115 *3)) (-4 *3 (-1125)))) (-2175 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-115 *2)) (-4 *2 (-1125))))) -(-13 (-940 |t#1|) (-10 -8 (-15 -3178 ($ $)) (-15 -1881 ($ $ "left")) (-15 -3192 ($ $)) (-15 -1881 ($ $ "right")) (IF (|has| $ (-6 -4251)) (PROGN (-15 -2847 ($ $ "left" $)) (-15 -3934 ($ $ $)) (-15 -2847 ($ $ "right" $)) (-15 -2175 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-940 |#1|) . T) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-2134 (((-108) |#1|) 24)) (-4176 (((-712) (-712)) 23) (((-712)) 22)) (-3140 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26))) -(((-116 |#1|) (-10 -7 (-15 -3140 ((-108) |#1|)) (-15 -3140 ((-108) |#1| (-108))) (-15 -4176 ((-712))) (-15 -4176 ((-712) (-712))) (-15 -2134 ((-108) |#1|))) (-1147 (-525))) (T -116)) -((-2134 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525))))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-712)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525))))) (-4176 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525))))) (-3140 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525))))) (-3140 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525)))))) -(-10 -7 (-15 -3140 ((-108) |#1|)) (-15 -3140 ((-108) |#1| (-108))) (-15 -4176 ((-712))) (-15 -4176 ((-712) (-712))) (-15 -2134 ((-108) |#1|))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) 15)) (-1645 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3727 (((-108) $ (-712)) NIL)) (-3912 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-2175 (($ $ $) 18 (|has| $ (-6 -4251)))) (-3934 (($ $ $) 20 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251))) (($ $ "left" $) NIL (|has| $ (-6 -4251))) (($ $ "right" $) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-3192 (($ $) 17)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3186 (($ $ |#1| $) 23)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-3178 (($ $) 19)) (-2065 (((-591 |#1|) $) NIL)) (-2878 (((-108) $) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-3665 (($ |#1| $) 24)) (-1520 (($ |#1| $) 10)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 14)) (-3164 (($) 8)) (-1881 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2194 (((-525) $ $) NIL)) (-4133 (((-108) $) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3062 (($ (-591 |#1|)) 12)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4251) (-6 -4250) (-15 -3062 ($ (-591 |#1|))) (-15 -1520 ($ |#1| $)) (-15 -3665 ($ |#1| $)) (-15 -1645 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-788)) (T -117)) -((-3062 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-117 *3)))) (-1520 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-788)))) (-3665 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-788)))) (-1645 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-788))))) -(-13 (-121 |#1|) (-10 -8 (-6 -4251) (-6 -4250) (-15 -3062 ($ (-591 |#1|))) (-15 -1520 ($ |#1| $)) (-15 -3665 ($ |#1| $)) (-15 -1645 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-1426 (($ $) 14)) (-3389 (($ $) 11)) (-3200 (($ $ $) 24)) (-3185 (($ $ $) 22)) (-1401 (($ $) 12)) (-3691 (($ $ $) 20)) (-3677 (($ $ $) 18))) -(((-118 |#1|) (-10 -8 (-15 -3200 (|#1| |#1| |#1|)) (-15 -3185 (|#1| |#1| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -3677 (|#1| |#1| |#1|)) (-15 -3691 (|#1| |#1| |#1|))) (-119)) (T -118)) -NIL -(-10 -8 (-15 -3200 (|#1| |#1| |#1|)) (-15 -3185 (|#1| |#1| |#1|)) (-15 -1401 (|#1| |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -3677 (|#1| |#1| |#1|)) (-15 -3691 (|#1| |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1426 (($ $) 104)) (-2216 (($ $ $) 25)) (-3832 (((-1176) $ (-525) (-525)) 67 (|has| $ (-6 -4251)))) (-3110 (((-108) $) 99 (|has| (-108) (-788))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-2613 (($ $) 103 (-12 (|has| (-108) (-788)) (|has| $ (-6 -4251)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4251)))) (-1282 (($ $) 98 (|has| (-108) (-788))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-3727 (((-108) $ (-712)) 38)) (-2847 (((-108) $ (-1138 (-525)) (-108)) 89 (|has| $ (-6 -4251))) (((-108) $ (-525) (-108)) 55 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4250)))) (-2055 (($) 39 T CONST)) (-3405 (($ $) 101 (|has| $ (-6 -4251)))) (-2747 (($ $) 91)) (-2908 (($ $) 69 (-12 (|has| (-108) (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4250))) (($ (-108) $) 70 (-12 (|has| (-108) (-1018)) (|has| $ (-6 -4250))))) (-3618 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1018)) (|has| $ (-6 -4250))))) (-4205 (((-108) $ (-525) (-108)) 54 (|has| $ (-6 -4251)))) (-4121 (((-108) $ (-525)) 56)) (-1734 (((-525) (-108) $ (-525)) 96 (|has| (-108) (-1018))) (((-525) (-108) $) 95 (|has| (-108) (-1018))) (((-525) (-1 (-108) (-108)) $) 94)) (-2916 (((-591 (-108)) $) 46 (|has| $ (-6 -4250)))) (-3532 (($ $ $) 26)) (-3389 (($ $) 31)) (-3200 (($ $ $) 28)) (-1316 (($ (-712) (-108)) 78)) (-3185 (($ $ $) 29)) (-3491 (((-108) $ (-712)) 37)) (-4152 (((-525) $) 64 (|has| (-525) (-788)))) (-1923 (($ $ $) 13)) (-3459 (($ $ $) 97 (|has| (-108) (-788))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-4207 (((-591 (-108)) $) 47 (|has| $ (-6 -4250)))) (-3956 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 63 (|has| (-525) (-788)))) (-3475 (($ $ $) 14)) (-4192 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-3295 (((-108) $ (-712)) 36)) (-2621 (((-1072) $) 9)) (-2059 (($ $ $ (-525)) 88) (($ (-108) $ (-525)) 87)) (-3761 (((-591 (-525)) $) 61)) (-1675 (((-108) (-525) $) 60)) (-2937 (((-1036) $) 10)) (-2872 (((-108) $) 65 (|has| (-525) (-788)))) (-2714 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-1858 (($ $ (-108)) 66 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-108)) (-591 (-108))) 53 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018)))) (($ $ (-273 (-108))) 51 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018)))) (($ $ (-591 (-273 (-108)))) 50 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018))))) (-2023 (((-108) $ $) 32)) (-3384 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-2998 (((-591 (-108)) $) 59)) (-2077 (((-108) $) 35)) (-3164 (($) 34)) (-1881 (($ $ (-1138 (-525))) 84) (((-108) $ (-525)) 58) (((-108) $ (-525) (-108)) 57)) (-3226 (($ $ (-1138 (-525))) 86) (($ $ (-525)) 85)) (-2960 (((-712) (-108) $) 48 (-12 (|has| (-108) (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4250)))) (-2992 (($ $ $ (-525)) 100 (|has| $ (-6 -4251)))) (-2873 (($ $) 33)) (-1300 (((-501) $) 68 (|has| (-108) (-566 (-501))))) (-2695 (($ (-591 (-108))) 77)) (-1624 (($ (-591 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-2686 (((-796) $) 11)) (-1475 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4250)))) (-3543 (($ $ $) 27)) (-1401 (($ $) 30)) (-3691 (($ $ $) 106)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18)) (-3677 (($ $ $) 105)) (-2028 (((-712) $) 40 (|has| $ (-6 -4250))))) +((-4028 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-3899 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) +(-13 (-10 -8 (-15 -3899 ((-108) $ $)) (-15 -4028 ((-108) $ $)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-2325 ((|#1| $ |#1|) 13 (|has| $ (-6 -4255)))) (-2019 (($ $ $) NIL (|has| $ (-6 -4255)))) (-2998 (($ $ $) NIL (|has| $ (-6 -4255)))) (-2767 (($ $ (-592 |#1|)) 15)) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-3356 (($ $) 11)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3696 (($ $ |#1| $) 17)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3793 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2119 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|)) 35)) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-3347 (($ $) 10)) (-2401 (((-592 |#1|) $) NIL)) (-3260 (((-108) $) 12)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 9)) (-3266 (($) 16)) (-1496 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3612 (((-525) $ $) NIL)) (-3105 (((-108) $) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3925 (($ (-713) |#1|) 19)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -3925 ($ (-713) |#1|)) (-15 -2767 ($ $ (-592 |#1|))) (-15 -3793 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3793 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2119 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2119 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|))))) (-1019)) (T -98)) +((-3925 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1019)))) (-2767 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-98 *3)))) (-3793 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1019)))) (-3793 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-98 *3)))) (-2119 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1019)) (-5 *1 (-98 *2)))) (-2119 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1019)) (-5 *1 (-98 *2))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -3925 ($ (-713) |#1|)) (-15 -2767 ($ $ (-592 |#1|))) (-15 -3793 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3793 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2119 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2119 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|))))) +((-2380 ((|#3| |#2| |#2|) 29)) (-3811 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4256 "*"))))) (-2672 ((|#3| |#2| |#2|) 30)) (-1589 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4256 "*")))))) +(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2380 (|#3| |#2| |#2|)) (-15 -2672 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4256 "*"))) (PROGN (-15 -3811 (|#1| |#2| |#2|)) (-15 -1589 (|#1| |#2|))) |%noBranch|)) (-976) (-1148 |#1|) (-630 |#1| |#4| |#5|) (-351 |#1|) (-351 |#1|)) (T -99)) +((-1589 (*1 *2 *3) (-12 (|has| *2 (-6 (-4256 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-976)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1148 *2)) (-4 *4 (-630 *2 *5 *6)))) (-3811 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4256 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-976)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1148 *2)) (-4 *4 (-630 *2 *5 *6)))) (-2672 (*1 *2 *3 *3) (-12 (-4 *4 (-976)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1148 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))) (-2380 (*1 *2 *3 *3) (-12 (-4 *4 (-976)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1148 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))))) +(-10 -7 (-15 -2380 (|#3| |#2| |#2|)) (-15 -2672 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4256 "*"))) (PROGN (-15 -3811 (|#1| |#2| |#2|)) (-15 -1589 (|#1| |#2|))) |%noBranch|)) +((-4028 (((-108) $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3457 (((-592 (-1090))) 33)) (-1479 (((-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205))) (|:| |singularities| (-1071 (-205)))) (-1090)) 35)) (-3899 (((-108) $ $) NIL))) +(((-100) (-13 (-1019) (-10 -7 (-15 -3457 ((-592 (-1090)))) (-15 -1479 ((-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205))) (|:| |singularities| (-1071 (-205)))) (-1090))) (-6 -4254)))) (T -100)) +((-3457 (*1 *2) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-100)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205))) (|:| |singularities| (-1071 (-205))))) (-5 *1 (-100))))) +(-13 (-1019) (-10 -7 (-15 -3457 ((-592 (-1090)))) (-15 -1479 ((-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205))) (|:| |singularities| (-1071 (-205)))) (-1090))) (-6 -4254))) +((-1326 (($ (-592 |#2|)) 11))) +(((-101 |#1| |#2|) (-10 -8 (-15 -1326 (|#1| (-592 |#2|)))) (-102 |#2|) (-1126)) (T -101)) +NIL +(-10 -8 (-15 -1326 (|#1| (-592 |#2|)))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-1957 (($) 7 T CONST)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) 42)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-102 |#1|) (-131) (-1126)) (T -102)) +((-1326 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-102 *3)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126)))) (-4157 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126))))) +(-13 (-464 |t#1|) (-10 -8 (-6 -4255) (-15 -1326 ($ (-592 |t#1|))) (-15 -3672 (|t#1| $)) (-15 -4157 ($ |t#1| $)) (-15 -2434 (|t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 (((-525) $) NIL (|has| (-525) (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL (|has| (-525) (-762)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-525) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-967 (-525))))) (-2068 (((-525) $) NIL) (((-1090) $) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-525) (-967 (-525)))) (((-525) $) NIL (|has| (-525) (-967 (-525))))) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-525) (-510)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2973 (((-108) $) NIL (|has| (-525) (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-525) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-525) (-820 (-357))))) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL)) (-1936 (((-525) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| (-525) (-1066)))) (-3721 (((-108) $) NIL (|has| (-525) (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| (-525) (-789)))) (-2868 (($ (-1 (-525) (-525)) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-525) (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2473 (((-525) $) NIL (|has| (-525) (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1090)) (-592 (-525))) NIL (|has| (-525) (-486 (-1090) (-525)))) (($ $ (-1090) (-525)) NIL (|has| (-525) (-486 (-1090) (-525))))) (-2824 (((-713) $) NIL)) (-1496 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-1987 (($ $) NIL)) (-1945 (((-525) $) NIL)) (-2923 (((-826 (-525)) $) NIL (|has| (-525) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-525) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-952))) (((-205) $) NIL (|has| (-525) (-952)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1090)) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL) (((-935 2) $) 10)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| (-525) (-843))) (|has| (-525) (-136))))) (-2502 (((-713)) NIL)) (-1448 (((-525) $) NIL (|has| (-525) (-510)))) (-4013 (($ (-385 (-525))) 9)) (-3787 (((-108) $ $) NIL)) (-2053 (($ $) NIL (|has| (-525) (-762)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-3973 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3928 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4047 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL))) +(((-103) (-13 (-924 (-525)) (-10 -8 (-15 -4044 ((-385 (-525)) $)) (-15 -4044 ((-935 2) $)) (-15 -1341 ((-385 (-525)) $)) (-15 -4013 ($ (-385 (-525))))))) (T -103)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-935 2)) (-5 *1 (-103)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-4013 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))) +(-13 (-924 (-525)) (-10 -8 (-15 -4044 ((-385 (-525)) $)) (-15 -4044 ((-935 2) $)) (-15 -1341 ((-385 (-525)) $)) (-15 -4013 ($ (-385 (-525)))))) +((-1964 (((-592 (-898)) $) 14)) (-3515 (((-1090) $) 10)) (-4044 (((-797) $) 23)) (-1946 (($ (-1090) (-592 (-898))) 15))) +(((-104) (-13 (-566 (-797)) (-10 -8 (-15 -3515 ((-1090) $)) (-15 -1964 ((-592 (-898)) $)) (-15 -1946 ($ (-1090) (-592 (-898))))))) (T -104)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-104)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-592 (-898))) (-5 *1 (-104)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-898))) (-5 *1 (-104))))) +(-13 (-566 (-797)) (-10 -8 (-15 -3515 ((-1090) $)) (-15 -1964 ((-592 (-898)) $)) (-15 -1946 ($ (-1090) (-592 (-898)))))) +((-4028 (((-108) $ $) NIL)) (-1817 (((-1037) $ (-1037)) 24)) (-3343 (($ $ (-1073)) 17)) (-2929 (((-3 (-1037) "failed") $) 23)) (-2872 (((-1037) $) 21)) (-1271 (((-1037) $ (-1037)) 26)) (-1930 (((-1037) $) 25)) (-3864 (($ (-366)) NIL) (($ (-366) (-1073)) 16)) (-3515 (((-366) $) NIL)) (-1707 (((-1073) $) NIL)) (-3036 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3069 (($ $) 18)) (-3899 (((-108) $ $) NIL))) +(((-105) (-13 (-342 (-366) (-1037)) (-10 -8 (-15 -2929 ((-3 (-1037) "failed") $)) (-15 -1930 ((-1037) $)) (-15 -1271 ((-1037) $ (-1037)))))) (T -105)) +((-2929 (*1 *2 *1) (|partial| -12 (-5 *2 (-1037)) (-5 *1 (-105)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-105)))) (-1271 (*1 *2 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-105))))) +(-13 (-342 (-366) (-1037)) (-10 -8 (-15 -2929 ((-3 (-1037) "failed") $)) (-15 -1930 ((-1037) $)) (-15 -1271 ((-1037) $ (-1037))))) +((-4028 (((-108) $ $) NIL)) (-3803 (($ $) NIL)) (-1829 (($ $ $) NIL)) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-1473 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1230 (((-108) $ (-1139 (-525)) (-108)) NIL (|has| $ (-6 -4255))) (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2591 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-3336 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2549 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4255)))) (-2488 (((-108) $ (-525)) NIL)) (-1930 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1019))) (((-525) (-108) $) NIL (|has| (-108) (-1019))) (((-525) (-1 (-108) (-108)) $) NIL)) (-3781 (((-592 (-108)) $) NIL (|has| $ (-6 -4254)))) (-2377 (($ $ $) NIL)) (-2823 (($ $) NIL)) (-3496 (($ $ $) NIL)) (-3248 (($ (-713) (-108)) 8)) (-1773 (($ $ $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL)) (-1440 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2679 (((-592 (-108)) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL)) (-2540 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2234 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 (((-108) $) NIL (|has| (-525) (-789)))) (-3611 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1614 (($ $ (-108)) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-4100 (((-592 (-108)) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 (($ $ (-1139 (-525))) NIL) (((-108) $ (-525)) NIL) (((-108) $ (-525) (-108)) NIL)) (-2697 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-3053 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-4059 (($ (-592 (-108))) NIL)) (-1810 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-4044 (((-797) $) NIL)) (-3082 (($ (-713) (-108)) 9)) (-2443 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-2385 (($ $ $) NIL)) (-1594 (($ $) NIL)) (-2337 (($ $ $) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-2327 (($ $ $) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-106) (-13 (-119) (-10 -8 (-15 -3082 ($ (-713) (-108)))))) (T -106)) +((-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106))))) +(-13 (-119) (-10 -8 (-15 -3082 ($ (-713) (-108))))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-107 |#1| |#2|) (-131) (-976) (-976)) (T -107)) +NIL +(-13 (-594 |t#1|) (-982 |t#2|) (-10 -7 (-6 -4249) (-6 -4248))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-982 |#2|) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-3803 (($ $) 11)) (-1829 (($ $ $) 16)) (-3530 (($) 7 T CONST)) (-4090 (($ $) 6)) (-1651 (((-713)) 25)) (-1527 (($) 31)) (-2377 (($ $ $) 14)) (-2823 (($ $) 9)) (-3496 (($ $ $) 17)) (-1773 (($ $ $) 18)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2111 (((-855) $) 30)) (-1707 (((-1073) $) NIL)) (-3381 (($ (-855)) 29)) (-1818 (($ $ $) 21)) (-3027 (((-1037) $) NIL)) (-2278 (($) 8 T CONST)) (-3320 (($ $ $) 22)) (-2923 (((-501) $) 37)) (-4044 (((-797) $) 40)) (-2385 (($ $ $) 12)) (-1594 (($ $) 10)) (-2337 (($ $ $) 15)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 20)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 23)) (-2327 (($ $ $) 13))) +(((-108) (-13 (-789) (-346) (-607) (-900) (-567 (-501)) (-10 -8 (-15 -3530 ($) -3219) (-15 -2278 ($) -3219) (-15 -1594 ($ $)) (-15 -1829 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -3496 ($ $ $)) (-15 -4090 ($ $))))) (T -108)) +((-3530 (*1 *1) (-5 *1 (-108))) (-2278 (*1 *1) (-5 *1 (-108))) (-1594 (*1 *1 *1) (-5 *1 (-108))) (-1829 (*1 *1 *1 *1) (-5 *1 (-108))) (-1773 (*1 *1 *1 *1) (-5 *1 (-108))) (-3496 (*1 *1 *1 *1) (-5 *1 (-108))) (-4090 (*1 *1 *1) (-5 *1 (-108)))) +(-13 (-789) (-346) (-607) (-900) (-567 (-501)) (-10 -8 (-15 -3530 ($) -3219) (-15 -2278 ($) -3219) (-15 -1594 ($ $)) (-15 -1829 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -3496 ($ $ $)) (-15 -4090 ($ $)))) +((-3575 (((-3 (-1 |#1| (-592 |#1|)) "failed") (-110)) 19) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-592 |#1|))) 11) (((-3 |#1| "failed") (-110) (-592 |#1|)) 21)) (-1334 (((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110)) 25) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-592 (-1 |#1| (-592 |#1|)))) 26)) (-1328 (((-110) |#1|) 56 (|has| |#1| (-789)))) (-2166 (((-3 |#1| "failed") (-110)) 50 (|has| |#1| (-789))))) +(((-109 |#1|) (-10 -7 (-15 -3575 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -3575 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -3575 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3575 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -1334 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -1334 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1334 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -1328 ((-110) |#1|)) (-15 -2166 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1019)) (T -109)) +((-2166 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1019)) (-4 *2 (-789)) (-5 *1 (-109 *2)))) (-1328 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1019)))) (-1334 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1019)))) (-1334 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1019)) (-5 *1 (-109 *4)))) (-1334 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1019)) (-5 *1 (-109 *4)))) (-3575 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1019)))) (-3575 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1019)) (-5 *1 (-109 *4)))) (-3575 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1019)) (-5 *1 (-109 *4)))) (-3575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1019))))) +(-10 -7 (-15 -3575 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -3575 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -3575 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3575 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -1334 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -1334 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1334 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -1328 ((-110) |#1|)) (-15 -2166 ((-3 |#1| "failed") (-110)))) |%noBranch|)) +((-4028 (((-108) $ $) NIL)) (-2147 (((-713) $) 72) (($ $ (-713)) 30)) (-2295 (((-108) $) 32)) (-2094 (($ $ (-1073) (-716)) 26)) (-3261 (($ $ (-44 (-1073) (-716))) 15)) (-3816 (((-3 (-716) "failed") $ (-1073)) 25)) (-1964 (((-44 (-1073) (-716)) $) 14)) (-1885 (($ (-1090)) 17) (($ (-1090) (-713)) 22)) (-2435 (((-108) $) 31)) (-2997 (((-108) $) 33)) (-3515 (((-1090) $) 8)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-4084 (((-108) $ (-1090)) 10)) (-3734 (($ $ (-1 (-501) (-592 (-501)))) 52) (((-3 (-1 (-501) (-592 (-501))) "failed") $) 56)) (-3027 (((-1037) $) NIL)) (-1246 (((-108) $ (-1073)) 29)) (-2107 (($ $ (-1 (-108) $ $)) 35)) (-3686 (((-3 (-1 (-797) (-592 (-797))) "failed") $) 54) (($ $ (-1 (-797) (-592 (-797)))) 41) (($ $ (-1 (-797) (-797))) 43)) (-2747 (($ $ (-1073)) 45)) (-1261 (($ $) 63)) (-3039 (($ $ (-1 (-108) $ $)) 36)) (-4044 (((-797) $) 48)) (-2274 (($ $ (-1073)) 27)) (-2191 (((-3 (-713) "failed") $) 58)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 71)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 79))) +(((-110) (-13 (-789) (-10 -8 (-15 -3515 ((-1090) $)) (-15 -1964 ((-44 (-1073) (-716)) $)) (-15 -1261 ($ $)) (-15 -1885 ($ (-1090))) (-15 -1885 ($ (-1090) (-713))) (-15 -2191 ((-3 (-713) "failed") $)) (-15 -2435 ((-108) $)) (-15 -2295 ((-108) $)) (-15 -2997 ((-108) $)) (-15 -2147 ((-713) $)) (-15 -2147 ($ $ (-713))) (-15 -2107 ($ $ (-1 (-108) $ $))) (-15 -3039 ($ $ (-1 (-108) $ $))) (-15 -3686 ((-3 (-1 (-797) (-592 (-797))) "failed") $)) (-15 -3686 ($ $ (-1 (-797) (-592 (-797))))) (-15 -3686 ($ $ (-1 (-797) (-797)))) (-15 -3734 ($ $ (-1 (-501) (-592 (-501))))) (-15 -3734 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -4084 ((-108) $ (-1090))) (-15 -1246 ((-108) $ (-1073))) (-15 -2274 ($ $ (-1073))) (-15 -2747 ($ $ (-1073))) (-15 -3816 ((-3 (-716) "failed") $ (-1073))) (-15 -2094 ($ $ (-1073) (-716))) (-15 -3261 ($ $ (-44 (-1073) (-716))))))) (T -110)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-110)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-44 (-1073) (-716))) (-5 *1 (-110)))) (-1261 (*1 *1 *1) (-5 *1 (-110))) (-1885 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-110)))) (-1885 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *1 (-110)))) (-2191 (*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-2107 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-3039 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-3686 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-797) (-592 (-797)))) (-5 *1 (-110)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-592 (-797)))) (-5 *1 (-110)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-797))) (-5 *1 (-110)))) (-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-3734 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-108)) (-5 *1 (-110)))) (-1246 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2274 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-110)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-110)))) (-3816 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-716)) (-5 *1 (-110)))) (-2094 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-716)) (-5 *1 (-110)))) (-3261 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1073) (-716))) (-5 *1 (-110))))) +(-13 (-789) (-10 -8 (-15 -3515 ((-1090) $)) (-15 -1964 ((-44 (-1073) (-716)) $)) (-15 -1261 ($ $)) (-15 -1885 ($ (-1090))) (-15 -1885 ($ (-1090) (-713))) (-15 -2191 ((-3 (-713) "failed") $)) (-15 -2435 ((-108) $)) (-15 -2295 ((-108) $)) (-15 -2997 ((-108) $)) (-15 -2147 ((-713) $)) (-15 -2147 ($ $ (-713))) (-15 -2107 ($ $ (-1 (-108) $ $))) (-15 -3039 ($ $ (-1 (-108) $ $))) (-15 -3686 ((-3 (-1 (-797) (-592 (-797))) "failed") $)) (-15 -3686 ($ $ (-1 (-797) (-592 (-797))))) (-15 -3686 ($ $ (-1 (-797) (-797)))) (-15 -3734 ($ $ (-1 (-501) (-592 (-501))))) (-15 -3734 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -4084 ((-108) $ (-1090))) (-15 -1246 ((-108) $ (-1073))) (-15 -2274 ($ $ (-1073))) (-15 -2747 ($ $ (-1073))) (-15 -3816 ((-3 (-716) "failed") $ (-1073))) (-15 -2094 ($ $ (-1073) (-716))) (-15 -3261 ($ $ (-44 (-1073) (-716)))))) +((-3041 (((-525) |#2|) 37))) +(((-111 |#1| |#2|) (-10 -7 (-15 -3041 ((-525) |#2|))) (-13 (-341) (-967 (-385 (-525)))) (-1148 |#1|)) (T -111)) +((-3041 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-967 (-385 *2)))) (-5 *2 (-525)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -3041 ((-525) |#2|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2975 (($ $ (-525)) NIL)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-4121 (($ (-1086 (-525)) (-525)) NIL)) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3785 (($ $) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2158 (((-713) $) NIL)) (-2507 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1690 (((-525)) NIL)) (-1933 (((-525) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1539 (($ $ (-525)) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-3943 (((-1071 (-525)) $) NIL)) (-2789 (($ $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-2502 (((-713)) NIL)) (-3787 (((-108) $ $) NIL)) (-2371 (((-525) $ (-525)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL))) +(((-112 |#1|) (-803 |#1|) (-525)) (T -112)) +NIL +(-803 |#1|) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-112 |#1|) (-843)))) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-112 |#1|) (-843)))) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL (|has| (-112 |#1|) (-762)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-112 |#1|) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-112 |#1|) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-112 |#1|) (-967 (-525))))) (-2068 (((-112 |#1|) $) NIL) (((-1090) $) NIL (|has| (-112 |#1|) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-112 |#1|) (-967 (-525)))) (((-525) $) NIL (|has| (-112 |#1|) (-967 (-525))))) (-1373 (($ $) NIL) (($ (-525) $) NIL)) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-112 |#1|))) (|:| |vec| (-1172 (-112 |#1|)))) (-632 $) (-1172 $)) NIL) (((-632 (-112 |#1|)) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-112 |#1|) (-510)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2973 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-112 |#1|) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-112 |#1|) (-820 (-357))))) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL)) (-1936 (((-112 |#1|) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1066)))) (-3721 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-2154 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-2868 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-112 |#1|) (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL (|has| (-112 |#1|) (-286)))) (-2473 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-112 |#1|) (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-112 |#1|) (-843)))) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (($ $ (-592 (-112 |#1|)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-273 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-273 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-1090)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-486 (-1090) (-112 |#1|)))) (($ $ (-1090) (-112 |#1|)) NIL (|has| (-112 |#1|) (-486 (-1090) (-112 |#1|))))) (-2824 (((-713) $) NIL)) (-1496 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-265 (-112 |#1|) (-112 |#1|))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1090)) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-1987 (($ $) NIL)) (-1945 (((-112 |#1|) $) NIL)) (-2923 (((-826 (-525)) $) NIL (|has| (-112 |#1|) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-112 |#1|) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-112 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-112 |#1|) (-952))) (((-205) $) NIL (|has| (-112 |#1|) (-952)))) (-4089 (((-161 (-385 (-525))) $) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-112 |#1|)) NIL) (($ (-1090)) NIL (|has| (-112 |#1|) (-967 (-1090))))) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-843))) (|has| (-112 |#1|) (-136))))) (-2502 (((-713)) NIL)) (-1448 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-3787 (((-108) $ $) NIL)) (-2371 (((-385 (-525)) $ (-525)) NIL)) (-2053 (($ $) NIL (|has| (-112 |#1|) (-762)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1090)) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-3973 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3928 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-4047 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL))) +(((-113 |#1|) (-13 (-924 (-112 |#1|)) (-10 -8 (-15 -2371 ((-385 (-525)) $ (-525))) (-15 -4089 ((-161 (-385 (-525))) $)) (-15 -1373 ($ $)) (-15 -1373 ($ (-525) $)))) (-525)) (T -113)) +((-2371 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-525)))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525)))) (-1373 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525)))) (-1373 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 *2)))) +(-13 (-924 (-112 |#1|)) (-10 -8 (-15 -2371 ((-385 (-525)) $ (-525))) (-15 -4089 ((-161 (-385 (-525))) $)) (-15 -1373 ($ $)) (-15 -1373 ($ (-525) $)))) +((-1230 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2850 (((-592 $) $) 27)) (-2983 (((-108) $ $) 32)) (-1883 (((-108) |#2| $) 36)) (-2401 (((-592 |#2|) $) 22)) (-3260 (((-108) $) 16)) (-1496 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3105 (((-108) $) 45)) (-4044 (((-797) $) 41)) (-2180 (((-592 $) $) 28)) (-3899 (((-108) $ $) 34)) (-1696 (((-713) $) 43))) +(((-114 |#1| |#2|) (-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -1230 (|#1| |#1| "right" |#1|)) (-15 -1230 (|#1| |#1| "left" |#1|)) (-15 -1496 (|#1| |#1| "right")) (-15 -1496 (|#1| |#1| "left")) (-15 -1230 (|#2| |#1| "value" |#2|)) (-15 -2983 ((-108) |#1| |#1|)) (-15 -2401 ((-592 |#2|) |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -1496 (|#2| |#1| "value")) (-15 -3260 ((-108) |#1|)) (-15 -2850 ((-592 |#1|) |#1|)) (-15 -2180 ((-592 |#1|) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -1883 ((-108) |#2| |#1|)) (-15 -1696 ((-713) |#1|))) (-115 |#2|) (-1126)) (T -114)) +NIL +(-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -1230 (|#1| |#1| "right" |#1|)) (-15 -1230 (|#1| |#1| "left" |#1|)) (-15 -1496 (|#1| |#1| "right")) (-15 -1496 (|#1| |#1| "left")) (-15 -1230 (|#2| |#1| "value" |#2|)) (-15 -2983 ((-108) |#1| |#1|)) (-15 -2401 ((-592 |#2|) |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -1496 (|#2| |#1| "value")) (-15 -3260 ((-108) |#1|)) (-15 -2850 ((-592 |#1|) |#1|)) (-15 -2180 ((-592 |#1|) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -1883 ((-108) |#2| |#1|)) (-15 -1696 ((-713) |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3067 ((|#1| $) 48)) (-2583 (((-108) $ (-713)) 8)) (-2325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-2019 (($ $ $) 52 (|has| $ (-6 -4255)))) (-2998 (($ $ $) 54 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) (($ $ "left" $) 55 (|has| $ (-6 -4255))) (($ $ "right" $) 53 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1957 (($) 7 T CONST)) (-3356 (($ $) 57)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 50)) (-2983 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-3347 (($ $) 59)) (-2401 (((-592 |#1|) $) 45)) (-3260 (((-108) $) 49)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3612 (((-525) $ $) 44)) (-3105 (((-108) $) 46)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) 51)) (-2086 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-115 |#1|) (-131) (-1126)) (T -115)) +((-3347 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1126)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1126)))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1126)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1126)))) (-1230 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4255)) (-4 *1 (-115 *3)) (-4 *3 (-1126)))) (-2998 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-115 *2)) (-4 *2 (-1126)))) (-1230 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4255)) (-4 *1 (-115 *3)) (-4 *3 (-1126)))) (-2019 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-115 *2)) (-4 *2 (-1126))))) +(-13 (-941 |t#1|) (-10 -8 (-15 -3347 ($ $)) (-15 -1496 ($ $ "left")) (-15 -3356 ($ $)) (-15 -1496 ($ $ "right")) (IF (|has| $ (-6 -4255)) (PROGN (-15 -1230 ($ $ "left" $)) (-15 -2998 ($ $ $)) (-15 -1230 ($ $ "right" $)) (-15 -2019 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-3757 (((-108) |#1|) 24)) (-3255 (((-713) (-713)) 23) (((-713)) 22)) (-2358 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26))) +(((-116 |#1|) (-10 -7 (-15 -2358 ((-108) |#1|)) (-15 -2358 ((-108) |#1| (-108))) (-15 -3255 ((-713))) (-15 -3255 ((-713) (-713))) (-15 -3757 ((-108) |#1|))) (-1148 (-525))) (T -116)) +((-3757 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) (-3255 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) (-3255 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) (-2358 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) (-2358 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525)))))) +(-10 -7 (-15 -2358 ((-108) |#1|)) (-15 -2358 ((-108) |#1| (-108))) (-15 -3255 ((-713))) (-15 -3255 ((-713) (-713))) (-15 -3757 ((-108) |#1|))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) 15)) (-3114 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2583 (((-108) $ (-713)) NIL)) (-2325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-2019 (($ $ $) 18 (|has| $ (-6 -4255)))) (-2998 (($ $ $) 20 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-3356 (($ $) 17)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3696 (($ $ |#1| $) 23)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-3347 (($ $) 19)) (-2401 (((-592 |#1|) $) NIL)) (-3260 (((-108) $) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2689 (($ |#1| $) 24)) (-4157 (($ |#1| $) 10)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 14)) (-3266 (($) 8)) (-1496 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3612 (((-525) $ $) NIL)) (-3105 (((-108) $) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1748 (($ (-592 |#1|)) 12)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -1748 ($ (-592 |#1|))) (-15 -4157 ($ |#1| $)) (-15 -2689 ($ |#1| $)) (-15 -3114 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-789)) (T -117)) +((-1748 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3)))) (-4157 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-2689 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-3114 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-789))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -1748 ($ (-592 |#1|))) (-15 -4157 ($ |#1| $)) (-15 -2689 ($ |#1| $)) (-15 -3114 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3803 (($ $) 14)) (-2823 (($ $) 11)) (-3496 (($ $ $) 24)) (-1773 (($ $ $) 22)) (-1594 (($ $) 12)) (-2337 (($ $ $) 20)) (-2327 (($ $ $) 18))) +(((-118 |#1|) (-10 -8 (-15 -3496 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -2327 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#1| |#1|))) (-119)) (T -118)) +NIL +(-10 -8 (-15 -3496 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -2327 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-3803 (($ $) 104)) (-1829 (($ $ $) 25)) (-2792 (((-1177) $ (-525) (-525)) 67 (|has| $ (-6 -4255)))) (-3746 (((-108) $) 99 (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-1943 (($ $) 103 (-12 (|has| (-108) (-789)) (|has| $ (-6 -4255)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4255)))) (-1473 (($ $) 98 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-2583 (((-108) $ (-713)) 38)) (-1230 (((-108) $ (-1139 (-525)) (-108)) 89 (|has| $ (-6 -4255))) (((-108) $ (-525) (-108)) 55 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4254)))) (-1957 (($) 39 T CONST)) (-1626 (($ $) 101 (|has| $ (-6 -4255)))) (-3263 (($ $) 91)) (-1716 (($ $) 69 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4254))) (($ (-108) $) 70 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254))))) (-3336 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254))))) (-2549 (((-108) $ (-525) (-108)) 54 (|has| $ (-6 -4255)))) (-2488 (((-108) $ (-525)) 56)) (-1930 (((-525) (-108) $ (-525)) 96 (|has| (-108) (-1019))) (((-525) (-108) $) 95 (|has| (-108) (-1019))) (((-525) (-1 (-108) (-108)) $) 94)) (-3781 (((-592 (-108)) $) 46 (|has| $ (-6 -4254)))) (-2377 (($ $ $) 26)) (-2823 (($ $) 31)) (-3496 (($ $ $) 28)) (-3248 (($ (-713) (-108)) 78)) (-1773 (($ $ $) 29)) (-2010 (((-108) $ (-713)) 37)) (-2179 (((-525) $) 64 (|has| (-525) (-789)))) (-1260 (($ $ $) 13)) (-1440 (($ $ $) 97 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-2679 (((-592 (-108)) $) 47 (|has| $ (-6 -4254)))) (-1883 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 63 (|has| (-525) (-789)))) (-2154 (($ $ $) 14)) (-2540 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-2350 (((-108) $ (-713)) 36)) (-1707 (((-1073) $) 9)) (-2234 (($ $ $ (-525)) 88) (($ (-108) $ (-525)) 87)) (-2379 (((-592 (-525)) $) 61)) (-2030 (((-108) (-525) $) 60)) (-3027 (((-1037) $) 10)) (-1683 (((-108) $) 65 (|has| (-525) (-789)))) (-3611 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-1614 (($ $ (-108)) 66 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-108)) (-592 (-108))) 53 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-273 (-108))) 51 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-592 (-273 (-108)))) 50 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))))) (-3063 (((-108) $ $) 32)) (-2024 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-4100 (((-592 (-108)) $) 59)) (-3086 (((-108) $) 35)) (-3266 (($) 34)) (-1496 (($ $ (-1139 (-525))) 84) (((-108) $ (-525)) 58) (((-108) $ (-525) (-108)) 57)) (-2697 (($ $ (-1139 (-525))) 86) (($ $ (-525)) 85)) (-3053 (((-713) (-108) $) 48 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4254)))) (-4038 (($ $ $ (-525)) 100 (|has| $ (-6 -4255)))) (-1261 (($ $) 33)) (-2923 (((-501) $) 68 (|has| (-108) (-567 (-501))))) (-4059 (($ (-592 (-108))) 77)) (-1810 (($ (-592 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-4044 (((-797) $) 11)) (-2443 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4254)))) (-2385 (($ $ $) 27)) (-1594 (($ $) 30)) (-2337 (($ $ $) 106)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18)) (-2327 (($ $ $) 105)) (-1696 (((-713) $) 40 (|has| $ (-6 -4254))))) (((-119) (-131)) (T -119)) -((-3389 (*1 *1 *1) (-4 *1 (-119))) (-1401 (*1 *1 *1) (-4 *1 (-119))) (-3185 (*1 *1 *1 *1) (-4 *1 (-119))) (-3200 (*1 *1 *1 *1) (-4 *1 (-119))) (-3543 (*1 *1 *1 *1) (-4 *1 (-119))) (-3532 (*1 *1 *1 *1) (-4 *1 (-119))) (-2216 (*1 *1 *1 *1) (-4 *1 (-119)))) -(-13 (-788) (-606) (-19 (-108)) (-10 -8 (-15 -3389 ($ $)) (-15 -1401 ($ $)) (-15 -3185 ($ $ $)) (-15 -3200 ($ $ $)) (-15 -3543 ($ $ $)) (-15 -3532 ($ $ $)) (-15 -2216 ($ $ $)))) -(((-33) . T) ((-97) . T) ((-565 (-796)) . T) ((-142 #0=(-108)) . T) ((-566 (-501)) |has| (-108) (-566 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018))) ((-596 #0#) . T) ((-606) . T) ((-19 #0#) . T) ((-788) . T) ((-1018) . T) ((-1125) . T)) -((-4192 (($ (-1 |#2| |#2|) $) 22)) (-2873 (($ $) 16)) (-2028 (((-712) $) 24))) -(((-120 |#1| |#2|) (-10 -8 (-15 -4192 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2028 ((-712) |#1|)) (-15 -2873 (|#1| |#1|))) (-121 |#2|) (-1018)) (T -120)) -NIL -(-10 -8 (-15 -4192 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2028 ((-712) |#1|)) (-15 -2873 (|#1| |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-2940 ((|#1| $) 48)) (-3727 (((-108) $ (-712)) 8)) (-3912 ((|#1| $ |#1|) 39 (|has| $ (-6 -4251)))) (-2175 (($ $ $) 52 (|has| $ (-6 -4251)))) (-3934 (($ $ $) 54 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4251))) (($ $ "left" $) 55 (|has| $ (-6 -4251))) (($ $ "right" $) 53 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 41 (|has| $ (-6 -4251)))) (-2055 (($) 7 T CONST)) (-3192 (($ $) 57)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 50)) (-3219 (((-108) $ $) 42 (|has| |#1| (-1018)))) (-3186 (($ $ |#1| $) 60)) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-3178 (($ $) 59)) (-2065 (((-591 |#1|) $) 45)) (-2878 (((-108) $) 49)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2194 (((-525) $ $) 44)) (-4133 (((-108) $) 46)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) 51)) (-3592 (((-108) $ $) 43 (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-121 |#1|) (-131) (-1018)) (T -121)) -((-3186 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1018))))) -(-13 (-115 |t#1|) (-10 -8 (-6 -4251) (-6 -4250) (-15 -3186 ($ $ |t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-115 |#1|) . T) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-940 |#1|) . T) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) 15)) (-3727 (((-108) $ (-712)) NIL)) (-3912 ((|#1| $ |#1|) 19 (|has| $ (-6 -4251)))) (-2175 (($ $ $) 20 (|has| $ (-6 -4251)))) (-3934 (($ $ $) 18 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251))) (($ $ "left" $) NIL (|has| $ (-6 -4251))) (($ $ "right" $) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-3192 (($ $) 21)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3186 (($ $ |#1| $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-3178 (($ $) NIL)) (-2065 (((-591 |#1|) $) NIL)) (-2878 (((-108) $) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-1520 (($ |#1| $) 10)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 14)) (-3164 (($) 8)) (-1881 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2194 (((-525) $ $) NIL)) (-4133 (((-108) $) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) 17)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3958 (($ (-591 |#1|)) 12)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4251) (-15 -3958 ($ (-591 |#1|))) (-15 -1520 ($ |#1| $)))) (-788)) (T -122)) -((-3958 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-122 *3)))) (-1520 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-788))))) -(-13 (-121 |#1|) (-10 -8 (-6 -4251) (-15 -3958 ($ (-591 |#1|))) (-15 -1520 ($ |#1| $)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) 24)) (-3727 (((-108) $ (-712)) NIL)) (-3912 ((|#1| $ |#1|) 26 (|has| $ (-6 -4251)))) (-2175 (($ $ $) 30 (|has| $ (-6 -4251)))) (-3934 (($ $ $) 28 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251))) (($ $ "left" $) NIL (|has| $ (-6 -4251))) (($ $ "right" $) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-3192 (($ $) 20)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3186 (($ $ |#1| $) 15)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-3178 (($ $) 19)) (-2065 (((-591 |#1|) $) NIL)) (-2878 (((-108) $) 21)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 18)) (-3164 (($) 11)) (-1881 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2194 (((-525) $ $) NIL)) (-4133 (((-108) $) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1354 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 10 (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -1354 ($ |#1|)) (-15 -1354 ($ $ |#1| $)))) (-1018)) (T -123)) -((-1354 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1018)))) (-1354 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1018))))) -(-13 (-121 |#1|) (-10 -8 (-15 -1354 ($ |#1|)) (-15 -1354 ($ $ |#1| $)))) -((-2673 (((-108) $ $) NIL (|has| (-125) (-1018)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) (-125) (-125)) $) NIL) (((-108) $) NIL (|has| (-125) (-788)))) (-2613 (($ (-1 (-108) (-125) (-125)) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| (-125) (-788))))) (-1282 (($ (-1 (-108) (-125) (-125)) $) NIL) (($ $) NIL (|has| (-125) (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4251))) (((-125) $ (-1138 (-525)) (-125)) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-125) (-1018))))) (-2537 (($ (-125) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-125) (-1018)))) (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-125) (-1 (-125) (-125) (-125)) $ (-125) (-125)) NIL (-12 (|has| $ (-6 -4250)) (|has| (-125) (-1018)))) (((-125) (-1 (-125) (-125) (-125)) $ (-125)) NIL (|has| $ (-6 -4250))) (((-125) (-1 (-125) (-125) (-125)) $) NIL (|has| $ (-6 -4250)))) (-4205 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4251)))) (-4121 (((-125) $ (-525)) NIL)) (-1734 (((-525) (-1 (-108) (-125)) $) NIL) (((-525) (-125) $) NIL (|has| (-125) (-1018))) (((-525) (-125) $ (-525)) NIL (|has| (-125) (-1018)))) (-2916 (((-591 (-125)) $) NIL (|has| $ (-6 -4250)))) (-1316 (($ (-712) (-125)) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| (-125) (-788)))) (-3459 (($ (-1 (-108) (-125) (-125)) $ $) NIL) (($ $ $) NIL (|has| (-125) (-788)))) (-4207 (((-591 (-125)) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-125) (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| (-125) (-788)))) (-4192 (($ (-1 (-125) (-125)) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-125) (-125)) $) NIL) (($ (-1 (-125) (-125) (-125)) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| (-125) (-1018)))) (-2059 (($ (-125) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| (-125) (-1018)))) (-2872 (((-125) $) NIL (|has| (-525) (-788)))) (-2714 (((-3 (-125) "failed") (-1 (-108) (-125)) $) NIL)) (-1858 (($ $ (-125)) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-125)))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1018)))) (($ $ (-273 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1018)))) (($ $ (-125) (-125)) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1018)))) (($ $ (-591 (-125)) (-591 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-125) (-1018))))) (-2998 (((-591 (-125)) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 (((-125) $ (-525) (-125)) NIL) (((-125) $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-2960 (((-712) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4250))) (((-712) (-125) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-125) (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-125) (-566 (-501))))) (-2695 (($ (-591 (-125))) NIL)) (-1624 (($ $ (-125)) NIL) (($ (-125) $) NIL) (($ $ $) NIL) (($ (-591 $)) NIL)) (-2686 (((-796) $) NIL (|has| (-125) (-565 (-796))))) (-1475 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| (-125) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-125) (-788)))) (-3944 (((-108) $ $) NIL (|has| (-125) (-1018)))) (-3994 (((-108) $ $) NIL (|has| (-125) (-788)))) (-3971 (((-108) $ $) NIL (|has| (-125) (-788)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) +((-2823 (*1 *1 *1) (-4 *1 (-119))) (-1594 (*1 *1 *1) (-4 *1 (-119))) (-1773 (*1 *1 *1 *1) (-4 *1 (-119))) (-3496 (*1 *1 *1 *1) (-4 *1 (-119))) (-2385 (*1 *1 *1 *1) (-4 *1 (-119))) (-2377 (*1 *1 *1 *1) (-4 *1 (-119))) (-1829 (*1 *1 *1 *1) (-4 *1 (-119)))) +(-13 (-789) (-607) (-19 (-108)) (-10 -8 (-15 -2823 ($ $)) (-15 -1594 ($ $)) (-15 -1773 ($ $ $)) (-15 -3496 ($ $ $)) (-15 -2385 ($ $ $)) (-15 -2377 ($ $ $)) (-15 -1829 ($ $ $)))) +(((-33) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 #0=(-108)) . T) ((-567 (-501)) |has| (-108) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))) ((-597 #0#) . T) ((-607) . T) ((-19 #0#) . T) ((-789) . T) ((-1019) . T) ((-1126) . T)) +((-2540 (($ (-1 |#2| |#2|) $) 22)) (-1261 (($ $) 16)) (-1696 (((-713) $) 24))) +(((-120 |#1| |#2|) (-10 -8 (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1696 ((-713) |#1|)) (-15 -1261 (|#1| |#1|))) (-121 |#2|) (-1019)) (T -120)) +NIL +(-10 -8 (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1696 ((-713) |#1|)) (-15 -1261 (|#1| |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3067 ((|#1| $) 48)) (-2583 (((-108) $ (-713)) 8)) (-2325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-2019 (($ $ $) 52 (|has| $ (-6 -4255)))) (-2998 (($ $ $) 54 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) (($ $ "left" $) 55 (|has| $ (-6 -4255))) (($ $ "right" $) 53 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1957 (($) 7 T CONST)) (-3356 (($ $) 57)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 50)) (-2983 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-3696 (($ $ |#1| $) 60)) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-3347 (($ $) 59)) (-2401 (((-592 |#1|) $) 45)) (-3260 (((-108) $) 49)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3612 (((-525) $ $) 44)) (-3105 (((-108) $) 46)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) 51)) (-2086 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-121 |#1|) (-131) (-1019)) (T -121)) +((-3696 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1019))))) +(-13 (-115 |t#1|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -3696 ($ $ |t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-115 |#1|) . T) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) 15)) (-2583 (((-108) $ (-713)) NIL)) (-2325 ((|#1| $ |#1|) 19 (|has| $ (-6 -4255)))) (-2019 (($ $ $) 20 (|has| $ (-6 -4255)))) (-2998 (($ $ $) 18 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-3356 (($ $) 21)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3696 (($ $ |#1| $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-3347 (($ $) NIL)) (-2401 (((-592 |#1|) $) NIL)) (-3260 (((-108) $) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-4157 (($ |#1| $) 10)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 14)) (-3266 (($) 8)) (-1496 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3612 (((-525) $ $) NIL)) (-3105 (((-108) $) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) 17)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3729 (($ (-592 |#1|)) 12)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4255) (-15 -3729 ($ (-592 |#1|))) (-15 -4157 ($ |#1| $)))) (-789)) (T -122)) +((-3729 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3)))) (-4157 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4255) (-15 -3729 ($ (-592 |#1|))) (-15 -4157 ($ |#1| $)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) 24)) (-2583 (((-108) $ (-713)) NIL)) (-2325 ((|#1| $ |#1|) 26 (|has| $ (-6 -4255)))) (-2019 (($ $ $) 30 (|has| $ (-6 -4255)))) (-2998 (($ $ $) 28 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-3356 (($ $) 20)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3696 (($ $ |#1| $) 15)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-3347 (($ $) 19)) (-2401 (((-592 |#1|) $) NIL)) (-3260 (((-108) $) 21)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 18)) (-3266 (($) 11)) (-1496 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3612 (((-525) $ $) NIL)) (-3105 (((-108) $) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1490 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 10 (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -1490 ($ |#1|)) (-15 -1490 ($ $ |#1| $)))) (-1019)) (T -123)) +((-1490 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1019)))) (-1490 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1019))))) +(-13 (-121 |#1|) (-10 -8 (-15 -1490 ($ |#1|)) (-15 -1490 ($ $ |#1| $)))) +((-4028 (((-108) $ $) NIL (|has| (-125) (-1019)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) (-125) (-125)) $) NIL) (((-108) $) NIL (|has| (-125) (-789)))) (-1943 (($ (-1 (-108) (-125) (-125)) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-125) (-789))))) (-1473 (($ (-1 (-108) (-125) (-125)) $) NIL) (($ $) NIL (|has| (-125) (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4255))) (((-125) $ (-1139 (-525)) (-125)) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019))))) (-2591 (($ (-125) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019)))) (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-125) (-1 (-125) (-125) (-125)) $ (-125) (-125)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019)))) (((-125) (-1 (-125) (-125) (-125)) $ (-125)) NIL (|has| $ (-6 -4254))) (((-125) (-1 (-125) (-125) (-125)) $) NIL (|has| $ (-6 -4254)))) (-2549 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4255)))) (-2488 (((-125) $ (-525)) NIL)) (-1930 (((-525) (-1 (-108) (-125)) $) NIL) (((-525) (-125) $) NIL (|has| (-125) (-1019))) (((-525) (-125) $ (-525)) NIL (|has| (-125) (-1019)))) (-3781 (((-592 (-125)) $) NIL (|has| $ (-6 -4254)))) (-3248 (($ (-713) (-125)) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| (-125) (-789)))) (-1440 (($ (-1 (-108) (-125) (-125)) $ $) NIL) (($ $ $) NIL (|has| (-125) (-789)))) (-2679 (((-592 (-125)) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| (-125) (-789)))) (-2540 (($ (-1 (-125) (-125)) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-125) (-125)) $) NIL) (($ (-1 (-125) (-125) (-125)) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| (-125) (-1019)))) (-2234 (($ (-125) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| (-125) (-1019)))) (-1683 (((-125) $) NIL (|has| (-525) (-789)))) (-3611 (((-3 (-125) "failed") (-1 (-108) (-125)) $) NIL)) (-1614 (($ $ (-125)) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-125)))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1019)))) (($ $ (-273 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1019)))) (($ $ (-125) (-125)) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1019)))) (($ $ (-592 (-125)) (-592 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019))))) (-4100 (((-592 (-125)) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 (((-125) $ (-525) (-125)) NIL) (((-125) $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3053 (((-713) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254))) (((-713) (-125) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-125) (-567 (-501))))) (-4059 (($ (-592 (-125))) NIL)) (-1810 (($ $ (-125)) NIL) (($ (-125) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4044 (((-797) $) NIL (|has| (-125) (-566 (-797))))) (-2443 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3899 (((-108) $ $) NIL (|has| (-125) (-1019)))) (-3959 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3928 (((-108) $ $) NIL (|has| (-125) (-789)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) (((-124) (-19 (-125))) (T -124)) NIL (-19 (-125)) -((-2673 (((-108) $ $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 11) (((-712) $) 8) (($ (-712)) 7)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 13))) -(((-125) (-13 (-788) (-565 (-712)) (-10 -8 (-15 -2686 ($ (-712)))))) (T -125)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-125))))) -(-13 (-788) (-565 (-712)) (-10 -8 (-15 -2686 ($ (-712))))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15))) +((-4028 (((-108) $ $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 12) (((-713) $) 9) (($ (-713)) 8)) (-3329 (($ (-713)) 7)) (-2820 (($ $ $) 16)) (-2809 (($ $ $) 15)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 14))) +(((-125) (-13 (-789) (-566 (-713)) (-10 -8 (-15 -3329 ($ (-713))) (-15 -4044 ($ (-713))) (-15 -2809 ($ $ $)) (-15 -2820 ($ $ $))))) (T -125)) +((-3329 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-2809 (*1 *1 *1 *1) (-5 *1 (-125))) (-2820 (*1 *1 *1 *1) (-5 *1 (-125)))) +(-13 (-789) (-566 (-713)) (-10 -8 (-15 -3329 ($ (-713))) (-15 -4044 ($ (-713))) (-15 -2809 ($ $ $)) (-15 -2820 ($ $ $)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15))) (((-126) (-131)) (T -126)) -((-3332 (*1 *1 *1 *1) (|partial| -4 *1 (-126)))) -(-13 (-23) (-10 -8 (-15 -3332 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 7)) (-3072 (((-1176) $ (-712)) 19)) (-1734 (((-712) $) 20)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18))) +((-3004 (*1 *1 *1 *1) (|partial| -4 *1 (-126)))) +(-13 (-23) (-10 -8 (-15 -3004 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 7)) (-2815 (((-1177) $ (-713)) 19)) (-1930 (((-713) $) 20)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18))) (((-127) (-131)) (T -127)) -((-1734 (*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-712)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-712)) (-5 *2 (-1176))))) -(-13 (-788) (-10 -8 (-15 -1734 ((-712) $)) (-15 -3072 ((-1176) $ (-712))))) -(((-97) . T) ((-565 (-796)) . T) ((-788) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 34)) (-1306 (((-108) $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-712) "failed") $) 40)) (-3341 (((-712) $) 38)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) 27)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3500 (((-108)) 41)) (-3498 (((-108) (-108)) 43)) (-2091 (((-108) $) 24)) (-2726 (((-108) $) 37)) (-2686 (((-796) $) 22) (($ (-712)) 14)) (-1401 (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (-1830 (($) 12 T CONST)) (-1839 (($) 11 T CONST)) (-2423 (($ (-712)) 15)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 25)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 26)) (-4047 (((-3 $ "failed") $ $) 30)) (-4036 (($ $ $) 28)) (** (($ $ (-712)) NIL) (($ $ (-854)) NIL) (($ $ $) 36)) (* (($ (-712) $) 33) (($ (-854) $) NIL) (($ $ $) 31))) -(((-128) (-13 (-788) (-23) (-668) (-966 (-712)) (-10 -8 (-6 (-4252 "*")) (-15 -4047 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2423 ($ (-712))) (-15 -2091 ((-108) $)) (-15 -2726 ((-108) $)) (-15 -3500 ((-108))) (-15 -3498 ((-108) (-108)))))) (T -128)) -((-4047 (*1 *1 *1 *1) (|partial| -5 *1 (-128))) (** (*1 *1 *1 *1) (-5 *1 (-128))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-128)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-3500 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128))))) -(-13 (-788) (-23) (-668) (-966 (-712)) (-10 -8 (-6 (-4252 "*")) (-15 -4047 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2423 ($ (-712))) (-15 -2091 ((-108) $)) (-15 -2726 ((-108) $)) (-15 -3500 ((-108))) (-15 -3498 ((-108) (-108))))) -((-1638 (((-130 |#1| |#2| |#4|) (-591 |#4|) (-130 |#1| |#2| |#3|)) 14)) (-1257 (((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)) 18))) -(((-129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1638 ((-130 |#1| |#2| |#4|) (-591 |#4|) (-130 |#1| |#2| |#3|))) (-15 -1257 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)))) (-525) (-712) (-160) (-160)) (T -129)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-712)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-712)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8))))) -(-10 -7 (-15 -1638 ((-130 |#1| |#2| |#4|) (-591 |#4|) (-130 |#1| |#2| |#3|))) (-15 -1257 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)))) -((-2673 (((-108) $ $) NIL)) (-1884 (($ (-591 |#3|)) 40)) (-1616 (($ $) 99) (($ $ (-525) (-525)) 98)) (-2055 (($) 17)) (-4174 (((-3 |#3| "failed") $) 60)) (-3341 ((|#3| $) NIL)) (-2253 (($ $ (-591 (-525))) 100)) (-2786 (((-591 |#3|) $) 36)) (-2193 (((-712) $) 44)) (-1922 (($ $ $) 93)) (-1882 (($) 43)) (-2621 (((-1072) $) NIL)) (-3789 (($) 16)) (-2937 (((-1036) $) NIL)) (-1881 ((|#3| $) 46) ((|#3| $ (-525)) 47) ((|#3| $ (-525) (-525)) 48) ((|#3| $ (-525) (-525) (-525)) 49) ((|#3| $ (-525) (-525) (-525) (-525)) 50) ((|#3| $ (-591 (-525))) 52)) (-2743 (((-712) $) 45)) (-3511 (($ $ (-525) $ (-525)) 94) (($ $ (-525) (-525)) 96)) (-2686 (((-796) $) 67) (($ |#3|) 68) (($ (-220 |#2| |#3|)) 75) (($ (-1056 |#2| |#3|)) 78) (($ (-591 |#3|)) 53) (($ (-591 $)) 58)) (-1830 (($) 69 T CONST)) (-1839 (($) 70 T CONST)) (-3944 (((-108) $ $) 80)) (-4047 (($ $) 86) (($ $ $) 84)) (-4036 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-525)) 89) (($ (-525) $) 88) (($ $ $) 95))) -(((-130 |#1| |#2| |#3|) (-13 (-442 |#3| (-712)) (-447 (-525) (-712)) (-10 -8 (-15 -2686 ($ (-220 |#2| |#3|))) (-15 -2686 ($ (-1056 |#2| |#3|))) (-15 -2686 ($ (-591 |#3|))) (-15 -2686 ($ (-591 $))) (-15 -2193 ((-712) $)) (-15 -1881 (|#3| $)) (-15 -1881 (|#3| $ (-525))) (-15 -1881 (|#3| $ (-525) (-525))) (-15 -1881 (|#3| $ (-525) (-525) (-525))) (-15 -1881 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -1881 (|#3| $ (-591 (-525)))) (-15 -1922 ($ $ $)) (-15 * ($ $ $)) (-15 -3511 ($ $ (-525) $ (-525))) (-15 -3511 ($ $ (-525) (-525))) (-15 -1616 ($ $)) (-15 -1616 ($ $ (-525) (-525))) (-15 -2253 ($ $ (-591 (-525)))) (-15 -3789 ($)) (-15 -1882 ($)) (-15 -2786 ((-591 |#3|) $)) (-15 -1884 ($ (-591 |#3|))) (-15 -2055 ($)))) (-525) (-712) (-160)) (T -130)) -((-1922 (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) (-4 *4 (-160)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-712)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1056 *4 *5)) (-14 *4 (-712)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-712)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-130 *3 *4 *5))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-712)) (-4 *5 (-160)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 *2) (-4 *5 (-160)))) (-1881 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525)) (-14 *4 (-712)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-712)))) (-1881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-712)))) (-1881 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-712)))) (-1881 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-712)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-591 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-712)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) (-4 *4 (-160)))) (-3511 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-712)) (-4 *5 (-160)))) (-3511 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-712)) (-4 *5 (-160)))) (-1616 (*1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) (-4 *4 (-160)))) (-1616 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-712)) (-4 *5 (-160)))) (-2253 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-712)) (-4 *5 (-160)))) (-3789 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) (-4 *4 (-160)))) (-1882 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) (-4 *4 (-160)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-591 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-712)) (-4 *5 (-160)))) (-1884 (*1 *1 *2) (-12 (-5 *2 (-591 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-712)))) (-2055 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) (-4 *4 (-160))))) -(-13 (-442 |#3| (-712)) (-447 (-525) (-712)) (-10 -8 (-15 -2686 ($ (-220 |#2| |#3|))) (-15 -2686 ($ (-1056 |#2| |#3|))) (-15 -2686 ($ (-591 |#3|))) (-15 -2686 ($ (-591 $))) (-15 -2193 ((-712) $)) (-15 -1881 (|#3| $)) (-15 -1881 (|#3| $ (-525))) (-15 -1881 (|#3| $ (-525) (-525))) (-15 -1881 (|#3| $ (-525) (-525) (-525))) (-15 -1881 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -1881 (|#3| $ (-591 (-525)))) (-15 -1922 ($ $ $)) (-15 * ($ $ $)) (-15 -3511 ($ $ (-525) $ (-525))) (-15 -3511 ($ $ (-525) (-525))) (-15 -1616 ($ $)) (-15 -1616 ($ $ (-525) (-525))) (-15 -2253 ($ $ (-591 (-525)))) (-15 -3789 ($)) (-15 -1882 ($)) (-15 -2786 ((-591 |#3|) $)) (-15 -1884 ($ (-591 |#3|))) (-15 -2055 ($)))) -((-2686 (((-796) $) 7))) -(((-131) (-565 (-796))) (T -131)) -NIL -(-565 (-796)) -((-2673 (((-108) $ $) NIL)) (-1462 (($) 15 T CONST)) (-2011 (($) NIL (|has| (-135) (-346)))) (-2141 (($ $ $) 17) (($ $ (-135)) NIL) (($ (-135) $) NIL)) (-3772 (($ $ $) NIL)) (-3218 (((-108) $ $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2834 (((-712)) NIL (|has| (-135) (-346)))) (-1373 (($) NIL) (($ (-591 (-135))) NIL)) (-1288 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-3844 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250))) (($ (-135) $) 51 (|has| $ (-6 -4250)))) (-2537 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250))) (($ (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-3618 (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4250))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4250))) (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-1325 (($) NIL (|has| (-135) (-346)))) (-2916 (((-591 (-135)) $) 60 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-1923 (((-135) $) NIL (|has| (-135) (-788)))) (-4207 (((-591 (-135)) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-135) $) 26 (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-3475 (((-135) $) NIL (|has| (-135) (-788)))) (-4192 (($ (-1 (-135) (-135)) $) 59 (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-135) (-135)) $) 55)) (-3779 (($) 16 T CONST)) (-1970 (((-854) $) NIL (|has| (-135) (-346)))) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2318 (($ $ $) 29)) (-3949 (((-135) $) 52)) (-1520 (($ (-135) $) 50)) (-3229 (($ (-854)) NIL (|has| (-135) (-346)))) (-2907 (($) 14 T CONST)) (-2937 (((-1036) $) NIL)) (-2714 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-4166 (((-135) $) 53)) (-3465 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-135)) (-591 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-591 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) 48)) (-2309 (($) 13 T CONST)) (-1614 (($ $ $) 31) (($ $ (-135)) NIL)) (-3583 (($ (-591 (-135))) NIL) (($) NIL)) (-2960 (((-712) (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018)))) (((-712) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-1072) $) 36) (((-501) $) NIL (|has| (-135) (-566 (-501)))) (((-591 (-135)) $) 34)) (-2695 (($ (-591 (-135))) NIL)) (-2103 (($ $) 32 (|has| (-135) (-346)))) (-2686 (((-796) $) 46)) (-3913 (($ (-1072)) 12) (($ (-591 (-135))) 43)) (-3770 (((-712) $) NIL)) (-2892 (($) 49) (($ (-591 (-135))) NIL)) (-2453 (($ (-591 (-135))) NIL)) (-1475 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-1892 (($) 19 T CONST)) (-3179 (($) 18 T CONST)) (-3944 (((-108) $ $) 22)) (-3971 (((-108) $ $) NIL)) (-2028 (((-712) $) 47 (|has| $ (-6 -4250))))) -(((-132) (-13 (-1018) (-566 (-1072)) (-403 (-135)) (-566 (-591 (-135))) (-10 -8 (-15 -3913 ($ (-1072))) (-15 -3913 ($ (-591 (-135)))) (-15 -2309 ($) -2277) (-15 -2907 ($) -2277) (-15 -1462 ($) -2277) (-15 -3779 ($) -2277) (-15 -3179 ($) -2277) (-15 -1892 ($) -2277)))) (T -132)) -((-3913 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-132)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-591 (-135))) (-5 *1 (-132)))) (-2309 (*1 *1) (-5 *1 (-132))) (-2907 (*1 *1) (-5 *1 (-132))) (-1462 (*1 *1) (-5 *1 (-132))) (-3779 (*1 *1) (-5 *1 (-132))) (-3179 (*1 *1) (-5 *1 (-132))) (-1892 (*1 *1) (-5 *1 (-132)))) -(-13 (-1018) (-566 (-1072)) (-403 (-135)) (-566 (-591 (-135))) (-10 -8 (-15 -3913 ($ (-1072))) (-15 -3913 ($ (-591 (-135)))) (-15 -2309 ($) -2277) (-15 -2907 ($) -2277) (-15 -1462 ($) -2277) (-15 -3779 ($) -2277) (-15 -3179 ($) -2277) (-15 -1892 ($) -2277))) -((-1221 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3993 ((|#1| |#3|) 9)) (-3717 ((|#3| |#3|) 15))) -(((-133 |#1| |#2| |#3|) (-10 -7 (-15 -3993 (|#1| |#3|)) (-15 -3717 (|#3| |#3|)) (-15 -1221 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-923 |#1|) (-351 |#2|)) (T -133)) -((-1221 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-923 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3)) (-4 *3 (-351 *5)))) (-3717 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-923 *3)) (-5 *1 (-133 *3 *4 *2)) (-4 *2 (-351 *4)))) (-3993 (*1 *2 *3) (-12 (-4 *4 (-923 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3)) (-4 *3 (-351 *4))))) -(-10 -7 (-15 -3993 (|#1| |#3|)) (-15 -3717 (|#3| |#3|)) (-15 -1221 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4142 (($ $ $) 8)) (-2106 (($ $) 7)) (-3808 (($ $ $) 6))) +((-1930 (*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713)))) (-2815 (*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1177))))) +(-13 (-789) (-10 -8 (-15 -1930 ((-713) $)) (-15 -2815 ((-1177) $ (-713))))) +(((-97) . T) ((-566 (-797)) . T) ((-789) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 34)) (-2464 (((-108) $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-713) "failed") $) 40)) (-2068 (((-713) $) 38)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) 27)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1535 (((-108)) 41)) (-2410 (((-108) (-108)) 43)) (-3443 (((-108) $) 24)) (-2108 (((-108) $) 37)) (-4044 (((-797) $) 22) (($ (-713)) 14)) (-1594 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-1436 (($) 12 T CONST)) (-1449 (($) 11 T CONST)) (-3764 (($ (-713)) 15)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 25)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 26)) (-4033 (((-3 $ "failed") $ $) 30)) (-4017 (($ $ $) 28)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL) (($ $ $) 36)) (* (($ (-713) $) 33) (($ (-855) $) NIL) (($ $ $) 31))) +(((-128) (-13 (-789) (-23) (-669) (-967 (-713)) (-10 -8 (-6 (-4256 "*")) (-15 -4033 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3764 ($ (-713))) (-15 -3443 ((-108) $)) (-15 -2108 ((-108) $)) (-15 -1535 ((-108))) (-15 -2410 ((-108) (-108)))))) (T -128)) +((-4033 (*1 *1 *1 *1) (|partial| -5 *1 (-128))) (** (*1 *1 *1 *1) (-5 *1 (-128))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-1535 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128))))) +(-13 (-789) (-23) (-669) (-967 (-713)) (-10 -8 (-6 (-4256 "*")) (-15 -4033 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3764 ($ (-713))) (-15 -3443 ((-108) $)) (-15 -2108 ((-108) $)) (-15 -1535 ((-108))) (-15 -2410 ((-108) (-108))))) +((-1833 (((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|)) 14)) (-2868 (((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)) 18))) +(((-129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1833 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -2868 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)))) (-525) (-713) (-160) (-160)) (T -129)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) (-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8))))) +(-10 -7 (-15 -1833 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -2868 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)))) +((-4028 (((-108) $ $) NIL)) (-2922 (($ (-592 |#3|)) 40)) (-1342 (($ $) 99) (($ $ (-525) (-525)) 98)) (-1957 (($) 17)) (-2769 (((-3 |#3| "failed") $) 60)) (-2068 ((|#3| $) NIL)) (-2977 (($ $ (-592 (-525))) 100)) (-1816 (((-592 |#3|) $) 36)) (-3439 (((-713) $) 44)) (-3292 (($ $ $) 93)) (-3058 (($) 43)) (-1707 (((-1073) $) NIL)) (-2711 (($) 16)) (-3027 (((-1037) $) NIL)) (-1496 ((|#3| $) 46) ((|#3| $ (-525)) 47) ((|#3| $ (-525) (-525)) 48) ((|#3| $ (-525) (-525) (-525)) 49) ((|#3| $ (-525) (-525) (-525) (-525)) 50) ((|#3| $ (-592 (-525))) 52)) (-1486 (((-713) $) 45)) (-3487 (($ $ (-525) $ (-525)) 94) (($ $ (-525) (-525)) 96)) (-4044 (((-797) $) 67) (($ |#3|) 68) (($ (-220 |#2| |#3|)) 75) (($ (-1057 |#2| |#3|)) 78) (($ (-592 |#3|)) 53) (($ (-592 $)) 58)) (-1436 (($) 69 T CONST)) (-1449 (($) 70 T CONST)) (-3899 (((-108) $ $) 80)) (-4033 (($ $) 86) (($ $ $) 84)) (-4017 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-525)) 89) (($ (-525) $) 88) (($ $ $) 95))) +(((-130 |#1| |#2| |#3|) (-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -4044 ($ (-220 |#2| |#3|))) (-15 -4044 ($ (-1057 |#2| |#3|))) (-15 -4044 ($ (-592 |#3|))) (-15 -4044 ($ (-592 $))) (-15 -3439 ((-713) $)) (-15 -1496 (|#3| $)) (-15 -1496 (|#3| $ (-525))) (-15 -1496 (|#3| $ (-525) (-525))) (-15 -1496 (|#3| $ (-525) (-525) (-525))) (-15 -1496 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -1496 (|#3| $ (-592 (-525)))) (-15 -3292 ($ $ $)) (-15 * ($ $ $)) (-15 -3487 ($ $ (-525) $ (-525))) (-15 -3487 ($ $ (-525) (-525))) (-15 -1342 ($ $)) (-15 -1342 ($ $ (-525) (-525))) (-15 -2977 ($ $ (-592 (-525)))) (-15 -2711 ($)) (-15 -3058 ($)) (-15 -1816 ((-592 |#3|) $)) (-15 -2922 ($ (-592 |#3|))) (-15 -1957 ($)))) (-525) (-713) (-160)) (T -130)) +((-3292 (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1057 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-130 *3 *4 *5))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 *2) (-4 *5 (-160)))) (-1496 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525)) (-14 *4 (-713)))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-1496 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-1496 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-1496 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-713)))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-3487 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-713)) (-4 *5 (-160)))) (-3487 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-713)) (-4 *5 (-160)))) (-1342 (*1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-1342 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-713)) (-4 *5 (-160)))) (-2977 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-2711 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-3058 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-2922 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-1957 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160))))) +(-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -4044 ($ (-220 |#2| |#3|))) (-15 -4044 ($ (-1057 |#2| |#3|))) (-15 -4044 ($ (-592 |#3|))) (-15 -4044 ($ (-592 $))) (-15 -3439 ((-713) $)) (-15 -1496 (|#3| $)) (-15 -1496 (|#3| $ (-525))) (-15 -1496 (|#3| $ (-525) (-525))) (-15 -1496 (|#3| $ (-525) (-525) (-525))) (-15 -1496 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -1496 (|#3| $ (-592 (-525)))) (-15 -3292 ($ $ $)) (-15 * ($ $ $)) (-15 -3487 ($ $ (-525) $ (-525))) (-15 -3487 ($ $ (-525) (-525))) (-15 -1342 ($ $)) (-15 -1342 ($ $ (-525) (-525))) (-15 -2977 ($ $ (-592 (-525)))) (-15 -2711 ($)) (-15 -3058 ($)) (-15 -1816 ((-592 |#3|) $)) (-15 -2922 ($ (-592 |#3|))) (-15 -1957 ($)))) +((-4044 (((-797) $) 7))) +(((-131) (-566 (-797))) (T -131)) +NIL +(-566 (-797)) +((-4028 (((-108) $ $) NIL)) (-3635 (($) 15 T CONST)) (-1674 (($) NIL (|has| (-135) (-346)))) (-2272 (($ $ $) 17) (($ $ (-135)) NIL) (($ (-135) $) NIL)) (-3893 (($ $ $) NIL)) (-2398 (((-108) $ $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1651 (((-713)) NIL (|has| (-135) (-346)))) (-3792 (($) NIL) (($ (-592 (-135))) NIL)) (-2696 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-1640 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254))) (($ (-135) $) 51 (|has| $ (-6 -4254)))) (-2591 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254))) (($ (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-3336 (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-1527 (($) NIL (|has| (-135) (-346)))) (-3781 (((-592 (-135)) $) 60 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-1260 (((-135) $) NIL (|has| (-135) (-789)))) (-2679 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-135) $) 26 (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-2154 (((-135) $) NIL (|has| (-135) (-789)))) (-2540 (($ (-1 (-135) (-135)) $) 59 (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-135) (-135)) $) 55)) (-3265 (($) 16 T CONST)) (-2111 (((-855) $) NIL (|has| (-135) (-346)))) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2021 (($ $ $) 29)) (-2434 (((-135) $) 52)) (-4157 (($ (-135) $) 50)) (-3381 (($ (-855)) NIL (|has| (-135) (-346)))) (-3125 (($) 14 T CONST)) (-3027 (((-1037) $) NIL)) (-3611 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-3672 (((-135) $) 53)) (-3669 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) 48)) (-1581 (($) 13 T CONST)) (-2472 (($ $ $) 31) (($ $ (-135)) NIL)) (-3607 (($ (-592 (-135))) NIL) (($) NIL)) (-3053 (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-1073) $) 36) (((-501) $) NIL (|has| (-135) (-567 (-501)))) (((-592 (-135)) $) 34)) (-4059 (($ (-592 (-135))) NIL)) (-3128 (($ $) 32 (|has| (-135) (-346)))) (-4044 (((-797) $) 46)) (-2392 (($ (-1073)) 12) (($ (-592 (-135))) 43)) (-3713 (((-713) $) NIL)) (-3012 (($) 49) (($ (-592 (-135))) NIL)) (-1326 (($ (-592 (-135))) NIL)) (-2443 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-3582 (($) 19 T CONST)) (-2284 (($) 18 T CONST)) (-3899 (((-108) $ $) 22)) (-3928 (((-108) $ $) NIL)) (-1696 (((-713) $) 47 (|has| $ (-6 -4254))))) +(((-132) (-13 (-1019) (-567 (-1073)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -2392 ($ (-1073))) (-15 -2392 ($ (-592 (-135)))) (-15 -1581 ($) -3219) (-15 -3125 ($) -3219) (-15 -3635 ($) -3219) (-15 -3265 ($) -3219) (-15 -2284 ($) -3219) (-15 -3582 ($) -3219)))) (T -132)) +((-2392 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-132)))) (-2392 (*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132)))) (-1581 (*1 *1) (-5 *1 (-132))) (-3125 (*1 *1) (-5 *1 (-132))) (-3635 (*1 *1) (-5 *1 (-132))) (-3265 (*1 *1) (-5 *1 (-132))) (-2284 (*1 *1) (-5 *1 (-132))) (-3582 (*1 *1) (-5 *1 (-132)))) +(-13 (-1019) (-567 (-1073)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -2392 ($ (-1073))) (-15 -2392 ($ (-592 (-135)))) (-15 -1581 ($) -3219) (-15 -3125 ($) -3219) (-15 -3635 ($) -3219) (-15 -3265 ($) -3219) (-15 -2284 ($) -3219) (-15 -3582 ($) -3219))) +((-3338 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4172 ((|#1| |#3|) 9)) (-1904 ((|#3| |#3|) 15))) +(((-133 |#1| |#2| |#3|) (-10 -7 (-15 -4172 (|#1| |#3|)) (-15 -1904 (|#3| |#3|)) (-15 -3338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-924 |#1|) (-351 |#2|)) (T -133)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3)) (-4 *3 (-351 *5)))) (-1904 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-924 *3)) (-5 *1 (-133 *3 *4 *2)) (-4 *2 (-351 *4)))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3)) (-4 *3 (-351 *4))))) +(-10 -7 (-15 -4172 (|#1| |#3|)) (-15 -1904 (|#3| |#3|)) (-15 -3338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2635 (($ $ $) 8)) (-3444 (($ $) 7)) (-3738 (($ $ $) 6))) (((-134) (-131)) (T -134)) -((-4142 (*1 *1 *1 *1) (-4 *1 (-134))) (-2106 (*1 *1 *1) (-4 *1 (-134))) (-3808 (*1 *1 *1 *1) (-4 *1 (-134)))) -(-13 (-10 -8 (-15 -3808 ($ $ $)) (-15 -2106 ($ $)) (-15 -4142 ($ $ $)))) -((-2673 (((-108) $ $) NIL)) (-3276 (((-108) $) 30)) (-1462 (($ $) 43)) (-2994 (($) 17)) (-2834 (((-712)) 10)) (-1325 (($) 16)) (-3793 (($) 18)) (-2071 (((-712) $) 14)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2507 (((-108) $) 32)) (-3779 (($ $) 44)) (-1970 (((-854) $) 15)) (-2621 (((-1072) $) 38)) (-3229 (($ (-854)) 13)) (-1413 (((-108) $) 28)) (-2937 (((-1036) $) NIL)) (-4221 (($) 19)) (-2719 (((-108) $) 26)) (-2686 (((-796) $) 21)) (-2874 (($ (-712)) 11) (($ (-1072)) 42)) (-3018 (((-108) $) 36)) (-3318 (((-108) $) 34)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 7)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 8))) -(((-135) (-13 (-782) (-10 -8 (-15 -2071 ((-712) $)) (-15 -2874 ($ (-712))) (-15 -2874 ($ (-1072))) (-15 -2994 ($)) (-15 -3793 ($)) (-15 -4221 ($)) (-15 -1462 ($ $)) (-15 -3779 ($ $)) (-15 -2719 ((-108) $)) (-15 -1413 ((-108) $)) (-15 -3318 ((-108) $)) (-15 -3276 ((-108) $)) (-15 -2507 ((-108) $)) (-15 -3018 ((-108) $))))) (T -135)) -((-2071 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-135)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-135)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-135)))) (-2994 (*1 *1) (-5 *1 (-135))) (-3793 (*1 *1) (-5 *1 (-135))) (-4221 (*1 *1) (-5 *1 (-135))) (-1462 (*1 *1 *1) (-5 *1 (-135))) (-3779 (*1 *1 *1) (-5 *1 (-135))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) -(-13 (-782) (-10 -8 (-15 -2071 ((-712) $)) (-15 -2874 ($ (-712))) (-15 -2874 ($ (-1072))) (-15 -2994 ($)) (-15 -3793 ($)) (-15 -4221 ($)) (-15 -1462 ($ $)) (-15 -3779 ($ $)) (-15 -2719 ((-108) $)) (-15 -1413 ((-108) $)) (-15 -3318 ((-108) $)) (-15 -3276 ((-108) $)) (-15 -2507 ((-108) $)) (-15 -3018 ((-108) $)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3751 (((-3 $ "failed") $) 35)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +((-2635 (*1 *1 *1 *1) (-4 *1 (-134))) (-3444 (*1 *1 *1) (-4 *1 (-134))) (-3738 (*1 *1 *1 *1) (-4 *1 (-134)))) +(-13 (-10 -8 (-15 -3738 ($ $ $)) (-15 -3444 ($ $)) (-15 -2635 ($ $ $)))) +((-4028 (((-108) $ $) NIL)) (-3955 (((-108) $) 30)) (-3635 (($ $) 43)) (-3591 (($) 17)) (-1651 (((-713)) 10)) (-1527 (($) 16)) (-3032 (($) 18)) (-2478 (((-713) $) 14)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1981 (((-108) $) 32)) (-3265 (($ $) 44)) (-2111 (((-855) $) 15)) (-1707 (((-1073) $) 38)) (-3381 (($ (-855)) 13)) (-3353 (((-108) $) 28)) (-3027 (((-1037) $) NIL)) (-3923 (($) 19)) (-1908 (((-108) $) 26)) (-4044 (((-797) $) 21)) (-2963 (($ (-713)) 11) (($ (-1073)) 42)) (-2670 (((-108) $) 36)) (-2299 (((-108) $) 34)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 7)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 8))) +(((-135) (-13 (-783) (-10 -8 (-15 -2478 ((-713) $)) (-15 -2963 ($ (-713))) (-15 -2963 ($ (-1073))) (-15 -3591 ($)) (-15 -3032 ($)) (-15 -3923 ($)) (-15 -3635 ($ $)) (-15 -3265 ($ $)) (-15 -1908 ((-108) $)) (-15 -3353 ((-108) $)) (-15 -2299 ((-108) $)) (-15 -3955 ((-108) $)) (-15 -1981 ((-108) $)) (-15 -2670 ((-108) $))))) (T -135)) +((-2478 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-135)))) (-3591 (*1 *1) (-5 *1 (-135))) (-3032 (*1 *1) (-5 *1 (-135))) (-3923 (*1 *1) (-5 *1 (-135))) (-3635 (*1 *1 *1) (-5 *1 (-135))) (-3265 (*1 *1 *1) (-5 *1 (-135))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) +(-13 (-783) (-10 -8 (-15 -2478 ((-713) $)) (-15 -2963 ($ (-713))) (-15 -2963 ($ (-1073))) (-15 -3591 ($)) (-15 -3032 ($)) (-15 -3923 ($)) (-15 -3635 ($ $)) (-15 -3265 ($ $)) (-15 -1908 ((-108) $)) (-15 -3353 ((-108) $)) (-15 -2299 ((-108) $)) (-15 -3955 ((-108) $)) (-15 -1981 ((-108) $)) (-15 -2670 ((-108) $)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-1279 (((-3 $ "failed") $) 35)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-136) (-131)) (T -136)) -((-3751 (*1 *1 *1) (|partial| -4 *1 (-136)))) -(-13 (-975) (-10 -8 (-15 -3751 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-668) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2173 ((|#1| (-631 |#1|) |#1|) 19))) -(((-137 |#1|) (-10 -7 (-15 -2173 (|#1| (-631 |#1|) |#1|))) (-160)) (T -137)) -((-2173 (*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2))))) -(-10 -7 (-15 -2173 (|#1| (-631 |#1|) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +((-1279 (*1 *1 *1) (|partial| -4 *1 (-136)))) +(-13 (-976) (-10 -8 (-15 -1279 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2867 ((|#1| (-632 |#1|) |#1|) 19))) +(((-137 |#1|) (-10 -7 (-15 -2867 (|#1| (-632 |#1|) |#1|))) (-160)) (T -137)) +((-2867 (*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2))))) +(-10 -7 (-15 -2867 (|#1| (-632 |#1|) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-138) (-131)) (T -138)) NIL -(-13 (-975)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-668) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-3323 (((-2 (|:| -3987 (-712)) (|:| -2976 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-712)) 70)) (-2981 (((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-712))) "failed") |#3|) 52)) (-4167 (((-2 (|:| -2976 (-385 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2958 ((|#1| |#3| |#3|) 40)) (-1980 ((|#3| |#3| (-385 |#2|) (-385 |#2|)) 19)) (-3951 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-712))) |#3| |#3|) 49))) -(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -4167 ((-2 (|:| -2976 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2981 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-712))) "failed") |#3|)) (-15 -3323 ((-2 (|:| -3987 (-712)) (|:| -2976 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-712))) (-15 -2958 (|#1| |#3| |#3|)) (-15 -1980 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -3951 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-712))) |#3| |#3|))) (-1129) (-1147 |#1|) (-1147 (-385 |#2|))) (T -139)) -((-3951 (*1 *2 *3 *3) (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5)) (|:| |c2| (-385 *5)) (|:| |deg| (-712)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1147 (-385 *5))))) (-1980 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-385 *5)) (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1147 *3)))) (-2958 (*1 *2 *3 *3) (-12 (-4 *4 (-1147 *2)) (-4 *2 (-1129)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-1147 (-385 *4))))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *6)) (-4 *5 (-1129)) (-4 *6 (-1147 *5)) (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *3) (|:| |radicand| *6))) (-5 *1 (-139 *5 *6 *7)) (-5 *4 (-712)) (-4 *7 (-1147 *3)))) (-2981 (*1 *2 *3) (|partial| -12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-712)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1147 (-385 *5))))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-5 *2 (-2 (|:| -2976 (-385 *5)) (|:| |poly| *3))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1147 (-385 *5)))))) -(-10 -7 (-15 -4167 ((-2 (|:| -2976 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2981 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-712))) "failed") |#3|)) (-15 -3323 ((-2 (|:| -3987 (-712)) (|:| -2976 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-712))) (-15 -2958 (|#1| |#3| |#3|)) (-15 -1980 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -3951 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-712))) |#3| |#3|))) -((-3008 (((-3 (-591 (-1085 |#2|)) "failed") (-591 (-1085 |#2|)) (-1085 |#2|)) 32))) -(((-140 |#1| |#2|) (-10 -7 (-15 -3008 ((-3 (-591 (-1085 |#2|)) "failed") (-591 (-1085 |#2|)) (-1085 |#2|)))) (-510) (-154 |#1|)) (T -140)) -((-3008 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-591 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5))))) -(-10 -7 (-15 -3008 ((-3 (-591 (-1085 |#2|)) "failed") (-591 (-1085 |#2|)) (-1085 |#2|)))) -((-2467 (($ (-1 (-108) |#2|) $) 29)) (-2908 (($ $) 36)) (-2537 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-3618 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2714 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-3465 (((-108) (-1 (-108) |#2|) $) 16)) (-2960 (((-712) (-1 (-108) |#2|) $) 14) (((-712) |#2| $) NIL)) (-1475 (((-108) (-1 (-108) |#2|) $) 15)) (-2028 (((-712) $) 11))) -(((-141 |#1| |#2|) (-10 -8 (-15 -2908 (|#1| |#1|)) (-15 -2537 (|#1| |#2| |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2467 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2537 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2714 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2960 ((-712) |#2| |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2028 ((-712) |#1|))) (-142 |#2|) (-1125)) (T -141)) -NIL -(-10 -8 (-15 -2908 (|#1| |#1|)) (-15 -2537 (|#1| |#2| |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2467 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2537 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2714 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2960 ((-712) |#2| |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2028 ((-712) |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-2467 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-2908 (($ $) 41 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4250))) (($ |#1| $) 42 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 40 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 49)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-142 |#1|) (-131) (-1125)) (T -142)) -((-2695 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-4 *1 (-142 *3)))) (-2714 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2)) (-4 *2 (-1125)))) (-3618 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4250)) (-4 *1 (-142 *2)) (-4 *2 (-1125)))) (-3618 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4250)) (-4 *1 (-142 *2)) (-4 *2 (-1125)))) (-2537 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4250)) (-4 *1 (-142 *3)) (-4 *3 (-1125)))) (-2467 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4250)) (-4 *1 (-142 *3)) (-4 *3 (-1125)))) (-3618 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1018)) (|has| *1 (-6 -4250)) (-4 *1 (-142 *2)) (-4 *2 (-1125)))) (-2537 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-142 *2)) (-4 *2 (-1125)) (-4 *2 (-1018)))) (-2908 (*1 *1 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-142 *2)) (-4 *2 (-1125)) (-4 *2 (-1018))))) -(-13 (-464 |t#1|) (-10 -8 (-15 -2695 ($ (-591 |t#1|))) (-15 -2714 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4250)) (PROGN (-15 -3618 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3618 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2537 ($ (-1 (-108) |t#1|) $)) (-15 -2467 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1018)) (PROGN (-15 -3618 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2537 ($ |t#1| $)) (-15 -2908 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) 87)) (-3865 (((-108) $) NIL)) (-1422 (($ |#2| (-591 (-854))) 57)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2297 (($ (-854)) 48)) (-3840 (((-128)) 23)) (-2686 (((-796) $) 70) (($ (-525)) 46) (($ |#2|) 47)) (-1263 ((|#2| $ (-591 (-854))) 60)) (-3425 (((-712)) 20)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 40 T CONST)) (-1839 (($) 44 T CONST)) (-3944 (((-108) $ $) 26)) (-4059 (($ $ |#2|) NIL)) (-4047 (($ $) 34) (($ $ $) 32)) (-4036 (($ $ $) 30)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-143 |#1| |#2| |#3|) (-13 (-975) (-37 |#2|) (-1178 |#2|) (-10 -8 (-15 -2297 ($ (-854))) (-15 -1422 ($ |#2| (-591 (-854)))) (-15 -1263 (|#2| $ (-591 (-854)))) (-15 -1522 ((-3 $ "failed") $)))) (-854) (-341) (-924 |#1| |#2|)) (T -143)) -((-1522 (*1 *1 *1) (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-854)) (-4 *3 (-341)) (-14 *4 (-924 *2 *3)))) (-2297 (*1 *1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-341)) (-14 *5 (-924 *3 *4)))) (-1422 (*1 *1 *2 *3) (-12 (-5 *3 (-591 (-854))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-854)) (-4 *2 (-341)) (-14 *5 (-924 *4 *2)))) (-1263 (*1 *2 *1 *3) (-12 (-5 *3 (-591 (-854))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-854)) (-14 *5 (-924 *4 *2))))) -(-13 (-975) (-37 |#2|) (-1178 |#2|) (-10 -8 (-15 -2297 ($ (-854))) (-15 -1422 ($ |#2| (-591 (-854)))) (-15 -1263 (|#2| $ (-591 (-854)))) (-15 -1522 ((-3 $ "failed") $)))) -((-1983 (((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-591 (-591 (-876 (-205)))) (-205) (-205) (-205) (-205)) 38)) (-1677 (((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860) (-385 (-525)) (-385 (-525))) 63) (((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860)) 64)) (-2980 (((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-591 (-591 (-876 (-205))))) 67) (((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-591 (-876 (-205)))) 66) (((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860) (-385 (-525)) (-385 (-525))) 58) (((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860)) 59))) -(((-144) (-10 -7 (-15 -2980 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860))) (-15 -2980 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860) (-385 (-525)) (-385 (-525)))) (-15 -1677 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860))) (-15 -1677 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860) (-385 (-525)) (-385 (-525)))) (-15 -1983 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-591 (-591 (-876 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2980 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-591 (-876 (-205))))) (-15 -2980 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-591 (-591 (-876 (-205)))))))) (T -144)) -((-2980 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) (-5 *1 (-144)) (-5 *3 (-591 (-591 (-876 (-205))))))) (-2980 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) (-5 *1 (-144)) (-5 *3 (-591 (-876 (-205)))))) (-1983 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-205)) (-5 *2 (-2 (|:| |brans| (-591 (-591 (-876 *4)))) (|:| |xValues| (-1013 *4)) (|:| |yValues| (-1013 *4)))) (-5 *1 (-144)) (-5 *3 (-591 (-591 (-876 *4)))))) (-1677 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-860)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) (-5 *1 (-144)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) (-5 *1 (-144)))) (-2980 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-860)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) (-5 *1 (-144)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-860)) (-5 *2 (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) (-5 *1 (-144))))) -(-10 -7 (-15 -2980 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860))) (-15 -2980 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860) (-385 (-525)) (-385 (-525)))) (-15 -1677 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860))) (-15 -1677 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-860) (-385 (-525)) (-385 (-525)))) (-15 -1983 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-591 (-591 (-876 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2980 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-591 (-876 (-205))))) (-15 -2980 ((-2 (|:| |brans| (-591 (-591 (-876 (-205))))) (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205)))) (-591 (-591 (-876 (-205))))))) -((-1662 (((-591 (-157 |#2|)) |#1| |#2|) 45))) -(((-145 |#1| |#2|) (-10 -7 (-15 -1662 ((-591 (-157 |#2|)) |#1| |#2|))) (-1147 (-157 (-525))) (-13 (-341) (-786))) (T -145)) -((-1662 (*1 *2 *3 *4) (-12 (-5 *2 (-591 (-157 *4))) (-5 *1 (-145 *3 *4)) (-4 *3 (-1147 (-157 (-525)))) (-4 *4 (-13 (-341) (-786)))))) -(-10 -7 (-15 -1662 ((-591 (-157 |#2|)) |#1| |#2|))) -((-2673 (((-108) $ $) NIL)) (-2962 (($) 16)) (-3892 (($) 15)) (-2143 (((-854)) 23)) (-2621 (((-1072) $) NIL)) (-4190 (((-525) $) 20)) (-2937 (((-1036) $) NIL)) (-2184 (($) 17)) (-2476 (($ (-525)) 24)) (-2686 (((-796) $) 30)) (-1831 (($) 18)) (-3944 (((-108) $ $) 14)) (-4036 (($ $ $) 13)) (* (($ (-854) $) 22) (($ (-205) $) 8))) -(((-146) (-13 (-25) (-10 -8 (-15 * ($ (-854) $)) (-15 * ($ (-205) $)) (-15 -4036 ($ $ $)) (-15 -3892 ($)) (-15 -2962 ($)) (-15 -2184 ($)) (-15 -1831 ($)) (-15 -4190 ((-525) $)) (-15 -2143 ((-854))) (-15 -2476 ($ (-525)))))) (T -146)) -((-4036 (*1 *1 *1 *1) (-5 *1 (-146))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-854)) (-5 *1 (-146)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-146)))) (-3892 (*1 *1) (-5 *1 (-146))) (-2962 (*1 *1) (-5 *1 (-146))) (-2184 (*1 *1) (-5 *1 (-146))) (-1831 (*1 *1) (-5 *1 (-146))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) (-2143 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-146)))) (-2476 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146))))) -(-13 (-25) (-10 -8 (-15 * ($ (-854) $)) (-15 * ($ (-205) $)) (-15 -4036 ($ $ $)) (-15 -3892 ($)) (-15 -2962 ($)) (-15 -2184 ($)) (-15 -1831 ($)) (-15 -4190 ((-525) $)) (-15 -2143 ((-854))) (-15 -2476 ($ (-525))))) -((-2541 ((|#2| |#2| (-1011 |#2|)) 88) ((|#2| |#2| (-1089)) 68)) (-1922 ((|#2| |#2| (-1011 |#2|)) 87) ((|#2| |#2| (-1089)) 67)) (-4142 ((|#2| |#2| |#2|) 27)) (-3259 (((-110) (-110)) 99)) (-1748 ((|#2| (-591 |#2|)) 117)) (-2633 ((|#2| (-591 |#2|)) 135)) (-1207 ((|#2| (-591 |#2|)) 125)) (-3836 ((|#2| |#2|) 123)) (-1737 ((|#2| (-591 |#2|)) 111)) (-1784 ((|#2| (-591 |#2|)) 112)) (-2777 ((|#2| (-591 |#2|)) 133)) (-3509 ((|#2| |#2| (-1089)) 56) ((|#2| |#2|) 55)) (-2106 ((|#2| |#2|) 23)) (-3808 ((|#2| |#2| |#2|) 26)) (-2754 (((-108) (-110)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-147 |#1| |#2|) (-10 -7 (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -4142 (|#2| |#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1089))) (-15 -2541 (|#2| |#2| (-1089))) (-15 -2541 (|#2| |#2| (-1011 |#2|))) (-15 -1922 (|#2| |#2| (-1089))) (-15 -1922 (|#2| |#2| (-1011 |#2|))) (-15 -3836 (|#2| |#2|)) (-15 -2777 (|#2| (-591 |#2|))) (-15 -1207 (|#2| (-591 |#2|))) (-15 -2633 (|#2| (-591 |#2|))) (-15 -1737 (|#2| (-591 |#2|))) (-15 -1784 (|#2| (-591 |#2|))) (-15 -1748 (|#2| (-591 |#2|)))) (-13 (-788) (-517)) (-408 |#1|)) (T -147)) -((-1748 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-788) (-517))))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-788) (-517))))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-788) (-517))))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-788) (-517))))) (-1207 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-788) (-517))))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-788) (-517))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1922 (*1 *2 *2 *3) (-12 (-5 *3 (-1011 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-147 *4 *2)))) (-1922 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-2541 (*1 *2 *2 *3) (-12 (-5 *3 (-1011 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-147 *4 *2)))) (-2541 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-3509 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-4142 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3808 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *4)) (-4 *4 (-408 *3)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4))))) -(-10 -7 (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -4142 (|#2| |#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1089))) (-15 -2541 (|#2| |#2| (-1089))) (-15 -2541 (|#2| |#2| (-1011 |#2|))) (-15 -1922 (|#2| |#2| (-1089))) (-15 -1922 (|#2| |#2| (-1011 |#2|))) (-15 -3836 (|#2| |#2|)) (-15 -2777 (|#2| (-591 |#2|))) (-15 -1207 (|#2| (-591 |#2|))) (-15 -2633 (|#2| (-591 |#2|))) (-15 -1737 (|#2| (-591 |#2|))) (-15 -1784 (|#2| (-591 |#2|))) (-15 -1748 (|#2| (-591 |#2|)))) -((-3301 ((|#1| |#1| |#1|) 53)) (-4223 ((|#1| |#1| |#1|) 50)) (-4142 ((|#1| |#1| |#1|) 44)) (-3309 ((|#1| |#1|) 35)) (-2161 ((|#1| |#1| (-591 |#1|)) 43)) (-2106 ((|#1| |#1|) 37)) (-3808 ((|#1| |#1| |#1|) 40))) -(((-148 |#1|) (-10 -7 (-15 -3808 (|#1| |#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2161 (|#1| |#1| (-591 |#1|))) (-15 -3309 (|#1| |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4223 (|#1| |#1| |#1|)) (-15 -3301 (|#1| |#1| |#1|))) (-510)) (T -148)) -((-3301 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-4223 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-4142 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3309 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-2161 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))) (-2106 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) -(-10 -7 (-15 -3808 (|#1| |#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2161 (|#1| |#1| (-591 |#1|))) (-15 -3309 (|#1| |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -4223 (|#1| |#1| |#1|)) (-15 -3301 (|#1| |#1| |#1|))) -((-2541 (($ $ (-1089)) 12) (($ $ (-1011 $)) 11)) (-1922 (($ $ (-1089)) 10) (($ $ (-1011 $)) 9)) (-4142 (($ $ $) 8)) (-3509 (($ $) 14) (($ $ (-1089)) 13)) (-2106 (($ $) 7)) (-3808 (($ $ $) 6))) +(-13 (-976)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-1697 (((-2 (|:| -1737 (-713)) (|:| -2059 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713)) 70)) (-2770 (((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|) 52)) (-3735 (((-2 (|:| -2059 (-385 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3484 ((|#1| |#3| |#3|) 40)) (-2168 ((|#3| |#3| (-385 |#2|) (-385 |#2|)) 19)) (-3138 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|) 49))) +(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -3735 ((-2 (|:| -2059 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2770 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -1697 ((-2 (|:| -1737 (-713)) (|:| -2059 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -3484 (|#1| |#3| |#3|)) (-15 -2168 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -3138 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|))) (-1130) (-1148 |#1|) (-1148 (-385 |#2|))) (T -139)) +((-3138 (*1 *2 *3 *3) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5)) (|:| |c2| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5))))) (-2168 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-385 *5)) (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1148 *3)))) (-3484 (*1 *2 *3 *3) (-12 (-4 *4 (-1148 *2)) (-4 *2 (-1130)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-1148 (-385 *4))))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *6)) (-4 *5 (-1130)) (-4 *6 (-1148 *5)) (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *3) (|:| |radicand| *6))) (-5 *1 (-139 *5 *6 *7)) (-5 *4 (-713)) (-4 *7 (-1148 *3)))) (-2770 (*1 *2 *3) (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5))))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -2059 (-385 *5)) (|:| |poly| *3))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5)))))) +(-10 -7 (-15 -3735 ((-2 (|:| -2059 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2770 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -1697 ((-2 (|:| -1737 (-713)) (|:| -2059 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -3484 (|#1| |#3| |#3|)) (-15 -2168 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -3138 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|))) +((-2746 (((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|)) 32))) +(((-140 |#1| |#2|) (-10 -7 (-15 -2746 ((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|)))) (-510) (-154 |#1|)) (T -140)) +((-2746 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5))))) +(-10 -7 (-15 -2746 ((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|)))) +((-1249 (($ (-1 (-108) |#2|) $) 29)) (-1716 (($ $) 36)) (-2591 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-3336 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3611 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-3669 (((-108) (-1 (-108) |#2|) $) 16)) (-3053 (((-713) (-1 (-108) |#2|) $) 14) (((-713) |#2| $) NIL)) (-2443 (((-108) (-1 (-108) |#2|) $) 15)) (-1696 (((-713) $) 11))) +(((-141 |#1| |#2|) (-10 -8 (-15 -1716 (|#1| |#1|)) (-15 -2591 (|#1| |#2| |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2591 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3611 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-713) |#2| |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1696 ((-713) |#1|))) (-142 |#2|) (-1126)) (T -141)) +NIL +(-10 -8 (-15 -1716 (|#1| |#1|)) (-15 -2591 (|#1| |#2| |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2591 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3611 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-713) |#2| |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1696 ((-713) |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-1249 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-1716 (($ $) 41 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254))) (($ |#1| $) 42 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 40 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 49)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-142 |#1|) (-131) (-1126)) (T -142)) +((-4059 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-142 *3)))) (-3611 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2)) (-4 *2 (-1126)))) (-3336 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)))) (-3336 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)))) (-2591 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *3)) (-4 *3 (-1126)))) (-1249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *3)) (-4 *3 (-1126)))) (-3336 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1019)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)))) (-2591 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)) (-4 *2 (-1019)))) (-1716 (*1 *1 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)) (-4 *2 (-1019))))) +(-13 (-464 |t#1|) (-10 -8 (-15 -4059 ($ (-592 |t#1|))) (-15 -3611 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4254)) (PROGN (-15 -3336 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3336 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2591 ($ (-1 (-108) |t#1|) $)) (-15 -1249 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -3336 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2591 ($ |t#1| $)) (-15 -1716 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) 87)) (-2507 (((-108) $) NIL)) (-3097 (($ |#2| (-592 (-855))) 57)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2394 (($ (-855)) 48)) (-2374 (((-128)) 23)) (-4044 (((-797) $) 70) (($ (-525)) 46) (($ |#2|) 47)) (-2100 ((|#2| $ (-592 (-855))) 60)) (-2502 (((-713)) 20)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 40 T CONST)) (-1449 (($) 44 T CONST)) (-3899 (((-108) $ $) 26)) (-4047 (($ $ |#2|) NIL)) (-4033 (($ $) 34) (($ $ $) 32)) (-4017 (($ $ $) 30)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-143 |#1| |#2| |#3|) (-13 (-976) (-37 |#2|) (-1179 |#2|) (-10 -8 (-15 -2394 ($ (-855))) (-15 -3097 ($ |#2| (-592 (-855)))) (-15 -2100 (|#2| $ (-592 (-855)))) (-15 -1645 ((-3 $ "failed") $)))) (-855) (-341) (-925 |#1| |#2|)) (T -143)) +((-1645 (*1 *1 *1) (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-855)) (-4 *3 (-341)) (-14 *4 (-925 *2 *3)))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-341)) (-14 *5 (-925 *3 *4)))) (-3097 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-855))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-855)) (-4 *2 (-341)) (-14 *5 (-925 *4 *2)))) (-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-855))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-855)) (-14 *5 (-925 *4 *2))))) +(-13 (-976) (-37 |#2|) (-1179 |#2|) (-10 -8 (-15 -2394 ($ (-855))) (-15 -3097 ($ |#2| (-592 (-855)))) (-15 -2100 (|#2| $ (-592 (-855)))) (-15 -1645 ((-3 $ "failed") $)))) +((-1749 (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205)))) (-205) (-205) (-205) (-205)) 38)) (-2233 (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525))) 63) (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861)) 64)) (-2649 (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205))))) 67) (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-877 (-205)))) 66) (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525))) 58) (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861)) 59))) +(((-144) (-10 -7 (-15 -2649 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861))) (-15 -2649 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525)))) (-15 -2233 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861))) (-15 -2233 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525)))) (-15 -1749 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2649 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-877 (-205))))) (-15 -2649 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205)))))))) (T -144)) +((-2649 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-877 (-205))))))) (-2649 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-877 (-205)))))) (-1749 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-205)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 *4)))) (|:| |xValues| (-1014 *4)) (|:| |yValues| (-1014 *4)))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-877 *4)))))) (-2233 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-861)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)))) (-2649 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-861)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144))))) +(-10 -7 (-15 -2649 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861))) (-15 -2649 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525)))) (-15 -2233 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861))) (-15 -2233 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525)))) (-15 -1749 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2649 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-877 (-205))))) (-15 -2649 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205))))))) +((-2505 (((-592 (-157 |#2|)) |#1| |#2|) 45))) +(((-145 |#1| |#2|) (-10 -7 (-15 -2505 ((-592 (-157 |#2|)) |#1| |#2|))) (-1148 (-157 (-525))) (-13 (-341) (-787))) (T -145)) +((-2505 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4)) (-4 *3 (-1148 (-157 (-525)))) (-4 *4 (-13 (-341) (-787)))))) +(-10 -7 (-15 -2505 ((-592 (-157 |#2|)) |#1| |#2|))) +((-4028 (((-108) $ $) NIL)) (-1542 (($) 16)) (-1559 (($) 15)) (-3287 (((-855)) 23)) (-1707 (((-1073) $) NIL)) (-2949 (((-525) $) 20)) (-3027 (((-1037) $) NIL)) (-3798 (($) 17)) (-3244 (($ (-525)) 24)) (-4044 (((-797) $) 30)) (-2411 (($) 18)) (-3899 (((-108) $ $) 14)) (-4017 (($ $ $) 13)) (* (($ (-855) $) 22) (($ (-205) $) 8))) +(((-146) (-13 (-25) (-10 -8 (-15 * ($ (-855) $)) (-15 * ($ (-205) $)) (-15 -4017 ($ $ $)) (-15 -1559 ($)) (-15 -1542 ($)) (-15 -3798 ($)) (-15 -2411 ($)) (-15 -2949 ((-525) $)) (-15 -3287 ((-855))) (-15 -3244 ($ (-525)))))) (T -146)) +((-4017 (*1 *1 *1 *1) (-5 *1 (-146))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-146)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-146)))) (-1559 (*1 *1) (-5 *1 (-146))) (-1542 (*1 *1) (-5 *1 (-146))) (-3798 (*1 *1) (-5 *1 (-146))) (-2411 (*1 *1) (-5 *1 (-146))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) (-3287 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-146)))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146))))) +(-13 (-25) (-10 -8 (-15 * ($ (-855) $)) (-15 * ($ (-205) $)) (-15 -4017 ($ $ $)) (-15 -1559 ($)) (-15 -1542 ($)) (-15 -3798 ($)) (-15 -2411 ($)) (-15 -2949 ((-525) $)) (-15 -3287 ((-855))) (-15 -3244 ($ (-525))))) +((-2334 ((|#2| |#2| (-1012 |#2|)) 88) ((|#2| |#2| (-1090)) 68)) (-3292 ((|#2| |#2| (-1012 |#2|)) 87) ((|#2| |#2| (-1090)) 67)) (-2635 ((|#2| |#2| |#2|) 27)) (-1885 (((-110) (-110)) 99)) (-2309 ((|#2| (-592 |#2|)) 117)) (-3646 ((|#2| (-592 |#2|)) 135)) (-1354 ((|#2| (-592 |#2|)) 125)) (-2065 ((|#2| |#2|) 123)) (-2585 ((|#2| (-592 |#2|)) 111)) (-4007 ((|#2| (-592 |#2|)) 112)) (-2133 ((|#2| (-592 |#2|)) 133)) (-1537 ((|#2| |#2| (-1090)) 56) ((|#2| |#2|) 55)) (-3444 ((|#2| |#2|) 23)) (-3738 ((|#2| |#2| |#2|) 26)) (-3712 (((-108) (-110)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-147 |#1| |#2|) (-10 -7 (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3738 (|#2| |#2| |#2|)) (-15 -2635 (|#2| |#2| |#2|)) (-15 -3444 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1537 (|#2| |#2| (-1090))) (-15 -2334 (|#2| |#2| (-1090))) (-15 -2334 (|#2| |#2| (-1012 |#2|))) (-15 -3292 (|#2| |#2| (-1090))) (-15 -3292 (|#2| |#2| (-1012 |#2|))) (-15 -2065 (|#2| |#2|)) (-15 -2133 (|#2| (-592 |#2|))) (-15 -1354 (|#2| (-592 |#2|))) (-15 -3646 (|#2| (-592 |#2|))) (-15 -2585 (|#2| (-592 |#2|))) (-15 -4007 (|#2| (-592 |#2|))) (-15 -2309 (|#2| (-592 |#2|)))) (-13 (-789) (-517)) (-408 |#1|)) (T -147)) +((-2309 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2585 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3292 (*1 *2 *2 *3) (-12 (-5 *3 (-1012 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-3292 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-2334 (*1 *2 *2 *3) (-12 (-5 *3 (-1012 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-2334 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-1537 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3444 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-2635 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3738 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4)) (-4 *4 (-408 *3)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4))))) +(-10 -7 (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3738 (|#2| |#2| |#2|)) (-15 -2635 (|#2| |#2| |#2|)) (-15 -3444 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1537 (|#2| |#2| (-1090))) (-15 -2334 (|#2| |#2| (-1090))) (-15 -2334 (|#2| |#2| (-1012 |#2|))) (-15 -3292 (|#2| |#2| (-1090))) (-15 -3292 (|#2| |#2| (-1012 |#2|))) (-15 -2065 (|#2| |#2|)) (-15 -2133 (|#2| (-592 |#2|))) (-15 -1354 (|#2| (-592 |#2|))) (-15 -3646 (|#2| (-592 |#2|))) (-15 -2585 (|#2| (-592 |#2|))) (-15 -4007 (|#2| (-592 |#2|))) (-15 -2309 (|#2| (-592 |#2|)))) +((-3678 ((|#1| |#1| |#1|) 53)) (-1324 ((|#1| |#1| |#1|) 50)) (-2635 ((|#1| |#1| |#1|) 44)) (-3605 ((|#1| |#1|) 35)) (-3970 ((|#1| |#1| (-592 |#1|)) 43)) (-3444 ((|#1| |#1|) 37)) (-3738 ((|#1| |#1| |#1|) 40))) +(((-148 |#1|) (-10 -7 (-15 -3738 (|#1| |#1| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3970 (|#1| |#1| (-592 |#1|))) (-15 -3605 (|#1| |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|))) (-510)) (T -148)) +((-3678 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-1324 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-2635 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3605 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3970 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))) (-3444 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3738 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) +(-10 -7 (-15 -3738 (|#1| |#1| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3970 (|#1| |#1| (-592 |#1|))) (-15 -3605 (|#1| |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|))) +((-2334 (($ $ (-1090)) 12) (($ $ (-1012 $)) 11)) (-3292 (($ $ (-1090)) 10) (($ $ (-1012 $)) 9)) (-2635 (($ $ $) 8)) (-1537 (($ $) 14) (($ $ (-1090)) 13)) (-3444 (($ $) 7)) (-3738 (($ $ $) 6))) (((-149) (-131)) (T -149)) -((-3509 (*1 *1 *1) (-4 *1 (-149))) (-3509 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1089)))) (-2541 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1089)))) (-2541 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 *1)) (-4 *1 (-149)))) (-1922 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1089)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 *1)) (-4 *1 (-149))))) -(-13 (-134) (-10 -8 (-15 -3509 ($ $)) (-15 -3509 ($ $ (-1089))) (-15 -2541 ($ $ (-1089))) (-15 -2541 ($ $ (-1011 $))) (-15 -1922 ($ $ (-1089))) (-15 -1922 ($ $ (-1011 $))))) +((-1537 (*1 *1 *1) (-4 *1 (-149))) (-1537 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090)))) (-2334 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090)))) (-2334 (*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-149)))) (-3292 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-149))))) +(-13 (-134) (-10 -8 (-15 -1537 ($ $)) (-15 -1537 ($ $ (-1090))) (-15 -2334 ($ $ (-1090))) (-15 -2334 ($ $ (-1012 $))) (-15 -3292 ($ $ (-1090))) (-15 -3292 ($ $ (-1012 $))))) (((-134) . T)) -((-2673 (((-108) $ $) NIL)) (-2276 (($ (-525)) 13) (($ $ $) 14)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 17)) (-3944 (((-108) $ $) 9))) -(((-150) (-13 (-1018) (-10 -8 (-15 -2276 ($ (-525))) (-15 -2276 ($ $ $))))) (T -150)) -((-2276 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))) (-2276 (*1 *1 *1 *1) (-5 *1 (-150)))) -(-13 (-1018) (-10 -8 (-15 -2276 ($ (-525))) (-15 -2276 ($ $ $)))) -((-3259 (((-110) (-1089)) 97))) -(((-151) (-10 -7 (-15 -3259 ((-110) (-1089))))) (T -151)) -((-3259 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-110)) (-5 *1 (-151))))) -(-10 -7 (-15 -3259 ((-110) (-1089)))) -((-1684 ((|#3| |#3|) 19))) -(((-152 |#1| |#2| |#3|) (-10 -7 (-15 -1684 (|#3| |#3|))) (-975) (-1147 |#1|) (-1147 |#2|)) (T -152)) -((-1684 (*1 *2 *2) (-12 (-4 *3 (-975)) (-4 *4 (-1147 *3)) (-5 *1 (-152 *3 *4 *2)) (-4 *2 (-1147 *4))))) -(-10 -7 (-15 -1684 (|#3| |#3|))) -((-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 217)) (-1481 ((|#2| $) 96)) (-4087 (($ $) 245)) (-2381 (($ $) 239)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 40)) (-4058 (($ $) 243)) (-2360 (($ $) 237)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-3341 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 139)) (-3265 (($ $ $) 222)) (-3925 (((-631 (-525)) (-631 $)) NIL) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) 155) (((-631 |#2|) (-631 $)) 149)) (-3618 (($ (-1085 |#2|)) 119) (((-3 $ "failed") (-385 (-1085 |#2|))) NIL)) (-1522 (((-3 $ "failed") $) 209)) (-2350 (((-3 (-385 (-525)) "failed") $) 199)) (-2157 (((-108) $) 194)) (-3184 (((-385 (-525)) $) 197)) (-2193 (((-854)) 89)) (-3239 (($ $ $) 224)) (-1863 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1417 (($) 234)) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 186) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 191)) (-1525 ((|#2| $) 94)) (-3205 (((-1085 |#2|) $) 121)) (-1257 (($ (-1 |#2| |#2|) $) 102)) (-2356 (($ $) 236)) (-3610 (((-1085 |#2|) $) 120)) (-1523 (($ $) 202)) (-3526 (($) 97)) (-3550 (((-396 (-1085 $)) (-1085 $)) 88)) (-3534 (((-396 (-1085 $)) (-1085 $)) 57)) (-3210 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2288 (($ $) 235)) (-3048 (((-712) $) 219)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 229)) (-2858 ((|#2| (-1171 $)) NIL) ((|#2|) 91)) (-2209 (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) NIL) (($ $ (-712)) NIL) (($ $) NIL)) (-1341 (((-1085 |#2|)) 114)) (-4073 (($ $) 244)) (-2370 (($ $) 238)) (-1671 (((-1171 |#2|) $ (-1171 $)) 128) (((-631 |#2|) (-1171 $) (-1171 $)) NIL) (((-1171 |#2|) $) 110) (((-631 |#2|) (-1171 $)) NIL)) (-1300 (((-1171 |#2|) $) NIL) (($ (-1171 |#2|)) NIL) (((-1085 |#2|) $) NIL) (($ (-1085 |#2|)) NIL) (((-825 (-525)) $) 177) (((-825 (-357)) $) 181) (((-157 (-357)) $) 167) (((-157 (-205)) $) 162) (((-501) $) 173)) (-3369 (($ $) 98)) (-2686 (((-796) $) 138) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-385 (-525))) NIL) (($ $) NIL)) (-2173 (((-1085 |#2|) $) 23)) (-3425 (((-712)) 100)) (-4163 (($ $) 248)) (-2457 (($ $) 242)) (-4137 (($ $) 246)) (-2432 (($ $) 240)) (-3358 ((|#2| $) 233)) (-4149 (($ $) 247)) (-2444 (($ $) 241)) (-1460 (($ $) 157)) (-3944 (((-108) $ $) 104)) (-3971 (((-108) $ $) 193)) (-4047 (($ $) 106) (($ $ $) NIL)) (-4036 (($ $ $) 105)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-385 (-525))) 267) (($ $ $) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL))) -(((-153 |#1| |#2|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2686 (|#1| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2867 ((-2 (|:| -1851 |#1|) (|:| -4237 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -3048 ((-712) |#1|)) (-15 -3576 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3265 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -3971 ((-108) |#1| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -1300 ((-157 (-205)) |#1|)) (-15 -1300 ((-157 (-357)) |#1|)) (-15 -2381 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -2457 (|#1| |#1|)) (-15 -4073 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4163 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1417 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3534 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3550 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3008 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|))) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -1863 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3358 (|#2| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3369 (|#1| |#1|)) (-15 -3526 (|#1|)) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -4018 ((-822 (-357) |#1|) |#1| (-825 (-357)) (-822 (-357) |#1|))) (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|))) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -3618 ((-3 |#1| "failed") (-385 (-1085 |#2|)))) (-15 -3610 ((-1085 |#2|) |#1|)) (-15 -1300 (|#1| (-1085 |#2|))) (-15 -3618 (|#1| (-1085 |#2|))) (-15 -1341 ((-1085 |#2|))) (-15 -3925 ((-631 |#2|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -1300 ((-1085 |#2|) |#1|)) (-15 -2858 (|#2|)) (-15 -1300 (|#1| (-1171 |#2|))) (-15 -1300 ((-1171 |#2|) |#1|)) (-15 -1671 ((-631 |#2|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1|)) (-15 -3205 ((-1085 |#2|) |#1|)) (-15 -2173 ((-1085 |#2|) |#1|)) (-15 -2858 (|#2| (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -1525 (|#2| |#1|)) (-15 -1481 (|#2| |#1|)) (-15 -2193 ((-854))) (-15 -2686 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 ** (|#1| |#1| (-712))) (-15 -1522 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-854))) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) (-154 |#2|) (-160)) (T -153)) -((-3425 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-712)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-2193 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-854)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-2858 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2)))) (-1341 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1085 *4)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4))))) -(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2686 (|#1| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2867 ((-2 (|:| -1851 |#1|) (|:| -4237 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -3048 ((-712) |#1|)) (-15 -3576 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3265 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -3971 ((-108) |#1| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -1300 ((-157 (-205)) |#1|)) (-15 -1300 ((-157 (-357)) |#1|)) (-15 -2381 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -2457 (|#1| |#1|)) (-15 -4073 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4163 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1417 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3534 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3550 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3008 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|))) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -1863 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3358 (|#2| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3369 (|#1| |#1|)) (-15 -3526 (|#1|)) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -4018 ((-822 (-357) |#1|) |#1| (-825 (-357)) (-822 (-357) |#1|))) (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|))) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -3618 ((-3 |#1| "failed") (-385 (-1085 |#2|)))) (-15 -3610 ((-1085 |#2|) |#1|)) (-15 -1300 (|#1| (-1085 |#2|))) (-15 -3618 (|#1| (-1085 |#2|))) (-15 -1341 ((-1085 |#2|))) (-15 -3925 ((-631 |#2|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -1300 ((-1085 |#2|) |#1|)) (-15 -2858 (|#2|)) (-15 -1300 (|#1| (-1171 |#2|))) (-15 -1300 ((-1171 |#2|) |#1|)) (-15 -1671 ((-631 |#2|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1|)) (-15 -3205 ((-1085 |#2|) |#1|)) (-15 -2173 ((-1085 |#2|) |#1|)) (-15 -2858 (|#2| (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -1525 (|#2| |#1|)) (-15 -1481 (|#2| |#1|)) (-15 -2193 ((-854))) (-15 -2686 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 ** (|#1| |#1| (-712))) (-15 -1522 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-854))) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 93 (-3150 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))))) (-3641 (($ $) 94 (-3150 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))))) (-3077 (((-108) $) 96 (-3150 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))))) (-1712 (((-631 |#1|) (-1171 $)) 46) (((-631 |#1|)) 61)) (-1481 ((|#1| $) 52)) (-4087 (($ $) 228 (|has| |#1| (-1111)))) (-2381 (($ $) 211 (|has| |#1| (-1111)))) (-2666 (((-1099 (-854) (-712)) (-525)) 147 (|has| |#1| (-327)))) (-3332 (((-3 $ "failed") $ $) 19)) (-2179 (((-396 (-1085 $)) (-1085 $)) 242 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (-1720 (($ $) 113 (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-341))))) (-3898 (((-396 $) $) 114 (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-341))))) (-2551 (($ $) 241 (-12 (|has| |#1| (-932)) (|has| |#1| (-1111))))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 245 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (-1965 (((-108) $ $) 104 (|has| |#1| (-286)))) (-2834 (((-712)) 87 (|has| |#1| (-346)))) (-4058 (($ $) 227 (|has| |#1| (-1111)))) (-2360 (($ $) 212 (|has| |#1| (-1111)))) (-4109 (($ $) 226 (|has| |#1| (-1111)))) (-2400 (($ $) 213 (|has| |#1| (-1111)))) (-2055 (($) 17 T CONST)) (-4174 (((-3 (-525) "failed") $) 169 (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-3341 (((-525) $) 170 (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 165)) (-1554 (($ (-1171 |#1|) (-1171 $)) 48) (($ (-1171 |#1|)) 64)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-3265 (($ $ $) 108 (|has| |#1| (-286)))) (-4054 (((-631 |#1|) $ (-1171 $)) 53) (((-631 |#1|) $) 59)) (-3925 (((-631 (-525)) (-631 $)) 164 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 163 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 162) (((-631 |#1|) (-631 $)) 161)) (-3618 (($ (-1085 |#1|)) 158) (((-3 $ "failed") (-385 (-1085 |#1|))) 155 (|has| |#1| (-341)))) (-1522 (((-3 $ "failed") $) 34)) (-2560 ((|#1| $) 253)) (-2350 (((-3 (-385 (-525)) "failed") $) 246 (|has| |#1| (-510)))) (-2157 (((-108) $) 248 (|has| |#1| (-510)))) (-3184 (((-385 (-525)) $) 247 (|has| |#1| (-510)))) (-2193 (((-854)) 54)) (-1325 (($) 90 (|has| |#1| (-346)))) (-3239 (($ $ $) 107 (|has| |#1| (-286)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 102 (|has| |#1| (-286)))) (-1268 (($) 149 (|has| |#1| (-327)))) (-2096 (((-108) $) 150 (|has| |#1| (-327)))) (-3477 (($ $ (-712)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-2393 (((-108) $) 115 (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-341))))) (-1863 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-984)) (|has| |#1| (-1111))))) (-1417 (($) 238 (|has| |#1| (-1111)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 261 (|has| |#1| (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 260 (|has| |#1| (-819 (-357))))) (-1676 (((-854) $) 152 (|has| |#1| (-327))) (((-774 (-854)) $) 138 (|has| |#1| (-327)))) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 240 (-12 (|has| |#1| (-932)) (|has| |#1| (-1111))))) (-1525 ((|#1| $) 51)) (-2115 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 111 (|has| |#1| (-286)))) (-3205 (((-1085 |#1|) $) 44 (|has| |#1| (-341)))) (-1923 (($ $ $) 207 (|has| |#1| (-788)))) (-3475 (($ $ $) 206 (|has| |#1| (-788)))) (-1257 (($ (-1 |#1| |#1|) $) 262)) (-1970 (((-854) $) 89 (|has| |#1| (-346)))) (-2356 (($ $) 235 (|has| |#1| (-1111)))) (-3610 (((-1085 |#1|) $) 156)) (-2081 (($ (-591 $)) 100 (-3150 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (($ $ $) 99 (-3150 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))))) (-2621 (((-1072) $) 9)) (-1523 (($ $) 116 (|has| |#1| (-341)))) (-3492 (($) 143 (|has| |#1| (-327)) CONST)) (-3229 (($ (-854)) 88 (|has| |#1| (-346)))) (-3526 (($) 257)) (-2571 ((|#1| $) 254)) (-2937 (((-1036) $) 10)) (-3965 (($) 160)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 101 (-3150 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))))) (-2124 (($ (-591 $)) 98 (-3150 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (($ $ $) 97 (-3150 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))))) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) 146 (|has| |#1| (-327)))) (-3550 (((-396 (-1085 $)) (-1085 $)) 244 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (-3534 (((-396 (-1085 $)) (-1085 $)) 243 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (-2542 (((-396 $) $) 112 (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-341))))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 109 (|has| |#1| (-286)))) (-3210 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 92 (-3150 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 103 (|has| |#1| (-286)))) (-2288 (($ $) 236 (|has| |#1| (-1111)))) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) 268 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 266 (|has| |#1| (-288 |#1|))) (($ $ (-591 (-273 |#1|))) 265 (|has| |#1| (-288 |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) 264 (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) |#1|) 263 (|has| |#1| (-486 (-1089) |#1|)))) (-3048 (((-712) $) 105 (|has| |#1| (-286)))) (-1881 (($ $ |#1|) 269 (|has| |#1| (-265 |#1| |#1|)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 106 (|has| |#1| (-286)))) (-2858 ((|#1| (-1171 $)) 47) ((|#1|) 60)) (-2652 (((-712) $) 151 (|has| |#1| (-327))) (((-3 (-712) "failed") $ $) 139 (|has| |#1| (-327)))) (-2209 (($ $ (-1 |#1| |#1|) (-712)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-591 (-1089)) (-591 (-712))) 130 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 131 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 132 (|has| |#1| (-833 (-1089)))) (($ $ (-1089)) 133 (|has| |#1| (-833 (-1089)))) (($ $ (-712)) 135 (-3150 (-3543 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3543 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 137 (-3150 (-3543 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3543 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-3206 (((-631 |#1|) (-1171 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-1341 (((-1085 |#1|)) 159)) (-4122 (($ $) 225 (|has| |#1| (-1111)))) (-2410 (($ $) 214 (|has| |#1| (-1111)))) (-3560 (($) 148 (|has| |#1| (-327)))) (-4098 (($ $) 224 (|has| |#1| (-1111)))) (-2391 (($ $) 215 (|has| |#1| (-1111)))) (-4073 (($ $) 223 (|has| |#1| (-1111)))) (-2370 (($ $) 216 (|has| |#1| (-1111)))) (-1671 (((-1171 |#1|) $ (-1171 $)) 50) (((-631 |#1|) (-1171 $) (-1171 $)) 49) (((-1171 |#1|) $) 66) (((-631 |#1|) (-1171 $)) 65)) (-1300 (((-1171 |#1|) $) 63) (($ (-1171 |#1|)) 62) (((-1085 |#1|) $) 171) (($ (-1085 |#1|)) 157) (((-825 (-525)) $) 259 (|has| |#1| (-566 (-825 (-525))))) (((-825 (-357)) $) 258 (|has| |#1| (-566 (-825 (-357))))) (((-157 (-357)) $) 210 (|has| |#1| (-951))) (((-157 (-205)) $) 209 (|has| |#1| (-951))) (((-501) $) 208 (|has| |#1| (-566 (-501))))) (-3369 (($ $) 256)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 145 (-3150 (-3543 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))) (|has| |#1| (-327))))) (-4185 (($ |#1| |#1|) 255)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 86 (-3150 (|has| |#1| (-341)) (|has| |#1| (-966 (-385 (-525)))))) (($ $) 91 (-3150 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))))) (-3751 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (-3150 (-3543 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))) (|has| |#1| (-136))))) (-2173 (((-1085 |#1|) $) 45)) (-3425 (((-712)) 29)) (-3612 (((-1171 $)) 67)) (-4163 (($ $) 234 (|has| |#1| (-1111)))) (-2457 (($ $) 222 (|has| |#1| (-1111)))) (-1724 (((-108) $ $) 95 (-3150 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842)))))) (-4137 (($ $) 233 (|has| |#1| (-1111)))) (-2432 (($ $) 221 (|has| |#1| (-1111)))) (-4193 (($ $) 232 (|has| |#1| (-1111)))) (-2477 (($ $) 220 (|has| |#1| (-1111)))) (-3358 ((|#1| $) 250 (|has| |#1| (-1111)))) (-1234 (($ $) 231 (|has| |#1| (-1111)))) (-2495 (($ $) 219 (|has| |#1| (-1111)))) (-4179 (($ $) 230 (|has| |#1| (-1111)))) (-2469 (($ $) 218 (|has| |#1| (-1111)))) (-4149 (($ $) 229 (|has| |#1| (-1111)))) (-2444 (($ $) 217 (|has| |#1| (-1111)))) (-1460 (($ $) 251 (|has| |#1| (-984)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-1 |#1| |#1|) (-712)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-591 (-1089)) (-591 (-712))) 126 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 127 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 128 (|has| |#1| (-833 (-1089)))) (($ $ (-1089)) 129 (|has| |#1| (-833 (-1089)))) (($ $ (-712)) 134 (-3150 (-3543 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3543 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 136 (-3150 (-3543 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3543 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-4004 (((-108) $ $) 204 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 203 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 205 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 202 (|has| |#1| (-788)))) (-4059 (($ $ $) 121 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-385 (-525))) 239 (-12 (|has| |#1| (-932)) (|has| |#1| (-1111)))) (($ $ $) 237 (|has| |#1| (-1111))) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341))))) +((-4028 (((-108) $ $) NIL)) (-2981 (($ (-525)) 13) (($ $ $) 14)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 17)) (-3899 (((-108) $ $) 9))) +(((-150) (-13 (-1019) (-10 -8 (-15 -2981 ($ (-525))) (-15 -2981 ($ $ $))))) (T -150)) +((-2981 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))) (-2981 (*1 *1 *1 *1) (-5 *1 (-150)))) +(-13 (-1019) (-10 -8 (-15 -2981 ($ (-525))) (-15 -2981 ($ $ $)))) +((-1885 (((-110) (-1090)) 97))) +(((-151) (-10 -7 (-15 -1885 ((-110) (-1090))))) (T -151)) +((-1885 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-110)) (-5 *1 (-151))))) +(-10 -7 (-15 -1885 ((-110) (-1090)))) +((-1830 ((|#3| |#3|) 19))) +(((-152 |#1| |#2| |#3|) (-10 -7 (-15 -1830 (|#3| |#3|))) (-976) (-1148 |#1|) (-1148 |#2|)) (T -152)) +((-1830 (*1 *2 *2) (-12 (-4 *3 (-976)) (-4 *4 (-1148 *3)) (-5 *1 (-152 *3 *4 *2)) (-4 *2 (-1148 *4))))) +(-10 -7 (-15 -1830 (|#3| |#3|))) +((-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 217)) (-3942 ((|#2| $) 96)) (-3915 (($ $) 245)) (-3760 (($ $) 239)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 40)) (-3886 (($ $) 243)) (-3737 (($ $) 237)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2068 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 139)) (-2720 (($ $ $) 222)) (-1307 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 155) (((-632 |#2|) (-632 $)) 149)) (-3336 (($ (-1086 |#2|)) 119) (((-3 $ "failed") (-385 (-1086 |#2|))) NIL)) (-1645 (((-3 $ "failed") $) 209)) (-2132 (((-3 (-385 (-525)) "failed") $) 199)) (-3748 (((-108) $) 194)) (-1675 (((-385 (-525)) $) 197)) (-3439 (((-855)) 89)) (-2699 (($ $ $) 224)) (-1374 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1961 (($) 234)) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 186) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 191)) (-2281 ((|#2| $) 94)) (-3800 (((-1086 |#2|) $) 121)) (-2868 (($ (-1 |#2| |#2|) $) 102)) (-2412 (($ $) 236)) (-3325 (((-1086 |#2|) $) 120)) (-3243 (($ $) 202)) (-3488 (($) 97)) (-3725 (((-396 (-1086 $)) (-1086 $)) 88)) (-1944 (((-396 (-1086 $)) (-1086 $)) 57)) (-2675 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2840 (($ $) 235)) (-2824 (((-713) $) 219)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 229)) (-2257 ((|#2| (-1172 $)) NIL) ((|#2|) 91)) (-1576 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2775 (((-1086 |#2|)) 114)) (-3901 (($ $) 244)) (-3749 (($ $) 238)) (-1625 (((-1172 |#2|) $ (-1172 $)) 128) (((-632 |#2|) (-1172 $) (-1172 $)) NIL) (((-1172 |#2|) $) 110) (((-632 |#2|) (-1172 $)) NIL)) (-2923 (((-1172 |#2|) $) NIL) (($ (-1172 |#2|)) NIL) (((-1086 |#2|) $) NIL) (($ (-1086 |#2|)) NIL) (((-826 (-525)) $) 177) (((-826 (-357)) $) 181) (((-157 (-357)) $) 167) (((-157 (-205)) $) 162) (((-501) $) 173)) (-4025 (($ $) 98)) (-4044 (((-797) $) 138) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-385 (-525))) NIL) (($ $) NIL)) (-2867 (((-1086 |#2|) $) 23)) (-2502 (((-713)) 100)) (-4004 (($ $) 248)) (-3836 (($ $) 242)) (-3975 (($ $) 246)) (-3808 (($ $) 240)) (-3103 ((|#2| $) 233)) (-3989 (($ $) 247)) (-3823 (($ $) 241)) (-2053 (($ $) 157)) (-3899 (((-108) $ $) 104)) (-3928 (((-108) $ $) 193)) (-4033 (($ $) 106) (($ $ $) NIL)) (-4017 (($ $ $) 105)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) 267) (($ $ $) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL))) +(((-153 |#1| |#2|) (-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -4044 (|#1| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1893 ((-2 (|:| -3603 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -2824 ((-713) |#1|)) (-15 -4204 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2699 (|#1| |#1| |#1|)) (-15 -2720 (|#1| |#1| |#1|)) (-15 -3243 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -3928 ((-108) |#1| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2923 ((-157 (-205)) |#1|)) (-15 -2923 ((-157 (-357)) |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -2412 (|#1| |#1|)) (-15 -2840 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1961 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -1944 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -3725 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2746 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -1374 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3103 (|#2| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4025 (|#1| |#1|)) (-15 -3488 (|#1|)) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2029 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3336 ((-3 |#1| "failed") (-385 (-1086 |#2|)))) (-15 -3325 ((-1086 |#2|) |#1|)) (-15 -2923 (|#1| (-1086 |#2|))) (-15 -3336 (|#1| (-1086 |#2|))) (-15 -2775 ((-1086 |#2|))) (-15 -1307 ((-632 |#2|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2923 ((-1086 |#2|) |#1|)) (-15 -2257 (|#2|)) (-15 -2923 (|#1| (-1172 |#2|))) (-15 -2923 ((-1172 |#2|) |#1|)) (-15 -1625 ((-632 |#2|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1|)) (-15 -3800 ((-1086 |#2|) |#1|)) (-15 -2867 ((-1086 |#2|) |#1|)) (-15 -2257 (|#2| (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -2281 (|#2| |#1|)) (-15 -3942 (|#2| |#1|)) (-15 -3439 ((-855))) (-15 -4044 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1645 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) (-154 |#2|) (-160)) (T -153)) +((-2502 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-3439 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-855)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-2257 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2)))) (-2775 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1086 *4)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4))))) +(-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -4044 (|#1| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1893 ((-2 (|:| -3603 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -2824 ((-713) |#1|)) (-15 -4204 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2699 (|#1| |#1| |#1|)) (-15 -2720 (|#1| |#1| |#1|)) (-15 -3243 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -3928 ((-108) |#1| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2923 ((-157 (-205)) |#1|)) (-15 -2923 ((-157 (-357)) |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -2412 (|#1| |#1|)) (-15 -2840 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1961 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -1944 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -3725 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2746 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -1374 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3103 (|#2| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4025 (|#1| |#1|)) (-15 -3488 (|#1|)) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2029 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3336 ((-3 |#1| "failed") (-385 (-1086 |#2|)))) (-15 -3325 ((-1086 |#2|) |#1|)) (-15 -2923 (|#1| (-1086 |#2|))) (-15 -3336 (|#1| (-1086 |#2|))) (-15 -2775 ((-1086 |#2|))) (-15 -1307 ((-632 |#2|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2923 ((-1086 |#2|) |#1|)) (-15 -2257 (|#2|)) (-15 -2923 (|#1| (-1172 |#2|))) (-15 -2923 ((-1172 |#2|) |#1|)) (-15 -1625 ((-632 |#2|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1|)) (-15 -3800 ((-1086 |#2|) |#1|)) (-15 -2867 ((-1086 |#2|) |#1|)) (-15 -2257 (|#2| (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -2281 (|#2| |#1|)) (-15 -3942 (|#2| |#1|)) (-15 -3439 ((-855))) (-15 -4044 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1645 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 93 (-3215 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-2609 (($ $) 94 (-3215 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-1220 (((-108) $) 96 (-3215 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-3852 (((-632 |#1|) (-1172 $)) 46) (((-632 |#1|)) 61)) (-3942 ((|#1| $) 52)) (-3915 (($ $) 228 (|has| |#1| (-1112)))) (-3760 (($ $) 211 (|has| |#1| (-1112)))) (-1207 (((-1100 (-855) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-3004 (((-3 $ "failed") $ $) 19)) (-1426 (((-396 (-1086 $)) (-1086 $)) 242 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-2701 (($ $) 113 (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-1259 (((-396 $) $) 114 (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-2975 (($ $) 241 (-12 (|has| |#1| (-933)) (|has| |#1| (-1112))))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 245 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-1700 (((-108) $ $) 104 (|has| |#1| (-286)))) (-1651 (((-713)) 87 (|has| |#1| (-346)))) (-3886 (($ $) 227 (|has| |#1| (-1112)))) (-3737 (($ $) 212 (|has| |#1| (-1112)))) (-3946 (($ $) 226 (|has| |#1| (-1112)))) (-3783 (($ $) 213 (|has| |#1| (-1112)))) (-1957 (($) 17 T CONST)) (-2769 (((-3 (-525) "failed") $) 169 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-2068 (((-525) $) 170 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 165)) (-1689 (($ (-1172 |#1|) (-1172 $)) 48) (($ (-1172 |#1|)) 64)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-2720 (($ $ $) 108 (|has| |#1| (-286)))) (-3198 (((-632 |#1|) $ (-1172 $)) 53) (((-632 |#1|) $) 59)) (-1307 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-3336 (($ (-1086 |#1|)) 158) (((-3 $ "failed") (-385 (-1086 |#1|))) 155 (|has| |#1| (-341)))) (-1645 (((-3 $ "failed") $) 34)) (-2992 ((|#1| $) 253)) (-2132 (((-3 (-385 (-525)) "failed") $) 246 (|has| |#1| (-510)))) (-3748 (((-108) $) 248 (|has| |#1| (-510)))) (-1675 (((-385 (-525)) $) 247 (|has| |#1| (-510)))) (-3439 (((-855)) 54)) (-1527 (($) 90 (|has| |#1| (-346)))) (-2699 (($ $ $) 107 (|has| |#1| (-286)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 102 (|has| |#1| (-286)))) (-2376 (($) 149 (|has| |#1| (-327)))) (-3703 (((-108) $) 150 (|has| |#1| (-327)))) (-3351 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-2069 (((-108) $) 115 (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-1374 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-985)) (|has| |#1| (-1112))))) (-1961 (($) 238 (|has| |#1| (-1112)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 261 (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 260 (|has| |#1| (-820 (-357))))) (-2158 (((-855) $) 152 (|has| |#1| (-327))) (((-775 (-855)) $) 138 (|has| |#1| (-327)))) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 240 (-12 (|has| |#1| (-933)) (|has| |#1| (-1112))))) (-2281 ((|#1| $) 51)) (-1978 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-286)))) (-3800 (((-1086 |#1|) $) 44 (|has| |#1| (-341)))) (-1260 (($ $ $) 207 (|has| |#1| (-789)))) (-2154 (($ $ $) 206 (|has| |#1| (-789)))) (-2868 (($ (-1 |#1| |#1|) $) 262)) (-2111 (((-855) $) 89 (|has| |#1| (-346)))) (-2412 (($ $) 235 (|has| |#1| (-1112)))) (-3325 (((-1086 |#1|) $) 156)) (-2226 (($ (-592 $)) 100 (-3215 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (($ $ $) 99 (-3215 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-1707 (((-1073) $) 9)) (-3243 (($ $) 116 (|has| |#1| (-341)))) (-2039 (($) 143 (|has| |#1| (-327)) CONST)) (-3381 (($ (-855)) 88 (|has| |#1| (-346)))) (-3488 (($) 257)) (-3005 ((|#1| $) 254)) (-3027 (((-1037) $) 10)) (-3258 (($) 160)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 101 (-3215 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-2262 (($ (-592 $)) 98 (-3215 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (($ $ $) 97 (-3215 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) 146 (|has| |#1| (-327)))) (-3725 (((-396 (-1086 $)) (-1086 $)) 244 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-1944 (((-396 (-1086 $)) (-1086 $)) 243 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-2961 (((-396 $) $) 112 (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 109 (|has| |#1| (-286)))) (-2675 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 92 (-3215 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-286)))) (-2840 (($ $) 236 (|has| |#1| (-1112)))) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) 268 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 266 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 265 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 264 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) 263 (|has| |#1| (-486 (-1090) |#1|)))) (-2824 (((-713) $) 105 (|has| |#1| (-286)))) (-1496 (($ $ |#1|) 269 (|has| |#1| (-265 |#1| |#1|)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 106 (|has| |#1| (-286)))) (-2257 ((|#1| (-1172 $)) 47) ((|#1|) 60)) (-2729 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-1576 (($ $ (-1 |#1| |#1|) (-713)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-592 (-1090)) (-592 (-713))) 130 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 131 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 132 (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 133 (|has| |#1| (-834 (-1090)))) (($ $ (-713)) 135 (-3215 (-2385 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-2385 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 137 (-3215 (-2385 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-2385 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-1410 (((-632 |#1|) (-1172 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-2775 (((-1086 |#1|)) 159)) (-3960 (($ $) 225 (|has| |#1| (-1112)))) (-3795 (($ $) 214 (|has| |#1| (-1112)))) (-3405 (($) 148 (|has| |#1| (-327)))) (-3930 (($ $) 224 (|has| |#1| (-1112)))) (-3771 (($ $) 215 (|has| |#1| (-1112)))) (-3901 (($ $) 223 (|has| |#1| (-1112)))) (-3749 (($ $) 216 (|has| |#1| (-1112)))) (-1625 (((-1172 |#1|) $ (-1172 $)) 50) (((-632 |#1|) (-1172 $) (-1172 $)) 49) (((-1172 |#1|) $) 66) (((-632 |#1|) (-1172 $)) 65)) (-2923 (((-1172 |#1|) $) 63) (($ (-1172 |#1|)) 62) (((-1086 |#1|) $) 171) (($ (-1086 |#1|)) 157) (((-826 (-525)) $) 259 (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) 258 (|has| |#1| (-567 (-826 (-357))))) (((-157 (-357)) $) 210 (|has| |#1| (-952))) (((-157 (-205)) $) 209 (|has| |#1| (-952))) (((-501) $) 208 (|has| |#1| (-567 (-501))))) (-4025 (($ $) 256)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 145 (-3215 (-2385 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))) (|has| |#1| (-327))))) (-2381 (($ |#1| |#1|) 255)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 86 (-3215 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525)))))) (($ $) 91 (-3215 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-1279 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (-3215 (-2385 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))) (|has| |#1| (-136))))) (-2867 (((-1086 |#1|) $) 45)) (-2502 (((-713)) 29)) (-2734 (((-1172 $)) 67)) (-4004 (($ $) 234 (|has| |#1| (-1112)))) (-3836 (($ $) 222 (|has| |#1| (-1112)))) (-3787 (((-108) $ $) 95 (-3215 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-3975 (($ $) 233 (|has| |#1| (-1112)))) (-3808 (($ $) 221 (|has| |#1| (-1112)))) (-4035 (($ $) 232 (|has| |#1| (-1112)))) (-3861 (($ $) 220 (|has| |#1| (-1112)))) (-3103 ((|#1| $) 250 (|has| |#1| (-1112)))) (-2608 (($ $) 231 (|has| |#1| (-1112)))) (-3873 (($ $) 219 (|has| |#1| (-1112)))) (-4018 (($ $) 230 (|has| |#1| (-1112)))) (-3848 (($ $) 218 (|has| |#1| (-1112)))) (-3989 (($ $) 229 (|has| |#1| (-1112)))) (-3823 (($ $) 217 (|has| |#1| (-1112)))) (-2053 (($ $) 251 (|has| |#1| (-985)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-1 |#1| |#1|) (-713)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-592 (-1090)) (-592 (-713))) 126 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 127 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 128 (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 129 (|has| |#1| (-834 (-1090)))) (($ $ (-713)) 134 (-3215 (-2385 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-2385 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 136 (-3215 (-2385 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-2385 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-3973 (((-108) $ $) 204 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 203 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 205 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 202 (|has| |#1| (-789)))) (-4047 (($ $ $) 121 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-385 (-525))) 239 (-12 (|has| |#1| (-933)) (|has| |#1| (-1112)))) (($ $ $) 237 (|has| |#1| (-1112))) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341))))) (((-154 |#1|) (-131) (-160)) (T -154)) -((-1525 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3526 (*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3369 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-4185 (*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2571 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3210 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-1460 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-984)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1111)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-984)) (-4 *3 (-1111)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2350 (*1 *2 *1) (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525)))))) -(-13 (-666 |t#1| (-1085 |t#1|)) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-378 |t#1|) (-817 |t#1|) (-355 |t#1|) (-160) (-10 -8 (-6 -4185) (-15 -3526 ($)) (-15 -3369 ($ $)) (-15 -4185 ($ |t#1| |t#1|)) (-15 -2571 (|t#1| $)) (-15 -2560 (|t#1| $)) (-15 -1525 (|t#1| $)) (IF (|has| |t#1| (-788)) (-6 (-788)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-517)) (-15 -3210 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-286)) (-6 (-286)) |%noBranch|) (IF (|has| |t#1| (-6 -4249)) (-6 -4249) |%noBranch|) (IF (|has| |t#1| (-6 -4246)) (-6 -4246) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|) (IF (|has| |t#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-951)) (PROGN (-6 (-566 (-157 (-205)))) (-6 (-566 (-157 (-357))))) |%noBranch|) (IF (|has| |t#1| (-984)) (-15 -1460 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1111)) (PROGN (-6 (-1111)) (-15 -3358 (|t#1| $)) (IF (|has| |t#1| (-932)) (-6 (-932)) |%noBranch|) (IF (|has| |t#1| (-984)) (-15 -1863 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-842)) (IF (|has| |t#1| (-286)) (-6 (-842)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-34) |has| |#1| (-1111)) ((-91) |has| |#1| (-1111)) ((-97) . T) ((-107 #0# #0#) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3150 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) . T) ((-566 (-157 (-205))) |has| |#1| (-951)) ((-566 (-157 (-357))) |has| |#1| (-951)) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-566 (-825 (-357))) |has| |#1| (-566 (-825 (-357)))) ((-566 (-825 (-525))) |has| |#1| (-566 (-825 (-525)))) ((-566 #1=(-1085 |#1|)) . T) ((-211 |#1|) . T) ((-213) -3150 (|has| |#1| (-327)) (|has| |#1| (-213))) ((-223) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-263) |has| |#1| (-1111)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3150 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-286) -3150 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3150 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| #1#) . T) ((-387 |#1| #1#) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) -3150 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-466) |has| |#1| (-1111)) ((-486 (-1089) |#1|) |has| |#1| (-486 (-1089) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) -3150 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-593 #0#) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-593 |#1|) . T) ((-593 $) . T) ((-587 (-525)) |has| |#1| (-587 (-525))) ((-587 |#1|) . T) ((-659 #0#) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-659 |#1|) . T) ((-659 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-666 |#1| #1#) . T) ((-668) . T) ((-788) |has| |#1| (-788)) ((-833 (-1089)) |has| |#1| (-833 (-1089))) ((-819 (-357)) |has| |#1| (-819 (-357))) ((-819 (-525)) |has| |#1| (-819 (-525))) ((-817 |#1|) . T) ((-842) -12 (|has| |#1| (-286)) (|has| |#1| (-842))) ((-853) -3150 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-932) -12 (|has| |#1| (-932)) (|has| |#1| (-1111))) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-981 #0#) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-981 |#1|) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1065) |has| |#1| (-327)) ((-1111) |has| |#1| (-1111)) ((-1114) |has| |#1| (-1111)) ((-1125) . T) ((-1129) -3150 (|has| |#1| (-327)) (|has| |#1| (-341)) (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) -((-2542 (((-396 |#2|) |#2|) 63))) -(((-155 |#1| |#2|) (-10 -7 (-15 -2542 ((-396 |#2|) |#2|))) (-286) (-1147 (-157 |#1|))) (T -155)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1147 (-157 *4)))))) -(-10 -7 (-15 -2542 ((-396 |#2|) |#2|))) -((-1257 (((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)) 14))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1257 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)))) (-160) (-160)) (T -156)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6))))) -(-10 -7 (-15 -1257 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 33)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-517))))) (-3641 (($ $) NIL (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-517))))) (-3077 (((-108) $) NIL (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-517))))) (-1712 (((-631 |#1|) (-1171 $)) NIL) (((-631 |#1|)) NIL)) (-1481 ((|#1| $) NIL)) (-4087 (($ $) NIL (|has| |#1| (-1111)))) (-2381 (($ $) NIL (|has| |#1| (-1111)))) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| |#1| (-327)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (-1720 (($ $) NIL (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-341))))) (-3898 (((-396 $) $) NIL (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-341))))) (-2551 (($ $) NIL (-12 (|has| |#1| (-932)) (|has| |#1| (-1111))))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (-1965 (((-108) $ $) NIL (|has| |#1| (-286)))) (-2834 (((-712)) NIL (|has| |#1| (-346)))) (-4058 (($ $) NIL (|has| |#1| (-1111)))) (-2360 (($ $) NIL (|has| |#1| (-1111)))) (-4109 (($ $) NIL (|has| |#1| (-1111)))) (-2400 (($ $) NIL (|has| |#1| (-1111)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL)) (-1554 (($ (-1171 |#1|) (-1171 $)) NIL) (($ (-1171 |#1|)) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-3265 (($ $ $) NIL (|has| |#1| (-286)))) (-4054 (((-631 |#1|) $ (-1171 $)) NIL) (((-631 |#1|) $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-3618 (($ (-1085 |#1|)) NIL) (((-3 $ "failed") (-385 (-1085 |#1|))) NIL (|has| |#1| (-341)))) (-1522 (((-3 $ "failed") $) NIL)) (-2560 ((|#1| $) 13)) (-2350 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-2157 (((-108) $) NIL (|has| |#1| (-510)))) (-3184 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-2193 (((-854)) NIL)) (-1325 (($) NIL (|has| |#1| (-346)))) (-3239 (($ $ $) NIL (|has| |#1| (-286)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-286)))) (-1268 (($) NIL (|has| |#1| (-327)))) (-2096 (((-108) $) NIL (|has| |#1| (-327)))) (-3477 (($ $ (-712)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-2393 (((-108) $) NIL (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-341))))) (-1863 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-984)) (|has| |#1| (-1111))))) (-1417 (($) NIL (|has| |#1| (-1111)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| |#1| (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| |#1| (-819 (-357))))) (-1676 (((-854) $) NIL (|has| |#1| (-327))) (((-774 (-854)) $) NIL (|has| |#1| (-327)))) (-3865 (((-108) $) 35)) (-3126 (($ $ (-525)) NIL (-12 (|has| |#1| (-932)) (|has| |#1| (-1111))))) (-1525 ((|#1| $) 46)) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-286)))) (-3205 (((-1085 |#1|) $) NIL (|has| |#1| (-341)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1970 (((-854) $) NIL (|has| |#1| (-346)))) (-2356 (($ $) NIL (|has| |#1| (-1111)))) (-3610 (((-1085 |#1|) $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-3492 (($) NIL (|has| |#1| (-327)) CONST)) (-3229 (($ (-854)) NIL (|has| |#1| (-346)))) (-3526 (($) NIL)) (-2571 ((|#1| $) 15)) (-2937 (((-1036) $) NIL)) (-3965 (($) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-286)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| |#1| (-327)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-842))))) (-2542 (((-396 $) $) NIL (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-341))))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-286)))) (-3210 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 47 (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-517))))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-286)))) (-2288 (($ $) NIL (|has| |#1| (-1111)))) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-591 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) NIL (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) |#1|) NIL (|has| |#1| (-486 (-1089) |#1|)))) (-3048 (((-712) $) NIL (|has| |#1| (-286)))) (-1881 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-286)))) (-2858 ((|#1| (-1171 $)) NIL) ((|#1|) NIL)) (-2652 (((-712) $) NIL (|has| |#1| (-327))) (((-3 (-712) "failed") $ $) NIL (|has| |#1| (-327)))) (-2209 (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-3206 (((-631 |#1|) (-1171 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-1341 (((-1085 |#1|)) NIL)) (-4122 (($ $) NIL (|has| |#1| (-1111)))) (-2410 (($ $) NIL (|has| |#1| (-1111)))) (-3560 (($) NIL (|has| |#1| (-327)))) (-4098 (($ $) NIL (|has| |#1| (-1111)))) (-2391 (($ $) NIL (|has| |#1| (-1111)))) (-4073 (($ $) NIL (|has| |#1| (-1111)))) (-2370 (($ $) NIL (|has| |#1| (-1111)))) (-1671 (((-1171 |#1|) $ (-1171 $)) NIL) (((-631 |#1|) (-1171 $) (-1171 $)) NIL) (((-1171 |#1|) $) NIL) (((-631 |#1|) (-1171 $)) NIL)) (-1300 (((-1171 |#1|) $) NIL) (($ (-1171 |#1|)) NIL) (((-1085 |#1|) $) NIL) (($ (-1085 |#1|)) NIL) (((-825 (-525)) $) NIL (|has| |#1| (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| |#1| (-566 (-825 (-357))))) (((-157 (-357)) $) NIL (|has| |#1| (-951))) (((-157 (-205)) $) NIL (|has| |#1| (-951))) (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-3369 (($ $) 45)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-327))))) (-4185 (($ |#1| |#1|) 37)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) 36) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-341)) (|has| |#1| (-966 (-385 (-525)))))) (($ $) NIL (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-517))))) (-3751 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-2173 (((-1085 |#1|) $) NIL)) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) NIL)) (-4163 (($ $) NIL (|has| |#1| (-1111)))) (-2457 (($ $) NIL (|has| |#1| (-1111)))) (-1724 (((-108) $ $) NIL (-3150 (-12 (|has| |#1| (-286)) (|has| |#1| (-842))) (|has| |#1| (-517))))) (-4137 (($ $) NIL (|has| |#1| (-1111)))) (-2432 (($ $) NIL (|has| |#1| (-1111)))) (-4193 (($ $) NIL (|has| |#1| (-1111)))) (-2477 (($ $) NIL (|has| |#1| (-1111)))) (-3358 ((|#1| $) NIL (|has| |#1| (-1111)))) (-1234 (($ $) NIL (|has| |#1| (-1111)))) (-2495 (($ $) NIL (|has| |#1| (-1111)))) (-4179 (($ $) NIL (|has| |#1| (-1111)))) (-2469 (($ $) NIL (|has| |#1| (-1111)))) (-4149 (($ $) NIL (|has| |#1| (-1111)))) (-2444 (($ $) NIL (|has| |#1| (-1111)))) (-1460 (($ $) NIL (|has| |#1| (-984)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) 28 T CONST)) (-1839 (($) 30 T CONST)) (-3042 (((-1072) $) 23 (|has| |#1| (-769))) (((-1072) $ (-108)) 25 (|has| |#1| (-769))) (((-1176) (-763) $) 26 (|has| |#1| (-769))) (((-1176) (-763) $ (-108)) 27 (|has| |#1| (-769)))) (-1796 (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ $) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 39)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-385 (-525))) NIL (-12 (|has| |#1| (-932)) (|has| |#1| (-1111)))) (($ $ $) NIL (|has| |#1| (-1111))) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))))) -(((-157 |#1|) (-13 (-154 |#1|) (-10 -7 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|))) (-160)) (T -157)) -NIL -(-13 (-154 |#1|) (-10 -7 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|))) -((-1300 (((-825 |#1|) |#3|) 22))) -(((-158 |#1| |#2| |#3|) (-10 -7 (-15 -1300 ((-825 |#1|) |#3|))) (-1018) (-13 (-566 (-825 |#1|)) (-160)) (-154 |#2|)) (T -158)) -((-1300 (*1 *2 *3) (-12 (-4 *5 (-13 (-566 *2) (-160))) (-5 *2 (-825 *4)) (-5 *1 (-158 *4 *5 *3)) (-4 *4 (-1018)) (-4 *3 (-154 *5))))) -(-10 -7 (-15 -1300 ((-825 |#1|) |#3|))) -((-2673 (((-108) $ $) NIL)) (-2791 (((-108) $) 9)) (-3386 (((-108) $ (-108)) 11)) (-1316 (($) 12)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2873 (($ $) 13)) (-2686 (((-796) $) 17)) (-2152 (((-108) $) 8)) (-1269 (((-108) $ (-108)) 10)) (-3944 (((-108) $ $) NIL))) -(((-159) (-13 (-1018) (-10 -8 (-15 -1316 ($)) (-15 -2152 ((-108) $)) (-15 -2791 ((-108) $)) (-15 -1269 ((-108) $ (-108))) (-15 -3386 ((-108) $ (-108))) (-15 -2873 ($ $))))) (T -159)) -((-1316 (*1 *1) (-5 *1 (-159))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-1269 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-3386 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2873 (*1 *1 *1) (-5 *1 (-159)))) -(-13 (-1018) (-10 -8 (-15 -1316 ($)) (-15 -2152 ((-108) $)) (-15 -2791 ((-108) $)) (-15 -1269 ((-108) $ (-108))) (-15 -3386 ((-108) $ (-108))) (-15 -2873 ($ $)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +((-2281 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3488 (*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-4025 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2381 (*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2675 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2053 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-985)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1112)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-985)) (-4 *3 (-1112)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2132 (*1 *2 *1) (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525)))))) +(-13 (-667 |t#1| (-1086 |t#1|)) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-378 |t#1|) (-818 |t#1|) (-355 |t#1|) (-160) (-10 -8 (-6 -2381) (-15 -3488 ($)) (-15 -4025 ($ $)) (-15 -2381 ($ |t#1| |t#1|)) (-15 -3005 (|t#1| $)) (-15 -2992 (|t#1| $)) (-15 -2281 (|t#1| $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-517)) (-15 -2675 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-286)) (-6 (-286)) |%noBranch|) (IF (|has| |t#1| (-6 -4253)) (-6 -4253) |%noBranch|) (IF (|has| |t#1| (-6 -4250)) (-6 -4250) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-952)) (PROGN (-6 (-567 (-157 (-205)))) (-6 (-567 (-157 (-357))))) |%noBranch|) (IF (|has| |t#1| (-985)) (-15 -2053 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1112)) (PROGN (-6 (-1112)) (-15 -3103 (|t#1| $)) (IF (|has| |t#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |t#1| (-985)) (-15 -1374 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-843)) (IF (|has| |t#1| (-286)) (-6 (-843)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-34) |has| |#1| (-1112)) ((-91) |has| |#1| (-1112)) ((-97) . T) ((-107 #0# #0#) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3215 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 (-157 (-205))) |has| |#1| (-952)) ((-567 (-157 (-357))) |has| |#1| (-952)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525)))) ((-567 #1=(-1086 |#1|)) . T) ((-211 |#1|) . T) ((-213) -3215 (|has| |#1| (-327)) (|has| |#1| (-213))) ((-223) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-263) |has| |#1| (-1112)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3215 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-286) -3215 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3215 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| #1#) . T) ((-387 |#1| #1#) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) -3215 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-466) |has| |#1| (-1112)) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) -3215 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-594 #0#) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-667 |#1| #1#) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-818 |#1|) . T) ((-843) -12 (|has| |#1| (-286)) (|has| |#1| (-843))) ((-854) -3215 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-933) -12 (|has| |#1| (-933)) (|has| |#1| (-1112))) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 #0#) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-327)) ((-1112) |has| |#1| (-1112)) ((-1115) |has| |#1| (-1112)) ((-1126) . T) ((-1130) -3215 (|has| |#1| (-327)) (|has| |#1| (-341)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) +((-2961 (((-396 |#2|) |#2|) 63))) +(((-155 |#1| |#2|) (-10 -7 (-15 -2961 ((-396 |#2|) |#2|))) (-286) (-1148 (-157 |#1|))) (T -155)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1148 (-157 *4)))))) +(-10 -7 (-15 -2961 ((-396 |#2|) |#2|))) +((-2868 (((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)) 14))) +(((-156 |#1| |#2|) (-10 -7 (-15 -2868 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)))) (-160) (-160)) (T -156)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6))))) +(-10 -7 (-15 -2868 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 33)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-2609 (($ $) NIL (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-1220 (((-108) $) NIL (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-3852 (((-632 |#1|) (-1172 $)) NIL) (((-632 |#1|)) NIL)) (-3942 ((|#1| $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-1112)))) (-3760 (($ $) NIL (|has| |#1| (-1112)))) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-2701 (($ $) NIL (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-1259 (((-396 $) $) NIL (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-2975 (($ $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-1112))))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-1700 (((-108) $ $) NIL (|has| |#1| (-286)))) (-1651 (((-713)) NIL (|has| |#1| (-346)))) (-3886 (($ $) NIL (|has| |#1| (-1112)))) (-3737 (($ $) NIL (|has| |#1| (-1112)))) (-3946 (($ $) NIL (|has| |#1| (-1112)))) (-3783 (($ $) NIL (|has| |#1| (-1112)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1689 (($ (-1172 |#1|) (-1172 $)) NIL) (($ (-1172 |#1|)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-2720 (($ $ $) NIL (|has| |#1| (-286)))) (-3198 (((-632 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3336 (($ (-1086 |#1|)) NIL) (((-3 $ "failed") (-385 (-1086 |#1|))) NIL (|has| |#1| (-341)))) (-1645 (((-3 $ "failed") $) NIL)) (-2992 ((|#1| $) 13)) (-2132 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-3748 (((-108) $) NIL (|has| |#1| (-510)))) (-1675 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-3439 (((-855)) NIL)) (-1527 (($) NIL (|has| |#1| (-346)))) (-2699 (($ $ $) NIL (|has| |#1| (-286)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-286)))) (-2376 (($) NIL (|has| |#1| (-327)))) (-3703 (((-108) $) NIL (|has| |#1| (-327)))) (-3351 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-2069 (((-108) $) NIL (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-1374 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-985)) (|has| |#1| (-1112))))) (-1961 (($) NIL (|has| |#1| (-1112)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| |#1| (-820 (-357))))) (-2158 (((-855) $) NIL (|has| |#1| (-327))) (((-775 (-855)) $) NIL (|has| |#1| (-327)))) (-2507 (((-108) $) 35)) (-2581 (($ $ (-525)) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-1112))))) (-2281 ((|#1| $) 46)) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-3800 (((-1086 |#1|) $) NIL (|has| |#1| (-341)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2111 (((-855) $) NIL (|has| |#1| (-346)))) (-2412 (($ $) NIL (|has| |#1| (-1112)))) (-3325 (((-1086 |#1|) $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-2039 (($) NIL (|has| |#1| (-327)) CONST)) (-3381 (($ (-855)) NIL (|has| |#1| (-346)))) (-3488 (($) NIL)) (-3005 ((|#1| $) 15)) (-3027 (((-1037) $) NIL)) (-3258 (($) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-286)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| |#1| (-327)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-2961 (((-396 $) $) NIL (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-286)))) (-2675 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 47 (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-2840 (($ $) NIL (|has| |#1| (-1112)))) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|)))) (-2824 (((-713) $) NIL (|has| |#1| (-286)))) (-1496 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-286)))) (-2257 ((|#1| (-1172 $)) NIL) ((|#1|) NIL)) (-2729 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-1576 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-1410 (((-632 |#1|) (-1172 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2775 (((-1086 |#1|)) NIL)) (-3960 (($ $) NIL (|has| |#1| (-1112)))) (-3795 (($ $) NIL (|has| |#1| (-1112)))) (-3405 (($) NIL (|has| |#1| (-327)))) (-3930 (($ $) NIL (|has| |#1| (-1112)))) (-3771 (($ $) NIL (|has| |#1| (-1112)))) (-3901 (($ $) NIL (|has| |#1| (-1112)))) (-3749 (($ $) NIL (|has| |#1| (-1112)))) (-1625 (((-1172 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) (-1172 $) (-1172 $)) NIL) (((-1172 |#1|) $) NIL) (((-632 |#1|) (-1172 $)) NIL)) (-2923 (((-1172 |#1|) $) NIL) (($ (-1172 |#1|)) NIL) (((-1086 |#1|) $) NIL) (($ (-1086 |#1|)) NIL) (((-826 (-525)) $) NIL (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| |#1| (-567 (-826 (-357))))) (((-157 (-357)) $) NIL (|has| |#1| (-952))) (((-157 (-205)) $) NIL (|has| |#1| (-952))) (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4025 (($ $) 45)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-327))))) (-2381 (($ |#1| |#1|) 37)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) 36) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-1279 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2867 (((-1086 |#1|) $) NIL)) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) NIL)) (-4004 (($ $) NIL (|has| |#1| (-1112)))) (-3836 (($ $) NIL (|has| |#1| (-1112)))) (-3787 (((-108) $ $) NIL (-3215 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-3975 (($ $) NIL (|has| |#1| (-1112)))) (-3808 (($ $) NIL (|has| |#1| (-1112)))) (-4035 (($ $) NIL (|has| |#1| (-1112)))) (-3861 (($ $) NIL (|has| |#1| (-1112)))) (-3103 ((|#1| $) NIL (|has| |#1| (-1112)))) (-2608 (($ $) NIL (|has| |#1| (-1112)))) (-3873 (($ $) NIL (|has| |#1| (-1112)))) (-4018 (($ $) NIL (|has| |#1| (-1112)))) (-3848 (($ $) NIL (|has| |#1| (-1112)))) (-3989 (($ $) NIL (|has| |#1| (-1112)))) (-3823 (($ $) NIL (|has| |#1| (-1112)))) (-2053 (($ $) NIL (|has| |#1| (-985)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) 28 T CONST)) (-1449 (($) 30 T CONST)) (-2453 (((-1073) $) 23 (|has| |#1| (-770))) (((-1073) $ (-108)) 25 (|has| |#1| (-770))) (((-1177) (-764) $) 26 (|has| |#1| (-770))) (((-1177) (-764) $ (-108)) 27 (|has| |#1| (-770)))) (-1990 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ $) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 39)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-1112)))) (($ $ $) NIL (|has| |#1| (-1112))) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))))) +(((-157 |#1|) (-13 (-154 |#1|) (-10 -7 (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) (-160)) (T -157)) +NIL +(-13 (-154 |#1|) (-10 -7 (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) +((-2923 (((-826 |#1|) |#3|) 22))) +(((-158 |#1| |#2| |#3|) (-10 -7 (-15 -2923 ((-826 |#1|) |#3|))) (-1019) (-13 (-567 (-826 |#1|)) (-160)) (-154 |#2|)) (T -158)) +((-2923 (*1 *2 *3) (-12 (-4 *5 (-13 (-567 *2) (-160))) (-5 *2 (-826 *4)) (-5 *1 (-158 *4 *5 *3)) (-4 *4 (-1019)) (-4 *3 (-154 *5))))) +(-10 -7 (-15 -2923 ((-826 |#1|) |#3|))) +((-4028 (((-108) $ $) NIL)) (-3697 (((-108) $) 9)) (-2242 (((-108) $ (-108)) 11)) (-3248 (($) 12)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1261 (($ $) 13)) (-4044 (((-797) $) 17)) (-2607 (((-108) $) 8)) (-3671 (((-108) $ (-108)) 10)) (-3899 (((-108) $ $) NIL))) +(((-159) (-13 (-1019) (-10 -8 (-15 -3248 ($)) (-15 -2607 ((-108) $)) (-15 -3697 ((-108) $)) (-15 -3671 ((-108) $ (-108))) (-15 -2242 ((-108) $ (-108))) (-15 -1261 ($ $))))) (T -159)) +((-3248 (*1 *1) (-5 *1 (-159))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-3671 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2242 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-1261 (*1 *1 *1) (-5 *1 (-159)))) +(-13 (-1019) (-10 -8 (-15 -3248 ($)) (-15 -2607 ((-108) $)) (-15 -3697 ((-108) $)) (-15 -3671 ((-108) $ (-108))) (-15 -2242 ((-108) $ (-108))) (-15 -1261 ($ $)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-160) (-131)) (T -160)) NIL -(-13 (-975) (-107 $ $) (-10 -7 (-6 (-4252 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-668) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 ((|#1| $) 75)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-3265 (($ $ $) NIL)) (-2656 (($ $) 19)) (-2053 (($ |#1| (-1070 |#1|)) 48)) (-1522 (((-3 $ "failed") $) 117)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-2687 (((-1070 |#1|) $) 82)) (-2189 (((-1070 |#1|) $) 79)) (-3296 (((-1070 |#1|) $) 80)) (-3865 (((-108) $) NIL)) (-1849 (((-1070 |#1|) $) 88)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2081 (($ (-591 $)) NIL) (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ (-591 $)) NIL) (($ $ $) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL)) (-1618 (($ $ (-525)) 91)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-1807 (((-1070 |#1|) $) 89)) (-2162 (((-1070 (-385 |#1|)) $) 14)) (-1217 (($ (-385 |#1|)) 17) (($ |#1| (-1070 |#1|) (-1070 |#1|)) 38)) (-1664 (($ $) 93)) (-2686 (((-796) $) 127) (($ (-525)) 51) (($ |#1|) 52) (($ (-385 |#1|)) 36) (($ (-385 (-525))) NIL) (($ $) NIL)) (-3425 (((-712)) 64)) (-1724 (((-108) $ $) NIL)) (-2631 (((-1070 (-385 |#1|)) $) 18)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 25 T CONST)) (-1839 (($) 28 T CONST)) (-3944 (((-108) $ $) 35)) (-4059 (($ $ $) 115)) (-4047 (($ $) 106) (($ $ $) 103)) (-4036 (($ $ $) 101)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-385 |#1|) $) 111) (($ $ (-385 |#1|)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL))) -(((-161 |#1|) (-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -1217 ($ (-385 |#1|))) (-15 -1217 ($ |#1| (-1070 |#1|) (-1070 |#1|))) (-15 -2053 ($ |#1| (-1070 |#1|))) (-15 -2189 ((-1070 |#1|) $)) (-15 -3296 ((-1070 |#1|) $)) (-15 -2687 ((-1070 |#1|) $)) (-15 -2314 (|#1| $)) (-15 -2656 ($ $)) (-15 -2631 ((-1070 (-385 |#1|)) $)) (-15 -2162 ((-1070 (-385 |#1|)) $)) (-15 -1849 ((-1070 |#1|) $)) (-15 -1807 ((-1070 |#1|) $)) (-15 -1618 ($ $ (-525))) (-15 -1664 ($ $)))) (-286)) (T -161)) -((-1217 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3)))) (-1217 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-2053 (*1 *1 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2314 (*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-2656 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-1070 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-1070 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1664 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))) -(-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -1217 ($ (-385 |#1|))) (-15 -1217 ($ |#1| (-1070 |#1|) (-1070 |#1|))) (-15 -2053 ($ |#1| (-1070 |#1|))) (-15 -2189 ((-1070 |#1|) $)) (-15 -3296 ((-1070 |#1|) $)) (-15 -2687 ((-1070 |#1|) $)) (-15 -2314 (|#1| $)) (-15 -2656 ($ $)) (-15 -2631 ((-1070 (-385 |#1|)) $)) (-15 -2162 ((-1070 (-385 |#1|)) $)) (-15 -1849 ((-1070 |#1|) $)) (-15 -1807 ((-1070 |#1|) $)) (-15 -1618 ($ $ (-525))) (-15 -1664 ($ $)))) -((-2291 (($ (-104) $) 13)) (-1786 (((-3 (-104) "failed") (-1089) $) 12)) (-2686 (((-796) $) 16)) (-2840 (((-591 (-104)) $) 8))) -(((-162) (-13 (-565 (-796)) (-10 -8 (-15 -2840 ((-591 (-104)) $)) (-15 -2291 ($ (-104) $)) (-15 -1786 ((-3 (-104) "failed") (-1089) $))))) (T -162)) -((-2840 (*1 *2 *1) (-12 (-5 *2 (-591 (-104))) (-5 *1 (-162)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))) (-1786 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1089)) (-5 *2 (-104)) (-5 *1 (-162))))) -(-13 (-565 (-796)) (-10 -8 (-15 -2840 ((-591 (-104)) $)) (-15 -2291 ($ (-104) $)) (-15 -1786 ((-3 (-104) "failed") (-1089) $)))) -((-1626 (((-1 (-876 |#1|) (-876 |#1|)) |#1|) 40)) (-3868 (((-876 |#1|) (-876 |#1|)) 19)) (-3342 (((-1 (-876 |#1|) (-876 |#1|)) |#1|) 36)) (-3573 (((-876 |#1|) (-876 |#1|)) 17)) (-4029 (((-876 |#1|) (-876 |#1|)) 25)) (-1764 (((-876 |#1|) (-876 |#1|)) 24)) (-1579 (((-876 |#1|) (-876 |#1|)) 23)) (-1736 (((-1 (-876 |#1|) (-876 |#1|)) |#1|) 37)) (-1728 (((-1 (-876 |#1|) (-876 |#1|)) |#1|) 35)) (-1945 (((-1 (-876 |#1|) (-876 |#1|)) |#1|) 34)) (-2788 (((-876 |#1|) (-876 |#1|)) 18)) (-4116 (((-1 (-876 |#1|) (-876 |#1|)) |#1| |#1|) 43)) (-3741 (((-876 |#1|) (-876 |#1|)) 8)) (-2204 (((-1 (-876 |#1|) (-876 |#1|)) |#1|) 39)) (-3620 (((-1 (-876 |#1|) (-876 |#1|)) |#1|) 38))) -(((-163 |#1|) (-10 -7 (-15 -3741 ((-876 |#1|) (-876 |#1|))) (-15 -3573 ((-876 |#1|) (-876 |#1|))) (-15 -2788 ((-876 |#1|) (-876 |#1|))) (-15 -3868 ((-876 |#1|) (-876 |#1|))) (-15 -1579 ((-876 |#1|) (-876 |#1|))) (-15 -1764 ((-876 |#1|) (-876 |#1|))) (-15 -4029 ((-876 |#1|) (-876 |#1|))) (-15 -1945 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -1728 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -3342 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -1736 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -3620 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -2204 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -1626 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -4116 ((-1 (-876 |#1|) (-876 |#1|)) |#1| |#1|))) (-13 (-341) (-1111) (-932))) (T -163)) -((-4116 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1111) (-932))))) (-1626 (*1 *2 *3) (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1111) (-932))))) (-2204 (*1 *2 *3) (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1111) (-932))))) (-3620 (*1 *2 *3) (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1111) (-932))))) (-1736 (*1 *2 *3) (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1111) (-932))))) (-3342 (*1 *2 *3) (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1111) (-932))))) (-1728 (*1 *2 *3) (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1111) (-932))))) (-1945 (*1 *2 *3) (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1111) (-932))))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) (-5 *1 (-163 *3)))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) (-5 *1 (-163 *3)))) (-1579 (*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) (-5 *1 (-163 *3)))) (-3868 (*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) (-5 *1 (-163 *3)))) (-2788 (*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) (-5 *1 (-163 *3)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) (-5 *1 (-163 *3)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) (-5 *1 (-163 *3))))) -(-10 -7 (-15 -3741 ((-876 |#1|) (-876 |#1|))) (-15 -3573 ((-876 |#1|) (-876 |#1|))) (-15 -2788 ((-876 |#1|) (-876 |#1|))) (-15 -3868 ((-876 |#1|) (-876 |#1|))) (-15 -1579 ((-876 |#1|) (-876 |#1|))) (-15 -1764 ((-876 |#1|) (-876 |#1|))) (-15 -4029 ((-876 |#1|) (-876 |#1|))) (-15 -1945 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -1728 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -3342 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -1736 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -3620 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -2204 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -1626 ((-1 (-876 |#1|) (-876 |#1|)) |#1|)) (-15 -4116 ((-1 (-876 |#1|) (-876 |#1|)) |#1| |#1|))) -((-2173 ((|#2| |#3|) 27))) -(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2173 (|#2| |#3|))) (-160) (-1147 |#1|) (-666 |#1| |#2|)) (T -164)) -((-2173 (*1 *2 *3) (-12 (-4 *4 (-160)) (-4 *2 (-1147 *4)) (-5 *1 (-164 *4 *2 *3)) (-4 *3 (-666 *4 *2))))) -(-10 -7 (-15 -2173 (|#2| |#3|))) -((-4018 (((-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|)) 47 (|has| (-885 |#2|) (-819 |#1|))))) -(((-165 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-885 |#2|) (-819 |#1|)) (-15 -4018 ((-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|))) |%noBranch|)) (-1018) (-13 (-819 |#1|) (-160)) (-154 |#2|)) (T -165)) -((-4018 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-822 *5 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) (-4 *3 (-154 *6)) (-4 (-885 *6) (-819 *5)) (-4 *6 (-13 (-819 *5) (-160))) (-5 *1 (-165 *5 *6 *3))))) -(-10 -7 (IF (|has| (-885 |#2|) (-819 |#1|)) (-15 -4018 ((-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|))) |%noBranch|)) -((-4215 (((-591 |#1|) (-591 |#1|) |#1|) 38)) (-1992 (((-591 |#1|) |#1| (-591 |#1|)) 19)) (-2032 (((-591 |#1|) (-591 (-591 |#1|)) (-591 |#1|)) 33) ((|#1| (-591 |#1|) (-591 |#1|)) 31))) -(((-166 |#1|) (-10 -7 (-15 -1992 ((-591 |#1|) |#1| (-591 |#1|))) (-15 -2032 (|#1| (-591 |#1|) (-591 |#1|))) (-15 -2032 ((-591 |#1|) (-591 (-591 |#1|)) (-591 |#1|))) (-15 -4215 ((-591 |#1|) (-591 |#1|) |#1|))) (-286)) (T -166)) -((-4215 (*1 *2 *2 *3) (-12 (-5 *2 (-591 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))) (-2032 (*1 *2 *3 *2) (-12 (-5 *3 (-591 (-591 *4))) (-5 *2 (-591 *4)) (-4 *4 (-286)) (-5 *1 (-166 *4)))) (-2032 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286)))) (-1992 (*1 *2 *3 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3))))) -(-10 -7 (-15 -1992 ((-591 |#1|) |#1| (-591 |#1|))) (-15 -2032 (|#1| (-591 |#1|) (-591 |#1|))) (-15 -2032 ((-591 |#1|) (-591 (-591 |#1|)) (-591 |#1|))) (-15 -4215 ((-591 |#1|) (-591 |#1|) |#1|))) -((-3952 (((-2 (|:| |start| |#2|) (|:| -1908 (-396 |#2|))) |#2|) 61)) (-2068 ((|#1| |#1|) 54)) (-3962 (((-157 |#1|) |#2|) 84)) (-1369 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2509 ((|#2| |#2|) 83)) (-2462 (((-396 |#2|) |#2| |#1|) 113) (((-396 |#2|) |#2| |#1| (-108)) 81)) (-1525 ((|#1| |#2|) 112)) (-2819 ((|#2| |#2|) 119)) (-2542 (((-396 |#2|) |#2|) 134) (((-396 |#2|) |#2| |#1|) 32) (((-396 |#2|) |#2| |#1| (-108)) 133)) (-2530 (((-591 (-2 (|:| -1908 (-591 |#2|)) (|:| -2757 |#1|))) |#2| |#2|) 132) (((-591 (-2 (|:| -1908 (-591 |#2|)) (|:| -2757 |#1|))) |#2| |#2| (-108)) 76)) (-1662 (((-591 (-157 |#1|)) |#2| |#1|) 40) (((-591 (-157 |#1|)) |#2|) 41))) -(((-167 |#1| |#2|) (-10 -7 (-15 -1662 ((-591 (-157 |#1|)) |#2|)) (-15 -1662 ((-591 (-157 |#1|)) |#2| |#1|)) (-15 -2530 ((-591 (-2 (|:| -1908 (-591 |#2|)) (|:| -2757 |#1|))) |#2| |#2| (-108))) (-15 -2530 ((-591 (-2 (|:| -1908 (-591 |#2|)) (|:| -2757 |#1|))) |#2| |#2|)) (-15 -2542 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2542 ((-396 |#2|) |#2| |#1|)) (-15 -2542 ((-396 |#2|) |#2|)) (-15 -2819 (|#2| |#2|)) (-15 -1525 (|#1| |#2|)) (-15 -2462 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2462 ((-396 |#2|) |#2| |#1|)) (-15 -2509 (|#2| |#2|)) (-15 -1369 (|#1| |#2| |#1|)) (-15 -1369 (|#1| |#2|)) (-15 -3962 ((-157 |#1|) |#2|)) (-15 -2068 (|#1| |#1|)) (-15 -3952 ((-2 (|:| |start| |#2|) (|:| -1908 (-396 |#2|))) |#2|))) (-13 (-341) (-786)) (-1147 (-157 |#1|))) (T -167)) -((-3952 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-2 (|:| |start| *3) (|:| -1908 (-396 *3)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) (-2068 (*1 *2 *2) (-12 (-4 *2 (-13 (-341) (-786))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1147 (-157 *2))))) (-3962 (*1 *2 *3) (-12 (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3)) (-4 *4 (-13 (-341) (-786))) (-4 *3 (-1147 *2)))) (-1369 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-786))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1147 (-157 *2))))) (-1369 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-341) (-786))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1147 (-157 *2))))) (-2509 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-786))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1147 (-157 *3))))) (-2462 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) (-2462 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) (-1525 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-786))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1147 (-157 *2))))) (-2819 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-786))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1147 (-157 *3))))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) (-2542 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) (-2542 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) (-2530 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-591 (-2 (|:| -1908 (-591 *3)) (|:| -2757 *4)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) (-2530 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-786))) (-5 *2 (-591 (-2 (|:| -1908 (-591 *3)) (|:| -2757 *5)))) (-5 *1 (-167 *5 *3)) (-4 *3 (-1147 (-157 *5))))) (-1662 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-591 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) (-1662 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-591 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4)))))) -(-10 -7 (-15 -1662 ((-591 (-157 |#1|)) |#2|)) (-15 -1662 ((-591 (-157 |#1|)) |#2| |#1|)) (-15 -2530 ((-591 (-2 (|:| -1908 (-591 |#2|)) (|:| -2757 |#1|))) |#2| |#2| (-108))) (-15 -2530 ((-591 (-2 (|:| -1908 (-591 |#2|)) (|:| -2757 |#1|))) |#2| |#2|)) (-15 -2542 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2542 ((-396 |#2|) |#2| |#1|)) (-15 -2542 ((-396 |#2|) |#2|)) (-15 -2819 (|#2| |#2|)) (-15 -1525 (|#1| |#2|)) (-15 -2462 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2462 ((-396 |#2|) |#2| |#1|)) (-15 -2509 (|#2| |#2|)) (-15 -1369 (|#1| |#2| |#1|)) (-15 -1369 (|#1| |#2|)) (-15 -3962 ((-157 |#1|) |#2|)) (-15 -2068 (|#1| |#1|)) (-15 -3952 ((-2 (|:| |start| |#2|) (|:| -1908 (-396 |#2|))) |#2|))) -((-4199 (((-3 |#2| "failed") |#2|) 14)) (-4092 (((-712) |#2|) 16)) (-1900 ((|#2| |#2| |#2|) 18))) -(((-168 |#1| |#2|) (-10 -7 (-15 -4199 ((-3 |#2| "failed") |#2|)) (-15 -4092 ((-712) |#2|)) (-15 -1900 (|#2| |#2| |#2|))) (-1125) (-618 |#1|)) (T -168)) -((-1900 (*1 *2 *2 *2) (-12 (-4 *3 (-1125)) (-5 *1 (-168 *3 *2)) (-4 *2 (-618 *3)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-1125)) (-5 *2 (-712)) (-5 *1 (-168 *4 *3)) (-4 *3 (-618 *4)))) (-4199 (*1 *2 *2) (|partial| -12 (-4 *3 (-1125)) (-5 *1 (-168 *3 *2)) (-4 *2 (-618 *3))))) -(-10 -7 (-15 -4199 ((-3 |#2| "failed") |#2|)) (-15 -4092 ((-712) |#2|)) (-15 -1900 (|#2| |#2| |#2|))) -((-2111 (((-1089) $) 9)) (-2686 (((-796) $) 13)) (-3638 (((-591 (-1094)) $) 11))) -(((-169) (-13 (-565 (-796)) (-10 -8 (-15 -2111 ((-1089) $)) (-15 -3638 ((-591 (-1094)) $))))) (T -169)) -((-2111 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-169)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-591 (-1094))) (-5 *1 (-169))))) -(-13 (-565 (-796)) (-10 -8 (-15 -2111 ((-1089) $)) (-15 -3638 ((-591 (-1094)) $)))) -((-3622 ((|#2| |#2|) 28)) (-2174 (((-108) |#2|) 19)) (-2560 (((-294 |#1|) |#2|) 12)) (-2571 (((-294 |#1|) |#2|) 14)) (-2622 ((|#2| |#2| (-1089)) 68) ((|#2| |#2|) 69)) (-2324 (((-157 (-294 |#1|)) |#2|) 10)) (-1694 ((|#2| |#2| (-1089)) 65) ((|#2| |#2|) 59))) -(((-170 |#1| |#2|) (-10 -7 (-15 -2622 (|#2| |#2|)) (-15 -2622 (|#2| |#2| (-1089))) (-15 -1694 (|#2| |#2|)) (-15 -1694 (|#2| |#2| (-1089))) (-15 -2560 ((-294 |#1|) |#2|)) (-15 -2571 ((-294 |#1|) |#2|)) (-15 -2174 ((-108) |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -2324 ((-157 (-294 |#1|)) |#2|))) (-13 (-517) (-788) (-966 (-525))) (-13 (-27) (-1111) (-408 (-157 |#1|)))) (T -170)) -((-2324 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 (-157 *4)))))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 (-157 *3)))))) (-2174 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-108)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 (-157 *4)))))) (-2571 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 (-157 *4)))))) (-2560 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 (-157 *4)))))) (-1694 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 (-157 *4)))))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 (-157 *3)))))) (-2622 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 (-157 *4)))))) (-2622 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 (-157 *3))))))) -(-10 -7 (-15 -2622 (|#2| |#2|)) (-15 -2622 (|#2| |#2| (-1089))) (-15 -1694 (|#2| |#2|)) (-15 -1694 (|#2| |#2| (-1089))) (-15 -2560 ((-294 |#1|) |#2|)) (-15 -2571 ((-294 |#1|) |#2|)) (-15 -2174 ((-108) |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -2324 ((-157 (-294 |#1|)) |#2|))) -((-3058 (((-1171 (-631 (-885 |#1|))) (-1171 (-631 |#1|))) 24)) (-2686 (((-1171 (-631 (-385 (-885 |#1|)))) (-1171 (-631 |#1|))) 33))) -(((-171 |#1|) (-10 -7 (-15 -3058 ((-1171 (-631 (-885 |#1|))) (-1171 (-631 |#1|)))) (-15 -2686 ((-1171 (-631 (-385 (-885 |#1|)))) (-1171 (-631 |#1|))))) (-160)) (T -171)) -((-2686 (*1 *2 *3) (-12 (-5 *3 (-1171 (-631 *4))) (-4 *4 (-160)) (-5 *2 (-1171 (-631 (-385 (-885 *4))))) (-5 *1 (-171 *4)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-1171 (-631 *4))) (-4 *4 (-160)) (-5 *2 (-1171 (-631 (-885 *4)))) (-5 *1 (-171 *4))))) -(-10 -7 (-15 -3058 ((-1171 (-631 (-885 |#1|))) (-1171 (-631 |#1|)))) (-15 -2686 ((-1171 (-631 (-385 (-885 |#1|)))) (-1171 (-631 |#1|))))) -((-3706 (((-1091 (-385 (-525))) (-1091 (-385 (-525))) (-1091 (-385 (-525)))) 66)) (-1729 (((-1091 (-385 (-525))) (-591 (-525)) (-591 (-525))) 75)) (-1601 (((-1091 (-385 (-525))) (-525)) 40)) (-2491 (((-1091 (-385 (-525))) (-525)) 52)) (-1980 (((-385 (-525)) (-1091 (-385 (-525)))) 62)) (-1907 (((-1091 (-385 (-525))) (-525)) 32)) (-3704 (((-1091 (-385 (-525))) (-525)) 48)) (-2413 (((-1091 (-385 (-525))) (-525)) 46)) (-2013 (((-1091 (-385 (-525))) (-1091 (-385 (-525))) (-1091 (-385 (-525)))) 60)) (-1664 (((-1091 (-385 (-525))) (-525)) 25)) (-4051 (((-385 (-525)) (-1091 (-385 (-525))) (-1091 (-385 (-525)))) 64)) (-3165 (((-1091 (-385 (-525))) (-525)) 30)) (-3194 (((-1091 (-385 (-525))) (-591 (-525))) 72))) -(((-172) (-10 -7 (-15 -1664 ((-1091 (-385 (-525))) (-525))) (-15 -1601 ((-1091 (-385 (-525))) (-525))) (-15 -1907 ((-1091 (-385 (-525))) (-525))) (-15 -3165 ((-1091 (-385 (-525))) (-525))) (-15 -2413 ((-1091 (-385 (-525))) (-525))) (-15 -3704 ((-1091 (-385 (-525))) (-525))) (-15 -2491 ((-1091 (-385 (-525))) (-525))) (-15 -4051 ((-385 (-525)) (-1091 (-385 (-525))) (-1091 (-385 (-525))))) (-15 -2013 ((-1091 (-385 (-525))) (-1091 (-385 (-525))) (-1091 (-385 (-525))))) (-15 -1980 ((-385 (-525)) (-1091 (-385 (-525))))) (-15 -3706 ((-1091 (-385 (-525))) (-1091 (-385 (-525))) (-1091 (-385 (-525))))) (-15 -3194 ((-1091 (-385 (-525))) (-591 (-525)))) (-15 -1729 ((-1091 (-385 (-525))) (-591 (-525)) (-591 (-525)))))) (T -172)) -((-1729 (*1 *2 *3 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)))) (-3706 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-1091 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-2013 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)))) (-4051 (*1 *2 *3 *3) (-12 (-5 *3 (-1091 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-2491 (*1 *2 *3) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3704 (*1 *2 *3) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-2413 (*1 *2 *3) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3165 (*1 *2 *3) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1907 (*1 *2 *3) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1664 (*1 *2 *3) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) -(-10 -7 (-15 -1664 ((-1091 (-385 (-525))) (-525))) (-15 -1601 ((-1091 (-385 (-525))) (-525))) (-15 -1907 ((-1091 (-385 (-525))) (-525))) (-15 -3165 ((-1091 (-385 (-525))) (-525))) (-15 -2413 ((-1091 (-385 (-525))) (-525))) (-15 -3704 ((-1091 (-385 (-525))) (-525))) (-15 -2491 ((-1091 (-385 (-525))) (-525))) (-15 -4051 ((-385 (-525)) (-1091 (-385 (-525))) (-1091 (-385 (-525))))) (-15 -2013 ((-1091 (-385 (-525))) (-1091 (-385 (-525))) (-1091 (-385 (-525))))) (-15 -1980 ((-385 (-525)) (-1091 (-385 (-525))))) (-15 -3706 ((-1091 (-385 (-525))) (-1091 (-385 (-525))) (-1091 (-385 (-525))))) (-15 -3194 ((-1091 (-385 (-525))) (-591 (-525)))) (-15 -1729 ((-1091 (-385 (-525))) (-591 (-525)) (-591 (-525))))) -((-1414 (((-396 (-1085 (-525))) (-525)) 28)) (-1224 (((-591 (-1085 (-525))) (-525)) 23)) (-3762 (((-1085 (-525)) (-525)) 21))) -(((-173) (-10 -7 (-15 -1224 ((-591 (-1085 (-525))) (-525))) (-15 -3762 ((-1085 (-525)) (-525))) (-15 -1414 ((-396 (-1085 (-525))) (-525))))) (T -173)) -((-1414 (*1 *2 *3) (-12 (-5 *2 (-396 (-1085 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))) (-3762 (*1 *2 *3) (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-173)) (-5 *3 (-525)))) (-1224 (*1 *2 *3) (-12 (-5 *2 (-591 (-1085 (-525)))) (-5 *1 (-173)) (-5 *3 (-525))))) -(-10 -7 (-15 -1224 ((-591 (-1085 (-525))) (-525))) (-15 -3762 ((-1085 (-525)) (-525))) (-15 -1414 ((-396 (-1085 (-525))) (-525)))) -((-3034 (((-1070 (-205)) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 104)) (-2425 (((-591 (-1072)) (-1070 (-205))) NIL)) (-2021 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 80)) (-3851 (((-591 (-205)) (-294 (-205)) (-1089) (-1013 (-781 (-205)))) NIL)) (-1782 (((-591 (-1072)) (-591 (-205))) NIL)) (-1276 (((-205) (-1013 (-781 (-205)))) 24)) (-2041 (((-205) (-1013 (-781 (-205)))) 25)) (-3353 (((-357) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 97)) (-3653 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-2589 (((-1072) (-205)) NIL)) (-1539 (((-1072) (-591 (-1072))) 20)) (-1678 (((-964) (-1089) (-1089) (-964)) 13))) -(((-174) (-10 -7 (-15 -2021 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3653 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1276 ((-205) (-1013 (-781 (-205))))) (-15 -2041 ((-205) (-1013 (-781 (-205))))) (-15 -3353 ((-357) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3851 ((-591 (-205)) (-294 (-205)) (-1089) (-1013 (-781 (-205))))) (-15 -3034 ((-1070 (-205)) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2589 ((-1072) (-205))) (-15 -1782 ((-591 (-1072)) (-591 (-205)))) (-15 -2425 ((-591 (-1072)) (-1070 (-205)))) (-15 -1539 ((-1072) (-591 (-1072)))) (-15 -1678 ((-964) (-1089) (-1089) (-964))))) (T -174)) -((-1678 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-964)) (-5 *3 (-1089)) (-5 *1 (-174)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-1072)) (-5 *1 (-174)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-1070 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-174)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-591 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-174)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1072)) (-5 *1 (-174)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-1070 (-205))) (-5 *1 (-174)))) (-3851 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1089)) (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-591 (-205))) (-5 *1 (-174)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-174)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-1276 (*1 *2 *3) (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-174)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-174))))) -(-10 -7 (-15 -2021 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3653 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1276 ((-205) (-1013 (-781 (-205))))) (-15 -2041 ((-205) (-1013 (-781 (-205))))) (-15 -3353 ((-357) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3851 ((-591 (-205)) (-294 (-205)) (-1089) (-1013 (-781 (-205))))) (-15 -3034 ((-1070 (-205)) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2589 ((-1072) (-205))) (-15 -1782 ((-591 (-1072)) (-591 (-205)))) (-15 -2425 ((-591 (-1072)) (-1070 (-205)))) (-15 -1539 ((-1072) (-591 (-1072)))) (-15 -1678 ((-964) (-1089) (-1089) (-964)))) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 55) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-175) (-728)) (T -175)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 60) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-176) (-728)) (T -176)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 69) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-177) (-728)) (T -177)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 56) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-178) (-728)) (T -178)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 67) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 38) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-179) (-728)) (T -179)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 73) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-180) (-728)) (T -180)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 80) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 44) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-181) (-728)) (T -181)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 70) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-182) (-728)) (T -182)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 65)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-183) (-728)) (T -183)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 63)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-184) (-728)) (T -184)) -NIL -(-728) -((-2673 (((-108) $ $) NIL)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 90) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 78) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-185) (-728)) (T -185)) -NIL -(-728) -((-3914 (((-3 (-2 (|:| -3854 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 85)) (-1668 (((-525) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-2933 (((-3 (-591 (-205)) "failed") (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 73))) -(((-186) (-10 -7 (-15 -3914 ((-3 (-2 (|:| -3854 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2933 ((-3 (-591 (-205)) "failed") (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1668 ((-525) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -186)) -((-1668 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-525)) (-5 *1 (-186)))) (-2933 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-591 (-205))) (-5 *1 (-186)))) (-3914 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -3854 (-110)) (|:| |w| (-205)))) (-5 *1 (-186))))) -(-10 -7 (-15 -3914 ((-3 (-2 (|:| -3854 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2933 ((-3 (-591 (-205)) "failed") (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1668 ((-525) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) -((-3719 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-2538 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 129)) (-2643 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-631 (-294 (-205)))) 88)) (-1355 (((-357) (-631 (-294 (-205)))) 112)) (-3044 (((-631 (-294 (-205))) (-1171 (-294 (-205))) (-591 (-1089))) 109)) (-1969 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 30)) (-3406 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 43)) (-1980 (((-631 (-294 (-205))) (-631 (-294 (-205))) (-591 (-1089)) (-1171 (-294 (-205)))) 101)) (-3482 (((-357) (-357) (-591 (-357))) 106) (((-357) (-357) (-357)) 104)) (-1686 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36))) -(((-187) (-10 -7 (-15 -3482 ((-357) (-357) (-357))) (-15 -3482 ((-357) (-357) (-591 (-357)))) (-15 -1355 ((-357) (-631 (-294 (-205))))) (-15 -3044 ((-631 (-294 (-205))) (-1171 (-294 (-205))) (-591 (-1089)))) (-15 -1980 ((-631 (-294 (-205))) (-631 (-294 (-205))) (-591 (-1089)) (-1171 (-294 (-205))))) (-15 -2643 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-631 (-294 (-205))))) (-15 -2538 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3719 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3406 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1686 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1969 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -187)) -((-1969 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-631 (-294 (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-1980 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-631 (-294 (-205)))) (-5 *3 (-591 (-1089))) (-5 *4 (-1171 (-294 (-205)))) (-5 *1 (-187)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 (-294 (-205)))) (-5 *4 (-591 (-1089))) (-5 *2 (-631 (-294 (-205)))) (-5 *1 (-187)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-631 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3482 (*1 *2 *2 *3) (-12 (-5 *3 (-591 (-357))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3482 (*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187))))) -(-10 -7 (-15 -3482 ((-357) (-357) (-357))) (-15 -3482 ((-357) (-357) (-591 (-357)))) (-15 -1355 ((-357) (-631 (-294 (-205))))) (-15 -3044 ((-631 (-294 (-205))) (-1171 (-294 (-205))) (-591 (-1089)))) (-15 -1980 ((-631 (-294 (-205))) (-631 (-294 (-205))) (-591 (-1089)) (-1171 (-294 (-205))))) (-15 -2643 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-631 (-294 (-205))))) (-15 -2538 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3719 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3406 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1686 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1969 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) -((-2673 (((-108) $ $) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3267 (((-964) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 64)) (-3944 (((-108) $ $) NIL))) -(((-188) (-741)) (T -188)) -NIL -(-741) -((-2673 (((-108) $ $) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3267 (((-964) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 62)) (-3944 (((-108) $ $) NIL))) -(((-189) (-741)) (T -189)) -NIL -(-741) -((-2673 (((-108) $ $) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3267 (((-964) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 66)) (-3944 (((-108) $ $) NIL))) -(((-190) (-741)) (T -190)) -NIL -(-741) -((-2673 (((-108) $ $) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 46)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3267 (((-964) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 75)) (-3944 (((-108) $ $) NIL))) -(((-191) (-741)) (T -191)) -NIL -(-741) -((-2758 (((-591 (-1089)) (-1089) (-712)) 23)) (-3754 (((-294 (-205)) (-294 (-205))) 31)) (-3199 (((-108) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) 73)) (-2778 (((-108) (-205) (-205) (-591 (-294 (-205)))) 44))) -(((-192) (-10 -7 (-15 -2758 ((-591 (-1089)) (-1089) (-712))) (-15 -3754 ((-294 (-205)) (-294 (-205)))) (-15 -2778 ((-108) (-205) (-205) (-591 (-294 (-205))))) (-15 -3199 ((-108) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205))))))) (T -192)) -((-3199 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) (-5 *2 (-108)) (-5 *1 (-192)))) (-2778 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-591 (-294 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-192)))) (-3754 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *4 (-712)) (-5 *2 (-591 (-1089))) (-5 *1 (-192)) (-5 *3 (-1089))))) -(-10 -7 (-15 -2758 ((-591 (-1089)) (-1089) (-712))) (-15 -3754 ((-294 (-205)) (-294 (-205)))) (-15 -2778 ((-108) (-205) (-205) (-591 (-294 (-205))))) (-15 -3199 ((-108) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))))) -((-2673 (((-108) $ $) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) 26)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3266 (((-964) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) 57)) (-3944 (((-108) $ $) NIL))) -(((-193) (-828)) (T -193)) -NIL -(-828) -((-2673 (((-108) $ $) NIL)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) 21)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3266 (((-964) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) NIL)) (-3944 (((-108) $ $) NIL))) -(((-194) (-828)) (T -194)) -NIL -(-828) -((-2673 (((-108) $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3829 (((-1176) $) 36) (((-1176) $ (-854) (-854)) 38)) (-1881 (($ $ (-920)) 19) (((-225 (-1072)) $ (-1089)) 15)) (-1285 (((-1176) $) 34)) (-2686 (((-796) $) 31) (($ (-591 |#1|)) 8)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $ $) 27)) (-4036 (($ $ $) 22))) -(((-195 |#1|) (-13 (-1018) (-10 -8 (-15 -1881 ($ $ (-920))) (-15 -1881 ((-225 (-1072)) $ (-1089))) (-15 -4036 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -2686 ($ (-591 |#1|))) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $)) (-15 -3829 ((-1176) $ (-854) (-854))))) (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $))))) (T -195)) -((-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-920)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $))))))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-225 (-1072))) (-5 *1 (-195 *4)) (-4 *4 (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ *3)) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $))))))) (-4036 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $))))))) (-4047 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $))))))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $))))) (-5 *1 (-195 *3)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 (*2 $)) (-15 -3829 (*2 $))))))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 (*2 $)) (-15 -3829 (*2 $))))))) (-3829 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1176)) (-5 *1 (-195 *4)) (-4 *4 (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 (*2 $)) (-15 -3829 (*2 $)))))))) -(-13 (-1018) (-10 -8 (-15 -1881 ($ $ (-920))) (-15 -1881 ((-225 (-1072)) $ (-1089))) (-15 -4036 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -2686 ($ (-591 |#1|))) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $)) (-15 -3829 ((-1176) $ (-854) (-854))))) -((-1602 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1602 (|#2| |#4| (-1 |#2| |#2|)))) (-341) (-1147 |#1|) (-1147 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -196)) -((-1602 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1147 (-385 *2))) (-4 *2 (-1147 *5)) (-5 *1 (-196 *5 *2 *6 *3)) (-4 *3 (-320 *5 *2 *6))))) -(-10 -7 (-15 -1602 (|#2| |#4| (-1 |#2| |#2|)))) -((-3392 ((|#2| |#2| (-712) |#2|) 42)) (-3187 ((|#2| |#2| (-712) |#2|) 38)) (-3441 (((-591 |#2|) (-591 (-2 (|:| |deg| (-712)) (|:| -1582 |#2|)))) 58)) (-3902 (((-591 (-2 (|:| |deg| (-712)) (|:| -1582 |#2|))) |#2|) 53)) (-2206 (((-108) |#2|) 50)) (-3033 (((-396 |#2|) |#2|) 78)) (-2542 (((-396 |#2|) |#2|) 77)) (-4136 ((|#2| |#2| (-712) |#2|) 36)) (-3963 (((-2 (|:| |cont| |#1|) (|:| -1908 (-591 (-2 (|:| |irr| |#2|) (|:| -3630 (-525)))))) |#2| (-108)) 70))) -(((-197 |#1| |#2|) (-10 -7 (-15 -2542 ((-396 |#2|) |#2|)) (-15 -3033 ((-396 |#2|) |#2|)) (-15 -3963 ((-2 (|:| |cont| |#1|) (|:| -1908 (-591 (-2 (|:| |irr| |#2|) (|:| -3630 (-525)))))) |#2| (-108))) (-15 -3902 ((-591 (-2 (|:| |deg| (-712)) (|:| -1582 |#2|))) |#2|)) (-15 -3441 ((-591 |#2|) (-591 (-2 (|:| |deg| (-712)) (|:| -1582 |#2|))))) (-15 -4136 (|#2| |#2| (-712) |#2|)) (-15 -3187 (|#2| |#2| (-712) |#2|)) (-15 -3392 (|#2| |#2| (-712) |#2|)) (-15 -2206 ((-108) |#2|))) (-327) (-1147 |#1|)) (T -197)) -((-2206 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1147 *4)))) (-3392 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-712)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1147 *4)))) (-3187 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-712)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1147 *4)))) (-4136 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-712)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1147 *4)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| |deg| (-712)) (|:| -1582 *5)))) (-4 *5 (-1147 *4)) (-4 *4 (-327)) (-5 *2 (-591 *5)) (-5 *1 (-197 *4 *5)))) (-3902 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-591 (-2 (|:| |deg| (-712)) (|:| -1582 *3)))) (-5 *1 (-197 *4 *3)) (-4 *3 (-1147 *4)))) (-3963 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-327)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1908 (-591 (-2 (|:| |irr| *3) (|:| -3630 (-525))))))) (-5 *1 (-197 *5 *3)) (-4 *3 (-1147 *5)))) (-3033 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1147 *4)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -2542 ((-396 |#2|) |#2|)) (-15 -3033 ((-396 |#2|) |#2|)) (-15 -3963 ((-2 (|:| |cont| |#1|) (|:| -1908 (-591 (-2 (|:| |irr| |#2|) (|:| -3630 (-525)))))) |#2| (-108))) (-15 -3902 ((-591 (-2 (|:| |deg| (-712)) (|:| -1582 |#2|))) |#2|)) (-15 -3441 ((-591 |#2|) (-591 (-2 (|:| |deg| (-712)) (|:| -1582 |#2|))))) (-15 -4136 (|#2| |#2| (-712) |#2|)) (-15 -3187 (|#2| |#2| (-712) |#2|)) (-15 -3392 (|#2| |#2| (-712) |#2|)) (-15 -2206 ((-108) |#2|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 (((-525) $) NIL (|has| (-525) (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL (|has| (-525) (-761)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-1089) "failed") $) NIL (|has| (-525) (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-966 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-966 (-525))))) (-3341 (((-525) $) NIL) (((-1089) $) NIL (|has| (-525) (-966 (-1089)))) (((-385 (-525)) $) NIL (|has| (-525) (-966 (-525)))) (((-525) $) NIL (|has| (-525) (-966 (-525))))) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| (-525) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-525) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-631 (-525)) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-525) (-510)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3489 (((-108) $) NIL (|has| (-525) (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| (-525) (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| (-525) (-819 (-357))))) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL)) (-1384 (((-525) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| (-525) (-1065)))) (-2256 (((-108) $) NIL (|has| (-525) (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| (-525) (-788)))) (-1257 (($ (-1 (-525) (-525)) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-525) (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2767 (((-525) $) NIL (|has| (-525) (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1980 (($ $ (-591 (-525)) (-591 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-591 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-591 (-1089)) (-591 (-525))) NIL (|has| (-525) (-486 (-1089) (-525)))) (($ $ (-1089) (-525)) NIL (|has| (-525) (-486 (-1089) (-525))))) (-3048 (((-712) $) NIL)) (-1881 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) NIL (|has| (-525) (-213))) (($ $ (-712)) NIL (|has| (-525) (-213))) (($ $ (-1089)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1 (-525) (-525)) (-712)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2774 (($ $) NIL)) (-1396 (((-525) $) NIL)) (-2959 (($ (-385 (-525))) 9)) (-1300 (((-825 (-525)) $) NIL (|has| (-525) (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| (-525) (-566 (-825 (-357))))) (((-501) $) NIL (|has| (-525) (-566 (-501)))) (((-357) $) NIL (|has| (-525) (-951))) (((-205) $) NIL (|has| (-525) (-951)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1089)) NIL (|has| (-525) (-966 (-1089)))) (((-385 (-525)) $) NIL) (((-934 10) $) 10)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| (-525) (-842))) (|has| (-525) (-136))))) (-3425 (((-712)) NIL)) (-1584 (((-525) $) NIL (|has| (-525) (-510)))) (-1724 (((-108) $ $) NIL)) (-1460 (($ $) NIL (|has| (-525) (-761)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $) NIL (|has| (-525) (-213))) (($ $ (-712)) NIL (|has| (-525) (-213))) (($ $ (-1089)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1 (-525) (-525)) (-712)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4004 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3971 (((-108) $ $) NIL (|has| (-525) (-788)))) (-4059 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL))) -(((-198) (-13 (-923 (-525)) (-10 -8 (-15 -2686 ((-385 (-525)) $)) (-15 -2686 ((-934 10) $)) (-15 -1583 ((-385 (-525)) $)) (-15 -2959 ($ (-385 (-525))))))) (T -198)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-934 10)) (-5 *1 (-198)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-2959 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))) -(-13 (-923 (-525)) (-10 -8 (-15 -2686 ((-385 (-525)) $)) (-15 -2686 ((-934 10) $)) (-15 -1583 ((-385 (-525)) $)) (-15 -2959 ($ (-385 (-525)))))) -((-2452 (((-3 (|:| |f1| (-781 |#2|)) (|:| |f2| (-591 (-781 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1011 (-781 |#2|)) (-1072)) 28) (((-3 (|:| |f1| (-781 |#2|)) (|:| |f2| (-591 (-781 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1011 (-781 |#2|))) 24)) (-3422 (((-3 (|:| |f1| (-781 |#2|)) (|:| |f2| (-591 (-781 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089) (-781 |#2|) (-781 |#2|) (-108)) 17))) -(((-199 |#1| |#2|) (-10 -7 (-15 -2452 ((-3 (|:| |f1| (-781 |#2|)) (|:| |f2| (-591 (-781 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1011 (-781 |#2|)))) (-15 -2452 ((-3 (|:| |f1| (-781 |#2|)) (|:| |f2| (-591 (-781 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1011 (-781 |#2|)) (-1072))) (-15 -3422 ((-3 (|:| |f1| (-781 |#2|)) (|:| |f2| (-591 (-781 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089) (-781 |#2|) (-781 |#2|) (-108)))) (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525))) (-13 (-1111) (-891) (-29 |#1|))) (T -199)) -((-3422 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1089)) (-5 *6 (-108)) (-4 *7 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-4 *3 (-13 (-1111) (-891) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-781 *3)) (|:| |f2| (-591 (-781 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *7 *3)) (-5 *5 (-781 *3)))) (-2452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1011 (-781 *3))) (-5 *5 (-1072)) (-4 *3 (-13 (-1111) (-891) (-29 *6))) (-4 *6 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-3 (|:| |f1| (-781 *3)) (|:| |f2| (-591 (-781 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *6 *3)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-1011 (-781 *3))) (-4 *3 (-13 (-1111) (-891) (-29 *5))) (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-3 (|:| |f1| (-781 *3)) (|:| |f2| (-591 (-781 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *5 *3))))) -(-10 -7 (-15 -2452 ((-3 (|:| |f1| (-781 |#2|)) (|:| |f2| (-591 (-781 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1011 (-781 |#2|)))) (-15 -2452 ((-3 (|:| |f1| (-781 |#2|)) (|:| |f2| (-591 (-781 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1011 (-781 |#2|)) (-1072))) (-15 -3422 ((-3 (|:| |f1| (-781 |#2|)) (|:| |f2| (-591 (-781 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1089) (-781 |#2|) (-781 |#2|) (-108)))) -((-2452 (((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-385 (-885 |#1|)))) (-1072)) 46) (((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-385 (-885 |#1|))))) 43) (((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-294 |#1|))) (-1072)) 47) (((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-294 |#1|)))) 20))) -(((-200 |#1|) (-10 -7 (-15 -2452 ((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-294 |#1|))))) (-15 -2452 ((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-294 |#1|))) (-1072))) (-15 -2452 ((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-385 (-885 |#1|)))))) (-15 -2452 ((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-385 (-885 |#1|)))) (-1072)))) (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (T -200)) -((-2452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1011 (-781 (-385 (-885 *6))))) (-5 *5 (-1072)) (-5 *3 (-385 (-885 *6))) (-4 *6 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-3 (|:| |f1| (-781 (-294 *6))) (|:| |f2| (-591 (-781 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-1011 (-781 (-385 (-885 *5))))) (-5 *3 (-385 (-885 *5))) (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-3 (|:| |f1| (-781 (-294 *5))) (|:| |f2| (-591 (-781 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))) (-2452 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-385 (-885 *6))) (-5 *4 (-1011 (-781 (-294 *6)))) (-5 *5 (-1072)) (-4 *6 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-3 (|:| |f1| (-781 (-294 *6))) (|:| |f2| (-591 (-781 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1011 (-781 (-294 *5)))) (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-3 (|:| |f1| (-781 (-294 *5))) (|:| |f2| (-591 (-781 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5))))) -(-10 -7 (-15 -2452 ((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-294 |#1|))))) (-15 -2452 ((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-294 |#1|))) (-1072))) (-15 -2452 ((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-385 (-885 |#1|)))))) (-15 -2452 ((-3 (|:| |f1| (-781 (-294 |#1|))) (|:| |f2| (-591 (-781 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-885 |#1|)) (-1011 (-781 (-385 (-885 |#1|)))) (-1072)))) -((-3618 (((-2 (|:| -2217 (-1085 |#1|)) (|:| |deg| (-854))) (-1085 |#1|)) 21)) (-2431 (((-591 (-294 |#2|)) (-294 |#2|) (-854)) 42))) -(((-201 |#1| |#2|) (-10 -7 (-15 -3618 ((-2 (|:| -2217 (-1085 |#1|)) (|:| |deg| (-854))) (-1085 |#1|))) (-15 -2431 ((-591 (-294 |#2|)) (-294 |#2|) (-854)))) (-975) (-13 (-517) (-788))) (T -201)) -((-2431 (*1 *2 *3 *4) (-12 (-5 *4 (-854)) (-4 *6 (-13 (-517) (-788))) (-5 *2 (-591 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6)) (-4 *5 (-975)))) (-3618 (*1 *2 *3) (-12 (-4 *4 (-975)) (-5 *2 (-2 (|:| -2217 (-1085 *4)) (|:| |deg| (-854)))) (-5 *1 (-201 *4 *5)) (-5 *3 (-1085 *4)) (-4 *5 (-13 (-517) (-788)))))) -(-10 -7 (-15 -3618 ((-2 (|:| -2217 (-1085 |#1|)) (|:| |deg| (-854))) (-1085 |#1|))) (-15 -2431 ((-591 (-294 |#2|)) (-294 |#2|) (-854)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2234 ((|#1| $) NIL)) (-1505 ((|#1| $) 25)) (-3727 (((-108) $ (-712)) NIL)) (-2055 (($) NIL T CONST)) (-1876 (($ $) NIL)) (-3405 (($ $) 31)) (-1593 ((|#1| |#1| $) NIL)) (-1473 ((|#1| $) NIL)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2445 (((-712) $) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-3949 ((|#1| $) NIL)) (-2886 ((|#1| |#1| $) 28)) (-2371 ((|#1| |#1| $) 30)) (-1520 (($ |#1| $) NIL)) (-3457 (((-712) $) 27)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3590 ((|#1| $) NIL)) (-2640 ((|#1| $) 26)) (-2524 ((|#1| $) 24)) (-4166 ((|#1| $) NIL)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2559 ((|#1| |#1| $) NIL)) (-2077 (((-108) $) 9)) (-3164 (($) NIL)) (-2557 ((|#1| $) NIL)) (-2289 (($) NIL) (($ (-591 |#1|)) 16)) (-2333 (((-712) $) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-2848 ((|#1| $) 13)) (-2453 (($ (-591 |#1|)) NIL)) (-3775 ((|#1| $) NIL)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-202 |#1|) (-13 (-233 |#1|) (-10 -8 (-15 -2289 ($ (-591 |#1|))))) (-1018)) (T -202)) -((-2289 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-202 *3))))) -(-13 (-233 |#1|) (-10 -8 (-15 -2289 ($ (-591 |#1|))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2918 (($ (-294 |#1|)) 23)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-3417 (((-108) $) NIL)) (-4174 (((-3 (-294 |#1|) "failed") $) NIL)) (-3341 (((-294 |#1|) $) NIL)) (-1575 (($ $) 31)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-1257 (($ (-1 (-294 |#1|) (-294 |#1|)) $) NIL)) (-1556 (((-294 |#1|) $) NIL)) (-3016 (($ $) 30)) (-2621 (((-1072) $) NIL)) (-1890 (((-108) $) NIL)) (-2937 (((-1036) $) NIL)) (-3965 (($ (-712)) NIL)) (-4019 (($ $) 32)) (-2743 (((-525) $) NIL)) (-2686 (((-796) $) 57) (($ (-525)) NIL) (($ (-294 |#1|)) NIL)) (-1263 (((-294 |#1|) $ $) NIL)) (-3425 (((-712)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 25 T CONST)) (-1839 (($) 50 T CONST)) (-3944 (((-108) $ $) 28)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 19)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 24) (($ (-294 |#1|) $) 18))) -(((-203 |#1| |#2|) (-13 (-569 (-294 |#1|)) (-966 (-294 |#1|)) (-10 -8 (-15 -1556 ((-294 |#1|) $)) (-15 -3016 ($ $)) (-15 -1575 ($ $)) (-15 -1263 ((-294 |#1|) $ $)) (-15 -3965 ($ (-712))) (-15 -1890 ((-108) $)) (-15 -3417 ((-108) $)) (-15 -2743 ((-525) $)) (-15 -1257 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -2918 ($ (-294 |#1|))) (-15 -4019 ($ $)))) (-13 (-975) (-788)) (-591 (-1089))) (T -203)) -((-1556 (*1 *2 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) (-14 *4 (-591 (-1089))))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-975) (-788))) (-14 *3 (-591 (-1089))))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-975) (-788))) (-14 *3 (-591 (-1089))))) (-1263 (*1 *2 *1 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) (-14 *4 (-591 (-1089))))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) (-14 *4 (-591 (-1089))))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) (-14 *4 (-591 (-1089))))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) (-14 *4 (-591 (-1089))))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) (-14 *4 (-591 (-1089))))) (-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-975) (-788))) (-5 *1 (-203 *3 *4)) (-14 *4 (-591 (-1089))))) (-2918 (*1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-975) (-788))) (-5 *1 (-203 *3 *4)) (-14 *4 (-591 (-1089))))) (-4019 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-975) (-788))) (-14 *3 (-591 (-1089)))))) -(-13 (-569 (-294 |#1|)) (-966 (-294 |#1|)) (-10 -8 (-15 -1556 ((-294 |#1|) $)) (-15 -3016 ($ $)) (-15 -1575 ($ $)) (-15 -1263 ((-294 |#1|) $ $)) (-15 -3965 ($ (-712))) (-15 -1890 ((-108) $)) (-15 -3417 ((-108) $)) (-15 -2743 ((-525) $)) (-15 -1257 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -2918 ($ (-294 |#1|))) (-15 -4019 ($ $)))) -((-1824 (((-108) (-1072)) 22)) (-2650 (((-3 (-781 |#2|) "failed") (-564 |#2|) |#2| (-781 |#2|) (-781 |#2|) (-108)) 32)) (-2732 (((-3 (-108) "failed") (-1085 |#2|) (-781 |#2|) (-781 |#2|) (-108)) 73) (((-3 (-108) "failed") (-885 |#1|) (-1089) (-781 |#2|) (-781 |#2|) (-108)) 74))) -(((-204 |#1| |#2|) (-10 -7 (-15 -1824 ((-108) (-1072))) (-15 -2650 ((-3 (-781 |#2|) "failed") (-564 |#2|) |#2| (-781 |#2|) (-781 |#2|) (-108))) (-15 -2732 ((-3 (-108) "failed") (-885 |#1|) (-1089) (-781 |#2|) (-781 |#2|) (-108))) (-15 -2732 ((-3 (-108) "failed") (-1085 |#2|) (-781 |#2|) (-781 |#2|) (-108)))) (-13 (-429) (-788) (-966 (-525)) (-587 (-525))) (-13 (-1111) (-29 |#1|))) (T -204)) -((-2732 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1085 *6)) (-5 *4 (-781 *6)) (-4 *6 (-13 (-1111) (-29 *5))) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-204 *5 *6)))) (-2732 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-885 *6)) (-5 *4 (-1089)) (-5 *5 (-781 *7)) (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-4 *7 (-13 (-1111) (-29 *6))) (-5 *1 (-204 *6 *7)))) (-2650 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-781 *4)) (-5 *3 (-564 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1111) (-29 *6))) (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-204 *6 *4)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1111) (-29 *4)))))) -(-10 -7 (-15 -1824 ((-108) (-1072))) (-15 -2650 ((-3 (-781 |#2|) "failed") (-564 |#2|) |#2| (-781 |#2|) (-781 |#2|) (-108))) (-15 -2732 ((-3 (-108) "failed") (-885 |#1|) (-1089) (-781 |#2|) (-781 |#2|) (-108))) (-15 -2732 ((-3 (-108) "failed") (-1085 |#2|) (-781 |#2|) (-781 |#2|) (-108)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 89)) (-2314 (((-525) $) 99)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3328 (($ $) NIL)) (-4087 (($ $) 77)) (-2381 (($ $) 65)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-2551 (($ $) 56)) (-1965 (((-108) $ $) NIL)) (-4058 (($ $) 75)) (-2360 (($ $) 63)) (-4188 (((-525) $) 116)) (-4109 (($ $) 80)) (-2400 (($ $) 67)) (-2055 (($) NIL T CONST)) (-3032 (($ $) NIL)) (-4174 (((-3 (-525) "failed") $) 115) (((-3 (-385 (-525)) "failed") $) 112)) (-3341 (((-525) $) 113) (((-385 (-525)) $) 110)) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) 92)) (-3959 (((-385 (-525)) $ (-712)) 108) (((-385 (-525)) $ (-712) (-712)) 107)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-2008 (((-854)) 29) (((-854) (-854)) NIL (|has| $ (-6 -4241)))) (-3489 (((-108) $) NIL)) (-1417 (($) 39)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL)) (-1676 (((-525) $) 35)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL)) (-1525 (($ $) NIL)) (-2256 (((-108) $) 88)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) 53) (($) 34 (-12 (-3389 (|has| $ (-6 -4233))) (-3389 (|has| $ (-6 -4241)))))) (-3475 (($ $ $) 52) (($) 33 (-12 (-3389 (|has| $ (-6 -4233))) (-3389 (|has| $ (-6 -4241)))))) (-1630 (((-525) $) 27)) (-3068 (($ $) 30)) (-3347 (($ $) 57)) (-2356 (($ $) 62)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3474 (((-854) (-525)) NIL (|has| $ (-6 -4241)))) (-2937 (((-1036) $) NIL) (((-525) $) 90)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL)) (-2767 (($ $) NIL)) (-2925 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-854)) 100)) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3987 (((-525) $) 28)) (-3507 (($) 38)) (-2288 (($ $) 61)) (-3048 (((-712) $) NIL)) (-2683 (((-1072) (-1072)) 8)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-3439 (((-854)) NIL) (((-854) (-854)) NIL (|has| $ (-6 -4241)))) (-2209 (($ $ (-712)) NIL) (($ $) 93)) (-2599 (((-854) (-525)) NIL (|has| $ (-6 -4241)))) (-4122 (($ $) 78)) (-2410 (($ $) 68)) (-4098 (($ $) 79)) (-2391 (($ $) 66)) (-4073 (($ $) 76)) (-2370 (($ $) 64)) (-1300 (((-357) $) 104) (((-205) $) 101) (((-825 (-357)) $) NIL) (((-501) $) 45)) (-2686 (((-796) $) 42) (($ (-525)) 60) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 60) (($ (-385 (-525))) NIL)) (-3425 (((-712)) NIL)) (-1584 (($ $) NIL)) (-2901 (((-854)) 32) (((-854) (-854)) NIL (|has| $ (-6 -4241)))) (-3523 (((-854)) 25)) (-4163 (($ $) 83)) (-2457 (($ $) 71) (($ $ $) 109)) (-1724 (((-108) $ $) NIL)) (-4137 (($ $) 81)) (-2432 (($ $) 69)) (-4193 (($ $) 86)) (-2477 (($ $) 74)) (-1234 (($ $) 84)) (-2495 (($ $) 72)) (-4179 (($ $) 85)) (-2469 (($ $) 73)) (-4149 (($ $) 82)) (-2444 (($ $) 70)) (-1460 (($ $) 117)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 36 T CONST)) (-1839 (($) 37 T CONST)) (-3042 (((-1072) $) 19) (((-1072) $ (-108)) 21) (((-1176) (-763) $) 22) (((-1176) (-763) $ (-108)) 23)) (-1353 (($ $) 96)) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-3408 (($ $ $) 98)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 54)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 46)) (-4059 (($ $ $) 87) (($ $ (-525)) 55)) (-4047 (($ $) 47) (($ $ $) 49)) (-4036 (($ $ $) 48)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 58) (($ $ (-385 (-525))) 128) (($ $ $) 59)) (* (($ (-854) $) 31) (($ (-712) $) NIL) (($ (-525) $) 51) (($ $ $) 50) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) -(((-205) (-13 (-382) (-213) (-769) (-1111) (-566 (-501)) (-10 -8 (-15 -4059 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -3507 ($)) (-15 -2937 ((-525) $)) (-15 -3068 ($ $)) (-15 -3347 ($ $)) (-15 -2457 ($ $ $)) (-15 -1353 ($ $)) (-15 -3408 ($ $ $)) (-15 -2683 ((-1072) (-1072))) (-15 -3959 ((-385 (-525)) $ (-712))) (-15 -3959 ((-385 (-525)) $ (-712) (-712)))))) (T -205)) -((** (*1 *1 *1 *1) (-5 *1 (-205))) (-4059 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-3507 (*1 *1) (-5 *1 (-205))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-3068 (*1 *1 *1) (-5 *1 (-205))) (-3347 (*1 *1 *1) (-5 *1 (-205))) (-2457 (*1 *1 *1 *1) (-5 *1 (-205))) (-1353 (*1 *1 *1) (-5 *1 (-205))) (-3408 (*1 *1 *1 *1) (-5 *1 (-205))) (-2683 (*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-205)))) (-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) (-3959 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-712)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))) -(-13 (-382) (-213) (-769) (-1111) (-566 (-501)) (-10 -8 (-15 -4059 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -3507 ($)) (-15 -2937 ((-525) $)) (-15 -3068 ($ $)) (-15 -3347 ($ $)) (-15 -2457 ($ $ $)) (-15 -1353 ($ $)) (-15 -3408 ($ $ $)) (-15 -2683 ((-1072) (-1072))) (-15 -3959 ((-385 (-525)) $ (-712))) (-15 -3959 ((-385 (-525)) $ (-712) (-712))))) -((-3548 (((-157 (-205)) (-712) (-157 (-205))) 11) (((-205) (-712) (-205)) 12)) (-3447 (((-157 (-205)) (-157 (-205))) 13) (((-205) (-205)) 14)) (-3069 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 19) (((-205) (-205) (-205)) 22)) (-3333 (((-157 (-205)) (-157 (-205))) 25) (((-205) (-205)) 24)) (-3196 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 43) (((-205) (-205) (-205)) 35)) (-1925 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 48) (((-205) (-205) (-205)) 45)) (-2306 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 15) (((-205) (-205) (-205)) 16)) (-1827 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 17) (((-205) (-205) (-205)) 18)) (-2753 (((-157 (-205)) (-157 (-205))) 60) (((-205) (-205)) 59)) (-2369 (((-205) (-205)) 54) (((-157 (-205)) (-157 (-205))) 58)) (-1353 (((-157 (-205)) (-157 (-205))) 8) (((-205) (-205)) 9)) (-3408 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 30) (((-205) (-205) (-205)) 26))) -(((-206) (-10 -7 (-15 -1353 ((-205) (-205))) (-15 -1353 ((-157 (-205)) (-157 (-205)))) (-15 -3408 ((-205) (-205) (-205))) (-15 -3408 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3447 ((-205) (-205))) (-15 -3447 ((-157 (-205)) (-157 (-205)))) (-15 -3333 ((-205) (-205))) (-15 -3333 ((-157 (-205)) (-157 (-205)))) (-15 -3548 ((-205) (-712) (-205))) (-15 -3548 ((-157 (-205)) (-712) (-157 (-205)))) (-15 -2306 ((-205) (-205) (-205))) (-15 -2306 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3196 ((-205) (-205) (-205))) (-15 -3196 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1827 ((-205) (-205) (-205))) (-15 -1827 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1925 ((-205) (-205) (-205))) (-15 -1925 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2369 ((-157 (-205)) (-157 (-205)))) (-15 -2369 ((-205) (-205))) (-15 -2753 ((-205) (-205))) (-15 -2753 ((-157 (-205)) (-157 (-205)))) (-15 -3069 ((-205) (-205) (-205))) (-15 -3069 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))) (T -206)) -((-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2369 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2369 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1925 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1925 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1827 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1827 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3196 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3196 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2306 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2306 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3548 (*1 *2 *3 *2) (-12 (-5 *2 (-157 (-205))) (-5 *3 (-712)) (-5 *1 (-206)))) (-3548 (*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-712)) (-5 *1 (-206)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3408 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3408 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))) -(-10 -7 (-15 -1353 ((-205) (-205))) (-15 -1353 ((-157 (-205)) (-157 (-205)))) (-15 -3408 ((-205) (-205) (-205))) (-15 -3408 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3447 ((-205) (-205))) (-15 -3447 ((-157 (-205)) (-157 (-205)))) (-15 -3333 ((-205) (-205))) (-15 -3333 ((-157 (-205)) (-157 (-205)))) (-15 -3548 ((-205) (-712) (-205))) (-15 -3548 ((-157 (-205)) (-712) (-157 (-205)))) (-15 -2306 ((-205) (-205) (-205))) (-15 -2306 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3196 ((-205) (-205) (-205))) (-15 -3196 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1827 ((-205) (-205) (-205))) (-15 -1827 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1925 ((-205) (-205) (-205))) (-15 -1925 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2369 ((-157 (-205)) (-157 (-205)))) (-15 -2369 ((-205) (-205))) (-15 -2753 ((-205) (-205))) (-15 -2753 ((-157 (-205)) (-157 (-205)))) (-15 -3069 ((-205) (-205) (-205))) (-15 -3069 ((-157 (-205)) (-157 (-205)) (-157 (-205))))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3559 (($ (-712) (-712)) NIL)) (-3130 (($ $ $) NIL)) (-1616 (($ (-1171 |#1|)) NIL) (($ $) NIL)) (-3278 (($ |#1| |#1| |#1|) 32)) (-1711 (((-108) $) NIL)) (-2287 (($ $ (-525) (-525)) NIL)) (-3519 (($ $ (-525) (-525)) NIL)) (-2688 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-4094 (($ $) NIL)) (-1478 (((-108) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2995 (($ $ (-525) (-525) $) NIL)) (-2847 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-591 (-525)) (-591 (-525)) $) NIL)) (-1557 (($ $ (-525) (-1171 |#1|)) NIL)) (-3031 (($ $ (-525) (-1171 |#1|)) NIL)) (-1735 (($ |#1| |#1| |#1|) 31)) (-1416 (($ (-712) |#1|) NIL)) (-2055 (($) NIL T CONST)) (-1352 (($ $) NIL (|has| |#1| (-286)))) (-2578 (((-1171 |#1|) $ (-525)) NIL)) (-3846 (($ |#1|) 30)) (-3063 (($ |#1|) 29)) (-2089 (($ |#1|) 28)) (-2193 (((-712) $) NIL (|has| |#1| (-517)))) (-4205 ((|#1| $ (-525) (-525) |#1|) NIL)) (-4121 ((|#1| $ (-525) (-525)) NIL)) (-2916 (((-591 |#1|) $) NIL)) (-1613 (((-712) $) NIL (|has| |#1| (-517)))) (-2523 (((-591 (-1171 |#1|)) $) NIL (|has| |#1| (-517)))) (-4127 (((-712) $) NIL)) (-1316 (($ (-712) (-712) |#1|) NIL)) (-4140 (((-712) $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-1806 ((|#1| $) NIL (|has| |#1| (-6 (-4252 "*"))))) (-3142 (((-525) $) NIL)) (-3660 (((-525) $) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3882 (((-525) $) NIL)) (-2494 (((-525) $) NIL)) (-1572 (($ (-591 (-591 |#1|))) 11)) (-4192 (($ (-1 |#1| |#1|) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3093 (((-591 (-591 |#1|)) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2902 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-3666 (($) 12)) (-3862 (($ $ $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-1858 (($ $ |#1|) NIL)) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-591 (-525)) (-591 (-525))) NIL)) (-1968 (($ (-591 |#1|)) NIL) (($ (-591 $)) NIL)) (-2348 (((-108) $) NIL)) (-4145 ((|#1| $) NIL (|has| |#1| (-6 (-4252 "*"))))) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-1256 (((-1171 |#1|) $ (-525)) NIL)) (-2686 (($ (-1171 |#1|)) NIL) (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1986 (((-108) $) NIL)) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $ $) NIL) (($ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1171 |#1|) $ (-1171 |#1|)) 15) (((-1171 |#1|) (-1171 |#1|) $) NIL) (((-876 |#1|) $ (-876 |#1|)) 20)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-207 |#1|) (-13 (-629 |#1| (-1171 |#1|) (-1171 |#1|)) (-10 -8 (-15 * ((-876 |#1|) $ (-876 |#1|))) (-15 -3666 ($)) (-15 -2089 ($ |#1|)) (-15 -3063 ($ |#1|)) (-15 -3846 ($ |#1|)) (-15 -1735 ($ |#1| |#1| |#1|)) (-15 -3278 ($ |#1| |#1| |#1|)))) (-13 (-341) (-1111))) (T -207)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111))) (-5 *1 (-207 *3)))) (-3666 (*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111))))) (-2089 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111))))) (-3063 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111))))) (-3846 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111))))) (-1735 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111))))) (-3278 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111)))))) -(-13 (-629 |#1| (-1171 |#1|) (-1171 |#1|)) (-10 -8 (-15 * ((-876 |#1|) $ (-876 |#1|))) (-15 -3666 ($)) (-15 -2089 ($ |#1|)) (-15 -3063 ($ |#1|)) (-15 -3846 ($ |#1|)) (-15 -1735 ($ |#1| |#1| |#1|)) (-15 -3278 ($ |#1| |#1| |#1|)))) -((-1288 (($ (-1 (-108) |#2|) $) 16)) (-3844 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 25)) (-3583 (($) NIL) (($ (-591 |#2|)) 11)) (-3944 (((-108) $ $) 23))) -(((-208 |#1| |#2|) (-10 -8 (-15 -1288 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3844 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3844 (|#1| |#2| |#1|)) (-15 -3583 (|#1| (-591 |#2|))) (-15 -3583 (|#1|)) (-15 -3944 ((-108) |#1| |#1|))) (-209 |#2|) (-1018)) (T -208)) -NIL -(-10 -8 (-15 -1288 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3844 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3844 (|#1| |#2| |#1|)) (-15 -3583 (|#1| (-591 |#2|))) (-15 -3583 (|#1|)) (-15 -3944 ((-108) |#1| |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-1288 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-2908 (($ $) 58 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ |#1| $) 47 (|has| $ (-6 -4250))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4250)))) (-2537 (($ |#1| $) 57 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4250)))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-3583 (($) 49) (($ (-591 |#1|)) 48)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 59 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 50)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) 42)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-209 |#1|) (-131) (-1018)) (T -209)) +(-13 (-976) (-107 $ $) (-10 -7 (-6 (-4256 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 ((|#1| $) 75)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-2720 (($ $ $) NIL)) (-2999 (($ $) 19)) (-1828 (($ |#1| (-1071 |#1|)) 48)) (-1645 (((-3 $ "failed") $) 117)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-3109 (((-1071 |#1|) $) 82)) (-3285 (((-1071 |#1|) $) 79)) (-1401 (((-1071 |#1|) $) 80)) (-2507 (((-108) $) NIL)) (-3504 (((-1071 |#1|) $) 88)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2226 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL)) (-1539 (($ $ (-525)) 91)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2885 (((-1071 |#1|) $) 89)) (-4112 (((-1071 (-385 |#1|)) $) 14)) (-4089 (($ (-385 |#1|)) 17) (($ |#1| (-1071 |#1|) (-1071 |#1|)) 38)) (-2789 (($ $) 93)) (-4044 (((-797) $) 127) (($ (-525)) 51) (($ |#1|) 52) (($ (-385 |#1|)) 36) (($ (-385 (-525))) NIL) (($ $) NIL)) (-2502 (((-713)) 64)) (-3787 (((-108) $ $) NIL)) (-3501 (((-1071 (-385 |#1|)) $) 18)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 25 T CONST)) (-1449 (($) 28 T CONST)) (-3899 (((-108) $ $) 35)) (-4047 (($ $ $) 115)) (-4033 (($ $) 106) (($ $ $) 103)) (-4017 (($ $ $) 101)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-385 |#1|) $) 111) (($ $ (-385 |#1|)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL))) +(((-161 |#1|) (-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -4089 ($ (-385 |#1|))) (-15 -4089 ($ |#1| (-1071 |#1|) (-1071 |#1|))) (-15 -1828 ($ |#1| (-1071 |#1|))) (-15 -3285 ((-1071 |#1|) $)) (-15 -1401 ((-1071 |#1|) $)) (-15 -3109 ((-1071 |#1|) $)) (-15 -4094 (|#1| $)) (-15 -2999 ($ $)) (-15 -3501 ((-1071 (-385 |#1|)) $)) (-15 -4112 ((-1071 (-385 |#1|)) $)) (-15 -3504 ((-1071 |#1|) $)) (-15 -2885 ((-1071 |#1|) $)) (-15 -1539 ($ $ (-525))) (-15 -2789 ($ $)))) (-286)) (T -161)) +((-4089 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3)))) (-4089 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-1828 (*1 *1 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-4094 (*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-2999 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1071 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1071 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2789 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))) +(-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -4089 ($ (-385 |#1|))) (-15 -4089 ($ |#1| (-1071 |#1|) (-1071 |#1|))) (-15 -1828 ($ |#1| (-1071 |#1|))) (-15 -3285 ((-1071 |#1|) $)) (-15 -1401 ((-1071 |#1|) $)) (-15 -3109 ((-1071 |#1|) $)) (-15 -4094 (|#1| $)) (-15 -2999 ($ $)) (-15 -3501 ((-1071 (-385 |#1|)) $)) (-15 -4112 ((-1071 (-385 |#1|)) $)) (-15 -3504 ((-1071 |#1|) $)) (-15 -2885 ((-1071 |#1|) $)) (-15 -1539 ($ $ (-525))) (-15 -2789 ($ $)))) +((-2706 (($ (-104) $) 13)) (-3044 (((-3 (-104) "failed") (-1090) $) 12)) (-4044 (((-797) $) 16)) (-3694 (((-592 (-104)) $) 8))) +(((-162) (-13 (-566 (-797)) (-10 -8 (-15 -3694 ((-592 (-104)) $)) (-15 -2706 ($ (-104) $)) (-15 -3044 ((-3 (-104) "failed") (-1090) $))))) (T -162)) +((-3694 (*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162)))) (-2706 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))) (-3044 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-104)) (-5 *1 (-162))))) +(-13 (-566 (-797)) (-10 -8 (-15 -3694 ((-592 (-104)) $)) (-15 -2706 ($ (-104) $)) (-15 -3044 ((-3 (-104) "failed") (-1090) $)))) +((-3926 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 40)) (-2797 (((-877 |#1|) (-877 |#1|)) 19)) (-3100 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 36)) (-3884 (((-877 |#1|) (-877 |#1|)) 17)) (-3647 (((-877 |#1|) (-877 |#1|)) 25)) (-4011 (((-877 |#1|) (-877 |#1|)) 24)) (-1884 (((-877 |#1|) (-877 |#1|)) 23)) (-2479 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 37)) (-3068 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 35)) (-1887 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 34)) (-1764 (((-877 |#1|) (-877 |#1|)) 18)) (-1284 (((-1 (-877 |#1|) (-877 |#1|)) |#1| |#1|) 43)) (-1649 (((-877 |#1|) (-877 |#1|)) 8)) (-2224 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 39)) (-2346 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 38))) +(((-163 |#1|) (-10 -7 (-15 -1649 ((-877 |#1|) (-877 |#1|))) (-15 -3884 ((-877 |#1|) (-877 |#1|))) (-15 -1764 ((-877 |#1|) (-877 |#1|))) (-15 -2797 ((-877 |#1|) (-877 |#1|))) (-15 -1884 ((-877 |#1|) (-877 |#1|))) (-15 -4011 ((-877 |#1|) (-877 |#1|))) (-15 -3647 ((-877 |#1|) (-877 |#1|))) (-15 -1887 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3068 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3100 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2479 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2346 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2224 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3926 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -1284 ((-1 (-877 |#1|) (-877 |#1|)) |#1| |#1|))) (-13 (-341) (-1112) (-933))) (T -163)) +((-1284 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-3926 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-2224 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-2479 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-3100 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-3068 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-1887 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-3647 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-4011 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-2797 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-1649 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3))))) +(-10 -7 (-15 -1649 ((-877 |#1|) (-877 |#1|))) (-15 -3884 ((-877 |#1|) (-877 |#1|))) (-15 -1764 ((-877 |#1|) (-877 |#1|))) (-15 -2797 ((-877 |#1|) (-877 |#1|))) (-15 -1884 ((-877 |#1|) (-877 |#1|))) (-15 -4011 ((-877 |#1|) (-877 |#1|))) (-15 -3647 ((-877 |#1|) (-877 |#1|))) (-15 -1887 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3068 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3100 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2479 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2346 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2224 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3926 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -1284 ((-1 (-877 |#1|) (-877 |#1|)) |#1| |#1|))) +((-2867 ((|#2| |#3|) 27))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2867 (|#2| |#3|))) (-160) (-1148 |#1|) (-667 |#1| |#2|)) (T -164)) +((-2867 (*1 *2 *3) (-12 (-4 *4 (-160)) (-4 *2 (-1148 *4)) (-5 *1 (-164 *4 *2 *3)) (-4 *3 (-667 *4 *2))))) +(-10 -7 (-15 -2867 (|#2| |#3|))) +((-2029 (((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)) 47 (|has| (-886 |#2|) (-820 |#1|))))) +(((-165 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-886 |#2|) (-820 |#1|)) (-15 -2029 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))) |%noBranch|)) (-1019) (-13 (-820 |#1|) (-160)) (-154 |#2|)) (T -165)) +((-2029 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *3 (-154 *6)) (-4 (-886 *6) (-820 *5)) (-4 *6 (-13 (-820 *5) (-160))) (-5 *1 (-165 *5 *6 *3))))) +(-10 -7 (IF (|has| (-886 |#2|) (-820 |#1|)) (-15 -2029 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))) |%noBranch|)) +((-1509 (((-592 |#1|) (-592 |#1|) |#1|) 38)) (-3168 (((-592 |#1|) |#1| (-592 |#1|)) 19)) (-2020 (((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|)) 33) ((|#1| (-592 |#1|) (-592 |#1|)) 31))) +(((-166 |#1|) (-10 -7 (-15 -3168 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -2020 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -2020 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -1509 ((-592 |#1|) (-592 |#1|) |#1|))) (-286)) (T -166)) +((-1509 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))) (-2020 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-592 *4))) (-5 *2 (-592 *4)) (-4 *4 (-286)) (-5 *1 (-166 *4)))) (-2020 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286)))) (-3168 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3))))) +(-10 -7 (-15 -3168 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -2020 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -2020 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -1509 ((-592 |#1|) (-592 |#1|) |#1|))) +((-3516 (((-2 (|:| |start| |#2|) (|:| -2826 (-396 |#2|))) |#2|) 61)) (-3304 ((|#1| |#1|) 54)) (-4159 (((-157 |#1|) |#2|) 84)) (-2080 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2177 ((|#2| |#2|) 83)) (-1728 (((-396 |#2|) |#2| |#1|) 113) (((-396 |#2|) |#2| |#1| (-108)) 81)) (-2281 ((|#1| |#2|) 112)) (-3136 ((|#2| |#2|) 119)) (-2961 (((-396 |#2|) |#2|) 134) (((-396 |#2|) |#2| |#1|) 32) (((-396 |#2|) |#2| |#1| (-108)) 133)) (-3644 (((-592 (-2 (|:| -2826 (-592 |#2|)) (|:| -2263 |#1|))) |#2| |#2|) 132) (((-592 (-2 (|:| -2826 (-592 |#2|)) (|:| -2263 |#1|))) |#2| |#2| (-108)) 76)) (-2505 (((-592 (-157 |#1|)) |#2| |#1|) 40) (((-592 (-157 |#1|)) |#2|) 41))) +(((-167 |#1| |#2|) (-10 -7 (-15 -2505 ((-592 (-157 |#1|)) |#2|)) (-15 -2505 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -3644 ((-592 (-2 (|:| -2826 (-592 |#2|)) (|:| -2263 |#1|))) |#2| |#2| (-108))) (-15 -3644 ((-592 (-2 (|:| -2826 (-592 |#2|)) (|:| -2263 |#1|))) |#2| |#2|)) (-15 -2961 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2961 ((-396 |#2|) |#2| |#1|)) (-15 -2961 ((-396 |#2|) |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -2281 (|#1| |#2|)) (-15 -1728 ((-396 |#2|) |#2| |#1| (-108))) (-15 -1728 ((-396 |#2|) |#2| |#1|)) (-15 -2177 (|#2| |#2|)) (-15 -2080 (|#1| |#2| |#1|)) (-15 -2080 (|#1| |#2|)) (-15 -4159 ((-157 |#1|) |#2|)) (-15 -3304 (|#1| |#1|)) (-15 -3516 ((-2 (|:| |start| |#2|) (|:| -2826 (-396 |#2|))) |#2|))) (-13 (-341) (-787)) (-1148 (-157 |#1|))) (T -167)) +((-3516 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-2 (|:| |start| *3) (|:| -2826 (-396 *3)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-3304 (*1 *2 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1148 (-157 *2))))) (-4159 (*1 *2 *3) (-12 (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3)) (-4 *4 (-13 (-341) (-787))) (-4 *3 (-1148 *2)))) (-2080 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1148 (-157 *2))))) (-2080 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1148 (-157 *2))))) (-2177 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1148 (-157 *3))))) (-1728 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-1728 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-2281 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1148 (-157 *2))))) (-3136 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1148 (-157 *3))))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-2961 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-2961 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-3644 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -2826 (-592 *3)) (|:| -2263 *4)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-3644 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -2826 (-592 *3)) (|:| -2263 *5)))) (-5 *1 (-167 *5 *3)) (-4 *3 (-1148 (-157 *5))))) (-2505 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-2505 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))) +(-10 -7 (-15 -2505 ((-592 (-157 |#1|)) |#2|)) (-15 -2505 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -3644 ((-592 (-2 (|:| -2826 (-592 |#2|)) (|:| -2263 |#1|))) |#2| |#2| (-108))) (-15 -3644 ((-592 (-2 (|:| -2826 (-592 |#2|)) (|:| -2263 |#1|))) |#2| |#2|)) (-15 -2961 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2961 ((-396 |#2|) |#2| |#1|)) (-15 -2961 ((-396 |#2|) |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -2281 (|#1| |#2|)) (-15 -1728 ((-396 |#2|) |#2| |#1| (-108))) (-15 -1728 ((-396 |#2|) |#2| |#1|)) (-15 -2177 (|#2| |#2|)) (-15 -2080 (|#1| |#2| |#1|)) (-15 -2080 (|#1| |#2|)) (-15 -4159 ((-157 |#1|) |#2|)) (-15 -3304 (|#1| |#1|)) (-15 -3516 ((-2 (|:| |start| |#2|) (|:| -2826 (-396 |#2|))) |#2|))) +((-2218 (((-3 |#2| "failed") |#2|) 14)) (-2559 (((-713) |#2|) 16)) (-1501 ((|#2| |#2| |#2|) 18))) +(((-168 |#1| |#2|) (-10 -7 (-15 -2218 ((-3 |#2| "failed") |#2|)) (-15 -2559 ((-713) |#2|)) (-15 -1501 (|#2| |#2| |#2|))) (-1126) (-619 |#1|)) (T -168)) +((-1501 (*1 *2 *2 *2) (-12 (-4 *3 (-1126)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))) (-2559 (*1 *2 *3) (-12 (-4 *4 (-1126)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3)) (-4 *3 (-619 *4)))) (-2218 (*1 *2 *2) (|partial| -12 (-4 *3 (-1126)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3))))) +(-10 -7 (-15 -2218 ((-3 |#2| "failed") |#2|)) (-15 -2559 ((-713) |#2|)) (-15 -1501 (|#2| |#2| |#2|))) +((-1677 (((-1090) $) 9)) (-4044 (((-797) $) 13)) (-3362 (((-592 (-1095)) $) 11))) +(((-169) (-13 (-566 (-797)) (-10 -8 (-15 -1677 ((-1090) $)) (-15 -3362 ((-592 (-1095)) $))))) (T -169)) +((-1677 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-169)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-169))))) +(-13 (-566 (-797)) (-10 -8 (-15 -1677 ((-1090) $)) (-15 -3362 ((-592 (-1095)) $)))) +((-1457 ((|#2| |#2|) 28)) (-1942 (((-108) |#2|) 19)) (-2992 (((-294 |#1|) |#2|) 12)) (-3005 (((-294 |#1|) |#2|) 14)) (-1780 ((|#2| |#2| (-1090)) 68) ((|#2| |#2|) 69)) (-1564 (((-157 (-294 |#1|)) |#2|) 10)) (-3397 ((|#2| |#2| (-1090)) 65) ((|#2| |#2|) 59))) +(((-170 |#1| |#2|) (-10 -7 (-15 -1780 (|#2| |#2|)) (-15 -1780 (|#2| |#2| (-1090))) (-15 -3397 (|#2| |#2|)) (-15 -3397 (|#2| |#2| (-1090))) (-15 -2992 ((-294 |#1|) |#2|)) (-15 -3005 ((-294 |#1|) |#2|)) (-15 -1942 ((-108) |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -1564 ((-157 (-294 |#1|)) |#2|))) (-13 (-517) (-789) (-967 (-525))) (-13 (-27) (-1112) (-408 (-157 |#1|)))) (T -170)) +((-1564 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-1457 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3)))))) (-1942 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-108)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-3005 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-2992 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-3397 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-3397 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3)))))) (-1780 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-1780 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3))))))) +(-10 -7 (-15 -1780 (|#2| |#2|)) (-15 -1780 (|#2| |#2| (-1090))) (-15 -3397 (|#2| |#2|)) (-15 -3397 (|#2| |#2| (-1090))) (-15 -2992 ((-294 |#1|) |#2|)) (-15 -3005 ((-294 |#1|) |#2|)) (-15 -1942 ((-108) |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -1564 ((-157 (-294 |#1|)) |#2|))) +((-2417 (((-1172 (-632 (-886 |#1|))) (-1172 (-632 |#1|))) 24)) (-4044 (((-1172 (-632 (-385 (-886 |#1|)))) (-1172 (-632 |#1|))) 33))) +(((-171 |#1|) (-10 -7 (-15 -2417 ((-1172 (-632 (-886 |#1|))) (-1172 (-632 |#1|)))) (-15 -4044 ((-1172 (-632 (-385 (-886 |#1|)))) (-1172 (-632 |#1|))))) (-160)) (T -171)) +((-4044 (*1 *2 *3) (-12 (-5 *3 (-1172 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1172 (-632 (-385 (-886 *4))))) (-5 *1 (-171 *4)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-1172 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1172 (-632 (-886 *4)))) (-5 *1 (-171 *4))))) +(-10 -7 (-15 -2417 ((-1172 (-632 (-886 |#1|))) (-1172 (-632 |#1|)))) (-15 -4044 ((-1172 (-632 (-385 (-886 |#1|)))) (-1172 (-632 |#1|))))) +((-3511 (((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525)))) 66)) (-3174 (((-1092 (-385 (-525))) (-592 (-525)) (-592 (-525))) 75)) (-3752 (((-1092 (-385 (-525))) (-525)) 40)) (-1975 (((-1092 (-385 (-525))) (-525)) 52)) (-2168 (((-385 (-525)) (-1092 (-385 (-525)))) 62)) (-1635 (((-1092 (-385 (-525))) (-525)) 32)) (-2081 (((-1092 (-385 (-525))) (-525)) 48)) (-1385 (((-1092 (-385 (-525))) (-525)) 46)) (-1854 (((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525)))) 60)) (-2789 (((-1092 (-385 (-525))) (-525)) 25)) (-2896 (((-385 (-525)) (-1092 (-385 (-525))) (-1092 (-385 (-525)))) 64)) (-3377 (((-1092 (-385 (-525))) (-525)) 30)) (-1262 (((-1092 (-385 (-525))) (-592 (-525))) 72))) +(((-172) (-10 -7 (-15 -2789 ((-1092 (-385 (-525))) (-525))) (-15 -3752 ((-1092 (-385 (-525))) (-525))) (-15 -1635 ((-1092 (-385 (-525))) (-525))) (-15 -3377 ((-1092 (-385 (-525))) (-525))) (-15 -1385 ((-1092 (-385 (-525))) (-525))) (-15 -2081 ((-1092 (-385 (-525))) (-525))) (-15 -1975 ((-1092 (-385 (-525))) (-525))) (-15 -2896 ((-385 (-525)) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -1854 ((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -2168 ((-385 (-525)) (-1092 (-385 (-525))))) (-15 -3511 ((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -1262 ((-1092 (-385 (-525))) (-592 (-525)))) (-15 -3174 ((-1092 (-385 (-525))) (-592 (-525)) (-592 (-525)))))) (T -172)) +((-3174 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))) (-1262 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))) (-3511 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-1092 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-1854 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))) (-2896 (*1 *2 *3 *3) (-12 (-5 *3 (-1092 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-1975 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-2081 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1385 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3377 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3752 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-2789 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) +(-10 -7 (-15 -2789 ((-1092 (-385 (-525))) (-525))) (-15 -3752 ((-1092 (-385 (-525))) (-525))) (-15 -1635 ((-1092 (-385 (-525))) (-525))) (-15 -3377 ((-1092 (-385 (-525))) (-525))) (-15 -1385 ((-1092 (-385 (-525))) (-525))) (-15 -2081 ((-1092 (-385 (-525))) (-525))) (-15 -1975 ((-1092 (-385 (-525))) (-525))) (-15 -2896 ((-385 (-525)) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -1854 ((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -2168 ((-385 (-525)) (-1092 (-385 (-525))))) (-15 -3511 ((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -1262 ((-1092 (-385 (-525))) (-592 (-525)))) (-15 -3174 ((-1092 (-385 (-525))) (-592 (-525)) (-592 (-525))))) +((-3431 (((-396 (-1086 (-525))) (-525)) 28)) (-2440 (((-592 (-1086 (-525))) (-525)) 23)) (-1402 (((-1086 (-525)) (-525)) 21))) +(((-173) (-10 -7 (-15 -2440 ((-592 (-1086 (-525))) (-525))) (-15 -1402 ((-1086 (-525)) (-525))) (-15 -3431 ((-396 (-1086 (-525))) (-525))))) (T -173)) +((-3431 (*1 *2 *3) (-12 (-5 *2 (-396 (-1086 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-173)) (-5 *3 (-525)))) (-2440 (*1 *2 *3) (-12 (-5 *2 (-592 (-1086 (-525)))) (-5 *1 (-173)) (-5 *3 (-525))))) +(-10 -7 (-15 -2440 ((-592 (-1086 (-525))) (-525))) (-15 -1402 ((-1086 (-525)) (-525))) (-15 -3431 ((-396 (-1086 (-525))) (-525)))) +((-3240 (((-1071 (-205)) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 104)) (-3890 (((-592 (-1073)) (-1071 (-205))) NIL)) (-1679 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 80)) (-3859 (((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205)))) NIL)) (-3753 (((-592 (-1073)) (-592 (-205))) NIL)) (-1798 (((-205) (-1014 (-782 (-205)))) 24)) (-1765 (((-205) (-1014 (-782 (-205)))) 25)) (-3059 (((-357) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 97)) (-2595 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-2317 (((-1073) (-205)) NIL)) (-1702 (((-1073) (-592 (-1073))) 20)) (-2332 (((-965) (-1090) (-1090) (-965)) 13))) +(((-174) (-10 -7 (-15 -1679 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2595 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1798 ((-205) (-1014 (-782 (-205))))) (-15 -1765 ((-205) (-1014 (-782 (-205))))) (-15 -3059 ((-357) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3859 ((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205))))) (-15 -3240 ((-1071 (-205)) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2317 ((-1073) (-205))) (-15 -3753 ((-592 (-1073)) (-592 (-205)))) (-15 -3890 ((-592 (-1073)) (-1071 (-205)))) (-15 -1702 ((-1073) (-592 (-1073)))) (-15 -2332 ((-965) (-1090) (-1090) (-965))))) (T -174)) +((-2332 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-965)) (-5 *3 (-1090)) (-5 *1 (-174)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1073)) (-5 *1 (-174)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-174)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-174)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-174)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-174)))) (-3859 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1090)) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-174)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-174)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-174))))) +(-10 -7 (-15 -1679 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2595 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1798 ((-205) (-1014 (-782 (-205))))) (-15 -1765 ((-205) (-1014 (-782 (-205))))) (-15 -3059 ((-357) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3859 ((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205))))) (-15 -3240 ((-1071 (-205)) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2317 ((-1073) (-205))) (-15 -3753 ((-592 (-1073)) (-592 (-205)))) (-15 -3890 ((-592 (-1073)) (-1071 (-205)))) (-15 -1702 ((-1073) (-592 (-1073)))) (-15 -2332 ((-965) (-1090) (-1090) (-965)))) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 55) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-175) (-729)) (T -175)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 60) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-176) (-729)) (T -176)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 69) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-177) (-729)) (T -177)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 56) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-178) (-729)) (T -178)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 67) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 38) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-179) (-729)) (T -179)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 73) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-180) (-729)) (T -180)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 80) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 44) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-181) (-729)) (T -181)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 70) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-182) (-729)) (T -182)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 65)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-183) (-729)) (T -183)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 63)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-184) (-729)) (T -184)) +NIL +(-729) +((-4028 (((-108) $ $) NIL)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 90) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 78) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-185) (-729)) (T -185)) +NIL +(-729) +((-1415 (((-3 (-2 (|:| -3892 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 85)) (-2286 (((-525) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-2753 (((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 73))) +(((-186) (-10 -7 (-15 -1415 ((-3 (-2 (|:| -3892 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2753 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2286 ((-525) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -186)) +((-2286 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-525)) (-5 *1 (-186)))) (-2753 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-186)))) (-1415 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -3892 (-110)) (|:| |w| (-205)))) (-5 *1 (-186))))) +(-10 -7 (-15 -1415 ((-3 (-2 (|:| -3892 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2753 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2286 ((-525) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) +((-4185 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-2087 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 129)) (-4168 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205)))) 88)) (-1590 (((-357) (-632 (-294 (-205)))) 112)) (-2602 (((-632 (-294 (-205))) (-1172 (-294 (-205))) (-592 (-1090))) 109)) (-1263 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 30)) (-3933 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 43)) (-2168 (((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1090)) (-1172 (-294 (-205)))) 101)) (-3636 (((-357) (-357) (-592 (-357))) 106) (((-357) (-357) (-357)) 104)) (-3759 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36))) +(((-187) (-10 -7 (-15 -3636 ((-357) (-357) (-357))) (-15 -3636 ((-357) (-357) (-592 (-357)))) (-15 -1590 ((-357) (-632 (-294 (-205))))) (-15 -2602 ((-632 (-294 (-205))) (-1172 (-294 (-205))) (-592 (-1090)))) (-15 -2168 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1090)) (-1172 (-294 (-205))))) (-15 -4168 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -2087 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4185 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3933 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3759 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1263 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -187)) +((-1263 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2087 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-2168 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1090))) (-5 *4 (-1172 (-294 (-205)))) (-5 *1 (-187)))) (-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *4 (-592 (-1090))) (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3636 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-357))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3636 (*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187))))) +(-10 -7 (-15 -3636 ((-357) (-357) (-357))) (-15 -3636 ((-357) (-357) (-592 (-357)))) (-15 -1590 ((-357) (-632 (-294 (-205))))) (-15 -2602 ((-632 (-294 (-205))) (-1172 (-294 (-205))) (-592 (-1090)))) (-15 -2168 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1090)) (-1172 (-294 (-205))))) (-15 -4168 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -2087 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4185 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3933 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3759 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1263 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) +((-4028 (((-108) $ $) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3087 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 64)) (-3899 (((-108) $ $) NIL))) +(((-188) (-742)) (T -188)) +NIL +(-742) +((-4028 (((-108) $ $) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3087 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 62)) (-3899 (((-108) $ $) NIL))) +(((-189) (-742)) (T -189)) +NIL +(-742) +((-4028 (((-108) $ $) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3087 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 66)) (-3899 (((-108) $ $) NIL))) +(((-190) (-742)) (T -190)) +NIL +(-742) +((-4028 (((-108) $ $) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 46)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3087 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 75)) (-3899 (((-108) $ $) NIL))) +(((-191) (-742)) (T -191)) +NIL +(-742) +((-1562 (((-592 (-1090)) (-1090) (-713)) 23)) (-1596 (((-294 (-205)) (-294 (-205))) 31)) (-3433 (((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 73)) (-2197 (((-108) (-205) (-205) (-592 (-294 (-205)))) 44))) +(((-192) (-10 -7 (-15 -1562 ((-592 (-1090)) (-1090) (-713))) (-15 -1596 ((-294 (-205)) (-294 (-205)))) (-15 -2197 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -3433 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))))) (T -192)) +((-3433 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *2 (-108)) (-5 *1 (-192)))) (-2197 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-592 (-294 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-192)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1090))) (-5 *1 (-192)) (-5 *3 (-1090))))) +(-10 -7 (-15 -1562 ((-592 (-1090)) (-1090) (-713))) (-15 -1596 ((-294 (-205)) (-294 (-205)))) (-15 -2197 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -3433 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))))) +((-4028 (((-108) $ $) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 26)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-1219 (((-965) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 57)) (-3899 (((-108) $ $) NIL))) +(((-193) (-829)) (T -193)) +NIL +(-829) +((-4028 (((-108) $ $) NIL)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 21)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-1219 (((-965) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) NIL)) (-3899 (((-108) $ $) NIL))) +(((-194) (-829)) (T -194)) +NIL +(-829) +((-4028 (((-108) $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2460 (((-1177) $) 36) (((-1177) $ (-855) (-855)) 38)) (-1496 (($ $ (-921)) 19) (((-225 (-1073)) $ (-1090)) 15)) (-3686 (((-1177) $) 34)) (-4044 (((-797) $) 31) (($ (-592 |#1|)) 8)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $ $) 27)) (-4017 (($ $ $) 22))) +(((-195 |#1|) (-13 (-1019) (-10 -8 (-15 -1496 ($ $ (-921))) (-15 -1496 ((-225 (-1073)) $ (-1090))) (-15 -4017 ($ $ $)) (-15 -4033 ($ $ $)) (-15 -4044 ($ (-592 |#1|))) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $)) (-15 -2460 ((-1177) $ (-855) (-855))))) (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $))))) (T -195)) +((-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $))))))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-225 (-1073))) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ *3)) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $))))))) (-4017 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $))))))) (-4033 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $))))))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $))))) (-5 *1 (-195 *3)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 (*2 $)) (-15 -2460 (*2 $))))))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 (*2 $)) (-15 -2460 (*2 $))))))) (-2460 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 (*2 $)) (-15 -2460 (*2 $)))))))) +(-13 (-1019) (-10 -8 (-15 -1496 ($ $ (-921))) (-15 -1496 ((-225 (-1073)) $ (-1090))) (-15 -4017 ($ $ $)) (-15 -4033 ($ $ $)) (-15 -4044 ($ (-592 |#1|))) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $)) (-15 -2460 ((-1177) $ (-855) (-855))))) +((-3889 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3889 (|#2| |#4| (-1 |#2| |#2|)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -196)) +((-3889 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1148 (-385 *2))) (-4 *2 (-1148 *5)) (-5 *1 (-196 *5 *2 *6 *3)) (-4 *3 (-320 *5 *2 *6))))) +(-10 -7 (-15 -3889 (|#2| |#4| (-1 |#2| |#2|)))) +((-3007 ((|#2| |#2| (-713) |#2|) 42)) (-1838 ((|#2| |#2| (-713) |#2|) 38)) (-4218 (((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -3963 |#2|)))) 58)) (-3490 (((-592 (-2 (|:| |deg| (-713)) (|:| -3963 |#2|))) |#2|) 53)) (-2375 (((-108) |#2|) 50)) (-3167 (((-396 |#2|) |#2|) 78)) (-2961 (((-396 |#2|) |#2|) 77)) (-3425 ((|#2| |#2| (-713) |#2|) 36)) (-3006 (((-2 (|:| |cont| |#1|) (|:| -2826 (-592 (-2 (|:| |irr| |#2|) (|:| -3862 (-525)))))) |#2| (-108)) 70))) +(((-197 |#1| |#2|) (-10 -7 (-15 -2961 ((-396 |#2|) |#2|)) (-15 -3167 ((-396 |#2|) |#2|)) (-15 -3006 ((-2 (|:| |cont| |#1|) (|:| -2826 (-592 (-2 (|:| |irr| |#2|) (|:| -3862 (-525)))))) |#2| (-108))) (-15 -3490 ((-592 (-2 (|:| |deg| (-713)) (|:| -3963 |#2|))) |#2|)) (-15 -4218 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -3963 |#2|))))) (-15 -3425 (|#2| |#2| (-713) |#2|)) (-15 -1838 (|#2| |#2| (-713) |#2|)) (-15 -3007 (|#2| |#2| (-713) |#2|)) (-15 -2375 ((-108) |#2|))) (-327) (-1148 |#1|)) (T -197)) +((-2375 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4)))) (-3007 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1148 *4)))) (-1838 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1148 *4)))) (-3425 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1148 *4)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -3963 *5)))) (-4 *5 (-1148 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5)) (-5 *1 (-197 *4 *5)))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -3963 *3)))) (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-327)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2826 (-592 (-2 (|:| |irr| *3) (|:| -3862 (-525))))))) (-5 *1 (-197 *5 *3)) (-4 *3 (-1148 *5)))) (-3167 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4)))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -2961 ((-396 |#2|) |#2|)) (-15 -3167 ((-396 |#2|) |#2|)) (-15 -3006 ((-2 (|:| |cont| |#1|) (|:| -2826 (-592 (-2 (|:| |irr| |#2|) (|:| -3862 (-525)))))) |#2| (-108))) (-15 -3490 ((-592 (-2 (|:| |deg| (-713)) (|:| -3963 |#2|))) |#2|)) (-15 -4218 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -3963 |#2|))))) (-15 -3425 (|#2| |#2| (-713) |#2|)) (-15 -1838 (|#2| |#2| (-713) |#2|)) (-15 -3007 (|#2| |#2| (-713) |#2|)) (-15 -2375 ((-108) |#2|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 (((-525) $) NIL (|has| (-525) (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL (|has| (-525) (-762)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-525) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-967 (-525))))) (-2068 (((-525) $) NIL) (((-1090) $) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-525) (-967 (-525)))) (((-525) $) NIL (|has| (-525) (-967 (-525))))) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-525) (-510)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2973 (((-108) $) NIL (|has| (-525) (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-525) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-525) (-820 (-357))))) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL)) (-1936 (((-525) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| (-525) (-1066)))) (-3721 (((-108) $) NIL (|has| (-525) (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| (-525) (-789)))) (-2868 (($ (-1 (-525) (-525)) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-525) (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2473 (((-525) $) NIL (|has| (-525) (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1090)) (-592 (-525))) NIL (|has| (-525) (-486 (-1090) (-525)))) (($ $ (-1090) (-525)) NIL (|has| (-525) (-486 (-1090) (-525))))) (-2824 (((-713) $) NIL)) (-1496 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-1987 (($ $) NIL)) (-1945 (((-525) $) NIL)) (-3556 (($ (-385 (-525))) 9)) (-2923 (((-826 (-525)) $) NIL (|has| (-525) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-525) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-952))) (((-205) $) NIL (|has| (-525) (-952)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1090)) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL) (((-935 10) $) 10)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| (-525) (-843))) (|has| (-525) (-136))))) (-2502 (((-713)) NIL)) (-1448 (((-525) $) NIL (|has| (-525) (-510)))) (-3787 (((-108) $ $) NIL)) (-2053 (($ $) NIL (|has| (-525) (-762)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-3973 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3928 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4047 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL))) +(((-198) (-13 (-924 (-525)) (-10 -8 (-15 -4044 ((-385 (-525)) $)) (-15 -4044 ((-935 10) $)) (-15 -1341 ((-385 (-525)) $)) (-15 -3556 ($ (-385 (-525))))))) (T -198)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-935 10)) (-5 *1 (-198)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-3556 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))) +(-13 (-924 (-525)) (-10 -8 (-15 -4044 ((-385 (-525)) $)) (-15 -4044 ((-935 10) $)) (-15 -1341 ((-385 (-525)) $)) (-15 -3556 ($ (-385 (-525)))))) +((-2313 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)) (-1073)) 28) (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|))) 24)) (-2636 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1090) (-782 |#2|) (-782 |#2|) (-108)) 17))) +(((-199 |#1| |#2|) (-10 -7 (-15 -2313 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)))) (-15 -2313 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)) (-1073))) (-15 -2636 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1090) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-892) (-29 |#1|))) (T -199)) +((-2636 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1090)) (-5 *6 (-108)) (-4 *7 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-4 *3 (-13 (-1112) (-892) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3)))) (-2313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1012 (-782 *3))) (-5 *5 (-1073)) (-4 *3 (-13 (-1112) (-892) (-29 *6))) (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *6 *3)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *4 (-1012 (-782 *3))) (-4 *3 (-13 (-1112) (-892) (-29 *5))) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *5 *3))))) +(-10 -7 (-15 -2313 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)))) (-15 -2313 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)) (-1073))) (-15 -2636 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1090) (-782 |#2|) (-782 |#2|) (-108)))) +((-2313 (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))) (-1073)) 46) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|))))) 43) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))) (-1073)) 47) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|)))) 20))) +(((-200 |#1|) (-10 -7 (-15 -2313 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))))) (-15 -2313 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))) (-1073))) (-15 -2313 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))))) (-15 -2313 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))) (-1073)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (T -200)) +((-2313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1012 (-782 (-385 (-886 *6))))) (-5 *5 (-1073)) (-5 *3 (-385 (-886 *6))) (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *4 (-1012 (-782 (-385 (-886 *5))))) (-5 *3 (-385 (-886 *5))) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))) (-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1012 (-782 (-294 *6)))) (-5 *5 (-1073)) (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1012 (-782 (-294 *5)))) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5))))) +(-10 -7 (-15 -2313 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))))) (-15 -2313 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))) (-1073))) (-15 -2313 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))))) (-15 -2313 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))) (-1073)))) +((-3336 (((-2 (|:| -3932 (-1086 |#1|)) (|:| |deg| (-855))) (-1086 |#1|)) 21)) (-1203 (((-592 (-294 |#2|)) (-294 |#2|) (-855)) 42))) +(((-201 |#1| |#2|) (-10 -7 (-15 -3336 ((-2 (|:| -3932 (-1086 |#1|)) (|:| |deg| (-855))) (-1086 |#1|))) (-15 -1203 ((-592 (-294 |#2|)) (-294 |#2|) (-855)))) (-976) (-13 (-517) (-789))) (T -201)) +((-1203 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-4 *6 (-13 (-517) (-789))) (-5 *2 (-592 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6)) (-4 *5 (-976)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-2 (|:| -3932 (-1086 *4)) (|:| |deg| (-855)))) (-5 *1 (-201 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-13 (-517) (-789)))))) +(-10 -7 (-15 -3336 ((-2 (|:| -3932 (-1086 |#1|)) (|:| |deg| (-855))) (-1086 |#1|))) (-15 -1203 ((-592 (-294 |#2|)) (-294 |#2|) (-855)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3187 ((|#1| $) NIL)) (-3214 ((|#1| $) 25)) (-2583 (((-108) $ (-713)) NIL)) (-1957 (($) NIL T CONST)) (-2561 (($ $) NIL)) (-1626 (($ $) 31)) (-2048 ((|#1| |#1| $) NIL)) (-3462 ((|#1| $) NIL)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-2520 (((-713) $) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2434 ((|#1| $) NIL)) (-3042 ((|#1| |#1| $) 28)) (-1293 ((|#1| |#1| $) 30)) (-4157 (($ |#1| $) NIL)) (-2138 (((-713) $) 27)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-2950 ((|#1| $) NIL)) (-1442 ((|#1| $) 26)) (-1303 ((|#1| $) 24)) (-3672 ((|#1| $) NIL)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3280 ((|#1| |#1| $) NIL)) (-3086 (((-108) $) 9)) (-3266 (($) NIL)) (-1340 ((|#1| $) NIL)) (-4114 (($) NIL) (($ (-592 |#1|)) 16)) (-3465 (((-713) $) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-3519 ((|#1| $) 13)) (-1326 (($ (-592 |#1|)) NIL)) (-4214 ((|#1| $) NIL)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-202 |#1|) (-13 (-233 |#1|) (-10 -8 (-15 -4114 ($ (-592 |#1|))))) (-1019)) (T -202)) +((-4114 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-202 *3))))) +(-13 (-233 |#1|) (-10 -8 (-15 -4114 ($ (-592 |#1|))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3828 (($ (-294 |#1|)) 23)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2634 (((-108) $) NIL)) (-2769 (((-3 (-294 |#1|) "failed") $) NIL)) (-2068 (((-294 |#1|) $) NIL)) (-3306 (($ $) 31)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-2868 (($ (-1 (-294 |#1|) (-294 |#1|)) $) NIL)) (-3286 (((-294 |#1|) $) NIL)) (-2584 (($ $) 30)) (-1707 (((-1073) $) NIL)) (-3965 (((-108) $) NIL)) (-3027 (((-1037) $) NIL)) (-3258 (($ (-713)) NIL)) (-2469 (($ $) 32)) (-1486 (((-525) $) NIL)) (-4044 (((-797) $) 57) (($ (-525)) NIL) (($ (-294 |#1|)) NIL)) (-2100 (((-294 |#1|) $ $) NIL)) (-2502 (((-713)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 25 T CONST)) (-1449 (($) 50 T CONST)) (-3899 (((-108) $ $) 28)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 19)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 24) (($ (-294 |#1|) $) 18))) +(((-203 |#1| |#2|) (-13 (-570 (-294 |#1|)) (-967 (-294 |#1|)) (-10 -8 (-15 -3286 ((-294 |#1|) $)) (-15 -2584 ($ $)) (-15 -3306 ($ $)) (-15 -2100 ((-294 |#1|) $ $)) (-15 -3258 ($ (-713))) (-15 -3965 ((-108) $)) (-15 -2634 ((-108) $)) (-15 -1486 ((-525) $)) (-15 -2868 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -3828 ($ (-294 |#1|))) (-15 -2469 ($ $)))) (-13 (-976) (-789)) (-592 (-1090))) (T -203)) +((-3286 (*1 *2 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-2584 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789))) (-14 *3 (-592 (-1090))))) (-3306 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789))) (-14 *3 (-592 (-1090))))) (-2100 (*1 *2 *1 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-3258 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-976) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1090))))) (-3828 (*1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-976) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1090))))) (-2469 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789))) (-14 *3 (-592 (-1090)))))) +(-13 (-570 (-294 |#1|)) (-967 (-294 |#1|)) (-10 -8 (-15 -3286 ((-294 |#1|) $)) (-15 -2584 ($ $)) (-15 -3306 ($ $)) (-15 -2100 ((-294 |#1|) $ $)) (-15 -3258 ($ (-713))) (-15 -3965 ((-108) $)) (-15 -2634 ((-108) $)) (-15 -1486 ((-525) $)) (-15 -2868 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -3828 ($ (-294 |#1|))) (-15 -2469 ($ $)))) +((-3014 (((-108) (-1073)) 22)) (-1252 (((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108)) 32)) (-1416 (((-3 (-108) "failed") (-1086 |#2|) (-782 |#2|) (-782 |#2|) (-108)) 73) (((-3 (-108) "failed") (-886 |#1|) (-1090) (-782 |#2|) (-782 |#2|) (-108)) 74))) +(((-204 |#1| |#2|) (-10 -7 (-15 -3014 ((-108) (-1073))) (-15 -1252 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -1416 ((-3 (-108) "failed") (-886 |#1|) (-1090) (-782 |#2|) (-782 |#2|) (-108))) (-15 -1416 ((-3 (-108) "failed") (-1086 |#2|) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-29 |#1|))) (T -204)) +((-1416 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1086 *6)) (-5 *4 (-782 *6)) (-4 *6 (-13 (-1112) (-29 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-204 *5 *6)))) (-1416 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-886 *6)) (-5 *4 (-1090)) (-5 *5 (-782 *7)) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-4 *7 (-13 (-1112) (-29 *6))) (-5 *1 (-204 *6 *7)))) (-1252 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1112) (-29 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-204 *6 *4)))) (-3014 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1112) (-29 *4)))))) +(-10 -7 (-15 -3014 ((-108) (-1073))) (-15 -1252 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -1416 ((-3 (-108) "failed") (-886 |#1|) (-1090) (-782 |#2|) (-782 |#2|) (-108))) (-15 -1416 ((-3 (-108) "failed") (-1086 |#2|) (-782 |#2|) (-782 |#2|) (-108)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 89)) (-4094 (((-525) $) 99)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3948 (($ $) NIL)) (-3915 (($ $) 77)) (-3760 (($ $) 65)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2975 (($ $) 56)) (-1700 (((-108) $ $) NIL)) (-3886 (($ $) 75)) (-3737 (($ $) 63)) (-2780 (((-525) $) 116)) (-3946 (($ $) 80)) (-3783 (($ $) 67)) (-1957 (($) NIL T CONST)) (-1325 (($ $) NIL)) (-2769 (((-3 (-525) "failed") $) 115) (((-3 (-385 (-525)) "failed") $) 112)) (-2068 (((-525) $) 113) (((-385 (-525)) $) 110)) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) 92)) (-3840 (((-385 (-525)) $ (-713)) 108) (((-385 (-525)) $ (-713) (-713)) 107)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2229 (((-855)) 29) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-2973 (((-108) $) NIL)) (-1961 (($) 39)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL)) (-2158 (((-525) $) 35)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL)) (-2281 (($ $) NIL)) (-3721 (((-108) $) 88)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) 53) (($) 34 (-12 (-2823 (|has| $ (-6 -4237))) (-2823 (|has| $ (-6 -4245)))))) (-2154 (($ $ $) 52) (($) 33 (-12 (-2823 (|has| $ (-6 -4237))) (-2823 (|has| $ (-6 -4245)))))) (-2243 (((-525) $) 27)) (-3931 (($ $) 30)) (-2802 (($ $) 57)) (-2412 (($ $) 62)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-3196 (((-855) (-525)) NIL (|has| $ (-6 -4245)))) (-3027 (((-1037) $) NIL) (((-525) $) 90)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL)) (-2473 (($ $) NIL)) (-3024 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-855)) 100)) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1737 (((-525) $) 28)) (-1295 (($) 38)) (-2840 (($ $) 61)) (-2824 (((-713) $) NIL)) (-2766 (((-1073) (-1073)) 8)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-3943 (((-855)) NIL) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-1576 (($ $ (-713)) NIL) (($ $) 93)) (-3043 (((-855) (-525)) NIL (|has| $ (-6 -4245)))) (-3960 (($ $) 78)) (-3795 (($ $) 68)) (-3930 (($ $) 79)) (-3771 (($ $) 66)) (-3901 (($ $) 76)) (-3749 (($ $) 64)) (-2923 (((-357) $) 104) (((-205) $) 101) (((-826 (-357)) $) NIL) (((-501) $) 45)) (-4044 (((-797) $) 42) (($ (-525)) 60) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 60) (($ (-385 (-525))) NIL)) (-2502 (((-713)) NIL)) (-1448 (($ $) NIL)) (-3082 (((-855)) 32) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-3758 (((-855)) 25)) (-4004 (($ $) 83)) (-3836 (($ $) 71) (($ $ $) 109)) (-3787 (((-108) $ $) NIL)) (-3975 (($ $) 81)) (-3808 (($ $) 69)) (-4035 (($ $) 86)) (-3861 (($ $) 74)) (-2608 (($ $) 84)) (-3873 (($ $) 72)) (-4018 (($ $) 85)) (-3848 (($ $) 73)) (-3989 (($ $) 82)) (-3823 (($ $) 70)) (-2053 (($ $) 117)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 36 T CONST)) (-1449 (($) 37 T CONST)) (-2453 (((-1073) $) 19) (((-1073) $ (-108)) 21) (((-1177) (-764) $) 22) (((-1177) (-764) $ (-108)) 23)) (-1406 (($ $) 96)) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-1208 (($ $ $) 98)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 54)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 46)) (-4047 (($ $ $) 87) (($ $ (-525)) 55)) (-4033 (($ $) 47) (($ $ $) 49)) (-4017 (($ $ $) 48)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 58) (($ $ (-385 (-525))) 128) (($ $ $) 59)) (* (($ (-855) $) 31) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 50) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) +(((-205) (-13 (-382) (-213) (-770) (-1112) (-567 (-501)) (-10 -8 (-15 -4047 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -1295 ($)) (-15 -3027 ((-525) $)) (-15 -3931 ($ $)) (-15 -2802 ($ $)) (-15 -3836 ($ $ $)) (-15 -1406 ($ $)) (-15 -1208 ($ $ $)) (-15 -2766 ((-1073) (-1073))) (-15 -3840 ((-385 (-525)) $ (-713))) (-15 -3840 ((-385 (-525)) $ (-713) (-713)))))) (T -205)) +((** (*1 *1 *1 *1) (-5 *1 (-205))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-1295 (*1 *1) (-5 *1 (-205))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-3931 (*1 *1 *1) (-5 *1 (-205))) (-2802 (*1 *1 *1) (-5 *1 (-205))) (-3836 (*1 *1 *1 *1) (-5 *1 (-205))) (-1406 (*1 *1 *1) (-5 *1 (-205))) (-1208 (*1 *1 *1 *1) (-5 *1 (-205))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-205)))) (-3840 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) (-3840 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))) +(-13 (-382) (-213) (-770) (-1112) (-567 (-501)) (-10 -8 (-15 -4047 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -1295 ($)) (-15 -3027 ((-525) $)) (-15 -3931 ($ $)) (-15 -2802 ($ $)) (-15 -3836 ($ $ $)) (-15 -1406 ($ $)) (-15 -1208 ($ $ $)) (-15 -2766 ((-1073) (-1073))) (-15 -3840 ((-385 (-525)) $ (-713))) (-15 -3840 ((-385 (-525)) $ (-713) (-713))))) +((-1857 (((-157 (-205)) (-713) (-157 (-205))) 11) (((-205) (-713) (-205)) 12)) (-1400 (((-157 (-205)) (-157 (-205))) 13) (((-205) (-205)) 14)) (-1320 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 19) (((-205) (-205) (-205)) 22)) (-3156 (((-157 (-205)) (-157 (-205))) 25) (((-205) (-205)) 24)) (-3220 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 43) (((-205) (-205) (-205)) 35)) (-3579 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 48) (((-205) (-205) (-205)) 45)) (-1949 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 15) (((-205) (-205) (-205)) 16)) (-2200 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 17) (((-205) (-205) (-205)) 18)) (-3653 (((-157 (-205)) (-157 (-205))) 60) (((-205) (-205)) 59)) (-1228 (((-205) (-205)) 54) (((-157 (-205)) (-157 (-205))) 58)) (-1406 (((-157 (-205)) (-157 (-205))) 8) (((-205) (-205)) 9)) (-1208 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 30) (((-205) (-205) (-205)) 26))) +(((-206) (-10 -7 (-15 -1406 ((-205) (-205))) (-15 -1406 ((-157 (-205)) (-157 (-205)))) (-15 -1208 ((-205) (-205) (-205))) (-15 -1208 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1400 ((-205) (-205))) (-15 -1400 ((-157 (-205)) (-157 (-205)))) (-15 -3156 ((-205) (-205))) (-15 -3156 ((-157 (-205)) (-157 (-205)))) (-15 -1857 ((-205) (-713) (-205))) (-15 -1857 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -1949 ((-205) (-205) (-205))) (-15 -1949 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3220 ((-205) (-205) (-205))) (-15 -3220 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2200 ((-205) (-205) (-205))) (-15 -2200 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3579 ((-205) (-205) (-205))) (-15 -3579 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1228 ((-157 (-205)) (-157 (-205)))) (-15 -1228 ((-205) (-205))) (-15 -3653 ((-205) (-205))) (-15 -3653 ((-157 (-205)) (-157 (-205)))) (-15 -1320 ((-205) (-205) (-205))) (-15 -1320 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))) (T -206)) +((-1320 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1320 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3653 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3653 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1228 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1228 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3579 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3579 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2200 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2200 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3220 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3220 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1949 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1949 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1857 (*1 *2 *3 *2) (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206)))) (-1857 (*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1208 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1208 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))) +(-10 -7 (-15 -1406 ((-205) (-205))) (-15 -1406 ((-157 (-205)) (-157 (-205)))) (-15 -1208 ((-205) (-205) (-205))) (-15 -1208 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1400 ((-205) (-205))) (-15 -1400 ((-157 (-205)) (-157 (-205)))) (-15 -3156 ((-205) (-205))) (-15 -3156 ((-157 (-205)) (-157 (-205)))) (-15 -1857 ((-205) (-713) (-205))) (-15 -1857 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -1949 ((-205) (-205) (-205))) (-15 -1949 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3220 ((-205) (-205) (-205))) (-15 -3220 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2200 ((-205) (-205) (-205))) (-15 -2200 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3579 ((-205) (-205) (-205))) (-15 -3579 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1228 ((-157 (-205)) (-157 (-205)))) (-15 -1228 ((-205) (-205))) (-15 -3653 ((-205) (-205))) (-15 -3653 ((-157 (-205)) (-157 (-205)))) (-15 -1320 ((-205) (-205) (-205))) (-15 -1320 ((-157 (-205)) (-157 (-205)) (-157 (-205))))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2957 (($ (-713) (-713)) NIL)) (-2933 (($ $ $) NIL)) (-1342 (($ (-1172 |#1|)) NIL) (($ $) NIL)) (-1973 (($ |#1| |#1| |#1|) 32)) (-3714 (((-108) $) NIL)) (-1860 (($ $ (-525) (-525)) NIL)) (-4024 (($ $ (-525) (-525)) NIL)) (-3257 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-2755 (($ $) NIL)) (-2882 (((-108) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1736 (($ $ (-525) (-525) $) NIL)) (-1230 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-1760 (($ $ (-525) (-1172 |#1|)) NIL)) (-4228 (($ $ (-525) (-1172 |#1|)) NIL)) (-2409 (($ |#1| |#1| |#1|) 31)) (-2448 (($ (-713) |#1|) NIL)) (-1957 (($) NIL T CONST)) (-2384 (($ $) NIL (|has| |#1| (-286)))) (-2914 (((-1172 |#1|) $ (-525)) NIL)) (-1779 (($ |#1|) 30)) (-1841 (($ |#1|) 29)) (-3318 (($ |#1|) 28)) (-3439 (((-713) $) NIL (|has| |#1| (-517)))) (-2549 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2488 ((|#1| $ (-525) (-525)) NIL)) (-3781 (((-592 |#1|) $) NIL)) (-2372 (((-713) $) NIL (|has| |#1| (-517)))) (-4151 (((-592 (-1172 |#1|)) $) NIL (|has| |#1| (-517)))) (-1431 (((-713) $) NIL)) (-3248 (($ (-713) (-713) |#1|) NIL)) (-1444 (((-713) $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-1302 ((|#1| $) NIL (|has| |#1| (-6 (-4256 "*"))))) (-3533 (((-525) $) NIL)) (-3054 (((-525) $) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2487 (((-525) $) NIL)) (-4220 (((-525) $) NIL)) (-1521 (($ (-592 (-592 |#1|))) 11)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2972 (((-592 (-592 |#1|)) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3194 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-1891 (($) 12)) (-3512 (($ $ $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1614 (($ $ |#1|) NIL)) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-4154 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-2804 (((-108) $) NIL)) (-2958 ((|#1| $) NIL (|has| |#1| (-6 (-4256 "*"))))) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-2738 (((-1172 |#1|) $ (-525)) NIL)) (-4044 (($ (-1172 |#1|)) NIL) (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3773 (((-108) $) NIL)) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1172 |#1|) $ (-1172 |#1|)) 15) (((-1172 |#1|) (-1172 |#1|) $) NIL) (((-877 |#1|) $ (-877 |#1|)) 20)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-207 |#1|) (-13 (-630 |#1| (-1172 |#1|) (-1172 |#1|)) (-10 -8 (-15 * ((-877 |#1|) $ (-877 |#1|))) (-15 -1891 ($)) (-15 -3318 ($ |#1|)) (-15 -1841 ($ |#1|)) (-15 -1779 ($ |#1|)) (-15 -2409 ($ |#1| |#1| |#1|)) (-15 -1973 ($ |#1| |#1| |#1|)))) (-13 (-341) (-1112))) (T -207)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112))) (-5 *1 (-207 *3)))) (-1891 (*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-3318 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-1841 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-1779 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-2409 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-1973 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112)))))) +(-13 (-630 |#1| (-1172 |#1|) (-1172 |#1|)) (-10 -8 (-15 * ((-877 |#1|) $ (-877 |#1|))) (-15 -1891 ($)) (-15 -3318 ($ |#1|)) (-15 -1841 ($ |#1|)) (-15 -1779 ($ |#1|)) (-15 -2409 ($ |#1| |#1| |#1|)) (-15 -1973 ($ |#1| |#1| |#1|)))) +((-2696 (($ (-1 (-108) |#2|) $) 16)) (-1640 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 25)) (-3607 (($) NIL) (($ (-592 |#2|)) 11)) (-3899 (((-108) $ $) 23))) +(((-208 |#1| |#2|) (-10 -8 (-15 -2696 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1640 (|#1| |#2| |#1|)) (-15 -3607 (|#1| (-592 |#2|))) (-15 -3607 (|#1|)) (-15 -3899 ((-108) |#1| |#1|))) (-209 |#2|) (-1019)) (T -208)) +NIL +(-10 -8 (-15 -2696 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1640 (|#1| |#2| |#1|)) (-15 -3607 (|#1| (-592 |#2|))) (-15 -3607 (|#1|)) (-15 -3899 ((-108) |#1| |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-2696 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-1716 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2591 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3607 (($) 49) (($ (-592 |#1|)) 48)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 50)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) 42)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-209 |#1|) (-131) (-1019)) (T -209)) NIL (-13 (-215 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-2209 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-712)) 11) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) 19) (($ $ (-712)) NIL) (($ $) 16)) (-1796 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-712)) 14) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) NIL) (($ $ (-712)) NIL) (($ $) NIL))) -(((-210 |#1| |#2|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -1796 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -1796 (|#1| |#1| (-1089))) (-15 -1796 (|#1| |#1| (-591 (-1089)))) (-15 -1796 (|#1| |#1| (-1089) (-712))) (-15 -1796 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -1796 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -1796 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|)))) (-211 |#2|) (-975)) (T -210)) -NIL -(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -1796 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -1796 (|#1| |#1| (-1089))) (-15 -1796 (|#1| |#1| (-591 (-1089)))) (-15 -1796 (|#1| |#1| (-1089) (-712))) (-15 -1796 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -1796 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -1796 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2209 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-712)) 51) (($ $ (-591 (-1089)) (-591 (-712))) 44 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 43 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 42 (|has| |#1| (-833 (-1089)))) (($ $ (-1089)) 41 (|has| |#1| (-833 (-1089)))) (($ $ (-712)) 39 (|has| |#1| (-213))) (($ $) 37 (|has| |#1| (-213)))) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-712)) 49) (($ $ (-591 (-1089)) (-591 (-712))) 48 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 47 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 46 (|has| |#1| (-833 (-1089)))) (($ $ (-1089)) 45 (|has| |#1| (-833 (-1089)))) (($ $ (-712)) 40 (|has| |#1| (-213))) (($ $) 38 (|has| |#1| (-213)))) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-211 |#1|) (-131) (-975)) (T -211)) -((-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-975)))) (-2209 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-712)) (-4 *1 (-211 *4)) (-4 *4 (-975)))) (-1796 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-975)))) (-1796 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-712)) (-4 *1 (-211 *4)) (-4 *4 (-975))))) -(-13 (-975) (-10 -8 (-15 -2209 ($ $ (-1 |t#1| |t#1|))) (-15 -2209 ($ $ (-1 |t#1| |t#1|) (-712))) (-15 -1796 ($ $ (-1 |t#1| |t#1|))) (-15 -1796 ($ $ (-1 |t#1| |t#1|) (-712))) (IF (|has| |t#1| (-213)) (-6 (-213)) |%noBranch|) (IF (|has| |t#1| (-833 (-1089))) (-6 (-833 (-1089))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-213) |has| |#1| (-213)) ((-593 $) . T) ((-668) . T) ((-833 (-1089)) |has| |#1| (-833 (-1089))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2209 (($ $) NIL) (($ $ (-712)) 10)) (-1796 (($ $) 8) (($ $ (-712)) 12))) -(((-212 |#1|) (-10 -8 (-15 -1796 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-712))) (-15 -1796 (|#1| |#1|)) (-15 -2209 (|#1| |#1|))) (-213)) (T -212)) -NIL -(-10 -8 (-15 -1796 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-712))) (-15 -1796 (|#1| |#1|)) (-15 -2209 (|#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2209 (($ $) 38) (($ $ (-712)) 36)) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $) 37) (($ $ (-712)) 35)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-1576 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) 11) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) 19) (($ $ (-713)) NIL) (($ $) 16)) (-1990 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-713)) 14) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL))) +(((-210 |#1| |#2|) (-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -1990 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1990 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1990 (|#1| |#1| (-1090))) (-15 -1990 (|#1| |#1| (-592 (-1090)))) (-15 -1990 (|#1| |#1| (-1090) (-713))) (-15 -1990 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1990 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1990 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|)))) (-211 |#2|) (-976)) (T -210)) +NIL +(-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -1990 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1990 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1990 (|#1| |#1| (-1090))) (-15 -1990 (|#1| |#1| (-592 (-1090)))) (-15 -1990 (|#1| |#1| (-1090) (-713))) (-15 -1990 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1990 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1990 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1576 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-713)) 51) (($ $ (-592 (-1090)) (-592 (-713))) 44 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 43 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 42 (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 41 (|has| |#1| (-834 (-1090)))) (($ $ (-713)) 39 (|has| |#1| (-213))) (($ $) 37 (|has| |#1| (-213)))) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-713)) 49) (($ $ (-592 (-1090)) (-592 (-713))) 48 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 47 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 46 (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 45 (|has| |#1| (-834 (-1090)))) (($ $ (-713)) 40 (|has| |#1| (-213))) (($ $) 38 (|has| |#1| (-213)))) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-211 |#1|) (-131) (-976)) (T -211)) +((-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-976)))) (-1576 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-976)))) (-1990 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-976)))) (-1990 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-976))))) +(-13 (-976) (-10 -8 (-15 -1576 ($ $ (-1 |t#1| |t#1|))) (-15 -1576 ($ $ (-1 |t#1| |t#1|) (-713))) (-15 -1990 ($ $ (-1 |t#1| |t#1|))) (-15 -1990 ($ $ (-1 |t#1| |t#1|) (-713))) (IF (|has| |t#1| (-213)) (-6 (-213)) |%noBranch|) (IF (|has| |t#1| (-834 (-1090))) (-6 (-834 (-1090))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-213) |has| |#1| (-213)) ((-594 $) . T) ((-669) . T) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-1576 (($ $) NIL) (($ $ (-713)) 10)) (-1990 (($ $) 8) (($ $ (-713)) 12))) +(((-212 |#1|) (-10 -8 (-15 -1990 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-713))) (-15 -1990 (|#1| |#1|)) (-15 -1576 (|#1| |#1|))) (-213)) (T -212)) +NIL +(-10 -8 (-15 -1990 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-713))) (-15 -1990 (|#1| |#1|)) (-15 -1576 (|#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1576 (($ $) 38) (($ $ (-713)) 36)) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $) 37) (($ $ (-713)) 35)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-213) (-131)) (T -213)) -((-2209 (*1 *1 *1) (-4 *1 (-213))) (-1796 (*1 *1 *1) (-4 *1 (-213))) (-2209 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-712)))) (-1796 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-712))))) -(-13 (-975) (-10 -8 (-15 -2209 ($ $)) (-15 -1796 ($ $)) (-15 -2209 ($ $ (-712))) (-15 -1796 ($ $ (-712))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-668) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-3583 (($) 12) (($ (-591 |#2|)) NIL)) (-2873 (($ $) 14)) (-2695 (($ (-591 |#2|)) 10)) (-2686 (((-796) $) 21))) -(((-214 |#1| |#2|) (-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -3583 (|#1| (-591 |#2|))) (-15 -3583 (|#1|)) (-15 -2695 (|#1| (-591 |#2|))) (-15 -2873 (|#1| |#1|))) (-215 |#2|) (-1018)) (T -214)) -NIL -(-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -3583 (|#1| (-591 |#2|))) (-15 -3583 (|#1|)) (-15 -2695 (|#1| (-591 |#2|))) (-15 -2873 (|#1| |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-1288 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-2908 (($ $) 58 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ |#1| $) 47 (|has| $ (-6 -4250))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4250)))) (-2537 (($ |#1| $) 57 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4250)))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-3583 (($) 49) (($ (-591 |#1|)) 48)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 59 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 50)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) 42)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-215 |#1|) (-131) (-1018)) (T -215)) -((-3583 (*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1018)))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-4 *1 (-215 *3)))) (-3844 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-215 *2)) (-4 *2 (-1018)))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4250)) (-4 *1 (-215 *3)) (-4 *3 (-1018)))) (-1288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4250)) (-4 *1 (-215 *3)) (-4 *3 (-1018))))) -(-13 (-102 |t#1|) (-142 |t#1|) (-10 -8 (-15 -3583 ($)) (-15 -3583 ($ (-591 |t#1|))) (IF (|has| $ (-6 -4250)) (PROGN (-15 -3844 ($ |t#1| $)) (-15 -3844 ($ (-1 (-108) |t#1|) $)) (-15 -1288 ($ (-1 (-108) |t#1|) $))) |%noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-3428 (((-2 (|:| |varOrder| (-591 (-1089))) (|:| |inhom| (-3 (-591 (-1171 (-712))) "failed")) (|:| |hom| (-591 (-1171 (-712))))) (-273 (-885 (-525)))) 27))) -(((-216) (-10 -7 (-15 -3428 ((-2 (|:| |varOrder| (-591 (-1089))) (|:| |inhom| (-3 (-591 (-1171 (-712))) "failed")) (|:| |hom| (-591 (-1171 (-712))))) (-273 (-885 (-525))))))) (T -216)) -((-3428 (*1 *2 *3) (-12 (-5 *3 (-273 (-885 (-525)))) (-5 *2 (-2 (|:| |varOrder| (-591 (-1089))) (|:| |inhom| (-3 (-591 (-1171 (-712))) "failed")) (|:| |hom| (-591 (-1171 (-712)))))) (-5 *1 (-216))))) -(-10 -7 (-15 -3428 ((-2 (|:| |varOrder| (-591 (-1089))) (|:| |inhom| (-3 (-591 (-1171 (-712))) "failed")) (|:| |hom| (-591 (-1171 (-712))))) (-273 (-885 (-525)))))) -((-2834 (((-712)) 51)) (-3925 (((-2 (|:| -2928 (-631 |#3|)) (|:| |vec| (-1171 |#3|))) (-631 $) (-1171 $)) 49) (((-631 |#3|) (-631 $)) 41) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-631 (-525)) (-631 $)) NIL)) (-3840 (((-128)) 57)) (-2209 (($ $ (-1 |#3| |#3|) (-712)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) NIL) (($ $ (-712)) NIL) (($ $) NIL)) (-2686 (((-1171 |#3|) $) NIL) (($ |#3|) NIL) (((-796) $) NIL) (($ (-525)) 12) (($ (-385 (-525))) NIL)) (-3425 (((-712)) 15)) (-4059 (($ $ |#3|) 54))) -(((-217 |#1| |#2| |#3|) (-10 -8 (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|)) (-15 -3425 ((-712))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -2686 (|#1| |#3|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|) (-712))) (-15 -3925 ((-631 |#3|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#3|)) (|:| |vec| (-1171 |#3|))) (-631 |#1|) (-1171 |#1|))) (-15 -2834 ((-712))) (-15 -4059 (|#1| |#1| |#3|)) (-15 -3840 ((-128))) (-15 -2686 ((-1171 |#3|) |#1|))) (-218 |#2| |#3|) (-712) (-1125)) (T -217)) -((-3840 (*1 *2) (-12 (-14 *4 (-712)) (-4 *5 (-1125)) (-5 *2 (-128)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-2834 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1125)) (-5 *2 (-712)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-3425 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1125)) (-5 *2 (-712)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))) -(-10 -8 (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|)) (-15 -3425 ((-712))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -2686 (|#1| |#3|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|) (-712))) (-15 -3925 ((-631 |#3|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#3|)) (|:| |vec| (-1171 |#3|))) (-631 |#1|) (-1171 |#1|))) (-15 -2834 ((-712))) (-15 -4059 (|#1| |#1| |#3|)) (-15 -3840 ((-128))) (-15 -2686 ((-1171 |#3|) |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#2| (-1018)))) (-1306 (((-108) $) 72 (|has| |#2| (-126)))) (-2191 (($ (-854)) 127 (|has| |#2| (-975)))) (-3832 (((-1176) $ (-525) (-525)) 40 (|has| $ (-6 -4251)))) (-3343 (($ $ $) 123 (|has| |#2| (-734)))) (-3332 (((-3 $ "failed") $ $) 74 (|has| |#2| (-126)))) (-3727 (((-108) $ (-712)) 8)) (-2834 (((-712)) 109 (|has| |#2| (-346)))) (-4188 (((-525) $) 121 (|has| |#2| (-786)))) (-2847 ((|#2| $ (-525) |#2|) 52 (|has| $ (-6 -4251)))) (-2055 (($) 7 T CONST)) (-4174 (((-3 (-525) "failed") $) 67 (-3543 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018)))) (((-3 (-385 (-525)) "failed") $) 64 (-3543 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1018)))) (-3341 (((-525) $) 68 (-3543 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018)))) (((-385 (-525)) $) 65 (-3543 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) ((|#2| $) 60 (|has| |#2| (-1018)))) (-3925 (((-631 (-525)) (-631 $)) 108 (-3543 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 107 (-3543 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) 106 (|has| |#2| (-975))) (((-631 |#2|) (-631 $)) 105 (|has| |#2| (-975)))) (-1522 (((-3 $ "failed") $) 99 (|has| |#2| (-975)))) (-1325 (($) 112 (|has| |#2| (-346)))) (-4205 ((|#2| $ (-525) |#2|) 53 (|has| $ (-6 -4251)))) (-4121 ((|#2| $ (-525)) 51)) (-3489 (((-108) $) 119 (|has| |#2| (-786)))) (-2916 (((-591 |#2|) $) 30 (|has| $ (-6 -4250)))) (-3865 (((-108) $) 102 (|has| |#2| (-975)))) (-2256 (((-108) $) 120 (|has| |#2| (-786)))) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 43 (|has| (-525) (-788)))) (-1923 (($ $ $) 118 (-3150 (|has| |#2| (-786)) (|has| |#2| (-734))))) (-4207 (((-591 |#2|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 44 (|has| (-525) (-788)))) (-3475 (($ $ $) 117 (-3150 (|has| |#2| (-786)) (|has| |#2| (-734))))) (-4192 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#2| |#2|) $) 35)) (-1970 (((-854) $) 111 (|has| |#2| (-346)))) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#2| (-1018)))) (-3761 (((-591 (-525)) $) 46)) (-1675 (((-108) (-525) $) 47)) (-3229 (($ (-854)) 110 (|has| |#2| (-346)))) (-2937 (((-1036) $) 21 (|has| |#2| (-1018)))) (-2872 ((|#2| $) 42 (|has| (-525) (-788)))) (-1858 (($ $ |#2|) 41 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#2| $ (-525) |#2|) 50) ((|#2| $ (-525)) 49)) (-3183 ((|#2| $ $) 126 (|has| |#2| (-975)))) (-2580 (($ (-1171 |#2|)) 128)) (-3840 (((-128)) 125 (|has| |#2| (-341)))) (-2209 (($ $) 92 (-3543 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-712)) 90 (-3543 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-1089)) 88 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089))) 87 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1089) (-712)) 86 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) 85 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1 |#2| |#2|) (-712)) 78 (|has| |#2| (-975))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-975)))) (-2960 (((-712) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4250))) (((-712) |#2| $) 28 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-1171 |#2|) $) 129) (($ (-525)) 66 (-3150 (-3543 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018))) (|has| |#2| (-975)))) (($ (-385 (-525))) 63 (-3543 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) (($ |#2|) 62 (|has| |#2| (-1018))) (((-796) $) 18 (|has| |#2| (-565 (-796))))) (-3425 (((-712)) 104 (|has| |#2| (-975)))) (-1475 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4250)))) (-1460 (($ $) 122 (|has| |#2| (-786)))) (-1401 (($ $ (-712)) 100 (|has| |#2| (-975))) (($ $ (-854)) 96 (|has| |#2| (-975)))) (-1830 (($) 71 (|has| |#2| (-126)) CONST)) (-1839 (($) 103 (|has| |#2| (-975)) CONST)) (-1796 (($ $) 91 (-3543 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-712)) 89 (-3543 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-1089)) 84 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089))) 83 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1089) (-712)) 82 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) 81 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1 |#2| |#2|) (-712)) 80 (|has| |#2| (-975))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-975)))) (-4004 (((-108) $ $) 115 (-3150 (|has| |#2| (-786)) (|has| |#2| (-734))))) (-3982 (((-108) $ $) 114 (-3150 (|has| |#2| (-786)) (|has| |#2| (-734))))) (-3944 (((-108) $ $) 20 (|has| |#2| (-1018)))) (-3994 (((-108) $ $) 116 (-3150 (|has| |#2| (-786)) (|has| |#2| (-734))))) (-3971 (((-108) $ $) 113 (-3150 (|has| |#2| (-786)) (|has| |#2| (-734))))) (-4059 (($ $ |#2|) 124 (|has| |#2| (-341)))) (-4047 (($ $ $) 94 (|has| |#2| (-975))) (($ $) 93 (|has| |#2| (-975)))) (-4036 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-712)) 101 (|has| |#2| (-975))) (($ $ (-854)) 97 (|has| |#2| (-975)))) (* (($ $ $) 98 (|has| |#2| (-975))) (($ (-525) $) 95 (|has| |#2| (-975))) (($ $ |#2|) 76 (|has| |#2| (-668))) (($ |#2| $) 75 (|has| |#2| (-668))) (($ (-712) $) 73 (|has| |#2| (-126))) (($ (-854) $) 70 (|has| |#2| (-25)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-218 |#1| |#2|) (-131) (-712) (-1125)) (T -218)) -((-2580 (*1 *1 *2) (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1125)) (-4 *1 (-218 *3 *4)))) (-2191 (*1 *1 *2) (-12 (-5 *2 (-854)) (-4 *1 (-218 *3 *4)) (-4 *4 (-975)) (-4 *4 (-1125)))) (-3183 (*1 *2 *1 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1125)) (-4 *2 (-975)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1125)) (-4 *2 (-668)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1125)) (-4 *2 (-668))))) -(-13 (-558 (-525) |t#2|) (-565 (-1171 |t#2|)) (-10 -8 (-6 -4250) (-15 -2580 ($ (-1171 |t#2|))) (IF (|has| |t#2| (-1018)) (-6 (-389 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-975)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-211 |t#2|)) (-6 (-355 |t#2|)) (-15 -2191 ($ (-854))) (-15 -3183 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-126)) (-6 (-126)) |%noBranch|) (IF (|has| |t#2| (-668)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#2| (-160)) (PROGN (-6 (-37 |t#2|)) (-6 (-160))) |%noBranch|) (IF (|has| |t#2| (-6 -4247)) (-6 -4247) |%noBranch|) (IF (|has| |t#2| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |t#2| (-734)) (-6 (-734)) |%noBranch|) (IF (|has| |t#2| (-341)) (-6 (-1178 |t#2|)) |%noBranch|))) -(((-21) -3150 (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-23) -3150 (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-734)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-25) -3150 (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-734)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) -3150 (|has| |#2| (-1018)) (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-734)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3150 (|has| |#2| (-975)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-107 $ $) |has| |#2| (-160)) ((-126) -3150 (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-734)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-565 (-796)) -3150 (|has| |#2| (-1018)) (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-734)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-565 (-796))) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-565 (-1171 |#2|)) . T) ((-160) |has| |#2| (-160)) ((-211 |#2|) |has| |#2| (-975)) ((-213) -12 (|has| |#2| (-213)) (|has| |#2| (-975))) ((-265 #0=(-525) |#2|) . T) ((-267 #0# |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-346) |has| |#2| (-346)) ((-355 |#2|) |has| |#2| (-975)) ((-389 |#2|) |has| |#2| (-1018)) ((-464 |#2|) . T) ((-558 #0# |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-593 |#2|) -3150 (|has| |#2| (-975)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-593 $) -3150 (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-160))) ((-587 (-525)) -12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975))) ((-587 |#2|) |has| |#2| (-975)) ((-659 |#2|) -3150 (|has| |#2| (-341)) (|has| |#2| (-160))) ((-668) -3150 (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-160))) ((-732) |has| |#2| (-786)) ((-733) -3150 (|has| |#2| (-786)) (|has| |#2| (-734))) ((-734) |has| |#2| (-734)) ((-735) -3150 (|has| |#2| (-786)) (|has| |#2| (-734))) ((-736) -3150 (|has| |#2| (-786)) (|has| |#2| (-734))) ((-786) |has| |#2| (-786)) ((-788) -3150 (|has| |#2| (-786)) (|has| |#2| (-734))) ((-833 (-1089)) -12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975))) ((-966 (-385 (-525))) -12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018))) ((-966 (-525)) -12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018))) ((-966 |#2|) |has| |#2| (-1018)) ((-981 |#2|) -3150 (|has| |#2| (-975)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-981 $) |has| |#2| (-160)) ((-975) -3150 (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-160))) ((-982) -3150 (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-160))) ((-1030) -3150 (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-160))) ((-1018) -3150 (|has| |#2| (-1018)) (|has| |#2| (-975)) (|has| |#2| (-786)) (|has| |#2| (-734)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-1125) . T) ((-1178 |#2|) |has| |#2| (-341))) -((-1350 (((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 21)) (-3618 ((|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 23)) (-1257 (((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)) 18))) -(((-219 |#1| |#2| |#3|) (-10 -7 (-15 -1350 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3618 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -1257 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)))) (-712) (-1125) (-1125)) (T -219)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-712)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-220 *5 *7)) (-5 *1 (-219 *5 *6 *7)))) (-3618 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-712)) (-4 *6 (-1125)) (-4 *2 (-1125)) (-5 *1 (-219 *5 *6 *2)))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-712)) (-4 *7 (-1125)) (-4 *5 (-1125)) (-5 *2 (-220 *6 *5)) (-5 *1 (-219 *6 *7 *5))))) -(-10 -7 (-15 -1350 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3618 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -1257 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)))) -((-2673 (((-108) $ $) NIL (|has| |#2| (-1018)))) (-1306 (((-108) $) NIL (|has| |#2| (-126)))) (-2191 (($ (-854)) 56 (|has| |#2| (-975)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3343 (($ $ $) 60 (|has| |#2| (-734)))) (-3332 (((-3 $ "failed") $ $) 48 (|has| |#2| (-126)))) (-3727 (((-108) $ (-712)) 17)) (-2834 (((-712)) NIL (|has| |#2| (-346)))) (-4188 (((-525) $) NIL (|has| |#2| (-786)))) (-2847 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1018)))) (-3341 (((-525) $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) ((|#2| $) 27 (|has| |#2| (-1018)))) (-3925 (((-631 (-525)) (-631 $)) NIL (-12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL (|has| |#2| (-975))) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-975)))) (-1522 (((-3 $ "failed") $) 53 (|has| |#2| (-975)))) (-1325 (($) NIL (|has| |#2| (-346)))) (-4205 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ (-525)) 51)) (-3489 (((-108) $) NIL (|has| |#2| (-786)))) (-2916 (((-591 |#2|) $) 15 (|has| $ (-6 -4250)))) (-3865 (((-108) $) NIL (|has| |#2| (-975)))) (-2256 (((-108) $) NIL (|has| |#2| (-786)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) 20 (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-4207 (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-1826 (((-525) $) 50 (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-4192 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#2| |#2|) $) 41)) (-1970 (((-854) $) NIL (|has| |#2| (-346)))) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#2| (-1018)))) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-3229 (($ (-854)) NIL (|has| |#2| (-346)))) (-2937 (((-1036) $) NIL (|has| |#2| (-1018)))) (-2872 ((|#2| $) NIL (|has| (-525) (-788)))) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) 21)) (-3183 ((|#2| $ $) NIL (|has| |#2| (-975)))) (-2580 (($ (-1171 |#2|)) 18)) (-3840 (((-128)) NIL (|has| |#2| (-341)))) (-2209 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1 |#2| |#2|) (-712)) NIL (|has| |#2| (-975))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-975)))) (-2960 (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-1171 |#2|) $) 10) (($ (-525)) NIL (-3150 (-12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018))) (|has| |#2| (-975)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) (($ |#2|) 13 (|has| |#2| (-1018))) (((-796) $) NIL (|has| |#2| (-565 (-796))))) (-3425 (((-712)) NIL (|has| |#2| (-975)))) (-1475 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1460 (($ $) NIL (|has| |#2| (-786)))) (-1401 (($ $ (-712)) NIL (|has| |#2| (-975))) (($ $ (-854)) NIL (|has| |#2| (-975)))) (-1830 (($) 35 (|has| |#2| (-126)) CONST)) (-1839 (($) 38 (|has| |#2| (-975)) CONST)) (-1796 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1 |#2| |#2|) (-712)) NIL (|has| |#2| (-975))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-975)))) (-4004 (((-108) $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-3982 (((-108) $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-3944 (((-108) $ $) 26 (|has| |#2| (-1018)))) (-3994 (((-108) $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-3971 (((-108) $ $) 58 (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $ $) NIL (|has| |#2| (-975))) (($ $) NIL (|has| |#2| (-975)))) (-4036 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-712)) NIL (|has| |#2| (-975))) (($ $ (-854)) NIL (|has| |#2| (-975)))) (* (($ $ $) 49 (|has| |#2| (-975))) (($ (-525) $) NIL (|has| |#2| (-975))) (($ $ |#2|) 42 (|has| |#2| (-668))) (($ |#2| $) 43 (|has| |#2| (-668))) (($ (-712) $) NIL (|has| |#2| (-126))) (($ (-854) $) NIL (|has| |#2| (-25)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-220 |#1| |#2|) (-218 |#1| |#2|) (-712) (-1125)) (T -220)) +((-1576 (*1 *1 *1) (-4 *1 (-213))) (-1990 (*1 *1 *1) (-4 *1 (-213))) (-1576 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))) (-1990 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713))))) +(-13 (-976) (-10 -8 (-15 -1576 ($ $)) (-15 -1990 ($ $)) (-15 -1576 ($ $ (-713))) (-15 -1990 ($ $ (-713))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-3607 (($) 12) (($ (-592 |#2|)) NIL)) (-1261 (($ $) 14)) (-4059 (($ (-592 |#2|)) 10)) (-4044 (((-797) $) 21))) +(((-214 |#1| |#2|) (-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -3607 (|#1| (-592 |#2|))) (-15 -3607 (|#1|)) (-15 -4059 (|#1| (-592 |#2|))) (-15 -1261 (|#1| |#1|))) (-215 |#2|) (-1019)) (T -214)) +NIL +(-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -3607 (|#1| (-592 |#2|))) (-15 -3607 (|#1|)) (-15 -4059 (|#1| (-592 |#2|))) (-15 -1261 (|#1| |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-2696 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-1716 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2591 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3607 (($) 49) (($ (-592 |#1|)) 48)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 50)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) 42)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-215 |#1|) (-131) (-1019)) (T -215)) +((-3607 (*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1019)))) (-3607 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-215 *3)))) (-1640 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-215 *2)) (-4 *2 (-1019)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-215 *3)) (-4 *3 (-1019)))) (-2696 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-215 *3)) (-4 *3 (-1019))))) +(-13 (-102 |t#1|) (-142 |t#1|) (-10 -8 (-15 -3607 ($)) (-15 -3607 ($ (-592 |t#1|))) (IF (|has| $ (-6 -4254)) (PROGN (-15 -1640 ($ |t#1| $)) (-15 -1640 ($ (-1 (-108) |t#1|) $)) (-15 -2696 ($ (-1 (-108) |t#1|) $))) |%noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-3311 (((-2 (|:| |varOrder| (-592 (-1090))) (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed")) (|:| |hom| (-592 (-1172 (-713))))) (-273 (-886 (-525)))) 27))) +(((-216) (-10 -7 (-15 -3311 ((-2 (|:| |varOrder| (-592 (-1090))) (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed")) (|:| |hom| (-592 (-1172 (-713))))) (-273 (-886 (-525))))))) (T -216)) +((-3311 (*1 *2 *3) (-12 (-5 *3 (-273 (-886 (-525)))) (-5 *2 (-2 (|:| |varOrder| (-592 (-1090))) (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed")) (|:| |hom| (-592 (-1172 (-713)))))) (-5 *1 (-216))))) +(-10 -7 (-15 -3311 ((-2 (|:| |varOrder| (-592 (-1090))) (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed")) (|:| |hom| (-592 (-1172 (-713))))) (-273 (-886 (-525)))))) +((-1651 (((-713)) 51)) (-1307 (((-2 (|:| -3471 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 $) (-1172 $)) 49) (((-632 |#3|) (-632 $)) 41) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-2374 (((-128)) 57)) (-1576 (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-4044 (((-1172 |#3|) $) NIL) (($ |#3|) NIL) (((-797) $) NIL) (($ (-525)) 12) (($ (-385 (-525))) NIL)) (-2502 (((-713)) 15)) (-4047 (($ $ |#3|) 54))) +(((-217 |#1| |#2| |#3|) (-10 -8 (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|)) (-15 -2502 ((-713))) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -4044 (|#1| |#3|)) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -1307 ((-632 |#3|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 |#1|) (-1172 |#1|))) (-15 -1651 ((-713))) (-15 -4047 (|#1| |#1| |#3|)) (-15 -2374 ((-128))) (-15 -4044 ((-1172 |#3|) |#1|))) (-218 |#2| |#3|) (-713) (-1126)) (T -217)) +((-2374 (*1 *2) (-12 (-14 *4 (-713)) (-4 *5 (-1126)) (-5 *2 (-128)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-1651 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1126)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-2502 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1126)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))) +(-10 -8 (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|)) (-15 -2502 ((-713))) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -4044 (|#1| |#3|)) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -1307 ((-632 |#3|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 |#1|) (-1172 |#1|))) (-15 -1651 ((-713))) (-15 -4047 (|#1| |#1| |#3|)) (-15 -2374 ((-128))) (-15 -4044 ((-1172 |#3|) |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#2| (-1019)))) (-2464 (((-108) $) 72 (|has| |#2| (-126)))) (-3510 (($ (-855)) 127 (|has| |#2| (-976)))) (-2792 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3207 (($ $ $) 123 (|has| |#2| (-735)))) (-3004 (((-3 $ "failed") $ $) 74 (|has| |#2| (-126)))) (-2583 (((-108) $ (-713)) 8)) (-1651 (((-713)) 109 (|has| |#2| (-346)))) (-2780 (((-525) $) 121 (|has| |#2| (-787)))) (-1230 ((|#2| $ (-525) |#2|) 52 (|has| $ (-6 -4255)))) (-1957 (($) 7 T CONST)) (-2769 (((-3 (-525) "failed") $) 67 (-2385 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-3 (-385 (-525)) "failed") $) 64 (-2385 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1019)))) (-2068 (((-525) $) 68 (-2385 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-385 (-525)) $) 65 (-2385 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) ((|#2| $) 60 (|has| |#2| (-1019)))) (-1307 (((-632 (-525)) (-632 $)) 108 (-2385 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 107 (-2385 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 106 (|has| |#2| (-976))) (((-632 |#2|) (-632 $)) 105 (|has| |#2| (-976)))) (-1645 (((-3 $ "failed") $) 99 (|has| |#2| (-976)))) (-1527 (($) 112 (|has| |#2| (-346)))) (-2549 ((|#2| $ (-525) |#2|) 53 (|has| $ (-6 -4255)))) (-2488 ((|#2| $ (-525)) 51)) (-2973 (((-108) $) 119 (|has| |#2| (-787)))) (-3781 (((-592 |#2|) $) 30 (|has| $ (-6 -4254)))) (-2507 (((-108) $) 102 (|has| |#2| (-976)))) (-3721 (((-108) $) 120 (|has| |#2| (-787)))) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 43 (|has| (-525) (-789)))) (-1260 (($ $ $) 118 (-3215 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2679 (((-592 |#2|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 44 (|has| (-525) (-789)))) (-2154 (($ $ $) 117 (-3215 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2540 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#2| |#2|) $) 35)) (-2111 (((-855) $) 111 (|has| |#2| (-346)))) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#2| (-1019)))) (-2379 (((-592 (-525)) $) 46)) (-2030 (((-108) (-525) $) 47)) (-3381 (($ (-855)) 110 (|has| |#2| (-346)))) (-3027 (((-1037) $) 21 (|has| |#2| (-1019)))) (-1683 ((|#2| $) 42 (|has| (-525) (-789)))) (-1614 (($ $ |#2|) 41 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#2| $ (-525) |#2|) 50) ((|#2| $ (-525)) 49)) (-1580 ((|#2| $ $) 126 (|has| |#2| (-976)))) (-3020 (($ (-1172 |#2|)) 128)) (-2374 (((-128)) 125 (|has| |#2| (-341)))) (-1576 (($ $) 92 (-2385 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) 90 (-2385 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) 88 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) 87 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) 86 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) 85 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) 78 (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-976)))) (-3053 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4254))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-1172 |#2|) $) 129) (($ (-525)) 66 (-3215 (-2385 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (|has| |#2| (-976)))) (($ (-385 (-525))) 63 (-2385 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (($ |#2|) 62 (|has| |#2| (-1019))) (((-797) $) 18 (|has| |#2| (-566 (-797))))) (-2502 (((-713)) 104 (|has| |#2| (-976)))) (-2443 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4254)))) (-2053 (($ $) 122 (|has| |#2| (-787)))) (-1594 (($ $ (-713)) 100 (|has| |#2| (-976))) (($ $ (-855)) 96 (|has| |#2| (-976)))) (-1436 (($) 71 (|has| |#2| (-126)) CONST)) (-1449 (($) 103 (|has| |#2| (-976)) CONST)) (-1990 (($ $) 91 (-2385 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) 89 (-2385 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) 84 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) 83 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) 82 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) 81 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) 80 (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-976)))) (-3973 (((-108) $ $) 115 (-3215 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3944 (((-108) $ $) 114 (-3215 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3899 (((-108) $ $) 20 (|has| |#2| (-1019)))) (-3959 (((-108) $ $) 116 (-3215 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3928 (((-108) $ $) 113 (-3215 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-4047 (($ $ |#2|) 124 (|has| |#2| (-341)))) (-4033 (($ $ $) 94 (|has| |#2| (-976))) (($ $) 93 (|has| |#2| (-976)))) (-4017 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-713)) 101 (|has| |#2| (-976))) (($ $ (-855)) 97 (|has| |#2| (-976)))) (* (($ $ $) 98 (|has| |#2| (-976))) (($ (-525) $) 95 (|has| |#2| (-976))) (($ $ |#2|) 76 (|has| |#2| (-669))) (($ |#2| $) 75 (|has| |#2| (-669))) (($ (-713) $) 73 (|has| |#2| (-126))) (($ (-855) $) 70 (|has| |#2| (-25)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-218 |#1| |#2|) (-131) (-713) (-1126)) (T -218)) +((-3020 (*1 *1 *2) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1126)) (-4 *1 (-218 *3 *4)))) (-3510 (*1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-218 *3 *4)) (-4 *4 (-976)) (-4 *4 (-1126)))) (-1580 (*1 *2 *1 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-976)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-669))))) +(-13 (-558 (-525) |t#2|) (-566 (-1172 |t#2|)) (-10 -8 (-6 -4254) (-15 -3020 ($ (-1172 |t#2|))) (IF (|has| |t#2| (-1019)) (-6 (-389 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-976)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-211 |t#2|)) (-6 (-355 |t#2|)) (-15 -3510 ($ (-855))) (-15 -1580 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-126)) (-6 (-126)) |%noBranch|) (IF (|has| |t#2| (-669)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#2| (-160)) (PROGN (-6 (-37 |t#2|)) (-6 (-160))) |%noBranch|) (IF (|has| |t#2| (-6 -4251)) (-6 -4251) |%noBranch|) (IF (|has| |t#2| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |t#2| (-735)) (-6 (-735)) |%noBranch|) (IF (|has| |t#2| (-341)) (-6 (-1179 |t#2|)) |%noBranch|))) +(((-21) -3215 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-23) -3215 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-25) -3215 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) -3215 (|has| |#2| (-1019)) (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3215 (|has| |#2| (-976)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-107 $ $) |has| |#2| (-160)) ((-126) -3215 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-566 (-797)) -3215 (|has| |#2| (-1019)) (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-566 (-797))) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-566 (-1172 |#2|)) . T) ((-160) |has| |#2| (-160)) ((-211 |#2|) |has| |#2| (-976)) ((-213) -12 (|has| |#2| (-213)) (|has| |#2| (-976))) ((-265 #0=(-525) |#2|) . T) ((-267 #0# |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-346) |has| |#2| (-346)) ((-355 |#2|) |has| |#2| (-976)) ((-389 |#2|) |has| |#2| (-1019)) ((-464 |#2|) . T) ((-558 #0# |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-594 |#2|) -3215 (|has| |#2| (-976)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-594 $) -3215 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-588 (-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976))) ((-588 |#2|) |has| |#2| (-976)) ((-660 |#2|) -3215 (|has| |#2| (-341)) (|has| |#2| (-160))) ((-669) -3215 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-733) |has| |#2| (-787)) ((-734) -3215 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-735) |has| |#2| (-735)) ((-736) -3215 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-737) -3215 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-787) |has| |#2| (-787)) ((-789) -3215 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-834 (-1090)) -12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976))) ((-967 (-385 (-525))) -12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019))) ((-967 (-525)) -12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) ((-967 |#2|) |has| |#2| (-1019)) ((-982 |#2|) -3215 (|has| |#2| (-976)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-982 $) |has| |#2| (-160)) ((-976) -3215 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-983) -3215 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-1031) -3215 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-1019) -3215 (|has| |#2| (-1019)) (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-1126) . T) ((-1179 |#2|) |has| |#2| (-341))) +((-2225 (((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 21)) (-3336 ((|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 23)) (-2868 (((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)) 18))) +(((-219 |#1| |#2| |#3|) (-10 -7 (-15 -2225 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3336 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -2868 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)))) (-713) (-1126) (-1126)) (T -219)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-5 *2 (-220 *5 *7)) (-5 *1 (-219 *5 *6 *7)))) (-3336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1126)) (-4 *2 (-1126)) (-5 *1 (-219 *5 *6 *2)))) (-2225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713)) (-4 *7 (-1126)) (-4 *5 (-1126)) (-5 *2 (-220 *6 *5)) (-5 *1 (-219 *6 *7 *5))))) +(-10 -7 (-15 -2225 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3336 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -2868 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)))) +((-4028 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-2464 (((-108) $) NIL (|has| |#2| (-126)))) (-3510 (($ (-855)) 56 (|has| |#2| (-976)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3207 (($ $ $) 60 (|has| |#2| (-735)))) (-3004 (((-3 $ "failed") $ $) 48 (|has| |#2| (-126)))) (-2583 (((-108) $ (-713)) 17)) (-1651 (((-713)) NIL (|has| |#2| (-346)))) (-2780 (((-525) $) NIL (|has| |#2| (-787)))) (-1230 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1019)))) (-2068 (((-525) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) ((|#2| $) 27 (|has| |#2| (-1019)))) (-1307 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL (|has| |#2| (-976))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-976)))) (-1645 (((-3 $ "failed") $) 53 (|has| |#2| (-976)))) (-1527 (($) NIL (|has| |#2| (-346)))) (-2549 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ (-525)) 51)) (-2973 (((-108) $) NIL (|has| |#2| (-787)))) (-3781 (((-592 |#2|) $) 15 (|has| $ (-6 -4254)))) (-2507 (((-108) $) NIL (|has| |#2| (-976)))) (-3721 (((-108) $) NIL (|has| |#2| (-787)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) 20 (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2679 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2112 (((-525) $) 50 (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2540 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#2| |#2|) $) 41)) (-2111 (((-855) $) NIL (|has| |#2| (-346)))) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#2| (-1019)))) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3381 (($ (-855)) NIL (|has| |#2| (-346)))) (-3027 (((-1037) $) NIL (|has| |#2| (-1019)))) (-1683 ((|#2| $) NIL (|has| (-525) (-789)))) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) 21)) (-1580 ((|#2| $ $) NIL (|has| |#2| (-976)))) (-3020 (($ (-1172 |#2|)) 18)) (-2374 (((-128)) NIL (|has| |#2| (-341)))) (-1576 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-3053 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-1172 |#2|) $) 10) (($ (-525)) NIL (-3215 (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (|has| |#2| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (($ |#2|) 13 (|has| |#2| (-1019))) (((-797) $) NIL (|has| |#2| (-566 (-797))))) (-2502 (((-713)) NIL (|has| |#2| (-976)))) (-2443 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2053 (($ $) NIL (|has| |#2| (-787)))) (-1594 (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (-1436 (($) 35 (|has| |#2| (-126)) CONST)) (-1449 (($) 38 (|has| |#2| (-976)) CONST)) (-1990 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-3973 (((-108) $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3944 (((-108) $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3899 (((-108) $ $) 26 (|has| |#2| (-1019)))) (-3959 (((-108) $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3928 (((-108) $ $) 58 (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $ $) NIL (|has| |#2| (-976))) (($ $) NIL (|has| |#2| (-976)))) (-4017 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (* (($ $ $) 49 (|has| |#2| (-976))) (($ (-525) $) NIL (|has| |#2| (-976))) (($ $ |#2|) 42 (|has| |#2| (-669))) (($ |#2| $) 43 (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-855) $) NIL (|has| |#2| (-25)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-220 |#1| |#2|) (-218 |#1| |#2|) (-713) (-1126)) (T -220)) NIL (-218 |#1| |#2|) -((-4096 (((-525) (-591 (-1072))) 24) (((-525) (-1072)) 19)) (-2939 (((-1176) (-591 (-1072))) 29) (((-1176) (-1072)) 28)) (-2002 (((-1072)) 14)) (-3837 (((-1072) (-525) (-1072)) 16)) (-1708 (((-591 (-1072)) (-591 (-1072)) (-525) (-1072)) 25) (((-1072) (-1072) (-525) (-1072)) 23)) (-3169 (((-591 (-1072)) (-591 (-1072))) 13) (((-591 (-1072)) (-1072)) 11))) -(((-221) (-10 -7 (-15 -3169 ((-591 (-1072)) (-1072))) (-15 -3169 ((-591 (-1072)) (-591 (-1072)))) (-15 -2002 ((-1072))) (-15 -3837 ((-1072) (-525) (-1072))) (-15 -1708 ((-1072) (-1072) (-525) (-1072))) (-15 -1708 ((-591 (-1072)) (-591 (-1072)) (-525) (-1072))) (-15 -2939 ((-1176) (-1072))) (-15 -2939 ((-1176) (-591 (-1072)))) (-15 -4096 ((-525) (-1072))) (-15 -4096 ((-525) (-591 (-1072)))))) (T -221)) -((-4096 (*1 *2 *3) (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-525)) (-5 *1 (-221)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-525)) (-5 *1 (-221)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-1176)) (-5 *1 (-221)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-221)))) (-1708 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-591 (-1072))) (-5 *3 (-525)) (-5 *4 (-1072)) (-5 *1 (-221)))) (-1708 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-525)) (-5 *1 (-221)))) (-3837 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-525)) (-5 *1 (-221)))) (-2002 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) (-3169 (*1 *2 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-221)))) (-3169 (*1 *2 *3) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-221)) (-5 *3 (-1072))))) -(-10 -7 (-15 -3169 ((-591 (-1072)) (-1072))) (-15 -3169 ((-591 (-1072)) (-591 (-1072)))) (-15 -2002 ((-1072))) (-15 -3837 ((-1072) (-525) (-1072))) (-15 -1708 ((-1072) (-1072) (-525) (-1072))) (-15 -1708 ((-591 (-1072)) (-591 (-1072)) (-525) (-1072))) (-15 -2939 ((-1176) (-1072))) (-15 -2939 ((-1176) (-591 (-1072)))) (-15 -4096 ((-525) (-1072))) (-15 -4096 ((-525) (-591 (-1072))))) -((-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 9)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 18)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL))) -(((-222 |#1|) (-10 -8 (-15 -1401 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-712))) (-15 -1401 (|#1| |#1| (-712))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-854))) (-15 -1401 (|#1| |#1| (-854))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) (-223)) (T -222)) -NIL -(-10 -8 (-15 -1401 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-712))) (-15 -1401 (|#1| |#1| (-712))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-854))) (-15 -1401 (|#1| |#1| (-854))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 39)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 44)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 40)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 41)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 43) (($ $ (-385 (-525))) 42))) +((-2894 (((-525) (-592 (-1073))) 24) (((-525) (-1073)) 19)) (-1741 (((-1177) (-592 (-1073))) 29) (((-1177) (-1073)) 28)) (-2782 (((-1073)) 14)) (-2141 (((-1073) (-525) (-1073)) 16)) (-3448 (((-592 (-1073)) (-592 (-1073)) (-525) (-1073)) 25) (((-1073) (-1073) (-525) (-1073)) 23)) (-2654 (((-592 (-1073)) (-592 (-1073))) 13) (((-592 (-1073)) (-1073)) 11))) +(((-221) (-10 -7 (-15 -2654 ((-592 (-1073)) (-1073))) (-15 -2654 ((-592 (-1073)) (-592 (-1073)))) (-15 -2782 ((-1073))) (-15 -2141 ((-1073) (-525) (-1073))) (-15 -3448 ((-1073) (-1073) (-525) (-1073))) (-15 -3448 ((-592 (-1073)) (-592 (-1073)) (-525) (-1073))) (-15 -1741 ((-1177) (-1073))) (-15 -1741 ((-1177) (-592 (-1073)))) (-15 -2894 ((-525) (-1073))) (-15 -2894 ((-525) (-592 (-1073)))))) (T -221)) +((-2894 (*1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-525)) (-5 *1 (-221)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-525)) (-5 *1 (-221)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1177)) (-5 *1 (-221)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-221)))) (-3448 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 (-1073))) (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *1 (-221)))) (-3448 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-221)))) (-2141 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-221)))) (-2782 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-221)))) (-2654 (*1 *2 *3) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-221)) (-5 *3 (-1073))))) +(-10 -7 (-15 -2654 ((-592 (-1073)) (-1073))) (-15 -2654 ((-592 (-1073)) (-592 (-1073)))) (-15 -2782 ((-1073))) (-15 -2141 ((-1073) (-525) (-1073))) (-15 -3448 ((-1073) (-1073) (-525) (-1073))) (-15 -3448 ((-592 (-1073)) (-592 (-1073)) (-525) (-1073))) (-15 -1741 ((-1177) (-1073))) (-15 -1741 ((-1177) (-592 (-1073)))) (-15 -2894 ((-525) (-1073))) (-15 -2894 ((-525) (-592 (-1073))))) +((-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 9)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 18)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL))) +(((-222 |#1|) (-10 -8 (-15 -1594 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -1594 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 -1594 (|#1| |#1| (-855))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-223)) (T -222)) +NIL +(-10 -8 (-15 -1594 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -1594 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 -1594 (|#1| |#1| (-855))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 39)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 44)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 40)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 41)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 43) (($ $ (-385 (-525))) 42))) (((-223) (-131)) (T -223)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-1401 (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-1523 (*1 *1 *1) (-4 *1 (-223)))) -(-13 (-269) (-37 (-385 (-525))) (-10 -8 (-15 ** ($ $ (-525))) (-15 -1401 ($ $ (-525))) (-15 -1523 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-269) . T) ((-593 #0#) . T) ((-593 $) . T) ((-659 #0#) . T) ((-668) . T) ((-981 #0#) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-2940 ((|#1| $) 48)) (-3856 (($ $) 57)) (-3727 (((-108) $ (-712)) 8)) (-3912 ((|#1| $ |#1|) 39 (|has| $ (-6 -4251)))) (-4015 (($ $ $) 53 (|has| $ (-6 -4251)))) (-1587 (($ $ $) 52 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 41 (|has| $ (-6 -4251)))) (-2055 (($) 7 T CONST)) (-3626 (($ $) 56)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 50)) (-3219 (((-108) $ $) 42 (|has| |#1| (-1018)))) (-3289 (($ $) 55)) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2065 (((-591 |#1|) $) 45)) (-2878 (((-108) $) 49)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2555 ((|#1| $) 59)) (-1455 (($ $) 58)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ "value") 47)) (-2194 (((-525) $ $) 44)) (-4133 (((-108) $) 46)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-3729 (($ $ $) 54 (|has| $ (-6 -4251)))) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) 51)) (-3592 (((-108) $ $) 43 (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-224 |#1|) (-131) (-1125)) (T -224)) -((-2555 (*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125)))) (-1455 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125)))) (-3626 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125)))) (-3289 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125)))) (-3729 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-224 *2)) (-4 *2 (-1125)))) (-4015 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-224 *2)) (-4 *2 (-1125)))) (-1587 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-224 *2)) (-4 *2 (-1125))))) -(-13 (-940 |t#1|) (-10 -8 (-15 -2555 (|t#1| $)) (-15 -1455 ($ $)) (-15 -3856 ($ $)) (-15 -3626 ($ $)) (-15 -3289 ($ $)) (IF (|has| $ (-6 -4251)) (PROGN (-15 -3729 ($ $ $)) (-15 -4015 ($ $ $)) (-15 -1587 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-940 |#1|) . T) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) NIL)) (-2434 ((|#1| $) NIL)) (-3856 (($ $) NIL)) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-2983 (($ $ (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) $) NIL (|has| |#1| (-788))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2613 (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1282 (($ $) 10 (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-3912 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-3191 (($ $ $) NIL (|has| $ (-6 -4251)))) (-2568 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-2756 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4251))) (($ $ "rest" $) NIL (|has| $ (-6 -4251))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-1288 (($ (-1 (-108) |#1|) $) NIL)) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2424 ((|#1| $) NIL)) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2884 (($ $) NIL) (($ $ (-712)) NIL)) (-3945 (($ $) NIL (|has| |#1| (-1018)))) (-2908 (($ $) 7 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3844 (($ |#1| $) NIL (|has| |#1| (-1018))) (($ (-1 (-108) |#1|) $) NIL)) (-2537 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-4139 (((-108) $) NIL)) (-1734 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018))) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) (-1 (-108) |#1|) $) NIL)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1316 (($ (-712) |#1|) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3597 (($ $ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3459 (($ $ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2750 (($ |#1|) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2065 (((-591 |#1|) $) NIL)) (-2878 (((-108) $) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2555 ((|#1| $) NIL) (($ $ (-712)) NIL)) (-1520 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2059 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2872 ((|#1| $) NIL) (($ $ (-712)) NIL)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-1622 (((-108) $) NIL)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1138 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-712) $ "count") 16)) (-2194 (((-525) $ $) NIL)) (-1227 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-3226 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-4024 (($ (-591 |#1|)) 22)) (-4133 (((-108) $) NIL)) (-2349 (($ $) NIL)) (-3494 (($ $) NIL (|has| $ (-6 -4251)))) (-1248 (((-712) $) NIL)) (-3249 (($ $) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) NIL)) (-3729 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1624 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-591 $)) NIL) (($ $ |#1|) NIL)) (-2686 (($ (-591 |#1|)) 17) (((-591 |#1|) $) 18) (((-796) $) 21 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-2028 (((-712) $) 14 (|has| $ (-6 -4250))))) -(((-225 |#1|) (-13 (-611 |#1|) (-10 -8 (-15 -2686 ($ (-591 |#1|))) (-15 -2686 ((-591 |#1|) $)) (-15 -4024 ($ (-591 |#1|))) (-15 -1881 ($ $ "unique")) (-15 -1881 ($ $ "sort")) (-15 -1881 ((-712) $ "count")))) (-788)) (T -225)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-225 *3)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-225 *3)) (-4 *3 (-788)))) (-4024 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-225 *3)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-788)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-788)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-712)) (-5 *1 (-225 *4)) (-4 *4 (-788))))) -(-13 (-611 |#1|) (-10 -8 (-15 -2686 ($ (-591 |#1|))) (-15 -2686 ((-591 |#1|) $)) (-15 -4024 ($ (-591 |#1|))) (-15 -1881 ($ $ "unique")) (-15 -1881 ($ $ "sort")) (-15 -1881 ((-712) $ "count")))) -((-3344 (((-3 (-712) "failed") |#1| |#1| (-712)) 27))) -(((-226 |#1|) (-10 -7 (-15 -3344 ((-3 (-712) "failed") |#1| |#1| (-712)))) (-13 (-668) (-346) (-10 -7 (-15 ** (|#1| |#1| (-525)))))) (T -226)) -((-3344 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-712)) (-4 *3 (-13 (-668) (-346) (-10 -7 (-15 ** (*3 *3 (-525)))))) (-5 *1 (-226 *3))))) -(-10 -7 (-15 -3344 ((-3 (-712) "failed") |#1| |#1| (-712)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-798 |#1|)) $) NIL)) (-2514 (((-1085 $) $ (-798 |#1|)) NIL) (((-1085 |#2|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3641 (($ $) NIL (|has| |#2| (-517)))) (-3077 (((-108) $) NIL (|has| |#2| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-798 |#1|))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-1720 (($ $) NIL (|has| |#2| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-966 (-525)))) (((-3 (-798 |#1|) "failed") $) NIL)) (-3341 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-966 (-525)))) (((-798 |#1|) $) NIL)) (-1788 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-160)))) (-3742 (($ $ (-591 (-525))) NIL)) (-1575 (($ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL) (((-631 |#2|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#2| (-429))) (($ $ (-798 |#1|)) NIL (|has| |#2| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#2| (-842)))) (-2615 (($ $ |#2| (-220 (-2028 |#1|) (-712)) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-798 |#1|) (-819 (-357))) (|has| |#2| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-798 |#1|) (-819 (-525))) (|has| |#2| (-819 (-525)))))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-1434 (($ (-1085 |#2|) (-798 |#1|)) NIL) (($ (-1085 $) (-798 |#1|)) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#2| (-220 (-2028 |#1|) (-712))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-798 |#1|)) NIL)) (-3629 (((-220 (-2028 |#1|) (-712)) $) NIL) (((-712) $ (-798 |#1|)) NIL) (((-591 (-712)) $ (-591 (-798 |#1|))) NIL)) (-1923 (($ $ $) NIL (|has| |#2| (-788)))) (-3475 (($ $ $) NIL (|has| |#2| (-788)))) (-2508 (($ (-1 (-220 (-2028 |#1|) (-712)) (-220 (-2028 |#1|) (-712))) $) NIL)) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-3027 (((-3 (-798 |#1|) "failed") $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#2| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2621 (((-1072) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -3987 (-712))) "failed") $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#2| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#2| (-842)))) (-3210 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-798 |#1|) |#2|) NIL) (($ $ (-591 (-798 |#1|)) (-591 |#2|)) NIL) (($ $ (-798 |#1|) $) NIL) (($ $ (-591 (-798 |#1|)) (-591 $)) NIL)) (-2858 (($ $ (-798 |#1|)) NIL (|has| |#2| (-160)))) (-2209 (($ $ (-798 |#1|)) NIL) (($ $ (-591 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-2743 (((-220 (-2028 |#1|) (-712)) $) NIL) (((-712) $ (-798 |#1|)) NIL) (((-591 (-712)) $ (-591 (-798 |#1|))) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-798 |#1|) (-566 (-825 (-357)))) (|has| |#2| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-798 |#1|) (-566 (-825 (-525)))) (|has| |#2| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-798 |#1|) (-566 (-501))) (|has| |#2| (-566 (-501)))))) (-2827 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-798 |#1|)) NIL (|has| |#2| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-798 |#1|)) NIL) (($ (-385 (-525))) NIL (-3150 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3109 (((-591 |#2|) $) NIL)) (-1263 ((|#2| $ (-220 (-2028 |#1|) (-712))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#2| (-842))) (|has| |#2| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#2| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-798 |#1|)) NIL) (($ $ (-591 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-4004 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#2| (-788)))) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-227 |#1| |#2|) (-13 (-882 |#2| (-220 (-2028 |#1|) (-712)) (-798 |#1|)) (-10 -8 (-15 -3742 ($ $ (-591 (-525)))))) (-591 (-1089)) (-975)) (T -227)) -((-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-227 *3 *4)) (-14 *3 (-591 (-1089))) (-4 *4 (-975))))) -(-13 (-882 |#2| (-220 (-2028 |#1|) (-712)) (-798 |#1|)) (-10 -8 (-15 -3742 ($ $ (-591 (-525)))))) -((-2829 (((-1176) $) 12)) (-3502 (((-169) $) 9)) (-1415 (($ (-169)) 10)) (-2686 (((-796) $) 7))) -(((-228) (-13 (-565 (-796)) (-10 -8 (-15 -3502 ((-169) $)) (-15 -1415 ($ (-169))) (-15 -2829 ((-1176) $))))) (T -228)) -((-3502 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-1415 (*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-228))))) -(-13 (-565 (-796)) (-10 -8 (-15 -3502 ((-169) $)) (-15 -1415 ($ (-169))) (-15 -2829 ((-1176) $)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2191 (($ (-854)) NIL (|has| |#4| (-975)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3343 (($ $ $) NIL (|has| |#4| (-734)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2834 (((-712)) NIL (|has| |#4| (-346)))) (-4188 (((-525) $) NIL (|has| |#4| (-786)))) (-2847 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1018))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#4| (-966 (-525))) (|has| |#4| (-1018)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#4| (-966 (-385 (-525)))) (|has| |#4| (-1018))))) (-3341 ((|#4| $) NIL (|has| |#4| (-1018))) (((-525) $) NIL (-12 (|has| |#4| (-966 (-525))) (|has| |#4| (-1018)))) (((-385 (-525)) $) NIL (-12 (|has| |#4| (-966 (-385 (-525)))) (|has| |#4| (-1018))))) (-3925 (((-2 (|:| -2928 (-631 |#4|)) (|:| |vec| (-1171 |#4|))) (-631 $) (-1171 $)) NIL (|has| |#4| (-975))) (((-631 |#4|) (-631 $)) NIL (|has| |#4| (-975))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| |#4| (-587 (-525))) (|has| |#4| (-975)))) (((-631 (-525)) (-631 $)) NIL (-12 (|has| |#4| (-587 (-525))) (|has| |#4| (-975))))) (-1522 (((-3 $ "failed") $) NIL (|has| |#4| (-975)))) (-1325 (($) NIL (|has| |#4| (-346)))) (-4205 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#4| $ (-525)) NIL)) (-3489 (((-108) $) NIL (|has| |#4| (-786)))) (-2916 (((-591 |#4|) $) NIL (|has| $ (-6 -4250)))) (-3865 (((-108) $) NIL (|has| |#4| (-975)))) (-2256 (((-108) $) NIL (|has| |#4| (-786)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (-3150 (|has| |#4| (-734)) (|has| |#4| (-786))))) (-4207 (((-591 |#4|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (-3150 (|has| |#4| (-734)) (|has| |#4| (-786))))) (-4192 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) NIL)) (-1970 (((-854) $) NIL (|has| |#4| (-346)))) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-3229 (($ (-854)) NIL (|has| |#4| (-346)))) (-2937 (((-1036) $) NIL)) (-2872 ((|#4| $) NIL (|has| (-525) (-788)))) (-1858 (($ $ |#4|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 |#4|) (-591 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-2998 (((-591 |#4|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#4| $ (-525) |#4|) NIL) ((|#4| $ (-525)) 12)) (-3183 ((|#4| $ $) NIL (|has| |#4| (-975)))) (-2580 (($ (-1171 |#4|)) NIL)) (-3840 (((-128)) NIL (|has| |#4| (-341)))) (-2209 (($ $ (-1 |#4| |#4|) (-712)) NIL (|has| |#4| (-975))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-975))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#4| (-833 (-1089))) (|has| |#4| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#4| (-833 (-1089))) (|has| |#4| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#4| (-833 (-1089))) (|has| |#4| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#4| (-833 (-1089))) (|has| |#4| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-975)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-975))))) (-2960 (((-712) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250))) (((-712) |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-1171 |#4|) $) NIL) (((-796) $) NIL) (($ |#4|) NIL (|has| |#4| (-1018))) (($ (-525)) NIL (-3150 (-12 (|has| |#4| (-966 (-525))) (|has| |#4| (-1018))) (|has| |#4| (-975)))) (($ (-385 (-525))) NIL (-12 (|has| |#4| (-966 (-385 (-525)))) (|has| |#4| (-1018))))) (-3425 (((-712)) NIL (|has| |#4| (-975)))) (-1475 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1460 (($ $) NIL (|has| |#4| (-786)))) (-1401 (($ $ (-712)) NIL (|has| |#4| (-975))) (($ $ (-854)) NIL (|has| |#4| (-975)))) (-1830 (($) NIL T CONST)) (-1839 (($) NIL (|has| |#4| (-975)) CONST)) (-1796 (($ $ (-1 |#4| |#4|) (-712)) NIL (|has| |#4| (-975))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-975))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#4| (-833 (-1089))) (|has| |#4| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#4| (-833 (-1089))) (|has| |#4| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#4| (-833 (-1089))) (|has| |#4| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#4| (-833 (-1089))) (|has| |#4| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-975)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-975))))) (-4004 (((-108) $ $) NIL (-3150 (|has| |#4| (-734)) (|has| |#4| (-786))))) (-3982 (((-108) $ $) NIL (-3150 (|has| |#4| (-734)) (|has| |#4| (-786))))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (-3150 (|has| |#4| (-734)) (|has| |#4| (-786))))) (-3971 (((-108) $ $) NIL (-3150 (|has| |#4| (-734)) (|has| |#4| (-786))))) (-4059 (($ $ |#4|) NIL (|has| |#4| (-341)))) (-4047 (($ $ $) NIL) (($ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-712)) NIL (|has| |#4| (-975))) (($ $ (-854)) NIL (|has| |#4| (-975)))) (* (($ |#2| $) 14) (($ (-525) $) NIL) (($ (-712) $) NIL) (($ (-854) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-668))) (($ |#4| $) NIL (|has| |#4| (-668))) (($ $ $) NIL (|has| |#4| (-975)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-229 |#1| |#2| |#3| |#4|) (-13 (-218 |#1| |#4|) (-593 |#2|) (-593 |#3|)) (-854) (-975) (-1039 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-593 |#2|)) (T -229)) -NIL -(-13 (-218 |#1| |#4|) (-593 |#2|) (-593 |#3|)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2191 (($ (-854)) NIL (|has| |#3| (-975)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3343 (($ $ $) NIL (|has| |#3| (-734)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2834 (((-712)) NIL (|has| |#3| (-346)))) (-4188 (((-525) $) NIL (|has| |#3| (-786)))) (-2847 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1018))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-966 (-525))) (|has| |#3| (-1018)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-966 (-385 (-525)))) (|has| |#3| (-1018))))) (-3341 ((|#3| $) NIL (|has| |#3| (-1018))) (((-525) $) NIL (-12 (|has| |#3| (-966 (-525))) (|has| |#3| (-1018)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-966 (-385 (-525)))) (|has| |#3| (-1018))))) (-3925 (((-2 (|:| -2928 (-631 |#3|)) (|:| |vec| (-1171 |#3|))) (-631 $) (-1171 $)) NIL (|has| |#3| (-975))) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-975))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| |#3| (-587 (-525))) (|has| |#3| (-975)))) (((-631 (-525)) (-631 $)) NIL (-12 (|has| |#3| (-587 (-525))) (|has| |#3| (-975))))) (-1522 (((-3 $ "failed") $) NIL (|has| |#3| (-975)))) (-1325 (($) NIL (|has| |#3| (-346)))) (-4205 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#3| $ (-525)) NIL)) (-3489 (((-108) $) NIL (|has| |#3| (-786)))) (-2916 (((-591 |#3|) $) NIL (|has| $ (-6 -4250)))) (-3865 (((-108) $) NIL (|has| |#3| (-975)))) (-2256 (((-108) $) NIL (|has| |#3| (-786)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-4207 (((-591 |#3|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#3| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-4192 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#3| |#3|) $) NIL)) (-1970 (((-854) $) NIL (|has| |#3| (-346)))) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-3229 (($ (-854)) NIL (|has| |#3| (-346)))) (-2937 (((-1036) $) NIL)) (-2872 ((|#3| $) NIL (|has| (-525) (-788)))) (-1858 (($ $ |#3|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ (-591 |#3|) (-591 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#3| (-1018))))) (-2998 (((-591 |#3|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) 11)) (-3183 ((|#3| $ $) NIL (|has| |#3| (-975)))) (-2580 (($ (-1171 |#3|)) NIL)) (-3840 (((-128)) NIL (|has| |#3| (-341)))) (-2209 (($ $ (-1 |#3| |#3|) (-712)) NIL (|has| |#3| (-975))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-975))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-975)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-975))))) (-2960 (((-712) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4250))) (((-712) |#3| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#3| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-1171 |#3|) $) NIL) (((-796) $) NIL) (($ |#3|) NIL (|has| |#3| (-1018))) (($ (-525)) NIL (-3150 (-12 (|has| |#3| (-966 (-525))) (|has| |#3| (-1018))) (|has| |#3| (-975)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-966 (-385 (-525)))) (|has| |#3| (-1018))))) (-3425 (((-712)) NIL (|has| |#3| (-975)))) (-1475 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4250)))) (-1460 (($ $) NIL (|has| |#3| (-786)))) (-1401 (($ $ (-712)) NIL (|has| |#3| (-975))) (($ $ (-854)) NIL (|has| |#3| (-975)))) (-1830 (($) NIL T CONST)) (-1839 (($) NIL (|has| |#3| (-975)) CONST)) (-1796 (($ $ (-1 |#3| |#3|) (-712)) NIL (|has| |#3| (-975))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-975))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-975)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-975))))) (-4004 (((-108) $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-3982 (((-108) $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-3971 (((-108) $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-4059 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4047 (($ $ $) NIL) (($ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-712)) NIL (|has| |#3| (-975))) (($ $ (-854)) NIL (|has| |#3| (-975)))) (* (($ |#2| $) 13) (($ (-525) $) NIL) (($ (-712) $) NIL) (($ (-854) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-668))) (($ |#3| $) NIL (|has| |#3| (-668))) (($ $ $) NIL (|has| |#3| (-975)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-230 |#1| |#2| |#3|) (-13 (-218 |#1| |#3|) (-593 |#2|)) (-712) (-975) (-593 |#2|)) (T -230)) -NIL -(-13 (-218 |#1| |#3|) (-593 |#2|)) -((-3827 (((-591 (-712)) $) 47) (((-591 (-712)) $ |#3|) 50)) (-1314 (((-712) $) 49) (((-712) $ |#3|) 52)) (-2243 (($ $) 65)) (-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1676 (((-712) $ |#3|) 39) (((-712) $) 36)) (-1695 (((-1 $ (-712)) |#3|) 15) (((-1 $ (-712)) $) 77)) (-3574 ((|#4| $) 58)) (-4156 (((-108) $) 56)) (-2233 (($ $) 64)) (-1980 (($ $ (-591 (-273 $))) 97) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-591 |#4|) (-591 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-591 |#4|) (-591 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-591 |#3|) (-591 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-591 |#3|) (-591 |#2|)) 84)) (-2209 (($ $ |#4|) NIL) (($ $ (-591 |#4|)) NIL) (($ $ |#4| (-712)) NIL) (($ $ (-591 |#4|) (-591 (-712))) NIL) (($ $) NIL) (($ $ (-712)) NIL) (($ $ (-1089)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1277 (((-591 |#3|) $) 75)) (-2743 ((|#5| $) NIL) (((-712) $ |#4|) NIL) (((-591 (-712)) $ (-591 |#4|)) NIL) (((-712) $ |#3|) 44)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-385 (-525))) NIL) (($ $) NIL))) -(((-231 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -1980 (|#1| |#1| (-591 |#3|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#3| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#3|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#3| |#1|)) (-15 -1695 ((-1 |#1| (-712)) |#1|)) (-15 -2243 (|#1| |#1|)) (-15 -2233 (|#1| |#1|)) (-15 -3574 (|#4| |#1|)) (-15 -4156 ((-108) |#1|)) (-15 -1314 ((-712) |#1| |#3|)) (-15 -3827 ((-591 (-712)) |#1| |#3|)) (-15 -1314 ((-712) |#1|)) (-15 -3827 ((-591 (-712)) |#1|)) (-15 -2743 ((-712) |#1| |#3|)) (-15 -1676 ((-712) |#1|)) (-15 -1676 ((-712) |#1| |#3|)) (-15 -1277 ((-591 |#3|) |#1|)) (-15 -1695 ((-1 |#1| (-712)) |#3|)) (-15 -4174 ((-3 |#3| "failed") |#1|)) (-15 -2686 (|#1| |#3|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1|)) (-15 -2743 ((-591 (-712)) |#1| (-591 |#4|))) (-15 -2743 ((-712) |#1| |#4|)) (-15 -4174 ((-3 |#4| "failed") |#1|)) (-15 -2686 (|#1| |#4|)) (-15 -1980 (|#1| |#1| (-591 |#4|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#4| |#1|)) (-15 -1980 (|#1| |#1| (-591 |#4|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#4| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -2743 (|#5| |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#1| |#1| (-591 |#4|) (-591 (-712)))) (-15 -2209 (|#1| |#1| |#4| (-712))) (-15 -2209 (|#1| |#1| (-591 |#4|))) (-15 -2209 (|#1| |#1| |#4|)) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) (-232 |#2| |#3| |#4| |#5|) (-975) (-788) (-245 |#3|) (-734)) (T -231)) -NIL -(-10 -8 (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -1980 (|#1| |#1| (-591 |#3|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#3| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#3|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#3| |#1|)) (-15 -1695 ((-1 |#1| (-712)) |#1|)) (-15 -2243 (|#1| |#1|)) (-15 -2233 (|#1| |#1|)) (-15 -3574 (|#4| |#1|)) (-15 -4156 ((-108) |#1|)) (-15 -1314 ((-712) |#1| |#3|)) (-15 -3827 ((-591 (-712)) |#1| |#3|)) (-15 -1314 ((-712) |#1|)) (-15 -3827 ((-591 (-712)) |#1|)) (-15 -2743 ((-712) |#1| |#3|)) (-15 -1676 ((-712) |#1|)) (-15 -1676 ((-712) |#1| |#3|)) (-15 -1277 ((-591 |#3|) |#1|)) (-15 -1695 ((-1 |#1| (-712)) |#3|)) (-15 -4174 ((-3 |#3| "failed") |#1|)) (-15 -2686 (|#1| |#3|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1|)) (-15 -2743 ((-591 (-712)) |#1| (-591 |#4|))) (-15 -2743 ((-712) |#1| |#4|)) (-15 -4174 ((-3 |#4| "failed") |#1|)) (-15 -2686 (|#1| |#4|)) (-15 -1980 (|#1| |#1| (-591 |#4|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#4| |#1|)) (-15 -1980 (|#1| |#1| (-591 |#4|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#4| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -2743 (|#5| |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2209 (|#1| |#1| (-591 |#4|) (-591 (-712)))) (-15 -2209 (|#1| |#1| |#4| (-712))) (-15 -2209 (|#1| |#1| (-591 |#4|))) (-15 -2209 (|#1| |#1| |#4|)) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3827 (((-591 (-712)) $) 214) (((-591 (-712)) $ |#2|) 212)) (-1314 (((-712) $) 213) (((-712) $ |#2|) 211)) (-1444 (((-591 |#3|) $) 110)) (-2514 (((-1085 $) $ |#3|) 125) (((-1085 |#1|) $) 124)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3641 (($ $) 88 (|has| |#1| (-517)))) (-3077 (((-108) $) 90 (|has| |#1| (-517)))) (-1978 (((-712) $) 112) (((-712) $ (-591 |#3|)) 111)) (-3332 (((-3 $ "failed") $ $) 19)) (-2179 (((-396 (-1085 $)) (-1085 $)) 100 (|has| |#1| (-842)))) (-1720 (($ $) 98 (|has| |#1| (-429)))) (-3898 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 103 (|has| |#1| (-842)))) (-2243 (($ $) 207)) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-966 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3341 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-966 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-966 (-525)))) ((|#3| $) 135) ((|#2| $) 220)) (-1788 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-1575 (($ $) 154)) (-3925 (((-631 (-525)) (-631 $)) 134 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 133 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 132) (((-631 |#1|) (-631 $)) 131)) (-1522 (((-3 $ "failed") $) 34)) (-3153 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-1564 (((-591 $) $) 109)) (-2393 (((-108) $) 96 (|has| |#1| (-842)))) (-2615 (($ $ |#1| |#4| $) 172)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 84 (-12 (|has| |#3| (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 83 (-12 (|has| |#3| (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-1676 (((-712) $ |#2|) 217) (((-712) $) 216)) (-3865 (((-108) $) 31)) (-3667 (((-712) $) 169)) (-1434 (($ (-1085 |#1|) |#3|) 117) (($ (-1085 $) |#3|) 116)) (-2987 (((-591 $) $) 126)) (-3802 (((-108) $) 152)) (-1422 (($ |#1| |#4|) 153) (($ $ |#3| (-712)) 119) (($ $ (-591 |#3|) (-591 (-712))) 118)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ |#3|) 120)) (-3629 ((|#4| $) 170) (((-712) $ |#3|) 122) (((-591 (-712)) $ (-591 |#3|)) 121)) (-1923 (($ $ $) 79 (|has| |#1| (-788)))) (-3475 (($ $ $) 78 (|has| |#1| (-788)))) (-2508 (($ (-1 |#4| |#4|) $) 171)) (-1257 (($ (-1 |#1| |#1|) $) 151)) (-1695 (((-1 $ (-712)) |#2|) 219) (((-1 $ (-712)) $) 206 (|has| |#1| (-213)))) (-3027 (((-3 |#3| "failed") $) 123)) (-1548 (($ $) 149)) (-1556 ((|#1| $) 148)) (-3574 ((|#3| $) 209)) (-2081 (($ (-591 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2621 (((-1072) $) 9)) (-4156 (((-108) $) 210)) (-3401 (((-3 (-591 $) "failed") $) 114)) (-4008 (((-3 (-591 $) "failed") $) 115)) (-3410 (((-3 (-2 (|:| |var| |#3|) (|:| -3987 (-712))) "failed") $) 113)) (-2233 (($ $) 208)) (-2937 (((-1036) $) 10)) (-1531 (((-108) $) 166)) (-1540 ((|#1| $) 167)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 95 (|has| |#1| (-429)))) (-2124 (($ (-591 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) 102 (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) 101 (|has| |#1| (-842)))) (-2542 (((-396 $) $) 99 (|has| |#1| (-842)))) (-3210 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-1980 (($ $ (-591 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-591 $) (-591 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-591 |#3|) (-591 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-591 |#3|) (-591 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-213))) (($ $ (-591 |#2|) (-591 $)) 204 (|has| |#1| (-213))) (($ $ |#2| |#1|) 203 (|has| |#1| (-213))) (($ $ (-591 |#2|) (-591 |#1|)) 202 (|has| |#1| (-213)))) (-2858 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-2209 (($ $ |#3|) 42) (($ $ (-591 |#3|)) 41) (($ $ |#3| (-712)) 40) (($ $ (-591 |#3|) (-591 (-712))) 39) (($ $) 238 (|has| |#1| (-213))) (($ $ (-712)) 236 (|has| |#1| (-213))) (($ $ (-1089)) 234 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 233 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 232 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) 231 (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1277 (((-591 |#2|) $) 218)) (-2743 ((|#4| $) 150) (((-712) $ |#3|) 130) (((-591 (-712)) $ (-591 |#3|)) 129) (((-712) $ |#2|) 215)) (-1300 (((-825 (-357)) $) 82 (-12 (|has| |#3| (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) 81 (-12 (|has| |#3| (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-566 (-501))) (|has| |#1| (-566 (-501)))))) (-2827 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 104 (-3543 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-385 (-525))) 72 (-3150 (|has| |#1| (-966 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) 168)) (-1263 ((|#1| $ |#4|) 155) (($ $ |#3| (-712)) 128) (($ $ (-591 |#3|) (-591 (-712))) 127)) (-3751 (((-3 $ "failed") $) 73 (-3150 (-3543 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) 29)) (-2931 (($ $ $ (-712)) 173 (|has| |#1| (-160)))) (-1724 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ |#3|) 38) (($ $ (-591 |#3|)) 37) (($ $ |#3| (-712)) 36) (($ $ (-591 |#3|) (-591 (-712))) 35) (($ $) 237 (|has| |#1| (-213))) (($ $ (-712)) 235 (|has| |#1| (-213))) (($ $ (-1089)) 230 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 229 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 228 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) 227 (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4004 (((-108) $ $) 76 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 75 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 77 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 74 (|has| |#1| (-788)))) (-4059 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-232 |#1| |#2| |#3| |#4|) (-131) (-975) (-788) (-245 |t#2|) (-734)) (T -232)) -((-1695 (*1 *2 *3) (-12 (-4 *4 (-975)) (-4 *3 (-788)) (-4 *5 (-245 *3)) (-4 *6 (-734)) (-5 *2 (-1 *1 (-712))) (-4 *1 (-232 *4 *3 *5 *6)))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-591 *4)))) (-1676 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-975)) (-4 *3 (-788)) (-4 *5 (-245 *3)) (-4 *6 (-734)) (-5 *2 (-712)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-712)))) (-2743 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-975)) (-4 *3 (-788)) (-4 *5 (-245 *3)) (-4 *6 (-734)) (-5 *2 (-712)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-591 (-712))))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-712)))) (-3827 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-975)) (-4 *3 (-788)) (-4 *5 (-245 *3)) (-4 *6 (-734)) (-5 *2 (-591 (-712))))) (-1314 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-975)) (-4 *3 (-788)) (-4 *5 (-245 *3)) (-4 *6 (-734)) (-5 *2 (-712)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-108)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-734)) (-4 *2 (-245 *4)))) (-2233 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-975)) (-4 *3 (-788)) (-4 *4 (-245 *3)) (-4 *5 (-734)))) (-2243 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-975)) (-4 *3 (-788)) (-4 *4 (-245 *3)) (-4 *5 (-734)))) (-1695 (*1 *2 *1) (-12 (-4 *3 (-213)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-1 *1 (-712))) (-4 *1 (-232 *3 *4 *5 *6))))) -(-13 (-882 |t#1| |t#4| |t#3|) (-211 |t#1|) (-966 |t#2|) (-10 -8 (-15 -1695 ((-1 $ (-712)) |t#2|)) (-15 -1277 ((-591 |t#2|) $)) (-15 -1676 ((-712) $ |t#2|)) (-15 -1676 ((-712) $)) (-15 -2743 ((-712) $ |t#2|)) (-15 -3827 ((-591 (-712)) $)) (-15 -1314 ((-712) $)) (-15 -3827 ((-591 (-712)) $ |t#2|)) (-15 -1314 ((-712) $ |t#2|)) (-15 -4156 ((-108) $)) (-15 -3574 (|t#3| $)) (-15 -2233 ($ $)) (-15 -2243 ($ $)) (IF (|has| |t#1| (-213)) (PROGN (-6 (-486 |t#2| |t#1|)) (-6 (-486 |t#2| $)) (-6 (-288 $)) (-15 -1695 ((-1 $ (-712)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-566 (-501)) -12 (|has| |#1| (-566 (-501))) (|has| |#3| (-566 (-501)))) ((-566 (-825 (-357))) -12 (|has| |#1| (-566 (-825 (-357)))) (|has| |#3| (-566 (-825 (-357))))) ((-566 (-825 (-525))) -12 (|has| |#1| (-566 (-825 (-525)))) (|has| |#3| (-566 (-825 (-525))))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-269) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#4|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3150 (|has| |#1| (-842)) (|has| |#1| (-429))) ((-486 |#2| |#1|) |has| |#1| (-213)) ((-486 |#2| $) |has| |#1| (-213)) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-593 #0#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-587 (-525)) |has| |#1| (-587 (-525))) ((-587 |#1|) . T) ((-659 #0#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-668) . T) ((-788) |has| |#1| (-788)) ((-833 (-1089)) |has| |#1| (-833 (-1089))) ((-833 |#3|) . T) ((-819 (-357)) -12 (|has| |#1| (-819 (-357))) (|has| |#3| (-819 (-357)))) ((-819 (-525)) -12 (|has| |#1| (-819 (-525))) (|has| |#3| (-819 (-525)))) ((-882 |#1| |#4| |#3|) . T) ((-842) |has| |#1| (-842)) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-966 |#2|) . T) ((-966 |#3|) . T) ((-981 #0#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) |has| |#1| (-842))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-2234 ((|#1| $) 54)) (-1505 ((|#1| $) 44)) (-3727 (((-108) $ (-712)) 8)) (-2055 (($) 7 T CONST)) (-1876 (($ $) 60)) (-3405 (($ $) 48)) (-1593 ((|#1| |#1| $) 46)) (-1473 ((|#1| $) 45)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2445 (((-712) $) 61)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-3949 ((|#1| $) 39)) (-2886 ((|#1| |#1| $) 52)) (-2371 ((|#1| |#1| $) 51)) (-1520 (($ |#1| $) 40)) (-3457 (((-712) $) 55)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-3590 ((|#1| $) 62)) (-2640 ((|#1| $) 50)) (-2524 ((|#1| $) 49)) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2559 ((|#1| |#1| $) 58)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2557 ((|#1| $) 59)) (-2289 (($) 57) (($ (-591 |#1|)) 56)) (-2333 (((-712) $) 43)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-2848 ((|#1| $) 53)) (-2453 (($ (-591 |#1|)) 42)) (-3775 ((|#1| $) 63)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-233 |#1|) (-131) (-1125)) (T -233)) -((-2289 (*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-4 *1 (-233 *3)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1125)) (-5 *2 (-712)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125)))) (-2848 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125)))) (-2886 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125)))) (-2371 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125)))) (-3405 (*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125))))) -(-13 (-1037 |t#1|) (-925 |t#1|) (-10 -8 (-15 -2289 ($)) (-15 -2289 ($ (-591 |t#1|))) (-15 -3457 ((-712) $)) (-15 -2234 (|t#1| $)) (-15 -2848 (|t#1| $)) (-15 -2886 (|t#1| |t#1| $)) (-15 -2371 (|t#1| |t#1| $)) (-15 -2640 (|t#1| $)) (-15 -2524 (|t#1| $)) (-15 -3405 ($ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-925 |#1|) . T) ((-1018) |has| |#1| (-1018)) ((-1037 |#1|) . T) ((-1125) . T)) -((-3866 (((-1 (-876 (-205)) (-205) (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 139)) (-2957 (((-1049 (-205)) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357))) 160) (((-1049 (-205)) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)) (-591 (-242))) 158) (((-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357))) 163) (((-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242))) 159) (((-1049 (-205)) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357))) 150) (((-1049 (-205)) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242))) 149) (((-1049 (-205)) (-1 (-876 (-205)) (-205)) (-1013 (-357))) 129) (((-1049 (-205)) (-1 (-876 (-205)) (-205)) (-1013 (-357)) (-591 (-242))) 127) (((-1049 (-205)) (-812 (-1 (-205) (-205))) (-1013 (-357))) 128) (((-1049 (-205)) (-812 (-1 (-205) (-205))) (-1013 (-357)) (-591 (-242))) 125)) (-2912 (((-1173) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357))) 162) (((-1173) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)) (-591 (-242))) 161) (((-1173) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357))) 165) (((-1173) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242))) 164) (((-1173) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357))) 152) (((-1173) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242))) 151) (((-1173) (-1 (-876 (-205)) (-205)) (-1013 (-357))) 135) (((-1173) (-1 (-876 (-205)) (-205)) (-1013 (-357)) (-591 (-242))) 134) (((-1173) (-812 (-1 (-205) (-205))) (-1013 (-357))) 133) (((-1173) (-812 (-1 (-205) (-205))) (-1013 (-357)) (-591 (-242))) 132) (((-1172) (-810 (-1 (-205) (-205))) (-1013 (-357))) 100) (((-1172) (-810 (-1 (-205) (-205))) (-1013 (-357)) (-591 (-242))) 99) (((-1172) (-1 (-205) (-205)) (-1013 (-357))) 96) (((-1172) (-1 (-205) (-205)) (-1013 (-357)) (-591 (-242))) 95))) -(((-234) (-10 -7 (-15 -2912 ((-1172) (-1 (-205) (-205)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1172) (-1 (-205) (-205)) (-1013 (-357)))) (-15 -2912 ((-1172) (-810 (-1 (-205) (-205))) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1172) (-810 (-1 (-205) (-205))) (-1013 (-357)))) (-15 -2912 ((-1173) (-812 (-1 (-205) (-205))) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-812 (-1 (-205) (-205))) (-1013 (-357)))) (-15 -2912 ((-1173) (-1 (-876 (-205)) (-205)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-1 (-876 (-205)) (-205)) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-812 (-1 (-205) (-205))) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-812 (-1 (-205) (-205))) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-1 (-876 (-205)) (-205)) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-1 (-876 (-205)) (-205)) (-1013 (-357)))) (-15 -2912 ((-1173) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)))) (-15 -2912 ((-1173) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)))) (-15 -2912 ((-1173) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)))) (-15 -3866 ((-1 (-876 (-205)) (-205) (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -234)) -((-3866 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-876 (-205)) (-205) (-205))) (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-815 (-1 (-205) (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-815 (-1 (-205) (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-815 (-1 (-205) (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-815 (-1 (-205) (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-876 (-205)) (-205))) (-5 *4 (-1013 (-357))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-876 (-205)) (-205))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-876 (-205)) (-205))) (-5 *4 (-1013 (-357))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-876 (-205)) (-205))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-810 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *2 (-1172)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1172)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *2 (-1172)) (-5 *1 (-234)))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1013 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1172)) (-5 *1 (-234))))) -(-10 -7 (-15 -2912 ((-1172) (-1 (-205) (-205)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1172) (-1 (-205) (-205)) (-1013 (-357)))) (-15 -2912 ((-1172) (-810 (-1 (-205) (-205))) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1172) (-810 (-1 (-205) (-205))) (-1013 (-357)))) (-15 -2912 ((-1173) (-812 (-1 (-205) (-205))) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-812 (-1 (-205) (-205))) (-1013 (-357)))) (-15 -2912 ((-1173) (-1 (-876 (-205)) (-205)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-1 (-876 (-205)) (-205)) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-812 (-1 (-205) (-205))) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-812 (-1 (-205) (-205))) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-1 (-876 (-205)) (-205)) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-1 (-876 (-205)) (-205)) (-1013 (-357)))) (-15 -2912 ((-1173) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-1 (-205) (-205) (-205)) (-1013 (-357)) (-1013 (-357)))) (-15 -2912 ((-1173) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-357)) (-1013 (-357)))) (-15 -2912 ((-1173) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)))) (-15 -2957 ((-1049 (-205)) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-815 (-1 (-205) (-205) (-205))) (-1013 (-357)) (-1013 (-357)))) (-15 -3866 ((-1 (-876 (-205)) (-205) (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))))) -((-2912 (((-1172) (-273 |#2|) (-1089) (-1089) (-591 (-242))) 96))) -(((-235 |#1| |#2|) (-10 -7 (-15 -2912 ((-1172) (-273 |#2|) (-1089) (-1089) (-591 (-242))))) (-13 (-517) (-788) (-966 (-525))) (-408 |#1|)) (T -235)) -((-2912 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-1089)) (-5 *5 (-591 (-242))) (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-1172)) (-5 *1 (-235 *6 *7))))) -(-10 -7 (-15 -2912 ((-1172) (-273 |#2|) (-1089) (-1089) (-591 (-242))))) -((-2351 (((-525) (-525)) 50)) (-2171 (((-525) (-525)) 51)) (-1660 (((-205) (-205)) 52)) (-2576 (((-1173) (-1 (-157 (-205)) (-157 (-205))) (-1013 (-205)) (-1013 (-205))) 49)) (-3214 (((-1173) (-1 (-157 (-205)) (-157 (-205))) (-1013 (-205)) (-1013 (-205)) (-108)) 47))) -(((-236) (-10 -7 (-15 -3214 ((-1173) (-1 (-157 (-205)) (-157 (-205))) (-1013 (-205)) (-1013 (-205)) (-108))) (-15 -2576 ((-1173) (-1 (-157 (-205)) (-157 (-205))) (-1013 (-205)) (-1013 (-205)))) (-15 -2351 ((-525) (-525))) (-15 -2171 ((-525) (-525))) (-15 -1660 ((-205) (-205))))) (T -236)) -((-1660 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-2351 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-2576 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1013 (-205))) (-5 *2 (-1173)) (-5 *1 (-236)))) (-3214 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1013 (-205))) (-5 *5 (-108)) (-5 *2 (-1173)) (-5 *1 (-236))))) -(-10 -7 (-15 -3214 ((-1173) (-1 (-157 (-205)) (-157 (-205))) (-1013 (-205)) (-1013 (-205)) (-108))) (-15 -2576 ((-1173) (-1 (-157 (-205)) (-157 (-205))) (-1013 (-205)) (-1013 (-205)))) (-15 -2351 ((-525) (-525))) (-15 -2171 ((-525) (-525))) (-15 -1660 ((-205) (-205)))) -((-2686 (((-1011 (-357)) (-1011 (-294 |#1|))) 16))) -(((-237 |#1|) (-10 -7 (-15 -2686 ((-1011 (-357)) (-1011 (-294 |#1|))))) (-13 (-788) (-517) (-566 (-357)))) (T -237)) -((-2686 (*1 *2 *3) (-12 (-5 *3 (-1011 (-294 *4))) (-4 *4 (-13 (-788) (-517) (-566 (-357)))) (-5 *2 (-1011 (-357))) (-5 *1 (-237 *4))))) -(-10 -7 (-15 -2686 ((-1011 (-357)) (-1011 (-294 |#1|))))) -((-2957 (((-1049 (-205)) (-815 |#1|) (-1011 (-357)) (-1011 (-357))) 71) (((-1049 (-205)) (-815 |#1|) (-1011 (-357)) (-1011 (-357)) (-591 (-242))) 70) (((-1049 (-205)) |#1| (-1011 (-357)) (-1011 (-357))) 61) (((-1049 (-205)) |#1| (-1011 (-357)) (-1011 (-357)) (-591 (-242))) 60) (((-1049 (-205)) (-812 |#1|) (-1011 (-357))) 52) (((-1049 (-205)) (-812 |#1|) (-1011 (-357)) (-591 (-242))) 51)) (-2912 (((-1173) (-815 |#1|) (-1011 (-357)) (-1011 (-357))) 74) (((-1173) (-815 |#1|) (-1011 (-357)) (-1011 (-357)) (-591 (-242))) 73) (((-1173) |#1| (-1011 (-357)) (-1011 (-357))) 64) (((-1173) |#1| (-1011 (-357)) (-1011 (-357)) (-591 (-242))) 63) (((-1173) (-812 |#1|) (-1011 (-357))) 56) (((-1173) (-812 |#1|) (-1011 (-357)) (-591 (-242))) 55) (((-1172) (-810 |#1|) (-1011 (-357))) 43) (((-1172) (-810 |#1|) (-1011 (-357)) (-591 (-242))) 42) (((-1172) |#1| (-1011 (-357))) 35) (((-1172) |#1| (-1011 (-357)) (-591 (-242))) 34))) -(((-238 |#1|) (-10 -7 (-15 -2912 ((-1172) |#1| (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1172) |#1| (-1011 (-357)))) (-15 -2912 ((-1172) (-810 |#1|) (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1172) (-810 |#1|) (-1011 (-357)))) (-15 -2912 ((-1173) (-812 |#1|) (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-812 |#1|) (-1011 (-357)))) (-15 -2957 ((-1049 (-205)) (-812 |#1|) (-1011 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-812 |#1|) (-1011 (-357)))) (-15 -2912 ((-1173) |#1| (-1011 (-357)) (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) |#1| (-1011 (-357)) (-1011 (-357)))) (-15 -2957 ((-1049 (-205)) |#1| (-1011 (-357)) (-1011 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) |#1| (-1011 (-357)) (-1011 (-357)))) (-15 -2912 ((-1173) (-815 |#1|) (-1011 (-357)) (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-815 |#1|) (-1011 (-357)) (-1011 (-357)))) (-15 -2957 ((-1049 (-205)) (-815 |#1|) (-1011 (-357)) (-1011 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-815 |#1|) (-1011 (-357)) (-1011 (-357))))) (-13 (-566 (-501)) (-1018))) (T -238)) -((-2957 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-815 *5)) (-5 *4 (-1011 (-357))) (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1049 (-205))) (-5 *1 (-238 *5)))) (-2957 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-815 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1049 (-205))) (-5 *1 (-238 *6)))) (-2912 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-815 *5)) (-5 *4 (-1011 (-357))) (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1173)) (-5 *1 (-238 *5)))) (-2912 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-815 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1173)) (-5 *1 (-238 *6)))) (-2957 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1011 (-357))) (-5 *2 (-1049 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-566 (-501)) (-1018))))) (-2957 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-566 (-501)) (-1018))))) (-2912 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1011 (-357))) (-5 *2 (-1173)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-566 (-501)) (-1018))))) (-2912 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-566 (-501)) (-1018))))) (-2957 (*1 *2 *3 *4) (-12 (-5 *3 (-812 *5)) (-5 *4 (-1011 (-357))) (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1049 (-205))) (-5 *1 (-238 *5)))) (-2957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1049 (-205))) (-5 *1 (-238 *6)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-812 *5)) (-5 *4 (-1011 (-357))) (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1173)) (-5 *1 (-238 *5)))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1173)) (-5 *1 (-238 *6)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1011 (-357))) (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1172)) (-5 *1 (-238 *5)))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1172)) (-5 *1 (-238 *6)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-1011 (-357))) (-5 *2 (-1172)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-566 (-501)) (-1018))))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1172)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-566 (-501)) (-1018)))))) -(-10 -7 (-15 -2912 ((-1172) |#1| (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1172) |#1| (-1011 (-357)))) (-15 -2912 ((-1172) (-810 |#1|) (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1172) (-810 |#1|) (-1011 (-357)))) (-15 -2912 ((-1173) (-812 |#1|) (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-812 |#1|) (-1011 (-357)))) (-15 -2957 ((-1049 (-205)) (-812 |#1|) (-1011 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-812 |#1|) (-1011 (-357)))) (-15 -2912 ((-1173) |#1| (-1011 (-357)) (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) |#1| (-1011 (-357)) (-1011 (-357)))) (-15 -2957 ((-1049 (-205)) |#1| (-1011 (-357)) (-1011 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) |#1| (-1011 (-357)) (-1011 (-357)))) (-15 -2912 ((-1173) (-815 |#1|) (-1011 (-357)) (-1011 (-357)) (-591 (-242)))) (-15 -2912 ((-1173) (-815 |#1|) (-1011 (-357)) (-1011 (-357)))) (-15 -2957 ((-1049 (-205)) (-815 |#1|) (-1011 (-357)) (-1011 (-357)) (-591 (-242)))) (-15 -2957 ((-1049 (-205)) (-815 |#1|) (-1011 (-357)) (-1011 (-357))))) -((-2912 (((-1173) (-591 (-205)) (-591 (-205)) (-591 (-205)) (-591 (-242))) 23) (((-1173) (-591 (-205)) (-591 (-205)) (-591 (-205))) 24) (((-1172) (-591 (-876 (-205))) (-591 (-242))) 16) (((-1172) (-591 (-876 (-205)))) 17) (((-1172) (-591 (-205)) (-591 (-205)) (-591 (-242))) 20) (((-1172) (-591 (-205)) (-591 (-205))) 21))) -(((-239) (-10 -7 (-15 -2912 ((-1172) (-591 (-205)) (-591 (-205)))) (-15 -2912 ((-1172) (-591 (-205)) (-591 (-205)) (-591 (-242)))) (-15 -2912 ((-1172) (-591 (-876 (-205))))) (-15 -2912 ((-1172) (-591 (-876 (-205))) (-591 (-242)))) (-15 -2912 ((-1173) (-591 (-205)) (-591 (-205)) (-591 (-205)))) (-15 -2912 ((-1173) (-591 (-205)) (-591 (-205)) (-591 (-205)) (-591 (-242)))))) (T -239)) -((-2912 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-591 (-205))) (-5 *4 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-239)))) (-2912 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-591 (-205))) (-5 *2 (-1173)) (-5 *1 (-239)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-876 (-205)))) (-5 *4 (-591 (-242))) (-5 *2 (-1172)) (-5 *1 (-239)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-591 (-876 (-205)))) (-5 *2 (-1172)) (-5 *1 (-239)))) (-2912 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-591 (-205))) (-5 *4 (-591 (-242))) (-5 *2 (-1172)) (-5 *1 (-239)))) (-2912 (*1 *2 *3 *3) (-12 (-5 *3 (-591 (-205))) (-5 *2 (-1172)) (-5 *1 (-239))))) -(-10 -7 (-15 -2912 ((-1172) (-591 (-205)) (-591 (-205)))) (-15 -2912 ((-1172) (-591 (-205)) (-591 (-205)) (-591 (-242)))) (-15 -2912 ((-1172) (-591 (-876 (-205))))) (-15 -2912 ((-1172) (-591 (-876 (-205))) (-591 (-242)))) (-15 -2912 ((-1173) (-591 (-205)) (-591 (-205)) (-591 (-205)))) (-15 -2912 ((-1173) (-591 (-205)) (-591 (-205)) (-591 (-205)) (-591 (-242))))) -((-2628 (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-591 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 26)) (-2880 (((-854) (-591 (-242)) (-854)) 53)) (-1382 (((-854) (-591 (-242)) (-854)) 52)) (-3094 (((-591 (-357)) (-591 (-242)) (-591 (-357))) 69)) (-3132 (((-357) (-591 (-242)) (-357)) 58)) (-1667 (((-854) (-591 (-242)) (-854)) 54)) (-2909 (((-108) (-591 (-242)) (-108)) 28)) (-2264 (((-1072) (-591 (-242)) (-1072)) 20)) (-3102 (((-1072) (-591 (-242)) (-1072)) 27)) (-2994 (((-1049 (-205)) (-591 (-242))) 47)) (-3830 (((-591 (-1013 (-357))) (-591 (-242)) (-591 (-1013 (-357)))) 41)) (-3720 (((-807) (-591 (-242)) (-807)) 33)) (-1344 (((-807) (-591 (-242)) (-807)) 34)) (-1661 (((-1 (-876 (-205)) (-876 (-205))) (-591 (-242)) (-1 (-876 (-205)) (-876 (-205)))) 64)) (-3064 (((-108) (-591 (-242)) (-108)) 16)) (-3379 (((-108) (-591 (-242)) (-108)) 15))) -(((-240) (-10 -7 (-15 -3379 ((-108) (-591 (-242)) (-108))) (-15 -3064 ((-108) (-591 (-242)) (-108))) (-15 -2628 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-591 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2264 ((-1072) (-591 (-242)) (-1072))) (-15 -3102 ((-1072) (-591 (-242)) (-1072))) (-15 -2909 ((-108) (-591 (-242)) (-108))) (-15 -3720 ((-807) (-591 (-242)) (-807))) (-15 -1344 ((-807) (-591 (-242)) (-807))) (-15 -3830 ((-591 (-1013 (-357))) (-591 (-242)) (-591 (-1013 (-357))))) (-15 -1382 ((-854) (-591 (-242)) (-854))) (-15 -2880 ((-854) (-591 (-242)) (-854))) (-15 -2994 ((-1049 (-205)) (-591 (-242)))) (-15 -1667 ((-854) (-591 (-242)) (-854))) (-15 -3132 ((-357) (-591 (-242)) (-357))) (-15 -1661 ((-1 (-876 (-205)) (-876 (-205))) (-591 (-242)) (-1 (-876 (-205)) (-876 (-205))))) (-15 -3094 ((-591 (-357)) (-591 (-242)) (-591 (-357)))))) (T -240)) -((-3094 (*1 *2 *3 *2) (-12 (-5 *2 (-591 (-357))) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-1661 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-876 (-205)) (-876 (-205)))) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-3132 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-1667 (*1 *2 *3 *2) (-12 (-5 *2 (-854)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-240)))) (-2880 (*1 *2 *3 *2) (-12 (-5 *2 (-854)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-1382 (*1 *2 *3 *2) (-12 (-5 *2 (-854)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-3830 (*1 *2 *3 *2) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-1344 (*1 *2 *3 *2) (-12 (-5 *2 (-807)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-3720 (*1 *2 *3 *2) (-12 (-5 *2 (-807)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-2909 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-3102 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-2264 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-2628 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-3064 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) (-3379 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-591 (-242))) (-5 *1 (-240))))) -(-10 -7 (-15 -3379 ((-108) (-591 (-242)) (-108))) (-15 -3064 ((-108) (-591 (-242)) (-108))) (-15 -2628 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-591 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2264 ((-1072) (-591 (-242)) (-1072))) (-15 -3102 ((-1072) (-591 (-242)) (-1072))) (-15 -2909 ((-108) (-591 (-242)) (-108))) (-15 -3720 ((-807) (-591 (-242)) (-807))) (-15 -1344 ((-807) (-591 (-242)) (-807))) (-15 -3830 ((-591 (-1013 (-357))) (-591 (-242)) (-591 (-1013 (-357))))) (-15 -1382 ((-854) (-591 (-242)) (-854))) (-15 -2880 ((-854) (-591 (-242)) (-854))) (-15 -2994 ((-1049 (-205)) (-591 (-242)))) (-15 -1667 ((-854) (-591 (-242)) (-854))) (-15 -3132 ((-357) (-591 (-242)) (-357))) (-15 -1661 ((-1 (-876 (-205)) (-876 (-205))) (-591 (-242)) (-1 (-876 (-205)) (-876 (-205))))) (-15 -3094 ((-591 (-357)) (-591 (-242)) (-591 (-357))))) -((-1586 (((-3 |#1| "failed") (-591 (-242)) (-1089)) 17))) -(((-241 |#1|) (-10 -7 (-15 -1586 ((-3 |#1| "failed") (-591 (-242)) (-1089)))) (-1125)) (T -241)) -((-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-591 (-242))) (-5 *4 (-1089)) (-5 *1 (-241 *2)) (-4 *2 (-1125))))) -(-10 -7 (-15 -1586 ((-3 |#1| "failed") (-591 (-242)) (-1089)))) -((-2673 (((-108) $ $) NIL)) (-2628 (($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 15)) (-2880 (($ (-854)) 76)) (-1382 (($ (-854)) 75)) (-1851 (($ (-591 (-357))) 82)) (-3132 (($ (-357)) 58)) (-1667 (($ (-854)) 77)) (-2909 (($ (-108)) 23)) (-2264 (($ (-1072)) 18)) (-3102 (($ (-1072)) 19)) (-2994 (($ (-1049 (-205))) 71)) (-3830 (($ (-591 (-1013 (-357)))) 67)) (-3756 (($ (-591 (-1013 (-357)))) 59) (($ (-591 (-1013 (-385 (-525))))) 66)) (-1973 (($ (-357)) 29) (($ (-807)) 33)) (-2242 (((-108) (-591 $) (-1089)) 91)) (-1586 (((-3 (-51) "failed") (-591 $) (-1089)) 93)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1997 (($ (-357)) 34) (($ (-807)) 35)) (-1671 (($ (-1 (-876 (-205)) (-876 (-205)))) 57)) (-1661 (($ (-1 (-876 (-205)) (-876 (-205)))) 78)) (-2299 (($ (-1 (-205) (-205))) 39) (($ (-1 (-205) (-205) (-205))) 43) (($ (-1 (-205) (-205) (-205) (-205))) 47)) (-2686 (((-796) $) 87)) (-2980 (($ (-108)) 24) (($ (-591 (-1013 (-357)))) 52)) (-3379 (($ (-108)) 25)) (-3944 (((-108) $ $) 89))) -(((-242) (-13 (-1018) (-10 -8 (-15 -3379 ($ (-108))) (-15 -2980 ($ (-108))) (-15 -2628 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2264 ($ (-1072))) (-15 -3102 ($ (-1072))) (-15 -2909 ($ (-108))) (-15 -2980 ($ (-591 (-1013 (-357))))) (-15 -1671 ($ (-1 (-876 (-205)) (-876 (-205))))) (-15 -1973 ($ (-357))) (-15 -1973 ($ (-807))) (-15 -1997 ($ (-357))) (-15 -1997 ($ (-807))) (-15 -2299 ($ (-1 (-205) (-205)))) (-15 -2299 ($ (-1 (-205) (-205) (-205)))) (-15 -2299 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -3132 ($ (-357))) (-15 -3756 ($ (-591 (-1013 (-357))))) (-15 -3756 ($ (-591 (-1013 (-385 (-525)))))) (-15 -3830 ($ (-591 (-1013 (-357))))) (-15 -2994 ($ (-1049 (-205)))) (-15 -1382 ($ (-854))) (-15 -2880 ($ (-854))) (-15 -1667 ($ (-854))) (-15 -1661 ($ (-1 (-876 (-205)) (-876 (-205))))) (-15 -1851 ($ (-591 (-357)))) (-15 -1586 ((-3 (-51) "failed") (-591 $) (-1089))) (-15 -2242 ((-108) (-591 $) (-1089)))))) (T -242)) -((-3379 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2980 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2628 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-242)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-242)))) (-3102 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-242)))) (-2909 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2980 (*1 *1 *2) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-242)))) (-1671 (*1 *1 *2) (-12 (-5 *2 (-1 (-876 (-205)) (-876 (-205)))) (-5 *1 (-242)))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-242)))) (-1997 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-1997 (*1 *1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-242)))) (-2299 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))) (-2299 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242)))) (-2299 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242)))) (-3132 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-242)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-591 (-1013 (-385 (-525))))) (-5 *1 (-242)))) (-3830 (*1 *1 *2) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-242)))) (-2994 (*1 *1 *2) (-12 (-5 *2 (-1049 (-205))) (-5 *1 (-242)))) (-1382 (*1 *1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-242)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-242)))) (-1667 (*1 *1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-242)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-1 (-876 (-205)) (-876 (-205)))) (-5 *1 (-242)))) (-1851 (*1 *1 *2) (-12 (-5 *2 (-591 (-357))) (-5 *1 (-242)))) (-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-591 (-242))) (-5 *4 (-1089)) (-5 *2 (-51)) (-5 *1 (-242)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-242))) (-5 *4 (-1089)) (-5 *2 (-108)) (-5 *1 (-242))))) -(-13 (-1018) (-10 -8 (-15 -3379 ($ (-108))) (-15 -2980 ($ (-108))) (-15 -2628 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2264 ($ (-1072))) (-15 -3102 ($ (-1072))) (-15 -2909 ($ (-108))) (-15 -2980 ($ (-591 (-1013 (-357))))) (-15 -1671 ($ (-1 (-876 (-205)) (-876 (-205))))) (-15 -1973 ($ (-357))) (-15 -1973 ($ (-807))) (-15 -1997 ($ (-357))) (-15 -1997 ($ (-807))) (-15 -2299 ($ (-1 (-205) (-205)))) (-15 -2299 ($ (-1 (-205) (-205) (-205)))) (-15 -2299 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -3132 ($ (-357))) (-15 -3756 ($ (-591 (-1013 (-357))))) (-15 -3756 ($ (-591 (-1013 (-385 (-525)))))) (-15 -3830 ($ (-591 (-1013 (-357))))) (-15 -2994 ($ (-1049 (-205)))) (-15 -1382 ($ (-854))) (-15 -2880 ($ (-854))) (-15 -1667 ($ (-854))) (-15 -1661 ($ (-1 (-876 (-205)) (-876 (-205))))) (-15 -1851 ($ (-591 (-357)))) (-15 -1586 ((-3 (-51) "failed") (-591 $) (-1089))) (-15 -2242 ((-108) (-591 $) (-1089))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3827 (((-591 (-712)) $) NIL) (((-591 (-712)) $ |#2|) NIL)) (-1314 (((-712) $) NIL) (((-712) $ |#2|) NIL)) (-1444 (((-591 |#3|) $) NIL)) (-2514 (((-1085 $) $ |#3|) NIL) (((-1085 |#1|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 |#3|)) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1720 (($ $) NIL (|has| |#1| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2243 (($ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1041 |#1| |#2|) "failed") $) 21)) (-3341 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1041 |#1| |#2|) $) NIL)) (-1788 (($ $ $ |#3|) NIL (|has| |#1| (-160)))) (-1575 (($ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#1| (-842)))) (-2615 (($ $ |#1| (-497 |#3|) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| |#1| (-819 (-357))) (|has| |#3| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| |#1| (-819 (-525))) (|has| |#3| (-819 (-525)))))) (-1676 (((-712) $ |#2|) NIL) (((-712) $) 10)) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-1434 (($ (-1085 |#1|) |#3|) NIL) (($ (-1085 $) |#3|) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-497 |#3|)) NIL) (($ $ |#3| (-712)) NIL) (($ $ (-591 |#3|) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ |#3|) NIL)) (-3629 (((-497 |#3|) $) NIL) (((-712) $ |#3|) NIL) (((-591 (-712)) $ (-591 |#3|)) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2508 (($ (-1 (-497 |#3|) (-497 |#3|)) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1695 (((-1 $ (-712)) |#2|) NIL) (((-1 $ (-712)) $) NIL (|has| |#1| (-213)))) (-3027 (((-3 |#3| "failed") $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-3574 ((|#3| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2621 (((-1072) $) NIL)) (-4156 (((-108) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| |#3|) (|:| -3987 (-712))) "failed") $) NIL)) (-2233 (($ $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#1| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-842)))) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-591 |#3|) (-591 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-591 |#3|) (-591 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-213))) (($ $ (-591 |#2|) (-591 $)) NIL (|has| |#1| (-213))) (($ $ |#2| |#1|) NIL (|has| |#1| (-213))) (($ $ (-591 |#2|) (-591 |#1|)) NIL (|has| |#1| (-213)))) (-2858 (($ $ |#3|) NIL (|has| |#1| (-160)))) (-2209 (($ $ |#3|) NIL) (($ $ (-591 |#3|)) NIL) (($ $ |#3| (-712)) NIL) (($ $ (-591 |#3|) (-591 (-712))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1277 (((-591 |#2|) $) NIL)) (-2743 (((-497 |#3|) $) NIL) (((-712) $ |#3|) NIL) (((-591 (-712)) $ (-591 |#3|)) NIL) (((-712) $ |#2|) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| |#1| (-566 (-825 (-357)))) (|has| |#3| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| |#1| (-566 (-825 (-525)))) (|has| |#3| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-566 (-501))) (|has| |#3| (-566 (-501)))))) (-2827 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1041 |#1| |#2|)) 30) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-497 |#3|)) NIL) (($ $ |#3| (-712)) NIL) (($ $ (-591 |#3|) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#1| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ |#3|) NIL) (($ $ (-591 |#3|)) NIL) (($ $ |#3| (-712)) NIL) (($ $ (-591 |#3|) (-591 (-712))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-243 |#1| |#2| |#3|) (-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-966 (-1041 |#1| |#2|))) (-975) (-788) (-245 |#2|)) (T -243)) -NIL -(-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-966 (-1041 |#1| |#2|))) -((-1314 (((-712) $) 30)) (-4174 (((-3 |#2| "failed") $) 17)) (-3341 ((|#2| $) 27)) (-2209 (($ $) 12) (($ $ (-712)) 15)) (-2686 (((-796) $) 26) (($ |#2|) 10)) (-3944 (((-108) $ $) 20)) (-3971 (((-108) $ $) 29))) -(((-244 |#1| |#2|) (-10 -8 (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1|)) (-15 -1314 ((-712) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) (-245 |#2|) (-788)) (T -244)) -NIL -(-10 -8 (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1|)) (-15 -1314 ((-712) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1314 (((-712) $) 22)) (-1592 ((|#1| $) 23)) (-4174 (((-3 |#1| "failed") $) 27)) (-3341 ((|#1| $) 26)) (-1676 (((-712) $) 24)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-1695 (($ |#1| (-712)) 25)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2209 (($ $) 21) (($ $ (-712)) 20)) (-2686 (((-796) $) 11) (($ |#1|) 28)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18))) -(((-245 |#1|) (-131) (-788)) (T -245)) -((-2686 (*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-788)))) (-1695 (*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-245 *2)) (-4 *2 (-788)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-788)) (-5 *2 (-712)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-788)))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-788)) (-5 *2 (-712)))) (-2209 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-788)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-245 *3)) (-4 *3 (-788))))) -(-13 (-788) (-966 |t#1|) (-10 -8 (-15 -1695 ($ |t#1| (-712))) (-15 -1676 ((-712) $)) (-15 -1592 (|t#1| $)) (-15 -1314 ((-712) $)) (-15 -2209 ($ $)) (-15 -2209 ($ $ (-712))) (-15 -2686 ($ |t#1|)))) -(((-97) . T) ((-565 (-796)) . T) ((-788) . T) ((-966 |#1|) . T) ((-1018) . T)) -((-1444 (((-591 (-1089)) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) 41)) (-2758 (((-591 (-1089)) (-294 (-205)) (-712)) 80)) (-3542 (((-3 (-294 (-205)) "failed") (-294 (-205))) 51)) (-1281 (((-294 (-205)) (-294 (-205))) 67)) (-3035 (((-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 26)) (-1427 (((-108) (-591 (-294 (-205)))) 84)) (-2250 (((-108) (-294 (-205))) 24)) (-1500 (((-591 (-1072)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))))) 106)) (-2606 (((-591 (-294 (-205))) (-591 (-294 (-205)))) 88)) (-3144 (((-591 (-294 (-205))) (-591 (-294 (-205)))) 86)) (-1580 (((-631 (-205)) (-591 (-294 (-205))) (-712)) 95)) (-1674 (((-108) (-294 (-205))) 20) (((-108) (-591 (-294 (-205)))) 85)) (-1543 (((-591 (-205)) (-591 (-781 (-205))) (-205)) 14)) (-1327 (((-357) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) 101)) (-3250 (((-964) (-1089) (-964)) 34))) -(((-246) (-10 -7 (-15 -1543 ((-591 (-205)) (-591 (-781 (-205))) (-205))) (-15 -3035 ((-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205))))))) (-15 -3542 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -1281 ((-294 (-205)) (-294 (-205)))) (-15 -1427 ((-108) (-591 (-294 (-205))))) (-15 -1674 ((-108) (-591 (-294 (-205))))) (-15 -1674 ((-108) (-294 (-205)))) (-15 -1580 ((-631 (-205)) (-591 (-294 (-205))) (-712))) (-15 -3144 ((-591 (-294 (-205))) (-591 (-294 (-205))))) (-15 -2606 ((-591 (-294 (-205))) (-591 (-294 (-205))))) (-15 -2250 ((-108) (-294 (-205)))) (-15 -1444 ((-591 (-1089)) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) (-15 -2758 ((-591 (-1089)) (-294 (-205)) (-712))) (-15 -3250 ((-964) (-1089) (-964))) (-15 -1327 ((-357) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) (-15 -1500 ((-591 (-1072)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))))))) (T -246)) -((-1500 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))))) (-5 *2 (-591 (-1072))) (-5 *1 (-246)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) (-5 *2 (-357)) (-5 *1 (-246)))) (-3250 (*1 *2 *3 *2) (-12 (-5 *2 (-964)) (-5 *3 (-1089)) (-5 *1 (-246)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-712)) (-5 *2 (-591 (-1089))) (-5 *1 (-246)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) (-5 *2 (-591 (-1089))) (-5 *1 (-246)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-591 (-294 (-205)))) (-5 *1 (-246)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-591 (-294 (-205)))) (-5 *1 (-246)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-294 (-205)))) (-5 *4 (-712)) (-5 *2 (-631 (-205))) (-5 *1 (-246)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-591 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-591 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-1281 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-3542 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (-5 *1 (-246)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-781 (-205)))) (-5 *4 (-205)) (-5 *2 (-591 *4)) (-5 *1 (-246))))) -(-10 -7 (-15 -1543 ((-591 (-205)) (-591 (-781 (-205))) (-205))) (-15 -3035 ((-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205))))))) (-15 -3542 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -1281 ((-294 (-205)) (-294 (-205)))) (-15 -1427 ((-108) (-591 (-294 (-205))))) (-15 -1674 ((-108) (-591 (-294 (-205))))) (-15 -1674 ((-108) (-294 (-205)))) (-15 -1580 ((-631 (-205)) (-591 (-294 (-205))) (-712))) (-15 -3144 ((-591 (-294 (-205))) (-591 (-294 (-205))))) (-15 -2606 ((-591 (-294 (-205))) (-591 (-294 (-205))))) (-15 -2250 ((-108) (-294 (-205)))) (-15 -1444 ((-591 (-1089)) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) (-15 -2758 ((-591 (-1089)) (-294 (-205)) (-712))) (-15 -3250 ((-964) (-1089) (-964))) (-15 -1327 ((-357) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) (-15 -1500 ((-591 (-1072)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))))))) -((-2673 (((-108) $ $) NIL)) (-3189 (((-964) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 44)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 26) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-247) (-777)) (T -247)) -NIL -(-777) -((-2673 (((-108) $ $) NIL)) (-3189 (((-964) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) 58) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 54)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 34) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) 36)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-248) (-777)) (T -248)) -NIL -(-777) -((-2673 (((-108) $ $) NIL)) (-3189 (((-964) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) 76) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 73)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 44) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) 55)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-249) (-777)) (T -249)) -NIL -(-777) -((-2673 (((-108) $ $) NIL)) (-3189 (((-964) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 50)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 31) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-250) (-777)) (T -250)) -NIL -(-777) -((-2673 (((-108) $ $) NIL)) (-3189 (((-964) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 50)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 28) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-251) (-777)) (T -251)) -NIL -(-777) -((-2673 (((-108) $ $) NIL)) (-3189 (((-964) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 73)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 28) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-252) (-777)) (T -252)) -NIL -(-777) -((-2673 (((-108) $ $) NIL)) (-3189 (((-964) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 77)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 25) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-253) (-777)) (T -253)) -NIL -(-777) -((-2673 (((-108) $ $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2221 (((-591 (-525)) $) 19)) (-2743 (((-712) $) 17)) (-2686 (((-796) $) 23) (($ (-591 (-525))) 15)) (-2153 (($ (-712)) 20)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 9)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 11))) -(((-254) (-13 (-788) (-10 -8 (-15 -2686 ($ (-591 (-525)))) (-15 -2743 ((-712) $)) (-15 -2221 ((-591 (-525)) $)) (-15 -2153 ($ (-712)))))) (T -254)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-254)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-254)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-254)))) (-2153 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-254))))) -(-13 (-788) (-10 -8 (-15 -2686 ($ (-591 (-525)))) (-15 -2743 ((-712) $)) (-15 -2221 ((-591 (-525)) $)) (-15 -2153 ($ (-712))))) -((-4087 ((|#2| |#2|) 77)) (-2381 ((|#2| |#2|) 65)) (-3430 (((-3 |#2| "failed") |#2| (-591 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-4058 ((|#2| |#2|) 75)) (-2360 ((|#2| |#2|) 63)) (-4109 ((|#2| |#2|) 79)) (-2400 ((|#2| |#2|) 67)) (-1417 ((|#2|) 46)) (-3259 (((-110) (-110)) 95)) (-2356 ((|#2| |#2|) 61)) (-1345 (((-108) |#2|) 134)) (-3505 ((|#2| |#2|) 181)) (-3075 ((|#2| |#2|) 157)) (-1424 ((|#2|) 59)) (-1766 ((|#2|) 58)) (-1438 ((|#2| |#2|) 177)) (-2810 ((|#2| |#2|) 153)) (-3324 ((|#2| |#2|) 185)) (-3656 ((|#2| |#2|) 161)) (-2532 ((|#2| |#2|) 149)) (-2657 ((|#2| |#2|) 151)) (-3845 ((|#2| |#2|) 187)) (-3599 ((|#2| |#2|) 163)) (-3606 ((|#2| |#2|) 183)) (-2705 ((|#2| |#2|) 159)) (-3003 ((|#2| |#2|) 179)) (-1235 ((|#2| |#2|) 155)) (-3264 ((|#2| |#2|) 193)) (-3676 ((|#2| |#2|) 169)) (-1885 ((|#2| |#2|) 189)) (-3207 ((|#2| |#2|) 165)) (-3055 ((|#2| |#2|) 197)) (-2274 ((|#2| |#2|) 173)) (-1993 ((|#2| |#2|) 199)) (-2729 ((|#2| |#2|) 175)) (-3639 ((|#2| |#2|) 195)) (-1767 ((|#2| |#2|) 171)) (-3627 ((|#2| |#2|) 191)) (-3739 ((|#2| |#2|) 167)) (-2288 ((|#2| |#2|) 62)) (-4122 ((|#2| |#2|) 80)) (-2410 ((|#2| |#2|) 68)) (-4098 ((|#2| |#2|) 78)) (-2391 ((|#2| |#2|) 66)) (-4073 ((|#2| |#2|) 76)) (-2370 ((|#2| |#2|) 64)) (-2754 (((-108) (-110)) 93)) (-4163 ((|#2| |#2|) 83)) (-2457 ((|#2| |#2|) 71)) (-4137 ((|#2| |#2|) 81)) (-2432 ((|#2| |#2|) 69)) (-4193 ((|#2| |#2|) 85)) (-2477 ((|#2| |#2|) 73)) (-1234 ((|#2| |#2|) 86)) (-2495 ((|#2| |#2|) 74)) (-4179 ((|#2| |#2|) 84)) (-2469 ((|#2| |#2|) 72)) (-4149 ((|#2| |#2|) 82)) (-2444 ((|#2| |#2|) 70))) -(((-255 |#1| |#2|) (-10 -7 (-15 -2288 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2381 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2400 (|#2| |#2|)) (-15 -2410 (|#2| |#2|)) (-15 -2432 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -2457 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2477 (|#2| |#2|)) (-15 -2495 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -4122 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4163 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -4193 (|#2| |#2|)) (-15 -1234 (|#2| |#2|)) (-15 -1417 (|#2|)) (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -1766 (|#2|)) (-15 -1424 (|#2|)) (-15 -2657 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -1235 (|#2| |#2|)) (-15 -3075 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2729 (|#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -3003 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3606 (|#2| |#2|)) (-15 -3324 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -1885 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3264 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -3430 ((-3 |#2| "failed") |#2| (-591 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1345 ((-108) |#2|))) (-13 (-788) (-517)) (-13 (-408 |#1|) (-932))) (T -255)) -((-1345 (*1 *2 *3) (-12 (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3)) (-4 *3 (-13 (-408 *4) (-932))))) (-3430 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-591 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-408 *4) (-932))) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-255 *4 *2)))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3264 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-1885 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3324 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3606 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3003 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-1438 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2729 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3207 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-3075 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-1235 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2532 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2657 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-1424 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-932))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-788) (-517))))) (-1766 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-932))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-788) (-517))))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *4)) (-4 *4 (-13 (-408 *3) (-932))))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-932))))) (-1417 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-932))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-788) (-517))))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4193 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4163 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4122 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2477 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2457 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2432 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2400 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2381 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932))))) (-2288 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-932)))))) -(-10 -7 (-15 -2288 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2381 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2400 (|#2| |#2|)) (-15 -2410 (|#2| |#2|)) (-15 -2432 (|#2| |#2|)) (-15 -2444 (|#2| |#2|)) (-15 -2457 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2477 (|#2| |#2|)) (-15 -2495 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -4122 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4163 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -4193 (|#2| |#2|)) (-15 -1234 (|#2| |#2|)) (-15 -1417 (|#2|)) (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -1766 (|#2|)) (-15 -1424 (|#2|)) (-15 -2657 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -1235 (|#2| |#2|)) (-15 -3075 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2729 (|#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -3003 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3606 (|#2| |#2|)) (-15 -3324 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -1885 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3264 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -3430 ((-3 |#2| "failed") |#2| (-591 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1345 ((-108) |#2|))) -((-2352 (((-3 |#2| "failed") (-591 (-564 |#2|)) |#2| (-1089)) 135)) (-4072 ((|#2| (-385 (-525)) |#2|) 51)) (-4209 ((|#2| |#2| (-564 |#2|)) 128)) (-3758 (((-2 (|:| |func| |#2|) (|:| |kers| (-591 (-564 |#2|))) (|:| |vals| (-591 |#2|))) |#2| (-1089)) 127)) (-1619 ((|#2| |#2| (-1089)) 20) ((|#2| |#2|) 23)) (-1297 ((|#2| |#2| (-1089)) 141) ((|#2| |#2|) 139))) -(((-256 |#1| |#2|) (-10 -7 (-15 -1297 (|#2| |#2|)) (-15 -1297 (|#2| |#2| (-1089))) (-15 -3758 ((-2 (|:| |func| |#2|) (|:| |kers| (-591 (-564 |#2|))) (|:| |vals| (-591 |#2|))) |#2| (-1089))) (-15 -1619 (|#2| |#2|)) (-15 -1619 (|#2| |#2| (-1089))) (-15 -2352 ((-3 |#2| "failed") (-591 (-564 |#2|)) |#2| (-1089))) (-15 -4209 (|#2| |#2| (-564 |#2|))) (-15 -4072 (|#2| (-385 (-525)) |#2|))) (-13 (-517) (-788) (-966 (-525)) (-587 (-525))) (-13 (-27) (-1111) (-408 |#1|))) (T -256)) -((-4072 (*1 *2 *3 *2) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4))))) (-4209 (*1 *2 *2 *3) (-12 (-5 *3 (-564 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4))) (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-256 *4 *2)))) (-2352 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-591 (-564 *2))) (-5 *4 (-1089)) (-4 *2 (-13 (-27) (-1111) (-408 *5))) (-4 *5 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-256 *5 *2)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4))))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3))))) (-3758 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-591 (-564 *3))) (|:| |vals| (-591 *3)))) (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))))) (-1297 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4))))) (-1297 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3)))))) -(-10 -7 (-15 -1297 (|#2| |#2|)) (-15 -1297 (|#2| |#2| (-1089))) (-15 -3758 ((-2 (|:| |func| |#2|) (|:| |kers| (-591 (-564 |#2|))) (|:| |vals| (-591 |#2|))) |#2| (-1089))) (-15 -1619 (|#2| |#2|)) (-15 -1619 (|#2| |#2| (-1089))) (-15 -2352 ((-3 |#2| "failed") (-591 (-564 |#2|)) |#2| (-1089))) (-15 -4209 (|#2| |#2| (-564 |#2|))) (-15 -4072 (|#2| (-385 (-525)) |#2|))) -((-3879 (((-3 |#3| "failed") |#3|) 110)) (-4087 ((|#3| |#3|) 131)) (-2392 (((-3 |#3| "failed") |#3|) 82)) (-2381 ((|#3| |#3|) 121)) (-1989 (((-3 |#3| "failed") |#3|) 58)) (-4058 ((|#3| |#3|) 129)) (-2668 (((-3 |#3| "failed") |#3|) 46)) (-2360 ((|#3| |#3|) 119)) (-4144 (((-3 |#3| "failed") |#3|) 112)) (-4109 ((|#3| |#3|) 133)) (-2799 (((-3 |#3| "failed") |#3|) 84)) (-2400 ((|#3| |#3|) 123)) (-2808 (((-3 |#3| "failed") |#3| (-712)) 36)) (-3948 (((-3 |#3| "failed") |#3|) 74)) (-2356 ((|#3| |#3|) 118)) (-2156 (((-3 |#3| "failed") |#3|) 44)) (-2288 ((|#3| |#3|) 117)) (-3241 (((-3 |#3| "failed") |#3|) 113)) (-4122 ((|#3| |#3|) 134)) (-1842 (((-3 |#3| "failed") |#3|) 85)) (-2410 ((|#3| |#3|) 124)) (-1339 (((-3 |#3| "failed") |#3|) 111)) (-4098 ((|#3| |#3|) 132)) (-1379 (((-3 |#3| "failed") |#3|) 83)) (-2391 ((|#3| |#3|) 122)) (-2259 (((-3 |#3| "failed") |#3|) 60)) (-4073 ((|#3| |#3|) 130)) (-1542 (((-3 |#3| "failed") |#3|) 48)) (-2370 ((|#3| |#3|) 120)) (-1590 (((-3 |#3| "failed") |#3|) 66)) (-4163 ((|#3| |#3|) 137)) (-1942 (((-3 |#3| "failed") |#3|) 104)) (-2457 ((|#3| |#3|) 142)) (-2120 (((-3 |#3| "failed") |#3|) 62)) (-4137 ((|#3| |#3|) 135)) (-2845 (((-3 |#3| "failed") |#3|) 50)) (-2432 ((|#3| |#3|) 125)) (-3052 (((-3 |#3| "failed") |#3|) 70)) (-4193 ((|#3| |#3|) 139)) (-3928 (((-3 |#3| "failed") |#3|) 54)) (-2477 ((|#3| |#3|) 127)) (-1513 (((-3 |#3| "failed") |#3|) 72)) (-1234 ((|#3| |#3|) 140)) (-2486 (((-3 |#3| "failed") |#3|) 56)) (-2495 ((|#3| |#3|) 128)) (-3060 (((-3 |#3| "failed") |#3|) 68)) (-4179 ((|#3| |#3|) 138)) (-2716 (((-3 |#3| "failed") |#3|) 107)) (-2469 ((|#3| |#3|) 143)) (-1499 (((-3 |#3| "failed") |#3|) 64)) (-4149 ((|#3| |#3|) 136)) (-4197 (((-3 |#3| "failed") |#3|) 52)) (-2444 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341))))) -(((-257 |#1| |#2| |#3|) (-13 (-914 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -2288 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2381 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2400 (|#3| |#3|)) (-15 -2410 (|#3| |#3|)) (-15 -2432 (|#3| |#3|)) (-15 -2444 (|#3| |#3|)) (-15 -2457 (|#3| |#3|)) (-15 -2469 (|#3| |#3|)) (-15 -2477 (|#3| |#3|)) (-15 -2495 (|#3| |#3|)) (-15 -4058 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4098 (|#3| |#3|)) (-15 -4109 (|#3| |#3|)) (-15 -4122 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4163 (|#3| |#3|)) (-15 -4179 (|#3| |#3|)) (-15 -4193 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)))) (-37 (-385 (-525))) (-1162 |#1|) (-1133 |#1| |#2|)) (T -257)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) (-4 *5 (-1162 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1133 *4 *5)))) (-2288 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2381 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2400 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2432 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2457 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2477 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4122 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4163 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-4193 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4))))) -(-13 (-914 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -2288 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2381 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2400 (|#3| |#3|)) (-15 -2410 (|#3| |#3|)) (-15 -2432 (|#3| |#3|)) (-15 -2444 (|#3| |#3|)) (-15 -2457 (|#3| |#3|)) (-15 -2469 (|#3| |#3|)) (-15 -2477 (|#3| |#3|)) (-15 -2495 (|#3| |#3|)) (-15 -4058 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4098 (|#3| |#3|)) (-15 -4109 (|#3| |#3|)) (-15 -4122 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4163 (|#3| |#3|)) (-15 -4179 (|#3| |#3|)) (-15 -4193 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)))) -((-3879 (((-3 |#3| "failed") |#3|) 66)) (-4087 ((|#3| |#3|) 133)) (-2392 (((-3 |#3| "failed") |#3|) 50)) (-2381 ((|#3| |#3|) 121)) (-1989 (((-3 |#3| "failed") |#3|) 62)) (-4058 ((|#3| |#3|) 131)) (-2668 (((-3 |#3| "failed") |#3|) 46)) (-2360 ((|#3| |#3|) 119)) (-4144 (((-3 |#3| "failed") |#3|) 70)) (-4109 ((|#3| |#3|) 135)) (-2799 (((-3 |#3| "failed") |#3|) 54)) (-2400 ((|#3| |#3|) 123)) (-2808 (((-3 |#3| "failed") |#3| (-712)) 35)) (-3948 (((-3 |#3| "failed") |#3|) 44)) (-2356 ((|#3| |#3|) 112)) (-2156 (((-3 |#3| "failed") |#3|) 42)) (-2288 ((|#3| |#3|) 118)) (-3241 (((-3 |#3| "failed") |#3|) 72)) (-4122 ((|#3| |#3|) 136)) (-1842 (((-3 |#3| "failed") |#3|) 56)) (-2410 ((|#3| |#3|) 124)) (-1339 (((-3 |#3| "failed") |#3|) 68)) (-4098 ((|#3| |#3|) 134)) (-1379 (((-3 |#3| "failed") |#3|) 52)) (-2391 ((|#3| |#3|) 122)) (-2259 (((-3 |#3| "failed") |#3|) 64)) (-4073 ((|#3| |#3|) 132)) (-1542 (((-3 |#3| "failed") |#3|) 48)) (-2370 ((|#3| |#3|) 120)) (-1590 (((-3 |#3| "failed") |#3|) 78)) (-4163 ((|#3| |#3|) 139)) (-1942 (((-3 |#3| "failed") |#3|) 58)) (-2457 ((|#3| |#3|) 127)) (-2120 (((-3 |#3| "failed") |#3|) 74)) (-4137 ((|#3| |#3|) 137)) (-2845 (((-3 |#3| "failed") |#3|) 102)) (-2432 ((|#3| |#3|) 125)) (-3052 (((-3 |#3| "failed") |#3|) 82)) (-4193 ((|#3| |#3|) 141)) (-3928 (((-3 |#3| "failed") |#3|) 109)) (-2477 ((|#3| |#3|) 129)) (-1513 (((-3 |#3| "failed") |#3|) 84)) (-1234 ((|#3| |#3|) 142)) (-2486 (((-3 |#3| "failed") |#3|) 111)) (-2495 ((|#3| |#3|) 130)) (-3060 (((-3 |#3| "failed") |#3|) 80)) (-4179 ((|#3| |#3|) 140)) (-2716 (((-3 |#3| "failed") |#3|) 60)) (-2469 ((|#3| |#3|) 128)) (-1499 (((-3 |#3| "failed") |#3|) 76)) (-4149 ((|#3| |#3|) 138)) (-4197 (((-3 |#3| "failed") |#3|) 105)) (-2444 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341))))) -(((-258 |#1| |#2| |#3| |#4|) (-13 (-914 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -2288 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2381 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2400 (|#3| |#3|)) (-15 -2410 (|#3| |#3|)) (-15 -2432 (|#3| |#3|)) (-15 -2444 (|#3| |#3|)) (-15 -2457 (|#3| |#3|)) (-15 -2469 (|#3| |#3|)) (-15 -2477 (|#3| |#3|)) (-15 -2495 (|#3| |#3|)) (-15 -4058 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4098 (|#3| |#3|)) (-15 -4109 (|#3| |#3|)) (-15 -4122 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4163 (|#3| |#3|)) (-15 -4179 (|#3| |#3|)) (-15 -4193 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)))) (-37 (-385 (-525))) (-1131 |#1|) (-1154 |#1| |#2|) (-914 |#2|)) (T -258)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) (-4 *5 (-1131 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1154 *4 *5)) (-4 *6 (-914 *5)))) (-2288 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2381 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2400 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2432 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2457 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2477 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4122 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4163 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-4193 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4))))) -(-13 (-914 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -2288 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2370 (|#3| |#3|)) (-15 -2381 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2400 (|#3| |#3|)) (-15 -2410 (|#3| |#3|)) (-15 -2432 (|#3| |#3|)) (-15 -2444 (|#3| |#3|)) (-15 -2457 (|#3| |#3|)) (-15 -2469 (|#3| |#3|)) (-15 -2477 (|#3| |#3|)) (-15 -2495 (|#3| |#3|)) (-15 -4058 (|#3| |#3|)) (-15 -4073 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4098 (|#3| |#3|)) (-15 -4109 (|#3| |#3|)) (-15 -4122 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -4149 (|#3| |#3|)) (-15 -4163 (|#3| |#3|)) (-15 -4179 (|#3| |#3|)) (-15 -4193 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)))) -((-1490 (((-108) $) 19)) (-1939 (((-169) $) 7)) (-2898 (((-3 (-1089) "failed") $) 14)) (-2711 (((-3 (-591 $) "failed") $) NIL)) (-4224 (((-3 (-1089) "failed") $) 21)) (-3020 (((-3 (-1022) "failed") $) 17)) (-3220 (((-108) $) 15)) (-2686 (((-796) $) NIL)) (-3123 (((-108) $) 9))) -(((-259) (-13 (-565 (-796)) (-10 -8 (-15 -1939 ((-169) $)) (-15 -3220 ((-108) $)) (-15 -3020 ((-3 (-1022) "failed") $)) (-15 -1490 ((-108) $)) (-15 -4224 ((-3 (-1089) "failed") $)) (-15 -3123 ((-108) $)) (-15 -2898 ((-3 (-1089) "failed") $)) (-15 -2711 ((-3 (-591 $) "failed") $))))) (T -259)) -((-1939 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-3020 (*1 *2 *1) (|partial| -12 (-5 *2 (-1022)) (-5 *1 (-259)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-4224 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-259)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-2898 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-259)))) (-2711 (*1 *2 *1) (|partial| -12 (-5 *2 (-591 (-259))) (-5 *1 (-259))))) -(-13 (-565 (-796)) (-10 -8 (-15 -1939 ((-169) $)) (-15 -3220 ((-108) $)) (-15 -3020 ((-3 (-1022) "failed") $)) (-15 -1490 ((-108) $)) (-15 -4224 ((-3 (-1089) "failed") $)) (-15 -3123 ((-108) $)) (-15 -2898 ((-3 (-1089) "failed") $)) (-15 -2711 ((-3 (-591 $) "failed") $)))) -((-2467 (($ (-1 (-108) |#2|) $) 24)) (-2908 (($ $) 36)) (-3844 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-2537 (($ |#2| $) 32) (($ (-1 (-108) |#2|) $) 18)) (-3597 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2059 (($ |#2| $ (-525)) 20) (($ $ $ (-525)) 22)) (-3226 (($ $ (-525)) 11) (($ $ (-1138 (-525))) 14)) (-3729 (($ $ |#2|) 30) (($ $ $) NIL)) (-1624 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-591 $)) NIL))) -(((-260 |#1| |#2|) (-10 -8 (-15 -3597 (|#1| |#1| |#1|)) (-15 -3844 (|#1| |#2| |#1|)) (-15 -3597 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3844 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3729 (|#1| |#1| |#1|)) (-15 -3729 (|#1| |#1| |#2|)) (-15 -2059 (|#1| |#1| |#1| (-525))) (-15 -2059 (|#1| |#2| |#1| (-525))) (-15 -3226 (|#1| |#1| (-1138 (-525)))) (-15 -3226 (|#1| |#1| (-525))) (-15 -1624 (|#1| (-591 |#1|))) (-15 -1624 (|#1| |#1| |#1|)) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#2|)) (-15 -2537 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2467 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2537 (|#1| |#2| |#1|)) (-15 -2908 (|#1| |#1|))) (-261 |#2|) (-1125)) (T -260)) -NIL -(-10 -8 (-15 -3597 (|#1| |#1| |#1|)) (-15 -3844 (|#1| |#2| |#1|)) (-15 -3597 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3844 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3729 (|#1| |#1| |#1|)) (-15 -3729 (|#1| |#1| |#2|)) (-15 -2059 (|#1| |#1| |#1| (-525))) (-15 -2059 (|#1| |#2| |#1| (-525))) (-15 -3226 (|#1| |#1| (-1138 (-525)))) (-15 -3226 (|#1| |#1| (-525))) (-15 -1624 (|#1| (-591 |#1|))) (-15 -1624 (|#1| |#1| |#1|)) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#2|)) (-15 -2537 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2467 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2537 (|#1| |#2| |#1|)) (-15 -2908 (|#1| |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3832 (((-1176) $ (-525) (-525)) 40 (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) 8)) (-2847 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 58 (|has| $ (-6 -4251)))) (-1288 (($ (-1 (-108) |#1|) $) 85)) (-2467 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-3945 (($ $) 83 (|has| |#1| (-1018)))) (-2908 (($ $) 78 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1018)))) (-2537 (($ |#1| $) 77 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 51)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-1316 (($ (-712) |#1|) 69)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 43 (|has| (-525) (-788)))) (-3597 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 44 (|has| (-525) (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-1520 (($ |#1| $ (-525)) 88) (($ $ $ (-525)) 87)) (-2059 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3761 (((-591 (-525)) $) 46)) (-1675 (((-108) (-525) $) 47)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2872 ((|#1| $) 42 (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1858 (($ $ |#1|) 41 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1138 (-525))) 63)) (-1227 (($ $ (-525)) 91) (($ $ (-1138 (-525))) 90)) (-3226 (($ $ (-525)) 62) (($ $ (-1138 (-525))) 61)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 79 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 70)) (-3729 (($ $ |#1|) 93) (($ $ $) 92)) (-1624 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-591 $)) 65)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-261 |#1|) (-131) (-1125)) (T -261)) -((-3729 (*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)))) (-3729 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)))) (-1227 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) (-1227 (*1 *1 *1 *2) (-12 (-5 *2 (-1138 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) (-1520 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1125)))) (-1520 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) (-3597 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) (-1288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) (-3844 (*1 *1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)) (-4 *2 (-1018)))) (-3945 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)) (-4 *2 (-1018)))) (-3597 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)) (-4 *2 (-788))))) -(-13 (-596 |t#1|) (-10 -8 (-6 -4251) (-15 -3729 ($ $ |t#1|)) (-15 -3729 ($ $ $)) (-15 -1227 ($ $ (-525))) (-15 -1227 ($ $ (-1138 (-525)))) (-15 -3844 ($ (-1 (-108) |t#1|) $)) (-15 -1520 ($ |t#1| $ (-525))) (-15 -1520 ($ $ $ (-525))) (-15 -3597 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1288 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1018)) (PROGN (-15 -3844 ($ |t#1| $)) (-15 -3945 ($ $))) |%noBranch|) (IF (|has| |t#1| (-788)) (-15 -3597 ($ $ $)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-596 |#1|) . T) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-1594 (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-3243 (*1 *1 *1) (-4 *1 (-223)))) +(-13 (-269) (-37 (-385 (-525))) (-10 -8 (-15 ** ($ $ (-525))) (-15 -1594 ($ $ (-525))) (-15 -3243 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-269) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-669) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3067 ((|#1| $) 48)) (-3134 (($ $) 57)) (-2583 (((-108) $ (-713)) 8)) (-2325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-4192 (($ $ $) 53 (|has| $ (-6 -4255)))) (-2931 (($ $ $) 52 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1957 (($) 7 T CONST)) (-2702 (($ $) 56)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 50)) (-2983 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-2692 (($ $) 55)) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-2401 (((-592 |#1|) $) 45)) (-3260 (((-108) $) 49)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2618 ((|#1| $) 59)) (-3596 (($ $) 58)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ "value") 47)) (-3612 (((-525) $ $) 44)) (-3105 (((-108) $) 46)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2455 (($ $ $) 54 (|has| $ (-6 -4255)))) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) 51)) (-2086 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-224 |#1|) (-131) (-1126)) (T -224)) +((-2618 (*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-3596 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-2702 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-2692 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-2455 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-4192 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-2931 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126))))) +(-13 (-941 |t#1|) (-10 -8 (-15 -2618 (|t#1| $)) (-15 -3596 ($ $)) (-15 -3134 ($ $)) (-15 -2702 ($ $)) (-15 -2692 ($ $)) (IF (|has| $ (-6 -4255)) (PROGN (-15 -2455 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -2931 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) NIL)) (-1212 ((|#1| $) NIL)) (-3134 (($ $) NIL)) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-2974 (($ $ (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1473 (($ $) 10 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-2325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-4050 (($ $ $) NIL (|has| $ (-6 -4255)))) (-3079 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-3995 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "rest" $) NIL (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-2696 (($ (-1 (-108) |#1|) $) NIL)) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4227 ((|#1| $) NIL)) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1693 (($ $) NIL) (($ $ (-713)) NIL)) (-2987 (($ $) NIL (|has| |#1| (-1019)))) (-1716 (($ $) 7 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1640 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) NIL)) (-2591 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-2426 (((-108) $) NIL)) (-1930 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019))) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) (-1 (-108) |#1|) $) NIL)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3248 (($ (-713) |#1|) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1636 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1440 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1553 (($ |#1|) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-2401 (((-592 |#1|) $) NIL)) (-3260 (((-108) $) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2618 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-4157 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2234 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1683 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3050 (((-108) $) NIL)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1139 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-713) $ "count") 16)) (-3612 (((-525) $ $) NIL)) (-2835 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-2697 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-1343 (($ (-592 |#1|)) 22)) (-3105 (((-108) $) NIL)) (-2079 (($ $) NIL)) (-2129 (($ $) NIL (|has| $ (-6 -4255)))) (-3185 (((-713) $) NIL)) (-2008 (($ $) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) NIL)) (-2455 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1810 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-4044 (($ (-592 |#1|)) 17) (((-592 |#1|) $) 18) (((-797) $) 21 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-1696 (((-713) $) 14 (|has| $ (-6 -4254))))) +(((-225 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -4044 ($ (-592 |#1|))) (-15 -4044 ((-592 |#1|) $)) (-15 -1343 ($ (-592 |#1|))) (-15 -1496 ($ $ "unique")) (-15 -1496 ($ $ "sort")) (-15 -1496 ((-713) $ "count")))) (-789)) (T -225)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-713)) (-5 *1 (-225 *4)) (-4 *4 (-789))))) +(-13 (-612 |#1|) (-10 -8 (-15 -4044 ($ (-592 |#1|))) (-15 -4044 ((-592 |#1|) $)) (-15 -1343 ($ (-592 |#1|))) (-15 -1496 ($ $ "unique")) (-15 -1496 ($ $ "sort")) (-15 -1496 ((-713) $ "count")))) +((-1419 (((-3 (-713) "failed") |#1| |#1| (-713)) 27))) +(((-226 |#1|) (-10 -7 (-15 -1419 ((-3 (-713) "failed") |#1| |#1| (-713)))) (-13 (-669) (-346) (-10 -7 (-15 ** (|#1| |#1| (-525)))))) (T -226)) +((-1419 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-713)) (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525)))))) (-5 *1 (-226 *3))))) +(-10 -7 (-15 -1419 ((-3 (-713) "failed") |#1| |#1| (-713)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-799 |#1|)) $) NIL)) (-1315 (((-1086 $) $ (-799 |#1|)) NIL) (((-1086 |#2|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2609 (($ $) NIL (|has| |#2| (-517)))) (-1220 (((-108) $) NIL (|has| |#2| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-799 |#1|))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2701 (($ $) NIL (|has| |#2| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-799 |#1|) "failed") $) NIL)) (-2068 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-799 |#1|) $) NIL)) (-3048 (($ $ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-1711 (($ $ (-592 (-525))) NIL)) (-3306 (($ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#2| (-843)))) (-2187 (($ $ |#2| (-220 (-1696 |#1|) (-713)) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-3110 (($ (-1086 |#2|) (-799 |#1|)) NIL) (($ (-1086 $) (-799 |#1|)) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#2| (-220 (-1696 |#1|) (-713))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-799 |#1|)) NIL)) (-3762 (((-220 (-1696 |#1|) (-713)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-1260 (($ $ $) NIL (|has| |#2| (-789)))) (-2154 (($ $ $) NIL (|has| |#2| (-789)))) (-2078 (($ (-1 (-220 (-1696 |#1|) (-713)) (-220 (-1696 |#1|) (-713))) $) NIL)) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-3869 (((-3 (-799 |#1|) "failed") $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#2| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1707 (((-1073) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-799 |#1|)) (|:| -1737 (-713))) "failed") $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#2| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2675 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-799 |#1|) |#2|) NIL) (($ $ (-592 (-799 |#1|)) (-592 |#2|)) NIL) (($ $ (-799 |#1|) $) NIL) (($ $ (-592 (-799 |#1|)) (-592 $)) NIL)) (-2257 (($ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-1576 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-1486 (((-220 (-1696 |#1|) (-713)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-799 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2758 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-799 |#1|)) NIL) (($ (-385 (-525))) NIL (-3215 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3681 (((-592 |#2|) $) NIL)) (-2100 ((|#2| $ (-220 (-1696 |#1|) (-713))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3973 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-227 |#1| |#2|) (-13 (-883 |#2| (-220 (-1696 |#1|) (-713)) (-799 |#1|)) (-10 -8 (-15 -1711 ($ $ (-592 (-525)))))) (-592 (-1090)) (-976)) (T -227)) +((-1711 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4)) (-14 *3 (-592 (-1090))) (-4 *4 (-976))))) +(-13 (-883 |#2| (-220 (-1696 |#1|) (-713)) (-799 |#1|)) (-10 -8 (-15 -1711 ($ $ (-592 (-525)))))) +((-3572 (((-1177) $) 12)) (-1758 (((-169) $) 9)) (-3548 (($ (-169)) 10)) (-4044 (((-797) $) 7))) +(((-228) (-13 (-566 (-797)) (-10 -8 (-15 -1758 ((-169) $)) (-15 -3548 ($ (-169))) (-15 -3572 ((-1177) $))))) (T -228)) +((-1758 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-228))))) +(-13 (-566 (-797)) (-10 -8 (-15 -1758 ((-169) $)) (-15 -3548 ($ (-169))) (-15 -3572 ((-1177) $)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3510 (($ (-855)) NIL (|has| |#4| (-976)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3207 (($ $ $) NIL (|has| |#4| (-735)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1651 (((-713)) NIL (|has| |#4| (-346)))) (-2780 (((-525) $) NIL (|has| |#4| (-787)))) (-1230 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1019))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#4| (-967 (-525))) (|has| |#4| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#4| (-967 (-385 (-525)))) (|has| |#4| (-1019))))) (-2068 ((|#4| $) NIL (|has| |#4| (-1019))) (((-525) $) NIL (-12 (|has| |#4| (-967 (-525))) (|has| |#4| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#4| (-967 (-385 (-525)))) (|has| |#4| (-1019))))) (-1307 (((-2 (|:| -3471 (-632 |#4|)) (|:| |vec| (-1172 |#4|))) (-632 $) (-1172 $)) NIL (|has| |#4| (-976))) (((-632 |#4|) (-632 $)) NIL (|has| |#4| (-976))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-976)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-976))))) (-1645 (((-3 $ "failed") $) NIL (|has| |#4| (-976)))) (-1527 (($) NIL (|has| |#4| (-346)))) (-2549 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#4| $ (-525)) NIL)) (-2973 (((-108) $) NIL (|has| |#4| (-787)))) (-3781 (((-592 |#4|) $) NIL (|has| $ (-6 -4254)))) (-2507 (((-108) $) NIL (|has| |#4| (-976)))) (-3721 (((-108) $) NIL (|has| |#4| (-787)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (-3215 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2679 (((-592 |#4|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (-3215 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2540 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) NIL)) (-2111 (((-855) $) NIL (|has| |#4| (-346)))) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3381 (($ (-855)) NIL (|has| |#4| (-346)))) (-3027 (((-1037) $) NIL)) (-1683 ((|#4| $) NIL (|has| (-525) (-789)))) (-1614 (($ $ |#4|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-4100 (((-592 |#4|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#4| $ (-525) |#4|) NIL) ((|#4| $ (-525)) 12)) (-1580 ((|#4| $ $) NIL (|has| |#4| (-976)))) (-3020 (($ (-1172 |#4|)) NIL)) (-2374 (((-128)) NIL (|has| |#4| (-341)))) (-1576 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-976))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-976)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-976))))) (-3053 (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-1172 |#4|) $) NIL) (((-797) $) NIL) (($ |#4|) NIL (|has| |#4| (-1019))) (($ (-525)) NIL (-3215 (-12 (|has| |#4| (-967 (-525))) (|has| |#4| (-1019))) (|has| |#4| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#4| (-967 (-385 (-525)))) (|has| |#4| (-1019))))) (-2502 (((-713)) NIL (|has| |#4| (-976)))) (-2443 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2053 (($ $) NIL (|has| |#4| (-787)))) (-1594 (($ $ (-713)) NIL (|has| |#4| (-976))) (($ $ (-855)) NIL (|has| |#4| (-976)))) (-1436 (($) NIL T CONST)) (-1449 (($) NIL (|has| |#4| (-976)) CONST)) (-1990 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-976))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-976)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-976))))) (-3973 (((-108) $ $) NIL (-3215 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3944 (((-108) $ $) NIL (-3215 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (-3215 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3928 (((-108) $ $) NIL (-3215 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-4047 (($ $ |#4|) NIL (|has| |#4| (-341)))) (-4033 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-713)) NIL (|has| |#4| (-976))) (($ $ (-855)) NIL (|has| |#4| (-976)))) (* (($ |#2| $) 14) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-669))) (($ |#4| $) NIL (|has| |#4| (-669))) (($ $ $) NIL (|has| |#4| (-976)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-229 |#1| |#2| |#3| |#4|) (-13 (-218 |#1| |#4|) (-594 |#2|) (-594 |#3|)) (-855) (-976) (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-594 |#2|)) (T -229)) +NIL +(-13 (-218 |#1| |#4|) (-594 |#2|) (-594 |#3|)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3510 (($ (-855)) NIL (|has| |#3| (-976)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3207 (($ $ $) NIL (|has| |#3| (-735)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1651 (((-713)) NIL (|has| |#3| (-346)))) (-2780 (((-525) $) NIL (|has| |#3| (-787)))) (-1230 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1019))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019))))) (-2068 ((|#3| $) NIL (|has| |#3| (-1019))) (((-525) $) NIL (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019))))) (-1307 (((-2 (|:| -3471 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 $) (-1172 $)) NIL (|has| |#3| (-976))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-976))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976))))) (-1645 (((-3 $ "failed") $) NIL (|has| |#3| (-976)))) (-1527 (($) NIL (|has| |#3| (-346)))) (-2549 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#3| $ (-525)) NIL)) (-2973 (((-108) $) NIL (|has| |#3| (-787)))) (-3781 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-2507 (((-108) $) NIL (|has| |#3| (-976)))) (-3721 (((-108) $) NIL (|has| |#3| (-787)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2679 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2540 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#3| |#3|) $) NIL)) (-2111 (((-855) $) NIL (|has| |#3| (-346)))) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3381 (($ (-855)) NIL (|has| |#3| (-346)))) (-3027 (((-1037) $) NIL)) (-1683 ((|#3| $) NIL (|has| (-525) (-789)))) (-1614 (($ $ |#3|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-4100 (((-592 |#3|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) 11)) (-1580 ((|#3| $ $) NIL (|has| |#3| (-976)))) (-3020 (($ (-1172 |#3|)) NIL)) (-2374 (((-128)) NIL (|has| |#3| (-341)))) (-1576 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-976))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976))))) (-3053 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-1172 |#3|) $) NIL) (((-797) $) NIL) (($ |#3|) NIL (|has| |#3| (-1019))) (($ (-525)) NIL (-3215 (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019))) (|has| |#3| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019))))) (-2502 (((-713)) NIL (|has| |#3| (-976)))) (-2443 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-2053 (($ $) NIL (|has| |#3| (-787)))) (-1594 (($ $ (-713)) NIL (|has| |#3| (-976))) (($ $ (-855)) NIL (|has| |#3| (-976)))) (-1436 (($) NIL T CONST)) (-1449 (($) NIL (|has| |#3| (-976)) CONST)) (-1990 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-976))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976))))) (-3973 (((-108) $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3944 (((-108) $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3928 (((-108) $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4047 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4033 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-713)) NIL (|has| |#3| (-976))) (($ $ (-855)) NIL (|has| |#3| (-976)))) (* (($ |#2| $) 13) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ $ $) NIL (|has| |#3| (-976)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-230 |#1| |#2| |#3|) (-13 (-218 |#1| |#3|) (-594 |#2|)) (-713) (-976) (-594 |#2|)) (T -230)) +NIL +(-13 (-218 |#1| |#3|) (-594 |#2|)) +((-3453 (((-592 (-713)) $) 47) (((-592 (-713)) $ |#3|) 50)) (-2147 (((-713) $) 49) (((-713) $ |#3|) 52)) (-2945 (($ $) 65)) (-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2158 (((-713) $ |#3|) 39) (((-713) $) 36)) (-3485 (((-1 $ (-713)) |#3|) 15) (((-1 $ (-713)) $) 77)) (-2241 ((|#4| $) 58)) (-1441 (((-108) $) 56)) (-3980 (($ $) 64)) (-2168 (($ $ (-592 (-273 $))) 97) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-592 |#3|) (-592 |#2|)) 84)) (-1576 (($ $ |#4|) NIL) (($ $ (-592 |#4|)) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) NIL) (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3706 (((-592 |#3|) $) 75)) (-1486 ((|#5| $) NIL) (((-713) $ |#4|) NIL) (((-592 (-713)) $ (-592 |#4|)) NIL) (((-713) $ |#3|) 44)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-385 (-525))) NIL) (($ $) NIL))) +(((-231 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4044 (|#1| |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2168 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#3| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#3| |#1|)) (-15 -3485 ((-1 |#1| (-713)) |#1|)) (-15 -2945 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -2241 (|#4| |#1|)) (-15 -1441 ((-108) |#1|)) (-15 -2147 ((-713) |#1| |#3|)) (-15 -3453 ((-592 (-713)) |#1| |#3|)) (-15 -2147 ((-713) |#1|)) (-15 -3453 ((-592 (-713)) |#1|)) (-15 -1486 ((-713) |#1| |#3|)) (-15 -2158 ((-713) |#1|)) (-15 -2158 ((-713) |#1| |#3|)) (-15 -3706 ((-592 |#3|) |#1|)) (-15 -3485 ((-1 |#1| (-713)) |#3|)) (-15 -2769 ((-3 |#3| "failed") |#1|)) (-15 -4044 (|#1| |#3|)) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1|)) (-15 -1486 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -1486 ((-713) |#1| |#4|)) (-15 -2769 ((-3 |#4| "failed") |#1|)) (-15 -4044 (|#1| |#4|)) (-15 -2168 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#4| |#1|)) (-15 -2168 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#4| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1486 (|#5| |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -1576 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -1576 (|#1| |#1| |#4| (-713))) (-15 -1576 (|#1| |#1| (-592 |#4|))) (-15 -1576 (|#1| |#1| |#4|)) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) (-232 |#2| |#3| |#4| |#5|) (-976) (-789) (-245 |#3|) (-735)) (T -231)) +NIL +(-10 -8 (-15 -4044 (|#1| |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2168 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#3| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#3| |#1|)) (-15 -3485 ((-1 |#1| (-713)) |#1|)) (-15 -2945 (|#1| |#1|)) (-15 -3980 (|#1| |#1|)) (-15 -2241 (|#4| |#1|)) (-15 -1441 ((-108) |#1|)) (-15 -2147 ((-713) |#1| |#3|)) (-15 -3453 ((-592 (-713)) |#1| |#3|)) (-15 -2147 ((-713) |#1|)) (-15 -3453 ((-592 (-713)) |#1|)) (-15 -1486 ((-713) |#1| |#3|)) (-15 -2158 ((-713) |#1|)) (-15 -2158 ((-713) |#1| |#3|)) (-15 -3706 ((-592 |#3|) |#1|)) (-15 -3485 ((-1 |#1| (-713)) |#3|)) (-15 -2769 ((-3 |#3| "failed") |#1|)) (-15 -4044 (|#1| |#3|)) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1|)) (-15 -1486 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -1486 ((-713) |#1| |#4|)) (-15 -2769 ((-3 |#4| "failed") |#1|)) (-15 -4044 (|#1| |#4|)) (-15 -2168 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#4| |#1|)) (-15 -2168 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#4| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1486 (|#5| |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -1576 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -1576 (|#1| |#1| |#4| (-713))) (-15 -1576 (|#1| |#1| (-592 |#4|))) (-15 -1576 (|#1| |#1| |#4|)) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3453 (((-592 (-713)) $) 214) (((-592 (-713)) $ |#2|) 212)) (-2147 (((-713) $) 213) (((-713) $ |#2|) 211)) (-3122 (((-592 |#3|) $) 110)) (-1315 (((-1086 $) $ |#3|) 125) (((-1086 |#1|) $) 124)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-2609 (($ $) 88 (|has| |#1| (-517)))) (-1220 (((-108) $) 90 (|has| |#1| (-517)))) (-2874 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-3004 (((-3 $ "failed") $ $) 19)) (-1426 (((-396 (-1086 $)) (-1086 $)) 100 (|has| |#1| (-843)))) (-2701 (($ $) 98 (|has| |#1| (-429)))) (-1259 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-843)))) (-2945 (($ $) 207)) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-967 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2068 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-967 (-525)))) ((|#3| $) 135) ((|#2| $) 220)) (-3048 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-3306 (($ $) 154)) (-1307 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-1645 (((-3 $ "failed") $) 34)) (-2319 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-3295 (((-592 $) $) 109)) (-2069 (((-108) $) 96 (|has| |#1| (-843)))) (-2187 (($ $ |#1| |#4| $) 172)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84 (-12 (|has| |#3| (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 83 (-12 (|has| |#3| (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2158 (((-713) $ |#2|) 217) (((-713) $) 216)) (-2507 (((-108) $) 31)) (-3682 (((-713) $) 169)) (-3110 (($ (-1086 |#1|) |#3|) 117) (($ (-1086 $) |#3|) 116)) (-1585 (((-592 $) $) 126)) (-1432 (((-108) $) 152)) (-3097 (($ |#1| |#4|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ |#3|) 120)) (-3762 ((|#4| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-1260 (($ $ $) 79 (|has| |#1| (-789)))) (-2154 (($ $ $) 78 (|has| |#1| (-789)))) (-2078 (($ (-1 |#4| |#4|) $) 171)) (-2868 (($ (-1 |#1| |#1|) $) 151)) (-3485 (((-1 $ (-713)) |#2|) 219) (((-1 $ (-713)) $) 206 (|has| |#1| (-213)))) (-3869 (((-3 |#3| "failed") $) 123)) (-3277 (($ $) 149)) (-3286 ((|#1| $) 148)) (-2241 ((|#3| $) 209)) (-2226 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-1707 (((-1073) $) 9)) (-1441 (((-108) $) 210)) (-3466 (((-3 (-592 $) "failed") $) 114)) (-4103 (((-3 (-592 $) "failed") $) 115)) (-1850 (((-3 (-2 (|:| |var| |#3|) (|:| -1737 (-713))) "failed") $) 113)) (-3980 (($ $) 208)) (-3027 (((-1037) $) 10)) (-3256 (((-108) $) 166)) (-3267 ((|#1| $) 167)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 95 (|has| |#1| (-429)))) (-2262 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) 101 (|has| |#1| (-843)))) (-2961 (((-396 $) $) 99 (|has| |#1| (-843)))) (-2675 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2168 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) 204 (|has| |#1| (-213))) (($ $ |#2| |#1|) 203 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) 202 (|has| |#1| (-213)))) (-2257 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-1576 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39) (($ $) 238 (|has| |#1| (-213))) (($ $ (-713)) 236 (|has| |#1| (-213))) (($ $ (-1090)) 234 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 233 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 232 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 231 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3706 (((-592 |#2|) $) 218)) (-1486 ((|#4| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129) (((-713) $ |#2|) 215)) (-2923 (((-826 (-357)) $) 82 (-12 (|has| |#3| (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) 81 (-12 (|has| |#3| (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2758 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 104 (-2385 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-385 (-525))) 72 (-3215 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) 168)) (-2100 ((|#1| $ |#4|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-1279 (((-3 $ "failed") $) 73 (-3215 (-2385 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) 29)) (-2541 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3787 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35) (($ $) 237 (|has| |#1| (-213))) (($ $ (-713)) 235 (|has| |#1| (-213))) (($ $ (-1090)) 230 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 229 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 228 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 227 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-3973 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4047 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-232 |#1| |#2| |#3| |#4|) (-131) (-976) (-789) (-245 |t#2|) (-735)) (T -232)) +((-3485 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4)))) (-2158 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-1486 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-3453 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-2147 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-108)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-4 *2 (-245 *4)))) (-3980 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-976)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-2945 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-976)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-3485 (*1 *2 *1) (-12 (-4 *3 (-213)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6))))) +(-13 (-883 |t#1| |t#4| |t#3|) (-211 |t#1|) (-967 |t#2|) (-10 -8 (-15 -3485 ((-1 $ (-713)) |t#2|)) (-15 -3706 ((-592 |t#2|) $)) (-15 -2158 ((-713) $ |t#2|)) (-15 -2158 ((-713) $)) (-15 -1486 ((-713) $ |t#2|)) (-15 -3453 ((-592 (-713)) $)) (-15 -2147 ((-713) $)) (-15 -3453 ((-592 (-713)) $ |t#2|)) (-15 -2147 ((-713) $ |t#2|)) (-15 -1441 ((-108) $)) (-15 -2241 (|t#3| $)) (-15 -3980 ($ $)) (-15 -2945 ($ $)) (IF (|has| |t#1| (-213)) (PROGN (-6 (-486 |t#2| |t#1|)) (-6 (-486 |t#2| $)) (-6 (-288 $)) (-15 -3485 ((-1 $ (-713)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525))))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-269) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#4|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3215 (|has| |#1| (-843)) (|has| |#1| (-429))) ((-486 |#2| |#1|) |has| |#1| (-213)) ((-486 |#2| $) |has| |#1| (-213)) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-834 |#3|) . T) ((-820 (-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357)))) ((-820 (-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))) ((-883 |#1| |#4| |#3|) . T) ((-843) |has| |#1| (-843)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-967 |#2|) . T) ((-967 |#3|) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) |has| |#1| (-843))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3187 ((|#1| $) 54)) (-3214 ((|#1| $) 44)) (-2583 (((-108) $ (-713)) 8)) (-1957 (($) 7 T CONST)) (-2561 (($ $) 60)) (-1626 (($ $) 48)) (-2048 ((|#1| |#1| $) 46)) (-3462 ((|#1| $) 45)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-2520 (((-713) $) 61)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2434 ((|#1| $) 39)) (-3042 ((|#1| |#1| $) 52)) (-1293 ((|#1| |#1| $) 51)) (-4157 (($ |#1| $) 40)) (-2138 (((-713) $) 55)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-2950 ((|#1| $) 62)) (-1442 ((|#1| $) 50)) (-1303 ((|#1| $) 49)) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3280 ((|#1| |#1| $) 58)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1340 ((|#1| $) 59)) (-4114 (($) 57) (($ (-592 |#1|)) 56)) (-3465 (((-713) $) 43)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-3519 ((|#1| $) 53)) (-1326 (($ (-592 |#1|)) 42)) (-4214 ((|#1| $) 63)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-233 |#1|) (-131) (-1126)) (T -233)) +((-4114 (*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-233 *3)))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-3042 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-1293 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-1442 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126))))) +(-13 (-1038 |t#1|) (-926 |t#1|) (-10 -8 (-15 -4114 ($)) (-15 -4114 ($ (-592 |t#1|))) (-15 -2138 ((-713) $)) (-15 -3187 (|t#1| $)) (-15 -3519 (|t#1| $)) (-15 -3042 (|t#1| |t#1| $)) (-15 -1293 (|t#1| |t#1| $)) (-15 -1442 (|t#1| $)) (-15 -1303 (|t#1| $)) (-15 -1626 ($ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-926 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1038 |#1|) . T) ((-1126) . T)) +((-2592 (((-1 (-877 (-205)) (-205) (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 139)) (-2040 (((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357))) 160) (((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 158) (((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357))) 163) (((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 159) (((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357))) 150) (((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 149) (((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357))) 129) (((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242))) 127) (((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357))) 128) (((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242))) 125)) (-2005 (((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357))) 162) (((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 161) (((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357))) 165) (((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 164) (((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357))) 152) (((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 151) (((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357))) 135) (((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242))) 134) (((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357))) 133) (((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242))) 132) (((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357))) 100) (((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242))) 99) (((-1173) (-1 (-205) (-205)) (-1014 (-357))) 96) (((-1173) (-1 (-205) (-205)) (-1014 (-357)) (-592 (-242))) 95))) +(((-234) (-10 -7 (-15 -2005 ((-1173) (-1 (-205) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1173) (-1 (-205) (-205)) (-1014 (-357)))) (-15 -2005 ((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -2005 ((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -2005 ((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)))) (-15 -2005 ((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -2005 ((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -2005 ((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)))) (-15 -2592 ((-1 (-877 (-205)) (-205) (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -234)) +((-2592 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205) (-205))) (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-811 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-811 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-2005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-234))))) +(-10 -7 (-15 -2005 ((-1173) (-1 (-205) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1173) (-1 (-205) (-205)) (-1014 (-357)))) (-15 -2005 ((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -2005 ((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -2005 ((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)))) (-15 -2005 ((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -2005 ((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -2005 ((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)))) (-15 -2040 ((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)))) (-15 -2592 ((-1 (-877 (-205)) (-205) (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))))) +((-2005 (((-1173) (-273 |#2|) (-1090) (-1090) (-592 (-242))) 96))) +(((-235 |#1| |#2|) (-10 -7 (-15 -2005 ((-1173) (-273 |#2|) (-1090) (-1090) (-592 (-242))))) (-13 (-517) (-789) (-967 (-525))) (-408 |#1|)) (T -235)) +((-2005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-1090)) (-5 *5 (-592 (-242))) (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-1173)) (-5 *1 (-235 *6 *7))))) +(-10 -7 (-15 -2005 ((-1173) (-273 |#2|) (-1090) (-1090) (-592 (-242))))) +((-2193 (((-525) (-525)) 50)) (-2593 (((-525) (-525)) 51)) (-3494 (((-205) (-205)) 52)) (-2510 (((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205))) 49)) (-2935 (((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)) (-108)) 47))) +(((-236) (-10 -7 (-15 -2935 ((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)) (-108))) (-15 -2510 ((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)))) (-15 -2193 ((-525) (-525))) (-15 -2593 ((-525) (-525))) (-15 -3494 ((-205) (-205))))) (T -236)) +((-3494 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))) (-2593 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-2510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1014 (-205))) (-5 *2 (-1174)) (-5 *1 (-236)))) (-2935 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1014 (-205))) (-5 *5 (-108)) (-5 *2 (-1174)) (-5 *1 (-236))))) +(-10 -7 (-15 -2935 ((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)) (-108))) (-15 -2510 ((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)))) (-15 -2193 ((-525) (-525))) (-15 -2593 ((-525) (-525))) (-15 -3494 ((-205) (-205)))) +((-4044 (((-1012 (-357)) (-1012 (-294 |#1|))) 16))) +(((-237 |#1|) (-10 -7 (-15 -4044 ((-1012 (-357)) (-1012 (-294 |#1|))))) (-13 (-789) (-517) (-567 (-357)))) (T -237)) +((-4044 (*1 *2 *3) (-12 (-5 *3 (-1012 (-294 *4))) (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1012 (-357))) (-5 *1 (-237 *4))))) +(-10 -7 (-15 -4044 ((-1012 (-357)) (-1012 (-294 |#1|))))) +((-2040 (((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357))) 71) (((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242))) 70) (((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357))) 61) (((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242))) 60) (((-1050 (-205)) (-813 |#1|) (-1012 (-357))) 52) (((-1050 (-205)) (-813 |#1|) (-1012 (-357)) (-592 (-242))) 51)) (-2005 (((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357))) 74) (((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242))) 73) (((-1174) |#1| (-1012 (-357)) (-1012 (-357))) 64) (((-1174) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242))) 63) (((-1174) (-813 |#1|) (-1012 (-357))) 56) (((-1174) (-813 |#1|) (-1012 (-357)) (-592 (-242))) 55) (((-1173) (-811 |#1|) (-1012 (-357))) 43) (((-1173) (-811 |#1|) (-1012 (-357)) (-592 (-242))) 42) (((-1173) |#1| (-1012 (-357))) 35) (((-1173) |#1| (-1012 (-357)) (-592 (-242))) 34))) +(((-238 |#1|) (-10 -7 (-15 -2005 ((-1173) |#1| (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1173) |#1| (-1012 (-357)))) (-15 -2005 ((-1173) (-811 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1173) (-811 |#1|) (-1012 (-357)))) (-15 -2005 ((-1174) (-813 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-813 |#1|) (-1012 (-357)))) (-15 -2040 ((-1050 (-205)) (-813 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-813 |#1|) (-1012 (-357)))) (-15 -2005 ((-1174) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) |#1| (-1012 (-357)) (-1012 (-357)))) (-15 -2040 ((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)))) (-15 -2005 ((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)))) (-15 -2040 ((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357))))) (-13 (-567 (-501)) (-1019))) (T -238)) +((-2040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-816 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *5)))) (-2040 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-816 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *6)))) (-2005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-816 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) (-5 *1 (-238 *5)))) (-2005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-816 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) (-5 *1 (-238 *6)))) (-2040 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-2040 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-2005 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1174)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-2005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-2040 (*1 *2 *3 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *5)))) (-2040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *6)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) (-5 *1 (-238 *5)))) (-2005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) (-5 *1 (-238 *6)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-811 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1173)) (-5 *1 (-238 *5)))) (-2005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-811 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1173)) (-5 *1 (-238 *6)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1173)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-2005 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019)))))) +(-10 -7 (-15 -2005 ((-1173) |#1| (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1173) |#1| (-1012 (-357)))) (-15 -2005 ((-1173) (-811 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1173) (-811 |#1|) (-1012 (-357)))) (-15 -2005 ((-1174) (-813 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-813 |#1|) (-1012 (-357)))) (-15 -2040 ((-1050 (-205)) (-813 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-813 |#1|) (-1012 (-357)))) (-15 -2005 ((-1174) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) |#1| (-1012 (-357)) (-1012 (-357)))) (-15 -2040 ((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)))) (-15 -2005 ((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -2005 ((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)))) (-15 -2040 ((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -2040 ((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357))))) +((-2005 (((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242))) 23) (((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205))) 24) (((-1173) (-592 (-877 (-205))) (-592 (-242))) 16) (((-1173) (-592 (-877 (-205)))) 17) (((-1173) (-592 (-205)) (-592 (-205)) (-592 (-242))) 20) (((-1173) (-592 (-205)) (-592 (-205))) 21))) +(((-239) (-10 -7 (-15 -2005 ((-1173) (-592 (-205)) (-592 (-205)))) (-15 -2005 ((-1173) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -2005 ((-1173) (-592 (-877 (-205))))) (-15 -2005 ((-1173) (-592 (-877 (-205))) (-592 (-242)))) (-15 -2005 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -2005 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242)))))) (T -239)) +((-2005 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-239)))) (-2005 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174)) (-5 *1 (-239)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *4 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-239)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *2 (-1173)) (-5 *1 (-239)))) (-2005 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-239)))) (-2005 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1173)) (-5 *1 (-239))))) +(-10 -7 (-15 -2005 ((-1173) (-592 (-205)) (-592 (-205)))) (-15 -2005 ((-1173) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -2005 ((-1173) (-592 (-877 (-205))))) (-15 -2005 ((-1173) (-592 (-877 (-205))) (-592 (-242)))) (-15 -2005 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -2005 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242))))) +((-2101 (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 26)) (-3398 (((-855) (-592 (-242)) (-855)) 53)) (-3702 (((-855) (-592 (-242)) (-855)) 52)) (-3855 (((-592 (-357)) (-592 (-242)) (-592 (-357))) 69)) (-1982 (((-357) (-592 (-242)) (-357)) 58)) (-2170 (((-855) (-592 (-242)) (-855)) 54)) (-3525 (((-108) (-592 (-242)) (-108)) 28)) (-2367 (((-1073) (-592 (-242)) (-1073)) 20)) (-1454 (((-1073) (-592 (-242)) (-1073)) 27)) (-3591 (((-1050 (-205)) (-592 (-242))) 47)) (-2542 (((-592 (-1014 (-357))) (-592 (-242)) (-592 (-1014 (-357)))) 41)) (-1288 (((-808) (-592 (-242)) (-808)) 33)) (-3018 (((-808) (-592 (-242)) (-808)) 34)) (-3601 (((-1 (-877 (-205)) (-877 (-205))) (-592 (-242)) (-1 (-877 (-205)) (-877 (-205)))) 64)) (-1921 (((-108) (-592 (-242)) (-108)) 16)) (-2521 (((-108) (-592 (-242)) (-108)) 15))) +(((-240) (-10 -7 (-15 -2521 ((-108) (-592 (-242)) (-108))) (-15 -1921 ((-108) (-592 (-242)) (-108))) (-15 -2101 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2367 ((-1073) (-592 (-242)) (-1073))) (-15 -1454 ((-1073) (-592 (-242)) (-1073))) (-15 -3525 ((-108) (-592 (-242)) (-108))) (-15 -1288 ((-808) (-592 (-242)) (-808))) (-15 -3018 ((-808) (-592 (-242)) (-808))) (-15 -2542 ((-592 (-1014 (-357))) (-592 (-242)) (-592 (-1014 (-357))))) (-15 -3702 ((-855) (-592 (-242)) (-855))) (-15 -3398 ((-855) (-592 (-242)) (-855))) (-15 -3591 ((-1050 (-205)) (-592 (-242)))) (-15 -2170 ((-855) (-592 (-242)) (-855))) (-15 -1982 ((-357) (-592 (-242)) (-357))) (-15 -3601 ((-1 (-877 (-205)) (-877 (-205))) (-592 (-242)) (-1 (-877 (-205)) (-877 (-205))))) (-15 -3855 ((-592 (-357)) (-592 (-242)) (-592 (-357)))))) (T -240)) +((-3855 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3601 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1982 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2170 (*1 *2 *3 *2) (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-240)))) (-3398 (*1 *2 *3 *2) (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3702 (*1 *2 *3 *2) (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2542 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3018 (*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1288 (*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3525 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1454 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2367 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2101 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1921 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2521 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))) +(-10 -7 (-15 -2521 ((-108) (-592 (-242)) (-108))) (-15 -1921 ((-108) (-592 (-242)) (-108))) (-15 -2101 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2367 ((-1073) (-592 (-242)) (-1073))) (-15 -1454 ((-1073) (-592 (-242)) (-1073))) (-15 -3525 ((-108) (-592 (-242)) (-108))) (-15 -1288 ((-808) (-592 (-242)) (-808))) (-15 -3018 ((-808) (-592 (-242)) (-808))) (-15 -2542 ((-592 (-1014 (-357))) (-592 (-242)) (-592 (-1014 (-357))))) (-15 -3702 ((-855) (-592 (-242)) (-855))) (-15 -3398 ((-855) (-592 (-242)) (-855))) (-15 -3591 ((-1050 (-205)) (-592 (-242)))) (-15 -2170 ((-855) (-592 (-242)) (-855))) (-15 -1982 ((-357) (-592 (-242)) (-357))) (-15 -3601 ((-1 (-877 (-205)) (-877 (-205))) (-592 (-242)) (-1 (-877 (-205)) (-877 (-205))))) (-15 -3855 ((-592 (-357)) (-592 (-242)) (-592 (-357))))) +((-1770 (((-3 |#1| "failed") (-592 (-242)) (-1090)) 17))) +(((-241 |#1|) (-10 -7 (-15 -1770 ((-3 |#1| "failed") (-592 (-242)) (-1090)))) (-1126)) (T -241)) +((-1770 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *1 (-241 *2)) (-4 *2 (-1126))))) +(-10 -7 (-15 -1770 ((-3 |#1| "failed") (-592 (-242)) (-1090)))) +((-4028 (((-108) $ $) NIL)) (-2101 (($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 15)) (-3398 (($ (-855)) 76)) (-3702 (($ (-855)) 75)) (-3603 (($ (-592 (-357))) 82)) (-1982 (($ (-357)) 58)) (-2170 (($ (-855)) 77)) (-3525 (($ (-108)) 23)) (-2367 (($ (-1073)) 18)) (-1454 (($ (-1073)) 19)) (-3591 (($ (-1050 (-205))) 71)) (-2542 (($ (-592 (-1014 (-357)))) 67)) (-2853 (($ (-592 (-1014 (-357)))) 59) (($ (-592 (-1014 (-385 (-525))))) 66)) (-1269 (($ (-357)) 29) (($ (-808)) 33)) (-2869 (((-108) (-592 $) (-1090)) 91)) (-1770 (((-3 (-51) "failed") (-592 $) (-1090)) 93)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3489 (($ (-357)) 34) (($ (-808)) 35)) (-1625 (($ (-1 (-877 (-205)) (-877 (-205)))) 57)) (-3601 (($ (-1 (-877 (-205)) (-877 (-205)))) 78)) (-1522 (($ (-1 (-205) (-205))) 39) (($ (-1 (-205) (-205) (-205))) 43) (($ (-1 (-205) (-205) (-205) (-205))) 47)) (-4044 (((-797) $) 87)) (-2649 (($ (-108)) 24) (($ (-592 (-1014 (-357)))) 52)) (-2521 (($ (-108)) 25)) (-3899 (((-108) $ $) 89))) +(((-242) (-13 (-1019) (-10 -8 (-15 -2521 ($ (-108))) (-15 -2649 ($ (-108))) (-15 -2101 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2367 ($ (-1073))) (-15 -1454 ($ (-1073))) (-15 -3525 ($ (-108))) (-15 -2649 ($ (-592 (-1014 (-357))))) (-15 -1625 ($ (-1 (-877 (-205)) (-877 (-205))))) (-15 -1269 ($ (-357))) (-15 -1269 ($ (-808))) (-15 -3489 ($ (-357))) (-15 -3489 ($ (-808))) (-15 -1522 ($ (-1 (-205) (-205)))) (-15 -1522 ($ (-1 (-205) (-205) (-205)))) (-15 -1522 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -1982 ($ (-357))) (-15 -2853 ($ (-592 (-1014 (-357))))) (-15 -2853 ($ (-592 (-1014 (-385 (-525)))))) (-15 -2542 ($ (-592 (-1014 (-357))))) (-15 -3591 ($ (-1050 (-205)))) (-15 -3702 ($ (-855))) (-15 -3398 ($ (-855))) (-15 -2170 ($ (-855))) (-15 -3601 ($ (-1 (-877 (-205)) (-877 (-205))))) (-15 -3603 ($ (-592 (-357)))) (-15 -1770 ((-3 (-51) "failed") (-592 $) (-1090))) (-15 -2869 ((-108) (-592 $) (-1090)))))) (T -242)) +((-2521 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2649 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-242)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-242)))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-242)))) (-3525 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2649 (*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242)))) (-1625 (*1 *1 *2) (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *1 (-242)))) (-1269 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-1269 (*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-242)))) (-3489 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-3489 (*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-242)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242)))) (-1982 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-2853 (*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242)))) (-2853 (*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-385 (-525))))) (-5 *1 (-242)))) (-2542 (*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-242)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242)))) (-3398 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242)))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *1 (-242)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242)))) (-1770 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *2 (-51)) (-5 *1 (-242)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *2 (-108)) (-5 *1 (-242))))) +(-13 (-1019) (-10 -8 (-15 -2521 ($ (-108))) (-15 -2649 ($ (-108))) (-15 -2101 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2367 ($ (-1073))) (-15 -1454 ($ (-1073))) (-15 -3525 ($ (-108))) (-15 -2649 ($ (-592 (-1014 (-357))))) (-15 -1625 ($ (-1 (-877 (-205)) (-877 (-205))))) (-15 -1269 ($ (-357))) (-15 -1269 ($ (-808))) (-15 -3489 ($ (-357))) (-15 -3489 ($ (-808))) (-15 -1522 ($ (-1 (-205) (-205)))) (-15 -1522 ($ (-1 (-205) (-205) (-205)))) (-15 -1522 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -1982 ($ (-357))) (-15 -2853 ($ (-592 (-1014 (-357))))) (-15 -2853 ($ (-592 (-1014 (-385 (-525)))))) (-15 -2542 ($ (-592 (-1014 (-357))))) (-15 -3591 ($ (-1050 (-205)))) (-15 -3702 ($ (-855))) (-15 -3398 ($ (-855))) (-15 -2170 ($ (-855))) (-15 -3601 ($ (-1 (-877 (-205)) (-877 (-205))))) (-15 -3603 ($ (-592 (-357)))) (-15 -1770 ((-3 (-51) "failed") (-592 $) (-1090))) (-15 -2869 ((-108) (-592 $) (-1090))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3453 (((-592 (-713)) $) NIL) (((-592 (-713)) $ |#2|) NIL)) (-2147 (((-713) $) NIL) (((-713) $ |#2|) NIL)) (-3122 (((-592 |#3|) $) NIL)) (-1315 (((-1086 $) $ |#3|) NIL) (((-1086 |#1|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 |#3|)) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2701 (($ $) NIL (|has| |#1| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2945 (($ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1042 |#1| |#2|) "failed") $) 21)) (-2068 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1042 |#1| |#2|) $) NIL)) (-3048 (($ $ $ |#3|) NIL (|has| |#1| (-160)))) (-3306 (($ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#1| (-843)))) (-2187 (($ $ |#1| (-497 |#3|) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))))) (-2158 (((-713) $ |#2|) NIL) (((-713) $) 10)) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-3110 (($ (-1086 |#1|) |#3|) NIL) (($ (-1086 $) |#3|) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ |#3|) NIL)) (-3762 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2078 (($ (-1 (-497 |#3|) (-497 |#3|)) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3485 (((-1 $ (-713)) |#2|) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-3869 (((-3 |#3| "failed") $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2241 ((|#3| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1707 (((-1073) $) NIL)) (-1441 (((-108) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| |#3|) (|:| -1737 (-713))) "failed") $) NIL)) (-3980 (($ $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#1| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-592 |#3|) (-592 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) NIL (|has| |#1| (-213))) (($ $ |#2| |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-2257 (($ $ |#3|) NIL (|has| |#1| (-160)))) (-1576 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3706 (((-592 |#2|) $) NIL)) (-1486 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL) (((-713) $ |#2|) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))))) (-2758 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1042 |#1| |#2|)) 30) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-243 |#1| |#2| |#3|) (-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-967 (-1042 |#1| |#2|))) (-976) (-789) (-245 |#2|)) (T -243)) +NIL +(-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-967 (-1042 |#1| |#2|))) +((-2147 (((-713) $) 30)) (-2769 (((-3 |#2| "failed") $) 17)) (-2068 ((|#2| $) 27)) (-1576 (($ $) 12) (($ $ (-713)) 15)) (-4044 (((-797) $) 26) (($ |#2|) 10)) (-3899 (((-108) $ $) 20)) (-3928 (((-108) $ $) 29))) +(((-244 |#1| |#2|) (-10 -8 (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1|)) (-15 -2147 ((-713) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) (-245 |#2|) (-789)) (T -244)) +NIL +(-10 -8 (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1|)) (-15 -2147 ((-713) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2147 (((-713) $) 22)) (-2818 ((|#1| $) 23)) (-2769 (((-3 |#1| "failed") $) 27)) (-2068 ((|#1| $) 26)) (-2158 (((-713) $) 24)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-3485 (($ |#1| (-713)) 25)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1576 (($ $) 21) (($ $ (-713)) 20)) (-4044 (((-797) $) 11) (($ |#1|) 28)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18))) +(((-245 |#1|) (-131) (-789)) (T -245)) +((-4044 (*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-3485 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-245 *3)) (-4 *3 (-789))))) +(-13 (-789) (-967 |t#1|) (-10 -8 (-15 -3485 ($ |t#1| (-713))) (-15 -2158 ((-713) $)) (-15 -2818 (|t#1| $)) (-15 -2147 ((-713) $)) (-15 -1576 ($ $)) (-15 -1576 ($ $ (-713))) (-15 -4044 ($ |t#1|)))) +(((-97) . T) ((-566 (-797)) . T) ((-789) . T) ((-967 |#1|) . T) ((-1019) . T)) +((-3122 (((-592 (-1090)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) 41)) (-1562 (((-592 (-1090)) (-294 (-205)) (-713)) 80)) (-1491 (((-3 (-294 (-205)) "failed") (-294 (-205))) 51)) (-1459 (((-294 (-205)) (-294 (-205))) 67)) (-3305 (((-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26)) (-1546 (((-108) (-592 (-294 (-205)))) 84)) (-3250 (((-108) (-294 (-205))) 24)) (-1851 (((-592 (-1073)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))))) 106)) (-3578 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 88)) (-2538 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 86)) (-3700 (((-632 (-205)) (-592 (-294 (-205))) (-713)) 95)) (-1935 (((-108) (-294 (-205))) 20) (((-108) (-592 (-294 (-205)))) 85)) (-3981 (((-592 (-205)) (-592 (-782 (-205))) (-205)) 14)) (-1852 (((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) 101)) (-2105 (((-965) (-1090) (-965)) 34))) +(((-246) (-10 -7 (-15 -3981 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -3305 ((-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1491 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -1459 ((-294 (-205)) (-294 (-205)))) (-15 -1546 ((-108) (-592 (-294 (-205))))) (-15 -1935 ((-108) (-592 (-294 (-205))))) (-15 -1935 ((-108) (-294 (-205)))) (-15 -3700 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -2538 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3578 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3250 ((-108) (-294 (-205)))) (-15 -3122 ((-592 (-1090)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) (-15 -1562 ((-592 (-1090)) (-294 (-205)) (-713))) (-15 -2105 ((-965) (-1090) (-965))) (-15 -1852 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) (-15 -1851 ((-592 (-1073)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))))))) (T -246)) +((-1851 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))))) (-5 *2 (-592 (-1073))) (-5 *1 (-246)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) (-5 *2 (-357)) (-5 *1 (-246)))) (-2105 (*1 *2 *3 *2) (-12 (-5 *2 (-965)) (-5 *3 (-1090)) (-5 *1 (-246)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1090))) (-5 *1 (-246)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) (-5 *2 (-592 (-1090))) (-5 *1 (-246)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-3578 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-2538 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-246)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-1491 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-246)))) (-3981 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4)) (-5 *1 (-246))))) +(-10 -7 (-15 -3981 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -3305 ((-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1491 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -1459 ((-294 (-205)) (-294 (-205)))) (-15 -1546 ((-108) (-592 (-294 (-205))))) (-15 -1935 ((-108) (-592 (-294 (-205))))) (-15 -1935 ((-108) (-294 (-205)))) (-15 -3700 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -2538 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3578 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3250 ((-108) (-294 (-205)))) (-15 -3122 ((-592 (-1090)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) (-15 -1562 ((-592 (-1090)) (-294 (-205)) (-713))) (-15 -2105 ((-965) (-1090) (-965))) (-15 -1852 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) (-15 -1851 ((-592 (-1073)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))))))) +((-4028 (((-108) $ $) NIL)) (-3796 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-247) (-778)) (T -247)) +NIL +(-778) +((-4028 (((-108) $ $) NIL)) (-3796 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) 58) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 54)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 34) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) 36)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-248) (-778)) (T -248)) +NIL +(-778) +((-4028 (((-108) $ $) NIL)) (-3796 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) 76) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) 55)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-249) (-778)) (T -249)) +NIL +(-778) +((-4028 (((-108) $ $) NIL)) (-3796 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 31) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-250) (-778)) (T -250)) +NIL +(-778) +((-4028 (((-108) $ $) NIL)) (-3796 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-251) (-778)) (T -251)) +NIL +(-778) +((-4028 (((-108) $ $) NIL)) (-3796 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-252) (-778)) (T -252)) +NIL +(-778) +((-4028 (((-108) $ $) NIL)) (-3796 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 77)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 25) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-253) (-778)) (T -253)) +NIL +(-778) +((-4028 (((-108) $ $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1289 (((-592 (-525)) $) 19)) (-1486 (((-713) $) 17)) (-4044 (((-797) $) 23) (($ (-592 (-525))) 15)) (-2704 (($ (-713)) 20)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 9)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 11))) +(((-254) (-13 (-789) (-10 -8 (-15 -4044 ($ (-592 (-525)))) (-15 -1486 ((-713) $)) (-15 -1289 ((-592 (-525)) $)) (-15 -2704 ($ (-713)))))) (T -254)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-2704 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254))))) +(-13 (-789) (-10 -8 (-15 -4044 ($ (-592 (-525)))) (-15 -1486 ((-713) $)) (-15 -1289 ((-592 (-525)) $)) (-15 -2704 ($ (-713))))) +((-3915 ((|#2| |#2|) 77)) (-3760 ((|#2| |#2|) 65)) (-3102 (((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-3886 ((|#2| |#2|) 75)) (-3737 ((|#2| |#2|) 63)) (-3946 ((|#2| |#2|) 79)) (-3783 ((|#2| |#2|) 67)) (-1961 ((|#2|) 46)) (-1885 (((-110) (-110)) 95)) (-2412 ((|#2| |#2|) 61)) (-1967 (((-108) |#2|) 134)) (-3761 ((|#2| |#2|) 181)) (-1878 ((|#2| |#2|) 157)) (-2438 ((|#2|) 59)) (-3117 ((|#2|) 58)) (-1548 ((|#2| |#2|) 177)) (-2805 ((|#2| |#2|) 153)) (-1789 ((|#2| |#2|) 185)) (-3101 ((|#2| |#2|) 161)) (-2722 ((|#2| |#2|) 149)) (-3272 ((|#2| |#2|) 151)) (-1706 ((|#2| |#2|) 187)) (-1768 ((|#2| |#2|) 163)) (-3369 ((|#2| |#2|) 183)) (-1280 ((|#2| |#2|) 159)) (-2586 ((|#2| |#2|) 179)) (-1800 ((|#2| |#2|) 155)) (-4073 ((|#2| |#2|) 193)) (-3139 ((|#2| |#2|) 169)) (-3090 ((|#2| |#2|) 189)) (-1339 ((|#2| |#2|) 165)) (-2199 ((|#2| |#2|) 197)) (-2762 ((|#2| |#2|) 173)) (-3271 ((|#2| |#2|) 199)) (-2307 ((|#2| |#2|) 175)) (-3346 ((|#2| |#2|) 195)) (-3342 ((|#2| |#2|) 171)) (-1846 ((|#2| |#2|) 191)) (-4078 ((|#2| |#2|) 167)) (-2840 ((|#2| |#2|) 62)) (-3960 ((|#2| |#2|) 80)) (-3795 ((|#2| |#2|) 68)) (-3930 ((|#2| |#2|) 78)) (-3771 ((|#2| |#2|) 66)) (-3901 ((|#2| |#2|) 76)) (-3749 ((|#2| |#2|) 64)) (-3712 (((-108) (-110)) 93)) (-4004 ((|#2| |#2|) 83)) (-3836 ((|#2| |#2|) 71)) (-3975 ((|#2| |#2|) 81)) (-3808 ((|#2| |#2|) 69)) (-4035 ((|#2| |#2|) 85)) (-3861 ((|#2| |#2|) 73)) (-2608 ((|#2| |#2|) 86)) (-3873 ((|#2| |#2|) 74)) (-4018 ((|#2| |#2|) 84)) (-3848 ((|#2| |#2|) 72)) (-3989 ((|#2| |#2|) 82)) (-3823 ((|#2| |#2|) 70))) +(((-255 |#1| |#2|) (-10 -7 (-15 -2840 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -3737 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -3795 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3861 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3930 (|#2| |#2|)) (-15 -3946 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -1961 (|#2|)) (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -3117 (|#2|)) (-15 -2438 (|#2|)) (-15 -3272 (|#2| |#2|)) (-15 -2722 (|#2| |#2|)) (-15 -2805 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -1280 (|#2| |#2|)) (-15 -3101 (|#2| |#2|)) (-15 -1768 (|#2| |#2|)) (-15 -1339 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -3342 (|#2| |#2|)) (-15 -2762 (|#2| |#2|)) (-15 -2307 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3369 (|#2| |#2|)) (-15 -1789 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -3090 (|#2| |#2|)) (-15 -1846 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -3346 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -3102 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1967 ((-108) |#2|))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-933))) (T -255)) +((-1967 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3)) (-4 *3 (-13 (-408 *4) (-933))))) (-3102 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-408 *4) (-933))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-255 *4 *2)))) (-3271 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2199 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3346 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1846 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3090 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3369 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2307 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2762 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3342 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3139 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1339 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3101 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1280 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2805 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2722 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3272 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2438 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-3117 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4)) (-4 *4 (-13 (-408 *3) (-933))))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-933))))) (-1961 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3795 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3783 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2412 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2840 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933)))))) +(-10 -7 (-15 -2840 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -3737 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -3795 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3861 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -3901 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3930 (|#2| |#2|)) (-15 -3946 (|#2| |#2|)) (-15 -3960 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -1961 (|#2|)) (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -3117 (|#2|)) (-15 -2438 (|#2|)) (-15 -3272 (|#2| |#2|)) (-15 -2722 (|#2| |#2|)) (-15 -2805 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -1280 (|#2| |#2|)) (-15 -3101 (|#2| |#2|)) (-15 -1768 (|#2| |#2|)) (-15 -1339 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -3342 (|#2| |#2|)) (-15 -2762 (|#2| |#2|)) (-15 -2307 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3369 (|#2| |#2|)) (-15 -1789 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -3090 (|#2| |#2|)) (-15 -1846 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -3346 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -3102 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1967 ((-108) |#2|))) +((-2247 (((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1090)) 135)) (-4026 ((|#2| (-385 (-525)) |#2|) 51)) (-2978 ((|#2| |#2| (-565 |#2|)) 128)) (-3121 (((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1090)) 127)) (-1658 ((|#2| |#2| (-1090)) 20) ((|#2| |#2|) 23)) (-2231 ((|#2| |#2| (-1090)) 141) ((|#2| |#2|) 139))) +(((-256 |#1| |#2|) (-10 -7 (-15 -2231 (|#2| |#2|)) (-15 -2231 (|#2| |#2| (-1090))) (-15 -3121 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1090))) (-15 -1658 (|#2| |#2|)) (-15 -1658 (|#2| |#2| (-1090))) (-15 -2247 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1090))) (-15 -2978 (|#2| |#2| (-565 |#2|))) (-15 -4026 (|#2| (-385 (-525)) |#2|))) (-13 (-517) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -256)) +((-4026 (*1 *2 *3 *2) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-2978 (*1 *2 *2 *3) (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)))) (-2247 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1090)) (-4 *2 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *5 *2)))) (-1658 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-1658 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-3121 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3))) (|:| |vals| (-592 *3)))) (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-2231 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))))) +(-10 -7 (-15 -2231 (|#2| |#2|)) (-15 -2231 (|#2| |#2| (-1090))) (-15 -3121 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1090))) (-15 -1658 (|#2| |#2|)) (-15 -1658 (|#2| |#2| (-1090))) (-15 -2247 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1090))) (-15 -2978 (|#2| |#2| (-565 |#2|))) (-15 -4026 (|#2| (-385 (-525)) |#2|))) +((-3379 (((-3 |#3| "failed") |#3|) 110)) (-3915 ((|#3| |#3|) 131)) (-1999 (((-3 |#3| "failed") |#3|) 82)) (-3760 ((|#3| |#3|) 121)) (-4130 (((-3 |#3| "failed") |#3|) 58)) (-3886 ((|#3| |#3|) 129)) (-1724 (((-3 |#3| "failed") |#3|) 46)) (-3737 ((|#3| |#3|) 119)) (-2849 (((-3 |#3| "failed") |#3|) 112)) (-3946 ((|#3| |#3|) 133)) (-3217 (((-3 |#3| "failed") |#3|) 84)) (-3783 ((|#3| |#3|) 123)) (-2632 (((-3 |#3| "failed") |#3| (-713)) 36)) (-2351 (((-3 |#3| "failed") |#3|) 74)) (-2412 ((|#3| |#3|) 118)) (-3650 (((-3 |#3| "failed") |#3|) 44)) (-2840 ((|#3| |#3|) 117)) (-3435 (((-3 |#3| "failed") |#3|) 113)) (-3960 ((|#3| |#3|) 134)) (-4036 (((-3 |#3| "failed") |#3|) 85)) (-3795 ((|#3| |#3|) 124)) (-2613 (((-3 |#3| "failed") |#3|) 111)) (-3930 ((|#3| |#3|) 132)) (-2948 (((-3 |#3| "failed") |#3|) 83)) (-3771 ((|#3| |#3|) 122)) (-3906 (((-3 |#3| "failed") |#3|) 60)) (-3901 ((|#3| |#3|) 130)) (-3866 (((-3 |#3| "failed") |#3|) 48)) (-3749 ((|#3| |#3|) 120)) (-4191 (((-3 |#3| "failed") |#3|) 66)) (-4004 ((|#3| |#3|) 137)) (-4160 (((-3 |#3| "failed") |#3|) 104)) (-3836 ((|#3| |#3|) 142)) (-2364 (((-3 |#3| "failed") |#3|) 62)) (-3975 ((|#3| |#3|) 135)) (-3334 (((-3 |#3| "failed") |#3|) 50)) (-3808 ((|#3| |#3|) 125)) (-2025 (((-3 |#3| "failed") |#3|) 70)) (-4035 ((|#3| |#3|) 139)) (-3339 (((-3 |#3| "failed") |#3|) 54)) (-3861 ((|#3| |#3|) 127)) (-3979 (((-3 |#3| "failed") |#3|) 72)) (-2608 ((|#3| |#3|) 140)) (-2759 (((-3 |#3| "failed") |#3|) 56)) (-3873 ((|#3| |#3|) 128)) (-1579 (((-3 |#3| "failed") |#3|) 68)) (-4018 ((|#3| |#3|) 138)) (-2545 (((-3 |#3| "failed") |#3|) 107)) (-3848 ((|#3| |#3|) 143)) (-2993 (((-3 |#3| "failed") |#3|) 64)) (-3989 ((|#3| |#3|) 136)) (-2095 (((-3 |#3| "failed") |#3|) 52)) (-3823 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341))))) +(((-257 |#1| |#2| |#3|) (-13 (-915 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -2840 (|#3| |#3|)) (-15 -2412 (|#3| |#3|)) (-15 -3737 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3783 (|#3| |#3|)) (-15 -3795 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3873 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3946 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3989 (|#3| |#3|)) (-15 -4004 (|#3| |#3|)) (-15 -4018 (|#3| |#3|)) (-15 -4035 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)))) (-37 (-385 (-525))) (-1163 |#1|) (-1134 |#1| |#2|)) (T -257)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) (-4 *5 (-1163 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1134 *4 *5)))) (-2840 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-2412 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3783 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3795 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))) +(-13 (-915 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -2840 (|#3| |#3|)) (-15 -2412 (|#3| |#3|)) (-15 -3737 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3783 (|#3| |#3|)) (-15 -3795 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3873 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3946 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3989 (|#3| |#3|)) (-15 -4004 (|#3| |#3|)) (-15 -4018 (|#3| |#3|)) (-15 -4035 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)))) +((-3379 (((-3 |#3| "failed") |#3|) 66)) (-3915 ((|#3| |#3|) 133)) (-1999 (((-3 |#3| "failed") |#3|) 50)) (-3760 ((|#3| |#3|) 121)) (-4130 (((-3 |#3| "failed") |#3|) 62)) (-3886 ((|#3| |#3|) 131)) (-1724 (((-3 |#3| "failed") |#3|) 46)) (-3737 ((|#3| |#3|) 119)) (-2849 (((-3 |#3| "failed") |#3|) 70)) (-3946 ((|#3| |#3|) 135)) (-3217 (((-3 |#3| "failed") |#3|) 54)) (-3783 ((|#3| |#3|) 123)) (-2632 (((-3 |#3| "failed") |#3| (-713)) 35)) (-2351 (((-3 |#3| "failed") |#3|) 44)) (-2412 ((|#3| |#3|) 112)) (-3650 (((-3 |#3| "failed") |#3|) 42)) (-2840 ((|#3| |#3|) 118)) (-3435 (((-3 |#3| "failed") |#3|) 72)) (-3960 ((|#3| |#3|) 136)) (-4036 (((-3 |#3| "failed") |#3|) 56)) (-3795 ((|#3| |#3|) 124)) (-2613 (((-3 |#3| "failed") |#3|) 68)) (-3930 ((|#3| |#3|) 134)) (-2948 (((-3 |#3| "failed") |#3|) 52)) (-3771 ((|#3| |#3|) 122)) (-3906 (((-3 |#3| "failed") |#3|) 64)) (-3901 ((|#3| |#3|) 132)) (-3866 (((-3 |#3| "failed") |#3|) 48)) (-3749 ((|#3| |#3|) 120)) (-4191 (((-3 |#3| "failed") |#3|) 78)) (-4004 ((|#3| |#3|) 139)) (-4160 (((-3 |#3| "failed") |#3|) 58)) (-3836 ((|#3| |#3|) 127)) (-2364 (((-3 |#3| "failed") |#3|) 74)) (-3975 ((|#3| |#3|) 137)) (-3334 (((-3 |#3| "failed") |#3|) 102)) (-3808 ((|#3| |#3|) 125)) (-2025 (((-3 |#3| "failed") |#3|) 82)) (-4035 ((|#3| |#3|) 141)) (-3339 (((-3 |#3| "failed") |#3|) 109)) (-3861 ((|#3| |#3|) 129)) (-3979 (((-3 |#3| "failed") |#3|) 84)) (-2608 ((|#3| |#3|) 142)) (-2759 (((-3 |#3| "failed") |#3|) 111)) (-3873 ((|#3| |#3|) 130)) (-1579 (((-3 |#3| "failed") |#3|) 80)) (-4018 ((|#3| |#3|) 140)) (-2545 (((-3 |#3| "failed") |#3|) 60)) (-3848 ((|#3| |#3|) 128)) (-2993 (((-3 |#3| "failed") |#3|) 76)) (-3989 ((|#3| |#3|) 138)) (-2095 (((-3 |#3| "failed") |#3|) 105)) (-3823 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341))))) +(((-258 |#1| |#2| |#3| |#4|) (-13 (-915 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -2840 (|#3| |#3|)) (-15 -2412 (|#3| |#3|)) (-15 -3737 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3783 (|#3| |#3|)) (-15 -3795 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3873 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3946 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3989 (|#3| |#3|)) (-15 -4004 (|#3| |#3|)) (-15 -4018 (|#3| |#3|)) (-15 -4035 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)))) (-37 (-385 (-525))) (-1132 |#1|) (-1155 |#1| |#2|) (-915 |#2|)) (T -258)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) (-4 *5 (-1132 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1155 *4 *5)) (-4 *6 (-915 *5)))) (-2840 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-2412 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3783 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3795 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3901 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3930 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3960 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))) +(-13 (-915 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -2840 (|#3| |#3|)) (-15 -2412 (|#3| |#3|)) (-15 -3737 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3783 (|#3| |#3|)) (-15 -3795 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3823 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3873 (|#3| |#3|)) (-15 -3886 (|#3| |#3|)) (-15 -3901 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3930 (|#3| |#3|)) (-15 -3946 (|#3| |#3|)) (-15 -3960 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3989 (|#3| |#3|)) (-15 -4004 (|#3| |#3|)) (-15 -4018 (|#3| |#3|)) (-15 -4035 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)))) +((-3401 (((-108) $) 19)) (-2142 (((-169) $) 7)) (-3001 (((-3 (-1090) "failed") $) 14)) (-3456 (((-3 (-592 $) "failed") $) NIL)) (-3236 (((-3 (-1090) "failed") $) 21)) (-1571 (((-3 (-1023) "failed") $) 17)) (-3078 (((-108) $) 15)) (-4044 (((-797) $) NIL)) (-3549 (((-108) $) 9))) +(((-259) (-13 (-566 (-797)) (-10 -8 (-15 -2142 ((-169) $)) (-15 -3078 ((-108) $)) (-15 -1571 ((-3 (-1023) "failed") $)) (-15 -3401 ((-108) $)) (-15 -3236 ((-3 (-1090) "failed") $)) (-15 -3549 ((-108) $)) (-15 -3001 ((-3 (-1090) "failed") $)) (-15 -3456 ((-3 (-592 $) "failed") $))))) (T -259)) +((-2142 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-1571 (*1 *2 *1) (|partial| -12 (-5 *2 (-1023)) (-5 *1 (-259)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-3236 (*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-259)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-3001 (*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-259)))) (-3456 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259))))) +(-13 (-566 (-797)) (-10 -8 (-15 -2142 ((-169) $)) (-15 -3078 ((-108) $)) (-15 -1571 ((-3 (-1023) "failed") $)) (-15 -3401 ((-108) $)) (-15 -3236 ((-3 (-1090) "failed") $)) (-15 -3549 ((-108) $)) (-15 -3001 ((-3 (-1090) "failed") $)) (-15 -3456 ((-3 (-592 $) "failed") $)))) +((-1249 (($ (-1 (-108) |#2|) $) 24)) (-1716 (($ $) 36)) (-1640 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-2591 (($ |#2| $) 32) (($ (-1 (-108) |#2|) $) 18)) (-1636 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2234 (($ |#2| $ (-525)) 20) (($ $ $ (-525)) 22)) (-2697 (($ $ (-525)) 11) (($ $ (-1139 (-525))) 14)) (-2455 (($ $ |#2|) 30) (($ $ $) NIL)) (-1810 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-592 $)) NIL))) +(((-260 |#1| |#2|) (-10 -8 (-15 -1636 (|#1| |#1| |#1|)) (-15 -1640 (|#1| |#2| |#1|)) (-15 -1636 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2234 (|#1| |#1| |#1| (-525))) (-15 -2234 (|#1| |#2| |#1| (-525))) (-15 -2697 (|#1| |#1| (-1139 (-525)))) (-15 -2697 (|#1| |#1| (-525))) (-15 -1810 (|#1| (-592 |#1|))) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 -2591 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2591 (|#1| |#2| |#1|)) (-15 -1716 (|#1| |#1|))) (-261 |#2|) (-1126)) (T -260)) +NIL +(-10 -8 (-15 -1636 (|#1| |#1| |#1|)) (-15 -1640 (|#1| |#2| |#1|)) (-15 -1636 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2234 (|#1| |#1| |#1| (-525))) (-15 -2234 (|#1| |#2| |#1| (-525))) (-15 -2697 (|#1| |#1| (-1139 (-525)))) (-15 -2697 (|#1| |#1| (-525))) (-15 -1810 (|#1| (-592 |#1|))) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 -2591 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1249 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2591 (|#1| |#2| |#1|)) (-15 -1716 (|#1| |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2792 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) 8)) (-1230 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-2696 (($ (-1 (-108) |#1|) $) 85)) (-1249 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-2987 (($ $) 83 (|has| |#1| (-1019)))) (-1716 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1019)))) (-2591 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 51)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3248 (($ (-713) |#1|) 69)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 43 (|has| (-525) (-789)))) (-1636 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 44 (|has| (-525) (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-4157 (($ |#1| $ (-525)) 88) (($ $ $ (-525)) 87)) (-2234 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2379 (((-592 (-525)) $) 46)) (-2030 (((-108) (-525) $) 47)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1683 ((|#1| $) 42 (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1614 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-2835 (($ $ (-525)) 91) (($ $ (-1139 (-525))) 90)) (-2697 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 70)) (-2455 (($ $ |#1|) 93) (($ $ $) 92)) (-1810 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-261 |#1|) (-131) (-1126)) (T -261)) +((-2455 (*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)))) (-2455 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-4157 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1126)))) (-4157 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-1636 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-2696 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-1640 (*1 *1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-1019)))) (-2987 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-1019)))) (-1636 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-789))))) +(-13 (-597 |t#1|) (-10 -8 (-6 -4255) (-15 -2455 ($ $ |t#1|)) (-15 -2455 ($ $ $)) (-15 -2835 ($ $ (-525))) (-15 -2835 ($ $ (-1139 (-525)))) (-15 -1640 ($ (-1 (-108) |t#1|) $)) (-15 -4157 ($ |t#1| $ (-525))) (-15 -4157 ($ $ $ (-525))) (-15 -1636 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -2696 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -1640 ($ |t#1| $)) (-15 -2987 ($ $))) |%noBranch|) (IF (|has| |t#1| (-789)) (-15 -1636 ($ $ $)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) ((** (($ $ $) 10))) (((-262 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-263)) (T -262)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2356 (($ $) 6)) (-2288 (($ $) 7)) (** (($ $ $) 8))) +((-2412 (($ $) 6)) (-2840 (($ $) 7)) (** (($ $ $) 8))) (((-263) (-131)) (T -263)) -((** (*1 *1 *1 *1) (-4 *1 (-263))) (-2288 (*1 *1 *1) (-4 *1 (-263))) (-2356 (*1 *1 *1) (-4 *1 (-263)))) -(-13 (-10 -8 (-15 -2356 ($ $)) (-15 -2288 ($ $)) (-15 ** ($ $ $)))) -((-1581 (((-591 (-1070 |#1|)) (-1070 |#1|) |#1|) 35)) (-1783 ((|#2| |#2| |#1|) 38)) (-1511 ((|#2| |#2| |#1|) 40)) (-3584 ((|#2| |#2| |#1|) 39))) -(((-264 |#1| |#2|) (-10 -7 (-15 -1783 (|#2| |#2| |#1|)) (-15 -3584 (|#2| |#2| |#1|)) (-15 -1511 (|#2| |#2| |#1|)) (-15 -1581 ((-591 (-1070 |#1|)) (-1070 |#1|) |#1|))) (-341) (-1162 |#1|)) (T -264)) -((-1581 (*1 *2 *3 *4) (-12 (-4 *4 (-341)) (-5 *2 (-591 (-1070 *4))) (-5 *1 (-264 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-1162 *4)))) (-1511 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1162 *3)))) (-3584 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1162 *3)))) (-1783 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1162 *3))))) -(-10 -7 (-15 -1783 (|#2| |#2| |#1|)) (-15 -3584 (|#2| |#2| |#1|)) (-15 -1511 (|#2| |#2| |#1|)) (-15 -1581 ((-591 (-1070 |#1|)) (-1070 |#1|) |#1|))) -((-1881 ((|#2| $ |#1|) 6))) -(((-265 |#1| |#2|) (-131) (-1018) (-1125)) (T -265)) -((-1881 (*1 *2 *1 *3) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1125))))) -(-13 (-10 -8 (-15 -1881 (|t#2| $ |t#1|)))) -((-4205 ((|#3| $ |#2| |#3|) 12)) (-4121 ((|#3| $ |#2|) 10))) -(((-266 |#1| |#2| |#3|) (-10 -8 (-15 -4205 (|#3| |#1| |#2| |#3|)) (-15 -4121 (|#3| |#1| |#2|))) (-267 |#2| |#3|) (-1018) (-1125)) (T -266)) -NIL -(-10 -8 (-15 -4205 (|#3| |#1| |#2| |#3|)) (-15 -4121 (|#3| |#1| |#2|))) -((-2847 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4251)))) (-4205 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) 11)) (-1881 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-267 |#1| |#2|) (-131) (-1018) (-1125)) (T -267)) -((-1881 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1125)))) (-4121 (*1 *2 *1 *3) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1125)))) (-2847 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1125)))) (-4205 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1125))))) -(-13 (-265 |t#1| |t#2|) (-10 -8 (-15 -1881 (|t#2| $ |t#1| |t#2|)) (-15 -4121 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4251)) (PROGN (-15 -2847 (|t#2| $ |t#1| |t#2|)) (-15 -4205 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((** (*1 *1 *1 *1) (-4 *1 (-263))) (-2840 (*1 *1 *1) (-4 *1 (-263))) (-2412 (*1 *1 *1) (-4 *1 (-263)))) +(-13 (-10 -8 (-15 -2412 ($ $)) (-15 -2840 ($ $)) (-15 ** ($ $ $)))) +((-3825 (((-592 (-1071 |#1|)) (-1071 |#1|) |#1|) 35)) (-3876 ((|#2| |#2| |#1|) 38)) (-3531 ((|#2| |#2| |#1|) 40)) (-2248 ((|#2| |#2| |#1|) 39))) +(((-264 |#1| |#2|) (-10 -7 (-15 -3876 (|#2| |#2| |#1|)) (-15 -2248 (|#2| |#2| |#1|)) (-15 -3531 (|#2| |#2| |#1|)) (-15 -3825 ((-592 (-1071 |#1|)) (-1071 |#1|) |#1|))) (-341) (-1163 |#1|)) (T -264)) +((-3825 (*1 *2 *3 *4) (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1071 *4))) (-5 *1 (-264 *4 *5)) (-5 *3 (-1071 *4)) (-4 *5 (-1163 *4)))) (-3531 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3)))) (-2248 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3)))) (-3876 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3))))) +(-10 -7 (-15 -3876 (|#2| |#2| |#1|)) (-15 -2248 (|#2| |#2| |#1|)) (-15 -3531 (|#2| |#2| |#1|)) (-15 -3825 ((-592 (-1071 |#1|)) (-1071 |#1|) |#1|))) +((-1496 ((|#2| $ |#1|) 6))) +(((-265 |#1| |#2|) (-131) (-1019) (-1126)) (T -265)) +((-1496 (*1 *2 *1 *3) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126))))) +(-13 (-10 -8 (-15 -1496 (|t#2| $ |t#1|)))) +((-2549 ((|#3| $ |#2| |#3|) 12)) (-2488 ((|#3| $ |#2|) 10))) +(((-266 |#1| |#2| |#3|) (-10 -8 (-15 -2549 (|#3| |#1| |#2| |#3|)) (-15 -2488 (|#3| |#1| |#2|))) (-267 |#2| |#3|) (-1019) (-1126)) (T -266)) +NIL +(-10 -8 (-15 -2549 (|#3| |#1| |#2| |#3|)) (-15 -2488 (|#3| |#1| |#2|))) +((-1230 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4255)))) (-2549 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) 11)) (-1496 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-267 |#1| |#2|) (-131) (-1019) (-1126)) (T -267)) +((-1496 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) (-2488 (*1 *2 *1 *3) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) (-1230 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) (-2549 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126))))) +(-13 (-265 |t#1| |t#2|) (-10 -8 (-15 -1496 (|t#2| $ |t#1| |t#2|)) (-15 -2488 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4255)) (PROGN (-15 -1230 (|t#2| $ |t#1| |t#2|)) (-15 -2549 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-265 |#1| |#2|) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 35)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 40)) (-3641 (($ $) 38)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-3265 (($ $ $) 33)) (-3618 (($ |#2| |#3|) 19)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-3865 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1233 ((|#3| $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 20)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1545 (((-3 $ "failed") $ $) NIL)) (-3048 (((-712) $) 34)) (-1881 ((|#2| $ |#2|) 42)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 24)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3425 (((-712)) NIL)) (-1724 (((-108) $ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 29 T CONST)) (-1839 (($) 36 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 37))) -(((-268 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-286) (-10 -8 (-15 -1233 (|#3| $)) (-15 -2686 (|#2| $)) (-15 -3618 ($ |#2| |#3|)) (-15 -1545 ((-3 $ "failed") $ $)) (-15 -1522 ((-3 $ "failed") $)) (-15 -1523 ($ $)) (-15 -1881 (|#2| $ |#2|)))) (-160) (-1147 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -268)) -((-1522 (*1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1147 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1233 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1147 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2686 (*1 *2 *1) (-12 (-4 *2 (-1147 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3618 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1147 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1545 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1147 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1523 (*1 *1 *1) (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1147 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1881 (*1 *2 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1147 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-286) (-10 -8 (-15 -1233 (|#3| $)) (-15 -2686 (|#2| $)) (-15 -3618 ($ |#2| |#3|)) (-15 -1545 ((-3 $ "failed") $ $)) (-15 -1522 ((-3 $ "failed") $)) (-15 -1523 ($ $)) (-15 -1881 (|#2| $ |#2|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 35)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 40)) (-2609 (($ $) 38)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-2720 (($ $ $) 33)) (-3336 (($ |#2| |#3|) 19)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2507 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1690 ((|#3| $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 20)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2070 (((-3 $ "failed") $ $) NIL)) (-2824 (((-713) $) 34)) (-1496 ((|#2| $ |#2|) 42)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 24)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2502 (((-713)) NIL)) (-3787 (((-108) $ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 29 T CONST)) (-1449 (($) 36 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 37))) +(((-268 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-286) (-10 -8 (-15 -1690 (|#3| $)) (-15 -4044 (|#2| $)) (-15 -3336 ($ |#2| |#3|)) (-15 -2070 ((-3 $ "failed") $ $)) (-15 -1645 ((-3 $ "failed") $)) (-15 -3243 ($ $)) (-15 -1496 (|#2| $ |#2|)))) (-160) (-1148 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -268)) +((-1645 (*1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1690 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1148 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4044 (*1 *2 *1) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3336 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1148 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2070 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3243 (*1 *1 *1) (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1496 (*1 *2 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1148 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-286) (-10 -8 (-15 -1690 (|#3| $)) (-15 -4044 (|#2| $)) (-15 -3336 ($ |#2| |#3|)) (-15 -2070 ((-3 $ "failed") $ $)) (-15 -1645 ((-3 $ "failed") $)) (-15 -3243 ($ $)) (-15 -1496 (|#2| $ |#2|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-269) (-131)) (T -269)) NIL -(-13 (-975) (-107 $ $) (-10 -7 (-6 -4243))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-668) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1781 (($ (-1089) (-1089) (-1022) $) 16)) (-2539 (($ (-1089) (-591 (-897)) $) 21)) (-1745 (((-591 (-1005)) $) 9)) (-1846 (((-3 (-1022) "failed") (-1089) (-1089) $) 15)) (-2069 (((-3 (-591 (-897)) "failed") (-1089) $) 20)) (-3164 (($) 6)) (-3122 (($) 22)) (-2686 (((-796) $) 26)) (-4103 (($) 23))) -(((-270) (-13 (-565 (-796)) (-10 -8 (-15 -3164 ($)) (-15 -1745 ((-591 (-1005)) $)) (-15 -1846 ((-3 (-1022) "failed") (-1089) (-1089) $)) (-15 -1781 ($ (-1089) (-1089) (-1022) $)) (-15 -2069 ((-3 (-591 (-897)) "failed") (-1089) $)) (-15 -2539 ($ (-1089) (-591 (-897)) $)) (-15 -3122 ($)) (-15 -4103 ($))))) (T -270)) -((-3164 (*1 *1) (-5 *1 (-270))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-591 (-1005))) (-5 *1 (-270)))) (-1846 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1089)) (-5 *2 (-1022)) (-5 *1 (-270)))) (-1781 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1089)) (-5 *3 (-1022)) (-5 *1 (-270)))) (-2069 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1089)) (-5 *2 (-591 (-897))) (-5 *1 (-270)))) (-2539 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-897))) (-5 *1 (-270)))) (-3122 (*1 *1) (-5 *1 (-270))) (-4103 (*1 *1) (-5 *1 (-270)))) -(-13 (-565 (-796)) (-10 -8 (-15 -3164 ($)) (-15 -1745 ((-591 (-1005)) $)) (-15 -1846 ((-3 (-1022) "failed") (-1089) (-1089) $)) (-15 -1781 ($ (-1089) (-1089) (-1022) $)) (-15 -2069 ((-3 (-591 (-897)) "failed") (-1089) $)) (-15 -2539 ($ (-1089) (-591 (-897)) $)) (-15 -3122 ($)) (-15 -4103 ($)))) -((-3182 (((-591 (-2 (|:| |eigval| (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (|:| |geneigvec| (-591 (-631 (-385 (-885 |#1|))))))) (-631 (-385 (-885 |#1|)))) 85)) (-4203 (((-591 (-631 (-385 (-885 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (|:| |eigmult| (-712)) (|:| |eigvec| (-591 (-631 (-385 (-885 |#1|)))))) (-631 (-385 (-885 |#1|)))) 80) (((-591 (-631 (-385 (-885 |#1|)))) (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|))) (-631 (-385 (-885 |#1|))) (-712) (-712)) 38)) (-3607 (((-591 (-2 (|:| |eigval| (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (|:| |eigmult| (-712)) (|:| |eigvec| (-591 (-631 (-385 (-885 |#1|))))))) (-631 (-385 (-885 |#1|)))) 82)) (-2207 (((-591 (-631 (-385 (-885 |#1|)))) (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|))) (-631 (-385 (-885 |#1|)))) 62)) (-2544 (((-591 (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (-631 (-385 (-885 |#1|)))) 61)) (-2173 (((-885 |#1|) (-631 (-385 (-885 |#1|)))) 50) (((-885 |#1|) (-631 (-385 (-885 |#1|))) (-1089)) 51))) -(((-271 |#1|) (-10 -7 (-15 -2173 ((-885 |#1|) (-631 (-385 (-885 |#1|))) (-1089))) (-15 -2173 ((-885 |#1|) (-631 (-385 (-885 |#1|))))) (-15 -2544 ((-591 (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (-631 (-385 (-885 |#1|))))) (-15 -2207 ((-591 (-631 (-385 (-885 |#1|)))) (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|))) (-631 (-385 (-885 |#1|))))) (-15 -4203 ((-591 (-631 (-385 (-885 |#1|)))) (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|))) (-631 (-385 (-885 |#1|))) (-712) (-712))) (-15 -4203 ((-591 (-631 (-385 (-885 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (|:| |eigmult| (-712)) (|:| |eigvec| (-591 (-631 (-385 (-885 |#1|)))))) (-631 (-385 (-885 |#1|))))) (-15 -3182 ((-591 (-2 (|:| |eigval| (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (|:| |geneigvec| (-591 (-631 (-385 (-885 |#1|))))))) (-631 (-385 (-885 |#1|))))) (-15 -3607 ((-591 (-2 (|:| |eigval| (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (|:| |eigmult| (-712)) (|:| |eigvec| (-591 (-631 (-385 (-885 |#1|))))))) (-631 (-385 (-885 |#1|)))))) (-429)) (T -271)) -((-3607 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-591 (-2 (|:| |eigval| (-3 (-385 (-885 *4)) (-1079 (-1089) (-885 *4)))) (|:| |eigmult| (-712)) (|:| |eigvec| (-591 (-631 (-385 (-885 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-631 (-385 (-885 *4)))))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-591 (-2 (|:| |eigval| (-3 (-385 (-885 *4)) (-1079 (-1089) (-885 *4)))) (|:| |geneigvec| (-591 (-631 (-385 (-885 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-631 (-385 (-885 *4)))))) (-4203 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-385 (-885 *5)) (-1079 (-1089) (-885 *5)))) (|:| |eigmult| (-712)) (|:| |eigvec| (-591 *4)))) (-4 *5 (-429)) (-5 *2 (-591 (-631 (-385 (-885 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-631 (-385 (-885 *5)))))) (-4203 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-385 (-885 *6)) (-1079 (-1089) (-885 *6)))) (-5 *5 (-712)) (-4 *6 (-429)) (-5 *2 (-591 (-631 (-385 (-885 *6))))) (-5 *1 (-271 *6)) (-5 *4 (-631 (-385 (-885 *6)))))) (-2207 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-385 (-885 *5)) (-1079 (-1089) (-885 *5)))) (-4 *5 (-429)) (-5 *2 (-591 (-631 (-385 (-885 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-631 (-385 (-885 *5)))))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-631 (-385 (-885 *4)))) (-4 *4 (-429)) (-5 *2 (-591 (-3 (-385 (-885 *4)) (-1079 (-1089) (-885 *4))))) (-5 *1 (-271 *4)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-631 (-385 (-885 *4)))) (-5 *2 (-885 *4)) (-5 *1 (-271 *4)) (-4 *4 (-429)))) (-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-385 (-885 *5)))) (-5 *4 (-1089)) (-5 *2 (-885 *5)) (-5 *1 (-271 *5)) (-4 *5 (-429))))) -(-10 -7 (-15 -2173 ((-885 |#1|) (-631 (-385 (-885 |#1|))) (-1089))) (-15 -2173 ((-885 |#1|) (-631 (-385 (-885 |#1|))))) (-15 -2544 ((-591 (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (-631 (-385 (-885 |#1|))))) (-15 -2207 ((-591 (-631 (-385 (-885 |#1|)))) (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|))) (-631 (-385 (-885 |#1|))))) (-15 -4203 ((-591 (-631 (-385 (-885 |#1|)))) (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|))) (-631 (-385 (-885 |#1|))) (-712) (-712))) (-15 -4203 ((-591 (-631 (-385 (-885 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (|:| |eigmult| (-712)) (|:| |eigvec| (-591 (-631 (-385 (-885 |#1|)))))) (-631 (-385 (-885 |#1|))))) (-15 -3182 ((-591 (-2 (|:| |eigval| (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (|:| |geneigvec| (-591 (-631 (-385 (-885 |#1|))))))) (-631 (-385 (-885 |#1|))))) (-15 -3607 ((-591 (-2 (|:| |eigval| (-3 (-385 (-885 |#1|)) (-1079 (-1089) (-885 |#1|)))) (|:| |eigmult| (-712)) (|:| |eigvec| (-591 (-631 (-385 (-885 |#1|))))))) (-631 (-385 (-885 |#1|)))))) -((-1257 (((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)) 14))) -(((-272 |#1| |#2|) (-10 -7 (-15 -1257 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)))) (-1125) (-1125)) (T -272)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6))))) -(-10 -7 (-15 -1257 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1306 (((-108) $) NIL (|has| |#1| (-21)))) (-1684 (($ $) 23)) (-3332 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3449 (($ $ $) 94 (|has| |#1| (-281)))) (-2055 (($) NIL (-3150 (|has| |#1| (-21)) (|has| |#1| (-668))) CONST)) (-3285 (($ $) 8 (|has| |#1| (-21)))) (-1864 (((-3 $ "failed") $) 69 (|has| |#1| (-668)))) (-4165 ((|#1| $) 22)) (-1522 (((-3 $ "failed") $) 67 (|has| |#1| (-668)))) (-3865 (((-108) $) NIL (|has| |#1| (-668)))) (-1257 (($ (-1 |#1| |#1|) $) 25)) (-4151 ((|#1| $) 9)) (-3452 (($ $) 58 (|has| |#1| (-21)))) (-2780 (((-3 $ "failed") $) 68 (|has| |#1| (-668)))) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-1523 (($ $) 71 (-3150 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3208 (((-591 $) $) 20 (|has| |#1| (-517)))) (-1980 (($ $ $) 35 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 $)) 38 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-1089) |#1|) 28 (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) 32 (|has| |#1| (-486 (-1089) |#1|)))) (-3045 (($ |#1| |#1|) 18)) (-3840 (((-128)) 89 (|has| |#1| (-341)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089)) 86 (|has| |#1| (-833 (-1089))))) (-3369 (($ $ $) NIL (|has| |#1| (-450)))) (-4027 (($ $ $) NIL (|has| |#1| (-450)))) (-2686 (($ (-525)) NIL (|has| |#1| (-975))) (((-108) $) 46 (|has| |#1| (-1018))) (((-796) $) 45 (|has| |#1| (-1018)))) (-3425 (((-712)) 74 (|has| |#1| (-975)))) (-1401 (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-712)) NIL (|has| |#1| (-668))) (($ $ (-854)) NIL (|has| |#1| (-1030)))) (-1830 (($) 56 (|has| |#1| (-21)) CONST)) (-1839 (($) 64 (|has| |#1| (-668)) CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089))))) (-3944 (($ |#1| |#1|) 21) (((-108) $ $) 41 (|has| |#1| (-1018)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 91 (-3150 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-4047 (($ |#1| $) 54 (|has| |#1| (-21))) (($ $ |#1|) 55 (|has| |#1| (-21))) (($ $ $) 53 (|has| |#1| (-21))) (($ $) 52 (|has| |#1| (-21)))) (-4036 (($ |#1| $) 49 (|has| |#1| (-25))) (($ $ |#1|) 50 (|has| |#1| (-25))) (($ $ $) 48 (|has| |#1| (-25)))) (** (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-712)) NIL (|has| |#1| (-668))) (($ $ (-854)) NIL (|has| |#1| (-1030)))) (* (($ $ |#1|) 62 (|has| |#1| (-1030))) (($ |#1| $) 61 (|has| |#1| (-1030))) (($ $ $) 60 (|has| |#1| (-1030))) (($ (-525) $) 76 (|has| |#1| (-21))) (($ (-712) $) NIL (|has| |#1| (-21))) (($ (-854) $) NIL (|has| |#1| (-25))))) -(((-273 |#1|) (-13 (-1125) (-10 -8 (-15 -3944 ($ |#1| |#1|)) (-15 -3045 ($ |#1| |#1|)) (-15 -1684 ($ $)) (-15 -4151 (|#1| $)) (-15 -4165 (|#1| $)) (-15 -1257 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1089) |#1|)) (-6 (-486 (-1089) |#1|)) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-565 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -1980 ($ $ $)) (-15 -1980 ($ $ (-591 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4036 ($ |#1| $)) (-15 -4036 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3452 ($ $)) (-15 -3285 ($ $)) (-15 -4047 ($ |#1| $)) (-15 -4047 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-6 (-1030)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-668)) (PROGN (-6 (-668)) (-15 -2780 ((-3 $ "failed") $)) (-15 -1864 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -2780 ((-3 $ "failed") $)) (-15 -1864 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-975)) (PROGN (-6 (-975)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-659 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -3208 ((-591 $) $)) |%noBranch|) (IF (|has| |#1| (-833 (-1089))) (-6 (-833 (-1089))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1178 |#1|)) (-15 -4059 ($ $ $)) (-15 -1523 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -3449 ($ $ $)) |%noBranch|))) (-1125)) (T -273)) -((-3944 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125)))) (-3045 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125)))) (-1684 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125)))) (-4151 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125)))) (-4165 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125)))) (-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-273 *3)))) (-1980 (*1 *1 *1 *1) (-12 (-4 *2 (-288 *2)) (-4 *2 (-1018)) (-4 *2 (-1125)) (-5 *1 (-273 *2)))) (-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1018)) (-4 *3 (-1125)) (-5 *1 (-273 *3)))) (-4036 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1125)))) (-4036 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1125)))) (-3452 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1125)))) (-3285 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1125)))) (-4047 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1125)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1125)))) (-2780 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-668)) (-4 *2 (-1125)))) (-1864 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-668)) (-4 *2 (-1125)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-591 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517)) (-4 *3 (-1125)))) (-3449 (*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1125)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1030)) (-4 *2 (-1125)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1030)) (-4 *2 (-1125)))) (-4059 (*1 *1 *1 *1) (-3150 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1125))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1125))))) (-1523 (*1 *1 *1) (-3150 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1125))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1125)))))) -(-13 (-1125) (-10 -8 (-15 -3944 ($ |#1| |#1|)) (-15 -3045 ($ |#1| |#1|)) (-15 -1684 ($ $)) (-15 -4151 (|#1| $)) (-15 -4165 (|#1| $)) (-15 -1257 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1089) |#1|)) (-6 (-486 (-1089) |#1|)) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-6 (-565 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -1980 ($ $ $)) (-15 -1980 ($ $ (-591 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4036 ($ |#1| $)) (-15 -4036 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3452 ($ $)) (-15 -3285 ($ $)) (-15 -4047 ($ |#1| $)) (-15 -4047 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-6 (-1030)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-668)) (PROGN (-6 (-668)) (-15 -2780 ((-3 $ "failed") $)) (-15 -1864 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -2780 ((-3 $ "failed") $)) (-15 -1864 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-975)) (PROGN (-6 (-975)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-659 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -3208 ((-591 $) $)) |%noBranch|) (IF (|has| |#1| (-833 (-1089))) (-6 (-833 (-1089))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1178 |#1|)) (-15 -4059 ($ $ $)) (-15 -1523 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -3449 ($ $ $)) |%noBranch|))) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-3832 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#2| $ |#1| |#2|) NIL)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 |#2| "failed") |#1| $) NIL)) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) NIL)) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) NIL)) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 ((|#1| $) NIL (|has| |#1| (-788)))) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-1826 ((|#1| $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4251))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2159 (((-591 |#1|) $) NIL)) (-1628 (((-108) |#1| $) NIL)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3761 (((-591 |#1|) $) NIL)) (-1675 (((-108) |#1| $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2872 ((|#2| $) NIL (|has| |#1| (-788)))) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2686 (((-796) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796))) (|has| |#2| (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-274 |#1| |#2|) (-13 (-1102 |#1| |#2|) (-10 -7 (-6 -4250))) (-1018) (-1018)) (T -274)) -NIL -(-13 (-1102 |#1| |#2|) (-10 -7 (-6 -4250))) -((-2757 (((-290) (-1072) (-591 (-1072))) 16) (((-290) (-1072) (-1072)) 15) (((-290) (-591 (-1072))) 14) (((-290) (-1072)) 12))) -(((-275) (-10 -7 (-15 -2757 ((-290) (-1072))) (-15 -2757 ((-290) (-591 (-1072)))) (-15 -2757 ((-290) (-1072) (-1072))) (-15 -2757 ((-290) (-1072) (-591 (-1072)))))) (T -275)) -((-2757 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-1072))) (-5 *3 (-1072)) (-5 *2 (-290)) (-5 *1 (-275)))) (-2757 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-290)) (-5 *1 (-275)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-290)) (-5 *1 (-275)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-290)) (-5 *1 (-275))))) -(-10 -7 (-15 -2757 ((-290) (-1072))) (-15 -2757 ((-290) (-591 (-1072)))) (-15 -2757 ((-290) (-1072) (-1072))) (-15 -2757 ((-290) (-1072) (-591 (-1072))))) -((-1257 ((|#2| (-1 |#2| |#1|) (-1072) (-564 |#1|)) 18))) -(((-276 |#1| |#2|) (-10 -7 (-15 -1257 (|#2| (-1 |#2| |#1|) (-1072) (-564 |#1|)))) (-281) (-1125)) (T -276)) -((-1257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-564 *6)) (-4 *6 (-281)) (-4 *2 (-1125)) (-5 *1 (-276 *6 *2))))) -(-10 -7 (-15 -1257 (|#2| (-1 |#2| |#1|) (-1072) (-564 |#1|)))) -((-1257 ((|#2| (-1 |#2| |#1|) (-564 |#1|)) 17))) -(((-277 |#1| |#2|) (-10 -7 (-15 -1257 (|#2| (-1 |#2| |#1|) (-564 |#1|)))) (-281) (-281)) (T -277)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-564 *5)) (-4 *5 (-281)) (-4 *2 (-281)) (-5 *1 (-277 *5 *2))))) -(-10 -7 (-15 -1257 (|#2| (-1 |#2| |#1|) (-564 |#1|)))) -((-3486 (((-108) (-205)) 10))) -(((-278 |#1| |#2|) (-10 -7 (-15 -3486 ((-108) (-205)))) (-205) (-205)) (T -278)) -((-3486 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3486 ((-108) (-205)))) -((-1356 (((-1070 (-205)) (-294 (-205)) (-591 (-1089)) (-1013 (-781 (-205)))) 92)) (-3034 (((-1070 (-205)) (-1171 (-294 (-205))) (-591 (-1089)) (-1013 (-781 (-205)))) 106) (((-1070 (-205)) (-294 (-205)) (-591 (-1089)) (-1013 (-781 (-205)))) 61)) (-2425 (((-591 (-1072)) (-1070 (-205))) NIL)) (-3851 (((-591 (-205)) (-294 (-205)) (-1089) (-1013 (-781 (-205)))) 58)) (-2079 (((-591 (-205)) (-885 (-385 (-525))) (-1089) (-1013 (-781 (-205)))) 49)) (-1782 (((-591 (-1072)) (-591 (-205))) NIL)) (-1276 (((-205) (-1013 (-781 (-205)))) 25)) (-2041 (((-205) (-1013 (-781 (-205)))) 26)) (-2952 (((-108) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 54)) (-2589 (((-1072) (-205)) NIL))) -(((-279) (-10 -7 (-15 -1276 ((-205) (-1013 (-781 (-205))))) (-15 -2041 ((-205) (-1013 (-781 (-205))))) (-15 -2952 ((-108) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3851 ((-591 (-205)) (-294 (-205)) (-1089) (-1013 (-781 (-205))))) (-15 -1356 ((-1070 (-205)) (-294 (-205)) (-591 (-1089)) (-1013 (-781 (-205))))) (-15 -3034 ((-1070 (-205)) (-294 (-205)) (-591 (-1089)) (-1013 (-781 (-205))))) (-15 -3034 ((-1070 (-205)) (-1171 (-294 (-205))) (-591 (-1089)) (-1013 (-781 (-205))))) (-15 -2079 ((-591 (-205)) (-885 (-385 (-525))) (-1089) (-1013 (-781 (-205))))) (-15 -2589 ((-1072) (-205))) (-15 -1782 ((-591 (-1072)) (-591 (-205)))) (-15 -2425 ((-591 (-1072)) (-1070 (-205)))))) (T -279)) -((-2425 (*1 *2 *3) (-12 (-5 *3 (-1070 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-279)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-591 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-279)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1072)) (-5 *1 (-279)))) (-2079 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-385 (-525)))) (-5 *4 (-1089)) (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-591 (-205))) (-5 *1 (-279)))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 (-294 (-205)))) (-5 *4 (-591 (-1089))) (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-1070 (-205))) (-5 *1 (-279)))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-591 (-1089))) (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-1070 (-205))) (-5 *1 (-279)))) (-1356 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-591 (-1089))) (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-1070 (-205))) (-5 *1 (-279)))) (-3851 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1089)) (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-591 (-205))) (-5 *1 (-279)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-108)) (-5 *1 (-279)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) (-1276 (*1 *2 *3) (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))) -(-10 -7 (-15 -1276 ((-205) (-1013 (-781 (-205))))) (-15 -2041 ((-205) (-1013 (-781 (-205))))) (-15 -2952 ((-108) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3851 ((-591 (-205)) (-294 (-205)) (-1089) (-1013 (-781 (-205))))) (-15 -1356 ((-1070 (-205)) (-294 (-205)) (-591 (-1089)) (-1013 (-781 (-205))))) (-15 -3034 ((-1070 (-205)) (-294 (-205)) (-591 (-1089)) (-1013 (-781 (-205))))) (-15 -3034 ((-1070 (-205)) (-1171 (-294 (-205))) (-591 (-1089)) (-1013 (-781 (-205))))) (-15 -2079 ((-591 (-205)) (-885 (-385 (-525))) (-1089) (-1013 (-781 (-205))))) (-15 -2589 ((-1072) (-205))) (-15 -1782 ((-591 (-1072)) (-591 (-205)))) (-15 -2425 ((-591 (-1072)) (-1070 (-205))))) -((-3585 (((-591 (-564 $)) $) 30)) (-3449 (($ $ (-273 $)) 81) (($ $ (-591 (-273 $))) 123) (($ $ (-591 (-564 $)) (-591 $)) NIL)) (-4174 (((-3 (-564 $) "failed") $) 113)) (-3341 (((-564 $) $) 112)) (-3625 (($ $) 19) (($ (-591 $)) 56)) (-3714 (((-591 (-110)) $) 38)) (-3259 (((-110) (-110)) 91)) (-2116 (((-108) $) 131)) (-1257 (($ (-1 $ $) (-564 $)) 89)) (-3415 (((-3 (-564 $) "failed") $) 93)) (-2899 (($ (-110) $) 61) (($ (-110) (-591 $)) 100)) (-3029 (((-108) $ (-110)) 117) (((-108) $ (-1089)) 116)) (-3457 (((-712) $) 46)) (-4064 (((-108) $ $) 59) (((-108) $ (-1089)) 51)) (-2882 (((-108) $) 129)) (-1980 (($ $ (-564 $) $) NIL) (($ $ (-591 (-564 $)) (-591 $)) NIL) (($ $ (-591 (-273 $))) 121) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ $))) 84) (($ $ (-591 (-1089)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-1089) (-1 $ (-591 $))) 69) (($ $ (-1089) (-1 $ $)) 75) (($ $ (-591 (-110)) (-591 (-1 $ $))) 83) (($ $ (-591 (-110)) (-591 (-1 $ (-591 $)))) 85) (($ $ (-110) (-1 $ (-591 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-1881 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-591 $)) 109)) (-1390 (($ $) 53) (($ $ $) 119)) (-3800 (($ $) 17) (($ (-591 $)) 55)) (-2754 (((-108) (-110)) 22))) -(((-280 |#1|) (-10 -8 (-15 -2116 ((-108) |#1|)) (-15 -2882 ((-108) |#1|)) (-15 -1980 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-110) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 (-1 |#1| |#1|)))) (-15 -1980 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-1089) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-1 |#1| |#1|)))) (-15 -4064 ((-108) |#1| (-1089))) (-15 -4064 ((-108) |#1| |#1|)) (-15 -1257 (|#1| (-1 |#1| |#1|) (-564 |#1|))) (-15 -2899 (|#1| (-110) (-591 |#1|))) (-15 -2899 (|#1| (-110) |#1|)) (-15 -3029 ((-108) |#1| (-1089))) (-15 -3029 ((-108) |#1| (-110))) (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -3714 ((-591 (-110)) |#1|)) (-15 -3585 ((-591 (-564 |#1|)) |#1|)) (-15 -3415 ((-3 (-564 |#1|) "failed") |#1|)) (-15 -3457 ((-712) |#1|)) (-15 -1390 (|#1| |#1| |#1|)) (-15 -1390 (|#1| |#1|)) (-15 -3625 (|#1| (-591 |#1|))) (-15 -3625 (|#1| |#1|)) (-15 -3800 (|#1| (-591 |#1|))) (-15 -3800 (|#1| |#1|)) (-15 -3449 (|#1| |#1| (-591 (-564 |#1|)) (-591 |#1|))) (-15 -3449 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -3449 (|#1| |#1| (-273 |#1|))) (-15 -1881 (|#1| (-110) (-591 |#1|))) (-15 -1881 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-564 |#1|)) (-591 |#1|))) (-15 -1980 (|#1| |#1| (-564 |#1|) |#1|)) (-15 -3341 ((-564 |#1|) |#1|)) (-15 -4174 ((-3 (-564 |#1|) "failed") |#1|))) (-281)) (T -280)) -((-3259 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281))))) -(-10 -8 (-15 -2116 ((-108) |#1|)) (-15 -2882 ((-108) |#1|)) (-15 -1980 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-110) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 (-1 |#1| |#1|)))) (-15 -1980 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-1089) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-1 |#1| |#1|)))) (-15 -4064 ((-108) |#1| (-1089))) (-15 -4064 ((-108) |#1| |#1|)) (-15 -1257 (|#1| (-1 |#1| |#1|) (-564 |#1|))) (-15 -2899 (|#1| (-110) (-591 |#1|))) (-15 -2899 (|#1| (-110) |#1|)) (-15 -3029 ((-108) |#1| (-1089))) (-15 -3029 ((-108) |#1| (-110))) (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -3714 ((-591 (-110)) |#1|)) (-15 -3585 ((-591 (-564 |#1|)) |#1|)) (-15 -3415 ((-3 (-564 |#1|) "failed") |#1|)) (-15 -3457 ((-712) |#1|)) (-15 -1390 (|#1| |#1| |#1|)) (-15 -1390 (|#1| |#1|)) (-15 -3625 (|#1| (-591 |#1|))) (-15 -3625 (|#1| |#1|)) (-15 -3800 (|#1| (-591 |#1|))) (-15 -3800 (|#1| |#1|)) (-15 -3449 (|#1| |#1| (-591 (-564 |#1|)) (-591 |#1|))) (-15 -3449 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -3449 (|#1| |#1| (-273 |#1|))) (-15 -1881 (|#1| (-110) (-591 |#1|))) (-15 -1881 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-564 |#1|)) (-591 |#1|))) (-15 -1980 (|#1| |#1| (-564 |#1|) |#1|)) (-15 -3341 ((-564 |#1|) |#1|)) (-15 -4174 ((-3 (-564 |#1|) "failed") |#1|))) -((-2673 (((-108) $ $) 7)) (-3585 (((-591 (-564 $)) $) 44)) (-3449 (($ $ (-273 $)) 56) (($ $ (-591 (-273 $))) 55) (($ $ (-591 (-564 $)) (-591 $)) 54)) (-4174 (((-3 (-564 $) "failed") $) 69)) (-3341 (((-564 $) $) 68)) (-3625 (($ $) 51) (($ (-591 $)) 50)) (-3714 (((-591 (-110)) $) 43)) (-3259 (((-110) (-110)) 42)) (-2116 (((-108) $) 22 (|has| $ (-966 (-525))))) (-1873 (((-1085 $) (-564 $)) 25 (|has| $ (-975)))) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-1257 (($ (-1 $ $) (-564 $)) 36)) (-3415 (((-3 (-564 $) "failed") $) 46)) (-2621 (((-1072) $) 9)) (-2504 (((-591 (-564 $)) $) 45)) (-2899 (($ (-110) $) 38) (($ (-110) (-591 $)) 37)) (-3029 (((-108) $ (-110)) 40) (((-108) $ (-1089)) 39)) (-3457 (((-712) $) 47)) (-2937 (((-1036) $) 10)) (-4064 (((-108) $ $) 35) (((-108) $ (-1089)) 34)) (-2882 (((-108) $) 23 (|has| $ (-966 (-525))))) (-1980 (($ $ (-564 $) $) 67) (($ $ (-591 (-564 $)) (-591 $)) 66) (($ $ (-591 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-591 $) (-591 $)) 62) (($ $ (-591 (-1089)) (-591 (-1 $ $))) 33) (($ $ (-591 (-1089)) (-591 (-1 $ (-591 $)))) 32) (($ $ (-1089) (-1 $ (-591 $))) 31) (($ $ (-1089) (-1 $ $)) 30) (($ $ (-591 (-110)) (-591 (-1 $ $))) 29) (($ $ (-591 (-110)) (-591 (-1 $ (-591 $)))) 28) (($ $ (-110) (-1 $ (-591 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-1881 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-591 $)) 57)) (-1390 (($ $) 49) (($ $ $) 48)) (-1341 (($ $) 24 (|has| $ (-975)))) (-2686 (((-796) $) 11) (($ (-564 $)) 70)) (-3800 (($ $) 53) (($ (-591 $)) 52)) (-2754 (((-108) (-110)) 41)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18))) +(-13 (-976) (-107 $ $) (-10 -7 (-6 -4247))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-3659 (($ (-1090) (-1090) (-1023) $) 16)) (-2174 (($ (-1090) (-592 (-898)) $) 21)) (-3161 (((-592 (-1006)) $) 9)) (-3298 (((-3 (-1023) "failed") (-1090) (-1090) $) 15)) (-3437 (((-3 (-592 (-898)) "failed") (-1090) $) 20)) (-3266 (($) 6)) (-1915 (($) 22)) (-4044 (((-797) $) 26)) (-2207 (($) 23))) +(((-270) (-13 (-566 (-797)) (-10 -8 (-15 -3266 ($)) (-15 -3161 ((-592 (-1006)) $)) (-15 -3298 ((-3 (-1023) "failed") (-1090) (-1090) $)) (-15 -3659 ($ (-1090) (-1090) (-1023) $)) (-15 -3437 ((-3 (-592 (-898)) "failed") (-1090) $)) (-15 -2174 ($ (-1090) (-592 (-898)) $)) (-15 -1915 ($)) (-15 -2207 ($))))) (T -270)) +((-3266 (*1 *1) (-5 *1 (-270))) (-3161 (*1 *2 *1) (-12 (-5 *2 (-592 (-1006))) (-5 *1 (-270)))) (-3298 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-1023)) (-5 *1 (-270)))) (-3659 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1090)) (-5 *3 (-1023)) (-5 *1 (-270)))) (-3437 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-592 (-898))) (-5 *1 (-270)))) (-2174 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-898))) (-5 *1 (-270)))) (-1915 (*1 *1) (-5 *1 (-270))) (-2207 (*1 *1) (-5 *1 (-270)))) +(-13 (-566 (-797)) (-10 -8 (-15 -3266 ($)) (-15 -3161 ((-592 (-1006)) $)) (-15 -3298 ((-3 (-1023) "failed") (-1090) (-1090) $)) (-15 -3659 ($ (-1090) (-1090) (-1023) $)) (-15 -3437 ((-3 (-592 (-898)) "failed") (-1090) $)) (-15 -2174 ($ (-1090) (-592 (-898)) $)) (-15 -1915 ($)) (-15 -2207 ($)))) +((-1463 (((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|)))) 85)) (-3522 (((-592 (-632 (-385 (-886 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|)))))) (-632 (-385 (-886 |#1|)))) 80) (((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))) (-713) (-713)) 38)) (-3455 (((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|)))) 82)) (-1391 (((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|)))) 62)) (-1445 (((-592 (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (-632 (-385 (-886 |#1|)))) 61)) (-2867 (((-886 |#1|) (-632 (-385 (-886 |#1|)))) 50) (((-886 |#1|) (-632 (-385 (-886 |#1|))) (-1090)) 51))) +(((-271 |#1|) (-10 -7 (-15 -2867 ((-886 |#1|) (-632 (-385 (-886 |#1|))) (-1090))) (-15 -2867 ((-886 |#1|) (-632 (-385 (-886 |#1|))))) (-15 -1445 ((-592 (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (-632 (-385 (-886 |#1|))))) (-15 -1391 ((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))))) (-15 -3522 ((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))) (-713) (-713))) (-15 -3522 ((-592 (-632 (-385 (-886 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|)))))) (-632 (-385 (-886 |#1|))))) (-15 -1463 ((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|))))) (-15 -3455 ((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|)))))) (-429)) (T -271)) +((-3455 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-886 *4)))))) (-1463 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4)))) (|:| |geneigvec| (-592 (-632 (-385 (-886 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-886 *4)))))) (-3522 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-385 (-886 *5)) (-1080 (-1090) (-886 *5)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 *4)))) (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-886 *5)))))) (-3522 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-385 (-886 *6)) (-1080 (-1090) (-886 *6)))) (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *6))))) (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-886 *6)))))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-385 (-886 *5)) (-1080 (-1090) (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-886 *5)))))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 *4)))) (-4 *4 (-429)) (-5 *2 (-592 (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4))))) (-5 *1 (-271 *4)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 *4)))) (-5 *2 (-886 *4)) (-5 *1 (-271 *4)) (-4 *4 (-429)))) (-2867 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-886 *5)))) (-5 *4 (-1090)) (-5 *2 (-886 *5)) (-5 *1 (-271 *5)) (-4 *5 (-429))))) +(-10 -7 (-15 -2867 ((-886 |#1|) (-632 (-385 (-886 |#1|))) (-1090))) (-15 -2867 ((-886 |#1|) (-632 (-385 (-886 |#1|))))) (-15 -1445 ((-592 (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (-632 (-385 (-886 |#1|))))) (-15 -1391 ((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))))) (-15 -3522 ((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))) (-713) (-713))) (-15 -3522 ((-592 (-632 (-385 (-886 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|)))))) (-632 (-385 (-886 |#1|))))) (-15 -1463 ((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|))))) (-15 -3455 ((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|)))))) +((-2868 (((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)) 14))) +(((-272 |#1| |#2|) (-10 -7 (-15 -2868 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)))) (-1126) (-1126)) (T -272)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6))))) +(-10 -7 (-15 -2868 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2464 (((-108) $) NIL (|has| |#1| (-21)))) (-1830 (($ $) 23)) (-3004 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3687 (($ $ $) 94 (|has| |#1| (-281)))) (-1957 (($) NIL (-3215 (|has| |#1| (-21)) (|has| |#1| (-669))) CONST)) (-3557 (($ $) 8 (|has| |#1| (-21)))) (-1842 (((-3 $ "failed") $) 69 (|has| |#1| (-669)))) (-1804 ((|#1| $) 22)) (-1645 (((-3 $ "failed") $) 67 (|has| |#1| (-669)))) (-2507 (((-108) $) NIL (|has| |#1| (-669)))) (-2868 (($ (-1 |#1| |#1|) $) 25)) (-1795 ((|#1| $) 9)) (-2062 (($ $) 58 (|has| |#1| (-21)))) (-2344 (((-3 $ "failed") $) 68 (|has| |#1| (-669)))) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3243 (($ $) 71 (-3215 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1403 (((-592 $) $) 20 (|has| |#1| (-517)))) (-2168 (($ $ $) 35 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 $)) 38 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-1090) |#1|) 28 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 32 (|has| |#1| (-486 (-1090) |#1|)))) (-2360 (($ |#1| |#1|) 18)) (-2374 (((-128)) 89 (|has| |#1| (-341)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 86 (|has| |#1| (-834 (-1090))))) (-4025 (($ $ $) NIL (|has| |#1| (-450)))) (-1573 (($ $ $) NIL (|has| |#1| (-450)))) (-4044 (($ (-525)) NIL (|has| |#1| (-976))) (((-108) $) 46 (|has| |#1| (-1019))) (((-797) $) 45 (|has| |#1| (-1019)))) (-2502 (((-713)) 74 (|has| |#1| (-976)))) (-1594 (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-855)) NIL (|has| |#1| (-1031)))) (-1436 (($) 56 (|has| |#1| (-21)) CONST)) (-1449 (($) 64 (|has| |#1| (-669)) CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090))))) (-3899 (($ |#1| |#1|) 21) (((-108) $ $) 41 (|has| |#1| (-1019)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 91 (-3215 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-4033 (($ |#1| $) 54 (|has| |#1| (-21))) (($ $ |#1|) 55 (|has| |#1| (-21))) (($ $ $) 53 (|has| |#1| (-21))) (($ $) 52 (|has| |#1| (-21)))) (-4017 (($ |#1| $) 49 (|has| |#1| (-25))) (($ $ |#1|) 50 (|has| |#1| (-25))) (($ $ $) 48 (|has| |#1| (-25)))) (** (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-855)) NIL (|has| |#1| (-1031)))) (* (($ $ |#1|) 62 (|has| |#1| (-1031))) (($ |#1| $) 61 (|has| |#1| (-1031))) (($ $ $) 60 (|has| |#1| (-1031))) (($ (-525) $) 76 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-855) $) NIL (|has| |#1| (-25))))) +(((-273 |#1|) (-13 (-1126) (-10 -8 (-15 -3899 ($ |#1| |#1|)) (-15 -2360 ($ |#1| |#1|)) (-15 -1830 ($ $)) (-15 -1795 (|#1| $)) (-15 -1804 (|#1| $)) (-15 -2868 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1090) |#1|)) (-6 (-486 (-1090) |#1|)) |%noBranch|) (IF (|has| |#1| (-1019)) (PROGN (-6 (-1019)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -2168 ($ $ $)) (-15 -2168 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4017 ($ |#1| $)) (-15 -4017 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2062 ($ $)) (-15 -3557 ($ $)) (-15 -4033 ($ |#1| $)) (-15 -4033 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-6 (-1031)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -2344 ((-3 $ "failed") $)) (-15 -1842 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -2344 ((-3 $ "failed") $)) (-15 -1842 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-6 (-976)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -1403 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-834 (-1090))) (-6 (-834 (-1090))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1179 |#1|)) (-15 -4047 ($ $ $)) (-15 -3243 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -3687 ($ $ $)) |%noBranch|))) (-1126)) (T -273)) +((-3899 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-2360 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-1830 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-1795 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-1804 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-273 *3)))) (-2168 (*1 *1 *1 *1) (-12 (-4 *2 (-288 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)) (-5 *1 (-273 *2)))) (-2168 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1019)) (-4 *3 (-1126)) (-5 *1 (-273 *3)))) (-4017 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1126)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1126)))) (-2062 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) (-3557 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) (-4033 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) (-4033 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) (-2344 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1126)))) (-1842 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1126)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517)) (-4 *3 (-1126)))) (-3687 (*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1126)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1031)) (-4 *2 (-1126)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1031)) (-4 *2 (-1126)))) (-4047 (*1 *1 *1 *1) (-3215 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1126))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1126))))) (-3243 (*1 *1 *1) (-3215 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1126))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1126)))))) +(-13 (-1126) (-10 -8 (-15 -3899 ($ |#1| |#1|)) (-15 -2360 ($ |#1| |#1|)) (-15 -1830 ($ $)) (-15 -1795 (|#1| $)) (-15 -1804 (|#1| $)) (-15 -2868 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1090) |#1|)) (-6 (-486 (-1090) |#1|)) |%noBranch|) (IF (|has| |#1| (-1019)) (PROGN (-6 (-1019)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -2168 ($ $ $)) (-15 -2168 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4017 ($ |#1| $)) (-15 -4017 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2062 ($ $)) (-15 -3557 ($ $)) (-15 -4033 ($ |#1| $)) (-15 -4033 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-6 (-1031)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -2344 ((-3 $ "failed") $)) (-15 -1842 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -2344 ((-3 $ "failed") $)) (-15 -1842 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-6 (-976)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -1403 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-834 (-1090))) (-6 (-834 (-1090))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1179 |#1|)) (-15 -4047 ($ $ $)) (-15 -3243 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -3687 ($ $ $)) |%noBranch|))) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2792 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#2| $ |#1| |#2|) NIL)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 |#2| "failed") |#1| $) NIL)) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) NIL)) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) NIL)) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 ((|#1| $) NIL (|has| |#1| (-789)))) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2112 ((|#1| $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-2183 (((-592 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-2379 (((-592 |#1|) $) NIL)) (-2030 (((-108) |#1| $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1683 ((|#2| $) NIL (|has| |#1| (-789)))) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-4044 (((-797) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-274 |#1| |#2|) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) (-1019) (-1019)) (T -274)) +NIL +(-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) +((-2263 (((-290) (-1073) (-592 (-1073))) 16) (((-290) (-1073) (-1073)) 15) (((-290) (-592 (-1073))) 14) (((-290) (-1073)) 12))) +(((-275) (-10 -7 (-15 -2263 ((-290) (-1073))) (-15 -2263 ((-290) (-592 (-1073)))) (-15 -2263 ((-290) (-1073) (-1073))) (-15 -2263 ((-290) (-1073) (-592 (-1073)))))) (T -275)) +((-2263 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1073))) (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-275)))) (-2263 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-275)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-290)) (-5 *1 (-275)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-275))))) +(-10 -7 (-15 -2263 ((-290) (-1073))) (-15 -2263 ((-290) (-592 (-1073)))) (-15 -2263 ((-290) (-1073) (-1073))) (-15 -2263 ((-290) (-1073) (-592 (-1073))))) +((-2868 ((|#2| (-1 |#2| |#1|) (-1073) (-565 |#1|)) 18))) +(((-276 |#1| |#2|) (-10 -7 (-15 -2868 (|#2| (-1 |#2| |#1|) (-1073) (-565 |#1|)))) (-281) (-1126)) (T -276)) +((-2868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-565 *6)) (-4 *6 (-281)) (-4 *2 (-1126)) (-5 *1 (-276 *6 *2))))) +(-10 -7 (-15 -2868 (|#2| (-1 |#2| |#1|) (-1073) (-565 |#1|)))) +((-2868 ((|#2| (-1 |#2| |#1|) (-565 |#1|)) 17))) +(((-277 |#1| |#2|) (-10 -7 (-15 -2868 (|#2| (-1 |#2| |#1|) (-565 |#1|)))) (-281) (-281)) (T -277)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-565 *5)) (-4 *5 (-281)) (-4 *2 (-281)) (-5 *1 (-277 *5 *2))))) +(-10 -7 (-15 -2868 (|#2| (-1 |#2| |#1|) (-565 |#1|)))) +((-2745 (((-108) (-205)) 10))) +(((-278 |#1| |#2|) (-10 -7 (-15 -2745 ((-108) (-205)))) (-205) (-205)) (T -278)) +((-2745 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2745 ((-108) (-205)))) +((-1708 (((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205)))) 92)) (-3240 (((-1071 (-205)) (-1172 (-294 (-205))) (-592 (-1090)) (-1014 (-782 (-205)))) 106) (((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205)))) 61)) (-3890 (((-592 (-1073)) (-1071 (-205))) NIL)) (-3859 (((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205)))) 58)) (-3896 (((-592 (-205)) (-886 (-385 (-525))) (-1090) (-1014 (-782 (-205)))) 49)) (-3753 (((-592 (-1073)) (-592 (-205))) NIL)) (-1798 (((-205) (-1014 (-782 (-205)))) 25)) (-1765 (((-205) (-1014 (-782 (-205)))) 26)) (-3769 (((-108) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 54)) (-2317 (((-1073) (-205)) NIL))) +(((-279) (-10 -7 (-15 -1798 ((-205) (-1014 (-782 (-205))))) (-15 -1765 ((-205) (-1014 (-782 (-205))))) (-15 -3769 ((-108) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3859 ((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205))))) (-15 -1708 ((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3240 ((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3240 ((-1071 (-205)) (-1172 (-294 (-205))) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3896 ((-592 (-205)) (-886 (-385 (-525))) (-1090) (-1014 (-782 (-205))))) (-15 -2317 ((-1073) (-205))) (-15 -3753 ((-592 (-1073)) (-592 (-205)))) (-15 -3890 ((-592 (-1073)) (-1071 (-205)))))) (T -279)) +((-3890 (*1 *2 *3) (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-279)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-279)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-279)))) (-3896 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *4 (-1090)) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-3240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *4 (-592 (-1090))) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279)))) (-3240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1090))) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279)))) (-1708 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1090))) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279)))) (-3859 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1090)) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-108)) (-5 *1 (-279)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))) +(-10 -7 (-15 -1798 ((-205) (-1014 (-782 (-205))))) (-15 -1765 ((-205) (-1014 (-782 (-205))))) (-15 -3769 ((-108) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3859 ((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205))))) (-15 -1708 ((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3240 ((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3240 ((-1071 (-205)) (-1172 (-294 (-205))) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3896 ((-592 (-205)) (-886 (-385 (-525))) (-1090) (-1014 (-782 (-205))))) (-15 -2317 ((-1073) (-205))) (-15 -3753 ((-592 (-1073)) (-592 (-205)))) (-15 -3890 ((-592 (-1073)) (-1071 (-205))))) +((-2249 (((-592 (-565 $)) $) 30)) (-3687 (($ $ (-273 $)) 81) (($ $ (-592 (-273 $))) 123) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-2769 (((-3 (-565 $) "failed") $) 113)) (-2068 (((-565 $) $) 112)) (-1759 (($ $) 19) (($ (-592 $)) 56)) (-4131 (((-592 (-110)) $) 38)) (-1885 (((-110) (-110)) 91)) (-2057 (((-108) $) 131)) (-2868 (($ (-1 $ $) (-565 $)) 89)) (-1688 (((-3 (-565 $) "failed") $) 93)) (-1996 (($ (-110) $) 61) (($ (-110) (-592 $)) 100)) (-4084 (((-108) $ (-110)) 117) (((-108) $ (-1090)) 116)) (-2138 (((-713) $) 46)) (-1680 (((-108) $ $) 59) (((-108) $ (-1090)) 51)) (-3524 (((-108) $) 129)) (-2168 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) 121) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) 84) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) 69) (($ $ (-1090) (-1 $ $)) 75) (($ $ (-592 (-110)) (-592 (-1 $ $))) 83) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 85) (($ $ (-110) (-1 $ (-592 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-1496 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-592 $)) 109)) (-3080 (($ $) 53) (($ $ $) 119)) (-3882 (($ $) 17) (($ (-592 $)) 55)) (-3712 (((-108) (-110)) 22))) +(((-280 |#1|) (-10 -8 (-15 -2057 ((-108) |#1|)) (-15 -3524 ((-108) |#1|)) (-15 -2168 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2168 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-1090) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| |#1|)))) (-15 -1680 ((-108) |#1| (-1090))) (-15 -1680 ((-108) |#1| |#1|)) (-15 -2868 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -1996 (|#1| (-110) (-592 |#1|))) (-15 -1996 (|#1| (-110) |#1|)) (-15 -4084 ((-108) |#1| (-1090))) (-15 -4084 ((-108) |#1| (-110))) (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -4131 ((-592 (-110)) |#1|)) (-15 -2249 ((-592 (-565 |#1|)) |#1|)) (-15 -1688 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -2138 ((-713) |#1|)) (-15 -3080 (|#1| |#1| |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1759 (|#1| (-592 |#1|))) (-15 -1759 (|#1| |#1|)) (-15 -3882 (|#1| (-592 |#1|))) (-15 -3882 (|#1| |#1|)) (-15 -3687 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3687 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3687 (|#1| |#1| (-273 |#1|))) (-15 -1496 (|#1| (-110) (-592 |#1|))) (-15 -1496 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2168 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -2068 ((-565 |#1|) |#1|)) (-15 -2769 ((-3 (-565 |#1|) "failed") |#1|))) (-281)) (T -280)) +((-1885 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281))))) +(-10 -8 (-15 -2057 ((-108) |#1|)) (-15 -3524 ((-108) |#1|)) (-15 -2168 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2168 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-1090) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| |#1|)))) (-15 -1680 ((-108) |#1| (-1090))) (-15 -1680 ((-108) |#1| |#1|)) (-15 -2868 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -1996 (|#1| (-110) (-592 |#1|))) (-15 -1996 (|#1| (-110) |#1|)) (-15 -4084 ((-108) |#1| (-1090))) (-15 -4084 ((-108) |#1| (-110))) (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -4131 ((-592 (-110)) |#1|)) (-15 -2249 ((-592 (-565 |#1|)) |#1|)) (-15 -1688 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -2138 ((-713) |#1|)) (-15 -3080 (|#1| |#1| |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1759 (|#1| (-592 |#1|))) (-15 -1759 (|#1| |#1|)) (-15 -3882 (|#1| (-592 |#1|))) (-15 -3882 (|#1| |#1|)) (-15 -3687 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3687 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3687 (|#1| |#1| (-273 |#1|))) (-15 -1496 (|#1| (-110) (-592 |#1|))) (-15 -1496 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2168 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -2068 ((-565 |#1|) |#1|)) (-15 -2769 ((-3 (-565 |#1|) "failed") |#1|))) +((-4028 (((-108) $ $) 7)) (-2249 (((-592 (-565 $)) $) 44)) (-3687 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-2769 (((-3 (-565 $) "failed") $) 69)) (-2068 (((-565 $) $) 68)) (-1759 (($ $) 51) (($ (-592 $)) 50)) (-4131 (((-592 (-110)) $) 43)) (-1885 (((-110) (-110)) 42)) (-2057 (((-108) $) 22 (|has| $ (-967 (-525))))) (-2605 (((-1086 $) (-565 $)) 25 (|has| $ (-976)))) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-2868 (($ (-1 $ $) (-565 $)) 36)) (-1688 (((-3 (-565 $) "failed") $) 46)) (-1707 (((-1073) $) 9)) (-1304 (((-592 (-565 $)) $) 45)) (-1996 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-4084 (((-108) $ (-110)) 40) (((-108) $ (-1090)) 39)) (-2138 (((-713) $) 47)) (-3027 (((-1037) $) 10)) (-1680 (((-108) $ $) 35) (((-108) $ (-1090)) 34)) (-3524 (((-108) $) 23 (|has| $ (-967 (-525))))) (-2168 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1090)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1090) (-1 $ (-592 $))) 31) (($ $ (-1090) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-1496 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-3080 (($ $) 49) (($ $ $) 48)) (-2775 (($ $) 24 (|has| $ (-976)))) (-4044 (((-797) $) 11) (($ (-565 $)) 70)) (-3882 (($ $) 53) (($ (-592 $)) 52)) (-3712 (((-108) (-110)) 41)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18))) (((-281) (-131)) (T -281)) -((-1881 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1881 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1881 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1881 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1881 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-591 *1)) (-4 *1 (-281)))) (-3449 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))) (-3449 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-273 *1))) (-4 *1 (-281)))) (-3449 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-564 *1))) (-5 *3 (-591 *1)) (-4 *1 (-281)))) (-3800 (*1 *1 *1) (-4 *1 (-281))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-281)))) (-3625 (*1 *1 *1) (-4 *1 (-281))) (-3625 (*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-281)))) (-1390 (*1 *1 *1) (-4 *1 (-281))) (-1390 (*1 *1 *1 *1) (-4 *1 (-281))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-712)))) (-3415 (*1 *2 *1) (|partial| -12 (-5 *2 (-564 *1)) (-4 *1 (-281)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-591 (-564 *1))) (-4 *1 (-281)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-591 (-564 *1))) (-4 *1 (-281)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-591 (-110))))) (-3259 (*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-2754 (*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3029 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3029 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1089)) (-5 *2 (-108)))) (-2899 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-2899 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-591 *1)) (-4 *1 (-281)))) (-1257 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-564 *1)) (-4 *1 (-281)))) (-4064 (*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))) (-4064 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1089)) (-5 *2 (-108)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-591 (-1 *1 *1))) (-4 *1 (-281)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-591 (-1 *1 (-591 *1)))) (-4 *1 (-281)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-591 *1))) (-4 *1 (-281)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-110))) (-5 *3 (-591 (-1 *1 *1))) (-4 *1 (-281)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-110))) (-5 *3 (-591 (-1 *1 (-591 *1)))) (-4 *1 (-281)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-591 *1))) (-4 *1 (-281)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-564 *1)) (-4 *1 (-975)) (-4 *1 (-281)) (-5 *2 (-1085 *1)))) (-1341 (*1 *1 *1) (-12 (-4 *1 (-975)) (-4 *1 (-281)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-966 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-966 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))) -(-13 (-788) (-966 (-564 $)) (-486 (-564 $) $) (-288 $) (-10 -8 (-15 -1881 ($ (-110) $)) (-15 -1881 ($ (-110) $ $)) (-15 -1881 ($ (-110) $ $ $)) (-15 -1881 ($ (-110) $ $ $ $)) (-15 -1881 ($ (-110) (-591 $))) (-15 -3449 ($ $ (-273 $))) (-15 -3449 ($ $ (-591 (-273 $)))) (-15 -3449 ($ $ (-591 (-564 $)) (-591 $))) (-15 -3800 ($ $)) (-15 -3800 ($ (-591 $))) (-15 -3625 ($ $)) (-15 -3625 ($ (-591 $))) (-15 -1390 ($ $)) (-15 -1390 ($ $ $)) (-15 -3457 ((-712) $)) (-15 -3415 ((-3 (-564 $) "failed") $)) (-15 -2504 ((-591 (-564 $)) $)) (-15 -3585 ((-591 (-564 $)) $)) (-15 -3714 ((-591 (-110)) $)) (-15 -3259 ((-110) (-110))) (-15 -2754 ((-108) (-110))) (-15 -3029 ((-108) $ (-110))) (-15 -3029 ((-108) $ (-1089))) (-15 -2899 ($ (-110) $)) (-15 -2899 ($ (-110) (-591 $))) (-15 -1257 ($ (-1 $ $) (-564 $))) (-15 -4064 ((-108) $ $)) (-15 -4064 ((-108) $ (-1089))) (-15 -1980 ($ $ (-591 (-1089)) (-591 (-1 $ $)))) (-15 -1980 ($ $ (-591 (-1089)) (-591 (-1 $ (-591 $))))) (-15 -1980 ($ $ (-1089) (-1 $ (-591 $)))) (-15 -1980 ($ $ (-1089) (-1 $ $))) (-15 -1980 ($ $ (-591 (-110)) (-591 (-1 $ $)))) (-15 -1980 ($ $ (-591 (-110)) (-591 (-1 $ (-591 $))))) (-15 -1980 ($ $ (-110) (-1 $ (-591 $)))) (-15 -1980 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-975)) (PROGN (-15 -1873 ((-1085 $) (-564 $))) (-15 -1341 ($ $))) |%noBranch|) (IF (|has| $ (-966 (-525))) (PROGN (-15 -2882 ((-108) $)) (-15 -2116 ((-108) $))) |%noBranch|))) -(((-97) . T) ((-565 (-796)) . T) ((-288 $) . T) ((-486 (-564 $) $) . T) ((-486 $ $) . T) ((-788) . T) ((-966 (-564 $)) . T) ((-1018) . T)) -((-2830 (((-591 |#1|) (-591 |#1|)) 10))) -(((-282 |#1|) (-10 -7 (-15 -2830 ((-591 |#1|) (-591 |#1|)))) (-786)) (T -282)) -((-2830 (*1 *2 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-786)) (-5 *1 (-282 *3))))) -(-10 -7 (-15 -2830 ((-591 |#1|) (-591 |#1|)))) -((-1257 (((-631 |#2|) (-1 |#2| |#1|) (-631 |#1|)) 17))) -(((-283 |#1| |#2|) (-10 -7 (-15 -1257 ((-631 |#2|) (-1 |#2| |#1|) (-631 |#1|)))) (-975) (-975)) (T -283)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-631 *5)) (-4 *5 (-975)) (-4 *6 (-975)) (-5 *2 (-631 *6)) (-5 *1 (-283 *5 *6))))) -(-10 -7 (-15 -1257 ((-631 |#2|) (-1 |#2| |#1|) (-631 |#1|)))) -((-3262 (((-1171 (-294 (-357))) (-1171 (-294 (-205)))) 105)) (-1611 (((-1013 (-781 (-205))) (-1013 (-781 (-357)))) 40)) (-2425 (((-591 (-1072)) (-1070 (-205))) 87)) (-3890 (((-294 (-357)) (-885 (-205))) 50)) (-3131 (((-205) (-885 (-205))) 46)) (-3715 (((-1072) (-357)) 169)) (-3757 (((-781 (-205)) (-781 (-357))) 34)) (-2600 (((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1171 (-294 (-205)))) 143)) (-4074 (((-964) (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964)))) 181) (((-964) (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))))) 179)) (-2928 (((-631 (-205)) (-591 (-205)) (-712)) 14)) (-3680 (((-1171 (-640)) (-591 (-205))) 94)) (-1782 (((-591 (-1072)) (-591 (-205))) 75)) (-3399 (((-3 (-294 (-205)) "failed") (-294 (-205))) 120)) (-3486 (((-108) (-205) (-1013 (-781 (-205)))) 109)) (-3915 (((-964) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) 198)) (-1276 (((-205) (-1013 (-781 (-205)))) 107)) (-2041 (((-205) (-1013 (-781 (-205)))) 108)) (-3365 (((-205) (-385 (-525))) 27)) (-3755 (((-1072) (-357)) 73)) (-2841 (((-205) (-357)) 17)) (-1327 (((-357) (-1171 (-294 (-205)))) 154)) (-1536 (((-294 (-205)) (-294 (-357))) 23)) (-3129 (((-385 (-525)) (-294 (-205))) 53)) (-2967 (((-294 (-385 (-525))) (-294 (-205))) 69)) (-1470 (((-294 (-357)) (-294 (-205))) 98)) (-3321 (((-205) (-294 (-205))) 54)) (-4117 (((-591 (-205)) (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) 64)) (-1218 (((-1013 (-781 (-205))) (-1013 (-781 (-205)))) 61)) (-2589 (((-1072) (-205)) 72)) (-3885 (((-640) (-205)) 90)) (-1803 (((-385 (-525)) (-205)) 55)) (-2471 (((-294 (-357)) (-205)) 49)) (-1300 (((-591 (-1013 (-781 (-205)))) (-591 (-1013 (-781 (-357))))) 43)) (-1624 (((-964) (-591 (-964))) 165) (((-964) (-964) (-964)) 162)) (-3847 (((-964) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-284) (-10 -7 (-15 -2841 ((-205) (-357))) (-15 -1536 ((-294 (-205)) (-294 (-357)))) (-15 -3757 ((-781 (-205)) (-781 (-357)))) (-15 -1611 ((-1013 (-781 (-205))) (-1013 (-781 (-357))))) (-15 -1300 ((-591 (-1013 (-781 (-205)))) (-591 (-1013 (-781 (-357)))))) (-15 -1803 ((-385 (-525)) (-205))) (-15 -3129 ((-385 (-525)) (-294 (-205)))) (-15 -3321 ((-205) (-294 (-205)))) (-15 -3399 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -1327 ((-357) (-1171 (-294 (-205))))) (-15 -2600 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1171 (-294 (-205))))) (-15 -2967 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -1218 ((-1013 (-781 (-205))) (-1013 (-781 (-205))))) (-15 -4117 ((-591 (-205)) (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))))) (-15 -3885 ((-640) (-205))) (-15 -3680 ((-1171 (-640)) (-591 (-205)))) (-15 -1470 ((-294 (-357)) (-294 (-205)))) (-15 -3262 ((-1171 (-294 (-357))) (-1171 (-294 (-205))))) (-15 -3486 ((-108) (-205) (-1013 (-781 (-205))))) (-15 -2589 ((-1072) (-205))) (-15 -3755 ((-1072) (-357))) (-15 -1782 ((-591 (-1072)) (-591 (-205)))) (-15 -2425 ((-591 (-1072)) (-1070 (-205)))) (-15 -1276 ((-205) (-1013 (-781 (-205))))) (-15 -2041 ((-205) (-1013 (-781 (-205))))) (-15 -1624 ((-964) (-964) (-964))) (-15 -1624 ((-964) (-591 (-964)))) (-15 -3715 ((-1072) (-357))) (-15 -4074 ((-964) (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))))) (-15 -4074 ((-964) (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964))))) (-15 -3847 ((-964) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3915 ((-964) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -3890 ((-294 (-357)) (-885 (-205)))) (-15 -3131 ((-205) (-885 (-205)))) (-15 -2471 ((-294 (-357)) (-205))) (-15 -3365 ((-205) (-385 (-525)))) (-15 -2928 ((-631 (-205)) (-591 (-205)) (-712))))) (T -284)) -((-2928 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-205))) (-5 *4 (-712)) (-5 *2 (-631 (-205))) (-5 *1 (-284)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-885 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-885 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *2 (-964)) (-5 *1 (-284)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-964)) (-5 *1 (-284)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964)))) (-5 *2 (-964)) (-5 *1 (-284)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))))) (-5 *2 (-964)) (-5 *1 (-284)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1072)) (-5 *1 (-284)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-591 (-964))) (-5 *2 (-964)) (-5 *1 (-284)))) (-1624 (*1 *2 *2 *2) (-12 (-5 *2 (-964)) (-5 *1 (-284)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-1276 (*1 *2 *3) (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-1070 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-284)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-591 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-284)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1072)) (-5 *1 (-284)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1072)) (-5 *1 (-284)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-781 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-284)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-1171 (-294 (-205)))) (-5 *2 (-1171 (-294 (-357)))) (-5 *1 (-284)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-3680 (*1 *2 *3) (-12 (-5 *3 (-591 (-205))) (-5 *2 (-1171 (-640))) (-5 *1 (-284)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-640)) (-5 *1 (-284)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-5 *2 (-591 (-205))) (-5 *1 (-284)))) (-1218 (*1 *2 *2) (-12 (-5 *2 (-1013 (-781 (-205)))) (-5 *1 (-284)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525)))) (-5 *1 (-284)))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-1171 (-294 (-205)))) (-5 *2 (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525)))) (-5 *1 (-284)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-1171 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))) (-3399 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-591 (-1013 (-781 (-357))))) (-5 *2 (-591 (-1013 (-781 (-205))))) (-5 *1 (-284)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-1013 (-781 (-357)))) (-5 *2 (-1013 (-781 (-205)))) (-5 *1 (-284)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-781 (-357))) (-5 *2 (-781 (-205))) (-5 *1 (-284)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-2841 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284))))) -(-10 -7 (-15 -2841 ((-205) (-357))) (-15 -1536 ((-294 (-205)) (-294 (-357)))) (-15 -3757 ((-781 (-205)) (-781 (-357)))) (-15 -1611 ((-1013 (-781 (-205))) (-1013 (-781 (-357))))) (-15 -1300 ((-591 (-1013 (-781 (-205)))) (-591 (-1013 (-781 (-357)))))) (-15 -1803 ((-385 (-525)) (-205))) (-15 -3129 ((-385 (-525)) (-294 (-205)))) (-15 -3321 ((-205) (-294 (-205)))) (-15 -3399 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -1327 ((-357) (-1171 (-294 (-205))))) (-15 -2600 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1171 (-294 (-205))))) (-15 -2967 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -1218 ((-1013 (-781 (-205))) (-1013 (-781 (-205))))) (-15 -4117 ((-591 (-205)) (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))))) (-15 -3885 ((-640) (-205))) (-15 -3680 ((-1171 (-640)) (-591 (-205)))) (-15 -1470 ((-294 (-357)) (-294 (-205)))) (-15 -3262 ((-1171 (-294 (-357))) (-1171 (-294 (-205))))) (-15 -3486 ((-108) (-205) (-1013 (-781 (-205))))) (-15 -2589 ((-1072) (-205))) (-15 -3755 ((-1072) (-357))) (-15 -1782 ((-591 (-1072)) (-591 (-205)))) (-15 -2425 ((-591 (-1072)) (-1070 (-205)))) (-15 -1276 ((-205) (-1013 (-781 (-205))))) (-15 -2041 ((-205) (-1013 (-781 (-205))))) (-15 -1624 ((-964) (-964) (-964))) (-15 -1624 ((-964) (-591 (-964)))) (-15 -3715 ((-1072) (-357))) (-15 -4074 ((-964) (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))))) (-15 -4074 ((-964) (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964))))) (-15 -3847 ((-964) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3915 ((-964) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -3890 ((-294 (-357)) (-885 (-205)))) (-15 -3131 ((-205) (-885 (-205)))) (-15 -2471 ((-294 (-357)) (-205))) (-15 -3365 ((-205) (-385 (-525)))) (-15 -2928 ((-631 (-205)) (-591 (-205)) (-712)))) -((-1965 (((-108) $ $) 11)) (-3265 (($ $ $) 15)) (-3239 (($ $ $) 14)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 44)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 53)) (-2124 (($ $ $) 21) (($ (-591 $)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3210 (((-3 $ "failed") $ $) 17)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 46))) -(((-285 |#1|) (-10 -8 (-15 -3188 ((-3 (-591 |#1|) "failed") (-591 |#1|) |#1|)) (-15 -3387 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3387 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3965 |#1|)) |#1| |#1|)) (-15 -3265 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -1965 ((-108) |#1| |#1|)) (-15 -2018 ((-3 (-591 |#1|) "failed") (-591 |#1|) |#1|)) (-15 -1550 ((-2 (|:| -2976 (-591 |#1|)) (|:| -3965 |#1|)) (-591 |#1|))) (-15 -2124 (|#1| (-591 |#1|))) (-15 -2124 (|#1| |#1| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#1|))) (-286)) (T -285)) -NIL -(-10 -8 (-15 -3188 ((-3 (-591 |#1|) "failed") (-591 |#1|) |#1|)) (-15 -3387 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3387 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3965 |#1|)) |#1| |#1|)) (-15 -3265 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -1965 ((-108) |#1| |#1|)) (-15 -2018 ((-3 (-591 |#1|) "failed") (-591 |#1|) |#1|)) (-15 -1550 ((-2 (|:| -2976 (-591 |#1|)) (|:| -3965 |#1|)) (-591 |#1|))) (-15 -2124 (|#1| (-591 |#1|))) (-15 -2124 (|#1| |#1| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-1965 (((-108) $ $) 59)) (-2055 (($) 17 T CONST)) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-3865 (((-108) $) 31)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +((-1496 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1496 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1496 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1496 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1496 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-3687 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))) (-3687 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281)))) (-3687 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-3882 (*1 *1 *1) (-4 *1 (-281))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-1759 (*1 *1 *1) (-4 *1 (-281))) (-1759 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-3080 (*1 *1 *1) (-4 *1 (-281))) (-3080 (*1 *1 *1 *1) (-4 *1 (-281))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713)))) (-1688 (*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110))))) (-1885 (*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3712 (*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-4084 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-4084 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1090)) (-5 *2 (-108)))) (-1996 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1996 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-565 *1)) (-4 *1 (-281)))) (-1680 (*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))) (-1680 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1090)) (-5 *2 (-108)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-976)) (-4 *1 (-281)) (-5 *2 (-1086 *1)))) (-2775 (*1 *1 *1) (-12 (-4 *1 (-976)) (-4 *1 (-281)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-967 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-967 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))) +(-13 (-789) (-967 (-565 $)) (-486 (-565 $) $) (-288 $) (-10 -8 (-15 -1496 ($ (-110) $)) (-15 -1496 ($ (-110) $ $)) (-15 -1496 ($ (-110) $ $ $)) (-15 -1496 ($ (-110) $ $ $ $)) (-15 -1496 ($ (-110) (-592 $))) (-15 -3687 ($ $ (-273 $))) (-15 -3687 ($ $ (-592 (-273 $)))) (-15 -3687 ($ $ (-592 (-565 $)) (-592 $))) (-15 -3882 ($ $)) (-15 -3882 ($ (-592 $))) (-15 -1759 ($ $)) (-15 -1759 ($ (-592 $))) (-15 -3080 ($ $)) (-15 -3080 ($ $ $)) (-15 -2138 ((-713) $)) (-15 -1688 ((-3 (-565 $) "failed") $)) (-15 -1304 ((-592 (-565 $)) $)) (-15 -2249 ((-592 (-565 $)) $)) (-15 -4131 ((-592 (-110)) $)) (-15 -1885 ((-110) (-110))) (-15 -3712 ((-108) (-110))) (-15 -4084 ((-108) $ (-110))) (-15 -4084 ((-108) $ (-1090))) (-15 -1996 ($ (-110) $)) (-15 -1996 ($ (-110) (-592 $))) (-15 -2868 ($ (-1 $ $) (-565 $))) (-15 -1680 ((-108) $ $)) (-15 -1680 ((-108) $ (-1090))) (-15 -2168 ($ $ (-592 (-1090)) (-592 (-1 $ $)))) (-15 -2168 ($ $ (-592 (-1090)) (-592 (-1 $ (-592 $))))) (-15 -2168 ($ $ (-1090) (-1 $ (-592 $)))) (-15 -2168 ($ $ (-1090) (-1 $ $))) (-15 -2168 ($ $ (-592 (-110)) (-592 (-1 $ $)))) (-15 -2168 ($ $ (-592 (-110)) (-592 (-1 $ (-592 $))))) (-15 -2168 ($ $ (-110) (-1 $ (-592 $)))) (-15 -2168 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-976)) (PROGN (-15 -2605 ((-1086 $) (-565 $))) (-15 -2775 ($ $))) |%noBranch|) (IF (|has| $ (-967 (-525))) (PROGN (-15 -3524 ((-108) $)) (-15 -2057 ((-108) $))) |%noBranch|))) +(((-97) . T) ((-566 (-797)) . T) ((-288 $) . T) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-789) . T) ((-967 (-565 $)) . T) ((-1019) . T)) +((-3008 (((-592 |#1|) (-592 |#1|)) 10))) +(((-282 |#1|) (-10 -7 (-15 -3008 ((-592 |#1|) (-592 |#1|)))) (-787)) (T -282)) +((-3008 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3))))) +(-10 -7 (-15 -3008 ((-592 |#1|) (-592 |#1|)))) +((-2868 (((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)) 17))) +(((-283 |#1| |#2|) (-10 -7 (-15 -2868 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)))) (-976) (-976)) (T -283)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-632 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-632 *6)) (-5 *1 (-283 *5 *6))))) +(-10 -7 (-15 -2868 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)))) +((-3939 (((-1172 (-294 (-357))) (-1172 (-294 (-205)))) 105)) (-2121 (((-1014 (-782 (-205))) (-1014 (-782 (-357)))) 40)) (-3890 (((-592 (-1073)) (-1071 (-205))) 87)) (-2359 (((-294 (-357)) (-886 (-205))) 50)) (-3037 (((-205) (-886 (-205))) 46)) (-1253 (((-1073) (-357)) 169)) (-2946 (((-782 (-205)) (-782 (-357))) 34)) (-3149 (((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1172 (-294 (-205)))) 143)) (-4123 (((-965) (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) 181) (((-965) (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))))) 179)) (-3471 (((-632 (-205)) (-592 (-205)) (-713)) 14)) (-3417 (((-1172 (-641)) (-592 (-205))) 94)) (-3753 (((-592 (-1073)) (-592 (-205))) 75)) (-2103 (((-3 (-294 (-205)) "failed") (-294 (-205))) 120)) (-2745 (((-108) (-205) (-1014 (-782 (-205)))) 109)) (-1512 (((-965) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) 198)) (-1798 (((-205) (-1014 (-782 (-205)))) 107)) (-1765 (((-205) (-1014 (-782 (-205)))) 108)) (-3711 (((-205) (-385 (-525))) 27)) (-2776 (((-1073) (-357)) 73)) (-3831 (((-205) (-357)) 17)) (-1852 (((-357) (-1172 (-294 (-205)))) 154)) (-3070 (((-294 (-205)) (-294 (-357))) 23)) (-2846 (((-385 (-525)) (-294 (-205))) 53)) (-1386 (((-294 (-385 (-525))) (-294 (-205))) 69)) (-3251 (((-294 (-357)) (-294 (-205))) 98)) (-1493 (((-205) (-294 (-205))) 54)) (-1396 (((-592 (-205)) (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) 64)) (-4232 (((-1014 (-782 (-205))) (-1014 (-782 (-205)))) 61)) (-2317 (((-1073) (-205)) 72)) (-2847 (((-641) (-205)) 90)) (-1306 (((-385 (-525)) (-205)) 55)) (-4030 (((-294 (-357)) (-205)) 49)) (-2923 (((-592 (-1014 (-782 (-205)))) (-592 (-1014 (-782 (-357))))) 43)) (-1810 (((-965) (-592 (-965))) 165) (((-965) (-965) (-965)) 162)) (-1831 (((-965) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-284) (-10 -7 (-15 -3831 ((-205) (-357))) (-15 -3070 ((-294 (-205)) (-294 (-357)))) (-15 -2946 ((-782 (-205)) (-782 (-357)))) (-15 -2121 ((-1014 (-782 (-205))) (-1014 (-782 (-357))))) (-15 -2923 ((-592 (-1014 (-782 (-205)))) (-592 (-1014 (-782 (-357)))))) (-15 -1306 ((-385 (-525)) (-205))) (-15 -2846 ((-385 (-525)) (-294 (-205)))) (-15 -1493 ((-205) (-294 (-205)))) (-15 -2103 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -1852 ((-357) (-1172 (-294 (-205))))) (-15 -3149 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1172 (-294 (-205))))) (-15 -1386 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -4232 ((-1014 (-782 (-205))) (-1014 (-782 (-205))))) (-15 -1396 ((-592 (-205)) (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))))) (-15 -2847 ((-641) (-205))) (-15 -3417 ((-1172 (-641)) (-592 (-205)))) (-15 -3251 ((-294 (-357)) (-294 (-205)))) (-15 -3939 ((-1172 (-294 (-357))) (-1172 (-294 (-205))))) (-15 -2745 ((-108) (-205) (-1014 (-782 (-205))))) (-15 -2317 ((-1073) (-205))) (-15 -2776 ((-1073) (-357))) (-15 -3753 ((-592 (-1073)) (-592 (-205)))) (-15 -3890 ((-592 (-1073)) (-1071 (-205)))) (-15 -1798 ((-205) (-1014 (-782 (-205))))) (-15 -1765 ((-205) (-1014 (-782 (-205))))) (-15 -1810 ((-965) (-965) (-965))) (-15 -1810 ((-965) (-592 (-965)))) (-15 -1253 ((-1073) (-357))) (-15 -4123 ((-965) (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))))) (-15 -4123 ((-965) (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))))) (-15 -1831 ((-965) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1512 ((-965) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -2359 ((-294 (-357)) (-886 (-205)))) (-15 -3037 ((-205) (-886 (-205)))) (-15 -4030 ((-294 (-357)) (-205))) (-15 -3711 ((-205) (-385 (-525)))) (-15 -3471 ((-632 (-205)) (-592 (-205)) (-713))))) (T -284)) +((-3471 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-284)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-886 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-886 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *2 (-965)) (-5 *1 (-284)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-965)) (-5 *1 (-284)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) (-5 *2 (-965)) (-5 *1 (-284)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *2 (-965)) (-5 *1 (-284)))) (-1253 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1073)) (-5 *1 (-284)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-592 (-965))) (-5 *2 (-965)) (-5 *1 (-284)))) (-1810 (*1 *2 *2 *2) (-12 (-5 *2 (-965)) (-5 *1 (-284)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-284)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-284)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1073)) (-5 *1 (-284)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-284)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *4 (-1014 (-782 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-284)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-1172 (-294 (-357)))) (-5 *1 (-284)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1172 (-641))) (-5 *1 (-284)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284)))) (-1396 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-5 *2 (-592 (-205))) (-5 *1 (-284)))) (-4232 (*1 *2 *2) (-12 (-5 *2 (-1014 (-782 (-205)))) (-5 *1 (-284)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525)))) (-5 *1 (-284)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525)))) (-5 *1 (-284)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))) (-2103 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-592 (-1014 (-782 (-357))))) (-5 *2 (-592 (-1014 (-782 (-205))))) (-5 *1 (-284)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-357)))) (-5 *2 (-1014 (-782 (-205)))) (-5 *1 (-284)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284))))) +(-10 -7 (-15 -3831 ((-205) (-357))) (-15 -3070 ((-294 (-205)) (-294 (-357)))) (-15 -2946 ((-782 (-205)) (-782 (-357)))) (-15 -2121 ((-1014 (-782 (-205))) (-1014 (-782 (-357))))) (-15 -2923 ((-592 (-1014 (-782 (-205)))) (-592 (-1014 (-782 (-357)))))) (-15 -1306 ((-385 (-525)) (-205))) (-15 -2846 ((-385 (-525)) (-294 (-205)))) (-15 -1493 ((-205) (-294 (-205)))) (-15 -2103 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -1852 ((-357) (-1172 (-294 (-205))))) (-15 -3149 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1172 (-294 (-205))))) (-15 -1386 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -4232 ((-1014 (-782 (-205))) (-1014 (-782 (-205))))) (-15 -1396 ((-592 (-205)) (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))))) (-15 -2847 ((-641) (-205))) (-15 -3417 ((-1172 (-641)) (-592 (-205)))) (-15 -3251 ((-294 (-357)) (-294 (-205)))) (-15 -3939 ((-1172 (-294 (-357))) (-1172 (-294 (-205))))) (-15 -2745 ((-108) (-205) (-1014 (-782 (-205))))) (-15 -2317 ((-1073) (-205))) (-15 -2776 ((-1073) (-357))) (-15 -3753 ((-592 (-1073)) (-592 (-205)))) (-15 -3890 ((-592 (-1073)) (-1071 (-205)))) (-15 -1798 ((-205) (-1014 (-782 (-205))))) (-15 -1765 ((-205) (-1014 (-782 (-205))))) (-15 -1810 ((-965) (-965) (-965))) (-15 -1810 ((-965) (-592 (-965)))) (-15 -1253 ((-1073) (-357))) (-15 -4123 ((-965) (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))))) (-15 -4123 ((-965) (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))))) (-15 -1831 ((-965) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1512 ((-965) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -2359 ((-294 (-357)) (-886 (-205)))) (-15 -3037 ((-205) (-886 (-205)))) (-15 -4030 ((-294 (-357)) (-205))) (-15 -3711 ((-205) (-385 (-525)))) (-15 -3471 ((-632 (-205)) (-592 (-205)) (-713)))) +((-1700 (((-108) $ $) 11)) (-2720 (($ $ $) 15)) (-2699 (($ $ $) 14)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 44)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 53)) (-2262 (($ $ $) 21) (($ (-592 $)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2675 (((-3 $ "failed") $ $) 17)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 46))) +(((-285 |#1|) (-10 -8 (-15 -3690 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2345 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2345 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3258 |#1|)) |#1| |#1|)) (-15 -2720 (|#1| |#1| |#1|)) (-15 -2699 (|#1| |#1| |#1|)) (-15 -1700 ((-108) |#1| |#1|)) (-15 -3554 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2340 ((-2 (|:| -2059 (-592 |#1|)) (|:| -3258 |#1|)) (-592 |#1|))) (-15 -2262 (|#1| (-592 |#1|))) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#1|))) (-286)) (T -285)) +NIL +(-10 -8 (-15 -3690 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2345 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2345 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3258 |#1|)) |#1| |#1|)) (-15 -2720 (|#1| |#1| |#1|)) (-15 -2699 (|#1| |#1| |#1|)) (-15 -1700 ((-108) |#1| |#1|)) (-15 -3554 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2340 ((-2 (|:| -2059 (-592 |#1|)) (|:| -3258 |#1|)) (-592 |#1|))) (-15 -2262 (|#1| (-592 |#1|))) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-1700 (((-108) $ $) 59)) (-1957 (($) 17 T CONST)) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2507 (((-108) $) 31)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-286) (-131)) (T -286)) -((-1965 (*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-712)))) (-3576 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-286)))) (-3239 (*1 *1 *1 *1) (-4 *1 (-286))) (-3265 (*1 *1 *1 *1) (-4 *1 (-286))) (-3387 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3965 *1))) (-4 *1 (-286)))) (-3387 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-286)))) (-3188 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-286))))) -(-13 (-853) (-10 -8 (-15 -1965 ((-108) $ $)) (-15 -3048 ((-712) $)) (-15 -3576 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -3239 ($ $ $)) (-15 -3265 ($ $ $)) (-15 -3387 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $)) (-15 -3387 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3188 ((-3 (-591 $) "failed") (-591 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-853) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1980 (($ $ (-591 |#2|) (-591 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-273 |#2|)) 11) (($ $ (-591 (-273 |#2|))) NIL))) -(((-287 |#1| |#2|) (-10 -8 (-15 -1980 (|#1| |#1| (-591 (-273 |#2|)))) (-15 -1980 (|#1| |#1| (-273 |#2|))) (-15 -1980 (|#1| |#1| |#2| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#2|) (-591 |#2|)))) (-288 |#2|) (-1018)) (T -287)) -NIL -(-10 -8 (-15 -1980 (|#1| |#1| (-591 (-273 |#2|)))) (-15 -1980 (|#1| |#1| (-273 |#2|))) (-15 -1980 (|#1| |#1| |#2| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#2|) (-591 |#2|)))) -((-1980 (($ $ (-591 |#1|) (-591 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-273 |#1|)) 11) (($ $ (-591 (-273 |#1|))) 10))) -(((-288 |#1|) (-131) (-1018)) (T -288)) -((-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1018)))) (-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1018))))) -(-13 (-486 |t#1| |t#1|) (-10 -8 (-15 -1980 ($ $ (-273 |t#1|))) (-15 -1980 ($ $ (-591 (-273 |t#1|)))))) +((-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713)))) (-4204 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-286)))) (-2699 (*1 *1 *1 *1) (-4 *1 (-286))) (-2720 (*1 *1 *1 *1) (-4 *1 (-286))) (-2345 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3258 *1))) (-4 *1 (-286)))) (-2345 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-286)))) (-3690 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286))))) +(-13 (-854) (-10 -8 (-15 -1700 ((-108) $ $)) (-15 -2824 ((-713) $)) (-15 -4204 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -2699 ($ $ $)) (-15 -2720 ($ $ $)) (-15 -2345 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $)) (-15 -2345 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3690 ((-3 (-592 $) "failed") (-592 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2168 (($ $ (-592 |#2|) (-592 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-273 |#2|)) 11) (($ $ (-592 (-273 |#2|))) NIL))) +(((-287 |#1| |#2|) (-10 -8 (-15 -2168 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2168 (|#1| |#1| (-273 |#2|))) (-15 -2168 (|#1| |#1| |#2| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#2|) (-592 |#2|)))) (-288 |#2|) (-1019)) (T -287)) +NIL +(-10 -8 (-15 -2168 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2168 (|#1| |#1| (-273 |#2|))) (-15 -2168 (|#1| |#1| |#2| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#2|) (-592 |#2|)))) +((-2168 (($ $ (-592 |#1|) (-592 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-273 |#1|)) 11) (($ $ (-592 (-273 |#1|))) 10))) +(((-288 |#1|) (-131) (-1019)) (T -288)) +((-2168 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1019)))) (-2168 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1019))))) +(-13 (-486 |t#1| |t#1|) (-10 -8 (-15 -2168 ($ $ (-273 |t#1|))) (-15 -2168 ($ $ (-592 (-273 |t#1|)))))) (((-486 |#1| |#1|) . T)) -((-1980 ((|#1| (-1 |#1| (-525)) (-1091 (-385 (-525)))) 25))) -(((-289 |#1|) (-10 -7 (-15 -1980 (|#1| (-1 |#1| (-525)) (-1091 (-385 (-525)))))) (-37 (-385 (-525)))) (T -289)) -((-1980 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1091 (-385 (-525)))) (-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525))))))) -(-10 -7 (-15 -1980 (|#1| (-1 |#1| (-525)) (-1091 (-385 (-525)))))) -((-2673 (((-108) $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 7)) (-3944 (((-108) $ $) 9))) -(((-290) (-1018)) (T -290)) -NIL -(-1018) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 62)) (-2314 (((-1157 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-842)))) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-842)))) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-761)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-1157 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1089) "failed") $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-966 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-966 (-525)))) (((-3 (-1156 |#2| |#3| |#4|) "failed") $) 25)) (-3341 (((-1157 |#1| |#2| |#3| |#4|) $) NIL) (((-1089) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-966 (-1089)))) (((-385 (-525)) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-966 (-525)))) (((-525) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-966 (-525)))) (((-1156 |#2| |#3| |#4|) $) NIL)) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-1157 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1171 (-1157 |#1| |#2| |#3| |#4|)))) (-631 $) (-1171 $)) NIL) (((-631 (-1157 |#1| |#2| |#3| |#4|)) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-510)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3489 (((-108) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-819 (-357))))) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL)) (-1384 (((-1157 |#1| |#2| |#3| |#4|) $) 21)) (-2115 (((-3 $ "failed") $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-1065)))) (-2256 (((-108) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-788)))) (-3475 (($ $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-788)))) (-1257 (($ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) $) NIL)) (-3015 (((-3 (-781 |#2|) "failed") $) 78)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-286)))) (-2767 (((-1157 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-842)))) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1980 (($ $ (-591 (-1157 |#1| |#2| |#3| |#4|)) (-591 (-1157 |#1| |#2| |#3| |#4|))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-288 (-1157 |#1| |#2| |#3| |#4|)))) (($ $ (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-288 (-1157 |#1| |#2| |#3| |#4|)))) (($ $ (-273 (-1157 |#1| |#2| |#3| |#4|))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-288 (-1157 |#1| |#2| |#3| |#4|)))) (($ $ (-591 (-273 (-1157 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-288 (-1157 |#1| |#2| |#3| |#4|)))) (($ $ (-591 (-1089)) (-591 (-1157 |#1| |#2| |#3| |#4|))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-486 (-1089) (-1157 |#1| |#2| |#3| |#4|)))) (($ $ (-1089) (-1157 |#1| |#2| |#3| |#4|)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-486 (-1089) (-1157 |#1| |#2| |#3| |#4|))))) (-3048 (((-712) $) NIL)) (-1881 (($ $ (-1157 |#1| |#2| |#3| |#4|)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-265 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-712)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1089)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-833 (-1089)))) (($ $ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) (-712)) NIL) (($ $ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|))) NIL)) (-2774 (($ $) NIL)) (-1396 (((-1157 |#1| |#2| |#3| |#4|) $) 17)) (-1300 (((-825 (-525)) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-566 (-825 (-357))))) (((-501) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-566 (-501)))) (((-357) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-951))) (((-205) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-951)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| (-1157 |#1| |#2| |#3| |#4|) (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-1157 |#1| |#2| |#3| |#4|)) 29) (($ (-1089)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-966 (-1089)))) (($ (-1156 |#2| |#3| |#4|)) 36)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| (-1157 |#1| |#2| |#3| |#4|) (-842))) (|has| (-1157 |#1| |#2| |#3| |#4|) (-136))))) (-3425 (((-712)) NIL)) (-1584 (((-1157 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-510)))) (-1724 (((-108) $ $) NIL)) (-1460 (($ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-761)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 41 T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-712)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1089)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-833 (-1089)))) (($ $ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) (-712)) NIL) (($ $ (-1 (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|))) NIL)) (-4004 (((-108) $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-788)))) (-3971 (((-108) $ $) NIL (|has| (-1157 |#1| |#2| |#3| |#4|) (-788)))) (-4059 (($ $ $) 34) (($ (-1157 |#1| |#2| |#3| |#4|) (-1157 |#1| |#2| |#3| |#4|)) 31)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-1157 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1157 |#1| |#2| |#3| |#4|)) NIL))) -(((-291 |#1| |#2| |#3| |#4|) (-13 (-923 (-1157 |#1| |#2| |#3| |#4|)) (-966 (-1156 |#2| |#3| |#4|)) (-10 -8 (-15 -3015 ((-3 (-781 |#2|) "failed") $)) (-15 -2686 ($ (-1156 |#2| |#3| |#4|))))) (-13 (-788) (-966 (-525)) (-587 (-525)) (-429)) (-13 (-27) (-1111) (-408 |#1|)) (-1089) |#2|) (T -291)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1156 *4 *5 *6)) (-4 *4 (-13 (-27) (-1111) (-408 *3))) (-14 *5 (-1089)) (-14 *6 *4) (-4 *3 (-13 (-788) (-966 (-525)) (-587 (-525)) (-429))) (-5 *1 (-291 *3 *4 *5 *6)))) (-3015 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-788) (-966 (-525)) (-587 (-525)) (-429))) (-5 *2 (-781 *4)) (-5 *1 (-291 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1111) (-408 *3))) (-14 *5 (-1089)) (-14 *6 *4)))) -(-13 (-923 (-1157 |#1| |#2| |#3| |#4|)) (-966 (-1156 |#2| |#3| |#4|)) (-10 -8 (-15 -3015 ((-3 (-781 |#2|) "failed") $)) (-15 -2686 ($ (-1156 |#2| |#3| |#4|))))) -((-1257 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 13))) -(((-292 |#1| |#2|) (-10 -7 (-15 -1257 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-788) (-788)) (T -292)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-788)) (-4 *6 (-788)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6))))) -(-10 -7 (-15 -1257 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) -((-1487 (((-51) |#2| (-273 |#2|) (-712)) 33) (((-51) |#2| (-273 |#2|)) 24) (((-51) |#2| (-712)) 28) (((-51) |#2|) 25) (((-51) (-1089)) 21)) (-1895 (((-51) |#2| (-273 |#2|) (-385 (-525))) 51) (((-51) |#2| (-273 |#2|)) 48) (((-51) |#2| (-385 (-525))) 50) (((-51) |#2|) 49) (((-51) (-1089)) 47)) (-1507 (((-51) |#2| (-273 |#2|) (-385 (-525))) 46) (((-51) |#2| (-273 |#2|)) 43) (((-51) |#2| (-385 (-525))) 45) (((-51) |#2|) 44) (((-51) (-1089)) 42)) (-1497 (((-51) |#2| (-273 |#2|) (-525)) 39) (((-51) |#2| (-273 |#2|)) 35) (((-51) |#2| (-525)) 38) (((-51) |#2|) 36) (((-51) (-1089)) 34))) -(((-293 |#1| |#2|) (-10 -7 (-15 -1487 ((-51) (-1089))) (-15 -1487 ((-51) |#2|)) (-15 -1487 ((-51) |#2| (-712))) (-15 -1487 ((-51) |#2| (-273 |#2|))) (-15 -1487 ((-51) |#2| (-273 |#2|) (-712))) (-15 -1497 ((-51) (-1089))) (-15 -1497 ((-51) |#2|)) (-15 -1497 ((-51) |#2| (-525))) (-15 -1497 ((-51) |#2| (-273 |#2|))) (-15 -1497 ((-51) |#2| (-273 |#2|) (-525))) (-15 -1507 ((-51) (-1089))) (-15 -1507 ((-51) |#2|)) (-15 -1507 ((-51) |#2| (-385 (-525)))) (-15 -1507 ((-51) |#2| (-273 |#2|))) (-15 -1507 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -1895 ((-51) (-1089))) (-15 -1895 ((-51) |#2|)) (-15 -1895 ((-51) |#2| (-385 (-525)))) (-15 -1895 ((-51) |#2| (-273 |#2|))) (-15 -1895 ((-51) |#2| (-273 |#2|) (-385 (-525))))) (-13 (-429) (-788) (-966 (-525)) (-587 (-525))) (-13 (-27) (-1111) (-408 |#1|))) (T -293)) -((-1895 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *4))))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1111) (-408 *4))))) (-1507 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))))) (-1507 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *4))))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1111) (-408 *4))))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-429) (-788) (-966 *5) (-587 *5))) (-5 *5 (-525)) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-788) (-966 *4) (-587 *4))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))))) (-1497 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *4))))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1111) (-408 *4))))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-712)) (-4 *3 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *4 (-712)) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))))) (-1487 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *4))))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1111) (-408 *4)))))) -(-10 -7 (-15 -1487 ((-51) (-1089))) (-15 -1487 ((-51) |#2|)) (-15 -1487 ((-51) |#2| (-712))) (-15 -1487 ((-51) |#2| (-273 |#2|))) (-15 -1487 ((-51) |#2| (-273 |#2|) (-712))) (-15 -1497 ((-51) (-1089))) (-15 -1497 ((-51) |#2|)) (-15 -1497 ((-51) |#2| (-525))) (-15 -1497 ((-51) |#2| (-273 |#2|))) (-15 -1497 ((-51) |#2| (-273 |#2|) (-525))) (-15 -1507 ((-51) (-1089))) (-15 -1507 ((-51) |#2|)) (-15 -1507 ((-51) |#2| (-385 (-525)))) (-15 -1507 ((-51) |#2| (-273 |#2|))) (-15 -1507 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -1895 ((-51) (-1089))) (-15 -1895 ((-51) |#2|)) (-15 -1895 ((-51) |#2| (-385 (-525)))) (-15 -1895 ((-51) |#2| (-273 |#2|))) (-15 -1895 ((-51) |#2| (-273 |#2|) (-385 (-525))))) -((-2673 (((-108) $ $) NIL)) (-1356 (((-591 $) $ (-1089)) NIL (|has| |#1| (-517))) (((-591 $) $) NIL (|has| |#1| (-517))) (((-591 $) (-1085 $) (-1089)) NIL (|has| |#1| (-517))) (((-591 $) (-1085 $)) NIL (|has| |#1| (-517))) (((-591 $) (-885 $)) NIL (|has| |#1| (-517)))) (-2529 (($ $ (-1089)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1085 $) (-1089)) NIL (|has| |#1| (-517))) (($ (-1085 $)) NIL (|has| |#1| (-517))) (($ (-885 $)) NIL (|has| |#1| (-517)))) (-1306 (((-108) $) 27 (-3150 (|has| |#1| (-25)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))))) (-1444 (((-591 (-1089)) $) 348)) (-2514 (((-385 (-1085 $)) $ (-564 $)) NIL (|has| |#1| (-517)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3585 (((-591 (-564 $)) $) NIL)) (-4087 (($ $) 157 (|has| |#1| (-517)))) (-2381 (($ $) 133 (|has| |#1| (-517)))) (-2541 (($ $ (-1011 $)) 218 (|has| |#1| (-517))) (($ $ (-1089)) 214 (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) NIL (-3150 (|has| |#1| (-21)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))))) (-3449 (($ $ (-273 $)) NIL) (($ $ (-591 (-273 $))) 365) (($ $ (-591 (-564 $)) (-591 $)) 409)) (-2179 (((-396 (-1085 $)) (-1085 $)) 292 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-1720 (($ $) NIL (|has| |#1| (-517)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-517)))) (-2551 (($ $) NIL (|has| |#1| (-517)))) (-1965 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4058 (($ $) 153 (|has| |#1| (-517)))) (-2360 (($ $) 129 (|has| |#1| (-517)))) (-2080 (($ $ (-525)) 65 (|has| |#1| (-517)))) (-4109 (($ $) 161 (|has| |#1| (-517)))) (-2400 (($ $) 137 (|has| |#1| (-517)))) (-2055 (($) NIL (-3150 (|has| |#1| (-25)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) (|has| |#1| (-1030))) CONST)) (-2266 (((-591 $) $ (-1089)) NIL (|has| |#1| (-517))) (((-591 $) $) NIL (|has| |#1| (-517))) (((-591 $) (-1085 $) (-1089)) NIL (|has| |#1| (-517))) (((-591 $) (-1085 $)) NIL (|has| |#1| (-517))) (((-591 $) (-885 $)) NIL (|has| |#1| (-517)))) (-1254 (($ $ (-1089)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1085 $) (-1089)) 120 (|has| |#1| (-517))) (($ (-1085 $)) NIL (|has| |#1| (-517))) (($ (-885 $)) NIL (|has| |#1| (-517)))) (-4174 (((-3 (-564 $) "failed") $) 17) (((-3 (-1089) "failed") $) NIL) (((-3 |#1| "failed") $) 418) (((-3 (-47) "failed") $) 320 (-12 (|has| |#1| (-517)) (|has| |#1| (-966 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-885 |#1|)) "failed") $) NIL (|has| |#1| (-517))) (((-3 (-885 |#1|) "failed") $) NIL (|has| |#1| (-975))) (((-3 (-385 (-525)) "failed") $) 46 (-3150 (-12 (|has| |#1| (-517)) (|has| |#1| (-966 (-525)))) (|has| |#1| (-966 (-385 (-525))))))) (-3341 (((-564 $) $) 11) (((-1089) $) NIL) ((|#1| $) 400) (((-47) $) NIL (-12 (|has| |#1| (-517)) (|has| |#1| (-966 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-885 |#1|)) $) NIL (|has| |#1| (-517))) (((-885 |#1|) $) NIL (|has| |#1| (-975))) (((-385 (-525)) $) 303 (-3150 (-12 (|has| |#1| (-517)) (|has| |#1| (-966 (-525)))) (|has| |#1| (-966 (-385 (-525))))))) (-3265 (($ $ $) NIL (|has| |#1| (-517)))) (-3925 (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 113 (|has| |#1| (-975))) (((-631 |#1|) (-631 $)) 103 (|has| |#1| (-975))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))) (((-631 (-525)) (-631 $)) NIL (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))))) (-3618 (($ $) 85 (|has| |#1| (-517)))) (-1522 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) (|has| |#1| (-1030))))) (-3239 (($ $ $) NIL (|has| |#1| (-517)))) (-1922 (($ $ (-1011 $)) 222 (|has| |#1| (-517))) (($ $ (-1089)) 220 (|has| |#1| (-517)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-517)))) (-2393 (((-108) $) NIL (|has| |#1| (-517)))) (-3548 (($ $ $) 188 (|has| |#1| (-517)))) (-1417 (($) 123 (|has| |#1| (-517)))) (-4142 (($ $ $) 208 (|has| |#1| (-517)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 371 (|has| |#1| (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 378 (|has| |#1| (-819 (-357))))) (-3625 (($ $) NIL) (($ (-591 $)) NIL)) (-3714 (((-591 (-110)) $) NIL)) (-3259 (((-110) (-110)) 263)) (-3865 (((-108) $) 25 (-3150 (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) (|has| |#1| (-1030))))) (-2116 (((-108) $) NIL (|has| $ (-966 (-525))))) (-2920 (($ $) 67 (|has| |#1| (-975)))) (-1384 (((-1041 |#1| (-564 $)) $) 80 (|has| |#1| (-975)))) (-3107 (((-108) $) 47 (|has| |#1| (-517)))) (-3126 (($ $ (-525)) NIL (|has| |#1| (-517)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-517)))) (-1873 (((-1085 $) (-564 $)) 264 (|has| $ (-975)))) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1257 (($ (-1 $ $) (-564 $)) 405)) (-3415 (((-3 (-564 $) "failed") $) NIL)) (-2356 (($ $) 127 (|has| |#1| (-517)))) (-2860 (($ $) 233 (|has| |#1| (-517)))) (-2081 (($ (-591 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2621 (((-1072) $) NIL)) (-2504 (((-591 (-564 $)) $) 49)) (-2899 (($ (-110) $) NIL) (($ (-110) (-591 $)) 410)) (-3401 (((-3 (-591 $) "failed") $) NIL (|has| |#1| (-1030)))) (-1713 (((-3 (-2 (|:| |val| $) (|:| -3987 (-525))) "failed") $) NIL (|has| |#1| (-975)))) (-4008 (((-3 (-591 $) "failed") $) 413 (|has| |#1| (-25)))) (-2831 (((-3 (-2 (|:| -2976 (-525)) (|:| |var| (-564 $))) "failed") $) 417 (|has| |#1| (-25)))) (-3410 (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $) NIL (|has| |#1| (-1030))) (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-110)) NIL (|has| |#1| (-975))) (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-1089)) NIL (|has| |#1| (-975)))) (-3029 (((-108) $ (-110)) NIL) (((-108) $ (-1089)) 53)) (-1523 (($ $) NIL (-3150 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-2168 (($ $ (-1089)) 237 (|has| |#1| (-517))) (($ $ (-1011 $)) 239 (|has| |#1| (-517)))) (-3457 (((-712) $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) 43)) (-1540 ((|#1| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 285 (|has| |#1| (-517)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-4064 (((-108) $ $) NIL) (((-108) $ (-1089)) NIL)) (-3509 (($ $ (-1089)) 212 (|has| |#1| (-517))) (($ $) 210 (|has| |#1| (-517)))) (-2106 (($ $) 204 (|has| |#1| (-517)))) (-3534 (((-396 (-1085 $)) (-1085 $)) 290 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-2542 (((-396 $) $) NIL (|has| |#1| (-517)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-517)))) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-517)))) (-2288 (($ $) 125 (|has| |#1| (-517)))) (-2882 (((-108) $) NIL (|has| $ (-966 (-525))))) (-1980 (($ $ (-564 $) $) NIL) (($ $ (-591 (-564 $)) (-591 $)) 404) (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ $))) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-1089) (-1 $ (-591 $))) NIL) (($ $ (-1089) (-1 $ $)) NIL) (($ $ (-591 (-110)) (-591 (-1 $ $))) 358) (($ $ (-591 (-110)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-110) (-1 $ (-591 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1089)) NIL (|has| |#1| (-566 (-501)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-566 (-501)))) (($ $) NIL (|has| |#1| (-566 (-501)))) (($ $ (-110) $ (-1089)) 346 (|has| |#1| (-566 (-501)))) (($ $ (-591 (-110)) (-591 $) (-1089)) 345 (|has| |#1| (-566 (-501)))) (($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ $))) NIL (|has| |#1| (-975))) (($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ (-591 $)))) NIL (|has| |#1| (-975))) (($ $ (-1089) (-712) (-1 $ (-591 $))) NIL (|has| |#1| (-975))) (($ $ (-1089) (-712) (-1 $ $)) NIL (|has| |#1| (-975)))) (-3048 (((-712) $) NIL (|has| |#1| (-517)))) (-2310 (($ $) 225 (|has| |#1| (-517)))) (-1881 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-591 $)) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-517)))) (-1390 (($ $) NIL) (($ $ $) NIL)) (-2347 (($ $) 235 (|has| |#1| (-517)))) (-3333 (($ $) 186 (|has| |#1| (-517)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-975))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-975))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-975))) (($ $ (-1089)) NIL (|has| |#1| (-975)))) (-2774 (($ $) 68 (|has| |#1| (-517)))) (-1396 (((-1041 |#1| (-564 $)) $) 82 (|has| |#1| (-517)))) (-1341 (($ $) 301 (|has| $ (-975)))) (-4122 (($ $) 163 (|has| |#1| (-517)))) (-2410 (($ $) 139 (|has| |#1| (-517)))) (-4098 (($ $) 159 (|has| |#1| (-517)))) (-2391 (($ $) 135 (|has| |#1| (-517)))) (-4073 (($ $) 155 (|has| |#1| (-517)))) (-2370 (($ $) 131 (|has| |#1| (-517)))) (-1300 (((-825 (-525)) $) NIL (|has| |#1| (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| |#1| (-566 (-825 (-357))))) (($ (-396 $)) NIL (|has| |#1| (-517))) (((-501) $) 343 (|has| |#1| (-566 (-501))))) (-3369 (($ $ $) NIL (|has| |#1| (-450)))) (-4027 (($ $ $) NIL (|has| |#1| (-450)))) (-2686 (((-796) $) 403) (($ (-564 $)) 394) (($ (-1089)) 360) (($ |#1|) 321) (($ $) NIL (|has| |#1| (-517))) (($ (-47)) 296 (-12 (|has| |#1| (-517)) (|has| |#1| (-966 (-525))))) (($ (-1041 |#1| (-564 $))) 84 (|has| |#1| (-975))) (($ (-385 |#1|)) NIL (|has| |#1| (-517))) (($ (-885 (-385 |#1|))) NIL (|has| |#1| (-517))) (($ (-385 (-885 (-385 |#1|)))) NIL (|has| |#1| (-517))) (($ (-385 (-885 |#1|))) NIL (|has| |#1| (-517))) (($ (-885 |#1|)) NIL (|has| |#1| (-975))) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-517)) (|has| |#1| (-966 (-385 (-525)))))) (($ (-525)) 34 (-3150 (|has| |#1| (-966 (-525))) (|has| |#1| (-975))))) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL (|has| |#1| (-975)))) (-3800 (($ $) NIL) (($ (-591 $)) NIL)) (-3808 (($ $ $) 206 (|has| |#1| (-517)))) (-3196 (($ $ $) 192 (|has| |#1| (-517)))) (-1925 (($ $ $) 196 (|has| |#1| (-517)))) (-2306 (($ $ $) 190 (|has| |#1| (-517)))) (-1827 (($ $ $) 194 (|has| |#1| (-517)))) (-2754 (((-108) (-110)) 9)) (-4163 (($ $) 169 (|has| |#1| (-517)))) (-2457 (($ $) 145 (|has| |#1| (-517)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) 165 (|has| |#1| (-517)))) (-2432 (($ $) 141 (|has| |#1| (-517)))) (-4193 (($ $) 173 (|has| |#1| (-517)))) (-2477 (($ $) 149 (|has| |#1| (-517)))) (-4229 (($ (-1089) $) NIL) (($ (-1089) $ $) NIL) (($ (-1089) $ $ $) NIL) (($ (-1089) $ $ $ $) NIL) (($ (-1089) (-591 $)) NIL)) (-2753 (($ $) 200 (|has| |#1| (-517)))) (-2369 (($ $) 198 (|has| |#1| (-517)))) (-1234 (($ $) 175 (|has| |#1| (-517)))) (-2495 (($ $) 151 (|has| |#1| (-517)))) (-4179 (($ $) 171 (|has| |#1| (-517)))) (-2469 (($ $) 147 (|has| |#1| (-517)))) (-4149 (($ $) 167 (|has| |#1| (-517)))) (-2444 (($ $) 143 (|has| |#1| (-517)))) (-1460 (($ $) 178 (|has| |#1| (-517)))) (-1401 (($ $ (-525)) NIL (-3150 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-712)) NIL (-3150 (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) (|has| |#1| (-1030)))) (($ $ (-854)) NIL (-3150 (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) (|has| |#1| (-1030))))) (-1830 (($) 20 (-3150 (|has| |#1| (-25)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))) CONST)) (-3795 (($ $) 229 (|has| |#1| (-517)))) (-1839 (($) 22 (-3150 (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) (|has| |#1| (-1030))) CONST)) (-1353 (($ $) 180 (|has| |#1| (-517))) (($ $ $) 182 (|has| |#1| (-517)))) (-1229 (($ $) 227 (|has| |#1| (-517)))) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-975))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-975))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-975))) (($ $ (-1089)) NIL (|has| |#1| (-975)))) (-1351 (($ $) 231 (|has| |#1| (-517)))) (-3408 (($ $ $) 184 (|has| |#1| (-517)))) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 77)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 76)) (-4059 (($ (-1041 |#1| (-564 $)) (-1041 |#1| (-564 $))) 94 (|has| |#1| (-517))) (($ $ $) 42 (-3150 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4047 (($ $ $) 40 (-3150 (|has| |#1| (-21)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))))) (($ $) 29 (-3150 (|has| |#1| (-21)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))))) (-4036 (($ $ $) 38 (-3150 (|has| |#1| (-25)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))))) (** (($ $ $) 62 (|has| |#1| (-517))) (($ $ (-385 (-525))) 298 (|has| |#1| (-517))) (($ $ (-525)) 72 (-3150 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-712)) 69 (-3150 (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) (|has| |#1| (-1030)))) (($ $ (-854)) 74 (-3150 (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) (|has| |#1| (-1030))))) (* (($ (-385 (-525)) $) NIL (|has| |#1| (-517))) (($ $ (-385 (-525))) NIL (|has| |#1| (-517))) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))) (($ $ $) 36 (-3150 (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) (|has| |#1| (-1030)))) (($ (-525) $) 32 (-3150 (|has| |#1| (-21)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))))) (($ (-712) $) NIL (-3150 (|has| |#1| (-25)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))))) (($ (-854) $) NIL (-3150 (|has| |#1| (-25)) (-12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))))))) -(((-294 |#1|) (-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1111)) (-6 (-149)) (-6 (-577)) (-6 (-1053)) (-15 -3618 ($ $)) (-15 -3107 ((-108) $)) (-15 -2080 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -3534 ((-396 (-1085 $)) (-1085 $))) (-15 -2179 ((-396 (-1085 $)) (-1085 $)))) |%noBranch|) (IF (|has| |#1| (-966 (-525))) (-6 (-966 (-47))) |%noBranch|)) |%noBranch|))) (-788)) (T -294)) -((-3618 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-788)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-788)))) (-2080 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-788)))) (-3534 (*1 *2 *3) (-12 (-5 *2 (-396 (-1085 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1085 *1)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-788)))) (-2179 (*1 *2 *3) (-12 (-5 *2 (-396 (-1085 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1085 *1)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-788))))) -(-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1111)) (-6 (-149)) (-6 (-577)) (-6 (-1053)) (-15 -3618 ($ $)) (-15 -3107 ((-108) $)) (-15 -2080 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -3534 ((-396 (-1085 $)) (-1085 $))) (-15 -2179 ((-396 (-1085 $)) (-1085 $)))) |%noBranch|) (IF (|has| |#1| (-966 (-525))) (-6 (-966 (-47))) |%noBranch|)) |%noBranch|))) -((-2866 (((-51) |#2| (-110) (-273 |#2|) (-591 |#2|)) 88) (((-51) |#2| (-110) (-273 |#2|) (-273 |#2|)) 84) (((-51) |#2| (-110) (-273 |#2|) |#2|) 86) (((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|) 87) (((-51) (-591 |#2|) (-591 (-110)) (-273 |#2|) (-591 (-273 |#2|))) 80) (((-51) (-591 |#2|) (-591 (-110)) (-273 |#2|) (-591 |#2|)) 82) (((-51) (-591 (-273 |#2|)) (-591 (-110)) (-273 |#2|) (-591 |#2|)) 83) (((-51) (-591 (-273 |#2|)) (-591 (-110)) (-273 |#2|) (-591 (-273 |#2|))) 81) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-591 |#2|)) 89) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|)) 85))) -(((-295 |#1| |#2|) (-10 -7 (-15 -2866 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -2866 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-591 |#2|))) (-15 -2866 ((-51) (-591 (-273 |#2|)) (-591 (-110)) (-273 |#2|) (-591 (-273 |#2|)))) (-15 -2866 ((-51) (-591 (-273 |#2|)) (-591 (-110)) (-273 |#2|) (-591 |#2|))) (-15 -2866 ((-51) (-591 |#2|) (-591 (-110)) (-273 |#2|) (-591 |#2|))) (-15 -2866 ((-51) (-591 |#2|) (-591 (-110)) (-273 |#2|) (-591 (-273 |#2|)))) (-15 -2866 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -2866 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -2866 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -2866 ((-51) |#2| (-110) (-273 |#2|) (-591 |#2|)))) (-13 (-788) (-517) (-566 (-501))) (-408 |#1|)) (T -295)) -((-2866 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-591 *3)) (-4 *3 (-408 *7)) (-4 *7 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))) (-2866 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-2866 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-2866 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6)) (-4 *6 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *5)))) (-2866 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 (-110))) (-5 *6 (-591 (-273 *8))) (-4 *8 (-408 *7)) (-5 *5 (-273 *8)) (-4 *7 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-2866 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-591 *7)) (-5 *4 (-591 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-2866 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-591 (-273 *8))) (-5 *4 (-591 (-110))) (-5 *5 (-273 *8)) (-5 *6 (-591 *8)) (-4 *8 (-408 *7)) (-4 *7 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-2866 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-591 (-273 *7))) (-5 *4 (-591 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-2866 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-591 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-2866 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5)) (-4 *5 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *6))))) -(-10 -7 (-15 -2866 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -2866 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-591 |#2|))) (-15 -2866 ((-51) (-591 (-273 |#2|)) (-591 (-110)) (-273 |#2|) (-591 (-273 |#2|)))) (-15 -2866 ((-51) (-591 (-273 |#2|)) (-591 (-110)) (-273 |#2|) (-591 |#2|))) (-15 -2866 ((-51) (-591 |#2|) (-591 (-110)) (-273 |#2|) (-591 |#2|))) (-15 -2866 ((-51) (-591 |#2|) (-591 (-110)) (-273 |#2|) (-591 (-273 |#2|)))) (-15 -2866 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -2866 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -2866 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -2866 ((-51) |#2| (-110) (-273 |#2|) (-591 |#2|)))) -((-3105 (((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-205) (-525) (-1072)) 46) (((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-205) (-525)) 47) (((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-1 (-205) (-205)) (-525) (-1072)) 43) (((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-1 (-205) (-205)) (-525)) 44)) (-3270 (((-1 (-205) (-205)) (-205)) 45))) -(((-296) (-10 -7 (-15 -3270 ((-1 (-205) (-205)) (-205))) (-15 -3105 ((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-1 (-205) (-205)) (-525))) (-15 -3105 ((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-1 (-205) (-205)) (-525) (-1072))) (-15 -3105 ((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-205) (-525))) (-15 -3105 ((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-205) (-525) (-1072))))) (T -296)) -((-3105 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1013 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1072)) (-5 *2 (-1121 (-859))) (-5 *1 (-296)))) (-3105 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1013 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *2 (-1121 (-859))) (-5 *1 (-296)))) (-3105 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1013 (-205))) (-5 *6 (-525)) (-5 *7 (-1072)) (-5 *2 (-1121 (-859))) (-5 *1 (-296)))) (-3105 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1013 (-205))) (-5 *6 (-525)) (-5 *2 (-1121 (-859))) (-5 *1 (-296)))) (-3270 (*1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205))))) -(-10 -7 (-15 -3270 ((-1 (-205) (-205)) (-205))) (-15 -3105 ((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-1 (-205) (-205)) (-525))) (-15 -3105 ((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-1 (-205) (-205)) (-525) (-1072))) (-15 -3105 ((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-205) (-525))) (-15 -3105 ((-1121 (-859)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-205) (-525) (-1072)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 25)) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3328 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-3581 (((-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 20)) (-4087 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| |#1| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4058 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-712) (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-4109 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) 32)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-2393 (((-108) $) NIL (|has| |#1| (-341)))) (-1795 (((-108) $) NIL)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) 16)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) NIL) (($ $ (-385 (-525))) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-385 (-525))) NIL) (($ $ (-1003) (-385 (-525))) NIL) (($ $ (-591 (-1003)) (-591 (-385 (-525)))) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-2452 (($ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111)))))) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-1618 (($ $ (-385 (-525))) NIL)) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-4090 (((-385 (-525)) $) 17)) (-2730 (($ (-1156 |#1| |#2| |#3|)) 11)) (-3987 (((-1156 |#1| |#2| |#3|) $) 12)) (-2288 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1030)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2743 (((-385 (-525)) $) NIL)) (-4122 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) 10)) (-2686 (((-796) $) 38) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1263 ((|#1| $ (-385 (-525))) 30)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1708 ((|#1| $) NIL)) (-4163 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 27)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 33)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-297 |#1| |#2| |#3|) (-13 (-1152 |#1|) (-733) (-10 -8 (-15 -2730 ($ (-1156 |#1| |#2| |#3|))) (-15 -3987 ((-1156 |#1| |#2| |#3|) $)) (-15 -4090 ((-385 (-525)) $)))) (-13 (-341) (-788)) (-1089) |#1|) (T -297)) -((-2730 (*1 *1 *2) (-12 (-5 *2 (-1156 *3 *4 *5)) (-4 *3 (-13 (-341) (-788))) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-1156 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-788))) (-14 *4 (-1089)) (-14 *5 *3))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-788))) (-14 *4 (-1089)) (-14 *5 *3)))) -(-13 (-1152 |#1|) (-733) (-10 -8 (-15 -2730 ($ (-1156 |#1| |#2| |#3|))) (-15 -3987 ((-1156 |#1| |#2| |#3|) $)) (-15 -4090 ((-385 (-525)) $)))) -((-3126 (((-2 (|:| -3987 (-712)) (|:| -2976 |#1|) (|:| |radicand| (-591 |#1|))) (-396 |#1|) (-712)) 24)) (-2356 (((-591 (-2 (|:| -2976 (-712)) (|:| |logand| |#1|))) (-396 |#1|)) 28))) -(((-298 |#1|) (-10 -7 (-15 -3126 ((-2 (|:| -3987 (-712)) (|:| -2976 |#1|) (|:| |radicand| (-591 |#1|))) (-396 |#1|) (-712))) (-15 -2356 ((-591 (-2 (|:| -2976 (-712)) (|:| |logand| |#1|))) (-396 |#1|)))) (-517)) (T -298)) -((-2356 (*1 *2 *3) (-12 (-5 *3 (-396 *4)) (-4 *4 (-517)) (-5 *2 (-591 (-2 (|:| -2976 (-712)) (|:| |logand| *4)))) (-5 *1 (-298 *4)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-396 *5)) (-4 *5 (-517)) (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *5) (|:| |radicand| (-591 *5)))) (-5 *1 (-298 *5)) (-5 *4 (-712))))) -(-10 -7 (-15 -3126 ((-2 (|:| -3987 (-712)) (|:| -2976 |#1|) (|:| |radicand| (-591 |#1|))) (-396 |#1|) (-712))) (-15 -2356 ((-591 (-2 (|:| -2976 (-712)) (|:| |logand| |#1|))) (-396 |#1|)))) -((-1444 (((-591 |#2|) (-1085 |#4|)) 43)) (-1930 ((|#3| (-525)) 46)) (-3551 (((-1085 |#4|) (-1085 |#3|)) 30)) (-2651 (((-1085 |#4|) (-1085 |#4|) (-525)) 56)) (-1428 (((-1085 |#3|) (-1085 |#4|)) 21)) (-2743 (((-591 (-712)) (-1085 |#4|) (-591 |#2|)) 40)) (-1310 (((-1085 |#3|) (-1085 |#4|) (-591 |#2|) (-591 |#3|)) 35))) -(((-299 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1310 ((-1085 |#3|) (-1085 |#4|) (-591 |#2|) (-591 |#3|))) (-15 -2743 ((-591 (-712)) (-1085 |#4|) (-591 |#2|))) (-15 -1444 ((-591 |#2|) (-1085 |#4|))) (-15 -1428 ((-1085 |#3|) (-1085 |#4|))) (-15 -3551 ((-1085 |#4|) (-1085 |#3|))) (-15 -2651 ((-1085 |#4|) (-1085 |#4|) (-525))) (-15 -1930 (|#3| (-525)))) (-734) (-788) (-975) (-882 |#3| |#1| |#2|)) (T -299)) -((-1930 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-975)) (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-882 *2 *4 *5)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 *7)) (-5 *3 (-525)) (-4 *7 (-882 *6 *4 *5)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) (-5 *1 (-299 *4 *5 *6 *7)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1085 *6)) (-4 *6 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-1085 *7)) (-5 *1 (-299 *4 *5 *6 *7)) (-4 *7 (-882 *6 *4 *5)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1085 *7)) (-4 *7 (-882 *6 *4 *5)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) (-5 *2 (-1085 *6)) (-5 *1 (-299 *4 *5 *6 *7)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-1085 *7)) (-4 *7 (-882 *6 *4 *5)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) (-5 *2 (-591 *5)) (-5 *1 (-299 *4 *5 *6 *7)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *8)) (-5 *4 (-591 *6)) (-4 *6 (-788)) (-4 *8 (-882 *7 *5 *6)) (-4 *5 (-734)) (-4 *7 (-975)) (-5 *2 (-591 (-712))) (-5 *1 (-299 *5 *6 *7 *8)))) (-1310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-591 *7)) (-5 *5 (-591 *8)) (-4 *7 (-788)) (-4 *8 (-975)) (-4 *9 (-882 *8 *6 *7)) (-4 *6 (-734)) (-5 *2 (-1085 *8)) (-5 *1 (-299 *6 *7 *8 *9))))) -(-10 -7 (-15 -1310 ((-1085 |#3|) (-1085 |#4|) (-591 |#2|) (-591 |#3|))) (-15 -2743 ((-591 (-712)) (-1085 |#4|) (-591 |#2|))) (-15 -1444 ((-591 |#2|) (-1085 |#4|))) (-15 -1428 ((-1085 |#3|) (-1085 |#4|))) (-15 -3551 ((-1085 |#4|) (-1085 |#3|))) (-15 -2651 ((-1085 |#4|) (-1085 |#4|) (-525))) (-15 -1930 (|#3| (-525)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 14)) (-3581 (((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-525)))) $) 18)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2834 (((-712) $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-2178 ((|#1| $ (-525)) NIL)) (-2235 (((-525) $ (-525)) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2637 (($ (-1 |#1| |#1|) $) NIL)) (-1526 (($ (-1 (-525) (-525)) $) 10)) (-2621 (((-1072) $) NIL)) (-1990 (($ $ $) NIL (|has| (-525) (-733)))) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL) (($ |#1|) NIL)) (-1263 (((-525) |#1| $) NIL)) (-1830 (($) 15 T CONST)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) 21 (|has| |#1| (-788)))) (-4047 (($ $) 11) (($ $ $) 20)) (-4036 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL) (($ (-525) |#1|) 19))) -(((-300 |#1|) (-13 (-21) (-659 (-525)) (-301 |#1| (-525)) (-10 -7 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) (-1018)) (T -300)) -NIL -(-13 (-21) (-659 (-525)) (-301 |#1| (-525)) (-10 -7 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3581 (((-591 (-2 (|:| |gen| |#1|) (|:| -2288 |#2|))) $) 27)) (-3332 (((-3 $ "failed") $ $) 19)) (-2834 (((-712) $) 28)) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#1| "failed") $) 32)) (-3341 ((|#1| $) 31)) (-2178 ((|#1| $ (-525)) 25)) (-2235 ((|#2| $ (-525)) 26)) (-2637 (($ (-1 |#1| |#1|) $) 22)) (-1526 (($ (-1 |#2| |#2|) $) 23)) (-2621 (((-1072) $) 9)) (-1990 (($ $ $) 21 (|has| |#2| (-733)))) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ |#1|) 33)) (-1263 ((|#2| |#1| $) 24)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4036 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ |#2| |#1|) 29))) -(((-301 |#1| |#2|) (-131) (-1018) (-126)) (T -301)) -((-4036 (*1 *1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-126)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-126)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-126)) (-5 *2 (-712)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-126)) (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 *4)))))) (-2235 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1018)) (-4 *2 (-126)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126)) (-4 *2 (-1018)))) (-1263 (*1 *2 *3 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-126)))) (-1526 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-126)))) (-2637 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-126)))) (-1990 (*1 *1 *1 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-126)) (-4 *3 (-733))))) -(-13 (-126) (-966 |t#1|) (-10 -8 (-15 -4036 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2834 ((-712) $)) (-15 -3581 ((-591 (-2 (|:| |gen| |t#1|) (|:| -2288 |t#2|))) $)) (-15 -2235 (|t#2| $ (-525))) (-15 -2178 (|t#1| $ (-525))) (-15 -1263 (|t#2| |t#1| $)) (-15 -1526 ($ (-1 |t#2| |t#2|) $)) (-15 -2637 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-733)) (-15 -1990 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-966 |#1|) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3581 (((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-712)))) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2834 (((-712) $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-2178 ((|#1| $ (-525)) NIL)) (-2235 (((-712) $ (-525)) NIL)) (-2637 (($ (-1 |#1| |#1|) $) NIL)) (-1526 (($ (-1 (-712) (-712)) $) NIL)) (-2621 (((-1072) $) NIL)) (-1990 (($ $ $) NIL (|has| (-712) (-733)))) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL) (($ |#1|) NIL)) (-1263 (((-712) |#1| $) NIL)) (-1830 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4036 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-712) |#1|) NIL))) -(((-302 |#1|) (-301 |#1| (-712)) (-1018)) (T -302)) -NIL -(-301 |#1| (-712)) -((-3153 (($ $) 53)) (-2615 (($ $ |#2| |#3| $) 14)) (-2508 (($ (-1 |#3| |#3|) $) 35)) (-1531 (((-108) $) 27)) (-1540 ((|#2| $) 29)) (-3210 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2827 ((|#2| $) 49)) (-3109 (((-591 |#2|) $) 38)) (-2931 (($ $ $ (-712)) 23)) (-4059 (($ $ |#2|) 42))) -(((-303 |#1| |#2| |#3|) (-10 -8 (-15 -3153 (|#1| |#1|)) (-15 -2827 (|#2| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2931 (|#1| |#1| |#1| (-712))) (-15 -2615 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2508 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3109 ((-591 |#2|) |#1|)) (-15 -1540 (|#2| |#1|)) (-15 -1531 ((-108) |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4059 (|#1| |#1| |#2|))) (-304 |#2| |#3|) (-975) (-733)) (T -303)) -NIL -(-10 -8 (-15 -3153 (|#1| |#1|)) (-15 -2827 (|#2| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2931 (|#1| |#1| |#1| (-712))) (-15 -2615 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2508 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3109 ((-591 |#2|) |#1|)) (-15 -1540 (|#2| |#1|)) (-15 -1531 ((-108) |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4059 (|#1| |#1| |#2|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3641 (($ $) 52 (|has| |#1| (-517)))) (-3077 (((-108) $) 54 (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-4174 (((-3 (-525) "failed") $) 90 (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 88 (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 87)) (-3341 (((-525) $) 91 (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) 89 (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 86)) (-1575 (($ $) 60)) (-1522 (((-3 $ "failed") $) 34)) (-3153 (($ $) 75 (|has| |#1| (-429)))) (-2615 (($ $ |#1| |#2| $) 79)) (-3865 (((-108) $) 31)) (-3667 (((-712) $) 82)) (-3802 (((-108) $) 62)) (-1422 (($ |#1| |#2|) 61)) (-3629 ((|#2| $) 81)) (-2508 (($ (-1 |#2| |#2|) $) 80)) (-1257 (($ (-1 |#1| |#1|) $) 63)) (-1548 (($ $) 65)) (-1556 ((|#1| $) 66)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-1531 (((-108) $) 85)) (-1540 ((|#1| $) 84)) (-3210 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-517)))) (-2743 ((|#2| $) 64)) (-2827 ((|#1| $) 76 (|has| |#1| (-429)))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47) (($ (-385 (-525))) 57 (-3150 (|has| |#1| (-966 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-3109 (((-591 |#1|) $) 83)) (-1263 ((|#1| $ |#2|) 59)) (-3751 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-2931 (($ $ $ (-712)) 78 (|has| |#1| (-160)))) (-1724 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) -(((-304 |#1| |#2|) (-131) (-975) (-733)) (T -304)) -((-1531 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) (-5 *2 (-108)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) (-5 *2 (-591 *3)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) (-5 *2 (-712)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) (-2508 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)))) (-2615 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)))) (-2931 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) (-4 *3 (-160)))) (-3210 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)) (-4 *2 (-517)))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)) (-4 *2 (-429)))) (-3153 (*1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)) (-4 *2 (-429))))) -(-13 (-46 |t#1| |t#2|) (-389 |t#1|) (-10 -8 (-15 -1531 ((-108) $)) (-15 -1540 (|t#1| $)) (-15 -3109 ((-591 |t#1|) $)) (-15 -3667 ((-712) $)) (-15 -3629 (|t#2| $)) (-15 -2508 ($ (-1 |t#2| |t#2|) $)) (-15 -2615 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-160)) (-15 -2931 ($ $ $ (-712))) |%noBranch|) (IF (|has| |t#1| (-517)) (-15 -3210 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2827 (|t#1| $)) (-15 -3153 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-389 |#1|) . T) ((-517) |has| |#1| (-517)) ((-593 #0#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #0#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) |has| |#1| (-517)) ((-668) . T) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-981 #0#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2238 (((-108) (-108)) NIL)) (-2847 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251)))) (-1288 (($ (-1 (-108) |#1|) $) NIL)) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-3945 (($ $) NIL (|has| |#1| (-1018)))) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3844 (($ |#1| $) NIL (|has| |#1| (-1018))) (($ (-1 (-108) |#1|) $) NIL)) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-1734 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018)))) (-1966 (($ $ (-525)) NIL)) (-2620 (((-712) $) NIL)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-1316 (($ (-712) |#1|) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3597 (($ $ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-1520 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2059 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-1232 (($ (-591 |#1|)) NIL)) (-2872 ((|#1| $) NIL (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-1227 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) NIL)) (-3729 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1624 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-591 $)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-305 |#1|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -1232 ($ (-591 |#1|))) (-15 -2620 ((-712) $)) (-15 -1966 ($ $ (-525))) (-15 -2238 ((-108) (-108))))) (-1125)) (T -305)) -((-1232 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-305 *3)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-305 *3)) (-4 *3 (-1125)))) (-1966 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1125)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1125))))) -(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -1232 ($ (-591 |#1|))) (-15 -2620 ((-712) $)) (-15 -1966 ($ $ (-525))) (-15 -2238 ((-108) (-108))))) -((-2862 (((-108) $) 42)) (-3981 (((-712)) 22)) (-1481 ((|#2| $) 46) (($ $ (-854)) 104)) (-2834 (((-712)) 98)) (-1554 (($ (-1171 |#2|)) 20)) (-3108 (((-108) $) 116)) (-1525 ((|#2| $) 48) (($ $ (-854)) 102)) (-3205 (((-1085 |#2|) $) NIL) (((-1085 $) $ (-854)) 95)) (-3004 (((-1085 |#2|) $) 83)) (-2224 (((-1085 |#2|) $) 80) (((-3 (-1085 |#2|) "failed") $ $) 77)) (-2594 (($ $ (-1085 |#2|)) 53)) (-3383 (((-774 (-854))) 28) (((-854)) 43)) (-3840 (((-128)) 25)) (-2743 (((-774 (-854)) $) 30) (((-854) $) 118)) (-2200 (($) 110)) (-1671 (((-1171 |#2|) $) NIL) (((-631 |#2|) (-1171 $)) 39)) (-3751 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2588 (((-108) $) 41))) -(((-306 |#1| |#2|) (-10 -8 (-15 -3751 ((-3 |#1| "failed") |#1|)) (-15 -2834 ((-712))) (-15 -3751 (|#1| |#1|)) (-15 -2224 ((-3 (-1085 |#2|) "failed") |#1| |#1|)) (-15 -2224 ((-1085 |#2|) |#1|)) (-15 -3004 ((-1085 |#2|) |#1|)) (-15 -2594 (|#1| |#1| (-1085 |#2|))) (-15 -3108 ((-108) |#1|)) (-15 -2200 (|#1|)) (-15 -1481 (|#1| |#1| (-854))) (-15 -1525 (|#1| |#1| (-854))) (-15 -3205 ((-1085 |#1|) |#1| (-854))) (-15 -1481 (|#2| |#1|)) (-15 -1525 (|#2| |#1|)) (-15 -2743 ((-854) |#1|)) (-15 -3383 ((-854))) (-15 -3205 ((-1085 |#2|) |#1|)) (-15 -1554 (|#1| (-1171 |#2|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1|)) (-15 -3981 ((-712))) (-15 -3383 ((-774 (-854)))) (-15 -2743 ((-774 (-854)) |#1|)) (-15 -2862 ((-108) |#1|)) (-15 -2588 ((-108) |#1|)) (-15 -3840 ((-128)))) (-307 |#2|) (-341)) (T -306)) -((-3840 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-3383 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-774 (-854))) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-3981 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-712)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-3383 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-854)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-2834 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-712)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4))))) -(-10 -8 (-15 -3751 ((-3 |#1| "failed") |#1|)) (-15 -2834 ((-712))) (-15 -3751 (|#1| |#1|)) (-15 -2224 ((-3 (-1085 |#2|) "failed") |#1| |#1|)) (-15 -2224 ((-1085 |#2|) |#1|)) (-15 -3004 ((-1085 |#2|) |#1|)) (-15 -2594 (|#1| |#1| (-1085 |#2|))) (-15 -3108 ((-108) |#1|)) (-15 -2200 (|#1|)) (-15 -1481 (|#1| |#1| (-854))) (-15 -1525 (|#1| |#1| (-854))) (-15 -3205 ((-1085 |#1|) |#1| (-854))) (-15 -1481 (|#2| |#1|)) (-15 -1525 (|#2| |#1|)) (-15 -2743 ((-854) |#1|)) (-15 -3383 ((-854))) (-15 -3205 ((-1085 |#2|) |#1|)) (-15 -1554 (|#1| (-1171 |#2|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1|)) (-15 -3981 ((-712))) (-15 -3383 ((-774 (-854)))) (-15 -2743 ((-774 (-854)) |#1|)) (-15 -2862 ((-108) |#1|)) (-15 -2588 ((-108) |#1|)) (-15 -3840 ((-128)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-2862 (((-108) $) 94)) (-3981 (((-712)) 90)) (-1481 ((|#1| $) 140) (($ $ (-854)) 137 (|has| |#1| (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) 122 (|has| |#1| (-346)))) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-1965 (((-108) $ $) 59)) (-2834 (((-712)) 112 (|has| |#1| (-346)))) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#1| "failed") $) 101)) (-3341 ((|#1| $) 100)) (-1554 (($ (-1171 |#1|)) 146)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-346)))) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-1325 (($) 109 (|has| |#1| (-346)))) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-1268 (($) 124 (|has| |#1| (-346)))) (-2096 (((-108) $) 125 (|has| |#1| (-346)))) (-3477 (($ $ (-712)) 87 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2393 (((-108) $) 71)) (-1676 (((-854) $) 127 (|has| |#1| (-346))) (((-774 (-854)) $) 84 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3865 (((-108) $) 31)) (-2805 (($) 135 (|has| |#1| (-346)))) (-3108 (((-108) $) 134 (|has| |#1| (-346)))) (-1525 ((|#1| $) 141) (($ $ (-854)) 138 (|has| |#1| (-346)))) (-2115 (((-3 $ "failed") $) 113 (|has| |#1| (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-3205 (((-1085 |#1|) $) 145) (((-1085 $) $ (-854)) 139 (|has| |#1| (-346)))) (-1970 (((-854) $) 110 (|has| |#1| (-346)))) (-3004 (((-1085 |#1|) $) 131 (|has| |#1| (-346)))) (-2224 (((-1085 |#1|) $) 130 (|has| |#1| (-346))) (((-3 (-1085 |#1|) "failed") $ $) 129 (|has| |#1| (-346)))) (-2594 (($ $ (-1085 |#1|)) 132 (|has| |#1| (-346)))) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 70)) (-3492 (($) 114 (|has| |#1| (-346)) CONST)) (-3229 (($ (-854)) 111 (|has| |#1| (-346)))) (-1326 (((-108) $) 93)) (-2937 (((-1036) $) 10)) (-3965 (($) 133 (|has| |#1| (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) 121 (|has| |#1| (-346)))) (-2542 (((-396 $) $) 74)) (-3383 (((-774 (-854))) 91) (((-854)) 143)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-2652 (((-712) $) 126 (|has| |#1| (-346))) (((-3 (-712) "failed") $ $) 85 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3840 (((-128)) 99)) (-2209 (($ $) 118 (|has| |#1| (-346))) (($ $ (-712)) 116 (|has| |#1| (-346)))) (-2743 (((-774 (-854)) $) 92) (((-854) $) 142)) (-1341 (((-1085 |#1|)) 144)) (-3560 (($) 123 (|has| |#1| (-346)))) (-2200 (($) 136 (|has| |#1| (-346)))) (-1671 (((-1171 |#1|) $) 148) (((-631 |#1|) (-1171 $)) 147)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 120 (|has| |#1| (-346)))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-3751 (($ $) 119 (|has| |#1| (-346))) (((-3 $ "failed") $) 83 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3425 (((-712)) 29)) (-3612 (((-1171 $)) 150) (((-1171 $) (-854)) 149)) (-1724 (((-108) $ $) 39)) (-2588 (((-108) $) 95)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3861 (($ $) 89 (|has| |#1| (-346))) (($ $ (-712)) 88 (|has| |#1| (-346)))) (-1796 (($ $) 117 (|has| |#1| (-346))) (($ $ (-712)) 115 (|has| |#1| (-346)))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ $) 64) (($ $ |#1|) 98)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +((-2168 ((|#1| (-1 |#1| (-525)) (-1092 (-385 (-525)))) 25))) +(((-289 |#1|) (-10 -7 (-15 -2168 (|#1| (-1 |#1| (-525)) (-1092 (-385 (-525)))))) (-37 (-385 (-525)))) (T -289)) +((-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1092 (-385 (-525)))) (-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525))))))) +(-10 -7 (-15 -2168 (|#1| (-1 |#1| (-525)) (-1092 (-385 (-525)))))) +((-4028 (((-108) $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 7)) (-3899 (((-108) $ $) 9))) +(((-290) (-1019)) (T -290)) +NIL +(-1019) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 62)) (-4094 (((-1158 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-843)))) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-843)))) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-762)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-1158 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-525)))) (((-3 (-1157 |#2| |#3| |#4|) "failed") $) 25)) (-2068 (((-1158 |#1| |#2| |#3| |#4|) $) NIL) (((-1090) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-525)))) (((-525) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-525)))) (((-1157 |#2| |#3| |#4|) $) NIL)) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-1158 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1172 (-1158 |#1| |#2| |#3| |#4|)))) (-632 $) (-1172 $)) NIL) (((-632 (-1158 |#1| |#2| |#3| |#4|)) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-510)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2973 (((-108) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-820 (-357))))) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL)) (-1936 (((-1158 |#1| |#2| |#3| |#4|) $) 21)) (-1978 (((-3 $ "failed") $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-1066)))) (-3721 (((-108) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-2154 (($ $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-2868 (($ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) $) NIL)) (-4014 (((-3 (-782 |#2|) "failed") $) 78)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-286)))) (-2473 (((-1158 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-843)))) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (($ $ (-592 (-1158 |#1| |#2| |#3| |#4|)) (-592 (-1158 |#1| |#2| |#3| |#4|))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-288 (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-288 (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-273 (-1158 |#1| |#2| |#3| |#4|))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-288 (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-273 (-1158 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-288 (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-1090)) (-592 (-1158 |#1| |#2| |#3| |#4|))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-486 (-1090) (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-1090) (-1158 |#1| |#2| |#3| |#4|)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-486 (-1090) (-1158 |#1| |#2| |#3| |#4|))))) (-2824 (((-713) $) NIL)) (-1496 (($ $ (-1158 |#1| |#2| |#3| |#4|)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-265 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1090)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|))) NIL)) (-1987 (($ $) NIL)) (-1945 (((-1158 |#1| |#2| |#3| |#4|) $) 17)) (-2923 (((-826 (-525)) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-567 (-501)))) (((-357) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-952))) (((-205) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-952)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1158 |#1| |#2| |#3| |#4|) (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-1158 |#1| |#2| |#3| |#4|)) 29) (($ (-1090)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-1090)))) (($ (-1157 |#2| |#3| |#4|)) 36)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| (-1158 |#1| |#2| |#3| |#4|) (-843))) (|has| (-1158 |#1| |#2| |#3| |#4|) (-136))))) (-2502 (((-713)) NIL)) (-1448 (((-1158 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-510)))) (-3787 (((-108) $ $) NIL)) (-2053 (($ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-762)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 41 T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1090)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|))) NIL)) (-3973 (((-108) $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-3928 (((-108) $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-4047 (($ $ $) 34) (($ (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) 31)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-1158 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1158 |#1| |#2| |#3| |#4|)) NIL))) +(((-291 |#1| |#2| |#3| |#4|) (-13 (-924 (-1158 |#1| |#2| |#3| |#4|)) (-967 (-1157 |#2| |#3| |#4|)) (-10 -8 (-15 -4014 ((-3 (-782 |#2|) "failed") $)) (-15 -4044 ($ (-1157 |#2| |#3| |#4|))))) (-13 (-789) (-967 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1112) (-408 |#1|)) (-1090) |#2|) (T -291)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1157 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) (-14 *6 *4) (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *1 (-291 *3 *4 *5 *6)))) (-4014 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) (-14 *6 *4)))) +(-13 (-924 (-1158 |#1| |#2| |#3| |#4|)) (-967 (-1157 |#2| |#3| |#4|)) (-10 -8 (-15 -4014 ((-3 (-782 |#2|) "failed") $)) (-15 -4044 ($ (-1157 |#2| |#3| |#4|))))) +((-2868 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 13))) +(((-292 |#1| |#2|) (-10 -7 (-15 -2868 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-789) (-789)) (T -292)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6))))) +(-10 -7 (-15 -2868 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) +((-3181 (((-51) |#2| (-273 |#2|) (-713)) 33) (((-51) |#2| (-273 |#2|)) 24) (((-51) |#2| (-713)) 28) (((-51) |#2|) 25) (((-51) (-1090)) 21)) (-4231 (((-51) |#2| (-273 |#2|) (-385 (-525))) 51) (((-51) |#2| (-273 |#2|)) 48) (((-51) |#2| (-385 (-525))) 50) (((-51) |#2|) 49) (((-51) (-1090)) 47)) (-3213 (((-51) |#2| (-273 |#2|) (-385 (-525))) 46) (((-51) |#2| (-273 |#2|)) 43) (((-51) |#2| (-385 (-525))) 45) (((-51) |#2|) 44) (((-51) (-1090)) 42)) (-3199 (((-51) |#2| (-273 |#2|) (-525)) 39) (((-51) |#2| (-273 |#2|)) 35) (((-51) |#2| (-525)) 38) (((-51) |#2|) 36) (((-51) (-1090)) 34))) +(((-293 |#1| |#2|) (-10 -7 (-15 -3181 ((-51) (-1090))) (-15 -3181 ((-51) |#2|)) (-15 -3181 ((-51) |#2| (-713))) (-15 -3181 ((-51) |#2| (-273 |#2|))) (-15 -3181 ((-51) |#2| (-273 |#2|) (-713))) (-15 -3199 ((-51) (-1090))) (-15 -3199 ((-51) |#2|)) (-15 -3199 ((-51) |#2| (-525))) (-15 -3199 ((-51) |#2| (-273 |#2|))) (-15 -3199 ((-51) |#2| (-273 |#2|) (-525))) (-15 -3213 ((-51) (-1090))) (-15 -3213 ((-51) |#2|)) (-15 -3213 ((-51) |#2| (-385 (-525)))) (-15 -3213 ((-51) |#2| (-273 |#2|))) (-15 -3213 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -4231 ((-51) (-1090))) (-15 -4231 ((-51) |#2|)) (-15 -4231 ((-51) |#2| (-385 (-525)))) (-15 -4231 ((-51) |#2| (-273 |#2|))) (-15 -4231 ((-51) |#2| (-273 |#2|) (-385 (-525))))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -293)) +((-4231 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-4231 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1112) (-408 *4))))) (-3213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1112) (-408 *4))))) (-3199 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 *5) (-588 *5))) (-5 *5 (-525)) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-789) (-967 *4) (-588 *4))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-3199 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1112) (-408 *4))))) (-3181 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-713)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-3181 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1112) (-408 *4)))))) +(-10 -7 (-15 -3181 ((-51) (-1090))) (-15 -3181 ((-51) |#2|)) (-15 -3181 ((-51) |#2| (-713))) (-15 -3181 ((-51) |#2| (-273 |#2|))) (-15 -3181 ((-51) |#2| (-273 |#2|) (-713))) (-15 -3199 ((-51) (-1090))) (-15 -3199 ((-51) |#2|)) (-15 -3199 ((-51) |#2| (-525))) (-15 -3199 ((-51) |#2| (-273 |#2|))) (-15 -3199 ((-51) |#2| (-273 |#2|) (-525))) (-15 -3213 ((-51) (-1090))) (-15 -3213 ((-51) |#2|)) (-15 -3213 ((-51) |#2| (-385 (-525)))) (-15 -3213 ((-51) |#2| (-273 |#2|))) (-15 -3213 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -4231 ((-51) (-1090))) (-15 -4231 ((-51) |#2|)) (-15 -4231 ((-51) |#2| (-385 (-525)))) (-15 -4231 ((-51) |#2| (-273 |#2|))) (-15 -4231 ((-51) |#2| (-273 |#2|) (-385 (-525))))) +((-4028 (((-108) $ $) NIL)) (-1708 (((-592 $) $ (-1090)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1086 $) (-1090)) NIL (|has| |#1| (-517))) (((-592 $) (-1086 $)) NIL (|has| |#1| (-517))) (((-592 $) (-886 $)) NIL (|has| |#1| (-517)))) (-3553 (($ $ (-1090)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1086 $) (-1090)) NIL (|has| |#1| (-517))) (($ (-1086 $)) NIL (|has| |#1| (-517))) (($ (-886 $)) NIL (|has| |#1| (-517)))) (-2464 (((-108) $) 27 (-3215 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (-3122 (((-592 (-1090)) $) 348)) (-1315 (((-385 (-1086 $)) $ (-565 $)) NIL (|has| |#1| (-517)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-2249 (((-592 (-565 $)) $) NIL)) (-3915 (($ $) 157 (|has| |#1| (-517)))) (-3760 (($ $) 133 (|has| |#1| (-517)))) (-2334 (($ $ (-1012 $)) 218 (|has| |#1| (-517))) (($ $ (-1090)) 214 (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) NIL (-3215 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (-3687 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) 365) (($ $ (-592 (-565 $)) (-592 $)) 409)) (-1426 (((-396 (-1086 $)) (-1086 $)) 292 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-2701 (($ $) NIL (|has| |#1| (-517)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-517)))) (-2975 (($ $) NIL (|has| |#1| (-517)))) (-1700 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3886 (($ $) 153 (|has| |#1| (-517)))) (-3737 (($ $) 129 (|has| |#1| (-517)))) (-4031 (($ $ (-525)) 65 (|has| |#1| (-517)))) (-3946 (($ $) 161 (|has| |#1| (-517)))) (-3783 (($ $) 137 (|has| |#1| (-517)))) (-1957 (($) NIL (-3215 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))) CONST)) (-3291 (((-592 $) $ (-1090)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1086 $) (-1090)) NIL (|has| |#1| (-517))) (((-592 $) (-1086 $)) NIL (|has| |#1| (-517))) (((-592 $) (-886 $)) NIL (|has| |#1| (-517)))) (-2539 (($ $ (-1090)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1086 $) (-1090)) 120 (|has| |#1| (-517))) (($ (-1086 $)) NIL (|has| |#1| (-517))) (($ (-886 $)) NIL (|has| |#1| (-517)))) (-2769 (((-3 (-565 $) "failed") $) 17) (((-3 (-1090) "failed") $) NIL) (((-3 |#1| "failed") $) 418) (((-3 (-47) "failed") $) 320 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-886 |#1|)) "failed") $) NIL (|has| |#1| (-517))) (((-3 (-886 |#1|) "failed") $) NIL (|has| |#1| (-976))) (((-3 (-385 (-525)) "failed") $) 46 (-3215 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-2068 (((-565 $) $) 11) (((-1090) $) NIL) ((|#1| $) 400) (((-47) $) NIL (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-886 |#1|)) $) NIL (|has| |#1| (-517))) (((-886 |#1|) $) NIL (|has| |#1| (-976))) (((-385 (-525)) $) 303 (-3215 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-2720 (($ $ $) NIL (|has| |#1| (-517)))) (-1307 (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 113 (|has| |#1| (-976))) (((-632 |#1|) (-632 $)) 103 (|has| |#1| (-976))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (-3336 (($ $) 85 (|has| |#1| (-517)))) (-1645 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))))) (-2699 (($ $ $) NIL (|has| |#1| (-517)))) (-3292 (($ $ (-1012 $)) 222 (|has| |#1| (-517))) (($ $ (-1090)) 220 (|has| |#1| (-517)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-517)))) (-2069 (((-108) $) NIL (|has| |#1| (-517)))) (-1857 (($ $ $) 188 (|has| |#1| (-517)))) (-1961 (($) 123 (|has| |#1| (-517)))) (-2635 (($ $ $) 208 (|has| |#1| (-517)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 371 (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 378 (|has| |#1| (-820 (-357))))) (-1759 (($ $) NIL) (($ (-592 $)) NIL)) (-4131 (((-592 (-110)) $) NIL)) (-1885 (((-110) (-110)) 263)) (-2507 (((-108) $) 25 (-3215 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))))) (-2057 (((-108) $) NIL (|has| $ (-967 (-525))))) (-4055 (($ $) 67 (|has| |#1| (-976)))) (-1936 (((-1042 |#1| (-565 $)) $) 80 (|has| |#1| (-976)))) (-1805 (((-108) $) 47 (|has| |#1| (-517)))) (-2581 (($ $ (-525)) NIL (|has| |#1| (-517)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-2605 (((-1086 $) (-565 $)) 264 (|has| $ (-976)))) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2868 (($ (-1 $ $) (-565 $)) 405)) (-1688 (((-3 (-565 $) "failed") $) NIL)) (-2412 (($ $) 127 (|has| |#1| (-517)))) (-1672 (($ $) 233 (|has| |#1| (-517)))) (-2226 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-1707 (((-1073) $) NIL)) (-1304 (((-592 (-565 $)) $) 49)) (-1996 (($ (-110) $) NIL) (($ (-110) (-592 $)) 410)) (-3466 (((-3 (-592 $) "failed") $) NIL (|has| |#1| (-1031)))) (-4098 (((-3 (-2 (|:| |val| $) (|:| -1737 (-525))) "failed") $) NIL (|has| |#1| (-976)))) (-4103 (((-3 (-592 $) "failed") $) 413 (|has| |#1| (-25)))) (-2054 (((-3 (-2 (|:| -2059 (-525)) (|:| |var| (-565 $))) "failed") $) 417 (|has| |#1| (-25)))) (-1850 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $) NIL (|has| |#1| (-1031))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-110)) NIL (|has| |#1| (-976))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-1090)) NIL (|has| |#1| (-976)))) (-4084 (((-108) $ (-110)) NIL) (((-108) $ (-1090)) 53)) (-3243 (($ $) NIL (-3215 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-3450 (($ $ (-1090)) 237 (|has| |#1| (-517))) (($ $ (-1012 $)) 239 (|has| |#1| (-517)))) (-2138 (((-713) $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) 43)) (-3267 ((|#1| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 285 (|has| |#1| (-517)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-1680 (((-108) $ $) NIL) (((-108) $ (-1090)) NIL)) (-1537 (($ $ (-1090)) 212 (|has| |#1| (-517))) (($ $) 210 (|has| |#1| (-517)))) (-3444 (($ $) 204 (|has| |#1| (-517)))) (-1944 (((-396 (-1086 $)) (-1086 $)) 290 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-2961 (((-396 $) $) NIL (|has| |#1| (-517)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-517)))) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-2840 (($ $) 125 (|has| |#1| (-517)))) (-3524 (((-108) $) NIL (|has| $ (-967 (-525))))) (-2168 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 404) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) 358) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1090)) NIL (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-567 (-501)))) (($ $) NIL (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1090)) 346 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1090)) 345 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $))) NIL (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $)))) NIL (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ (-592 $))) NIL (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ $)) NIL (|has| |#1| (-976)))) (-2824 (((-713) $) NIL (|has| |#1| (-517)))) (-3698 (($ $) 225 (|has| |#1| (-517)))) (-1496 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-517)))) (-3080 (($ $) NIL) (($ $ $) NIL)) (-3724 (($ $) 235 (|has| |#1| (-517)))) (-3156 (($ $) 186 (|has| |#1| (-517)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-976))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-976))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-976))) (($ $ (-1090)) NIL (|has| |#1| (-976)))) (-1987 (($ $) 68 (|has| |#1| (-517)))) (-1945 (((-1042 |#1| (-565 $)) $) 82 (|has| |#1| (-517)))) (-2775 (($ $) 301 (|has| $ (-976)))) (-3960 (($ $) 163 (|has| |#1| (-517)))) (-3795 (($ $) 139 (|has| |#1| (-517)))) (-3930 (($ $) 159 (|has| |#1| (-517)))) (-3771 (($ $) 135 (|has| |#1| (-517)))) (-3901 (($ $) 155 (|has| |#1| (-517)))) (-3749 (($ $) 131 (|has| |#1| (-517)))) (-2923 (((-826 (-525)) $) NIL (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| |#1| (-567 (-826 (-357))))) (($ (-396 $)) NIL (|has| |#1| (-517))) (((-501) $) 343 (|has| |#1| (-567 (-501))))) (-4025 (($ $ $) NIL (|has| |#1| (-450)))) (-1573 (($ $ $) NIL (|has| |#1| (-450)))) (-4044 (((-797) $) 403) (($ (-565 $)) 394) (($ (-1090)) 360) (($ |#1|) 321) (($ $) NIL (|has| |#1| (-517))) (($ (-47)) 296 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) (($ (-1042 |#1| (-565 $))) 84 (|has| |#1| (-976))) (($ (-385 |#1|)) NIL (|has| |#1| (-517))) (($ (-886 (-385 |#1|))) NIL (|has| |#1| (-517))) (($ (-385 (-886 (-385 |#1|)))) NIL (|has| |#1| (-517))) (($ (-385 (-886 |#1|))) NIL (|has| |#1| (-517))) (($ (-886 |#1|)) NIL (|has| |#1| (-976))) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-517)) (|has| |#1| (-967 (-385 (-525)))))) (($ (-525)) 34 (-3215 (|has| |#1| (-967 (-525))) (|has| |#1| (-976))))) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL (|has| |#1| (-976)))) (-3882 (($ $) NIL) (($ (-592 $)) NIL)) (-3738 (($ $ $) 206 (|has| |#1| (-517)))) (-3220 (($ $ $) 192 (|has| |#1| (-517)))) (-3579 (($ $ $) 196 (|has| |#1| (-517)))) (-1949 (($ $ $) 190 (|has| |#1| (-517)))) (-2200 (($ $ $) 194 (|has| |#1| (-517)))) (-3712 (((-108) (-110)) 9)) (-4004 (($ $) 169 (|has| |#1| (-517)))) (-3836 (($ $) 145 (|has| |#1| (-517)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) 165 (|has| |#1| (-517)))) (-3808 (($ $) 141 (|has| |#1| (-517)))) (-4035 (($ $) 173 (|has| |#1| (-517)))) (-3861 (($ $) 149 (|has| |#1| (-517)))) (-4075 (($ (-1090) $) NIL) (($ (-1090) $ $) NIL) (($ (-1090) $ $ $) NIL) (($ (-1090) $ $ $ $) NIL) (($ (-1090) (-592 $)) NIL)) (-3653 (($ $) 200 (|has| |#1| (-517)))) (-1228 (($ $) 198 (|has| |#1| (-517)))) (-2608 (($ $) 175 (|has| |#1| (-517)))) (-3873 (($ $) 151 (|has| |#1| (-517)))) (-4018 (($ $) 171 (|has| |#1| (-517)))) (-3848 (($ $) 147 (|has| |#1| (-517)))) (-3989 (($ $) 167 (|has| |#1| (-517)))) (-3823 (($ $) 143 (|has| |#1| (-517)))) (-2053 (($ $) 178 (|has| |#1| (-517)))) (-1594 (($ $ (-525)) NIL (-3215 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) NIL (-3215 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031)))) (($ $ (-855)) NIL (-3215 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))))) (-1436 (($) 20 (-3215 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))) CONST)) (-2044 (($ $) 229 (|has| |#1| (-517)))) (-1449 (($) 22 (-3215 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))) CONST)) (-1406 (($ $) 180 (|has| |#1| (-517))) (($ $ $) 182 (|has| |#1| (-517)))) (-2110 (($ $) 227 (|has| |#1| (-517)))) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-976))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-976))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-976))) (($ $ (-1090)) NIL (|has| |#1| (-976)))) (-2300 (($ $) 231 (|has| |#1| (-517)))) (-1208 (($ $ $) 184 (|has| |#1| (-517)))) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 77)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 76)) (-4047 (($ (-1042 |#1| (-565 $)) (-1042 |#1| (-565 $))) 94 (|has| |#1| (-517))) (($ $ $) 42 (-3215 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4033 (($ $ $) 40 (-3215 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (($ $) 29 (-3215 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (-4017 (($ $ $) 38 (-3215 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (** (($ $ $) 62 (|has| |#1| (-517))) (($ $ (-385 (-525))) 298 (|has| |#1| (-517))) (($ $ (-525)) 72 (-3215 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 69 (-3215 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031)))) (($ $ (-855)) 74 (-3215 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))))) (* (($ (-385 (-525)) $) NIL (|has| |#1| (-517))) (($ $ (-385 (-525))) NIL (|has| |#1| (-517))) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))) (($ $ $) 36 (-3215 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031)))) (($ (-525) $) 32 (-3215 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (($ (-713) $) NIL (-3215 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (($ (-855) $) NIL (-3215 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))))) +(((-294 |#1|) (-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1112)) (-6 (-149)) (-6 (-578)) (-6 (-1054)) (-15 -3336 ($ $)) (-15 -1805 ((-108) $)) (-15 -4031 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -1944 ((-396 (-1086 $)) (-1086 $))) (-15 -1426 ((-396 (-1086 $)) (-1086 $)))) |%noBranch|) (IF (|has| |#1| (-967 (-525))) (-6 (-967 (-47))) |%noBranch|)) |%noBranch|))) (-789)) (T -294)) +((-3336 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789)))) (-1805 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-4031 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-1944 (*1 *2 *3) (-12 (-5 *2 (-396 (-1086 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)))) (-1426 (*1 *2 *3) (-12 (-5 *2 (-396 (-1086 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789))))) +(-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1112)) (-6 (-149)) (-6 (-578)) (-6 (-1054)) (-15 -3336 ($ $)) (-15 -1805 ((-108) $)) (-15 -4031 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -1944 ((-396 (-1086 $)) (-1086 $))) (-15 -1426 ((-396 (-1086 $)) (-1086 $)))) |%noBranch|) (IF (|has| |#1| (-967 (-525))) (-6 (-967 (-47))) |%noBranch|)) |%noBranch|))) +((-1806 (((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)) 88) (((-51) |#2| (-110) (-273 |#2|) (-273 |#2|)) 84) (((-51) |#2| (-110) (-273 |#2|) |#2|) 86) (((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|) 87) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 80) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 82) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 83) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 81) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 89) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|)) 85))) +(((-295 |#1| |#2|) (-10 -7 (-15 -1806 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -1806 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -1806 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -1806 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -1806 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -1806 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -1806 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -1806 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -1806 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -1806 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-517) (-567 (-501))) (-408 |#1|)) (T -295)) +((-1806 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3)) (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))) (-1806 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-1806 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-1806 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *5)))) (-1806 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *6 (-592 (-273 *8))) (-4 *8 (-408 *7)) (-5 *5 (-273 *8)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-1806 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-1806 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8)) (-5 *6 (-592 *8)) (-4 *8 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-1806 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-1806 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-1806 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *6))))) +(-10 -7 (-15 -1806 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -1806 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -1806 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -1806 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -1806 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -1806 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -1806 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -1806 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -1806 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -1806 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)))) +((-1673 (((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525) (-1073)) 46) (((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525)) 47) (((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525) (-1073)) 43) (((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525)) 44)) (-1807 (((-1 (-205) (-205)) (-205)) 45))) +(((-296) (-10 -7 (-15 -1807 ((-1 (-205) (-205)) (-205))) (-15 -1673 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525))) (-15 -1673 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525) (-1073))) (-15 -1673 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525))) (-15 -1673 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525) (-1073))))) (T -296)) +((-1673 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1073)) (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) (-1673 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) (-1673 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-525)) (-5 *7 (-1073)) (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) (-1673 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-525)) (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) (-1807 (*1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205))))) +(-10 -7 (-15 -1807 ((-1 (-205) (-205)) (-205))) (-15 -1673 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525))) (-15 -1673 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525) (-1073))) (-15 -1673 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525))) (-15 -1673 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525) (-1073)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 25)) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3948 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-3423 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 20)) (-3915 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| |#1| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3886 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-3946 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) 32)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2069 (((-108) $) NIL (|has| |#1| (-341)))) (-3951 (((-108) $) NIL)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) 16)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) NIL) (($ $ (-385 (-525))) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-385 (-525))) NIL) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2412 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-2313 (($ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112)))))) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1539 (($ $ (-385 (-525))) NIL)) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3645 (((-385 (-525)) $) 17)) (-2393 (($ (-1157 |#1| |#2| |#3|)) 11)) (-1737 (((-1157 |#1| |#2| |#3|) $) 12)) (-2840 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1031)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-1486 (((-385 (-525)) $) NIL)) (-3960 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) 10)) (-4044 (((-797) $) 38) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-2100 ((|#1| $ (-385 (-525))) 30)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-3448 ((|#1| $) NIL)) (-4004 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 27)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 33)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-297 |#1| |#2| |#3|) (-13 (-1153 |#1|) (-734) (-10 -8 (-15 -2393 ($ (-1157 |#1| |#2| |#3|))) (-15 -1737 ((-1157 |#1| |#2| |#3|) $)) (-15 -3645 ((-385 (-525)) $)))) (-13 (-341) (-789)) (-1090) |#1|) (T -297)) +((-2393 (*1 *1 *2) (-12 (-5 *2 (-1157 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-1157 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3)))) +(-13 (-1153 |#1|) (-734) (-10 -8 (-15 -2393 ($ (-1157 |#1| |#2| |#3|))) (-15 -1737 ((-1157 |#1| |#2| |#3|) $)) (-15 -3645 ((-385 (-525)) $)))) +((-2581 (((-2 (|:| -1737 (-713)) (|:| -2059 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713)) 24)) (-2412 (((-592 (-2 (|:| -2059 (-713)) (|:| |logand| |#1|))) (-396 |#1|)) 28))) +(((-298 |#1|) (-10 -7 (-15 -2581 ((-2 (|:| -1737 (-713)) (|:| -2059 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -2412 ((-592 (-2 (|:| -2059 (-713)) (|:| |logand| |#1|))) (-396 |#1|)))) (-517)) (T -298)) +((-2412 (*1 *2 *3) (-12 (-5 *3 (-396 *4)) (-4 *4 (-517)) (-5 *2 (-592 (-2 (|:| -2059 (-713)) (|:| |logand| *4)))) (-5 *1 (-298 *4)))) (-2581 (*1 *2 *3 *4) (-12 (-5 *3 (-396 *5)) (-4 *5 (-517)) (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *5) (|:| |radicand| (-592 *5)))) (-5 *1 (-298 *5)) (-5 *4 (-713))))) +(-10 -7 (-15 -2581 ((-2 (|:| -1737 (-713)) (|:| -2059 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -2412 ((-592 (-2 (|:| -2059 (-713)) (|:| |logand| |#1|))) (-396 |#1|)))) +((-3122 (((-592 |#2|) (-1086 |#4|)) 43)) (-2859 ((|#3| (-525)) 46)) (-3805 (((-1086 |#4|) (-1086 |#3|)) 30)) (-2596 (((-1086 |#4|) (-1086 |#4|) (-525)) 56)) (-1642 (((-1086 |#3|) (-1086 |#4|)) 21)) (-1486 (((-592 (-713)) (-1086 |#4|) (-592 |#2|)) 40)) (-2900 (((-1086 |#3|) (-1086 |#4|) (-592 |#2|) (-592 |#3|)) 35))) +(((-299 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2900 ((-1086 |#3|) (-1086 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -1486 ((-592 (-713)) (-1086 |#4|) (-592 |#2|))) (-15 -3122 ((-592 |#2|) (-1086 |#4|))) (-15 -1642 ((-1086 |#3|) (-1086 |#4|))) (-15 -3805 ((-1086 |#4|) (-1086 |#3|))) (-15 -2596 ((-1086 |#4|) (-1086 |#4|) (-525))) (-15 -2859 (|#3| (-525)))) (-735) (-789) (-976) (-883 |#3| |#1| |#2|)) (T -299)) +((-2859 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-976)) (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-883 *2 *4 *5)))) (-2596 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *7)) (-5 *3 (-525)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-5 *1 (-299 *4 *5 *6 *7)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-1086 *6)) (-4 *6 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1086 *7)) (-5 *1 (-299 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-5 *2 (-1086 *6)) (-5 *1 (-299 *4 *5 *6 *7)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-5 *2 (-592 *5)) (-5 *1 (-299 *4 *5 *6 *7)))) (-1486 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789)) (-4 *8 (-883 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-976)) (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8)))) (-2900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8)) (-4 *7 (-789)) (-4 *8 (-976)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-1086 *8)) (-5 *1 (-299 *6 *7 *8 *9))))) +(-10 -7 (-15 -2900 ((-1086 |#3|) (-1086 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -1486 ((-592 (-713)) (-1086 |#4|) (-592 |#2|))) (-15 -3122 ((-592 |#2|) (-1086 |#4|))) (-15 -1642 ((-1086 |#3|) (-1086 |#4|))) (-15 -3805 ((-1086 |#4|) (-1086 |#3|))) (-15 -2596 ((-1086 |#4|) (-1086 |#4|) (-525))) (-15 -2859 (|#3| (-525)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 14)) (-3423 (((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-525)))) $) 18)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1651 (((-713) $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-2339 ((|#1| $ (-525)) NIL)) (-1434 (((-525) $ (-525)) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-4146 (($ (-1 |#1| |#1|) $) NIL)) (-2619 (($ (-1 (-525) (-525)) $) 10)) (-1707 (((-1073) $) NIL)) (-1215 (($ $ $) NIL (|has| (-525) (-734)))) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL) (($ |#1|) NIL)) (-2100 (((-525) |#1| $) NIL)) (-1436 (($) 15 T CONST)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) 21 (|has| |#1| (-789)))) (-4033 (($ $) 11) (($ $ $) 20)) (-4017 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL) (($ (-525) |#1|) 19))) +(((-300 |#1|) (-13 (-21) (-660 (-525)) (-301 |#1| (-525)) (-10 -7 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) (-1019)) (T -300)) +NIL +(-13 (-21) (-660 (-525)) (-301 |#1| (-525)) (-10 -7 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3423 (((-592 (-2 (|:| |gen| |#1|) (|:| -2840 |#2|))) $) 27)) (-3004 (((-3 $ "failed") $ $) 19)) (-1651 (((-713) $) 28)) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#1| "failed") $) 32)) (-2068 ((|#1| $) 31)) (-2339 ((|#1| $ (-525)) 25)) (-1434 ((|#2| $ (-525)) 26)) (-4146 (($ (-1 |#1| |#1|) $) 22)) (-2619 (($ (-1 |#2| |#2|) $) 23)) (-1707 (((-1073) $) 9)) (-1215 (($ $ $) 21 (|has| |#2| (-734)))) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ |#1|) 33)) (-2100 ((|#2| |#1| $) 24)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4017 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ |#2| |#1|) 29))) +(((-301 |#1| |#2|) (-131) (-1019) (-126)) (T -301)) +((-4017 (*1 *1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-126)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-126)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)) (-5 *2 (-713)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)) (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 *4)))))) (-1434 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1019)) (-4 *2 (-126)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126)) (-4 *2 (-1019)))) (-2100 (*1 *2 *3 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-126)))) (-2619 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)))) (-4146 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)))) (-1215 (*1 *1 *1 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-126)) (-4 *3 (-734))))) +(-13 (-126) (-967 |t#1|) (-10 -8 (-15 -4017 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1651 ((-713) $)) (-15 -3423 ((-592 (-2 (|:| |gen| |t#1|) (|:| -2840 |t#2|))) $)) (-15 -1434 (|t#2| $ (-525))) (-15 -2339 (|t#1| $ (-525))) (-15 -2100 (|t#2| |t#1| $)) (-15 -2619 ($ (-1 |t#2| |t#2|) $)) (-15 -4146 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-734)) (-15 -1215 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-967 |#1|) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3423 (((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-713)))) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1651 (((-713) $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-2339 ((|#1| $ (-525)) NIL)) (-1434 (((-713) $ (-525)) NIL)) (-4146 (($ (-1 |#1| |#1|) $) NIL)) (-2619 (($ (-1 (-713) (-713)) $) NIL)) (-1707 (((-1073) $) NIL)) (-1215 (($ $ $) NIL (|has| (-713) (-734)))) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL) (($ |#1|) NIL)) (-2100 (((-713) |#1| $) NIL)) (-1436 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4017 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-713) |#1|) NIL))) +(((-302 |#1|) (-301 |#1| (-713)) (-1019)) (T -302)) +NIL +(-301 |#1| (-713)) +((-2319 (($ $) 53)) (-2187 (($ $ |#2| |#3| $) 14)) (-2078 (($ (-1 |#3| |#3|) $) 35)) (-3256 (((-108) $) 27)) (-3267 ((|#2| $) 29)) (-2675 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2758 ((|#2| $) 49)) (-3681 (((-592 |#2|) $) 38)) (-2541 (($ $ $ (-713)) 23)) (-4047 (($ $ |#2|) 42))) +(((-303 |#1| |#2| |#3|) (-10 -8 (-15 -2319 (|#1| |#1|)) (-15 -2758 (|#2| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2541 (|#1| |#1| |#1| (-713))) (-15 -2187 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2078 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3681 ((-592 |#2|) |#1|)) (-15 -3267 (|#2| |#1|)) (-15 -3256 ((-108) |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4047 (|#1| |#1| |#2|))) (-304 |#2| |#3|) (-976) (-734)) (T -303)) +NIL +(-10 -8 (-15 -2319 (|#1| |#1|)) (-15 -2758 (|#2| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2541 (|#1| |#1| |#1| (-713))) (-15 -2187 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2078 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3681 ((-592 |#2|) |#1|)) (-15 -3267 (|#2| |#1|)) (-15 -3256 ((-108) |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4047 (|#1| |#1| |#2|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2609 (($ $) 52 (|has| |#1| (-517)))) (-1220 (((-108) $) 54 (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-2769 (((-3 (-525) "failed") $) 90 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 88 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 87)) (-2068 (((-525) $) 91 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 89 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 86)) (-3306 (($ $) 60)) (-1645 (((-3 $ "failed") $) 34)) (-2319 (($ $) 75 (|has| |#1| (-429)))) (-2187 (($ $ |#1| |#2| $) 79)) (-2507 (((-108) $) 31)) (-3682 (((-713) $) 82)) (-1432 (((-108) $) 62)) (-3097 (($ |#1| |#2|) 61)) (-3762 ((|#2| $) 81)) (-2078 (($ (-1 |#2| |#2|) $) 80)) (-2868 (($ (-1 |#1| |#1|) $) 63)) (-3277 (($ $) 65)) (-3286 ((|#1| $) 66)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-3256 (((-108) $) 85)) (-3267 ((|#1| $) 84)) (-2675 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-517)))) (-1486 ((|#2| $) 64)) (-2758 ((|#1| $) 76 (|has| |#1| (-429)))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47) (($ (-385 (-525))) 57 (-3215 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-3681 (((-592 |#1|) $) 83)) (-2100 ((|#1| $ |#2|) 59)) (-1279 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-2541 (($ $ $ (-713)) 78 (|has| |#1| (-160)))) (-3787 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) +(((-304 |#1| |#2|) (-131) (-976) (-734)) (T -304)) +((-3256 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-108)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-592 *3)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-713)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-2078 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)))) (-2187 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) (-2541 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-4 *3 (-160)))) (-2675 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *2 (-517)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)) (-4 *2 (-429)))) (-2319 (*1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *2 (-429))))) +(-13 (-46 |t#1| |t#2|) (-389 |t#1|) (-10 -8 (-15 -3256 ((-108) $)) (-15 -3267 (|t#1| $)) (-15 -3681 ((-592 |t#1|) $)) (-15 -3682 ((-713) $)) (-15 -3762 (|t#2| $)) (-15 -2078 ($ (-1 |t#2| |t#2|) $)) (-15 -2187 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-160)) (-15 -2541 ($ $ $ (-713))) |%noBranch|) (IF (|has| |t#1| (-517)) (-15 -2675 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2758 (|t#1| $)) (-15 -2319 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-389 |#1|) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-2416 (((-108) (-108)) NIL)) (-1230 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-2696 (($ (-1 (-108) |#1|) $) NIL)) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-2987 (($ $) NIL (|has| |#1| (-1019)))) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1640 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) NIL)) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-1930 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-1836 (($ $ (-525)) NIL)) (-1554 (((-713) $) NIL)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3248 (($ (-713) |#1|) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1636 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-4157 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2234 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1529 (($ (-592 |#1|)) NIL)) (-1683 ((|#1| $) NIL (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2835 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) NIL)) (-2455 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1810 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-305 |#1|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -1529 ($ (-592 |#1|))) (-15 -1554 ((-713) $)) (-15 -1836 ($ $ (-525))) (-15 -2416 ((-108) (-108))))) (-1126)) (T -305)) +((-1529 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-305 *3)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1126)))) (-1836 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1126)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1126))))) +(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -1529 ($ (-592 |#1|))) (-15 -1554 ((-713) $)) (-15 -1836 ($ $ (-525))) (-15 -2416 ((-108) (-108))))) +((-1433 (((-108) $) 42)) (-2275 (((-713)) 22)) (-3942 ((|#2| $) 46) (($ $ (-855)) 104)) (-1651 (((-713)) 98)) (-1689 (($ (-1172 |#2|)) 20)) (-1872 (((-108) $) 116)) (-2281 ((|#2| $) 48) (($ $ (-855)) 102)) (-3800 (((-1086 |#2|) $) NIL) (((-1086 $) $ (-855)) 95)) (-1311 (((-1086 |#2|) $) 83)) (-3819 (((-1086 |#2|) $) 80) (((-3 (-1086 |#2|) "failed") $ $) 77)) (-3851 (($ $ (-1086 |#2|)) 53)) (-1927 (((-775 (-855))) 28) (((-855)) 43)) (-2374 (((-128)) 25)) (-1486 (((-775 (-855)) $) 30) (((-855) $) 118)) (-2041 (($) 110)) (-1625 (((-1172 |#2|) $) NIL) (((-632 |#2|) (-1172 $)) 39)) (-1279 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2238 (((-108) $) 41))) +(((-306 |#1| |#2|) (-10 -8 (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -1651 ((-713))) (-15 -1279 (|#1| |#1|)) (-15 -3819 ((-3 (-1086 |#2|) "failed") |#1| |#1|)) (-15 -3819 ((-1086 |#2|) |#1|)) (-15 -1311 ((-1086 |#2|) |#1|)) (-15 -3851 (|#1| |#1| (-1086 |#2|))) (-15 -1872 ((-108) |#1|)) (-15 -2041 (|#1|)) (-15 -3942 (|#1| |#1| (-855))) (-15 -2281 (|#1| |#1| (-855))) (-15 -3800 ((-1086 |#1|) |#1| (-855))) (-15 -3942 (|#2| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -1486 ((-855) |#1|)) (-15 -1927 ((-855))) (-15 -3800 ((-1086 |#2|) |#1|)) (-15 -1689 (|#1| (-1172 |#2|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1|)) (-15 -2275 ((-713))) (-15 -1927 ((-775 (-855)))) (-15 -1486 ((-775 (-855)) |#1|)) (-15 -1433 ((-108) |#1|)) (-15 -2238 ((-108) |#1|)) (-15 -2374 ((-128)))) (-307 |#2|) (-341)) (T -306)) +((-2374 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-1927 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-775 (-855))) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-2275 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-1927 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-855)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-1651 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4))))) +(-10 -8 (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -1651 ((-713))) (-15 -1279 (|#1| |#1|)) (-15 -3819 ((-3 (-1086 |#2|) "failed") |#1| |#1|)) (-15 -3819 ((-1086 |#2|) |#1|)) (-15 -1311 ((-1086 |#2|) |#1|)) (-15 -3851 (|#1| |#1| (-1086 |#2|))) (-15 -1872 ((-108) |#1|)) (-15 -2041 (|#1|)) (-15 -3942 (|#1| |#1| (-855))) (-15 -2281 (|#1| |#1| (-855))) (-15 -3800 ((-1086 |#1|) |#1| (-855))) (-15 -3942 (|#2| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -1486 ((-855) |#1|)) (-15 -1927 ((-855))) (-15 -3800 ((-1086 |#2|) |#1|)) (-15 -1689 (|#1| (-1172 |#2|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1|)) (-15 -2275 ((-713))) (-15 -1927 ((-775 (-855)))) (-15 -1486 ((-775 (-855)) |#1|)) (-15 -1433 ((-108) |#1|)) (-15 -2238 ((-108) |#1|)) (-15 -2374 ((-128)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-1433 (((-108) $) 94)) (-2275 (((-713)) 90)) (-3942 ((|#1| $) 140) (($ $ (-855)) 137 (|has| |#1| (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) 122 (|has| |#1| (-346)))) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-1700 (((-108) $ $) 59)) (-1651 (((-713)) 112 (|has| |#1| (-346)))) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#1| "failed") $) 101)) (-2068 ((|#1| $) 100)) (-1689 (($ (-1172 |#1|)) 146)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-346)))) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-1527 (($) 109 (|has| |#1| (-346)))) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2376 (($) 124 (|has| |#1| (-346)))) (-3703 (((-108) $) 125 (|has| |#1| (-346)))) (-3351 (($ $ (-713)) 87 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2069 (((-108) $) 71)) (-2158 (((-855) $) 127 (|has| |#1| (-346))) (((-775 (-855)) $) 84 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2507 (((-108) $) 31)) (-2431 (($) 135 (|has| |#1| (-346)))) (-1872 (((-108) $) 134 (|has| |#1| (-346)))) (-2281 ((|#1| $) 141) (($ $ (-855)) 138 (|has| |#1| (-346)))) (-1978 (((-3 $ "failed") $) 113 (|has| |#1| (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3800 (((-1086 |#1|) $) 145) (((-1086 $) $ (-855)) 139 (|has| |#1| (-346)))) (-2111 (((-855) $) 110 (|has| |#1| (-346)))) (-1311 (((-1086 |#1|) $) 131 (|has| |#1| (-346)))) (-3819 (((-1086 |#1|) $) 130 (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) 129 (|has| |#1| (-346)))) (-3851 (($ $ (-1086 |#1|)) 132 (|has| |#1| (-346)))) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 70)) (-2039 (($) 114 (|has| |#1| (-346)) CONST)) (-3381 (($ (-855)) 111 (|has| |#1| (-346)))) (-1769 (((-108) $) 93)) (-3027 (((-1037) $) 10)) (-3258 (($) 133 (|has| |#1| (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) 121 (|has| |#1| (-346)))) (-2961 (((-396 $) $) 74)) (-1927 (((-775 (-855))) 91) (((-855)) 143)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-2729 (((-713) $) 126 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 85 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2374 (((-128)) 99)) (-1576 (($ $) 118 (|has| |#1| (-346))) (($ $ (-713)) 116 (|has| |#1| (-346)))) (-1486 (((-775 (-855)) $) 92) (((-855) $) 142)) (-2775 (((-1086 |#1|)) 144)) (-3405 (($) 123 (|has| |#1| (-346)))) (-2041 (($) 136 (|has| |#1| (-346)))) (-1625 (((-1172 |#1|) $) 148) (((-632 |#1|) (-1172 $)) 147)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 120 (|has| |#1| (-346)))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-1279 (($ $) 119 (|has| |#1| (-346))) (((-3 $ "failed") $) 83 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2502 (((-713)) 29)) (-2734 (((-1172 $)) 150) (((-1172 $) (-855)) 149)) (-3787 (((-108) $ $) 39)) (-2238 (((-108) $) 95)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3459 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-1990 (($ $) 117 (|has| |#1| (-346))) (($ $ (-713)) 115 (|has| |#1| (-346)))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ $) 64) (($ $ |#1|) 98)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) (((-307 |#1|) (-131) (-341)) (T -307)) -((-3612 (*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1171 *1)) (-4 *1 (-307 *3)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-854)) (-4 *4 (-341)) (-5 *2 (-1171 *1)) (-4 *1 (-307 *4)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1171 *3)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341)) (-5 *2 (-631 *4)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1085 *3)))) (-1341 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1085 *3)))) (-3383 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-854)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-854)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-3205 (*1 *2 *1 *3) (-12 (-5 *3 (-854)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1085 *1)) (-4 *1 (-307 *4)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-854)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-1481 (*1 *1 *1 *2) (-12 (-5 *2 (-854)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-2200 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-2805 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108)))) (-3965 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3)) (-4 *3 (-341)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1085 *3)))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1085 *3)))) (-2224 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1085 *3))))) -(-13 (-1188 |t#1|) (-966 |t#1|) (-10 -8 (-15 -3612 ((-1171 $))) (-15 -3612 ((-1171 $) (-854))) (-15 -1671 ((-1171 |t#1|) $)) (-15 -1671 ((-631 |t#1|) (-1171 $))) (-15 -1554 ($ (-1171 |t#1|))) (-15 -3205 ((-1085 |t#1|) $)) (-15 -1341 ((-1085 |t#1|))) (-15 -3383 ((-854))) (-15 -2743 ((-854) $)) (-15 -1525 (|t#1| $)) (-15 -1481 (|t#1| $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-327)) (-15 -3205 ((-1085 $) $ (-854))) (-15 -1525 ($ $ (-854))) (-15 -1481 ($ $ (-854))) (-15 -2200 ($)) (-15 -2805 ($)) (-15 -3108 ((-108) $)) (-15 -3965 ($)) (-15 -2594 ($ $ (-1085 |t#1|))) (-15 -3004 ((-1085 |t#1|) $)) (-15 -2224 ((-1085 |t#1|) $)) (-15 -2224 ((-3 (-1085 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3150 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) . T) ((-213) |has| |#1| (-346)) ((-223) . T) ((-269) . T) ((-286) . T) ((-1188 |#1|) . T) ((-341) . T) ((-380) -3150 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-346) |has| |#1| (-346)) ((-327) |has| |#1| (-346)) ((-429) . T) ((-517) . T) ((-593 #0#) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #0#) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-668) . T) ((-853) . T) ((-966 |#1|) . T) ((-981 #0#) . T) ((-981 |#1|) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1065) |has| |#1| (-346)) ((-1129) . T) ((-1178 |#1|) . T)) -((-2673 (((-108) $ $) NIL)) (-1679 (($ (-1088) $) 88)) (-2752 (($) 77)) (-2781 (((-1036) (-1036)) 11)) (-2414 (($) 78)) (-2479 (($) 90) (($ (-294 (-640))) 98) (($ (-294 (-642))) 94) (($ (-294 (-635))) 102) (($ (-294 (-357))) 109) (($ (-294 (-525))) 105) (($ (-294 (-157 (-357)))) 113)) (-2072 (($ (-1088) $) 89)) (-2421 (($ (-591 (-796))) 79)) (-2776 (((-1176) $) 75)) (-3869 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3725 (($ (-1036)) 51)) (-1799 (((-1022) $) 25)) (-2208 (($ (-1011 (-885 (-525))) $) 85) (($ (-1011 (-885 (-525))) (-885 (-525)) $) 86)) (-1514 (($ (-1036)) 87)) (-2675 (($ (-1088) $) 115) (($ (-1088) $ $) 116)) (-3017 (($ (-1089) (-591 (-1089))) 76)) (-2286 (($ (-1072)) 82) (($ (-591 (-1072))) 80)) (-2686 (((-796) $) 118)) (-3145 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1089)) (|:| |arrayIndex| (-591 (-885 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1089)) (|:| |rand| (-796)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1088)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2077 (-108)) (|:| -2940 (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) (|:| |blockBranch| (-591 $)) (|:| |commentBranch| (-591 (-1072))) (|:| |callBranch| (-1072)) (|:| |forBranch| (-2 (|:| -3756 (-1011 (-885 (-525)))) (|:| |span| (-885 (-525))) (|:| -2226 $))) (|:| |labelBranch| (-1036)) (|:| |loopBranch| (-2 (|:| |switch| (-1088)) (|:| -2226 $))) (|:| |commonBranch| (-2 (|:| -3419 (-1089)) (|:| |contents| (-591 (-1089))))) (|:| |printBranch| (-591 (-796)))) $) 44)) (-4062 (($ (-1072)) 187)) (-1544 (($ (-591 $)) 114)) (-1502 (($ (-1089) (-1072)) 120) (($ (-1089) (-294 (-642))) 160) (($ (-1089) (-294 (-640))) 161) (($ (-1089) (-294 (-635))) 162) (($ (-1089) (-631 (-642))) 123) (($ (-1089) (-631 (-640))) 126) (($ (-1089) (-631 (-635))) 129) (($ (-1089) (-1171 (-642))) 132) (($ (-1089) (-1171 (-640))) 135) (($ (-1089) (-1171 (-635))) 138) (($ (-1089) (-631 (-294 (-642)))) 141) (($ (-1089) (-631 (-294 (-640)))) 144) (($ (-1089) (-631 (-294 (-635)))) 147) (($ (-1089) (-1171 (-294 (-642)))) 150) (($ (-1089) (-1171 (-294 (-640)))) 153) (($ (-1089) (-1171 (-294 (-635)))) 156) (($ (-1089) (-591 (-885 (-525))) (-294 (-642))) 157) (($ (-1089) (-591 (-885 (-525))) (-294 (-640))) 158) (($ (-1089) (-591 (-885 (-525))) (-294 (-635))) 159) (($ (-1089) (-294 (-525))) 184) (($ (-1089) (-294 (-357))) 185) (($ (-1089) (-294 (-157 (-357)))) 186) (($ (-1089) (-631 (-294 (-525)))) 165) (($ (-1089) (-631 (-294 (-357)))) 168) (($ (-1089) (-631 (-294 (-157 (-357))))) 171) (($ (-1089) (-1171 (-294 (-525)))) 174) (($ (-1089) (-1171 (-294 (-357)))) 177) (($ (-1089) (-1171 (-294 (-157 (-357))))) 180) (($ (-1089) (-591 (-885 (-525))) (-294 (-525))) 181) (($ (-1089) (-591 (-885 (-525))) (-294 (-357))) 182) (($ (-1089) (-591 (-885 (-525))) (-294 (-157 (-357)))) 183)) (-3944 (((-108) $ $) NIL))) -(((-308) (-13 (-1018) (-10 -8 (-15 -2686 ((-796) $)) (-15 -2208 ($ (-1011 (-885 (-525))) $)) (-15 -2208 ($ (-1011 (-885 (-525))) (-885 (-525)) $)) (-15 -1679 ($ (-1088) $)) (-15 -2072 ($ (-1088) $)) (-15 -3725 ($ (-1036))) (-15 -1514 ($ (-1036))) (-15 -2286 ($ (-1072))) (-15 -2286 ($ (-591 (-1072)))) (-15 -4062 ($ (-1072))) (-15 -2479 ($)) (-15 -2479 ($ (-294 (-640)))) (-15 -2479 ($ (-294 (-642)))) (-15 -2479 ($ (-294 (-635)))) (-15 -2479 ($ (-294 (-357)))) (-15 -2479 ($ (-294 (-525)))) (-15 -2479 ($ (-294 (-157 (-357))))) (-15 -2675 ($ (-1088) $)) (-15 -2675 ($ (-1088) $ $)) (-15 -1502 ($ (-1089) (-1072))) (-15 -1502 ($ (-1089) (-294 (-642)))) (-15 -1502 ($ (-1089) (-294 (-640)))) (-15 -1502 ($ (-1089) (-294 (-635)))) (-15 -1502 ($ (-1089) (-631 (-642)))) (-15 -1502 ($ (-1089) (-631 (-640)))) (-15 -1502 ($ (-1089) (-631 (-635)))) (-15 -1502 ($ (-1089) (-1171 (-642)))) (-15 -1502 ($ (-1089) (-1171 (-640)))) (-15 -1502 ($ (-1089) (-1171 (-635)))) (-15 -1502 ($ (-1089) (-631 (-294 (-642))))) (-15 -1502 ($ (-1089) (-631 (-294 (-640))))) (-15 -1502 ($ (-1089) (-631 (-294 (-635))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-642))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-640))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-635))))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-642)))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-640)))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-635)))) (-15 -1502 ($ (-1089) (-294 (-525)))) (-15 -1502 ($ (-1089) (-294 (-357)))) (-15 -1502 ($ (-1089) (-294 (-157 (-357))))) (-15 -1502 ($ (-1089) (-631 (-294 (-525))))) (-15 -1502 ($ (-1089) (-631 (-294 (-357))))) (-15 -1502 ($ (-1089) (-631 (-294 (-157 (-357)))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-525))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-357))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-157 (-357)))))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-525)))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-357)))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-157 (-357))))) (-15 -1544 ($ (-591 $))) (-15 -2752 ($)) (-15 -2414 ($)) (-15 -2421 ($ (-591 (-796)))) (-15 -3017 ($ (-1089) (-591 (-1089)))) (-15 -3869 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3145 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1089)) (|:| |arrayIndex| (-591 (-885 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1089)) (|:| |rand| (-796)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1088)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2077 (-108)) (|:| -2940 (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) (|:| |blockBranch| (-591 $)) (|:| |commentBranch| (-591 (-1072))) (|:| |callBranch| (-1072)) (|:| |forBranch| (-2 (|:| -3756 (-1011 (-885 (-525)))) (|:| |span| (-885 (-525))) (|:| -2226 $))) (|:| |labelBranch| (-1036)) (|:| |loopBranch| (-2 (|:| |switch| (-1088)) (|:| -2226 $))) (|:| |commonBranch| (-2 (|:| -3419 (-1089)) (|:| |contents| (-591 (-1089))))) (|:| |printBranch| (-591 (-796)))) $)) (-15 -2776 ((-1176) $)) (-15 -1799 ((-1022) $)) (-15 -2781 ((-1036) (-1036)))))) (T -308)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-308)))) (-2208 (*1 *1 *2 *1) (-12 (-5 *2 (-1011 (-885 (-525)))) (-5 *1 (-308)))) (-2208 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1011 (-885 (-525)))) (-5 *3 (-885 (-525))) (-5 *1 (-308)))) (-1679 (*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-308)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-308)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-308)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-308)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-308)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-308)))) (-4062 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-308)))) (-2479 (*1 *1) (-5 *1 (-308))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-294 (-640))) (-5 *1 (-308)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-294 (-642))) (-5 *1 (-308)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-294 (-635))) (-5 *1 (-308)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-2675 (*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-308)))) (-2675 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-642))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-640))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-635))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-642))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-640))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-635))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-642))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-640))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-635))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-642)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-640)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-635)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-642)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-640)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-635)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-294 (-642))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-294 (-640))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-294 (-635))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-525))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-357))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-525)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-357)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-525)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-357)))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-294 (-525))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-294 (-357))) (-5 *1 (-308)))) (-1502 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-5 *1 (-308)))) (-2752 (*1 *1) (-5 *1 (-308))) (-2414 (*1 *1) (-5 *1 (-308))) (-2421 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-308)))) (-3017 (*1 *1 *2 *3) (-12 (-5 *3 (-591 (-1089))) (-5 *2 (-1089)) (-5 *1 (-308)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-308)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1089)) (|:| |arrayIndex| (-591 (-885 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1089)) (|:| |rand| (-796)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1088)) (|:| |thenClause| (-308)) (|:| |elseClause| (-308)))) (|:| |returnBranch| (-2 (|:| -2077 (-108)) (|:| -2940 (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) (|:| |blockBranch| (-591 (-308))) (|:| |commentBranch| (-591 (-1072))) (|:| |callBranch| (-1072)) (|:| |forBranch| (-2 (|:| -3756 (-1011 (-885 (-525)))) (|:| |span| (-885 (-525))) (|:| -2226 (-308)))) (|:| |labelBranch| (-1036)) (|:| |loopBranch| (-2 (|:| |switch| (-1088)) (|:| -2226 (-308)))) (|:| |commonBranch| (-2 (|:| -3419 (-1089)) (|:| |contents| (-591 (-1089))))) (|:| |printBranch| (-591 (-796))))) (-5 *1 (-308)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-308)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-308)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-308))))) -(-13 (-1018) (-10 -8 (-15 -2686 ((-796) $)) (-15 -2208 ($ (-1011 (-885 (-525))) $)) (-15 -2208 ($ (-1011 (-885 (-525))) (-885 (-525)) $)) (-15 -1679 ($ (-1088) $)) (-15 -2072 ($ (-1088) $)) (-15 -3725 ($ (-1036))) (-15 -1514 ($ (-1036))) (-15 -2286 ($ (-1072))) (-15 -2286 ($ (-591 (-1072)))) (-15 -4062 ($ (-1072))) (-15 -2479 ($)) (-15 -2479 ($ (-294 (-640)))) (-15 -2479 ($ (-294 (-642)))) (-15 -2479 ($ (-294 (-635)))) (-15 -2479 ($ (-294 (-357)))) (-15 -2479 ($ (-294 (-525)))) (-15 -2479 ($ (-294 (-157 (-357))))) (-15 -2675 ($ (-1088) $)) (-15 -2675 ($ (-1088) $ $)) (-15 -1502 ($ (-1089) (-1072))) (-15 -1502 ($ (-1089) (-294 (-642)))) (-15 -1502 ($ (-1089) (-294 (-640)))) (-15 -1502 ($ (-1089) (-294 (-635)))) (-15 -1502 ($ (-1089) (-631 (-642)))) (-15 -1502 ($ (-1089) (-631 (-640)))) (-15 -1502 ($ (-1089) (-631 (-635)))) (-15 -1502 ($ (-1089) (-1171 (-642)))) (-15 -1502 ($ (-1089) (-1171 (-640)))) (-15 -1502 ($ (-1089) (-1171 (-635)))) (-15 -1502 ($ (-1089) (-631 (-294 (-642))))) (-15 -1502 ($ (-1089) (-631 (-294 (-640))))) (-15 -1502 ($ (-1089) (-631 (-294 (-635))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-642))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-640))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-635))))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-642)))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-640)))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-635)))) (-15 -1502 ($ (-1089) (-294 (-525)))) (-15 -1502 ($ (-1089) (-294 (-357)))) (-15 -1502 ($ (-1089) (-294 (-157 (-357))))) (-15 -1502 ($ (-1089) (-631 (-294 (-525))))) (-15 -1502 ($ (-1089) (-631 (-294 (-357))))) (-15 -1502 ($ (-1089) (-631 (-294 (-157 (-357)))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-525))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-357))))) (-15 -1502 ($ (-1089) (-1171 (-294 (-157 (-357)))))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-525)))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-357)))) (-15 -1502 ($ (-1089) (-591 (-885 (-525))) (-294 (-157 (-357))))) (-15 -1544 ($ (-591 $))) (-15 -2752 ($)) (-15 -2414 ($)) (-15 -2421 ($ (-591 (-796)))) (-15 -3017 ($ (-1089) (-591 (-1089)))) (-15 -3869 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3145 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1089)) (|:| |arrayIndex| (-591 (-885 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1089)) (|:| |rand| (-796)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1088)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2077 (-108)) (|:| -2940 (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) (|:| |blockBranch| (-591 $)) (|:| |commentBranch| (-591 (-1072))) (|:| |callBranch| (-1072)) (|:| |forBranch| (-2 (|:| -3756 (-1011 (-885 (-525)))) (|:| |span| (-885 (-525))) (|:| -2226 $))) (|:| |labelBranch| (-1036)) (|:| |loopBranch| (-2 (|:| |switch| (-1088)) (|:| -2226 $))) (|:| |commonBranch| (-2 (|:| -3419 (-1089)) (|:| |contents| (-591 (-1089))))) (|:| |printBranch| (-591 (-796)))) $)) (-15 -2776 ((-1176) $)) (-15 -1799 ((-1022) $)) (-15 -2781 ((-1036) (-1036))))) -((-2673 (((-108) $ $) NIL)) (-1247 (((-108) $) 11)) (-2360 (($ |#1|) 8)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2370 (($ |#1|) 9)) (-2686 (((-796) $) 17)) (-3358 ((|#1| $) 12)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 19))) -(((-309 |#1|) (-13 (-788) (-10 -8 (-15 -2360 ($ |#1|)) (-15 -2370 ($ |#1|)) (-15 -1247 ((-108) $)) (-15 -3358 (|#1| $)))) (-788)) (T -309)) -((-2360 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-788)))) (-2370 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-788)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-788)))) (-3358 (*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-788))))) -(-13 (-788) (-10 -8 (-15 -2360 ($ |#1|)) (-15 -2370 ($ |#1|)) (-15 -1247 ((-108) $)) (-15 -3358 (|#1| $)))) -((-2553 (((-308) (-1089) (-885 (-525))) 23)) (-3563 (((-308) (-1089) (-885 (-525))) 27)) (-1801 (((-308) (-1089) (-1011 (-885 (-525))) (-1011 (-885 (-525)))) 26) (((-308) (-1089) (-885 (-525)) (-885 (-525))) 24)) (-1465 (((-308) (-1089) (-885 (-525))) 31))) -(((-310) (-10 -7 (-15 -2553 ((-308) (-1089) (-885 (-525)))) (-15 -1801 ((-308) (-1089) (-885 (-525)) (-885 (-525)))) (-15 -1801 ((-308) (-1089) (-1011 (-885 (-525))) (-1011 (-885 (-525))))) (-15 -3563 ((-308) (-1089) (-885 (-525)))) (-15 -1465 ((-308) (-1089) (-885 (-525)))))) (T -310)) -((-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-885 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-885 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-1801 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-1011 (-885 (-525)))) (-5 *2 (-308)) (-5 *1 (-310)))) (-1801 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-885 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-2553 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-885 (-525))) (-5 *2 (-308)) (-5 *1 (-310))))) -(-10 -7 (-15 -2553 ((-308) (-1089) (-885 (-525)))) (-15 -1801 ((-308) (-1089) (-885 (-525)) (-885 (-525)))) (-15 -1801 ((-308) (-1089) (-1011 (-885 (-525))) (-1011 (-885 (-525))))) (-15 -3563 ((-308) (-1089) (-885 (-525)))) (-15 -1465 ((-308) (-1089) (-885 (-525))))) -((-1257 (((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)) 33))) -(((-311 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1257 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)))) (-341) (-1147 |#1|) (-1147 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-341) (-1147 |#5|) (-1147 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -311)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341)) (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *9 (-341)) (-4 *10 (-1147 *9)) (-4 *11 (-1147 (-385 *10))) (-5 *2 (-314 *9 *10 *11 *12)) (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-320 *9 *10 *11))))) -(-10 -7 (-15 -1257 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)))) -((-2435 (((-108) $) 14))) -(((-312 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2435 ((-108) |#1|))) (-313 |#2| |#3| |#4| |#5|) (-341) (-1147 |#2|) (-1147 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -312)) -NIL -(-10 -8 (-15 -2435 ((-108) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-3618 (($ $) 26)) (-2435 (((-108) $) 25)) (-2621 (((-1072) $) 9)) (-1432 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 32)) (-2937 (((-1036) $) 10)) (-3965 (((-3 |#4| "failed") $) 24)) (-2991 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-525)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3601 (((-2 (|:| -1291 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20))) -(((-313 |#1| |#2| |#3| |#4|) (-131) (-341) (-1147 |t#1|) (-1147 (-385 |t#2|)) (-320 |t#1| |t#2| |t#3|)) (T -313)) -((-1432 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-391 *4 (-385 *4) *5 *6)))) (-2991 (*1 *1 *2) (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341)) (-4 *1 (-313 *3 *4 *5 *6)))) (-2991 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5)))) (-2991 (*1 *1 *2 *2) (-12 (-4 *2 (-341)) (-4 *3 (-1147 *2)) (-4 *4 (-1147 (-385 *3))) (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4)))) (-2991 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1147 *2)) (-4 *5 (-1147 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6)) (-4 *6 (-320 *2 *4 *5)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-2 (|:| -1291 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6))))) (-3618 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1147 *2)) (-4 *4 (-1147 (-385 *3))) (-4 *5 (-320 *2 *3 *4)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))) (-3965 (*1 *2 *1) (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-4 *2 (-320 *3 *4 *5)))) (-2991 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-341)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 (-385 *3))) (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1432 ((-391 |t#2| (-385 |t#2|) |t#3| |t#4|) $)) (-15 -2991 ($ (-391 |t#2| (-385 |t#2|) |t#3| |t#4|))) (-15 -2991 ($ |t#4|)) (-15 -2991 ($ |t#1| |t#1|)) (-15 -2991 ($ |t#1| |t#1| (-525))) (-15 -3601 ((-2 (|:| -1291 (-391 |t#2| (-385 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3618 ($ $)) (-15 -2435 ((-108) $)) (-15 -3965 ((-3 |t#4| "failed") $)) (-15 -2991 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-3618 (($ $) 33)) (-2435 (((-108) $) NIL)) (-2621 (((-1072) $) NIL)) (-1559 (((-1171 |#4|) $) 125)) (-1432 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 31)) (-2937 (((-1036) $) NIL)) (-3965 (((-3 |#4| "failed") $) 36)) (-3838 (((-1171 |#4|) $) 118)) (-2991 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-525)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3601 (((-2 (|:| -1291 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2686 (((-796) $) 17)) (-1830 (($) 14 T CONST)) (-3944 (((-108) $ $) 20)) (-4047 (($ $) 27) (($ $ $) NIL)) (-4036 (($ $ $) 25)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 23))) -(((-314 |#1| |#2| |#3| |#4|) (-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3838 ((-1171 |#4|) $)) (-15 -1559 ((-1171 |#4|) $)))) (-341) (-1147 |#1|) (-1147 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -314)) -((-3838 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-1171 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))) (-1559 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-1171 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5))))) -(-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3838 ((-1171 |#4|) $)) (-15 -1559 ((-1171 |#4|) $)))) -((-1980 (($ $ (-1089) |#2|) NIL) (($ $ (-591 (-1089)) (-591 |#2|)) 20) (($ $ (-591 (-273 |#2|))) 15) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-591 |#2|) (-591 |#2|)) NIL)) (-1881 (($ $ |#2|) 11))) -(((-315 |#1| |#2|) (-10 -8 (-15 -1881 (|#1| |#1| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#2|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#2| |#2|)) (-15 -1980 (|#1| |#1| (-273 |#2|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#2|)))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 |#2|))) (-15 -1980 (|#1| |#1| (-1089) |#2|))) (-316 |#2|) (-1018)) (T -315)) -NIL -(-10 -8 (-15 -1881 (|#1| |#1| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#2|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#2| |#2|)) (-15 -1980 (|#1| |#1| (-273 |#2|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#2|)))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 |#2|))) (-15 -1980 (|#1| |#1| (-1089) |#2|))) -((-1257 (($ (-1 |#1| |#1|) $) 6)) (-1980 (($ $ (-1089) |#1|) 17 (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) 16 (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-591 (-273 |#1|))) 15 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 14 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-288 |#1|))) (($ $ (-591 |#1|) (-591 |#1|)) 12 (|has| |#1| (-288 |#1|)))) (-1881 (($ $ |#1|) 11 (|has| |#1| (-265 |#1| |#1|))))) -(((-316 |#1|) (-131) (-1018)) (T -316)) -((-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1018))))) -(-13 (-10 -8 (-15 -1257 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-265 |t#1| |t#1|)) (-6 (-265 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-486 (-1089) |t#1|)) (-6 (-486 (-1089) |t#1|)) |%noBranch|))) -(((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-486 (-1089) |#1|) |has| |#1| (-486 (-1089) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-1089)) $) NIL)) (-2257 (((-108)) 89) (((-108) (-108)) 90)) (-3585 (((-591 (-564 $)) $) NIL)) (-4087 (($ $) NIL)) (-2381 (($ $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-3449 (($ $ (-273 $)) NIL) (($ $ (-591 (-273 $))) NIL) (($ $ (-591 (-564 $)) (-591 $)) NIL)) (-2551 (($ $) NIL)) (-4058 (($ $) NIL)) (-2360 (($ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-564 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-294 |#3|)) 71) (((-3 $ "failed") (-1089)) 95) (((-3 $ "failed") (-294 (-525))) 59 (|has| |#3| (-966 (-525)))) (((-3 $ "failed") (-385 (-885 (-525)))) 65 (|has| |#3| (-966 (-525)))) (((-3 $ "failed") (-885 (-525))) 60 (|has| |#3| (-966 (-525)))) (((-3 $ "failed") (-294 (-357))) 77 (|has| |#3| (-966 (-357)))) (((-3 $ "failed") (-385 (-885 (-357)))) 83 (|has| |#3| (-966 (-357)))) (((-3 $ "failed") (-885 (-357))) 78 (|has| |#3| (-966 (-357))))) (-3341 (((-564 $) $) NIL) ((|#3| $) NIL) (($ (-294 |#3|)) 72) (($ (-1089)) 96) (($ (-294 (-525))) 61 (|has| |#3| (-966 (-525)))) (($ (-385 (-885 (-525)))) 66 (|has| |#3| (-966 (-525)))) (($ (-885 (-525))) 62 (|has| |#3| (-966 (-525)))) (($ (-294 (-357))) 79 (|has| |#3| (-966 (-357)))) (($ (-385 (-885 (-357)))) 84 (|has| |#3| (-966 (-357)))) (($ (-885 (-357))) 80 (|has| |#3| (-966 (-357))))) (-1522 (((-3 $ "failed") $) NIL)) (-1417 (($) 10)) (-3625 (($ $) NIL) (($ (-591 $)) NIL)) (-3714 (((-591 (-110)) $) NIL)) (-3259 (((-110) (-110)) NIL)) (-3865 (((-108) $) NIL)) (-2116 (((-108) $) NIL (|has| $ (-966 (-525))))) (-1873 (((-1085 $) (-564 $)) NIL (|has| $ (-975)))) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1257 (($ (-1 $ $) (-564 $)) NIL)) (-3415 (((-3 (-564 $) "failed") $) NIL)) (-3347 (($ $) 92)) (-2356 (($ $) NIL)) (-2621 (((-1072) $) NIL)) (-2504 (((-591 (-564 $)) $) NIL)) (-2899 (($ (-110) $) 91) (($ (-110) (-591 $)) NIL)) (-3029 (((-108) $ (-110)) NIL) (((-108) $ (-1089)) NIL)) (-3457 (((-712) $) NIL)) (-2937 (((-1036) $) NIL)) (-4064 (((-108) $ $) NIL) (((-108) $ (-1089)) NIL)) (-2288 (($ $) NIL)) (-2882 (((-108) $) NIL (|has| $ (-966 (-525))))) (-1980 (($ $ (-564 $) $) NIL) (($ $ (-591 (-564 $)) (-591 $)) NIL) (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ $))) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-1089) (-1 $ (-591 $))) NIL) (($ $ (-1089) (-1 $ $)) NIL) (($ $ (-591 (-110)) (-591 (-1 $ $))) NIL) (($ $ (-591 (-110)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-110) (-1 $ (-591 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1881 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-591 $)) NIL)) (-1390 (($ $) NIL) (($ $ $) NIL)) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) NIL)) (-1341 (($ $) NIL (|has| $ (-975)))) (-4073 (($ $) NIL)) (-2370 (($ $) NIL)) (-2686 (((-796) $) NIL) (($ (-564 $)) NIL) (($ |#3|) NIL) (($ (-525)) NIL) (((-294 |#3|) $) 94)) (-3425 (((-712)) NIL)) (-3800 (($ $) NIL) (($ (-591 $)) NIL)) (-2754 (((-108) (-110)) NIL)) (-2457 (($ $) NIL)) (-2432 (($ $) NIL)) (-2444 (($ $) NIL)) (-1460 (($ $) NIL)) (-1401 (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (-1830 (($) 93 T CONST)) (-1839 (($) 24 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-712) $) NIL) (($ (-854) $) NIL))) -(((-317 |#1| |#2| |#3|) (-13 (-281) (-37 |#3|) (-966 |#3|) (-833 (-1089)) (-10 -8 (-15 -3341 ($ (-294 |#3|))) (-15 -4174 ((-3 $ "failed") (-294 |#3|))) (-15 -3341 ($ (-1089))) (-15 -4174 ((-3 $ "failed") (-1089))) (-15 -2686 ((-294 |#3|) $)) (IF (|has| |#3| (-966 (-525))) (PROGN (-15 -3341 ($ (-294 (-525)))) (-15 -4174 ((-3 $ "failed") (-294 (-525)))) (-15 -3341 ($ (-385 (-885 (-525))))) (-15 -4174 ((-3 $ "failed") (-385 (-885 (-525))))) (-15 -3341 ($ (-885 (-525)))) (-15 -4174 ((-3 $ "failed") (-885 (-525))))) |%noBranch|) (IF (|has| |#3| (-966 (-357))) (PROGN (-15 -3341 ($ (-294 (-357)))) (-15 -4174 ((-3 $ "failed") (-294 (-357)))) (-15 -3341 ($ (-385 (-885 (-357))))) (-15 -4174 ((-3 $ "failed") (-385 (-885 (-357))))) (-15 -3341 ($ (-885 (-357)))) (-15 -4174 ((-3 $ "failed") (-885 (-357))))) |%noBranch|) (-15 -1460 ($ $)) (-15 -2551 ($ $)) (-15 -2288 ($ $)) (-15 -2356 ($ $)) (-15 -3347 ($ $)) (-15 -2360 ($ $)) (-15 -2370 ($ $)) (-15 -2381 ($ $)) (-15 -2432 ($ $)) (-15 -2444 ($ $)) (-15 -2457 ($ $)) (-15 -4058 ($ $)) (-15 -4073 ($ $)) (-15 -4087 ($ $)) (-15 -1417 ($)) (-15 -1444 ((-591 (-1089)) $)) (-15 -2257 ((-108))) (-15 -2257 ((-108) (-108))))) (-591 (-1089)) (-591 (-1089)) (-365)) (T -317)) -((-3341 (*1 *1 *2) (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 *2)) (-14 *4 (-591 *2)) (-4 *5 (-365)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 *2)) (-14 *4 (-591 *2)) (-4 *5 (-365)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-385 (-885 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-885 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-885 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-885 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-385 (-885 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-885 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-885 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-885 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-1460 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-2551 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-2288 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-3347 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-2360 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-2370 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-2381 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-2432 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-2457 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-4058 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-4073 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-4087 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-1417 (*1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-365)))) (-2257 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) (-2257 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365))))) -(-13 (-281) (-37 |#3|) (-966 |#3|) (-833 (-1089)) (-10 -8 (-15 -3341 ($ (-294 |#3|))) (-15 -4174 ((-3 $ "failed") (-294 |#3|))) (-15 -3341 ($ (-1089))) (-15 -4174 ((-3 $ "failed") (-1089))) (-15 -2686 ((-294 |#3|) $)) (IF (|has| |#3| (-966 (-525))) (PROGN (-15 -3341 ($ (-294 (-525)))) (-15 -4174 ((-3 $ "failed") (-294 (-525)))) (-15 -3341 ($ (-385 (-885 (-525))))) (-15 -4174 ((-3 $ "failed") (-385 (-885 (-525))))) (-15 -3341 ($ (-885 (-525)))) (-15 -4174 ((-3 $ "failed") (-885 (-525))))) |%noBranch|) (IF (|has| |#3| (-966 (-357))) (PROGN (-15 -3341 ($ (-294 (-357)))) (-15 -4174 ((-3 $ "failed") (-294 (-357)))) (-15 -3341 ($ (-385 (-885 (-357))))) (-15 -4174 ((-3 $ "failed") (-385 (-885 (-357))))) (-15 -3341 ($ (-885 (-357)))) (-15 -4174 ((-3 $ "failed") (-885 (-357))))) |%noBranch|) (-15 -1460 ($ $)) (-15 -2551 ($ $)) (-15 -2288 ($ $)) (-15 -2356 ($ $)) (-15 -3347 ($ $)) (-15 -2360 ($ $)) (-15 -2370 ($ $)) (-15 -2381 ($ $)) (-15 -2432 ($ $)) (-15 -2444 ($ $)) (-15 -2457 ($ $)) (-15 -4058 ($ $)) (-15 -4073 ($ $)) (-15 -4087 ($ $)) (-15 -1417 ($)) (-15 -1444 ((-591 (-1089)) $)) (-15 -2257 ((-108))) (-15 -2257 ((-108) (-108))))) -((-1257 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-318 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1257 (|#8| (-1 |#5| |#1|) |#4|))) (-1129) (-1147 |#1|) (-1147 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-1129) (-1147 |#5|) (-1147 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -318)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1129)) (-4 *8 (-1129)) (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) (-4 *9 (-1147 *8)) (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1147 (-385 *9)))))) -(-10 -7 (-15 -1257 (|#8| (-1 |#5| |#1|) |#4|))) -((-2301 (((-2 (|:| |num| (-1171 |#3|)) (|:| |den| |#3|)) $) 38)) (-1554 (($ (-1171 (-385 |#3|)) (-1171 $)) NIL) (($ (-1171 (-385 |#3|))) NIL) (($ (-1171 |#3|) |#3|) 161)) (-2052 (((-1171 $) (-1171 $)) 145)) (-2904 (((-591 (-591 |#2|))) 119)) (-3759 (((-108) |#2| |#2|) 73)) (-3153 (($ $) 139)) (-3340 (((-712)) 31)) (-2792 (((-1171 $) (-1171 $)) 198)) (-2056 (((-591 (-885 |#2|)) (-1089)) 110)) (-3790 (((-108) $) 158)) (-2353 (((-108) $) 25) (((-108) $ |#2|) 29) (((-108) $ |#3|) 202)) (-3695 (((-3 |#3| "failed")) 50)) (-2658 (((-712)) 170)) (-1881 ((|#2| $ |#2| |#2|) 132)) (-1945 (((-3 |#3| "failed")) 68)) (-2209 (($ $ (-1 (-385 |#3|) (-385 |#3|)) (-712)) NIL) (($ $ (-1 (-385 |#3|) (-385 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) NIL) (($ $ (-712)) NIL) (($ $) NIL)) (-3010 (((-1171 $) (-1171 $)) 151)) (-1776 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1787 (((-108)) 33))) -(((-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2904 ((-591 (-591 |#2|)))) (-15 -2056 ((-591 (-885 |#2|)) (-1089))) (-15 -1776 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3695 ((-3 |#3| "failed"))) (-15 -1945 ((-3 |#3| "failed"))) (-15 -1881 (|#2| |#1| |#2| |#2|)) (-15 -3153 (|#1| |#1|)) (-15 -1554 (|#1| (-1171 |#3|) |#3|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2353 ((-108) |#1| |#3|)) (-15 -2353 ((-108) |#1| |#2|)) (-15 -2301 ((-2 (|:| |num| (-1171 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2052 ((-1171 |#1|) (-1171 |#1|))) (-15 -2792 ((-1171 |#1|) (-1171 |#1|))) (-15 -3010 ((-1171 |#1|) (-1171 |#1|))) (-15 -2353 ((-108) |#1|)) (-15 -3790 ((-108) |#1|)) (-15 -3759 ((-108) |#2| |#2|)) (-15 -1787 ((-108))) (-15 -2658 ((-712))) (-15 -3340 ((-712))) (-15 -2209 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -2209 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-712))) (-15 -1554 (|#1| (-1171 (-385 |#3|)))) (-15 -1554 (|#1| (-1171 (-385 |#3|)) (-1171 |#1|)))) (-320 |#2| |#3| |#4|) (-1129) (-1147 |#2|) (-1147 (-385 |#3|))) (T -319)) -((-3340 (*1 *2) (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) (-5 *2 (-712)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-2658 (*1 *2) (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) (-5 *2 (-712)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-1787 (*1 *2) (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-3759 (*1 *2 *3 *3) (-12 (-4 *3 (-1129)) (-4 *5 (-1147 *3)) (-4 *6 (-1147 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6)))) (-1945 (*1 *2) (|partial| -12 (-4 *4 (-1129)) (-4 *5 (-1147 (-385 *2))) (-4 *2 (-1147 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-3695 (*1 *2) (|partial| -12 (-4 *4 (-1129)) (-4 *5 (-1147 (-385 *2))) (-4 *2 (-1147 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *5 (-1129)) (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) (-5 *2 (-591 (-885 *5))) (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7)))) (-2904 (*1 *2) (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) (-5 *2 (-591 (-591 *4))) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))) -(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2904 ((-591 (-591 |#2|)))) (-15 -2056 ((-591 (-885 |#2|)) (-1089))) (-15 -1776 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3695 ((-3 |#3| "failed"))) (-15 -1945 ((-3 |#3| "failed"))) (-15 -1881 (|#2| |#1| |#2| |#2|)) (-15 -3153 (|#1| |#1|)) (-15 -1554 (|#1| (-1171 |#3|) |#3|)) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2353 ((-108) |#1| |#3|)) (-15 -2353 ((-108) |#1| |#2|)) (-15 -2301 ((-2 (|:| |num| (-1171 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2052 ((-1171 |#1|) (-1171 |#1|))) (-15 -2792 ((-1171 |#1|) (-1171 |#1|))) (-15 -3010 ((-1171 |#1|) (-1171 |#1|))) (-15 -2353 ((-108) |#1|)) (-15 -3790 ((-108) |#1|)) (-15 -3759 ((-108) |#2| |#2|)) (-15 -1787 ((-108))) (-15 -2658 ((-712))) (-15 -3340 ((-712))) (-15 -2209 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -2209 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-712))) (-15 -1554 (|#1| (-1171 (-385 |#3|)))) (-15 -1554 (|#1| (-1171 (-385 |#3|)) (-1171 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2301 (((-2 (|:| |num| (-1171 |#2|)) (|:| |den| |#2|)) $) 196)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 93 (|has| (-385 |#2|) (-341)))) (-3641 (($ $) 94 (|has| (-385 |#2|) (-341)))) (-3077 (((-108) $) 96 (|has| (-385 |#2|) (-341)))) (-1712 (((-631 (-385 |#2|)) (-1171 $)) 46) (((-631 (-385 |#2|))) 61)) (-1481 (((-385 |#2|) $) 52)) (-2666 (((-1099 (-854) (-712)) (-525)) 147 (|has| (-385 |#2|) (-327)))) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 113 (|has| (-385 |#2|) (-341)))) (-3898 (((-396 $) $) 114 (|has| (-385 |#2|) (-341)))) (-1965 (((-108) $ $) 104 (|has| (-385 |#2|) (-341)))) (-2834 (((-712)) 87 (|has| (-385 |#2|) (-346)))) (-2190 (((-108)) 213)) (-1911 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-2055 (($) 17 T CONST)) (-4174 (((-3 (-525) "failed") $) 169 (|has| (-385 |#2|) (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| (-385 |#2|) (-966 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) 166)) (-3341 (((-525) $) 170 (|has| (-385 |#2|) (-966 (-525)))) (((-385 (-525)) $) 168 (|has| (-385 |#2|) (-966 (-385 (-525))))) (((-385 |#2|) $) 165)) (-1554 (($ (-1171 (-385 |#2|)) (-1171 $)) 48) (($ (-1171 (-385 |#2|))) 64) (($ (-1171 |#2|) |#2|) 189)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-385 |#2|) (-327)))) (-3265 (($ $ $) 108 (|has| (-385 |#2|) (-341)))) (-4054 (((-631 (-385 |#2|)) $ (-1171 $)) 53) (((-631 (-385 |#2|)) $) 59)) (-3925 (((-631 (-525)) (-631 $)) 164 (|has| (-385 |#2|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 163 (|has| (-385 |#2|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-385 |#2|))) (|:| |vec| (-1171 (-385 |#2|)))) (-631 $) (-1171 $)) 162) (((-631 (-385 |#2|)) (-631 $)) 161)) (-2052 (((-1171 $) (-1171 $)) 201)) (-3618 (($ |#3|) 158) (((-3 $ "failed") (-385 |#3|)) 155 (|has| (-385 |#2|) (-341)))) (-1522 (((-3 $ "failed") $) 34)) (-2904 (((-591 (-591 |#1|))) 182 (|has| |#1| (-346)))) (-3759 (((-108) |#1| |#1|) 217)) (-2193 (((-854)) 54)) (-1325 (($) 90 (|has| (-385 |#2|) (-346)))) (-3506 (((-108)) 210)) (-1461 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-3239 (($ $ $) 107 (|has| (-385 |#2|) (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 102 (|has| (-385 |#2|) (-341)))) (-3153 (($ $) 188)) (-1268 (($) 149 (|has| (-385 |#2|) (-327)))) (-2096 (((-108) $) 150 (|has| (-385 |#2|) (-327)))) (-3477 (($ $ (-712)) 141 (|has| (-385 |#2|) (-327))) (($ $) 140 (|has| (-385 |#2|) (-327)))) (-2393 (((-108) $) 115 (|has| (-385 |#2|) (-341)))) (-1676 (((-854) $) 152 (|has| (-385 |#2|) (-327))) (((-774 (-854)) $) 138 (|has| (-385 |#2|) (-327)))) (-3865 (((-108) $) 31)) (-3340 (((-712)) 220)) (-2792 (((-1171 $) (-1171 $)) 202)) (-1525 (((-385 |#2|) $) 51)) (-2056 (((-591 (-885 |#1|)) (-1089)) 183 (|has| |#1| (-341)))) (-2115 (((-3 $ "failed") $) 142 (|has| (-385 |#2|) (-327)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 111 (|has| (-385 |#2|) (-341)))) (-3205 ((|#3| $) 44 (|has| (-385 |#2|) (-341)))) (-1970 (((-854) $) 89 (|has| (-385 |#2|) (-346)))) (-3610 ((|#3| $) 156)) (-2081 (($ (-591 $)) 100 (|has| (-385 |#2|) (-341))) (($ $ $) 99 (|has| (-385 |#2|) (-341)))) (-2621 (((-1072) $) 9)) (-1705 (((-631 (-385 |#2|))) 197)) (-2636 (((-631 (-385 |#2|))) 199)) (-1523 (($ $) 116 (|has| (-385 |#2|) (-341)))) (-3470 (($ (-1171 |#2|) |#2|) 194)) (-3101 (((-631 (-385 |#2|))) 198)) (-2646 (((-631 (-385 |#2|))) 200)) (-1652 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-2137 (((-2 (|:| |num| (-1171 |#2|)) (|:| |den| |#2|)) $) 195)) (-2045 (((-1171 $)) 206)) (-2773 (((-1171 $)) 207)) (-3790 (((-108) $) 205)) (-2353 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-3492 (($) 143 (|has| (-385 |#2|) (-327)) CONST)) (-3229 (($ (-854)) 88 (|has| (-385 |#2|) (-346)))) (-3695 (((-3 |#2| "failed")) 185)) (-2937 (((-1036) $) 10)) (-2658 (((-712)) 219)) (-3965 (($) 160)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 101 (|has| (-385 |#2|) (-341)))) (-2124 (($ (-591 $)) 98 (|has| (-385 |#2|) (-341))) (($ $ $) 97 (|has| (-385 |#2|) (-341)))) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) 146 (|has| (-385 |#2|) (-327)))) (-2542 (((-396 $) $) 112 (|has| (-385 |#2|) (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 109 (|has| (-385 |#2|) (-341)))) (-3210 (((-3 $ "failed") $ $) 92 (|has| (-385 |#2|) (-341)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 103 (|has| (-385 |#2|) (-341)))) (-3048 (((-712) $) 105 (|has| (-385 |#2|) (-341)))) (-1881 ((|#1| $ |#1| |#1|) 187)) (-1945 (((-3 |#2| "failed")) 186)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 106 (|has| (-385 |#2|) (-341)))) (-2858 (((-385 |#2|) (-1171 $)) 47) (((-385 |#2|)) 60)) (-2652 (((-712) $) 151 (|has| (-385 |#2|) (-327))) (((-3 (-712) "failed") $ $) 139 (|has| (-385 |#2|) (-327)))) (-2209 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-712)) 123 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 122 (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-591 (-1089)) (-591 (-712))) 130 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089)))) (-3543 (|has| (-385 |#2|) (-833 (-1089))) (|has| (-385 |#2|) (-341))))) (($ $ (-1089) (-712)) 131 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089)))) (-3543 (|has| (-385 |#2|) (-833 (-1089))) (|has| (-385 |#2|) (-341))))) (($ $ (-591 (-1089))) 132 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089)))) (-3543 (|has| (-385 |#2|) (-833 (-1089))) (|has| (-385 |#2|) (-341))))) (($ $ (-1089)) 133 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089)))) (-3543 (|has| (-385 |#2|) (-833 (-1089))) (|has| (-385 |#2|) (-341))))) (($ $ (-712)) 135 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3543 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 137 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3543 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3206 (((-631 (-385 |#2|)) (-1171 $) (-1 (-385 |#2|) (-385 |#2|))) 154 (|has| (-385 |#2|) (-341)))) (-1341 ((|#3|) 159)) (-3560 (($) 148 (|has| (-385 |#2|) (-327)))) (-1671 (((-1171 (-385 |#2|)) $ (-1171 $)) 50) (((-631 (-385 |#2|)) (-1171 $) (-1171 $)) 49) (((-1171 (-385 |#2|)) $) 66) (((-631 (-385 |#2|)) (-1171 $)) 65)) (-1300 (((-1171 (-385 |#2|)) $) 63) (($ (-1171 (-385 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 145 (|has| (-385 |#2|) (-327)))) (-3010 (((-1171 $) (-1171 $)) 203)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 |#2|)) 37) (($ (-385 (-525))) 86 (-3150 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-966 (-385 (-525)))))) (($ $) 91 (|has| (-385 |#2|) (-341)))) (-3751 (($ $) 144 (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) 43 (|has| (-385 |#2|) (-136)))) (-2173 ((|#3| $) 45)) (-3425 (((-712)) 29)) (-1425 (((-108)) 216)) (-3977 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-3612 (((-1171 $)) 67)) (-1724 (((-108) $ $) 95 (|has| (-385 |#2|) (-341)))) (-1776 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-1787 (((-108)) 218)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 117 (|has| (-385 |#2|) (-341)))) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-712)) 125 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 124 (|has| (-385 |#2|) (-341))) (($ $ (-591 (-1089)) (-591 (-712))) 126 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089)))) (-3543 (|has| (-385 |#2|) (-833 (-1089))) (|has| (-385 |#2|) (-341))))) (($ $ (-1089) (-712)) 127 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089)))) (-3543 (|has| (-385 |#2|) (-833 (-1089))) (|has| (-385 |#2|) (-341))))) (($ $ (-591 (-1089))) 128 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089)))) (-3543 (|has| (-385 |#2|) (-833 (-1089))) (|has| (-385 |#2|) (-341))))) (($ $ (-1089)) 129 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089)))) (-3543 (|has| (-385 |#2|) (-833 (-1089))) (|has| (-385 |#2|) (-341))))) (($ $ (-712)) 134 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3543 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 136 (-3150 (-3543 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3543 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ $) 121 (|has| (-385 |#2|) (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 118 (|has| (-385 |#2|) (-341)))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 |#2|)) 39) (($ (-385 |#2|) $) 38) (($ (-385 (-525)) $) 120 (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) 119 (|has| (-385 |#2|) (-341))))) -(((-320 |#1| |#2| |#3|) (-131) (-1129) (-1147 |t#1|) (-1147 (-385 |t#2|))) (T -320)) -((-3340 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-712)))) (-2658 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-712)))) (-1787 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-3759 (*1 *2 *3 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-1425 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-3977 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-3977 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 (-385 *3))) (-5 *2 (-108)))) (-2190 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-1911 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-1911 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 (-385 *3))) (-5 *2 (-108)))) (-3506 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-1461 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-1461 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 (-385 *3))) (-5 *2 (-108)))) (-2773 (*1 *2) (-12 (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5)))) (-2045 (*1 *2) (-12 (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-3010 (*1 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))))) (-2792 (*1 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))))) (-2646 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-631 (-385 *4))))) (-2636 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-631 (-385 *4))))) (-3101 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-631 (-385 *4))))) (-1705 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-631 (-385 *4))))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1171 *4)) (|:| |den| *4))))) (-2137 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1171 *4)) (|:| |den| *4))))) (-3470 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1147 *4)) (-4 *4 (-1129)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1147 (-385 *3))))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))) (-2353 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) (-2353 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 (-385 *3))) (-5 *2 (-108)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))))) (-1554 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1147 *4)) (-4 *4 (-1129)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1147 (-385 *3))))) (-3153 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-1147 *2)) (-4 *4 (-1147 (-385 *3))))) (-1881 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-1147 *2)) (-4 *4 (-1147 (-385 *3))))) (-1945 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1129)) (-4 *4 (-1147 (-385 *2))) (-4 *2 (-1147 *3)))) (-3695 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1129)) (-4 *4 (-1147 (-385 *2))) (-4 *2 (-1147 *3)))) (-1776 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-1129)) (-4 *6 (-1147 (-385 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-320 *4 *5 *6)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) (-4 *4 (-341)) (-5 *2 (-591 (-885 *4))))) (-2904 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-591 (-591 *3)))))) -(-13 (-666 (-385 |t#2|) |t#3|) (-10 -8 (-15 -3340 ((-712))) (-15 -2658 ((-712))) (-15 -1787 ((-108))) (-15 -3759 ((-108) |t#1| |t#1|)) (-15 -1425 ((-108))) (-15 -3977 ((-108) |t#1|)) (-15 -3977 ((-108) |t#2|)) (-15 -2190 ((-108))) (-15 -1911 ((-108) |t#1|)) (-15 -1911 ((-108) |t#2|)) (-15 -3506 ((-108))) (-15 -1461 ((-108) |t#1|)) (-15 -1461 ((-108) |t#2|)) (-15 -2773 ((-1171 $))) (-15 -2045 ((-1171 $))) (-15 -3790 ((-108) $)) (-15 -2353 ((-108) $)) (-15 -3010 ((-1171 $) (-1171 $))) (-15 -2792 ((-1171 $) (-1171 $))) (-15 -2052 ((-1171 $) (-1171 $))) (-15 -2646 ((-631 (-385 |t#2|)))) (-15 -2636 ((-631 (-385 |t#2|)))) (-15 -3101 ((-631 (-385 |t#2|)))) (-15 -1705 ((-631 (-385 |t#2|)))) (-15 -2301 ((-2 (|:| |num| (-1171 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1554 ($ (-1171 |t#2|) |t#2|)) (-15 -2137 ((-2 (|:| |num| (-1171 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3470 ($ (-1171 |t#2|) |t#2|)) (-15 -1652 ((-2 (|:| |num| (-631 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2353 ((-108) $ |t#1|)) (-15 -2353 ((-108) $ |t#2|)) (-15 -2209 ($ $ (-1 |t#2| |t#2|))) (-15 -1554 ($ (-1171 |t#2|) |t#2|)) (-15 -3153 ($ $)) (-15 -1881 (|t#1| $ |t#1| |t#1|)) (-15 -1945 ((-3 |t#2| "failed"))) (-15 -3695 ((-3 |t#2| "failed"))) (-15 -1776 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-341)) (-15 -2056 ((-591 (-885 |t#1|)) (-1089))) |%noBranch|) (IF (|has| |t#1| (-346)) (-15 -2904 ((-591 (-591 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-37 #1=(-385 |#2|)) . T) ((-37 $) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-97) . T) ((-107 #0# #0#) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-136))) ((-138) |has| (-385 |#2|) (-138)) ((-565 (-796)) . T) ((-160) . T) ((-566 |#3|) . T) ((-211 #1#) |has| (-385 |#2|) (-341)) ((-213) -3150 (|has| (-385 |#2|) (-327)) (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341)))) ((-223) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-269) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-286) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-341) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-380) |has| (-385 |#2|) (-327)) ((-346) -3150 (|has| (-385 |#2|) (-346)) (|has| (-385 |#2|) (-327))) ((-327) |has| (-385 |#2|) (-327)) ((-348 #1# |#3|) . T) ((-387 #1# |#3|) . T) ((-355 #1#) . T) ((-389 #1#) . T) ((-429) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-517) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-593 #0#) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-593 #1#) . T) ((-593 $) . T) ((-587 #1#) . T) ((-587 (-525)) |has| (-385 |#2|) (-587 (-525))) ((-659 #0#) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-659 #1#) . T) ((-659 $) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-666 #1# |#3|) . T) ((-668) . T) ((-833 (-1089)) -12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089)))) ((-853) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-966 (-385 (-525))) |has| (-385 |#2|) (-966 (-385 (-525)))) ((-966 #1#) . T) ((-966 (-525)) |has| (-385 |#2|) (-966 (-525))) ((-981 #0#) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-981 #1#) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1065) |has| (-385 |#2|) (-327)) ((-1129) -3150 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 (((-843 |#1|) $) NIL) (($ $ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| (-843 |#1|) (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL (|has| (-843 |#1|) (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-843 |#1|) "failed") $) NIL)) (-3341 (((-843 |#1|) $) NIL)) (-1554 (($ (-1171 (-843 |#1|))) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-843 |#1|) (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-843 |#1|) (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) NIL (|has| (-843 |#1|) (-346)))) (-2096 (((-108) $) NIL (|has| (-843 |#1|) (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346)))) (($ $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) NIL (|has| (-843 |#1|) (-346))) (((-774 (-854)) $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) NIL (|has| (-843 |#1|) (-346)))) (-3108 (((-108) $) NIL (|has| (-843 |#1|) (-346)))) (-1525 (((-843 |#1|) $) NIL) (($ $ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| (-843 |#1|) (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 (-843 |#1|)) $) NIL) (((-1085 $) $ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-1970 (((-854) $) NIL (|has| (-843 |#1|) (-346)))) (-3004 (((-1085 (-843 |#1|)) $) NIL (|has| (-843 |#1|) (-346)))) (-2224 (((-1085 (-843 |#1|)) $) NIL (|has| (-843 |#1|) (-346))) (((-3 (-1085 (-843 |#1|)) "failed") $ $) NIL (|has| (-843 |#1|) (-346)))) (-2594 (($ $ (-1085 (-843 |#1|))) NIL (|has| (-843 |#1|) (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-843 |#1|) (-346)) CONST)) (-3229 (($ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-1326 (((-108) $) NIL)) (-2937 (((-1036) $) NIL)) (-1479 (((-890 (-1036))) NIL)) (-3965 (($) NIL (|has| (-843 |#1|) (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| (-843 |#1|) (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) NIL) (((-854)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) NIL (|has| (-843 |#1|) (-346))) (((-3 (-712) "failed") $ $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| (-843 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-843 |#1|) (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-1341 (((-1085 (-843 |#1|))) NIL)) (-3560 (($) NIL (|has| (-843 |#1|) (-346)))) (-2200 (($) NIL (|has| (-843 |#1|) (-346)))) (-1671 (((-1171 (-843 |#1|)) $) NIL) (((-631 (-843 |#1|)) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| (-843 |#1|) (-346)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-843 |#1|)) NIL)) (-3751 (($ $) NIL (|has| (-843 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) NIL) (((-1171 $) (-854)) NIL)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3861 (($ $) NIL (|has| (-843 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-843 |#1|) (-346)))) (-1796 (($ $) NIL (|has| (-843 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-843 |#1|) (-346)))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL) (($ $ (-843 |#1|)) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-843 |#1|)) NIL) (($ (-843 |#1|) $) NIL))) -(((-321 |#1| |#2|) (-13 (-307 (-843 |#1|)) (-10 -7 (-15 -1479 ((-890 (-1036)))))) (-854) (-854)) (T -321)) -((-1479 (*1 *2) (-12 (-5 *2 (-890 (-1036))) (-5 *1 (-321 *3 *4)) (-14 *3 (-854)) (-14 *4 (-854))))) -(-13 (-307 (-843 |#1|)) (-10 -7 (-15 -1479 ((-890 (-1036)))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 46)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 ((|#1| $) NIL) (($ $ (-854)) NIL (|has| |#1| (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) 43 (|has| |#1| (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL (|has| |#1| (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) 115)) (-3341 ((|#1| $) 86)) (-1554 (($ (-1171 |#1|)) 104)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) 98 (|has| |#1| (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) 130 (|has| |#1| (-346)))) (-2096 (((-108) $) 49 (|has| |#1| (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) 47 (|has| |#1| (-346))) (((-774 (-854)) $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) 132 (|has| |#1| (-346)))) (-3108 (((-108) $) NIL (|has| |#1| (-346)))) (-1525 ((|#1| $) NIL) (($ $ (-854)) NIL (|has| |#1| (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 |#1|) $) 90) (((-1085 $) $ (-854)) NIL (|has| |#1| (-346)))) (-1970 (((-854) $) 140 (|has| |#1| (-346)))) (-3004 (((-1085 |#1|) $) NIL (|has| |#1| (-346)))) (-2224 (((-1085 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1085 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2594 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 147)) (-3492 (($) NIL (|has| |#1| (-346)) CONST)) (-3229 (($ (-854)) 71 (|has| |#1| (-346)))) (-1326 (((-108) $) 118)) (-2937 (((-1036) $) NIL)) (-1479 (((-890 (-1036))) 44)) (-3965 (($) 128 (|has| |#1| (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) 93 (|has| |#1| (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) 67) (((-854)) 68)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) 131 (|has| |#1| (-346))) (((-3 (-712) "failed") $ $) 125 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-1341 (((-1085 |#1|)) 96)) (-3560 (($) 129 (|has| |#1| (-346)))) (-2200 (($) 137 (|has| |#1| (-346)))) (-1671 (((-1171 |#1|) $) 59) (((-631 |#1|) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| |#1| (-346)))) (-2686 (((-796) $) 143) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 75)) (-3751 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3425 (((-712)) 139)) (-3612 (((-1171 $)) 117) (((-1171 $) (-854)) 73)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 32 T CONST)) (-1839 (($) 19 T CONST)) (-3861 (($ $) 81 (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-1796 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-3944 (((-108) $ $) 48)) (-4059 (($ $ $) 145) (($ $ |#1|) 146)) (-4047 (($ $) 127) (($ $ $) NIL)) (-4036 (($ $ $) 61)) (** (($ $ (-854)) 149) (($ $ (-712)) 150) (($ $ (-525)) 148)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 77) (($ $ $) 76) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144))) -(((-322 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1479 ((-890 (-1036)))))) (-327) (-1085 |#1|)) (T -322)) -((-1479 (*1 *2) (-12 (-5 *2 (-890 (-1036))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327)) (-14 *4 (-1085 *3))))) -(-13 (-307 |#1|) (-10 -7 (-15 -1479 ((-890 (-1036)))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 ((|#1| $) NIL) (($ $ (-854)) NIL (|has| |#1| (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| |#1| (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL (|has| |#1| (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-1554 (($ (-1171 |#1|)) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| |#1| (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) NIL (|has| |#1| (-346)))) (-2096 (((-108) $) NIL (|has| |#1| (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) NIL (|has| |#1| (-346))) (((-774 (-854)) $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) NIL (|has| |#1| (-346)))) (-3108 (((-108) $) NIL (|has| |#1| (-346)))) (-1525 ((|#1| $) NIL) (($ $ (-854)) NIL (|has| |#1| (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 |#1|) $) NIL) (((-1085 $) $ (-854)) NIL (|has| |#1| (-346)))) (-1970 (((-854) $) NIL (|has| |#1| (-346)))) (-3004 (((-1085 |#1|) $) NIL (|has| |#1| (-346)))) (-2224 (((-1085 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1085 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2594 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| |#1| (-346)) CONST)) (-3229 (($ (-854)) NIL (|has| |#1| (-346)))) (-1326 (((-108) $) NIL)) (-2937 (((-1036) $) NIL)) (-1479 (((-890 (-1036))) NIL)) (-3965 (($) NIL (|has| |#1| (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| |#1| (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) NIL) (((-854)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) NIL (|has| |#1| (-346))) (((-3 (-712) "failed") $ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-1341 (((-1085 |#1|)) NIL)) (-3560 (($) NIL (|has| |#1| (-346)))) (-2200 (($) NIL (|has| |#1| (-346)))) (-1671 (((-1171 |#1|) $) NIL) (((-631 |#1|) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| |#1| (-346)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3751 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) NIL) (((-1171 $) (-854)) NIL)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3861 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-1796 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-323 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1479 ((-890 (-1036)))))) (-327) (-854)) (T -323)) -((-1479 (*1 *2) (-12 (-5 *2 (-890 (-1036))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327)) (-14 *4 (-854))))) -(-13 (-307 |#1|) (-10 -7 (-15 -1479 ((-890 (-1036)))))) -((-2492 (((-712) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036)))))) 42)) (-4030 (((-890 (-1036)) (-1085 |#1|)) 85)) (-1296 (((-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))) (-1085 |#1|)) 78)) (-2811 (((-631 |#1|) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036)))))) 86)) (-3396 (((-3 (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))) "failed") (-854)) 13)) (-2481 (((-3 (-1085 |#1|) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036)))))) (-854)) 18))) -(((-324 |#1|) (-10 -7 (-15 -4030 ((-890 (-1036)) (-1085 |#1|))) (-15 -1296 ((-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))) (-1085 |#1|))) (-15 -2811 ((-631 |#1|) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))))) (-15 -2492 ((-712) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))))) (-15 -3396 ((-3 (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))) "failed") (-854))) (-15 -2481 ((-3 (-1085 |#1|) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036)))))) (-854)))) (-327)) (T -324)) -((-2481 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-3 (-1085 *4) (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036))))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-3396 (*1 *2 *3) (|partial| -12 (-5 *3 (-854)) (-5 *2 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) (-4 *4 (-327)) (-5 *2 (-712)) (-5 *1 (-324 *4)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) (-4 *4 (-327)) (-5 *2 (-631 *4)) (-5 *1 (-324 *4)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) (-5 *2 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) (-5 *1 (-324 *4)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) (-5 *2 (-890 (-1036))) (-5 *1 (-324 *4))))) -(-10 -7 (-15 -4030 ((-890 (-1036)) (-1085 |#1|))) (-15 -1296 ((-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))) (-1085 |#1|))) (-15 -2811 ((-631 |#1|) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))))) (-15 -2492 ((-712) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))))) (-15 -3396 ((-3 (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))) "failed") (-854))) (-15 -2481 ((-3 (-1085 |#1|) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036)))))) (-854)))) -((-2686 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-325 |#1| |#2| |#3|) (-10 -7 (-15 -2686 (|#3| |#1|)) (-15 -2686 (|#1| |#3|))) (-307 |#2|) (-327) (-307 |#2|)) (T -325)) -((-2686 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3)) (-4 *3 (-307 *4)))) (-2686 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2)) (-4 *3 (-307 *4))))) -(-10 -7 (-15 -2686 (|#3| |#1|)) (-15 -2686 (|#1| |#3|))) -((-2096 (((-108) $) 52)) (-1676 (((-774 (-854)) $) 21) (((-854) $) 53)) (-2115 (((-3 $ "failed") $) 16)) (-3492 (($) 9)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 94)) (-2652 (((-3 (-712) "failed") $ $) 72) (((-712) $) 61)) (-2209 (($ $ (-712)) NIL) (($ $) 8)) (-3560 (($) 46)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 34)) (-3751 (((-3 $ "failed") $) 40) (($ $) 39))) -(((-326 |#1|) (-10 -8 (-15 -1676 ((-854) |#1|)) (-15 -2652 ((-712) |#1|)) (-15 -2096 ((-108) |#1|)) (-15 -3560 (|#1|)) (-15 -3124 ((-3 (-1171 |#1|) "failed") (-631 |#1|))) (-15 -3751 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -3492 (|#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|)) (-15 -2652 ((-3 (-712) "failed") |#1| |#1|)) (-15 -1676 ((-774 (-854)) |#1|)) (-15 -3751 ((-3 |#1| "failed") |#1|)) (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) (-327)) (T -326)) -NIL -(-10 -8 (-15 -1676 ((-854) |#1|)) (-15 -2652 ((-712) |#1|)) (-15 -2096 ((-108) |#1|)) (-15 -3560 (|#1|)) (-15 -3124 ((-3 (-1171 |#1|) "failed") (-631 |#1|))) (-15 -3751 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -3492 (|#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|)) (-15 -2652 ((-3 (-712) "failed") |#1| |#1|)) (-15 -1676 ((-774 (-854)) |#1|)) (-15 -3751 ((-3 |#1| "failed") |#1|)) (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-2666 (((-1099 (-854) (-712)) (-525)) 93)) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-1965 (((-108) $ $) 59)) (-2834 (((-712)) 103)) (-2055 (($) 17 T CONST)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-1325 (($) 106)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-1268 (($) 91)) (-2096 (((-108) $) 90)) (-3477 (($ $) 79) (($ $ (-712)) 78)) (-2393 (((-108) $) 71)) (-1676 (((-774 (-854)) $) 81) (((-854) $) 88)) (-3865 (((-108) $) 31)) (-2115 (((-3 $ "failed") $) 102)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-1970 (((-854) $) 105)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 70)) (-3492 (($) 101 T CONST)) (-3229 (($ (-854)) 104)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) 94)) (-2542 (((-396 $) $) 74)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-2652 (((-3 (-712) "failed") $ $) 80) (((-712) $) 89)) (-2209 (($ $ (-712)) 99) (($ $) 97)) (-3560 (($) 92)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 95)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3751 (((-3 $ "failed") $) 82) (($ $) 96)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-712)) 100) (($ $) 98)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ $) 64)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) +((-2734 (*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1172 *1)) (-4 *1 (-307 *3)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-855)) (-4 *4 (-341)) (-5 *2 (-1172 *1)) (-4 *1 (-307 *4)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1172 *3)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)))) (-1689 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1086 *3)))) (-2775 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1086 *3)))) (-1927 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-855)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-855)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-855)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1086 *1)) (-4 *1 (-307 *4)))) (-2281 (*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-2041 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-2431 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108)))) (-3258 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-3851 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3)) (-4 *3 (-341)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1086 *3)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1086 *3)))) (-3819 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1086 *3))))) +(-13 (-1189 |t#1|) (-967 |t#1|) (-10 -8 (-15 -2734 ((-1172 $))) (-15 -2734 ((-1172 $) (-855))) (-15 -1625 ((-1172 |t#1|) $)) (-15 -1625 ((-632 |t#1|) (-1172 $))) (-15 -1689 ($ (-1172 |t#1|))) (-15 -3800 ((-1086 |t#1|) $)) (-15 -2775 ((-1086 |t#1|))) (-15 -1927 ((-855))) (-15 -1486 ((-855) $)) (-15 -2281 (|t#1| $)) (-15 -3942 (|t#1| $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-327)) (-15 -3800 ((-1086 $) $ (-855))) (-15 -2281 ($ $ (-855))) (-15 -3942 ($ $ (-855))) (-15 -2041 ($)) (-15 -2431 ($)) (-15 -1872 ((-108) $)) (-15 -3258 ($)) (-15 -3851 ($ $ (-1086 |t#1|))) (-15 -1311 ((-1086 |t#1|) $)) (-15 -3819 ((-1086 |t#1|) $)) (-15 -3819 ((-3 (-1086 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3215 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-213) |has| |#1| (-346)) ((-223) . T) ((-269) . T) ((-286) . T) ((-1189 |#1|) . T) ((-341) . T) ((-380) -3215 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-346) |has| |#1| (-346)) ((-327) |has| |#1| (-346)) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-967 |#1|) . T) ((-982 #0#) . T) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-346)) ((-1130) . T) ((-1179 |#1|) . T)) +((-4028 (((-108) $ $) NIL)) (-1379 (($ (-1089) $) 88)) (-1984 (($) 77)) (-1362 (((-1037) (-1037)) 11)) (-4213 (($) 78)) (-3396 (($) 90) (($ (-294 (-641))) 98) (($ (-294 (-643))) 94) (($ (-294 (-636))) 102) (($ (-294 (-357))) 109) (($ (-294 (-525))) 105) (($ (-294 (-157 (-357)))) 113)) (-2625 (($ (-1089) $) 89)) (-3665 (($ (-592 (-797))) 79)) (-2073 (((-1177) $) 75)) (-3505 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4132 (($ (-1037)) 51)) (-1682 (((-1023) $) 25)) (-1504 (($ (-1012 (-886 (-525))) $) 85) (($ (-1012 (-886 (-525))) (-886 (-525)) $) 86)) (-3228 (($ (-1037)) 87)) (-2153 (($ (-1089) $) 115) (($ (-1089) $ $) 116)) (-1811 (($ (-1090) (-592 (-1090))) 76)) (-1561 (($ (-1073)) 82) (($ (-592 (-1073))) 80)) (-4044 (((-797) $) 118)) (-3919 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1090)) (|:| |arrayIndex| (-592 (-886 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1090)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1089)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3086 (-108)) (|:| -3067 (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073)) (|:| |forBranch| (-2 (|:| -2853 (-1012 (-886 (-525)))) (|:| |span| (-886 (-525))) (|:| -2336 $))) (|:| |labelBranch| (-1037)) (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -2336 $))) (|:| |commonBranch| (-2 (|:| -3515 (-1090)) (|:| |contents| (-592 (-1090))))) (|:| |printBranch| (-592 (-797)))) $) 44)) (-2678 (($ (-1073)) 187)) (-1613 (($ (-592 $)) 114)) (-4206 (($ (-1090) (-1073)) 120) (($ (-1090) (-294 (-643))) 160) (($ (-1090) (-294 (-641))) 161) (($ (-1090) (-294 (-636))) 162) (($ (-1090) (-632 (-643))) 123) (($ (-1090) (-632 (-641))) 126) (($ (-1090) (-632 (-636))) 129) (($ (-1090) (-1172 (-643))) 132) (($ (-1090) (-1172 (-641))) 135) (($ (-1090) (-1172 (-636))) 138) (($ (-1090) (-632 (-294 (-643)))) 141) (($ (-1090) (-632 (-294 (-641)))) 144) (($ (-1090) (-632 (-294 (-636)))) 147) (($ (-1090) (-1172 (-294 (-643)))) 150) (($ (-1090) (-1172 (-294 (-641)))) 153) (($ (-1090) (-1172 (-294 (-636)))) 156) (($ (-1090) (-592 (-886 (-525))) (-294 (-643))) 157) (($ (-1090) (-592 (-886 (-525))) (-294 (-641))) 158) (($ (-1090) (-592 (-886 (-525))) (-294 (-636))) 159) (($ (-1090) (-294 (-525))) 184) (($ (-1090) (-294 (-357))) 185) (($ (-1090) (-294 (-157 (-357)))) 186) (($ (-1090) (-632 (-294 (-525)))) 165) (($ (-1090) (-632 (-294 (-357)))) 168) (($ (-1090) (-632 (-294 (-157 (-357))))) 171) (($ (-1090) (-1172 (-294 (-525)))) 174) (($ (-1090) (-1172 (-294 (-357)))) 177) (($ (-1090) (-1172 (-294 (-157 (-357))))) 180) (($ (-1090) (-592 (-886 (-525))) (-294 (-525))) 181) (($ (-1090) (-592 (-886 (-525))) (-294 (-357))) 182) (($ (-1090) (-592 (-886 (-525))) (-294 (-157 (-357)))) 183)) (-3899 (((-108) $ $) NIL))) +(((-308) (-13 (-1019) (-10 -8 (-15 -4044 ((-797) $)) (-15 -1504 ($ (-1012 (-886 (-525))) $)) (-15 -1504 ($ (-1012 (-886 (-525))) (-886 (-525)) $)) (-15 -1379 ($ (-1089) $)) (-15 -2625 ($ (-1089) $)) (-15 -4132 ($ (-1037))) (-15 -3228 ($ (-1037))) (-15 -1561 ($ (-1073))) (-15 -1561 ($ (-592 (-1073)))) (-15 -2678 ($ (-1073))) (-15 -3396 ($)) (-15 -3396 ($ (-294 (-641)))) (-15 -3396 ($ (-294 (-643)))) (-15 -3396 ($ (-294 (-636)))) (-15 -3396 ($ (-294 (-357)))) (-15 -3396 ($ (-294 (-525)))) (-15 -3396 ($ (-294 (-157 (-357))))) (-15 -2153 ($ (-1089) $)) (-15 -2153 ($ (-1089) $ $)) (-15 -4206 ($ (-1090) (-1073))) (-15 -4206 ($ (-1090) (-294 (-643)))) (-15 -4206 ($ (-1090) (-294 (-641)))) (-15 -4206 ($ (-1090) (-294 (-636)))) (-15 -4206 ($ (-1090) (-632 (-643)))) (-15 -4206 ($ (-1090) (-632 (-641)))) (-15 -4206 ($ (-1090) (-632 (-636)))) (-15 -4206 ($ (-1090) (-1172 (-643)))) (-15 -4206 ($ (-1090) (-1172 (-641)))) (-15 -4206 ($ (-1090) (-1172 (-636)))) (-15 -4206 ($ (-1090) (-632 (-294 (-643))))) (-15 -4206 ($ (-1090) (-632 (-294 (-641))))) (-15 -4206 ($ (-1090) (-632 (-294 (-636))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-643))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-641))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-636))))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-643)))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-641)))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-636)))) (-15 -4206 ($ (-1090) (-294 (-525)))) (-15 -4206 ($ (-1090) (-294 (-357)))) (-15 -4206 ($ (-1090) (-294 (-157 (-357))))) (-15 -4206 ($ (-1090) (-632 (-294 (-525))))) (-15 -4206 ($ (-1090) (-632 (-294 (-357))))) (-15 -4206 ($ (-1090) (-632 (-294 (-157 (-357)))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-525))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-357))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-157 (-357)))))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-525)))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-357)))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-157 (-357))))) (-15 -1613 ($ (-592 $))) (-15 -1984 ($)) (-15 -4213 ($)) (-15 -3665 ($ (-592 (-797)))) (-15 -1811 ($ (-1090) (-592 (-1090)))) (-15 -3505 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3919 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1090)) (|:| |arrayIndex| (-592 (-886 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1090)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1089)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3086 (-108)) (|:| -3067 (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073)) (|:| |forBranch| (-2 (|:| -2853 (-1012 (-886 (-525)))) (|:| |span| (-886 (-525))) (|:| -2336 $))) (|:| |labelBranch| (-1037)) (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -2336 $))) (|:| |commonBranch| (-2 (|:| -3515 (-1090)) (|:| |contents| (-592 (-1090))))) (|:| |printBranch| (-592 (-797)))) $)) (-15 -2073 ((-1177) $)) (-15 -1682 ((-1023) $)) (-15 -1362 ((-1037) (-1037)))))) (T -308)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-308)))) (-1504 (*1 *1 *2 *1) (-12 (-5 *2 (-1012 (-886 (-525)))) (-5 *1 (-308)))) (-1504 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1012 (-886 (-525)))) (-5 *3 (-886 (-525))) (-5 *1 (-308)))) (-1379 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))) (-2625 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308)))) (-3228 (*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308)))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-308)))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-308)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-308)))) (-3396 (*1 *1) (-5 *1 (-308))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-308)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-308)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-308)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308)))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-2153 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))) (-2153 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-643))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-641))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-636))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-643))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-641))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-636))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-643))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-641))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-636))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-643)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-641)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-636)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-643))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-641))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-636))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-525))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-357))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-525)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-357)))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-525))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-357))) (-5 *1 (-308)))) (-4206 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308)))) (-1984 (*1 *1) (-5 *1 (-308))) (-4213 (*1 *1) (-5 *1 (-308))) (-3665 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-308)))) (-1811 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1090)) (-5 *1 (-308)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-308)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1090)) (|:| |arrayIndex| (-592 (-886 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1090)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1089)) (|:| |thenClause| (-308)) (|:| |elseClause| (-308)))) (|:| |returnBranch| (-2 (|:| -3086 (-108)) (|:| -3067 (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) (|:| |blockBranch| (-592 (-308))) (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073)) (|:| |forBranch| (-2 (|:| -2853 (-1012 (-886 (-525)))) (|:| |span| (-886 (-525))) (|:| -2336 (-308)))) (|:| |labelBranch| (-1037)) (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -2336 (-308)))) (|:| |commonBranch| (-2 (|:| -3515 (-1090)) (|:| |contents| (-592 (-1090))))) (|:| |printBranch| (-592 (-797))))) (-5 *1 (-308)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-308)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-308)))) (-1362 (*1 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308))))) +(-13 (-1019) (-10 -8 (-15 -4044 ((-797) $)) (-15 -1504 ($ (-1012 (-886 (-525))) $)) (-15 -1504 ($ (-1012 (-886 (-525))) (-886 (-525)) $)) (-15 -1379 ($ (-1089) $)) (-15 -2625 ($ (-1089) $)) (-15 -4132 ($ (-1037))) (-15 -3228 ($ (-1037))) (-15 -1561 ($ (-1073))) (-15 -1561 ($ (-592 (-1073)))) (-15 -2678 ($ (-1073))) (-15 -3396 ($)) (-15 -3396 ($ (-294 (-641)))) (-15 -3396 ($ (-294 (-643)))) (-15 -3396 ($ (-294 (-636)))) (-15 -3396 ($ (-294 (-357)))) (-15 -3396 ($ (-294 (-525)))) (-15 -3396 ($ (-294 (-157 (-357))))) (-15 -2153 ($ (-1089) $)) (-15 -2153 ($ (-1089) $ $)) (-15 -4206 ($ (-1090) (-1073))) (-15 -4206 ($ (-1090) (-294 (-643)))) (-15 -4206 ($ (-1090) (-294 (-641)))) (-15 -4206 ($ (-1090) (-294 (-636)))) (-15 -4206 ($ (-1090) (-632 (-643)))) (-15 -4206 ($ (-1090) (-632 (-641)))) (-15 -4206 ($ (-1090) (-632 (-636)))) (-15 -4206 ($ (-1090) (-1172 (-643)))) (-15 -4206 ($ (-1090) (-1172 (-641)))) (-15 -4206 ($ (-1090) (-1172 (-636)))) (-15 -4206 ($ (-1090) (-632 (-294 (-643))))) (-15 -4206 ($ (-1090) (-632 (-294 (-641))))) (-15 -4206 ($ (-1090) (-632 (-294 (-636))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-643))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-641))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-636))))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-643)))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-641)))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-636)))) (-15 -4206 ($ (-1090) (-294 (-525)))) (-15 -4206 ($ (-1090) (-294 (-357)))) (-15 -4206 ($ (-1090) (-294 (-157 (-357))))) (-15 -4206 ($ (-1090) (-632 (-294 (-525))))) (-15 -4206 ($ (-1090) (-632 (-294 (-357))))) (-15 -4206 ($ (-1090) (-632 (-294 (-157 (-357)))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-525))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-357))))) (-15 -4206 ($ (-1090) (-1172 (-294 (-157 (-357)))))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-525)))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-357)))) (-15 -4206 ($ (-1090) (-592 (-886 (-525))) (-294 (-157 (-357))))) (-15 -1613 ($ (-592 $))) (-15 -1984 ($)) (-15 -4213 ($)) (-15 -3665 ($ (-592 (-797)))) (-15 -1811 ($ (-1090) (-592 (-1090)))) (-15 -3505 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3919 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1090)) (|:| |arrayIndex| (-592 (-886 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1090)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1089)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3086 (-108)) (|:| -3067 (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073)) (|:| |forBranch| (-2 (|:| -2853 (-1012 (-886 (-525)))) (|:| |span| (-886 (-525))) (|:| -2336 $))) (|:| |labelBranch| (-1037)) (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -2336 $))) (|:| |commonBranch| (-2 (|:| -3515 (-1090)) (|:| |contents| (-592 (-1090))))) (|:| |printBranch| (-592 (-797)))) $)) (-15 -2073 ((-1177) $)) (-15 -1682 ((-1023) $)) (-15 -1362 ((-1037) (-1037))))) +((-4028 (((-108) $ $) NIL)) (-3075 (((-108) $) 11)) (-3737 (($ |#1|) 8)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3749 (($ |#1|) 9)) (-4044 (((-797) $) 17)) (-3103 ((|#1| $) 12)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 19))) +(((-309 |#1|) (-13 (-789) (-10 -8 (-15 -3737 ($ |#1|)) (-15 -3749 ($ |#1|)) (-15 -3075 ((-108) $)) (-15 -3103 (|#1| $)))) (-789)) (T -309)) +((-3737 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-3749 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-789)))) (-3103 (*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))) +(-13 (-789) (-10 -8 (-15 -3737 ($ |#1|)) (-15 -3749 ($ |#1|)) (-15 -3075 ((-108) $)) (-15 -3103 (|#1| $)))) +((-3990 (((-308) (-1090) (-886 (-525))) 23)) (-3600 (((-308) (-1090) (-886 (-525))) 27)) (-4046 (((-308) (-1090) (-1012 (-886 (-525))) (-1012 (-886 (-525)))) 26) (((-308) (-1090) (-886 (-525)) (-886 (-525))) 24)) (-3813 (((-308) (-1090) (-886 (-525))) 31))) +(((-310) (-10 -7 (-15 -3990 ((-308) (-1090) (-886 (-525)))) (-15 -4046 ((-308) (-1090) (-886 (-525)) (-886 (-525)))) (-15 -4046 ((-308) (-1090) (-1012 (-886 (-525))) (-1012 (-886 (-525))))) (-15 -3600 ((-308) (-1090) (-886 (-525)))) (-15 -3813 ((-308) (-1090) (-886 (-525)))))) (T -310)) +((-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-4046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-1012 (-886 (-525)))) (-5 *2 (-308)) (-5 *1 (-310)))) (-4046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-3990 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) (-5 *1 (-310))))) +(-10 -7 (-15 -3990 ((-308) (-1090) (-886 (-525)))) (-15 -4046 ((-308) (-1090) (-886 (-525)) (-886 (-525)))) (-15 -4046 ((-308) (-1090) (-1012 (-886 (-525))) (-1012 (-886 (-525))))) (-15 -3600 ((-308) (-1090) (-886 (-525)))) (-15 -3813 ((-308) (-1090) (-886 (-525))))) +((-2868 (((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)) 33))) +(((-311 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2868 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-341) (-1148 |#5|) (-1148 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -311)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *9 (-341)) (-4 *10 (-1148 *9)) (-4 *11 (-1148 (-385 *10))) (-5 *2 (-314 *9 *10 *11 *12)) (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-320 *9 *10 *11))))) +(-10 -7 (-15 -2868 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)))) +((-3391 (((-108) $) 14))) +(((-312 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3391 ((-108) |#1|))) (-313 |#2| |#3| |#4| |#5|) (-341) (-1148 |#2|) (-1148 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -312)) +NIL +(-10 -8 (-15 -3391 ((-108) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-3336 (($ $) 26)) (-3391 (((-108) $) 25)) (-1707 (((-1073) $) 9)) (-3691 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 32)) (-3027 (((-1037) $) 10)) (-3258 (((-3 |#4| "failed") $) 24)) (-3829 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-525)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3756 (((-2 (|:| -1421 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20))) +(((-313 |#1| |#2| |#3| |#4|) (-131) (-341) (-1148 |t#1|) (-1148 (-385 |t#2|)) (-320 |t#1| |t#2| |t#3|)) (T -313)) +((-3691 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-391 *4 (-385 *4) *5 *6)))) (-3829 (*1 *1 *2) (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341)) (-4 *1 (-313 *3 *4 *5 *6)))) (-3829 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5)))) (-3829 (*1 *1 *2 *2) (-12 (-4 *2 (-341)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3))) (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4)))) (-3829 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1148 *2)) (-4 *5 (-1148 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6)) (-4 *6 (-320 *2 *4 *5)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-2 (|:| -1421 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6))))) (-3336 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3))) (-4 *5 (-320 *2 *3 *4)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))) (-3258 (*1 *2 *1) (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *2 (-320 *3 *4 *5)))) (-3829 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-341)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3691 ((-391 |t#2| (-385 |t#2|) |t#3| |t#4|) $)) (-15 -3829 ($ (-391 |t#2| (-385 |t#2|) |t#3| |t#4|))) (-15 -3829 ($ |t#4|)) (-15 -3829 ($ |t#1| |t#1|)) (-15 -3829 ($ |t#1| |t#1| (-525))) (-15 -3756 ((-2 (|:| -1421 (-391 |t#2| (-385 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3336 ($ $)) (-15 -3391 ((-108) $)) (-15 -3258 ((-3 |t#4| "failed") $)) (-15 -3829 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-3336 (($ $) 33)) (-3391 (((-108) $) NIL)) (-1707 (((-1073) $) NIL)) (-1917 (((-1172 |#4|) $) 125)) (-3691 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 31)) (-3027 (((-1037) $) NIL)) (-3258 (((-3 |#4| "failed") $) 36)) (-2205 (((-1172 |#4|) $) 118)) (-3829 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-525)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3756 (((-2 (|:| -1421 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4044 (((-797) $) 17)) (-1436 (($) 14 T CONST)) (-3899 (((-108) $ $) 20)) (-4033 (($ $) 27) (($ $ $) NIL)) (-4017 (($ $ $) 25)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 23))) +(((-314 |#1| |#2| |#3| |#4|) (-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2205 ((-1172 |#4|) $)) (-15 -1917 ((-1172 |#4|) $)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -314)) +((-2205 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-1172 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))) (-1917 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-1172 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5))))) +(-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2205 ((-1172 |#4|) $)) (-15 -1917 ((-1172 |#4|) $)))) +((-2168 (($ $ (-1090) |#2|) NIL) (($ $ (-592 (-1090)) (-592 |#2|)) 20) (($ $ (-592 (-273 |#2|))) 15) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-1496 (($ $ |#2|) 11))) +(((-315 |#1| |#2|) (-10 -8 (-15 -1496 (|#1| |#1| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#2| |#2|)) (-15 -2168 (|#1| |#1| (-273 |#2|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 |#2|))) (-15 -2168 (|#1| |#1| (-1090) |#2|))) (-316 |#2|) (-1019)) (T -315)) +NIL +(-10 -8 (-15 -1496 (|#1| |#1| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#2| |#2|)) (-15 -2168 (|#1| |#1| (-273 |#2|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 |#2|))) (-15 -2168 (|#1| |#1| (-1090) |#2|))) +((-2868 (($ (-1 |#1| |#1|) $) 6)) (-2168 (($ $ (-1090) |#1|) 17 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 16 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-592 (-273 |#1|))) 15 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 14 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-288 |#1|))) (($ $ (-592 |#1|) (-592 |#1|)) 12 (|has| |#1| (-288 |#1|)))) (-1496 (($ $ |#1|) 11 (|has| |#1| (-265 |#1| |#1|))))) +(((-316 |#1|) (-131) (-1019)) (T -316)) +((-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1019))))) +(-13 (-10 -8 (-15 -2868 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-265 |t#1| |t#1|)) (-6 (-265 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-486 (-1090) |t#1|)) (-6 (-486 (-1090) |t#1|)) |%noBranch|))) +(((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-1090)) $) NIL)) (-3799 (((-108)) 89) (((-108) (-108)) 90)) (-2249 (((-592 (-565 $)) $) NIL)) (-3915 (($ $) NIL)) (-3760 (($ $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-3687 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-2975 (($ $) NIL)) (-3886 (($ $) NIL)) (-3737 (($ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-565 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-294 |#3|)) 71) (((-3 $ "failed") (-1090)) 95) (((-3 $ "failed") (-294 (-525))) 59 (|has| |#3| (-967 (-525)))) (((-3 $ "failed") (-385 (-886 (-525)))) 65 (|has| |#3| (-967 (-525)))) (((-3 $ "failed") (-886 (-525))) 60 (|has| |#3| (-967 (-525)))) (((-3 $ "failed") (-294 (-357))) 77 (|has| |#3| (-967 (-357)))) (((-3 $ "failed") (-385 (-886 (-357)))) 83 (|has| |#3| (-967 (-357)))) (((-3 $ "failed") (-886 (-357))) 78 (|has| |#3| (-967 (-357))))) (-2068 (((-565 $) $) NIL) ((|#3| $) NIL) (($ (-294 |#3|)) 72) (($ (-1090)) 96) (($ (-294 (-525))) 61 (|has| |#3| (-967 (-525)))) (($ (-385 (-886 (-525)))) 66 (|has| |#3| (-967 (-525)))) (($ (-886 (-525))) 62 (|has| |#3| (-967 (-525)))) (($ (-294 (-357))) 79 (|has| |#3| (-967 (-357)))) (($ (-385 (-886 (-357)))) 84 (|has| |#3| (-967 (-357)))) (($ (-886 (-357))) 80 (|has| |#3| (-967 (-357))))) (-1645 (((-3 $ "failed") $) NIL)) (-1961 (($) 10)) (-1759 (($ $) NIL) (($ (-592 $)) NIL)) (-4131 (((-592 (-110)) $) NIL)) (-1885 (((-110) (-110)) NIL)) (-2507 (((-108) $) NIL)) (-2057 (((-108) $) NIL (|has| $ (-967 (-525))))) (-2605 (((-1086 $) (-565 $)) NIL (|has| $ (-976)))) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2868 (($ (-1 $ $) (-565 $)) NIL)) (-1688 (((-3 (-565 $) "failed") $) NIL)) (-2802 (($ $) 92)) (-2412 (($ $) NIL)) (-1707 (((-1073) $) NIL)) (-1304 (((-592 (-565 $)) $) NIL)) (-1996 (($ (-110) $) 91) (($ (-110) (-592 $)) NIL)) (-4084 (((-108) $ (-110)) NIL) (((-108) $ (-1090)) NIL)) (-2138 (((-713) $) NIL)) (-3027 (((-1037) $) NIL)) (-1680 (((-108) $ $) NIL) (((-108) $ (-1090)) NIL)) (-2840 (($ $) NIL)) (-3524 (((-108) $) NIL (|has| $ (-967 (-525))))) (-2168 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1496 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-3080 (($ $) NIL) (($ $ $) NIL)) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL)) (-2775 (($ $) NIL (|has| $ (-976)))) (-3901 (($ $) NIL)) (-3749 (($ $) NIL)) (-4044 (((-797) $) NIL) (($ (-565 $)) NIL) (($ |#3|) NIL) (($ (-525)) NIL) (((-294 |#3|) $) 94)) (-2502 (((-713)) NIL)) (-3882 (($ $) NIL) (($ (-592 $)) NIL)) (-3712 (((-108) (-110)) NIL)) (-3836 (($ $) NIL)) (-3808 (($ $) NIL)) (-3823 (($ $) NIL)) (-2053 (($ $) NIL)) (-1594 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-1436 (($) 93 T CONST)) (-1449 (($) 24 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4033 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL))) +(((-317 |#1| |#2| |#3|) (-13 (-281) (-37 |#3|) (-967 |#3|) (-834 (-1090)) (-10 -8 (-15 -2068 ($ (-294 |#3|))) (-15 -2769 ((-3 $ "failed") (-294 |#3|))) (-15 -2068 ($ (-1090))) (-15 -2769 ((-3 $ "failed") (-1090))) (-15 -4044 ((-294 |#3|) $)) (IF (|has| |#3| (-967 (-525))) (PROGN (-15 -2068 ($ (-294 (-525)))) (-15 -2769 ((-3 $ "failed") (-294 (-525)))) (-15 -2068 ($ (-385 (-886 (-525))))) (-15 -2769 ((-3 $ "failed") (-385 (-886 (-525))))) (-15 -2068 ($ (-886 (-525)))) (-15 -2769 ((-3 $ "failed") (-886 (-525))))) |%noBranch|) (IF (|has| |#3| (-967 (-357))) (PROGN (-15 -2068 ($ (-294 (-357)))) (-15 -2769 ((-3 $ "failed") (-294 (-357)))) (-15 -2068 ($ (-385 (-886 (-357))))) (-15 -2769 ((-3 $ "failed") (-385 (-886 (-357))))) (-15 -2068 ($ (-886 (-357)))) (-15 -2769 ((-3 $ "failed") (-886 (-357))))) |%noBranch|) (-15 -2053 ($ $)) (-15 -2975 ($ $)) (-15 -2840 ($ $)) (-15 -2412 ($ $)) (-15 -2802 ($ $)) (-15 -3737 ($ $)) (-15 -3749 ($ $)) (-15 -3760 ($ $)) (-15 -3808 ($ $)) (-15 -3823 ($ $)) (-15 -3836 ($ $)) (-15 -3886 ($ $)) (-15 -3901 ($ $)) (-15 -3915 ($ $)) (-15 -1961 ($)) (-15 -3122 ((-592 (-1090)) $)) (-15 -3799 ((-108))) (-15 -3799 ((-108) (-108))))) (-592 (-1090)) (-592 (-1090)) (-365)) (T -317)) +((-2068 (*1 *1 *2) (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 *2)) (-14 *4 (-592 *2)) (-4 *5 (-365)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 *2)) (-14 *4 (-592 *2)) (-4 *5 (-365)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-886 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-886 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-886 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-886 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2053 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-2975 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-2840 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-2412 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-2802 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3737 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3749 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3760 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3823 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3836 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3886 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3901 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3915 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-1961 (*1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-365)))) (-3799 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365))))) +(-13 (-281) (-37 |#3|) (-967 |#3|) (-834 (-1090)) (-10 -8 (-15 -2068 ($ (-294 |#3|))) (-15 -2769 ((-3 $ "failed") (-294 |#3|))) (-15 -2068 ($ (-1090))) (-15 -2769 ((-3 $ "failed") (-1090))) (-15 -4044 ((-294 |#3|) $)) (IF (|has| |#3| (-967 (-525))) (PROGN (-15 -2068 ($ (-294 (-525)))) (-15 -2769 ((-3 $ "failed") (-294 (-525)))) (-15 -2068 ($ (-385 (-886 (-525))))) (-15 -2769 ((-3 $ "failed") (-385 (-886 (-525))))) (-15 -2068 ($ (-886 (-525)))) (-15 -2769 ((-3 $ "failed") (-886 (-525))))) |%noBranch|) (IF (|has| |#3| (-967 (-357))) (PROGN (-15 -2068 ($ (-294 (-357)))) (-15 -2769 ((-3 $ "failed") (-294 (-357)))) (-15 -2068 ($ (-385 (-886 (-357))))) (-15 -2769 ((-3 $ "failed") (-385 (-886 (-357))))) (-15 -2068 ($ (-886 (-357)))) (-15 -2769 ((-3 $ "failed") (-886 (-357))))) |%noBranch|) (-15 -2053 ($ $)) (-15 -2975 ($ $)) (-15 -2840 ($ $)) (-15 -2412 ($ $)) (-15 -2802 ($ $)) (-15 -3737 ($ $)) (-15 -3749 ($ $)) (-15 -3760 ($ $)) (-15 -3808 ($ $)) (-15 -3823 ($ $)) (-15 -3836 ($ $)) (-15 -3886 ($ $)) (-15 -3901 ($ $)) (-15 -3915 ($ $)) (-15 -1961 ($)) (-15 -3122 ((-592 (-1090)) $)) (-15 -3799 ((-108))) (-15 -3799 ((-108) (-108))))) +((-2868 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-318 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2868 (|#8| (-1 |#5| |#1|) |#4|))) (-1130) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-1130) (-1148 |#5|) (-1148 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -318)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1130)) (-4 *8 (-1130)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *9 (-1148 *8)) (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1148 (-385 *9)))))) +(-10 -7 (-15 -2868 (|#8| (-1 |#5| |#1|) |#4|))) +((-3949 (((-2 (|:| |num| (-1172 |#3|)) (|:| |den| |#3|)) $) 38)) (-1689 (($ (-1172 (-385 |#3|)) (-1172 $)) NIL) (($ (-1172 (-385 |#3|))) NIL) (($ (-1172 |#3|) |#3|) 161)) (-1536 (((-1172 $) (-1172 $)) 145)) (-2442 (((-592 (-592 |#2|))) 119)) (-3242 (((-108) |#2| |#2|) 73)) (-2319 (($ $) 139)) (-3029 (((-713)) 31)) (-3770 (((-1172 $) (-1172 $)) 198)) (-2027 (((-592 (-886 |#2|)) (-1090)) 110)) (-2784 (((-108) $) 158)) (-2318 (((-108) $) 25) (((-108) $ |#2|) 29) (((-108) $ |#3|) 202)) (-1443 (((-3 |#3| "failed")) 50)) (-3399 (((-713)) 170)) (-1496 ((|#2| $ |#2| |#2|) 132)) (-1887 (((-3 |#3| "failed")) 68)) (-1576 (($ $ (-1 (-385 |#3|) (-385 |#3|)) (-713)) NIL) (($ $ (-1 (-385 |#3|) (-385 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2918 (((-1172 $) (-1172 $)) 151)) (-3416 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2598 (((-108)) 33))) +(((-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -2442 ((-592 (-592 |#2|)))) (-15 -2027 ((-592 (-886 |#2|)) (-1090))) (-15 -3416 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1443 ((-3 |#3| "failed"))) (-15 -1887 ((-3 |#3| "failed"))) (-15 -1496 (|#2| |#1| |#2| |#2|)) (-15 -2319 (|#1| |#1|)) (-15 -1689 (|#1| (-1172 |#3|) |#3|)) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2318 ((-108) |#1| |#3|)) (-15 -2318 ((-108) |#1| |#2|)) (-15 -3949 ((-2 (|:| |num| (-1172 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1536 ((-1172 |#1|) (-1172 |#1|))) (-15 -3770 ((-1172 |#1|) (-1172 |#1|))) (-15 -2918 ((-1172 |#1|) (-1172 |#1|))) (-15 -2318 ((-108) |#1|)) (-15 -2784 ((-108) |#1|)) (-15 -3242 ((-108) |#2| |#2|)) (-15 -2598 ((-108))) (-15 -3399 ((-713))) (-15 -3029 ((-713))) (-15 -1576 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -1576 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -1689 (|#1| (-1172 (-385 |#3|)))) (-15 -1689 (|#1| (-1172 (-385 |#3|)) (-1172 |#1|)))) (-320 |#2| |#3| |#4|) (-1130) (-1148 |#2|) (-1148 (-385 |#3|))) (T -319)) +((-3029 (*1 *2) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-3399 (*1 *2) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-2598 (*1 *2) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-3242 (*1 *2 *3 *3) (-12 (-4 *3 (-1130)) (-4 *5 (-1148 *3)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6)))) (-1887 (*1 *2) (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-1443 (*1 *2) (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *5 (-1130)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-5 *2 (-592 (-886 *5))) (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7)))) (-2442 (*1 *2) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))) +(-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -2442 ((-592 (-592 |#2|)))) (-15 -2027 ((-592 (-886 |#2|)) (-1090))) (-15 -3416 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1443 ((-3 |#3| "failed"))) (-15 -1887 ((-3 |#3| "failed"))) (-15 -1496 (|#2| |#1| |#2| |#2|)) (-15 -2319 (|#1| |#1|)) (-15 -1689 (|#1| (-1172 |#3|) |#3|)) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2318 ((-108) |#1| |#3|)) (-15 -2318 ((-108) |#1| |#2|)) (-15 -3949 ((-2 (|:| |num| (-1172 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1536 ((-1172 |#1|) (-1172 |#1|))) (-15 -3770 ((-1172 |#1|) (-1172 |#1|))) (-15 -2918 ((-1172 |#1|) (-1172 |#1|))) (-15 -2318 ((-108) |#1|)) (-15 -2784 ((-108) |#1|)) (-15 -3242 ((-108) |#2| |#2|)) (-15 -2598 ((-108))) (-15 -3399 ((-713))) (-15 -3029 ((-713))) (-15 -1576 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -1576 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -1689 (|#1| (-1172 (-385 |#3|)))) (-15 -1689 (|#1| (-1172 (-385 |#3|)) (-1172 |#1|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3949 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) 196)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 93 (|has| (-385 |#2|) (-341)))) (-2609 (($ $) 94 (|has| (-385 |#2|) (-341)))) (-1220 (((-108) $) 96 (|has| (-385 |#2|) (-341)))) (-3852 (((-632 (-385 |#2|)) (-1172 $)) 46) (((-632 (-385 |#2|))) 61)) (-3942 (((-385 |#2|) $) 52)) (-1207 (((-1100 (-855) (-713)) (-525)) 147 (|has| (-385 |#2|) (-327)))) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 113 (|has| (-385 |#2|) (-341)))) (-1259 (((-396 $) $) 114 (|has| (-385 |#2|) (-341)))) (-1700 (((-108) $ $) 104 (|has| (-385 |#2|) (-341)))) (-1651 (((-713)) 87 (|has| (-385 |#2|) (-346)))) (-3402 (((-108)) 213)) (-3169 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-1957 (($) 17 T CONST)) (-2769 (((-3 (-525) "failed") $) 169 (|has| (-385 |#2|) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) 166)) (-2068 (((-525) $) 170 (|has| (-385 |#2|) (-967 (-525)))) (((-385 (-525)) $) 168 (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-385 |#2|) $) 165)) (-1689 (($ (-1172 (-385 |#2|)) (-1172 $)) 48) (($ (-1172 (-385 |#2|))) 64) (($ (-1172 |#2|) |#2|) 189)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-385 |#2|) (-327)))) (-2720 (($ $ $) 108 (|has| (-385 |#2|) (-341)))) (-3198 (((-632 (-385 |#2|)) $ (-1172 $)) 53) (((-632 (-385 |#2|)) $) 59)) (-1307 (((-632 (-525)) (-632 $)) 164 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 163 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-385 |#2|))) (|:| |vec| (-1172 (-385 |#2|)))) (-632 $) (-1172 $)) 162) (((-632 (-385 |#2|)) (-632 $)) 161)) (-1536 (((-1172 $) (-1172 $)) 201)) (-3336 (($ |#3|) 158) (((-3 $ "failed") (-385 |#3|)) 155 (|has| (-385 |#2|) (-341)))) (-1645 (((-3 $ "failed") $) 34)) (-2442 (((-592 (-592 |#1|))) 182 (|has| |#1| (-346)))) (-3242 (((-108) |#1| |#1|) 217)) (-3439 (((-855)) 54)) (-1527 (($) 90 (|has| (-385 |#2|) (-346)))) (-3902 (((-108)) 210)) (-3641 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-2699 (($ $ $) 107 (|has| (-385 |#2|) (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 102 (|has| (-385 |#2|) (-341)))) (-2319 (($ $) 188)) (-2376 (($) 149 (|has| (-385 |#2|) (-327)))) (-3703 (((-108) $) 150 (|has| (-385 |#2|) (-327)))) (-3351 (($ $ (-713)) 141 (|has| (-385 |#2|) (-327))) (($ $) 140 (|has| (-385 |#2|) (-327)))) (-2069 (((-108) $) 115 (|has| (-385 |#2|) (-341)))) (-2158 (((-855) $) 152 (|has| (-385 |#2|) (-327))) (((-775 (-855)) $) 138 (|has| (-385 |#2|) (-327)))) (-2507 (((-108) $) 31)) (-3029 (((-713)) 220)) (-3770 (((-1172 $) (-1172 $)) 202)) (-2281 (((-385 |#2|) $) 51)) (-2027 (((-592 (-886 |#1|)) (-1090)) 183 (|has| |#1| (-341)))) (-1978 (((-3 $ "failed") $) 142 (|has| (-385 |#2|) (-327)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| (-385 |#2|) (-341)))) (-3800 ((|#3| $) 44 (|has| (-385 |#2|) (-341)))) (-2111 (((-855) $) 89 (|has| (-385 |#2|) (-346)))) (-3325 ((|#3| $) 156)) (-2226 (($ (-592 $)) 100 (|has| (-385 |#2|) (-341))) (($ $ $) 99 (|has| (-385 |#2|) (-341)))) (-1707 (((-1073) $) 9)) (-2378 (((-632 (-385 |#2|))) 197)) (-4021 (((-632 (-385 |#2|))) 199)) (-3243 (($ $) 116 (|has| (-385 |#2|) (-341)))) (-4136 (($ (-1172 |#2|) |#2|) 194)) (-1344 (((-632 (-385 |#2|))) 198)) (-2209 (((-632 (-385 |#2|))) 200)) (-1742 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-3974 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) 195)) (-4124 (((-1172 $)) 206)) (-1920 (((-1172 $)) 207)) (-2784 (((-108) $) 205)) (-2318 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-2039 (($) 143 (|has| (-385 |#2|) (-327)) CONST)) (-3381 (($ (-855)) 88 (|has| (-385 |#2|) (-346)))) (-1443 (((-3 |#2| "failed")) 185)) (-3027 (((-1037) $) 10)) (-3399 (((-713)) 219)) (-3258 (($) 160)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 101 (|has| (-385 |#2|) (-341)))) (-2262 (($ (-592 $)) 98 (|has| (-385 |#2|) (-341))) (($ $ $) 97 (|has| (-385 |#2|) (-341)))) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) 146 (|has| (-385 |#2|) (-327)))) (-2961 (((-396 $) $) 112 (|has| (-385 |#2|) (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 109 (|has| (-385 |#2|) (-341)))) (-2675 (((-3 $ "failed") $ $) 92 (|has| (-385 |#2|) (-341)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| (-385 |#2|) (-341)))) (-2824 (((-713) $) 105 (|has| (-385 |#2|) (-341)))) (-1496 ((|#1| $ |#1| |#1|) 187)) (-1887 (((-3 |#2| "failed")) 186)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 106 (|has| (-385 |#2|) (-341)))) (-2257 (((-385 |#2|) (-1172 $)) 47) (((-385 |#2|)) 60)) (-2729 (((-713) $) 151 (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) 139 (|has| (-385 |#2|) (-327)))) (-1576 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 123 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 122 (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-592 (-1090)) (-592 (-713))) 130 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-2385 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-1090) (-713)) 131 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-2385 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1090))) 132 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-2385 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-1090)) 133 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-2385 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 135 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-2385 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 137 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-2385 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-1410 (((-632 (-385 |#2|)) (-1172 $) (-1 (-385 |#2|) (-385 |#2|))) 154 (|has| (-385 |#2|) (-341)))) (-2775 ((|#3|) 159)) (-3405 (($) 148 (|has| (-385 |#2|) (-327)))) (-1625 (((-1172 (-385 |#2|)) $ (-1172 $)) 50) (((-632 (-385 |#2|)) (-1172 $) (-1172 $)) 49) (((-1172 (-385 |#2|)) $) 66) (((-632 (-385 |#2|)) (-1172 $)) 65)) (-2923 (((-1172 (-385 |#2|)) $) 63) (($ (-1172 (-385 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 145 (|has| (-385 |#2|) (-327)))) (-2918 (((-1172 $) (-1172 $)) 203)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 |#2|)) 37) (($ (-385 (-525))) 86 (-3215 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-967 (-385 (-525)))))) (($ $) 91 (|has| (-385 |#2|) (-341)))) (-1279 (($ $) 144 (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) 43 (|has| (-385 |#2|) (-136)))) (-2867 ((|#3| $) 45)) (-2502 (((-713)) 29)) (-1446 (((-108)) 216)) (-2860 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-2734 (((-1172 $)) 67)) (-3787 (((-108) $ $) 95 (|has| (-385 |#2|) (-341)))) (-3416 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-2598 (((-108)) 218)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| (-385 |#2|) (-341)))) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 125 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 124 (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1090)) (-592 (-713))) 126 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-2385 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-1090) (-713)) 127 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-2385 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1090))) 128 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-2385 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-1090)) 129 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-2385 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 134 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-2385 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 136 (-3215 (-2385 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-2385 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ $) 121 (|has| (-385 |#2|) (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| (-385 |#2|) (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 |#2|)) 39) (($ (-385 |#2|) $) 38) (($ (-385 (-525)) $) 120 (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) 119 (|has| (-385 |#2|) (-341))))) +(((-320 |#1| |#2| |#3|) (-131) (-1130) (-1148 |t#1|) (-1148 (-385 |t#2|))) (T -320)) +((-3029 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-713)))) (-3399 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-713)))) (-2598 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-3242 (*1 *2 *3 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-1446 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-2860 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-2860 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) (-3402 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-3169 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-3169 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) (-3902 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-3641 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-3641 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) (-1920 (*1 *2) (-12 (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)))) (-4124 (*1 *2) (-12 (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-2918 (*1 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))) (-2209 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-4021 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-1344 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-2378 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1172 *4)) (|:| |den| *4))))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1172 *4)) (|:| |den| *4))))) (-4136 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1148 *4)) (-4 *4 (-1130)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1148 (-385 *3))))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))) (-2318 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-2318 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))) (-1689 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1148 *4)) (-4 *4 (-1130)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1148 (-385 *3))))) (-2319 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3))))) (-1496 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3))))) (-1887 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1130)) (-4 *4 (-1148 (-385 *2))) (-4 *2 (-1148 *3)))) (-1443 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1130)) (-4 *4 (-1148 (-385 *2))) (-4 *2 (-1148 *3)))) (-3416 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-1130)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-320 *4 *5 *6)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-4 *4 (-341)) (-5 *2 (-592 (-886 *4))))) (-2442 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3)))))) +(-13 (-667 (-385 |t#2|) |t#3|) (-10 -8 (-15 -3029 ((-713))) (-15 -3399 ((-713))) (-15 -2598 ((-108))) (-15 -3242 ((-108) |t#1| |t#1|)) (-15 -1446 ((-108))) (-15 -2860 ((-108) |t#1|)) (-15 -2860 ((-108) |t#2|)) (-15 -3402 ((-108))) (-15 -3169 ((-108) |t#1|)) (-15 -3169 ((-108) |t#2|)) (-15 -3902 ((-108))) (-15 -3641 ((-108) |t#1|)) (-15 -3641 ((-108) |t#2|)) (-15 -1920 ((-1172 $))) (-15 -4124 ((-1172 $))) (-15 -2784 ((-108) $)) (-15 -2318 ((-108) $)) (-15 -2918 ((-1172 $) (-1172 $))) (-15 -3770 ((-1172 $) (-1172 $))) (-15 -1536 ((-1172 $) (-1172 $))) (-15 -2209 ((-632 (-385 |t#2|)))) (-15 -4021 ((-632 (-385 |t#2|)))) (-15 -1344 ((-632 (-385 |t#2|)))) (-15 -2378 ((-632 (-385 |t#2|)))) (-15 -3949 ((-2 (|:| |num| (-1172 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1689 ($ (-1172 |t#2|) |t#2|)) (-15 -3974 ((-2 (|:| |num| (-1172 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4136 ($ (-1172 |t#2|) |t#2|)) (-15 -1742 ((-2 (|:| |num| (-632 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2318 ((-108) $ |t#1|)) (-15 -2318 ((-108) $ |t#2|)) (-15 -1576 ($ $ (-1 |t#2| |t#2|))) (-15 -1689 ($ (-1172 |t#2|) |t#2|)) (-15 -2319 ($ $)) (-15 -1496 (|t#1| $ |t#1| |t#1|)) (-15 -1887 ((-3 |t#2| "failed"))) (-15 -1443 ((-3 |t#2| "failed"))) (-15 -3416 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-341)) (-15 -2027 ((-592 (-886 |t#1|)) (-1090))) |%noBranch|) (IF (|has| |t#1| (-346)) (-15 -2442 ((-592 (-592 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-37 #1=(-385 |#2|)) . T) ((-37 $) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-97) . T) ((-107 #0# #0#) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-136))) ((-138) |has| (-385 |#2|) (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 |#3|) . T) ((-211 #1#) |has| (-385 |#2|) (-341)) ((-213) -3215 (|has| (-385 |#2|) (-327)) (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341)))) ((-223) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-269) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-286) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-341) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-380) |has| (-385 |#2|) (-327)) ((-346) -3215 (|has| (-385 |#2|) (-346)) (|has| (-385 |#2|) (-327))) ((-327) |has| (-385 |#2|) (-327)) ((-348 #1# |#3|) . T) ((-387 #1# |#3|) . T) ((-355 #1#) . T) ((-389 #1#) . T) ((-429) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-517) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #0#) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #1#) . T) ((-594 $) . T) ((-588 #1#) . T) ((-588 (-525)) |has| (-385 |#2|) (-588 (-525))) ((-660 #0#) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-660 #1#) . T) ((-660 $) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-667 #1# |#3|) . T) ((-669) . T) ((-834 (-1090)) -12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) ((-854) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-967 (-385 (-525))) |has| (-385 |#2|) (-967 (-385 (-525)))) ((-967 #1#) . T) ((-967 (-525)) |has| (-385 |#2|) (-967 (-525))) ((-982 #0#) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-982 #1#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| (-385 |#2|) (-327)) ((-1130) -3215 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-844 |#1|) (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL (|has| (-844 |#1|) (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-844 |#1|) "failed") $) NIL)) (-2068 (((-844 |#1|) $) NIL)) (-1689 (($ (-1172 (-844 |#1|))) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-844 |#1|) (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) NIL (|has| (-844 |#1|) (-346)))) (-3703 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346)))) (($ $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) NIL (|has| (-844 |#1|) (-346))) (((-775 (-855)) $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) NIL (|has| (-844 |#1|) (-346)))) (-1872 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-2281 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| (-844 |#1|) (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 (-844 |#1|)) $) NIL) (((-1086 $) $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-2111 (((-855) $) NIL (|has| (-844 |#1|) (-346)))) (-1311 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346)))) (-3819 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-1086 (-844 |#1|)) "failed") $ $) NIL (|has| (-844 |#1|) (-346)))) (-3851 (($ $ (-1086 (-844 |#1|))) NIL (|has| (-844 |#1|) (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-844 |#1|) (-346)) CONST)) (-3381 (($ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1769 (((-108) $) NIL)) (-3027 (((-1037) $) NIL)) (-2985 (((-891 (-1037))) NIL)) (-3258 (($) NIL (|has| (-844 |#1|) (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| (-844 |#1|) (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) NIL) (((-855)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2775 (((-1086 (-844 |#1|))) NIL)) (-3405 (($) NIL (|has| (-844 |#1|) (-346)))) (-2041 (($) NIL (|has| (-844 |#1|) (-346)))) (-1625 (((-1172 (-844 |#1|)) $) NIL) (((-632 (-844 |#1|)) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-844 |#1|) (-346)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-844 |#1|)) NIL)) (-1279 (($ $) NIL (|has| (-844 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3459 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-1990 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ (-844 |#1|)) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-844 |#1|)) NIL) (($ (-844 |#1|) $) NIL))) +(((-321 |#1| |#2|) (-13 (-307 (-844 |#1|)) (-10 -7 (-15 -2985 ((-891 (-1037)))))) (-855) (-855)) (T -321)) +((-2985 (*1 *2) (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-321 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855))))) +(-13 (-307 (-844 |#1|)) (-10 -7 (-15 -2985 ((-891 (-1037)))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 46)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) 43 (|has| |#1| (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL (|has| |#1| (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) 115)) (-2068 ((|#1| $) 86)) (-1689 (($ (-1172 |#1|)) 104)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) 98 (|has| |#1| (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) 130 (|has| |#1| (-346)))) (-3703 (((-108) $) 49 (|has| |#1| (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) 47 (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) 132 (|has| |#1| (-346)))) (-1872 (((-108) $) NIL (|has| |#1| (-346)))) (-2281 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 |#1|) $) 90) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-2111 (((-855) $) 140 (|has| |#1| (-346)))) (-1311 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-3819 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3851 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 147)) (-2039 (($) NIL (|has| |#1| (-346)) CONST)) (-3381 (($ (-855)) 71 (|has| |#1| (-346)))) (-1769 (((-108) $) 118)) (-3027 (((-1037) $) NIL)) (-2985 (((-891 (-1037))) 44)) (-3258 (($) 128 (|has| |#1| (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) 93 (|has| |#1| (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) 67) (((-855)) 68)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) 131 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 125 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2775 (((-1086 |#1|)) 96)) (-3405 (($) 129 (|has| |#1| (-346)))) (-2041 (($) 137 (|has| |#1| (-346)))) (-1625 (((-1172 |#1|) $) 59) (((-632 |#1|) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4044 (((-797) $) 143) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 75)) (-1279 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2502 (((-713)) 139)) (-2734 (((-1172 $)) 117) (((-1172 $) (-855)) 73)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 32 T CONST)) (-1449 (($) 19 T CONST)) (-3459 (($ $) 81 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1990 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3899 (((-108) $ $) 48)) (-4047 (($ $ $) 145) (($ $ |#1|) 146)) (-4033 (($ $) 127) (($ $ $) NIL)) (-4017 (($ $ $) 61)) (** (($ $ (-855)) 149) (($ $ (-713)) 150) (($ $ (-525)) 148)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 77) (($ $ $) 76) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144))) +(((-322 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -2985 ((-891 (-1037)))))) (-327) (-1086 |#1|)) (T -322)) +((-2985 (*1 *2) (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327)) (-14 *4 (-1086 *3))))) +(-13 (-307 |#1|) (-10 -7 (-15 -2985 ((-891 (-1037)))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL (|has| |#1| (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-1689 (($ (-1172 |#1|)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| |#1| (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) NIL (|has| |#1| (-346)))) (-3703 (((-108) $) NIL (|has| |#1| (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) NIL (|has| |#1| (-346)))) (-1872 (((-108) $) NIL (|has| |#1| (-346)))) (-2281 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 |#1|) $) NIL) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-2111 (((-855) $) NIL (|has| |#1| (-346)))) (-1311 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-3819 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3851 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| |#1| (-346)) CONST)) (-3381 (($ (-855)) NIL (|has| |#1| (-346)))) (-1769 (((-108) $) NIL)) (-3027 (((-1037) $) NIL)) (-2985 (((-891 (-1037))) NIL)) (-3258 (($) NIL (|has| |#1| (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| |#1| (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) NIL) (((-855)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2775 (((-1086 |#1|)) NIL)) (-3405 (($) NIL (|has| |#1| (-346)))) (-2041 (($) NIL (|has| |#1| (-346)))) (-1625 (((-1172 |#1|) $) NIL) (((-632 |#1|) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-1279 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3459 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1990 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-323 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -2985 ((-891 (-1037)))))) (-327) (-855)) (T -323)) +((-2985 (*1 *2) (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855))))) +(-13 (-307 |#1|) (-10 -7 (-15 -2985 ((-891 (-1037)))))) +((-3912 (((-713) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037)))))) 42)) (-3839 (((-891 (-1037)) (-1086 |#1|)) 85)) (-1678 (((-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))) (-1086 |#1|)) 78)) (-2866 (((-632 |#1|) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037)))))) 86)) (-2716 (((-3 (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))) "failed") (-855)) 13)) (-3532 (((-3 (-1086 |#1|) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037)))))) (-855)) 18))) +(((-324 |#1|) (-10 -7 (-15 -3839 ((-891 (-1037)) (-1086 |#1|))) (-15 -1678 ((-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))) (-1086 |#1|))) (-15 -2866 ((-632 |#1|) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))))) (-15 -3912 ((-713) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))))) (-15 -2716 ((-3 (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))) "failed") (-855))) (-15 -3532 ((-3 (-1086 |#1|) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037)))))) (-855)))) (-327)) (T -324)) +((-3532 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-3 (-1086 *4) (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037))))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-2716 (*1 *2 *3) (|partial| -12 (-5 *3 (-855)) (-5 *2 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) (-5 *1 (-324 *4)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-891 (-1037))) (-5 *1 (-324 *4))))) +(-10 -7 (-15 -3839 ((-891 (-1037)) (-1086 |#1|))) (-15 -1678 ((-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))) (-1086 |#1|))) (-15 -2866 ((-632 |#1|) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))))) (-15 -3912 ((-713) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))))) (-15 -2716 ((-3 (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))) "failed") (-855))) (-15 -3532 ((-3 (-1086 |#1|) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037)))))) (-855)))) +((-4044 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-325 |#1| |#2| |#3|) (-10 -7 (-15 -4044 (|#3| |#1|)) (-15 -4044 (|#1| |#3|))) (-307 |#2|) (-327) (-307 |#2|)) (T -325)) +((-4044 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3)) (-4 *3 (-307 *4)))) (-4044 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2)) (-4 *3 (-307 *4))))) +(-10 -7 (-15 -4044 (|#3| |#1|)) (-15 -4044 (|#1| |#3|))) +((-3703 (((-108) $) 52)) (-2158 (((-775 (-855)) $) 21) (((-855) $) 53)) (-1978 (((-3 $ "failed") $) 16)) (-2039 (($) 9)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 94)) (-2729 (((-3 (-713) "failed") $ $) 72) (((-713) $) 61)) (-1576 (($ $ (-713)) NIL) (($ $) 8)) (-3405 (($) 46)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 34)) (-1279 (((-3 $ "failed") $) 40) (($ $) 39))) +(((-326 |#1|) (-10 -8 (-15 -2158 ((-855) |#1|)) (-15 -2729 ((-713) |#1|)) (-15 -3703 ((-108) |#1|)) (-15 -3405 (|#1|)) (-15 -2420 ((-3 (-1172 |#1|) "failed") (-632 |#1|))) (-15 -1279 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -2039 (|#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|)) (-15 -2729 ((-3 (-713) "failed") |#1| |#1|)) (-15 -2158 ((-775 (-855)) |#1|)) (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-327)) (T -326)) +NIL +(-10 -8 (-15 -2158 ((-855) |#1|)) (-15 -2729 ((-713) |#1|)) (-15 -3703 ((-108) |#1|)) (-15 -3405 (|#1|)) (-15 -2420 ((-3 (-1172 |#1|) "failed") (-632 |#1|))) (-15 -1279 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -2039 (|#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|)) (-15 -2729 ((-3 (-713) "failed") |#1| |#1|)) (-15 -2158 ((-775 (-855)) |#1|)) (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-1207 (((-1100 (-855) (-713)) (-525)) 93)) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-1700 (((-108) $ $) 59)) (-1651 (((-713)) 103)) (-1957 (($) 17 T CONST)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-1527 (($) 106)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2376 (($) 91)) (-3703 (((-108) $) 90)) (-3351 (($ $) 79) (($ $ (-713)) 78)) (-2069 (((-108) $) 71)) (-2158 (((-775 (-855)) $) 81) (((-855) $) 88)) (-2507 (((-108) $) 31)) (-1978 (((-3 $ "failed") $) 102)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2111 (((-855) $) 105)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 70)) (-2039 (($) 101 T CONST)) (-3381 (($ (-855)) 104)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) 94)) (-2961 (((-396 $) $) 74)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-2729 (((-3 (-713) "failed") $ $) 80) (((-713) $) 89)) (-1576 (($ $ (-713)) 99) (($ $) 97)) (-3405 (($) 92)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 95)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-1279 (((-3 $ "failed") $) 82) (($ $) 96)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-713)) 100) (($ $) 98)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ $) 64)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) (((-327) (-131)) (T -327)) -((-3751 (*1 *1 *1) (-4 *1 (-327))) (-3124 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-327)) (-5 *2 (-1171 *1)))) (-4107 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))))) (-2666 (*1 *2 *3) (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1099 (-854) (-712))))) (-3560 (*1 *1) (-4 *1 (-327))) (-1268 (*1 *1) (-4 *1 (-327))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-712)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-854)))) (-3640 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-380) (-346) (-1065) (-213) (-10 -8 (-15 -3751 ($ $)) (-15 -3124 ((-3 (-1171 $) "failed") (-631 $))) (-15 -4107 ((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525)))))) (-15 -2666 ((-1099 (-854) (-712)) (-525))) (-15 -3560 ($)) (-15 -1268 ($)) (-15 -2096 ((-108) $)) (-15 -2652 ((-712) $)) (-15 -1676 ((-854) $)) (-15 -3640 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-565 (-796)) . T) ((-160) . T) ((-213) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) . T) ((-346) . T) ((-429) . T) ((-517) . T) ((-593 #0#) . T) ((-593 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-668) . T) ((-853) . T) ((-981 #0#) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1065) . T) ((-1129) . T)) -((-3662 (((-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|) 53)) (-2773 (((-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 51))) -(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2773 ((-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))))) (-15 -3662 ((-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|))) (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $)))) (-1147 |#1|) (-387 |#1| |#2|)) (T -328)) -((-3662 (*1 *2 *3) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-4 *4 (-1147 *3)) (-5 *2 (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2773 (*1 *2) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-4 *4 (-1147 *3)) (-5 *2 (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) -(-10 -7 (-15 -2773 ((-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))))) (-15 -3662 ((-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 (((-843 |#1|) $) NIL) (($ $ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| (-843 |#1|) (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-2492 (((-712)) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL (|has| (-843 |#1|) (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-843 |#1|) "failed") $) NIL)) (-3341 (((-843 |#1|) $) NIL)) (-1554 (($ (-1171 (-843 |#1|))) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-843 |#1|) (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-843 |#1|) (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) NIL (|has| (-843 |#1|) (-346)))) (-2096 (((-108) $) NIL (|has| (-843 |#1|) (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346)))) (($ $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) NIL (|has| (-843 |#1|) (-346))) (((-774 (-854)) $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) NIL (|has| (-843 |#1|) (-346)))) (-3108 (((-108) $) NIL (|has| (-843 |#1|) (-346)))) (-1525 (((-843 |#1|) $) NIL) (($ $ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| (-843 |#1|) (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 (-843 |#1|)) $) NIL) (((-1085 $) $ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-1970 (((-854) $) NIL (|has| (-843 |#1|) (-346)))) (-3004 (((-1085 (-843 |#1|)) $) NIL (|has| (-843 |#1|) (-346)))) (-2224 (((-1085 (-843 |#1|)) $) NIL (|has| (-843 |#1|) (-346))) (((-3 (-1085 (-843 |#1|)) "failed") $ $) NIL (|has| (-843 |#1|) (-346)))) (-2594 (($ $ (-1085 (-843 |#1|))) NIL (|has| (-843 |#1|) (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-843 |#1|) (-346)) CONST)) (-3229 (($ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-1326 (((-108) $) NIL)) (-2937 (((-1036) $) NIL)) (-1249 (((-1171 (-591 (-2 (|:| -2940 (-843 |#1|)) (|:| -3229 (-1036)))))) NIL)) (-2440 (((-631 (-843 |#1|))) NIL)) (-3965 (($) NIL (|has| (-843 |#1|) (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| (-843 |#1|) (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) NIL) (((-854)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) NIL (|has| (-843 |#1|) (-346))) (((-3 (-712) "failed") $ $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| (-843 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-843 |#1|) (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-1341 (((-1085 (-843 |#1|))) NIL)) (-3560 (($) NIL (|has| (-843 |#1|) (-346)))) (-2200 (($) NIL (|has| (-843 |#1|) (-346)))) (-1671 (((-1171 (-843 |#1|)) $) NIL) (((-631 (-843 |#1|)) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| (-843 |#1|) (-346)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-843 |#1|)) NIL)) (-3751 (($ $) NIL (|has| (-843 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) NIL) (((-1171 $) (-854)) NIL)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3861 (($ $) NIL (|has| (-843 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-843 |#1|) (-346)))) (-1796 (($ $) NIL (|has| (-843 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-843 |#1|) (-346)))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL) (($ $ (-843 |#1|)) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-843 |#1|)) NIL) (($ (-843 |#1|) $) NIL))) -(((-329 |#1| |#2|) (-13 (-307 (-843 |#1|)) (-10 -7 (-15 -1249 ((-1171 (-591 (-2 (|:| -2940 (-843 |#1|)) (|:| -3229 (-1036))))))) (-15 -2440 ((-631 (-843 |#1|)))) (-15 -2492 ((-712))))) (-854) (-854)) (T -329)) -((-1249 (*1 *2) (-12 (-5 *2 (-1171 (-591 (-2 (|:| -2940 (-843 *3)) (|:| -3229 (-1036)))))) (-5 *1 (-329 *3 *4)) (-14 *3 (-854)) (-14 *4 (-854)))) (-2440 (*1 *2) (-12 (-5 *2 (-631 (-843 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-854)) (-14 *4 (-854)))) (-2492 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-329 *3 *4)) (-14 *3 (-854)) (-14 *4 (-854))))) -(-13 (-307 (-843 |#1|)) (-10 -7 (-15 -1249 ((-1171 (-591 (-2 (|:| -2940 (-843 |#1|)) (|:| -3229 (-1036))))))) (-15 -2440 ((-631 (-843 |#1|)))) (-15 -2492 ((-712))))) -((-2673 (((-108) $ $) 62)) (-1306 (((-108) $) 75)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 ((|#1| $) 93) (($ $ (-854)) 91 (|has| |#1| (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) 149 (|has| |#1| (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-2492 (((-712)) 90)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) 163 (|has| |#1| (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) 113)) (-3341 ((|#1| $) 92)) (-1554 (($ (-1171 |#1|)) 59)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) 159 (|has| |#1| (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) 150 (|has| |#1| (-346)))) (-2096 (((-108) $) NIL (|has| |#1| (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) NIL (|has| |#1| (-346))) (((-774 (-854)) $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) 99 (|has| |#1| (-346)))) (-3108 (((-108) $) 176 (|has| |#1| (-346)))) (-1525 ((|#1| $) 95) (($ $ (-854)) 94 (|has| |#1| (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 |#1|) $) 190) (((-1085 $) $ (-854)) NIL (|has| |#1| (-346)))) (-1970 (((-854) $) 135 (|has| |#1| (-346)))) (-3004 (((-1085 |#1|) $) 74 (|has| |#1| (-346)))) (-2224 (((-1085 |#1|) $) 71 (|has| |#1| (-346))) (((-3 (-1085 |#1|) "failed") $ $) 83 (|has| |#1| (-346)))) (-2594 (($ $ (-1085 |#1|)) 70 (|has| |#1| (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 193)) (-3492 (($) NIL (|has| |#1| (-346)) CONST)) (-3229 (($ (-854)) 138 (|has| |#1| (-346)))) (-1326 (((-108) $) 109)) (-2937 (((-1036) $) NIL)) (-1249 (((-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036)))))) 84)) (-2440 (((-631 |#1|)) 88)) (-3965 (($) 97 (|has| |#1| (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) 151 (|has| |#1| (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) NIL) (((-854)) 152)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) NIL (|has| |#1| (-346))) (((-3 (-712) "failed") $ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) 63)) (-1341 (((-1085 |#1|)) 153)) (-3560 (($) 134 (|has| |#1| (-346)))) (-2200 (($) NIL (|has| |#1| (-346)))) (-1671 (((-1171 |#1|) $) 107) (((-631 |#1|) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| |#1| (-346)))) (-2686 (((-796) $) 125) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 58)) (-3751 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3425 (((-712)) 157)) (-3612 (((-1171 $)) 173) (((-1171 $) (-854)) 102)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 30 T CONST)) (-1839 (($) 22 T CONST)) (-3861 (($ $) 108 (|has| |#1| (-346))) (($ $ (-712)) 100 (|has| |#1| (-346)))) (-1796 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-3944 (((-108) $ $) 184)) (-4059 (($ $ $) 105) (($ $ |#1|) 106)) (-4047 (($ $) 178) (($ $ $) 182)) (-4036 (($ $ $) 180)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 139)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 187) (($ $ $) 143) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104))) -(((-330 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1249 ((-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))))) (-15 -2440 ((-631 |#1|))) (-15 -2492 ((-712))))) (-327) (-3 (-1085 |#1|) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))))) (T -330)) -((-1249 (*1 *2) (-12 (-5 *2 (-1171 (-591 (-2 (|:| -2940 *3) (|:| -3229 (-1036)))))) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1085 *3) *2)))) (-2440 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1085 *3) (-1171 (-591 (-2 (|:| -2940 *3) (|:| -3229 (-1036))))))))) (-2492 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1085 *3) (-1171 (-591 (-2 (|:| -2940 *3) (|:| -3229 (-1036)))))))))) -(-13 (-307 |#1|) (-10 -7 (-15 -1249 ((-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))))) (-15 -2440 ((-631 |#1|))) (-15 -2492 ((-712))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 ((|#1| $) NIL) (($ $ (-854)) NIL (|has| |#1| (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| |#1| (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-2492 (((-712)) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL (|has| |#1| (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-1554 (($ (-1171 |#1|)) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| |#1| (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) NIL (|has| |#1| (-346)))) (-2096 (((-108) $) NIL (|has| |#1| (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) NIL (|has| |#1| (-346))) (((-774 (-854)) $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) NIL (|has| |#1| (-346)))) (-3108 (((-108) $) NIL (|has| |#1| (-346)))) (-1525 ((|#1| $) NIL) (($ $ (-854)) NIL (|has| |#1| (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 |#1|) $) NIL) (((-1085 $) $ (-854)) NIL (|has| |#1| (-346)))) (-1970 (((-854) $) NIL (|has| |#1| (-346)))) (-3004 (((-1085 |#1|) $) NIL (|has| |#1| (-346)))) (-2224 (((-1085 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1085 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2594 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| |#1| (-346)) CONST)) (-3229 (($ (-854)) NIL (|has| |#1| (-346)))) (-1326 (((-108) $) NIL)) (-2937 (((-1036) $) NIL)) (-1249 (((-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036)))))) NIL)) (-2440 (((-631 |#1|)) NIL)) (-3965 (($) NIL (|has| |#1| (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| |#1| (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) NIL) (((-854)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) NIL (|has| |#1| (-346))) (((-3 (-712) "failed") $ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-1341 (((-1085 |#1|)) NIL)) (-3560 (($) NIL (|has| |#1| (-346)))) (-2200 (($) NIL (|has| |#1| (-346)))) (-1671 (((-1171 |#1|) $) NIL) (((-631 |#1|) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| |#1| (-346)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3751 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) NIL) (((-1171 $) (-854)) NIL)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3861 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-1796 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-331 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1249 ((-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))))) (-15 -2440 ((-631 |#1|))) (-15 -2492 ((-712))))) (-327) (-854)) (T -331)) -((-1249 (*1 *2) (-12 (-5 *2 (-1171 (-591 (-2 (|:| -2940 *3) (|:| -3229 (-1036)))))) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-854)))) (-2440 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-854)))) (-2492 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-854))))) -(-13 (-307 |#1|) (-10 -7 (-15 -1249 ((-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))))) (-15 -2440 ((-631 |#1|))) (-15 -2492 ((-712))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 (((-843 |#1|) $) NIL) (($ $ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| (-843 |#1|) (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL (|has| (-843 |#1|) (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-843 |#1|) "failed") $) NIL)) (-3341 (((-843 |#1|) $) NIL)) (-1554 (($ (-1171 (-843 |#1|))) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-843 |#1|) (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-843 |#1|) (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) NIL (|has| (-843 |#1|) (-346)))) (-2096 (((-108) $) NIL (|has| (-843 |#1|) (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346)))) (($ $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) NIL (|has| (-843 |#1|) (-346))) (((-774 (-854)) $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) NIL (|has| (-843 |#1|) (-346)))) (-3108 (((-108) $) NIL (|has| (-843 |#1|) (-346)))) (-1525 (((-843 |#1|) $) NIL) (($ $ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| (-843 |#1|) (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 (-843 |#1|)) $) NIL) (((-1085 $) $ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-1970 (((-854) $) NIL (|has| (-843 |#1|) (-346)))) (-3004 (((-1085 (-843 |#1|)) $) NIL (|has| (-843 |#1|) (-346)))) (-2224 (((-1085 (-843 |#1|)) $) NIL (|has| (-843 |#1|) (-346))) (((-3 (-1085 (-843 |#1|)) "failed") $ $) NIL (|has| (-843 |#1|) (-346)))) (-2594 (($ $ (-1085 (-843 |#1|))) NIL (|has| (-843 |#1|) (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-843 |#1|) (-346)) CONST)) (-3229 (($ (-854)) NIL (|has| (-843 |#1|) (-346)))) (-1326 (((-108) $) NIL)) (-2937 (((-1036) $) NIL)) (-3965 (($) NIL (|has| (-843 |#1|) (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| (-843 |#1|) (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) NIL) (((-854)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) NIL (|has| (-843 |#1|) (-346))) (((-3 (-712) "failed") $ $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| (-843 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-843 |#1|) (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-1341 (((-1085 (-843 |#1|))) NIL)) (-3560 (($) NIL (|has| (-843 |#1|) (-346)))) (-2200 (($) NIL (|has| (-843 |#1|) (-346)))) (-1671 (((-1171 (-843 |#1|)) $) NIL) (((-631 (-843 |#1|)) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| (-843 |#1|) (-346)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-843 |#1|)) NIL)) (-3751 (($ $) NIL (|has| (-843 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| (-843 |#1|) (-136)) (|has| (-843 |#1|) (-346))))) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) NIL) (((-1171 $) (-854)) NIL)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3861 (($ $) NIL (|has| (-843 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-843 |#1|) (-346)))) (-1796 (($ $) NIL (|has| (-843 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-843 |#1|) (-346)))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL) (($ $ (-843 |#1|)) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-843 |#1|)) NIL) (($ (-843 |#1|) $) NIL))) -(((-332 |#1| |#2|) (-307 (-843 |#1|)) (-854) (-854)) (T -332)) -NIL -(-307 (-843 |#1|)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 ((|#1| $) NIL) (($ $ (-854)) NIL (|has| |#1| (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) 120 (|has| |#1| (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) 140 (|has| |#1| (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) 93)) (-3341 ((|#1| $) 90)) (-1554 (($ (-1171 |#1|)) 85)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) 82 (|has| |#1| (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) 42 (|has| |#1| (-346)))) (-2096 (((-108) $) NIL (|has| |#1| (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) NIL (|has| |#1| (-346))) (((-774 (-854)) $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) 121 (|has| |#1| (-346)))) (-3108 (((-108) $) 74 (|has| |#1| (-346)))) (-1525 ((|#1| $) 39) (($ $ (-854)) 43 (|has| |#1| (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 |#1|) $) 65) (((-1085 $) $ (-854)) NIL (|has| |#1| (-346)))) (-1970 (((-854) $) 97 (|has| |#1| (-346)))) (-3004 (((-1085 |#1|) $) NIL (|has| |#1| (-346)))) (-2224 (((-1085 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1085 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2594 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| |#1| (-346)) CONST)) (-3229 (($ (-854)) 95 (|has| |#1| (-346)))) (-1326 (((-108) $) 142)) (-2937 (((-1036) $) NIL)) (-3965 (($) 36 (|has| |#1| (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) 115 (|has| |#1| (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) NIL) (((-854)) 139)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) NIL (|has| |#1| (-346))) (((-3 (-712) "failed") $ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) 59)) (-1341 (((-1085 |#1|)) 88)) (-3560 (($) 126 (|has| |#1| (-346)))) (-2200 (($) NIL (|has| |#1| (-346)))) (-1671 (((-1171 |#1|) $) 53) (((-631 |#1|) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| |#1| (-346)))) (-2686 (((-796) $) 138) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 87)) (-3751 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3425 (((-712)) 144)) (-3612 (((-1171 $)) 109) (((-1171 $) (-854)) 49)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 111 T CONST)) (-1839 (($) 32 T CONST)) (-3861 (($ $) 68 (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-1796 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-3944 (((-108) $ $) 107)) (-4059 (($ $ $) 99) (($ $ |#1|) 100)) (-4047 (($ $) 80) (($ $ $) 105)) (-4036 (($ $ $) 103)) (** (($ $ (-854)) NIL) (($ $ (-712)) 44) (($ $ (-525)) 130)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 78) (($ $ $) 56) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-333 |#1| |#2|) (-307 |#1|) (-327) (-1085 |#1|)) (T -333)) +((-1279 (*1 *1 *1) (-4 *1 (-327))) (-2420 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1172 *1)))) (-1472 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))))) (-1207 (*1 *2 *3) (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1100 (-855) (-713))))) (-3405 (*1 *1) (-4 *1 (-327))) (-2376 (*1 *1) (-4 *1 (-327))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-855)))) (-4045 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-380) (-346) (-1066) (-213) (-10 -8 (-15 -1279 ($ $)) (-15 -2420 ((-3 (-1172 $) "failed") (-632 $))) (-15 -1472 ((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525)))))) (-15 -1207 ((-1100 (-855) (-713)) (-525))) (-15 -3405 ($)) (-15 -2376 ($)) (-15 -3703 ((-108) $)) (-15 -2729 ((-713) $)) (-15 -2158 ((-855) $)) (-15 -4045 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-566 (-797)) . T) ((-160) . T) ((-213) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) . T) ((-346) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) . T) ((-1130) . T)) +((-2161 (((-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|) 53)) (-1920 (((-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 51))) +(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -1920 ((-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -2161 ((-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|))) (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $)))) (-1148 |#1|) (-387 |#1| |#2|)) (T -328)) +((-2161 (*1 *2 *3) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *2 (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-1920 (*1 *2) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *2 (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) +(-10 -7 (-15 -1920 ((-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -2161 ((-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-844 |#1|) (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-3912 (((-713)) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL (|has| (-844 |#1|) (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-844 |#1|) "failed") $) NIL)) (-2068 (((-844 |#1|) $) NIL)) (-1689 (($ (-1172 (-844 |#1|))) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-844 |#1|) (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) NIL (|has| (-844 |#1|) (-346)))) (-3703 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346)))) (($ $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) NIL (|has| (-844 |#1|) (-346))) (((-775 (-855)) $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) NIL (|has| (-844 |#1|) (-346)))) (-1872 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-2281 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| (-844 |#1|) (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 (-844 |#1|)) $) NIL) (((-1086 $) $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-2111 (((-855) $) NIL (|has| (-844 |#1|) (-346)))) (-1311 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346)))) (-3819 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-1086 (-844 |#1|)) "failed") $ $) NIL (|has| (-844 |#1|) (-346)))) (-3851 (($ $ (-1086 (-844 |#1|))) NIL (|has| (-844 |#1|) (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-844 |#1|) (-346)) CONST)) (-3381 (($ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1769 (((-108) $) NIL)) (-3027 (((-1037) $) NIL)) (-3296 (((-1172 (-592 (-2 (|:| -3067 (-844 |#1|)) (|:| -3381 (-1037)))))) NIL)) (-2719 (((-632 (-844 |#1|))) NIL)) (-3258 (($) NIL (|has| (-844 |#1|) (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| (-844 |#1|) (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) NIL) (((-855)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2775 (((-1086 (-844 |#1|))) NIL)) (-3405 (($) NIL (|has| (-844 |#1|) (-346)))) (-2041 (($) NIL (|has| (-844 |#1|) (-346)))) (-1625 (((-1172 (-844 |#1|)) $) NIL) (((-632 (-844 |#1|)) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-844 |#1|) (-346)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-844 |#1|)) NIL)) (-1279 (($ $) NIL (|has| (-844 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3459 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-1990 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ (-844 |#1|)) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-844 |#1|)) NIL) (($ (-844 |#1|) $) NIL))) +(((-329 |#1| |#2|) (-13 (-307 (-844 |#1|)) (-10 -7 (-15 -3296 ((-1172 (-592 (-2 (|:| -3067 (-844 |#1|)) (|:| -3381 (-1037))))))) (-15 -2719 ((-632 (-844 |#1|)))) (-15 -3912 ((-713))))) (-855) (-855)) (T -329)) +((-3296 (*1 *2) (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3067 (-844 *3)) (|:| -3381 (-1037)))))) (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-2719 (*1 *2) (-12 (-5 *2 (-632 (-844 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-3912 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855))))) +(-13 (-307 (-844 |#1|)) (-10 -7 (-15 -3296 ((-1172 (-592 (-2 (|:| -3067 (-844 |#1|)) (|:| -3381 (-1037))))))) (-15 -2719 ((-632 (-844 |#1|)))) (-15 -3912 ((-713))))) +((-4028 (((-108) $ $) 62)) (-2464 (((-108) $) 75)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 ((|#1| $) 93) (($ $ (-855)) 91 (|has| |#1| (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) 149 (|has| |#1| (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-3912 (((-713)) 90)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) 163 (|has| |#1| (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) 113)) (-2068 ((|#1| $) 92)) (-1689 (($ (-1172 |#1|)) 59)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) 159 (|has| |#1| (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) 150 (|has| |#1| (-346)))) (-3703 (((-108) $) NIL (|has| |#1| (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) 99 (|has| |#1| (-346)))) (-1872 (((-108) $) 176 (|has| |#1| (-346)))) (-2281 ((|#1| $) 95) (($ $ (-855)) 94 (|has| |#1| (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 |#1|) $) 190) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-2111 (((-855) $) 135 (|has| |#1| (-346)))) (-1311 (((-1086 |#1|) $) 74 (|has| |#1| (-346)))) (-3819 (((-1086 |#1|) $) 71 (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) 83 (|has| |#1| (-346)))) (-3851 (($ $ (-1086 |#1|)) 70 (|has| |#1| (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 193)) (-2039 (($) NIL (|has| |#1| (-346)) CONST)) (-3381 (($ (-855)) 138 (|has| |#1| (-346)))) (-1769 (((-108) $) 109)) (-3027 (((-1037) $) NIL)) (-3296 (((-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037)))))) 84)) (-2719 (((-632 |#1|)) 88)) (-3258 (($) 97 (|has| |#1| (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) 151 (|has| |#1| (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) NIL) (((-855)) 152)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) 63)) (-2775 (((-1086 |#1|)) 153)) (-3405 (($) 134 (|has| |#1| (-346)))) (-2041 (($) NIL (|has| |#1| (-346)))) (-1625 (((-1172 |#1|) $) 107) (((-632 |#1|) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4044 (((-797) $) 125) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 58)) (-1279 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2502 (((-713)) 157)) (-2734 (((-1172 $)) 173) (((-1172 $) (-855)) 102)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 30 T CONST)) (-1449 (($) 22 T CONST)) (-3459 (($ $) 108 (|has| |#1| (-346))) (($ $ (-713)) 100 (|has| |#1| (-346)))) (-1990 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3899 (((-108) $ $) 184)) (-4047 (($ $ $) 105) (($ $ |#1|) 106)) (-4033 (($ $) 178) (($ $ $) 182)) (-4017 (($ $ $) 180)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 139)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 187) (($ $ $) 143) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104))) +(((-330 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -3296 ((-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))))) (-15 -2719 ((-632 |#1|))) (-15 -3912 ((-713))))) (-327) (-3 (-1086 |#1|) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))))) (T -330)) +((-3296 (*1 *2) (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3067 *3) (|:| -3381 (-1037)))))) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1086 *3) *2)))) (-2719 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1086 *3) (-1172 (-592 (-2 (|:| -3067 *3) (|:| -3381 (-1037))))))))) (-3912 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1086 *3) (-1172 (-592 (-2 (|:| -3067 *3) (|:| -3381 (-1037)))))))))) +(-13 (-307 |#1|) (-10 -7 (-15 -3296 ((-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))))) (-15 -2719 ((-632 |#1|))) (-15 -3912 ((-713))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-3912 (((-713)) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL (|has| |#1| (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-1689 (($ (-1172 |#1|)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| |#1| (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) NIL (|has| |#1| (-346)))) (-3703 (((-108) $) NIL (|has| |#1| (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) NIL (|has| |#1| (-346)))) (-1872 (((-108) $) NIL (|has| |#1| (-346)))) (-2281 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 |#1|) $) NIL) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-2111 (((-855) $) NIL (|has| |#1| (-346)))) (-1311 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-3819 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3851 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| |#1| (-346)) CONST)) (-3381 (($ (-855)) NIL (|has| |#1| (-346)))) (-1769 (((-108) $) NIL)) (-3027 (((-1037) $) NIL)) (-3296 (((-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037)))))) NIL)) (-2719 (((-632 |#1|)) NIL)) (-3258 (($) NIL (|has| |#1| (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| |#1| (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) NIL) (((-855)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2775 (((-1086 |#1|)) NIL)) (-3405 (($) NIL (|has| |#1| (-346)))) (-2041 (($) NIL (|has| |#1| (-346)))) (-1625 (((-1172 |#1|) $) NIL) (((-632 |#1|) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-1279 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3459 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1990 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-331 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -3296 ((-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))))) (-15 -2719 ((-632 |#1|))) (-15 -3912 ((-713))))) (-327) (-855)) (T -331)) +((-3296 (*1 *2) (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3067 *3) (|:| -3381 (-1037)))))) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855)))) (-2719 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855)))) (-3912 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855))))) +(-13 (-307 |#1|) (-10 -7 (-15 -3296 ((-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))))) (-15 -2719 ((-632 |#1|))) (-15 -3912 ((-713))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-844 |#1|) (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL (|has| (-844 |#1|) (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-844 |#1|) "failed") $) NIL)) (-2068 (((-844 |#1|) $) NIL)) (-1689 (($ (-1172 (-844 |#1|))) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-844 |#1|) (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) NIL (|has| (-844 |#1|) (-346)))) (-3703 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346)))) (($ $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) NIL (|has| (-844 |#1|) (-346))) (((-775 (-855)) $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) NIL (|has| (-844 |#1|) (-346)))) (-1872 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-2281 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| (-844 |#1|) (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 (-844 |#1|)) $) NIL) (((-1086 $) $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-2111 (((-855) $) NIL (|has| (-844 |#1|) (-346)))) (-1311 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346)))) (-3819 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-1086 (-844 |#1|)) "failed") $ $) NIL (|has| (-844 |#1|) (-346)))) (-3851 (($ $ (-1086 (-844 |#1|))) NIL (|has| (-844 |#1|) (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-844 |#1|) (-346)) CONST)) (-3381 (($ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1769 (((-108) $) NIL)) (-3027 (((-1037) $) NIL)) (-3258 (($) NIL (|has| (-844 |#1|) (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| (-844 |#1|) (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) NIL) (((-855)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2775 (((-1086 (-844 |#1|))) NIL)) (-3405 (($) NIL (|has| (-844 |#1|) (-346)))) (-2041 (($) NIL (|has| (-844 |#1|) (-346)))) (-1625 (((-1172 (-844 |#1|)) $) NIL) (((-632 (-844 |#1|)) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-844 |#1|) (-346)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-844 |#1|)) NIL)) (-1279 (($ $) NIL (|has| (-844 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3459 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-1990 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ (-844 |#1|)) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-844 |#1|)) NIL) (($ (-844 |#1|) $) NIL))) +(((-332 |#1| |#2|) (-307 (-844 |#1|)) (-855) (-855)) (T -332)) +NIL +(-307 (-844 |#1|)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) 120 (|has| |#1| (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) 140 (|has| |#1| (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) 93)) (-2068 ((|#1| $) 90)) (-1689 (($ (-1172 |#1|)) 85)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) 82 (|has| |#1| (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) 42 (|has| |#1| (-346)))) (-3703 (((-108) $) NIL (|has| |#1| (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) 121 (|has| |#1| (-346)))) (-1872 (((-108) $) 74 (|has| |#1| (-346)))) (-2281 ((|#1| $) 39) (($ $ (-855)) 43 (|has| |#1| (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 |#1|) $) 65) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-2111 (((-855) $) 97 (|has| |#1| (-346)))) (-1311 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-3819 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3851 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| |#1| (-346)) CONST)) (-3381 (($ (-855)) 95 (|has| |#1| (-346)))) (-1769 (((-108) $) 142)) (-3027 (((-1037) $) NIL)) (-3258 (($) 36 (|has| |#1| (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) 115 (|has| |#1| (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) NIL) (((-855)) 139)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) 59)) (-2775 (((-1086 |#1|)) 88)) (-3405 (($) 126 (|has| |#1| (-346)))) (-2041 (($) NIL (|has| |#1| (-346)))) (-1625 (((-1172 |#1|) $) 53) (((-632 |#1|) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4044 (((-797) $) 138) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 87)) (-1279 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2502 (((-713)) 144)) (-2734 (((-1172 $)) 109) (((-1172 $) (-855)) 49)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 111 T CONST)) (-1449 (($) 32 T CONST)) (-3459 (($ $) 68 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1990 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3899 (((-108) $ $) 107)) (-4047 (($ $ $) 99) (($ $ |#1|) 100)) (-4033 (($ $) 80) (($ $ $) 105)) (-4017 (($ $ $) 103)) (** (($ $ (-855)) NIL) (($ $ (-713)) 44) (($ $ (-525)) 130)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 78) (($ $ $) 56) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-333 |#1| |#2|) (-307 |#1|) (-327) (-1086 |#1|)) (T -333)) NIL (-307 |#1|) -((-1588 ((|#1| (-1085 |#2|)) 52))) -(((-334 |#1| |#2|) (-10 -7 (-15 -1588 (|#1| (-1085 |#2|)))) (-13 (-380) (-10 -7 (-15 -2686 (|#1| |#2|)) (-15 -1970 ((-854) |#1|)) (-15 -3612 ((-1171 |#1|) (-854))) (-15 -3861 (|#1| |#1|)))) (-327)) (T -334)) -((-1588 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) (-4 *2 (-13 (-380) (-10 -7 (-15 -2686 (*2 *4)) (-15 -1970 ((-854) *2)) (-15 -3612 ((-1171 *2) (-854))) (-15 -3861 (*2 *2))))) (-5 *1 (-334 *2 *4))))) -(-10 -7 (-15 -1588 (|#1| (-1085 |#2|)))) -((-3900 (((-890 (-1085 |#1|)) (-1085 |#1|)) 36)) (-1325 (((-1085 |#1|) (-854) (-854)) 113) (((-1085 |#1|) (-854)) 112)) (-2096 (((-108) (-1085 |#1|)) 84)) (-2202 (((-854) (-854)) 71)) (-3547 (((-854) (-854)) 74)) (-3057 (((-854) (-854)) 69)) (-3108 (((-108) (-1085 |#1|)) 88)) (-1654 (((-3 (-1085 |#1|) "failed") (-1085 |#1|)) 101)) (-1303 (((-3 (-1085 |#1|) "failed") (-1085 |#1|)) 104)) (-3487 (((-3 (-1085 |#1|) "failed") (-1085 |#1|)) 103)) (-3444 (((-3 (-1085 |#1|) "failed") (-1085 |#1|)) 102)) (-3555 (((-3 (-1085 |#1|) "failed") (-1085 |#1|)) 98)) (-2459 (((-1085 |#1|) (-1085 |#1|)) 62)) (-2745 (((-1085 |#1|) (-854)) 107)) (-2261 (((-1085 |#1|) (-854)) 110)) (-3308 (((-1085 |#1|) (-854)) 109)) (-3346 (((-1085 |#1|) (-854)) 108)) (-1850 (((-1085 |#1|) (-854)) 105))) -(((-335 |#1|) (-10 -7 (-15 -2096 ((-108) (-1085 |#1|))) (-15 -3108 ((-108) (-1085 |#1|))) (-15 -3057 ((-854) (-854))) (-15 -2202 ((-854) (-854))) (-15 -3547 ((-854) (-854))) (-15 -1850 ((-1085 |#1|) (-854))) (-15 -2745 ((-1085 |#1|) (-854))) (-15 -3346 ((-1085 |#1|) (-854))) (-15 -3308 ((-1085 |#1|) (-854))) (-15 -2261 ((-1085 |#1|) (-854))) (-15 -3555 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -1654 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -3444 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -3487 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -1303 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -1325 ((-1085 |#1|) (-854))) (-15 -1325 ((-1085 |#1|) (-854) (-854))) (-15 -2459 ((-1085 |#1|) (-1085 |#1|))) (-15 -3900 ((-890 (-1085 |#1|)) (-1085 |#1|)))) (-327)) (T -335)) -((-3900 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-890 (-1085 *4))) (-5 *1 (-335 *4)) (-5 *3 (-1085 *4)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-1325 (*1 *2 *3 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1303 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3487 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3444 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-1654 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3555 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-2202 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4))))) -(-10 -7 (-15 -2096 ((-108) (-1085 |#1|))) (-15 -3108 ((-108) (-1085 |#1|))) (-15 -3057 ((-854) (-854))) (-15 -2202 ((-854) (-854))) (-15 -3547 ((-854) (-854))) (-15 -1850 ((-1085 |#1|) (-854))) (-15 -2745 ((-1085 |#1|) (-854))) (-15 -3346 ((-1085 |#1|) (-854))) (-15 -3308 ((-1085 |#1|) (-854))) (-15 -2261 ((-1085 |#1|) (-854))) (-15 -3555 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -1654 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -3444 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -3487 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -1303 ((-3 (-1085 |#1|) "failed") (-1085 |#1|))) (-15 -1325 ((-1085 |#1|) (-854))) (-15 -1325 ((-1085 |#1|) (-854) (-854))) (-15 -2459 ((-1085 |#1|) (-1085 |#1|))) (-15 -3900 ((-890 (-1085 |#1|)) (-1085 |#1|)))) -((-3008 (((-3 (-591 |#3|) "failed") (-591 |#3|) |#3|) 34))) -(((-336 |#1| |#2| |#3|) (-10 -7 (-15 -3008 ((-3 (-591 |#3|) "failed") (-591 |#3|) |#3|))) (-327) (-1147 |#1|) (-1147 |#2|)) (T -336)) -((-3008 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-591 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3))))) -(-10 -7 (-15 -3008 ((-3 (-591 |#3|) "failed") (-591 |#3|) |#3|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 ((|#1| $) NIL) (($ $ (-854)) NIL (|has| |#1| (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| |#1| (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL (|has| |#1| (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-1554 (($ (-1171 |#1|)) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| |#1| (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) NIL (|has| |#1| (-346)))) (-2096 (((-108) $) NIL (|has| |#1| (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) NIL (|has| |#1| (-346))) (((-774 (-854)) $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) NIL (|has| |#1| (-346)))) (-3108 (((-108) $) NIL (|has| |#1| (-346)))) (-1525 ((|#1| $) NIL) (($ $ (-854)) NIL (|has| |#1| (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 |#1|) $) NIL) (((-1085 $) $ (-854)) NIL (|has| |#1| (-346)))) (-1970 (((-854) $) NIL (|has| |#1| (-346)))) (-3004 (((-1085 |#1|) $) NIL (|has| |#1| (-346)))) (-2224 (((-1085 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1085 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2594 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| |#1| (-346)) CONST)) (-3229 (($ (-854)) NIL (|has| |#1| (-346)))) (-1326 (((-108) $) NIL)) (-2937 (((-1036) $) NIL)) (-3965 (($) NIL (|has| |#1| (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| |#1| (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) NIL) (((-854)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) NIL (|has| |#1| (-346))) (((-3 (-712) "failed") $ $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-1341 (((-1085 |#1|)) NIL)) (-3560 (($) NIL (|has| |#1| (-346)))) (-2200 (($) NIL (|has| |#1| (-346)))) (-1671 (((-1171 |#1|) $) NIL) (((-631 |#1|) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| |#1| (-346)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3751 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) NIL) (((-1171 $) (-854)) NIL)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3861 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-1796 (($ $) NIL (|has| |#1| (-346))) (($ $ (-712)) NIL (|has| |#1| (-346)))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-337 |#1| |#2|) (-307 |#1|) (-327) (-854)) (T -337)) +((-1812 ((|#1| (-1086 |#2|)) 52))) +(((-334 |#1| |#2|) (-10 -7 (-15 -1812 (|#1| (-1086 |#2|)))) (-13 (-380) (-10 -7 (-15 -4044 (|#1| |#2|)) (-15 -2111 ((-855) |#1|)) (-15 -2734 ((-1172 |#1|) (-855))) (-15 -3459 (|#1| |#1|)))) (-327)) (T -334)) +((-1812 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-4 *2 (-13 (-380) (-10 -7 (-15 -4044 (*2 *4)) (-15 -2111 ((-855) *2)) (-15 -2734 ((-1172 *2) (-855))) (-15 -3459 (*2 *2))))) (-5 *1 (-334 *2 *4))))) +(-10 -7 (-15 -1812 (|#1| (-1086 |#2|)))) +((-3322 (((-891 (-1086 |#1|)) (-1086 |#1|)) 36)) (-1527 (((-1086 |#1|) (-855) (-855)) 113) (((-1086 |#1|) (-855)) 112)) (-3703 (((-108) (-1086 |#1|)) 84)) (-2135 (((-855) (-855)) 71)) (-1787 (((-855) (-855)) 74)) (-2321 (((-855) (-855)) 69)) (-1872 (((-108) (-1086 |#1|)) 88)) (-4034 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 101)) (-2623 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 104)) (-2799 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 103)) (-2449 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 102)) (-1264 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 98)) (-1566 (((-1086 |#1|) (-1086 |#1|)) 62)) (-1620 (((-1086 |#1|) (-855)) 107)) (-4133 (((-1086 |#1|) (-855)) 110)) (-3499 (((-1086 |#1|) (-855)) 109)) (-1420 (((-1086 |#1|) (-855)) 108)) (-3567 (((-1086 |#1|) (-855)) 105))) +(((-335 |#1|) (-10 -7 (-15 -3703 ((-108) (-1086 |#1|))) (-15 -1872 ((-108) (-1086 |#1|))) (-15 -2321 ((-855) (-855))) (-15 -2135 ((-855) (-855))) (-15 -1787 ((-855) (-855))) (-15 -3567 ((-1086 |#1|) (-855))) (-15 -1620 ((-1086 |#1|) (-855))) (-15 -1420 ((-1086 |#1|) (-855))) (-15 -3499 ((-1086 |#1|) (-855))) (-15 -4133 ((-1086 |#1|) (-855))) (-15 -1264 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -4034 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -2449 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -2799 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -2623 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -1527 ((-1086 |#1|) (-855))) (-15 -1527 ((-1086 |#1|) (-855) (-855))) (-15 -1566 ((-1086 |#1|) (-1086 |#1|))) (-15 -3322 ((-891 (-1086 |#1|)) (-1086 |#1|)))) (-327)) (T -335)) +((-3322 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-891 (-1086 *4))) (-5 *1 (-335 *4)) (-5 *3 (-1086 *4)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-1527 (*1 *2 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2623 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-2799 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-2449 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-4034 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-1264 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1787 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-2321 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4))))) +(-10 -7 (-15 -3703 ((-108) (-1086 |#1|))) (-15 -1872 ((-108) (-1086 |#1|))) (-15 -2321 ((-855) (-855))) (-15 -2135 ((-855) (-855))) (-15 -1787 ((-855) (-855))) (-15 -3567 ((-1086 |#1|) (-855))) (-15 -1620 ((-1086 |#1|) (-855))) (-15 -1420 ((-1086 |#1|) (-855))) (-15 -3499 ((-1086 |#1|) (-855))) (-15 -4133 ((-1086 |#1|) (-855))) (-15 -1264 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -4034 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -2449 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -2799 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -2623 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -1527 ((-1086 |#1|) (-855))) (-15 -1527 ((-1086 |#1|) (-855) (-855))) (-15 -1566 ((-1086 |#1|) (-1086 |#1|))) (-15 -3322 ((-891 (-1086 |#1|)) (-1086 |#1|)))) +((-2746 (((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|) 34))) +(((-336 |#1| |#2| |#3|) (-10 -7 (-15 -2746 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|))) (-327) (-1148 |#1|) (-1148 |#2|)) (T -336)) +((-2746 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3))))) +(-10 -7 (-15 -2746 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL (|has| |#1| (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-1689 (($ (-1172 |#1|)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| |#1| (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) NIL (|has| |#1| (-346)))) (-3703 (((-108) $) NIL (|has| |#1| (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) NIL (|has| |#1| (-346)))) (-1872 (((-108) $) NIL (|has| |#1| (-346)))) (-2281 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 |#1|) $) NIL) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-2111 (((-855) $) NIL (|has| |#1| (-346)))) (-1311 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-3819 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-3851 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| |#1| (-346)) CONST)) (-3381 (($ (-855)) NIL (|has| |#1| (-346)))) (-1769 (((-108) $) NIL)) (-3027 (((-1037) $) NIL)) (-3258 (($) NIL (|has| |#1| (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| |#1| (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) NIL) (((-855)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2775 (((-1086 |#1|)) NIL)) (-3405 (($) NIL (|has| |#1| (-346)))) (-2041 (($) NIL (|has| |#1| (-346)))) (-1625 (((-1172 |#1|) $) NIL) (((-632 |#1|) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-1279 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3459 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1990 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-337 |#1| |#2|) (-307 |#1|) (-327) (-855)) (T -337)) NIL (-307 |#1|) -((-1480 (((-108) (-591 (-885 |#1|))) 34)) (-2155 (((-591 (-885 |#1|)) (-591 (-885 |#1|))) 46)) (-1418 (((-3 (-591 (-885 |#1|)) "failed") (-591 (-885 |#1|))) 41))) -(((-338 |#1| |#2|) (-10 -7 (-15 -1480 ((-108) (-591 (-885 |#1|)))) (-15 -1418 ((-3 (-591 (-885 |#1|)) "failed") (-591 (-885 |#1|)))) (-15 -2155 ((-591 (-885 |#1|)) (-591 (-885 |#1|))))) (-429) (-591 (-1089))) (T -338)) -((-2155 (*1 *2 *2) (-12 (-5 *2 (-591 (-885 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-591 (-1089))))) (-1418 (*1 *2 *2) (|partial| -12 (-5 *2 (-591 (-885 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-591 (-1089))))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-429)) (-5 *2 (-108)) (-5 *1 (-338 *4 *5)) (-14 *5 (-591 (-1089)))))) -(-10 -7 (-15 -1480 ((-108) (-591 (-885 |#1|)))) (-15 -1418 ((-3 (-591 (-885 |#1|)) "failed") (-591 (-885 |#1|)))) (-15 -2155 ((-591 (-885 |#1|)) (-591 (-885 |#1|))))) -((-2673 (((-108) $ $) NIL)) (-2834 (((-712) $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) 15)) (-2178 ((|#1| $ (-525)) NIL)) (-3782 (((-525) $ (-525)) NIL)) (-2637 (($ (-1 |#1| |#1|) $) 32)) (-2025 (($ (-1 (-525) (-525)) $) 24)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 26)) (-2937 (((-1036) $) NIL)) (-1908 (((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-525)))) $) 28)) (-3369 (($ $ $) NIL)) (-4027 (($ $ $) NIL)) (-2686 (((-796) $) 38) (($ |#1|) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1839 (($) 9 T CONST)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL) (($ |#1| (-525)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-339 |#1|) (-13 (-450) (-966 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -2834 ((-712) $)) (-15 -3782 ((-525) $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -2025 ($ (-1 (-525) (-525)) $)) (-15 -2637 ($ (-1 |#1| |#1|) $)) (-15 -1908 ((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-525)))) $)))) (-1018)) (T -339)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1018)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1018)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-339 *3)) (-4 *3 (-1018)))) (-3782 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1018)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1018)))) (-2025 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1018)))) (-2637 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-339 *3)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 (-525))))) (-5 *1 (-339 *3)) (-4 *3 (-1018))))) -(-13 (-450) (-966 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -2834 ((-712) $)) (-15 -3782 ((-525) $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -2025 ($ (-1 (-525) (-525)) $)) (-15 -2637 ($ (-1 |#1| |#1|) $)) (-15 -1908 ((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-525)))) $)))) -((-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 13)) (-3641 (($ $) 14)) (-3898 (((-396 $) $) 30)) (-2393 (((-108) $) 26)) (-1523 (($ $) 19)) (-2124 (($ $ $) 23) (($ (-591 $)) NIL)) (-2542 (((-396 $) $) 31)) (-3210 (((-3 $ "failed") $ $) 22)) (-3048 (((-712) $) 25)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 35)) (-1724 (((-108) $ $) 16)) (-4059 (($ $ $) 33))) -(((-340 |#1|) (-10 -8 (-15 -4059 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -2393 ((-108) |#1|)) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3576 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3048 ((-712) |#1|)) (-15 -2124 (|#1| (-591 |#1|))) (-15 -2124 (|#1| |#1| |#1|)) (-15 -1724 ((-108) |#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -2867 ((-2 (|:| -1851 |#1|) (|:| -4237 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#1|))) (-341)) (T -340)) -NIL -(-10 -8 (-15 -4059 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -2393 ((-108) |#1|)) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3576 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3048 ((-712) |#1|)) (-15 -2124 (|#1| (-591 |#1|))) (-15 -2124 (|#1| |#1| |#1|)) (-15 -1724 ((-108) |#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -2867 ((-2 (|:| -1851 |#1|) (|:| -4237 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-1965 (((-108) $ $) 59)) (-2055 (($) 17 T CONST)) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-2393 (((-108) $) 71)) (-3865 (((-108) $) 31)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 70)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-2542 (((-396 $) $) 74)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ $) 64)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) +((-1611 (((-108) (-592 (-886 |#1|))) 34)) (-1820 (((-592 (-886 |#1|)) (-592 (-886 |#1|))) 46)) (-2580 (((-3 (-592 (-886 |#1|)) "failed") (-592 (-886 |#1|))) 41))) +(((-338 |#1| |#2|) (-10 -7 (-15 -1611 ((-108) (-592 (-886 |#1|)))) (-15 -2580 ((-3 (-592 (-886 |#1|)) "failed") (-592 (-886 |#1|)))) (-15 -1820 ((-592 (-886 |#1|)) (-592 (-886 |#1|))))) (-429) (-592 (-1090))) (T -338)) +((-1820 (*1 *2 *2) (-12 (-5 *2 (-592 (-886 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1090))))) (-2580 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-886 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1090))))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-429)) (-5 *2 (-108)) (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1090)))))) +(-10 -7 (-15 -1611 ((-108) (-592 (-886 |#1|)))) (-15 -2580 ((-3 (-592 (-886 |#1|)) "failed") (-592 (-886 |#1|)))) (-15 -1820 ((-592 (-886 |#1|)) (-592 (-886 |#1|))))) +((-4028 (((-108) $ $) NIL)) (-1651 (((-713) $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) 15)) (-2339 ((|#1| $ (-525)) NIL)) (-3446 (((-525) $ (-525)) NIL)) (-4146 (($ (-1 |#1| |#1|) $) 32)) (-1273 (($ (-1 (-525) (-525)) $) 24)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 26)) (-3027 (((-1037) $) NIL)) (-2826 (((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-525)))) $) 28)) (-4025 (($ $ $) NIL)) (-1573 (($ $ $) NIL)) (-4044 (((-797) $) 38) (($ |#1|) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1449 (($) 9 T CONST)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ |#1| (-525)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-339 |#1|) (-13 (-450) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -1651 ((-713) $)) (-15 -3446 ((-525) $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -1273 ($ (-1 (-525) (-525)) $)) (-15 -4146 ($ (-1 |#1| |#1|) $)) (-15 -2826 ((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-525)))) $)))) (-1019)) (T -339)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1019)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1019)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1019)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-339 *3)) (-4 *3 (-1019)))) (-3446 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1019)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1019)))) (-1273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1019)))) (-4146 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-339 *3)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 (-525))))) (-5 *1 (-339 *3)) (-4 *3 (-1019))))) +(-13 (-450) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -1651 ((-713) $)) (-15 -3446 ((-525) $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -1273 ($ (-1 (-525) (-525)) $)) (-15 -4146 ($ (-1 |#1| |#1|) $)) (-15 -2826 ((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-525)))) $)))) +((-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 13)) (-2609 (($ $) 14)) (-1259 (((-396 $) $) 30)) (-2069 (((-108) $) 26)) (-3243 (($ $) 19)) (-2262 (($ $ $) 23) (($ (-592 $)) NIL)) (-2961 (((-396 $) $) 31)) (-2675 (((-3 $ "failed") $ $) 22)) (-2824 (((-713) $) 25)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 35)) (-3787 (((-108) $ $) 16)) (-4047 (($ $ $) 33))) +(((-340 |#1|) (-10 -8 (-15 -4047 (|#1| |#1| |#1|)) (-15 -3243 (|#1| |#1|)) (-15 -2069 ((-108) |#1|)) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -4204 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2824 ((-713) |#1|)) (-15 -2262 (|#1| (-592 |#1|))) (-15 -2262 (|#1| |#1| |#1|)) (-15 -3787 ((-108) |#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -1893 ((-2 (|:| -3603 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#1|))) (-341)) (T -340)) +NIL +(-10 -8 (-15 -4047 (|#1| |#1| |#1|)) (-15 -3243 (|#1| |#1|)) (-15 -2069 ((-108) |#1|)) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -4204 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2824 ((-713) |#1|)) (-15 -2262 (|#1| (-592 |#1|))) (-15 -2262 (|#1| |#1| |#1|)) (-15 -3787 ((-108) |#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -1893 ((-2 (|:| -3603 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-1700 (((-108) $ $) 59)) (-1957 (($) 17 T CONST)) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2069 (((-108) $) 71)) (-2507 (((-108) $) 31)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 70)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2961 (((-396 $) $) 74)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ $) 64)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) (((-341) (-131)) (T -341)) -((-4059 (*1 *1 *1 *1) (-4 *1 (-341)))) -(-13 (-286) (-1129) (-223) (-10 -8 (-15 -4059 ($ $ $)) (-6 -4248) (-6 -4242))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-593 #0#) . T) ((-593 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-668) . T) ((-853) . T) ((-981 #0#) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) . T)) -((-2673 (((-108) $ $) 7)) (-3806 ((|#2| $ |#2|) 13)) (-2375 (($ $ (-1072)) 18)) (-1608 ((|#2| $) 14)) (-1472 (($ |#1|) 20) (($ |#1| (-1072)) 19)) (-3419 ((|#1| $) 16)) (-2621 (((-1072) $) 9)) (-4052 (((-1072) $) 15)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3236 (($ $) 17)) (-3944 (((-108) $ $) 6))) -(((-342 |#1| |#2|) (-131) (-1018) (-1018)) (T -342)) -((-1472 (*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) (-1472 (*1 *1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1018)) (-4 *4 (-1018)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) (-3236 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1018)) (-4 *2 (-1018)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-5 *2 (-1072)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018)))) (-3806 (*1 *2 *1 *2) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018))))) -(-13 (-1018) (-10 -8 (-15 -1472 ($ |t#1|)) (-15 -1472 ($ |t#1| (-1072))) (-15 -2375 ($ $ (-1072))) (-15 -3236 ($ $)) (-15 -3419 (|t#1| $)) (-15 -4052 ((-1072) $)) (-15 -1608 (|t#2| $)) (-15 -3806 (|t#2| $ |t#2|)))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-3806 ((|#1| $ |#1|) 30)) (-2375 (($ $ (-1072)) 22)) (-3792 (((-3 |#1| "failed") $) 29)) (-1608 ((|#1| $) 27)) (-1472 (($ (-366)) 21) (($ (-366) (-1072)) 20)) (-3419 (((-366) $) 24)) (-2621 (((-1072) $) NIL)) (-4052 (((-1072) $) 25)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 19)) (-3236 (($ $) 23)) (-3944 (((-108) $ $) 18))) -(((-343 |#1|) (-13 (-342 (-366) |#1|) (-10 -8 (-15 -3792 ((-3 |#1| "failed") $)))) (-1018)) (T -343)) -((-3792 (*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1018))))) -(-13 (-342 (-366) |#1|) (-10 -8 (-15 -3792 ((-3 |#1| "failed") $)))) -((-2010 (((-1171 (-631 |#2|)) (-1171 $)) 61)) (-2004 (((-631 |#2|) (-1171 $)) 120)) (-3681 ((|#2| $) 32)) (-2465 (((-631 |#2|) $ (-1171 $)) 123)) (-2397 (((-3 $ "failed") $) 75)) (-3549 ((|#2| $) 35)) (-1865 (((-1085 |#2|) $) 83)) (-1321 ((|#2| (-1171 $)) 106)) (-3985 (((-1085 |#2|) $) 28)) (-1532 (((-108)) 100)) (-1554 (($ (-1171 |#2|) (-1171 $)) 113)) (-1522 (((-3 $ "failed") $) 79)) (-3999 (((-108)) 95)) (-3319 (((-108)) 90)) (-1219 (((-108)) 53)) (-1529 (((-631 |#2|) (-1171 $)) 118)) (-2671 ((|#2| $) 31)) (-2000 (((-631 |#2|) $ (-1171 $)) 122)) (-3917 (((-3 $ "failed") $) 73)) (-1984 ((|#2| $) 34)) (-4130 (((-1085 |#2|) $) 82)) (-2336 ((|#2| (-1171 $)) 104)) (-3019 (((-1085 |#2|) $) 26)) (-1312 (((-108)) 99)) (-3440 (((-108)) 92)) (-3615 (((-108)) 51)) (-1821 (((-108)) 87)) (-1492 (((-108)) 101)) (-1671 (((-1171 |#2|) $ (-1171 $)) NIL) (((-631 |#2|) (-1171 $) (-1171 $)) 111)) (-2003 (((-108)) 97)) (-3674 (((-591 (-1171 |#2|))) 86)) (-2535 (((-108)) 98)) (-3887 (((-108)) 96)) (-1394 (((-108)) 46)) (-2659 (((-108)) 102))) -(((-344 |#1| |#2|) (-10 -8 (-15 -1865 ((-1085 |#2|) |#1|)) (-15 -4130 ((-1085 |#2|) |#1|)) (-15 -3674 ((-591 (-1171 |#2|)))) (-15 -2397 ((-3 |#1| "failed") |#1|)) (-15 -3917 ((-3 |#1| "failed") |#1|)) (-15 -1522 ((-3 |#1| "failed") |#1|)) (-15 -3319 ((-108))) (-15 -3440 ((-108))) (-15 -3999 ((-108))) (-15 -3615 ((-108))) (-15 -1219 ((-108))) (-15 -1821 ((-108))) (-15 -2659 ((-108))) (-15 -1492 ((-108))) (-15 -1532 ((-108))) (-15 -1312 ((-108))) (-15 -1394 ((-108))) (-15 -2535 ((-108))) (-15 -3887 ((-108))) (-15 -2003 ((-108))) (-15 -3985 ((-1085 |#2|) |#1|)) (-15 -3019 ((-1085 |#2|) |#1|)) (-15 -2004 ((-631 |#2|) (-1171 |#1|))) (-15 -1529 ((-631 |#2|) (-1171 |#1|))) (-15 -1321 (|#2| (-1171 |#1|))) (-15 -2336 (|#2| (-1171 |#1|))) (-15 -1554 (|#1| (-1171 |#2|) (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -3549 (|#2| |#1|)) (-15 -1984 (|#2| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -2671 (|#2| |#1|)) (-15 -2465 ((-631 |#2|) |#1| (-1171 |#1|))) (-15 -2000 ((-631 |#2|) |#1| (-1171 |#1|))) (-15 -2010 ((-1171 (-631 |#2|)) (-1171 |#1|)))) (-345 |#2|) (-160)) (T -344)) -((-2003 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3887 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2535 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1394 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1312 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1532 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1492 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2659 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1821 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1219 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3615 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3999 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3440 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3319 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3674 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-591 (-1171 *4))) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4))))) -(-10 -8 (-15 -1865 ((-1085 |#2|) |#1|)) (-15 -4130 ((-1085 |#2|) |#1|)) (-15 -3674 ((-591 (-1171 |#2|)))) (-15 -2397 ((-3 |#1| "failed") |#1|)) (-15 -3917 ((-3 |#1| "failed") |#1|)) (-15 -1522 ((-3 |#1| "failed") |#1|)) (-15 -3319 ((-108))) (-15 -3440 ((-108))) (-15 -3999 ((-108))) (-15 -3615 ((-108))) (-15 -1219 ((-108))) (-15 -1821 ((-108))) (-15 -2659 ((-108))) (-15 -1492 ((-108))) (-15 -1532 ((-108))) (-15 -1312 ((-108))) (-15 -1394 ((-108))) (-15 -2535 ((-108))) (-15 -3887 ((-108))) (-15 -2003 ((-108))) (-15 -3985 ((-1085 |#2|) |#1|)) (-15 -3019 ((-1085 |#2|) |#1|)) (-15 -2004 ((-631 |#2|) (-1171 |#1|))) (-15 -1529 ((-631 |#2|) (-1171 |#1|))) (-15 -1321 (|#2| (-1171 |#1|))) (-15 -2336 (|#2| (-1171 |#1|))) (-15 -1554 (|#1| (-1171 |#2|) (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -3549 (|#2| |#1|)) (-15 -1984 (|#2| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -2671 (|#2| |#1|)) (-15 -2465 ((-631 |#2|) |#1| (-1171 |#1|))) (-15 -2000 ((-631 |#2|) |#1| (-1171 |#1|))) (-15 -2010 ((-1171 (-631 |#2|)) (-1171 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1851 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) 19)) (-2010 (((-1171 (-631 |#1|)) (-1171 $)) 78)) (-3483 (((-1171 $)) 81)) (-2055 (($) 17 T CONST)) (-4007 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) 40 (|has| |#1| (-517)))) (-4088 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-2004 (((-631 |#1|) (-1171 $)) 65)) (-3681 ((|#1| $) 74)) (-2465 (((-631 |#1|) $ (-1171 $)) 76)) (-2397 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-2681 (($ $ (-854)) 28)) (-3549 ((|#1| $) 72)) (-1865 (((-1085 |#1|) $) 42 (|has| |#1| (-517)))) (-1321 ((|#1| (-1171 $)) 67)) (-3985 (((-1085 |#1|) $) 63)) (-1532 (((-108)) 57)) (-1554 (($ (-1171 |#1|) (-1171 $)) 69)) (-1522 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-2193 (((-854)) 80)) (-3595 (((-108)) 54)) (-1447 (($ $ (-854)) 33)) (-3999 (((-108)) 50)) (-3319 (((-108)) 48)) (-1219 (((-108)) 52)) (-1779 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) 41 (|has| |#1| (-517)))) (-2727 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-1529 (((-631 |#1|) (-1171 $)) 66)) (-2671 ((|#1| $) 75)) (-2000 (((-631 |#1|) $ (-1171 $)) 77)) (-3917 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-2832 (($ $ (-854)) 29)) (-1984 ((|#1| $) 73)) (-4130 (((-1085 |#1|) $) 43 (|has| |#1| (-517)))) (-2336 ((|#1| (-1171 $)) 68)) (-3019 (((-1085 |#1|) $) 64)) (-1312 (((-108)) 58)) (-2621 (((-1072) $) 9)) (-3440 (((-108)) 49)) (-3615 (((-108)) 51)) (-1821 (((-108)) 53)) (-2937 (((-1036) $) 10)) (-1492 (((-108)) 56)) (-1671 (((-1171 |#1|) $ (-1171 $)) 71) (((-631 |#1|) (-1171 $) (-1171 $)) 70)) (-3277 (((-591 (-885 |#1|)) (-1171 $)) 79)) (-4027 (($ $ $) 25)) (-2003 (((-108)) 62)) (-2686 (((-796) $) 11)) (-3674 (((-591 (-1171 |#1|))) 44 (|has| |#1| (-517)))) (-1894 (($ $ $ $) 26)) (-2535 (((-108)) 60)) (-1971 (($ $ $) 24)) (-3887 (((-108)) 61)) (-1394 (((-108)) 59)) (-2659 (((-108)) 55)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 30)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-4047 (*1 *1 *1 *1) (-4 *1 (-341)))) +(-13 (-286) (-1130) (-223) (-10 -8 (-15 -4047 ($ $ $)) (-6 -4252) (-6 -4246))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T)) +((-4028 (((-108) $ $) 7)) (-1817 ((|#2| $ |#2|) 13)) (-3343 (($ $ (-1073)) 18)) (-2872 ((|#2| $) 14)) (-3864 (($ |#1|) 20) (($ |#1| (-1073)) 19)) (-3515 ((|#1| $) 16)) (-1707 (((-1073) $) 9)) (-3036 (((-1073) $) 15)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3069 (($ $) 17)) (-3899 (((-108) $ $) 6))) +(((-342 |#1| |#2|) (-131) (-1019) (-1019)) (T -342)) +((-3864 (*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-3864 (*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1019)) (-4 *4 (-1019)))) (-3343 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-3069 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-5 *2 (-1073)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-1817 (*1 *2 *1 *2) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019))))) +(-13 (-1019) (-10 -8 (-15 -3864 ($ |t#1|)) (-15 -3864 ($ |t#1| (-1073))) (-15 -3343 ($ $ (-1073))) (-15 -3069 ($ $)) (-15 -3515 (|t#1| $)) (-15 -3036 ((-1073) $)) (-15 -2872 (|t#2| $)) (-15 -1817 (|t#2| $ |t#2|)))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-1817 ((|#1| $ |#1|) 30)) (-3343 (($ $ (-1073)) 22)) (-2929 (((-3 |#1| "failed") $) 29)) (-2872 ((|#1| $) 27)) (-3864 (($ (-366)) 21) (($ (-366) (-1073)) 20)) (-3515 (((-366) $) 24)) (-1707 (((-1073) $) NIL)) (-3036 (((-1073) $) 25)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 19)) (-3069 (($ $) 23)) (-3899 (((-108) $ $) 18))) +(((-343 |#1|) (-13 (-342 (-366) |#1|) (-10 -8 (-15 -2929 ((-3 |#1| "failed") $)))) (-1019)) (T -343)) +((-2929 (*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1019))))) +(-13 (-342 (-366) |#1|) (-10 -8 (-15 -2929 ((-3 |#1| "failed") $)))) +((-1545 (((-1172 (-632 |#2|)) (-1172 $)) 61)) (-1953 (((-632 |#2|) (-1172 $)) 120)) (-3497 ((|#2| $) 32)) (-3663 (((-632 |#2|) $ (-1172 $)) 123)) (-2256 (((-3 $ "failed") $) 75)) (-3655 ((|#2| $) 35)) (-1911 (((-1086 |#2|) $) 83)) (-1452 ((|#2| (-1172 $)) 106)) (-1492 (((-1086 |#2|) $) 28)) (-2790 (((-108)) 100)) (-1689 (($ (-1172 |#2|) (-1172 $)) 113)) (-1645 (((-3 $ "failed") $) 79)) (-1552 (((-108)) 95)) (-2383 (((-108)) 90)) (-3076 (((-108)) 53)) (-1301 (((-632 |#2|) (-1172 $)) 118)) (-4139 ((|#2| $) 31)) (-2562 (((-632 |#2|) $ (-1172 $)) 122)) (-1709 (((-3 $ "failed") $) 73)) (-1855 ((|#2| $) 34)) (-4067 (((-1086 |#2|) $) 82)) (-4087 ((|#2| (-1172 $)) 104)) (-1488 (((-1086 |#2|) $) 26)) (-2085 (((-108)) 99)) (-4062 (((-108)) 92)) (-1985 (((-108)) 51)) (-2744 (((-108)) 87)) (-3587 (((-108)) 101)) (-1625 (((-1172 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) 111)) (-2880 (((-108)) 97)) (-4194 (((-592 (-1172 |#2|))) 86)) (-2986 (((-108)) 98)) (-2046 (((-108)) 96)) (-3367 (((-108)) 46)) (-3026 (((-108)) 102))) +(((-344 |#1| |#2|) (-10 -8 (-15 -1911 ((-1086 |#2|) |#1|)) (-15 -4067 ((-1086 |#2|) |#1|)) (-15 -4194 ((-592 (-1172 |#2|)))) (-15 -2256 ((-3 |#1| "failed") |#1|)) (-15 -1709 ((-3 |#1| "failed") |#1|)) (-15 -1645 ((-3 |#1| "failed") |#1|)) (-15 -2383 ((-108))) (-15 -4062 ((-108))) (-15 -1552 ((-108))) (-15 -1985 ((-108))) (-15 -3076 ((-108))) (-15 -2744 ((-108))) (-15 -3026 ((-108))) (-15 -3587 ((-108))) (-15 -2790 ((-108))) (-15 -2085 ((-108))) (-15 -3367 ((-108))) (-15 -2986 ((-108))) (-15 -2046 ((-108))) (-15 -2880 ((-108))) (-15 -1492 ((-1086 |#2|) |#1|)) (-15 -1488 ((-1086 |#2|) |#1|)) (-15 -1953 ((-632 |#2|) (-1172 |#1|))) (-15 -1301 ((-632 |#2|) (-1172 |#1|))) (-15 -1452 (|#2| (-1172 |#1|))) (-15 -4087 (|#2| (-1172 |#1|))) (-15 -1689 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3655 (|#2| |#1|)) (-15 -1855 (|#2| |#1|)) (-15 -3497 (|#2| |#1|)) (-15 -4139 (|#2| |#1|)) (-15 -3663 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -2562 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -1545 ((-1172 (-632 |#2|)) (-1172 |#1|)))) (-345 |#2|) (-160)) (T -344)) +((-2880 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2046 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2986 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3367 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2085 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2790 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3587 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3026 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2744 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3076 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1985 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1552 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-4062 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2383 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-4194 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1172 *4))) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4))))) +(-10 -8 (-15 -1911 ((-1086 |#2|) |#1|)) (-15 -4067 ((-1086 |#2|) |#1|)) (-15 -4194 ((-592 (-1172 |#2|)))) (-15 -2256 ((-3 |#1| "failed") |#1|)) (-15 -1709 ((-3 |#1| "failed") |#1|)) (-15 -1645 ((-3 |#1| "failed") |#1|)) (-15 -2383 ((-108))) (-15 -4062 ((-108))) (-15 -1552 ((-108))) (-15 -1985 ((-108))) (-15 -3076 ((-108))) (-15 -2744 ((-108))) (-15 -3026 ((-108))) (-15 -3587 ((-108))) (-15 -2790 ((-108))) (-15 -2085 ((-108))) (-15 -3367 ((-108))) (-15 -2986 ((-108))) (-15 -2046 ((-108))) (-15 -2880 ((-108))) (-15 -1492 ((-1086 |#2|) |#1|)) (-15 -1488 ((-1086 |#2|) |#1|)) (-15 -1953 ((-632 |#2|) (-1172 |#1|))) (-15 -1301 ((-632 |#2|) (-1172 |#1|))) (-15 -1452 (|#2| (-1172 |#1|))) (-15 -4087 (|#2| (-1172 |#1|))) (-15 -1689 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3655 (|#2| |#1|)) (-15 -1855 (|#2| |#1|)) (-15 -3497 (|#2| |#1|)) (-15 -4139 (|#2| |#1|)) (-15 -3663 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -2562 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -1545 ((-1172 (-632 |#2|)) (-1172 |#1|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3603 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) 19)) (-1545 (((-1172 (-632 |#1|)) (-1172 $)) 78)) (-2489 (((-1172 $)) 81)) (-1957 (($) 17 T CONST)) (-1922 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-3537 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-1953 (((-632 |#1|) (-1172 $)) 65)) (-3497 ((|#1| $) 74)) (-3663 (((-632 |#1|) $ (-1172 $)) 76)) (-2256 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-1469 (($ $ (-855)) 28)) (-3655 ((|#1| $) 72)) (-1911 (((-1086 |#1|) $) 42 (|has| |#1| (-517)))) (-1452 ((|#1| (-1172 $)) 67)) (-1492 (((-1086 |#1|) $) 63)) (-2790 (((-108)) 57)) (-1689 (($ (-1172 |#1|) (-1172 $)) 69)) (-1645 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-3439 (((-855)) 80)) (-2404 (((-108)) 54)) (-1404 (($ $ (-855)) 33)) (-1552 (((-108)) 50)) (-2383 (((-108)) 48)) (-3076 (((-108)) 52)) (-3609 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-2167 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-1301 (((-632 |#1|) (-1172 $)) 66)) (-4139 ((|#1| $) 75)) (-2562 (((-632 |#1|) $ (-1172 $)) 77)) (-1709 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-2148 (($ $ (-855)) 29)) (-1855 ((|#1| $) 73)) (-4067 (((-1086 |#1|) $) 43 (|has| |#1| (-517)))) (-4087 ((|#1| (-1172 $)) 68)) (-1488 (((-1086 |#1|) $) 64)) (-2085 (((-108)) 58)) (-1707 (((-1073) $) 9)) (-4062 (((-108)) 49)) (-1985 (((-108)) 51)) (-2744 (((-108)) 53)) (-3027 (((-1037) $) 10)) (-3587 (((-108)) 56)) (-1625 (((-1172 |#1|) $ (-1172 $)) 71) (((-632 |#1|) (-1172 $) (-1172 $)) 70)) (-4125 (((-592 (-886 |#1|)) (-1172 $)) 79)) (-1573 (($ $ $) 25)) (-2880 (((-108)) 62)) (-4044 (((-797) $) 11)) (-4194 (((-592 (-1172 |#1|))) 44 (|has| |#1| (-517)))) (-1762 (($ $ $ $) 26)) (-2986 (((-108)) 60)) (-2407 (($ $ $) 24)) (-2046 (((-108)) 61)) (-3367 (((-108)) 59)) (-3026 (((-108)) 55)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-345 |#1|) (-131) (-160)) (T -345)) -((-3483 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1171 *1)) (-4 *1 (-345 *3)))) (-2193 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-854)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-591 (-885 *4))))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1171 (-631 *4))))) (-2000 (*1 *2 *1 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-631 *4)))) (-2465 (*1 *2 *1 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-631 *4)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1671 (*1 *2 *1 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1171 *4)))) (-1671 (*1 *2 *3 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-631 *4)))) (-1554 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-160)) (-4 *1 (-345 *4)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-631 *4)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-631 *4)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1085 *3)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1085 *3)))) (-2003 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3887 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2535 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1394 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1312 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1532 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1492 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2659 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3595 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1821 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1219 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3615 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3999 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3440 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3319 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1522 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-3917 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2397 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-3674 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-591 (-1171 *3))))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1085 *3)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1085 *3)))) (-1779 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3612 (-591 *1)))) (-4 *1 (-345 *3)))) (-4007 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3612 (-591 *1)))) (-4 *1 (-345 *3)))) (-2727 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-4088 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-1851 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))) -(-13 (-686 |t#1|) (-10 -8 (-15 -3483 ((-1171 $))) (-15 -2193 ((-854))) (-15 -3277 ((-591 (-885 |t#1|)) (-1171 $))) (-15 -2010 ((-1171 (-631 |t#1|)) (-1171 $))) (-15 -2000 ((-631 |t#1|) $ (-1171 $))) (-15 -2465 ((-631 |t#1|) $ (-1171 $))) (-15 -2671 (|t#1| $)) (-15 -3681 (|t#1| $)) (-15 -1984 (|t#1| $)) (-15 -3549 (|t#1| $)) (-15 -1671 ((-1171 |t#1|) $ (-1171 $))) (-15 -1671 ((-631 |t#1|) (-1171 $) (-1171 $))) (-15 -1554 ($ (-1171 |t#1|) (-1171 $))) (-15 -2336 (|t#1| (-1171 $))) (-15 -1321 (|t#1| (-1171 $))) (-15 -1529 ((-631 |t#1|) (-1171 $))) (-15 -2004 ((-631 |t#1|) (-1171 $))) (-15 -3019 ((-1085 |t#1|) $)) (-15 -3985 ((-1085 |t#1|) $)) (-15 -2003 ((-108))) (-15 -3887 ((-108))) (-15 -2535 ((-108))) (-15 -1394 ((-108))) (-15 -1312 ((-108))) (-15 -1532 ((-108))) (-15 -1492 ((-108))) (-15 -2659 ((-108))) (-15 -3595 ((-108))) (-15 -1821 ((-108))) (-15 -1219 ((-108))) (-15 -3615 ((-108))) (-15 -3999 ((-108))) (-15 -3440 ((-108))) (-15 -3319 ((-108))) (IF (|has| |t#1| (-517)) (PROGN (-15 -1522 ((-3 $ "failed") $)) (-15 -3917 ((-3 $ "failed") $)) (-15 -2397 ((-3 $ "failed") $)) (-15 -3674 ((-591 (-1171 |t#1|)))) (-15 -4130 ((-1085 |t#1|) $)) (-15 -1865 ((-1085 |t#1|) $)) (-15 -1779 ((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed"))) (-15 -4007 ((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed"))) (-15 -2727 ((-3 $ "failed"))) (-15 -4088 ((-3 $ "failed"))) (-15 -1851 ((-3 $ "failed"))) (-6 -4247)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-659 |#1|) . T) ((-662) . T) ((-686 |#1|) . T) ((-703) . T) ((-981 |#1|) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 7)) (-2834 (((-712)) 16)) (-1325 (($) 13)) (-1970 (((-854) $) 14)) (-2621 (((-1072) $) 9)) (-3229 (($ (-854)) 15)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 6))) +((-2489 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1172 *1)) (-4 *1 (-345 *3)))) (-3439 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-855)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-592 (-886 *4))))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1172 (-632 *4))))) (-2562 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3663 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1625 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1172 *4)))) (-1625 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-1689 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-160)) (-4 *1 (-345 *4)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1301 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1086 *3)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1086 *3)))) (-2880 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2046 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2986 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3367 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2085 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2790 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3587 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3026 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2404 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2744 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3076 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1985 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1552 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-4062 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2383 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1645 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-1709 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2256 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-4194 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-592 (-1172 *3))))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1086 *3)))) (-1911 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1086 *3)))) (-3609 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2734 (-592 *1)))) (-4 *1 (-345 *3)))) (-1922 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2734 (-592 *1)))) (-4 *1 (-345 *3)))) (-2167 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-3537 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-3603 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))) +(-13 (-687 |t#1|) (-10 -8 (-15 -2489 ((-1172 $))) (-15 -3439 ((-855))) (-15 -4125 ((-592 (-886 |t#1|)) (-1172 $))) (-15 -1545 ((-1172 (-632 |t#1|)) (-1172 $))) (-15 -2562 ((-632 |t#1|) $ (-1172 $))) (-15 -3663 ((-632 |t#1|) $ (-1172 $))) (-15 -4139 (|t#1| $)) (-15 -3497 (|t#1| $)) (-15 -1855 (|t#1| $)) (-15 -3655 (|t#1| $)) (-15 -1625 ((-1172 |t#1|) $ (-1172 $))) (-15 -1625 ((-632 |t#1|) (-1172 $) (-1172 $))) (-15 -1689 ($ (-1172 |t#1|) (-1172 $))) (-15 -4087 (|t#1| (-1172 $))) (-15 -1452 (|t#1| (-1172 $))) (-15 -1301 ((-632 |t#1|) (-1172 $))) (-15 -1953 ((-632 |t#1|) (-1172 $))) (-15 -1488 ((-1086 |t#1|) $)) (-15 -1492 ((-1086 |t#1|) $)) (-15 -2880 ((-108))) (-15 -2046 ((-108))) (-15 -2986 ((-108))) (-15 -3367 ((-108))) (-15 -2085 ((-108))) (-15 -2790 ((-108))) (-15 -3587 ((-108))) (-15 -3026 ((-108))) (-15 -2404 ((-108))) (-15 -2744 ((-108))) (-15 -3076 ((-108))) (-15 -1985 ((-108))) (-15 -1552 ((-108))) (-15 -4062 ((-108))) (-15 -2383 ((-108))) (IF (|has| |t#1| (-517)) (PROGN (-15 -1645 ((-3 $ "failed") $)) (-15 -1709 ((-3 $ "failed") $)) (-15 -2256 ((-3 $ "failed") $)) (-15 -4194 ((-592 (-1172 |t#1|)))) (-15 -4067 ((-1086 |t#1|) $)) (-15 -1911 ((-1086 |t#1|) $)) (-15 -3609 ((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed"))) (-15 -1922 ((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed"))) (-15 -2167 ((-3 $ "failed"))) (-15 -3537 ((-3 $ "failed"))) (-15 -3603 ((-3 $ "failed"))) (-6 -4251)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-687 |#1|) . T) ((-704) . T) ((-982 |#1|) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 7)) (-1651 (((-713)) 16)) (-1527 (($) 13)) (-2111 (((-855) $) 14)) (-1707 (((-1073) $) 9)) (-3381 (($ (-855)) 15)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 6))) (((-346) (-131)) (T -346)) -((-2834 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-712)))) (-3229 (*1 *1 *2) (-12 (-5 *2 (-854)) (-4 *1 (-346)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-854)))) (-1325 (*1 *1) (-4 *1 (-346)))) -(-13 (-1018) (-10 -8 (-15 -2834 ((-712))) (-15 -3229 ($ (-854))) (-15 -1970 ((-854) $)) (-15 -1325 ($)))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-1712 (((-631 |#2|) (-1171 $)) 41)) (-1554 (($ (-1171 |#2|) (-1171 $)) 35)) (-4054 (((-631 |#2|) $ (-1171 $)) 43)) (-2858 ((|#2| (-1171 $)) 13)) (-1671 (((-1171 |#2|) $ (-1171 $)) NIL) (((-631 |#2|) (-1171 $) (-1171 $)) 25))) -(((-347 |#1| |#2| |#3|) (-10 -8 (-15 -1712 ((-631 |#2|) (-1171 |#1|))) (-15 -2858 (|#2| (-1171 |#1|))) (-15 -1554 (|#1| (-1171 |#2|) (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -4054 ((-631 |#2|) |#1| (-1171 |#1|)))) (-348 |#2| |#3|) (-160) (-1147 |#2|)) (T -347)) -NIL -(-10 -8 (-15 -1712 ((-631 |#2|) (-1171 |#1|))) (-15 -2858 (|#2| (-1171 |#1|))) (-15 -1554 (|#1| (-1171 |#2|) (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -4054 ((-631 |#2|) |#1| (-1171 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1712 (((-631 |#1|) (-1171 $)) 46)) (-1481 ((|#1| $) 52)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1554 (($ (-1171 |#1|) (-1171 $)) 48)) (-4054 (((-631 |#1|) $ (-1171 $)) 53)) (-1522 (((-3 $ "failed") $) 34)) (-2193 (((-854)) 54)) (-3865 (((-108) $) 31)) (-1525 ((|#1| $) 51)) (-3205 ((|#2| $) 44 (|has| |#1| (-341)))) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2858 ((|#1| (-1171 $)) 47)) (-1671 (((-1171 |#1|) $ (-1171 $)) 50) (((-631 |#1|) (-1171 $) (-1171 $)) 49)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3751 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-2173 ((|#2| $) 45)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-348 |#1| |#2|) (-131) (-160) (-1147 |t#1|)) (T -348)) -((-2193 (*1 *2) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) (-5 *2 (-854)))) (-4054 (*1 *2 *1 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1147 *2)) (-4 *2 (-160)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1147 *2)) (-4 *2 (-160)))) (-1671 (*1 *2 *1 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1147 *4)) (-5 *2 (-1171 *4)))) (-1671 (*1 *2 *3 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)))) (-1554 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-160)) (-4 *1 (-348 *4 *5)) (-4 *5 (-1147 *4)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1147 *2)) (-4 *2 (-160)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1147 *3)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341)) (-4 *2 (-1147 *3))))) -(-13 (-37 |t#1|) (-10 -8 (-15 -2193 ((-854))) (-15 -4054 ((-631 |t#1|) $ (-1171 $))) (-15 -1481 (|t#1| $)) (-15 -1525 (|t#1| $)) (-15 -1671 ((-1171 |t#1|) $ (-1171 $))) (-15 -1671 ((-631 |t#1|) (-1171 $) (-1171 $))) (-15 -1554 ($ (-1171 |t#1|) (-1171 $))) (-15 -2858 (|t#1| (-1171 $))) (-15 -1712 ((-631 |t#1|) (-1171 $))) (-15 -2173 (|t#2| $)) (IF (|has| |t#1| (-341)) (-15 -3205 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-659 |#1|) . T) ((-668) . T) ((-981 |#1|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1350 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3618 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1257 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-349 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3618 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1350 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1125) (-351 |#1|) (-1125) (-351 |#3|)) (T -349)) -((-1350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1125)) (-4 *5 (-1125)) (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6)))) (-3618 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1125)) (-4 *2 (-1125)) (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5))))) -(-10 -7 (-15 -1257 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3618 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1350 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3110 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-2613 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-1282 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-2747 (($ $) 25)) (-1734 (((-525) (-1 (-108) |#2|) $) NIL) (((-525) |#2| $) 11) (((-525) |#2| $ (-525)) NIL)) (-3459 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-350 |#1| |#2|) (-10 -8 (-15 -2613 (|#1| |#1|)) (-15 -2613 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3110 ((-108) |#1|)) (-15 -1282 (|#1| |#1|)) (-15 -3459 (|#1| |#1| |#1|)) (-15 -1734 ((-525) |#2| |#1| (-525))) (-15 -1734 ((-525) |#2| |#1|)) (-15 -1734 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3110 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1282 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2747 (|#1| |#1|)) (-15 -3459 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-351 |#2|) (-1125)) (T -350)) -NIL -(-10 -8 (-15 -2613 (|#1| |#1|)) (-15 -2613 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3110 ((-108) |#1|)) (-15 -1282 (|#1| |#1|)) (-15 -3459 (|#1| |#1| |#1|)) (-15 -1734 ((-525) |#2| |#1| (-525))) (-15 -1734 ((-525) |#2| |#1|)) (-15 -1734 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3110 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1282 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2747 (|#1| |#1|)) (-15 -3459 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3832 (((-1176) $ (-525) (-525)) 40 (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4251))) (($ $) 88 (-12 (|has| |#1| (-788)) (|has| $ (-6 -4251))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) 8)) (-2847 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 58 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-3405 (($ $) 90 (|has| $ (-6 -4251)))) (-2747 (($ $) 100)) (-2908 (($ $) 78 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#1| $) 77 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 51)) (-1734 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1018)))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-1316 (($ (-712) |#1|) 69)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 43 (|has| (-525) (-788)))) (-1923 (($ $ $) 87 (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 44 (|has| (-525) (-788)))) (-3475 (($ $ $) 86 (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3761 (((-591 (-525)) $) 46)) (-1675 (((-108) (-525) $) 47)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2872 ((|#1| $) 42 (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1858 (($ $ |#1|) 41 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1138 (-525))) 63)) (-3226 (($ $ (-525)) 62) (($ $ (-1138 (-525))) 61)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2992 (($ $ $ (-525)) 91 (|has| $ (-6 -4251)))) (-2873 (($ $) 13)) (-1300 (((-501) $) 79 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 70)) (-1624 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-591 $)) 65)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) 84 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 83 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-3994 (((-108) $ $) 85 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 82 (|has| |#1| (-788)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-351 |#1|) (-131) (-1125)) (T -351)) -((-3459 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1125)))) (-2747 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1125)))) (-1282 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1125)))) (-3110 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1125)) (-5 *2 (-108)))) (-1734 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1125)) (-5 *2 (-525)))) (-1734 (*1 *2 *3 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1125)) (-4 *3 (-1018)) (-5 *2 (-525)))) (-1734 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1125)) (-4 *3 (-1018)))) (-3459 (*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1125)) (-4 *2 (-788)))) (-1282 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1125)) (-4 *2 (-788)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1125)) (-4 *3 (-788)) (-5 *2 (-108)))) (-2992 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4251)) (-4 *1 (-351 *3)) (-4 *3 (-1125)))) (-3405 (*1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-351 *2)) (-4 *2 (-1125)))) (-2613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4251)) (-4 *1 (-351 *3)) (-4 *3 (-1125)))) (-2613 (*1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-351 *2)) (-4 *2 (-1125)) (-4 *2 (-788))))) -(-13 (-596 |t#1|) (-10 -8 (-6 -4250) (-15 -3459 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -2747 ($ $)) (-15 -1282 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -3110 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -1734 ((-525) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1018)) (PROGN (-15 -1734 ((-525) |t#1| $)) (-15 -1734 ((-525) |t#1| $ (-525)))) |%noBranch|) (IF (|has| |t#1| (-788)) (PROGN (-6 (-788)) (-15 -3459 ($ $ $)) (-15 -1282 ($ $)) (-15 -3110 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4251)) (PROGN (-15 -2992 ($ $ $ (-525))) (-15 -3405 ($ $)) (-15 -2613 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-788)) (-15 -2613 ($ $)) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-97) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-596 |#1|) . T) ((-788) |has| |#1| (-788)) ((-1018) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-1125) . T)) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2758 (((-591 |#1|) $) 32)) (-3746 (($ $ (-712)) 33)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1719 (((-1193 |#1| |#2|) (-1193 |#1| |#2|) $) 36)) (-1398 (($ $) 34)) (-3740 (((-1193 |#1| |#2|) (-1193 |#1| |#2|) $) 37)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-1980 (($ $ |#1| $) 31) (($ $ (-591 |#1|) (-591 $)) 30)) (-2743 (((-712) $) 38)) (-2695 (($ $ $) 29)) (-2686 (((-796) $) 11) (($ |#1|) 41) (((-1184 |#1| |#2|) $) 40) (((-1193 |#1| |#2|) $) 39)) (-2976 ((|#2| (-1193 |#1| |#2|) $) 42)) (-1830 (($) 18 T CONST)) (-2663 (($ (-616 |#1|)) 35)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#2|) 28 (|has| |#2| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-352 |#1| |#2|) (-131) (-788) (-160)) (T -352)) -((-2976 (*1 *2 *3 *1) (-12 (-5 *3 (-1193 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-788)) (-4 *2 (-160)))) (-2686 (*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-788)) (-4 *3 (-160)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) (-5 *2 (-1184 *3 *4)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) (-5 *2 (-1193 *3 *4)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) (-5 *2 (-712)))) (-3740 (*1 *2 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)))) (-1719 (*1 *2 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-788)) (-4 *1 (-352 *3 *4)) (-4 *4 (-160)))) (-1398 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-788)) (-4 *3 (-160)))) (-3746 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) (-5 *2 (-591 *3)))) (-1980 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-788)) (-4 *3 (-160)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 *4)) (-5 *3 (-591 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-788)) (-4 *5 (-160))))) -(-13 (-582 |t#2|) (-10 -8 (-15 -2976 (|t#2| (-1193 |t#1| |t#2|) $)) (-15 -2686 ($ |t#1|)) (-15 -2686 ((-1184 |t#1| |t#2|) $)) (-15 -2686 ((-1193 |t#1| |t#2|) $)) (-15 -2743 ((-712) $)) (-15 -3740 ((-1193 |t#1| |t#2|) (-1193 |t#1| |t#2|) $)) (-15 -1719 ((-1193 |t#1| |t#2|) (-1193 |t#1| |t#2|) $)) (-15 -2663 ($ (-616 |t#1|))) (-15 -1398 ($ $)) (-15 -3746 ($ $ (-712))) (-15 -2758 ((-591 |t#1|) $)) (-15 -1980 ($ $ |t#1| $)) (-15 -1980 ($ $ (-591 |t#1|) (-591 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#2|) . T) ((-582 |#2|) . T) ((-659 |#2|) . T) ((-981 |#2|) . T) ((-1018) . T)) -((-4181 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-1866 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 13)) (-3995 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 22))) -(((-353 |#1| |#2|) (-10 -7 (-15 -1866 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3995 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -4181 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1125) (-13 (-351 |#1|) (-10 -7 (-6 -4251)))) (T -353)) -((-4181 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4251)))))) (-3995 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4251)))))) (-1866 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4251))))))) -(-10 -7 (-15 -1866 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3995 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -4181 (|#2| (-1 (-108) |#1| |#1|) |#2|))) -((-3925 (((-631 |#2|) (-631 $)) NIL) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 22) (((-631 (-525)) (-631 $)) 14))) -(((-354 |#1| |#2|) (-10 -8 (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 |#2|) (-631 |#1|)))) (-355 |#2|) (-975)) (T -354)) -NIL -(-10 -8 (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 |#2|) (-631 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-3925 (((-631 |#1|) (-631 $)) 36) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 35) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 43 (|has| |#1| (-587 (-525)))) (((-631 (-525)) (-631 $)) 42 (|has| |#1| (-587 (-525))))) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-355 |#1|) (-131) (-975)) (T -355)) -NIL -(-13 (-587 |t#1|) (-10 -7 (IF (|has| |t#1| (-587 (-525))) (-6 (-587 (-525))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-587 (-525)) |has| |#1| (-587 (-525))) ((-587 |#1|) . T) ((-668) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-3623 (((-591 (-273 (-885 (-157 |#1|)))) (-273 (-385 (-885 (-157 (-525))))) |#1|) 51) (((-591 (-273 (-885 (-157 |#1|)))) (-385 (-885 (-157 (-525)))) |#1|) 50) (((-591 (-591 (-273 (-885 (-157 |#1|))))) (-591 (-273 (-385 (-885 (-157 (-525)))))) |#1|) 47) (((-591 (-591 (-273 (-885 (-157 |#1|))))) (-591 (-385 (-885 (-157 (-525))))) |#1|) 41)) (-3237 (((-591 (-591 (-157 |#1|))) (-591 (-385 (-885 (-157 (-525))))) (-591 (-1089)) |#1|) 30) (((-591 (-157 |#1|)) (-385 (-885 (-157 (-525)))) |#1|) 18))) -(((-356 |#1|) (-10 -7 (-15 -3623 ((-591 (-591 (-273 (-885 (-157 |#1|))))) (-591 (-385 (-885 (-157 (-525))))) |#1|)) (-15 -3623 ((-591 (-591 (-273 (-885 (-157 |#1|))))) (-591 (-273 (-385 (-885 (-157 (-525)))))) |#1|)) (-15 -3623 ((-591 (-273 (-885 (-157 |#1|)))) (-385 (-885 (-157 (-525)))) |#1|)) (-15 -3623 ((-591 (-273 (-885 (-157 |#1|)))) (-273 (-385 (-885 (-157 (-525))))) |#1|)) (-15 -3237 ((-591 (-157 |#1|)) (-385 (-885 (-157 (-525)))) |#1|)) (-15 -3237 ((-591 (-591 (-157 |#1|))) (-591 (-385 (-885 (-157 (-525))))) (-591 (-1089)) |#1|))) (-13 (-341) (-786))) (T -356)) -((-3237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 (-385 (-885 (-157 (-525)))))) (-5 *4 (-591 (-1089))) (-5 *2 (-591 (-591 (-157 *5)))) (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-786))))) (-3237 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 (-157 (-525))))) (-5 *2 (-591 (-157 *4))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-786))))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-885 (-157 (-525)))))) (-5 *2 (-591 (-273 (-885 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-786))))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 (-157 (-525))))) (-5 *2 (-591 (-273 (-885 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-786))))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-273 (-385 (-885 (-157 (-525))))))) (-5 *2 (-591 (-591 (-273 (-885 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-786))))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-385 (-885 (-157 (-525)))))) (-5 *2 (-591 (-591 (-273 (-885 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-786)))))) -(-10 -7 (-15 -3623 ((-591 (-591 (-273 (-885 (-157 |#1|))))) (-591 (-385 (-885 (-157 (-525))))) |#1|)) (-15 -3623 ((-591 (-591 (-273 (-885 (-157 |#1|))))) (-591 (-273 (-385 (-885 (-157 (-525)))))) |#1|)) (-15 -3623 ((-591 (-273 (-885 (-157 |#1|)))) (-385 (-885 (-157 (-525)))) |#1|)) (-15 -3623 ((-591 (-273 (-885 (-157 |#1|)))) (-273 (-385 (-885 (-157 (-525))))) |#1|)) (-15 -3237 ((-591 (-157 |#1|)) (-385 (-885 (-157 (-525)))) |#1|)) (-15 -3237 ((-591 (-591 (-157 |#1|))) (-591 (-385 (-885 (-157 (-525))))) (-591 (-1089)) |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 33)) (-2314 (((-525) $) 55)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3328 (($ $) 110)) (-4087 (($ $) 82)) (-2381 (($ $) 71)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-2551 (($ $) 44)) (-1965 (((-108) $ $) NIL)) (-4058 (($ $) 80)) (-2360 (($ $) 69)) (-4188 (((-525) $) 64)) (-3423 (($ $ (-525)) 62)) (-4109 (($ $) NIL)) (-2400 (($ $) NIL)) (-2055 (($) NIL T CONST)) (-3032 (($ $) 112)) (-4174 (((-3 (-525) "failed") $) 189) (((-3 (-385 (-525)) "failed") $) 185)) (-3341 (((-525) $) 187) (((-385 (-525)) $) 183)) (-3265 (($ $ $) NIL)) (-3432 (((-525) $ $) 102)) (-1522 (((-3 $ "failed") $) 114)) (-3959 (((-385 (-525)) $ (-712)) 190) (((-385 (-525)) $ (-712) (-712)) 182)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-2008 (((-854)) 73) (((-854) (-854)) 98 (|has| $ (-6 -4241)))) (-3489 (((-108) $) 106)) (-1417 (($) 40)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL)) (-3476 (((-1176) (-712)) 152)) (-2094 (((-1176)) 157) (((-1176) (-712)) 158)) (-3556 (((-1176)) 159) (((-1176) (-712)) 160)) (-3565 (((-1176)) 155) (((-1176) (-712)) 156)) (-1676 (((-525) $) 58)) (-3865 (((-108) $) 104)) (-3126 (($ $ (-525)) NIL)) (-1297 (($ $) 48)) (-1525 (($ $) NIL)) (-2256 (((-108) $) 35)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL) (($) NIL (-12 (-3389 (|has| $ (-6 -4233))) (-3389 (|has| $ (-6 -4241)))))) (-3475 (($ $ $) NIL) (($) 99 (-12 (-3389 (|has| $ (-6 -4233))) (-3389 (|has| $ (-6 -4241)))))) (-1630 (((-525) $) 17)) (-3068 (($) 87) (($ $) 92)) (-3347 (($) 91) (($ $) 93)) (-2356 (($ $) 83)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 116)) (-3474 (((-854) (-525)) 43 (|has| $ (-6 -4241)))) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) 53)) (-2767 (($ $) 109)) (-2925 (($ (-525) (-525)) 107) (($ (-525) (-525) (-854)) 108)) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3987 (((-525) $) 19)) (-3507 (($) 94)) (-2288 (($ $) 79)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-3439 (((-854)) 100) (((-854) (-854)) 101 (|has| $ (-6 -4241)))) (-2209 (($ $ (-712)) NIL) (($ $) 115)) (-2599 (((-854) (-525)) 47 (|has| $ (-6 -4241)))) (-4122 (($ $) NIL)) (-2410 (($ $) NIL)) (-4098 (($ $) NIL)) (-2391 (($ $) NIL)) (-4073 (($ $) 81)) (-2370 (($ $) 70)) (-1300 (((-357) $) 175) (((-205) $) 177) (((-825 (-357)) $) NIL) (((-1072) $) 162) (((-501) $) 173) (($ (-205)) 181)) (-2686 (((-796) $) 164) (($ (-525)) 186) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 186) (($ (-385 (-525))) NIL) (((-205) $) 178)) (-3425 (((-712)) NIL)) (-1584 (($ $) 111)) (-2901 (((-854)) 54) (((-854) (-854)) 66 (|has| $ (-6 -4241)))) (-3523 (((-854)) 103)) (-4163 (($ $) 86)) (-2457 (($ $) 46) (($ $ $) 52)) (-1724 (((-108) $ $) NIL)) (-4137 (($ $) 84)) (-2432 (($ $) 37)) (-4193 (($ $) NIL)) (-2477 (($ $) NIL)) (-1234 (($ $) NIL)) (-2495 (($ $) NIL)) (-4179 (($ $) NIL)) (-2469 (($ $) NIL)) (-4149 (($ $) 85)) (-2444 (($ $) 49)) (-1460 (($ $) 51)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 34 T CONST)) (-1839 (($) 38 T CONST)) (-3042 (((-1072) $) 27) (((-1072) $ (-108)) 29) (((-1176) (-763) $) 30) (((-1176) (-763) $ (-108)) 31)) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 39)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 42)) (-4059 (($ $ $) 45) (($ $ (-525)) 41)) (-4047 (($ $) 36) (($ $ $) 50)) (-4036 (($ $ $) 61)) (** (($ $ (-854)) 67) (($ $ (-712)) NIL) (($ $ (-525)) 88) (($ $ (-385 (-525))) 125) (($ $ $) 117)) (* (($ (-854) $) 65) (($ (-712) $) NIL) (($ (-525) $) 68) (($ $ $) 60) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) -(((-357) (-13 (-382) (-213) (-566 (-1072)) (-769) (-565 (-205)) (-1111) (-566 (-501)) (-10 -8 (-15 -4059 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -1297 ($ $)) (-15 -3432 ((-525) $ $)) (-15 -3423 ($ $ (-525))) (-15 -3959 ((-385 (-525)) $ (-712))) (-15 -3959 ((-385 (-525)) $ (-712) (-712))) (-15 -3068 ($)) (-15 -3347 ($)) (-15 -3507 ($)) (-15 -2457 ($ $ $)) (-15 -3068 ($ $)) (-15 -3347 ($ $)) (-15 -1300 ($ (-205))) (-15 -3556 ((-1176))) (-15 -3556 ((-1176) (-712))) (-15 -3565 ((-1176))) (-15 -3565 ((-1176) (-712))) (-15 -2094 ((-1176))) (-15 -2094 ((-1176) (-712))) (-15 -3476 ((-1176) (-712))) (-6 -4241) (-6 -4233)))) (T -357)) -((** (*1 *1 *1 *1) (-5 *1 (-357))) (-4059 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-1297 (*1 *1 *1) (-5 *1 (-357))) (-3432 (*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-3423 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-3959 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-712)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-3068 (*1 *1) (-5 *1 (-357))) (-3347 (*1 *1) (-5 *1 (-357))) (-3507 (*1 *1) (-5 *1 (-357))) (-2457 (*1 *1 *1 *1) (-5 *1 (-357))) (-3068 (*1 *1 *1) (-5 *1 (-357))) (-3347 (*1 *1 *1) (-5 *1 (-357))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357)))) (-3556 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-357)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-357)))) (-3565 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-357)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-357)))) (-2094 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-357)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-357)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-357))))) -(-13 (-382) (-213) (-566 (-1072)) (-769) (-565 (-205)) (-1111) (-566 (-501)) (-10 -8 (-15 -4059 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -1297 ($ $)) (-15 -3432 ((-525) $ $)) (-15 -3423 ($ $ (-525))) (-15 -3959 ((-385 (-525)) $ (-712))) (-15 -3959 ((-385 (-525)) $ (-712) (-712))) (-15 -3068 ($)) (-15 -3347 ($)) (-15 -3507 ($)) (-15 -2457 ($ $ $)) (-15 -3068 ($ $)) (-15 -3347 ($ $)) (-15 -1300 ($ (-205))) (-15 -3556 ((-1176))) (-15 -3556 ((-1176) (-712))) (-15 -3565 ((-1176))) (-15 -3565 ((-1176) (-712))) (-15 -2094 ((-1176))) (-15 -2094 ((-1176) (-712))) (-15 -3476 ((-1176) (-712))) (-6 -4241) (-6 -4233))) -((-2751 (((-591 (-273 (-885 |#1|))) (-273 (-385 (-885 (-525)))) |#1|) 46) (((-591 (-273 (-885 |#1|))) (-385 (-885 (-525))) |#1|) 45) (((-591 (-591 (-273 (-885 |#1|)))) (-591 (-273 (-385 (-885 (-525))))) |#1|) 42) (((-591 (-591 (-273 (-885 |#1|)))) (-591 (-385 (-885 (-525)))) |#1|) 36)) (-1445 (((-591 |#1|) (-385 (-885 (-525))) |#1|) 20) (((-591 (-591 |#1|)) (-591 (-385 (-885 (-525)))) (-591 (-1089)) |#1|) 30))) -(((-358 |#1|) (-10 -7 (-15 -2751 ((-591 (-591 (-273 (-885 |#1|)))) (-591 (-385 (-885 (-525)))) |#1|)) (-15 -2751 ((-591 (-591 (-273 (-885 |#1|)))) (-591 (-273 (-385 (-885 (-525))))) |#1|)) (-15 -2751 ((-591 (-273 (-885 |#1|))) (-385 (-885 (-525))) |#1|)) (-15 -2751 ((-591 (-273 (-885 |#1|))) (-273 (-385 (-885 (-525)))) |#1|)) (-15 -1445 ((-591 (-591 |#1|)) (-591 (-385 (-885 (-525)))) (-591 (-1089)) |#1|)) (-15 -1445 ((-591 |#1|) (-385 (-885 (-525))) |#1|))) (-13 (-786) (-341))) (T -358)) -((-1445 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 (-525)))) (-5 *2 (-591 *4)) (-5 *1 (-358 *4)) (-4 *4 (-13 (-786) (-341))))) (-1445 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 (-385 (-885 (-525))))) (-5 *4 (-591 (-1089))) (-5 *2 (-591 (-591 *5))) (-5 *1 (-358 *5)) (-4 *5 (-13 (-786) (-341))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-885 (-525))))) (-5 *2 (-591 (-273 (-885 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-786) (-341))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 (-525)))) (-5 *2 (-591 (-273 (-885 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-786) (-341))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-273 (-385 (-885 (-525)))))) (-5 *2 (-591 (-591 (-273 (-885 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-786) (-341))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-385 (-885 (-525))))) (-5 *2 (-591 (-591 (-273 (-885 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-786) (-341)))))) -(-10 -7 (-15 -2751 ((-591 (-591 (-273 (-885 |#1|)))) (-591 (-385 (-885 (-525)))) |#1|)) (-15 -2751 ((-591 (-591 (-273 (-885 |#1|)))) (-591 (-273 (-385 (-885 (-525))))) |#1|)) (-15 -2751 ((-591 (-273 (-885 |#1|))) (-385 (-885 (-525))) |#1|)) (-15 -2751 ((-591 (-273 (-885 |#1|))) (-273 (-385 (-885 (-525)))) |#1|)) (-15 -1445 ((-591 (-591 |#1|)) (-591 (-385 (-885 (-525)))) (-591 (-1089)) |#1|)) (-15 -1445 ((-591 |#1|) (-385 (-885 (-525))) |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) 26)) (-3341 ((|#2| $) 28)) (-1575 (($ $) NIL)) (-3667 (((-712) $) 10)) (-2987 (((-591 $) $) 20)) (-3802 (((-108) $) NIL)) (-2990 (($ |#2| |#1|) 18)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1609 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1548 ((|#2| $) 15)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 45) (($ |#2|) 27)) (-3109 (((-591 |#1|) $) 17)) (-1263 ((|#1| $ |#2|) 47)) (-1830 (($) 29 T CONST)) (-1994 (((-591 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-359 |#1| |#2|) (-13 (-360 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-975) (-788)) (T -359)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-359 *3 *2)) (-4 *3 (-975)) (-4 *2 (-788))))) +((-1651 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-713)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-346)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-855)))) (-1527 (*1 *1) (-4 *1 (-346)))) +(-13 (-1019) (-10 -8 (-15 -1651 ((-713))) (-15 -3381 ($ (-855))) (-15 -2111 ((-855) $)) (-15 -1527 ($)))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-3852 (((-632 |#2|) (-1172 $)) 41)) (-1689 (($ (-1172 |#2|) (-1172 $)) 35)) (-3198 (((-632 |#2|) $ (-1172 $)) 43)) (-2257 ((|#2| (-1172 $)) 13)) (-1625 (((-1172 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) 25))) +(((-347 |#1| |#2| |#3|) (-10 -8 (-15 -3852 ((-632 |#2|) (-1172 |#1|))) (-15 -2257 (|#2| (-1172 |#1|))) (-15 -1689 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3198 ((-632 |#2|) |#1| (-1172 |#1|)))) (-348 |#2| |#3|) (-160) (-1148 |#2|)) (T -347)) +NIL +(-10 -8 (-15 -3852 ((-632 |#2|) (-1172 |#1|))) (-15 -2257 (|#2| (-1172 |#1|))) (-15 -1689 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3198 ((-632 |#2|) |#1| (-1172 |#1|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3852 (((-632 |#1|) (-1172 $)) 46)) (-3942 ((|#1| $) 52)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1689 (($ (-1172 |#1|) (-1172 $)) 48)) (-3198 (((-632 |#1|) $ (-1172 $)) 53)) (-1645 (((-3 $ "failed") $) 34)) (-3439 (((-855)) 54)) (-2507 (((-108) $) 31)) (-2281 ((|#1| $) 51)) (-3800 ((|#2| $) 44 (|has| |#1| (-341)))) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2257 ((|#1| (-1172 $)) 47)) (-1625 (((-1172 |#1|) $ (-1172 $)) 50) (((-632 |#1|) (-1172 $) (-1172 $)) 49)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-1279 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-2867 ((|#2| $) 45)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-348 |#1| |#2|) (-131) (-160) (-1148 |t#1|)) (T -348)) +((-3439 (*1 *2) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-855)))) (-3198 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160)))) (-1625 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-1172 *4)))) (-1625 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) (-1689 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-160)) (-4 *1 (-348 *4 *5)) (-4 *5 (-1148 *4)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1148 *2)) (-4 *2 (-160)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) (-2867 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341)) (-4 *2 (-1148 *3))))) +(-13 (-37 |t#1|) (-10 -8 (-15 -3439 ((-855))) (-15 -3198 ((-632 |t#1|) $ (-1172 $))) (-15 -3942 (|t#1| $)) (-15 -2281 (|t#1| $)) (-15 -1625 ((-1172 |t#1|) $ (-1172 $))) (-15 -1625 ((-632 |t#1|) (-1172 $) (-1172 $))) (-15 -1689 ($ (-1172 |t#1|) (-1172 $))) (-15 -2257 (|t#1| (-1172 $))) (-15 -3852 ((-632 |t#1|) (-1172 $))) (-15 -2867 (|t#2| $)) (IF (|has| |t#1| (-341)) (-15 -3800 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2225 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3336 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2868 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-349 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3336 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2225 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1126) (-351 |#1|) (-1126) (-351 |#3|)) (T -349)) +((-2225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6)))) (-3336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5))))) +(-10 -7 (-15 -2868 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3336 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2225 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3746 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-1943 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-1473 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-3263 (($ $) 25)) (-1930 (((-525) (-1 (-108) |#2|) $) NIL) (((-525) |#2| $) 11) (((-525) |#2| $ (-525)) NIL)) (-1440 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-350 |#1| |#2|) (-10 -8 (-15 -1943 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3746 ((-108) |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1930 ((-525) |#2| |#1| (-525))) (-15 -1930 ((-525) |#2| |#1|)) (-15 -1930 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3746 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1473 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -1440 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-351 |#2|) (-1126)) (T -350)) +NIL +(-10 -8 (-15 -1943 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3746 ((-108) |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1930 ((-525) |#2| |#1| (-525))) (-15 -1930 ((-525) |#2| |#1|)) (-15 -1930 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3746 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1473 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -1440 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2792 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) 8)) (-1230 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-1626 (($ $) 90 (|has| $ (-6 -4255)))) (-3263 (($ $) 100)) (-1716 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 51)) (-1930 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1019)))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3248 (($ (-713) |#1|) 69)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 43 (|has| (-525) (-789)))) (-1260 (($ $ $) 87 (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 44 (|has| (-525) (-789)))) (-2154 (($ $ $) 86 (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2379 (((-592 (-525)) $) 46)) (-2030 (((-108) (-525) $) 47)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1683 ((|#1| $) 42 (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1614 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-2697 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-4038 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-1261 (($ $) 13)) (-2923 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 70)) (-1810 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-3959 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 82 (|has| |#1| (-789)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-351 |#1|) (-131) (-1126)) (T -351)) +((-1440 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) (-3263 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)))) (-1473 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) (-3746 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1126)) (-5 *2 (-108)))) (-1930 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1126)) (-5 *2 (-525)))) (-1930 (*1 *2 *3 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-525)))) (-1930 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)))) (-1440 (*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789)))) (-1473 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789)))) (-3746 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-789)) (-5 *2 (-108)))) (-4038 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4255)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) (-1626 (*1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-351 *2)) (-4 *2 (-1126)))) (-1943 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4255)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) (-1943 (*1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789))))) +(-13 (-597 |t#1|) (-10 -8 (-6 -4254) (-15 -1440 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3263 ($ $)) (-15 -1473 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -3746 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -1930 ((-525) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -1930 ((-525) |t#1| $)) (-15 -1930 ((-525) |t#1| $ (-525)))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-6 (-789)) (-15 -1440 ($ $ $)) (-15 -1473 ($ $)) (-15 -3746 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4255)) (PROGN (-15 -4038 ($ $ $ (-525))) (-15 -1626 ($ $)) (-15 -1943 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-789)) (-15 -1943 ($ $)) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-97) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1019) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1126) . T)) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1562 (((-592 |#1|) $) 32)) (-1285 (($ $ (-713)) 33)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-2554 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 36)) (-2414 (($ $) 34)) (-1257 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 37)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2168 (($ $ |#1| $) 31) (($ $ (-592 |#1|) (-592 $)) 30)) (-1486 (((-713) $) 38)) (-4059 (($ $ $) 29)) (-4044 (((-797) $) 11) (($ |#1|) 41) (((-1185 |#1| |#2|) $) 40) (((-1194 |#1| |#2|) $) 39)) (-2059 ((|#2| (-1194 |#1| |#2|) $) 42)) (-1436 (($) 18 T CONST)) (-3765 (($ (-617 |#1|)) 35)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#2|) 28 (|has| |#2| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-352 |#1| |#2|) (-131) (-789) (-160)) (T -352)) +((-2059 (*1 *2 *3 *1) (-12 (-5 *3 (-1194 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789)) (-4 *2 (-160)))) (-4044 (*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1185 *3 *4)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1194 *3 *4)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-713)))) (-1257 (*1 *2 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-2554 (*1 *2 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3765 (*1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4)) (-4 *4 (-160)))) (-2414 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-592 *3)))) (-2168 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-789)) (-4 *5 (-160))))) +(-13 (-583 |t#2|) (-10 -8 (-15 -2059 (|t#2| (-1194 |t#1| |t#2|) $)) (-15 -4044 ($ |t#1|)) (-15 -4044 ((-1185 |t#1| |t#2|) $)) (-15 -4044 ((-1194 |t#1| |t#2|) $)) (-15 -1486 ((-713) $)) (-15 -1257 ((-1194 |t#1| |t#2|) (-1194 |t#1| |t#2|) $)) (-15 -2554 ((-1194 |t#1| |t#2|) (-1194 |t#1| |t#2|) $)) (-15 -3765 ($ (-617 |t#1|))) (-15 -2414 ($ $)) (-15 -1285 ($ $ (-713))) (-15 -1562 ((-592 |t#1|) $)) (-15 -2168 ($ $ |t#1| $)) (-15 -2168 ($ $ (-592 |t#1|) (-592 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#2|) . T) ((-583 |#2|) . T) ((-660 |#2|) . T) ((-982 |#2|) . T) ((-1019) . T)) +((-3486 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-1229 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 13)) (-3413 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 22))) +(((-353 |#1| |#2|) (-10 -7 (-15 -1229 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3413 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3486 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1126) (-13 (-351 |#1|) (-10 -7 (-6 -4255)))) (T -353)) +((-3486 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))))) (-3413 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))))) (-1229 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255))))))) +(-10 -7 (-15 -1229 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3413 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3486 (|#2| (-1 (-108) |#1| |#1|) |#2|))) +((-1307 (((-632 |#2|) (-632 $)) NIL) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 22) (((-632 (-525)) (-632 $)) 14))) +(((-354 |#1| |#2|) (-10 -8 (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 |#2|) (-632 |#1|)))) (-355 |#2|) (-976)) (T -354)) +NIL +(-10 -8 (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 |#2|) (-632 |#1|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1307 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 35) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 43 (|has| |#1| (-588 (-525)))) (((-632 (-525)) (-632 $)) 42 (|has| |#1| (-588 (-525))))) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-355 |#1|) (-131) (-976)) (T -355)) +NIL +(-13 (-588 |t#1|) (-10 -7 (IF (|has| |t#1| (-588 (-525))) (-6 (-588 (-525))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-1547 (((-592 (-273 (-886 (-157 |#1|)))) (-273 (-385 (-886 (-157 (-525))))) |#1|) 51) (((-592 (-273 (-886 (-157 |#1|)))) (-385 (-886 (-157 (-525)))) |#1|) 50) (((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-273 (-385 (-886 (-157 (-525)))))) |#1|) 47) (((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-385 (-886 (-157 (-525))))) |#1|) 41)) (-3162 (((-592 (-592 (-157 |#1|))) (-592 (-385 (-886 (-157 (-525))))) (-592 (-1090)) |#1|) 30) (((-592 (-157 |#1|)) (-385 (-886 (-157 (-525)))) |#1|) 18))) +(((-356 |#1|) (-10 -7 (-15 -1547 ((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-385 (-886 (-157 (-525))))) |#1|)) (-15 -1547 ((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-273 (-385 (-886 (-157 (-525)))))) |#1|)) (-15 -1547 ((-592 (-273 (-886 (-157 |#1|)))) (-385 (-886 (-157 (-525)))) |#1|)) (-15 -1547 ((-592 (-273 (-886 (-157 |#1|)))) (-273 (-385 (-886 (-157 (-525))))) |#1|)) (-15 -3162 ((-592 (-157 |#1|)) (-385 (-886 (-157 (-525)))) |#1|)) (-15 -3162 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-886 (-157 (-525))))) (-592 (-1090)) |#1|))) (-13 (-341) (-787))) (T -356)) +((-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-886 (-157 (-525)))))) (-5 *4 (-592 (-1090))) (-5 *2 (-592 (-592 (-157 *5)))) (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787))))) (-3162 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-157 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-886 (-157 (-525)))))) (-5 *2 (-592 (-273 (-886 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-157 (-525))))) (-5 *2 (-592 (-273 (-886 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-886 (-157 (-525))))))) (-5 *2 (-592 (-592 (-273 (-886 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 (-157 (-525)))))) (-5 *2 (-592 (-592 (-273 (-886 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787)))))) +(-10 -7 (-15 -1547 ((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-385 (-886 (-157 (-525))))) |#1|)) (-15 -1547 ((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-273 (-385 (-886 (-157 (-525)))))) |#1|)) (-15 -1547 ((-592 (-273 (-886 (-157 |#1|)))) (-385 (-886 (-157 (-525)))) |#1|)) (-15 -1547 ((-592 (-273 (-886 (-157 |#1|)))) (-273 (-385 (-886 (-157 (-525))))) |#1|)) (-15 -3162 ((-592 (-157 |#1|)) (-385 (-886 (-157 (-525)))) |#1|)) (-15 -3162 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-886 (-157 (-525))))) (-592 (-1090)) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 33)) (-4094 (((-525) $) 55)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3948 (($ $) 110)) (-3915 (($ $) 82)) (-3760 (($ $) 71)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2975 (($ $) 44)) (-1700 (((-108) $ $) NIL)) (-3886 (($ $) 80)) (-3737 (($ $) 69)) (-2780 (((-525) $) 64)) (-4162 (($ $ (-525)) 62)) (-3946 (($ $) NIL)) (-3783 (($ $) NIL)) (-1957 (($) NIL T CONST)) (-1325 (($ $) 112)) (-2769 (((-3 (-525) "failed") $) 189) (((-3 (-385 (-525)) "failed") $) 185)) (-2068 (((-525) $) 187) (((-385 (-525)) $) 183)) (-2720 (($ $ $) NIL)) (-3673 (((-525) $ $) 102)) (-1645 (((-3 $ "failed") $) 114)) (-3840 (((-385 (-525)) $ (-713)) 190) (((-385 (-525)) $ (-713) (-713)) 182)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2229 (((-855)) 73) (((-855) (-855)) 98 (|has| $ (-6 -4245)))) (-2973 (((-108) $) 106)) (-1961 (($) 40)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL)) (-3293 (((-1177) (-713)) 152)) (-3651 (((-1177)) 157) (((-1177) (-713)) 158)) (-3123 (((-1177)) 159) (((-1177) (-713)) 160)) (-2467 (((-1177)) 155) (((-1177) (-713)) 156)) (-2158 (((-525) $) 58)) (-2507 (((-108) $) 104)) (-2581 (($ $ (-525)) NIL)) (-2231 (($ $) 48)) (-2281 (($ $) NIL)) (-3721 (((-108) $) 35)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL) (($) NIL (-12 (-2823 (|has| $ (-6 -4237))) (-2823 (|has| $ (-6 -4245)))))) (-2154 (($ $ $) NIL) (($) 99 (-12 (-2823 (|has| $ (-6 -4237))) (-2823 (|has| $ (-6 -4245)))))) (-2243 (((-525) $) 17)) (-3931 (($) 87) (($ $) 92)) (-2802 (($) 91) (($ $) 93)) (-2412 (($ $) 83)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 116)) (-3196 (((-855) (-525)) 43 (|has| $ (-6 -4245)))) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) 53)) (-2473 (($ $) 109)) (-3024 (($ (-525) (-525)) 107) (($ (-525) (-525) (-855)) 108)) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1737 (((-525) $) 19)) (-1295 (($) 94)) (-2840 (($ $) 79)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-3943 (((-855)) 100) (((-855) (-855)) 101 (|has| $ (-6 -4245)))) (-1576 (($ $ (-713)) NIL) (($ $) 115)) (-3043 (((-855) (-525)) 47 (|has| $ (-6 -4245)))) (-3960 (($ $) NIL)) (-3795 (($ $) NIL)) (-3930 (($ $) NIL)) (-3771 (($ $) NIL)) (-3901 (($ $) 81)) (-3749 (($ $) 70)) (-2923 (((-357) $) 175) (((-205) $) 177) (((-826 (-357)) $) NIL) (((-1073) $) 162) (((-501) $) 173) (($ (-205)) 181)) (-4044 (((-797) $) 164) (($ (-525)) 186) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 186) (($ (-385 (-525))) NIL) (((-205) $) 178)) (-2502 (((-713)) NIL)) (-1448 (($ $) 111)) (-3082 (((-855)) 54) (((-855) (-855)) 66 (|has| $ (-6 -4245)))) (-3758 (((-855)) 103)) (-4004 (($ $) 86)) (-3836 (($ $) 46) (($ $ $) 52)) (-3787 (((-108) $ $) NIL)) (-3975 (($ $) 84)) (-3808 (($ $) 37)) (-4035 (($ $) NIL)) (-3861 (($ $) NIL)) (-2608 (($ $) NIL)) (-3873 (($ $) NIL)) (-4018 (($ $) NIL)) (-3848 (($ $) NIL)) (-3989 (($ $) 85)) (-3823 (($ $) 49)) (-2053 (($ $) 51)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 34 T CONST)) (-1449 (($) 38 T CONST)) (-2453 (((-1073) $) 27) (((-1073) $ (-108)) 29) (((-1177) (-764) $) 30) (((-1177) (-764) $ (-108)) 31)) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 39)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 42)) (-4047 (($ $ $) 45) (($ $ (-525)) 41)) (-4033 (($ $) 36) (($ $ $) 50)) (-4017 (($ $ $) 61)) (** (($ $ (-855)) 67) (($ $ (-713)) NIL) (($ $ (-525)) 88) (($ $ (-385 (-525))) 125) (($ $ $) 117)) (* (($ (-855) $) 65) (($ (-713) $) NIL) (($ (-525) $) 68) (($ $ $) 60) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) +(((-357) (-13 (-382) (-213) (-567 (-1073)) (-770) (-566 (-205)) (-1112) (-567 (-501)) (-10 -8 (-15 -4047 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2231 ($ $)) (-15 -3673 ((-525) $ $)) (-15 -4162 ($ $ (-525))) (-15 -3840 ((-385 (-525)) $ (-713))) (-15 -3840 ((-385 (-525)) $ (-713) (-713))) (-15 -3931 ($)) (-15 -2802 ($)) (-15 -1295 ($)) (-15 -3836 ($ $ $)) (-15 -3931 ($ $)) (-15 -2802 ($ $)) (-15 -2923 ($ (-205))) (-15 -3123 ((-1177))) (-15 -3123 ((-1177) (-713))) (-15 -2467 ((-1177))) (-15 -2467 ((-1177) (-713))) (-15 -3651 ((-1177))) (-15 -3651 ((-1177) (-713))) (-15 -3293 ((-1177) (-713))) (-6 -4245) (-6 -4237)))) (T -357)) +((** (*1 *1 *1 *1) (-5 *1 (-357))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-2231 (*1 *1 *1) (-5 *1 (-357))) (-3673 (*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-3840 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-3840 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-3931 (*1 *1) (-5 *1 (-357))) (-2802 (*1 *1) (-5 *1 (-357))) (-1295 (*1 *1) (-5 *1 (-357))) (-3836 (*1 *1 *1 *1) (-5 *1 (-357))) (-3931 (*1 *1 *1) (-5 *1 (-357))) (-2802 (*1 *1 *1) (-5 *1 (-357))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357)))) (-3123 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))) (-2467 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))) (-3651 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357)))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357))))) +(-13 (-382) (-213) (-567 (-1073)) (-770) (-566 (-205)) (-1112) (-567 (-501)) (-10 -8 (-15 -4047 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2231 ($ $)) (-15 -3673 ((-525) $ $)) (-15 -4162 ($ $ (-525))) (-15 -3840 ((-385 (-525)) $ (-713))) (-15 -3840 ((-385 (-525)) $ (-713) (-713))) (-15 -3931 ($)) (-15 -2802 ($)) (-15 -1295 ($)) (-15 -3836 ($ $ $)) (-15 -3931 ($ $)) (-15 -2802 ($ $)) (-15 -2923 ($ (-205))) (-15 -3123 ((-1177))) (-15 -3123 ((-1177) (-713))) (-15 -2467 ((-1177))) (-15 -2467 ((-1177) (-713))) (-15 -3651 ((-1177))) (-15 -3651 ((-1177) (-713))) (-15 -3293 ((-1177) (-713))) (-6 -4245) (-6 -4237))) +((-1932 (((-592 (-273 (-886 |#1|))) (-273 (-385 (-886 (-525)))) |#1|) 46) (((-592 (-273 (-886 |#1|))) (-385 (-886 (-525))) |#1|) 45) (((-592 (-592 (-273 (-886 |#1|)))) (-592 (-273 (-385 (-886 (-525))))) |#1|) 42) (((-592 (-592 (-273 (-886 |#1|)))) (-592 (-385 (-886 (-525)))) |#1|) 36)) (-1995 (((-592 |#1|) (-385 (-886 (-525))) |#1|) 20) (((-592 (-592 |#1|)) (-592 (-385 (-886 (-525)))) (-592 (-1090)) |#1|) 30))) +(((-358 |#1|) (-10 -7 (-15 -1932 ((-592 (-592 (-273 (-886 |#1|)))) (-592 (-385 (-886 (-525)))) |#1|)) (-15 -1932 ((-592 (-592 (-273 (-886 |#1|)))) (-592 (-273 (-385 (-886 (-525))))) |#1|)) (-15 -1932 ((-592 (-273 (-886 |#1|))) (-385 (-886 (-525))) |#1|)) (-15 -1932 ((-592 (-273 (-886 |#1|))) (-273 (-385 (-886 (-525)))) |#1|)) (-15 -1995 ((-592 (-592 |#1|)) (-592 (-385 (-886 (-525)))) (-592 (-1090)) |#1|)) (-15 -1995 ((-592 |#1|) (-385 (-886 (-525))) |#1|))) (-13 (-787) (-341))) (T -358)) +((-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-1995 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-886 (-525))))) (-5 *4 (-592 (-1090))) (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5)) (-4 *5 (-13 (-787) (-341))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-886 (-525))))) (-5 *2 (-592 (-273 (-886 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-525)))) (-5 *2 (-592 (-273 (-886 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-886 (-525)))))) (-5 *2 (-592 (-592 (-273 (-886 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 (-525))))) (-5 *2 (-592 (-592 (-273 (-886 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341)))))) +(-10 -7 (-15 -1932 ((-592 (-592 (-273 (-886 |#1|)))) (-592 (-385 (-886 (-525)))) |#1|)) (-15 -1932 ((-592 (-592 (-273 (-886 |#1|)))) (-592 (-273 (-385 (-886 (-525))))) |#1|)) (-15 -1932 ((-592 (-273 (-886 |#1|))) (-385 (-886 (-525))) |#1|)) (-15 -1932 ((-592 (-273 (-886 |#1|))) (-273 (-385 (-886 (-525)))) |#1|)) (-15 -1995 ((-592 (-592 |#1|)) (-592 (-385 (-886 (-525)))) (-592 (-1090)) |#1|)) (-15 -1995 ((-592 |#1|) (-385 (-886 (-525))) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) 26)) (-2068 ((|#2| $) 28)) (-3306 (($ $) NIL)) (-3682 (((-713) $) 10)) (-1585 (((-592 $) $) 20)) (-1432 (((-108) $) NIL)) (-1784 (($ |#2| |#1|) 18)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3060 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3277 ((|#2| $) 15)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 45) (($ |#2|) 27)) (-3681 (((-592 |#1|) $) 17)) (-2100 ((|#1| $ |#2|) 47)) (-1436 (($) 29 T CONST)) (-3365 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-359 |#1| |#2|) (-13 (-360 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-976) (-789)) (T -359)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-359 *3 *2)) (-4 *3 (-976)) (-4 *2 (-789))))) (-13 (-360 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#2| "failed") $) 44)) (-3341 ((|#2| $) 43)) (-1575 (($ $) 30)) (-3667 (((-712) $) 34)) (-2987 (((-591 $) $) 35)) (-3802 (((-108) $) 38)) (-2990 (($ |#2| |#1|) 39)) (-1257 (($ (-1 |#1| |#1|) $) 40)) (-1609 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1548 ((|#2| $) 33)) (-1556 ((|#1| $) 32)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ |#2|) 45)) (-3109 (((-591 |#1|) $) 36)) (-1263 ((|#1| $ |#2|) 41)) (-1830 (($) 18 T CONST)) (-1994 (((-591 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-360 |#1| |#2|) (-131) (-975) (-1018)) (T -360)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-975)) (-4 *3 (-1018)))) (-1263 (*1 *2 *1 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1018)) (-4 *2 (-975)))) (-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)))) (-2990 (*1 *1 *2 *3) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1018)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) (-5 *2 (-108)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) (-5 *2 (-591 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) (-5 *2 (-591 *3)))) (-2987 (*1 *2 *1) (-12 (-4 *3 (-975)) (-4 *4 (-1018)) (-5 *2 (-591 *1)) (-4 *1 (-360 *3 *4)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) (-5 *2 (-712)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1018)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1018)) (-4 *2 (-975)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1575 (*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-975)) (-4 *3 (-1018))))) -(-13 (-107 |t#1| |t#1|) (-966 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1263 (|t#1| $ |t#2|)) (-15 -1257 ($ (-1 |t#1| |t#1|) $)) (-15 -2990 ($ |t#2| |t#1|)) (-15 -3802 ((-108) $)) (-15 -1994 ((-591 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3109 ((-591 |t#1|) $)) (-15 -2987 ((-591 $) $)) (-15 -3667 ((-712) $)) (-15 -1548 (|t#2| $)) (-15 -1556 (|t#1| $)) (-15 -1609 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1575 ($ $)) (IF (|has| |t#1| (-160)) (-6 (-659 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-659 |#1|) |has| |#1| (-160)) ((-966 |#2|) . T) ((-981 |#1|) . T) ((-1018) . T)) -((-2163 (((-1176) $) 7)) (-2686 (((-796) $) 8) (($ (-631 (-640))) 14) (($ (-591 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 11))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#2| "failed") $) 44)) (-2068 ((|#2| $) 43)) (-3306 (($ $) 30)) (-3682 (((-713) $) 34)) (-1585 (((-592 $) $) 35)) (-1432 (((-108) $) 38)) (-1784 (($ |#2| |#1|) 39)) (-2868 (($ (-1 |#1| |#1|) $) 40)) (-3060 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3277 ((|#2| $) 33)) (-3286 ((|#1| $) 32)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ |#2|) 45)) (-3681 (((-592 |#1|) $) 36)) (-2100 ((|#1| $ |#2|) 41)) (-1436 (($) 18 T CONST)) (-3365 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-360 |#1| |#2|) (-131) (-976) (-1019)) (T -360)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1019)))) (-2100 (*1 *2 *1 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-976)))) (-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)))) (-1784 (*1 *1 *2 *3) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1019)))) (-1432 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-108)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-592 *3)))) (-1585 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-592 *1)) (-4 *1 (-360 *3 *4)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-713)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1019)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-976)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3306 (*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1019))))) +(-13 (-107 |t#1| |t#1|) (-967 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2100 (|t#1| $ |t#2|)) (-15 -2868 ($ (-1 |t#1| |t#1|) $)) (-15 -1784 ($ |t#2| |t#1|)) (-15 -1432 ((-108) $)) (-15 -3365 ((-592 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3681 ((-592 |t#1|) $)) (-15 -1585 ((-592 $) $)) (-15 -3682 ((-713) $)) (-15 -3277 (|t#2| $)) (-15 -3286 (|t#1| $)) (-15 -3060 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3306 ($ $)) (IF (|has| |t#1| (-160)) (-6 (-660 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) |has| |#1| (-160)) ((-967 |#2|) . T) ((-982 |#1|) . T) ((-1019) . T)) +((-3153 (((-1177) $) 7)) (-4044 (((-797) $) 8) (($ (-632 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 11))) (((-361) (-131)) (T -361)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-631 (-640))) (-4 *1 (-361)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-361)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) (-4 *1 (-361))))) -(-13 (-373) (-10 -8 (-15 -2686 ($ (-631 (-640)))) (-15 -2686 ($ (-591 (-308)))) (-15 -2686 ($ (-308))) (-15 -2686 ($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308)))))))) -(((-565 (-796)) . T) ((-373) . T) ((-1125) . T)) -((-4174 (((-3 $ "failed") (-631 (-294 (-357)))) 21) (((-3 $ "failed") (-631 (-294 (-525)))) 19) (((-3 $ "failed") (-631 (-885 (-357)))) 17) (((-3 $ "failed") (-631 (-885 (-525)))) 15) (((-3 $ "failed") (-631 (-385 (-885 (-357))))) 13) (((-3 $ "failed") (-631 (-385 (-885 (-525))))) 11)) (-3341 (($ (-631 (-294 (-357)))) 22) (($ (-631 (-294 (-525)))) 20) (($ (-631 (-885 (-357)))) 18) (($ (-631 (-885 (-525)))) 16) (($ (-631 (-385 (-885 (-357))))) 14) (($ (-631 (-385 (-885 (-525))))) 12)) (-2163 (((-1176) $) 7)) (-2686 (((-796) $) 8) (($ (-591 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 23))) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-632 (-641))) (-4 *1 (-361)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-361)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) (-4 *1 (-361))))) +(-13 (-373) (-10 -8 (-15 -4044 ($ (-632 (-641)))) (-15 -4044 ($ (-592 (-308)))) (-15 -4044 ($ (-308))) (-15 -4044 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308)))))))) +(((-566 (-797)) . T) ((-373) . T) ((-1126) . T)) +((-2769 (((-3 $ "failed") (-632 (-294 (-357)))) 21) (((-3 $ "failed") (-632 (-294 (-525)))) 19) (((-3 $ "failed") (-632 (-886 (-357)))) 17) (((-3 $ "failed") (-632 (-886 (-525)))) 15) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 13) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 11)) (-2068 (($ (-632 (-294 (-357)))) 22) (($ (-632 (-294 (-525)))) 20) (($ (-632 (-886 (-357)))) 18) (($ (-632 (-886 (-525)))) 16) (($ (-632 (-385 (-886 (-357))))) 14) (($ (-632 (-385 (-886 (-525))))) 12)) (-3153 (((-1177) $) 7)) (-4044 (((-797) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 23))) (((-362) (-131)) (T -362)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-362)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) (-4 *1 (-362)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-631 (-294 (-357)))) (-4 *1 (-362)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 (-294 (-357)))) (-4 *1 (-362)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-631 (-294 (-525)))) (-4 *1 (-362)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 (-294 (-525)))) (-4 *1 (-362)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-631 (-885 (-357)))) (-4 *1 (-362)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 (-885 (-357)))) (-4 *1 (-362)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-631 (-885 (-525)))) (-4 *1 (-362)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 (-885 (-525)))) (-4 *1 (-362)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-631 (-385 (-885 (-357))))) (-4 *1 (-362)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 (-385 (-885 (-357))))) (-4 *1 (-362)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-631 (-385 (-885 (-525))))) (-4 *1 (-362)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-631 (-385 (-885 (-525))))) (-4 *1 (-362))))) -(-13 (-373) (-10 -8 (-15 -2686 ($ (-591 (-308)))) (-15 -2686 ($ (-308))) (-15 -2686 ($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308)))))) (-15 -3341 ($ (-631 (-294 (-357))))) (-15 -4174 ((-3 $ "failed") (-631 (-294 (-357))))) (-15 -3341 ($ (-631 (-294 (-525))))) (-15 -4174 ((-3 $ "failed") (-631 (-294 (-525))))) (-15 -3341 ($ (-631 (-885 (-357))))) (-15 -4174 ((-3 $ "failed") (-631 (-885 (-357))))) (-15 -3341 ($ (-631 (-885 (-525))))) (-15 -4174 ((-3 $ "failed") (-631 (-885 (-525))))) (-15 -3341 ($ (-631 (-385 (-885 (-357)))))) (-15 -4174 ((-3 $ "failed") (-631 (-385 (-885 (-357)))))) (-15 -3341 ($ (-631 (-385 (-885 (-525)))))) (-15 -4174 ((-3 $ "failed") (-631 (-385 (-885 (-525)))))))) -(((-565 (-796)) . T) ((-373) . T) ((-1125) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1422 (($ |#1| |#2|) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1258 ((|#2| $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 28)) (-1830 (($) 12 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-363 |#1| |#2|) (-13 (-107 |#1| |#1|) (-481 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-160)) (-6 (-659 |#1|)) |%noBranch|))) (-975) (-788)) (T -363)) -NIL -(-13 (-107 |#1| |#1|) (-481 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-160)) (-6 (-659 |#1|)) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-2834 (((-712) $) 59)) (-2055 (($) NIL T CONST)) (-1719 (((-3 $ "failed") $ $) 61)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3671 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3865 (((-108) $) 15)) (-2178 ((|#1| $ (-525)) NIL)) (-3782 (((-712) $ (-525)) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2637 (($ (-1 |#1| |#1|) $) 38)) (-2025 (($ (-1 (-712) (-712)) $) 35)) (-3740 (((-3 $ "failed") $ $) 50)) (-2621 (((-1072) $) NIL)) (-1599 (($ $ $) 26)) (-2439 (($ $ $) 24)) (-2937 (((-1036) $) NIL)) (-1908 (((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-712)))) $) 32)) (-3576 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2686 (((-796) $) 22) (($ |#1|) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1839 (($) 9 T CONST)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) 41)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) 63 (|has| |#1| (-788)))) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ |#1| (-712)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-364 |#1|) (-13 (-668) (-966 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-712))) (-15 -2439 ($ $ $)) (-15 -1599 ($ $ $)) (-15 -3740 ((-3 $ "failed") $ $)) (-15 -1719 ((-3 $ "failed") $ $)) (-15 -3576 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3671 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2834 ((-712) $)) (-15 -1908 ((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-712)))) $)) (-15 -3782 ((-712) $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -2025 ($ (-1 (-712) (-712)) $)) (-15 -2637 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) (-1018)) (T -364)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-5 *1 (-364 *2)) (-4 *2 (-1018)))) (-2439 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) (-1599 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) (-3740 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) (-1719 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) (-3576 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1018)))) (-3671 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1018)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-364 *3)) (-4 *3 (-1018)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 (-712))))) (-5 *1 (-364 *3)) (-4 *3 (-1018)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-712)) (-5 *1 (-364 *4)) (-4 *4 (-1018)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1018)))) (-2025 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-712) (-712))) (-5 *1 (-364 *3)) (-4 *3 (-1018)))) (-2637 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-364 *3))))) -(-13 (-668) (-966 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-712))) (-15 -2439 ($ $ $)) (-15 -1599 ($ $ $)) (-15 -3740 ((-3 $ "failed") $ $)) (-15 -1719 ((-3 $ "failed") $ $)) (-15 -3576 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3671 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2834 ((-712) $)) (-15 -1908 ((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-712)))) $)) (-15 -3782 ((-712) $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -2025 ($ (-1 (-712) (-712)) $)) (-15 -2637 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-4174 (((-3 (-525) "failed") $) 47)) (-3341 (((-525) $) 46)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-1923 (($ $ $) 54)) (-3475 (($ $ $) 53)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3210 (((-3 $ "failed") $ $) 42)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 48)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-4004 (((-108) $ $) 51)) (-3982 (((-108) $ $) 50)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 52)) (-3971 (((-108) $ $) 49)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-362)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) (-4 *1 (-362)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-632 (-886 (-357)))) (-4 *1 (-362)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-886 (-357)))) (-4 *1 (-362)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-632 (-886 (-525)))) (-4 *1 (-362)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-886 (-525)))) (-4 *1 (-362)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-886 (-357))))) (-4 *1 (-362)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-886 (-357))))) (-4 *1 (-362)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-886 (-525))))) (-4 *1 (-362)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-886 (-525))))) (-4 *1 (-362))))) +(-13 (-373) (-10 -8 (-15 -4044 ($ (-592 (-308)))) (-15 -4044 ($ (-308))) (-15 -4044 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308)))))) (-15 -2068 ($ (-632 (-294 (-357))))) (-15 -2769 ((-3 $ "failed") (-632 (-294 (-357))))) (-15 -2068 ($ (-632 (-294 (-525))))) (-15 -2769 ((-3 $ "failed") (-632 (-294 (-525))))) (-15 -2068 ($ (-632 (-886 (-357))))) (-15 -2769 ((-3 $ "failed") (-632 (-886 (-357))))) (-15 -2068 ($ (-632 (-886 (-525))))) (-15 -2769 ((-3 $ "failed") (-632 (-886 (-525))))) (-15 -2068 ($ (-632 (-385 (-886 (-357)))))) (-15 -2769 ((-3 $ "failed") (-632 (-385 (-886 (-357)))))) (-15 -2068 ($ (-632 (-385 (-886 (-525)))))) (-15 -2769 ((-3 $ "failed") (-632 (-385 (-886 (-525)))))))) +(((-566 (-797)) . T) ((-373) . T) ((-1126) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-3097 (($ |#1| |#2|) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2888 ((|#2| $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 28)) (-1436 (($) 12 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-363 |#1| |#2|) (-13 (-107 |#1| |#1|) (-481 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|))) (-976) (-789)) (T -363)) +NIL +(-13 (-107 |#1| |#1|) (-481 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-1651 (((-713) $) 59)) (-1957 (($) NIL T CONST)) (-2554 (((-3 $ "failed") $ $) 61)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3982 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2507 (((-108) $) 15)) (-2339 ((|#1| $ (-525)) NIL)) (-3446 (((-713) $ (-525)) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-4146 (($ (-1 |#1| |#1|) $) 38)) (-1273 (($ (-1 (-713) (-713)) $) 35)) (-1257 (((-3 $ "failed") $ $) 50)) (-1707 (((-1073) $) NIL)) (-1598 (($ $ $) 26)) (-2627 (($ $ $) 24)) (-3027 (((-1037) $) NIL)) (-2826 (((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-713)))) $) 32)) (-4204 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4044 (((-797) $) 22) (($ |#1|) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1449 (($) 9 T CONST)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) 41)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) 63 (|has| |#1| (-789)))) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ |#1| (-713)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-364 |#1|) (-13 (-669) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -2627 ($ $ $)) (-15 -1598 ($ $ $)) (-15 -1257 ((-3 $ "failed") $ $)) (-15 -2554 ((-3 $ "failed") $ $)) (-15 -4204 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3982 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1651 ((-713) $)) (-15 -2826 ((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-713)))) $)) (-15 -3446 ((-713) $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -1273 ($ (-1 (-713) (-713)) $)) (-15 -4146 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) (-1019)) (T -364)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-2627 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-1598 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-1257 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-2554 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-4204 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-3982 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 (-713))))) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1019)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-1273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-4146 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-364 *3))))) +(-13 (-669) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -2627 ($ $ $)) (-15 -1598 ($ $ $)) (-15 -1257 ((-3 $ "failed") $ $)) (-15 -2554 ((-3 $ "failed") $ $)) (-15 -4204 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3982 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1651 ((-713) $)) (-15 -2826 ((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-713)))) $)) (-15 -3446 ((-713) $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -1273 ($ (-1 (-713) (-713)) $)) (-15 -4146 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-2769 (((-3 (-525) "failed") $) 47)) (-2068 (((-525) $) 46)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1260 (($ $ $) 54)) (-2154 (($ $ $) 53)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2675 (((-3 $ "failed") $ $) 42)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 48)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3973 (((-108) $ $) 51)) (-3944 (((-108) $ $) 50)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 52)) (-3928 (((-108) $ $) 49)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-365) (-131)) (T -365)) NIL -(-13 (-517) (-788) (-966 (-525))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-788) . T) ((-966 (-525)) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-3682 (((-108) $) 20)) (-2222 (((-108) $) 19)) (-1316 (($ (-1072) (-1072) (-1072)) 21)) (-3419 (((-1072) $) 16)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1289 (($ (-1072) (-1072) (-1072)) 14)) (-2784 (((-1072) $) 17)) (-1255 (((-108) $) 18)) (-3066 (((-1072) $) 15)) (-2686 (((-796) $) 12) (($ (-1072)) 13) (((-1072) $) 9)) (-3944 (((-108) $ $) 7))) +(-13 (-517) (-789) (-967 (-525))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-967 (-525)) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-3588 (((-108) $) 20)) (-3021 (((-108) $) 19)) (-3248 (($ (-1073) (-1073) (-1073)) 21)) (-3515 (((-1073) $) 16)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3195 (($ (-1073) (-1073) (-1073)) 14)) (-1629 (((-1073) $) 17)) (-2620 (((-108) $) 18)) (-3827 (((-1073) $) 15)) (-4044 (((-797) $) 12) (($ (-1073)) 13) (((-1073) $) 9)) (-3899 (((-108) $ $) 7))) (((-366) (-367)) (T -366)) NIL (-367) -((-2673 (((-108) $ $) 7)) (-3682 (((-108) $) 14)) (-2222 (((-108) $) 15)) (-1316 (($ (-1072) (-1072) (-1072)) 13)) (-3419 (((-1072) $) 18)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-1289 (($ (-1072) (-1072) (-1072)) 20)) (-2784 (((-1072) $) 17)) (-1255 (((-108) $) 16)) (-3066 (((-1072) $) 19)) (-2686 (((-796) $) 11) (($ (-1072)) 22) (((-1072) $) 21)) (-3944 (((-108) $ $) 6))) +((-4028 (((-108) $ $) 7)) (-3588 (((-108) $) 14)) (-3021 (((-108) $) 15)) (-3248 (($ (-1073) (-1073) (-1073)) 13)) (-3515 (((-1073) $) 18)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-3195 (($ (-1073) (-1073) (-1073)) 20)) (-1629 (((-1073) $) 17)) (-2620 (((-108) $) 16)) (-3827 (((-1073) $) 19)) (-4044 (((-797) $) 11) (($ (-1073)) 22) (((-1073) $) 21)) (-3899 (((-108) $ $) 6))) (((-367) (-131)) (T -367)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-367)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1072)))) (-1289 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-367)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1072)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1072)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1072)))) (-1255 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-1316 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-367))))) -(-13 (-1018) (-10 -8 (-15 -2686 ($ (-1072))) (-15 -2686 ((-1072) $)) (-15 -1289 ($ (-1072) (-1072) (-1072))) (-15 -3066 ((-1072) $)) (-15 -3419 ((-1072) $)) (-15 -2784 ((-1072) $)) (-15 -1255 ((-108) $)) (-15 -2222 ((-108) $)) (-15 -3682 ((-108) $)) (-15 -1316 ($ (-1072) (-1072) (-1072))))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1489 (((-796) $) 50)) (-2055 (($) NIL T CONST)) (-2681 (($ $ (-854)) NIL)) (-1447 (($ $ (-854)) NIL)) (-2832 (($ $ (-854)) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3965 (($ (-712)) 26)) (-3840 (((-712)) 17)) (-3472 (((-796) $) 52)) (-4027 (($ $ $) NIL)) (-2686 (((-796) $) NIL)) (-1894 (($ $ $ $) NIL)) (-1971 (($ $ $) NIL)) (-1830 (($) 20 T CONST)) (-3944 (((-108) $ $) 28)) (-4047 (($ $) 34) (($ $ $) 36)) (-4036 (($ $ $) 37)) (** (($ $ (-854)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-368 |#1| |#2| |#3|) (-13 (-686 |#3|) (-10 -8 (-15 -3840 ((-712))) (-15 -3472 ((-796) $)) (-15 -1489 ((-796) $)) (-15 -3965 ($ (-712))))) (-712) (-712) (-160)) (T -368)) -((-3840 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-160)))) (-3472 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-712)) (-14 *4 (-712)) (-4 *5 (-160)))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-712)) (-14 *4 (-712)) (-4 *5 (-160)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-160))))) -(-13 (-686 |#3|) (-10 -8 (-15 -3840 ((-712))) (-15 -3472 ((-796) $)) (-15 -1489 ((-796) $)) (-15 -3965 ($ (-712))))) -((-2172 (((-1072)) 10)) (-2946 (((-1061 (-1072))) 28)) (-2126 (((-1176) (-1072)) 25) (((-1176) (-366)) 24)) (-2144 (((-1176)) 26)) (-2661 (((-1061 (-1072))) 27))) -(((-369) (-10 -7 (-15 -2661 ((-1061 (-1072)))) (-15 -2946 ((-1061 (-1072)))) (-15 -2144 ((-1176))) (-15 -2126 ((-1176) (-366))) (-15 -2126 ((-1176) (-1072))) (-15 -2172 ((-1072))))) (T -369)) -((-2172 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-369)))) (-2126 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-369)))) (-2126 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1176)) (-5 *1 (-369)))) (-2144 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-369)))) (-2946 (*1 *2) (-12 (-5 *2 (-1061 (-1072))) (-5 *1 (-369)))) (-2661 (*1 *2) (-12 (-5 *2 (-1061 (-1072))) (-5 *1 (-369))))) -(-10 -7 (-15 -2661 ((-1061 (-1072)))) (-15 -2946 ((-1061 (-1072)))) (-15 -2144 ((-1176))) (-15 -2126 ((-1176) (-366))) (-15 -2126 ((-1176) (-1072))) (-15 -2172 ((-1072)))) -((-1676 (((-712) (-314 |#1| |#2| |#3| |#4|)) 16))) -(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1676 ((-712) (-314 |#1| |#2| |#3| |#4|)))) (-13 (-346) (-341)) (-1147 |#1|) (-1147 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -370)) -((-1676 (*1 *2 *3) (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341))) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) (-4 *7 (-320 *4 *5 *6)) (-5 *2 (-712)) (-5 *1 (-370 *4 *5 *6 *7))))) -(-10 -7 (-15 -1676 ((-712) (-314 |#1| |#2| |#3| |#4|)))) -((-2686 (((-372) |#1|) 11))) -(((-371 |#1|) (-10 -7 (-15 -2686 ((-372) |#1|))) (-1018)) (T -371)) -((-2686 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1018))))) -(-10 -7 (-15 -2686 ((-372) |#1|))) -((-2673 (((-108) $ $) NIL)) (-4106 (((-591 (-1072)) $ (-591 (-1072))) 38)) (-1222 (((-591 (-1072)) $ (-591 (-1072))) 39)) (-1279 (((-591 (-1072)) $ (-591 (-1072))) 40)) (-1716 (((-591 (-1072)) $) 35)) (-1316 (($) 23)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-4076 (((-591 (-1072)) $) 36)) (-3992 (((-591 (-1072)) $) 37)) (-1285 (((-1176) $ (-525)) 33) (((-1176) $) 34)) (-1300 (($ (-796) (-525)) 30)) (-2686 (((-796) $) 42) (($ (-796)) 25)) (-3944 (((-108) $ $) NIL))) -(((-372) (-13 (-1018) (-10 -8 (-15 -2686 ($ (-796))) (-15 -1300 ($ (-796) (-525))) (-15 -1285 ((-1176) $ (-525))) (-15 -1285 ((-1176) $)) (-15 -3992 ((-591 (-1072)) $)) (-15 -4076 ((-591 (-1072)) $)) (-15 -1316 ($)) (-15 -1716 ((-591 (-1072)) $)) (-15 -1279 ((-591 (-1072)) $ (-591 (-1072)))) (-15 -1222 ((-591 (-1072)) $ (-591 (-1072)))) (-15 -4106 ((-591 (-1072)) $ (-591 (-1072))))))) (T -372)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-796)) (-5 *1 (-372)))) (-1300 (*1 *1 *2 *3) (-12 (-5 *2 (-796)) (-5 *3 (-525)) (-5 *1 (-372)))) (-1285 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-372)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-372)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372)))) (-1316 (*1 *1) (-5 *1 (-372))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372)))) (-1279 (*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372)))) (-1222 (*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372)))) (-4106 (*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372))))) -(-13 (-1018) (-10 -8 (-15 -2686 ($ (-796))) (-15 -1300 ($ (-796) (-525))) (-15 -1285 ((-1176) $ (-525))) (-15 -1285 ((-1176) $)) (-15 -3992 ((-591 (-1072)) $)) (-15 -4076 ((-591 (-1072)) $)) (-15 -1316 ($)) (-15 -1716 ((-591 (-1072)) $)) (-15 -1279 ((-591 (-1072)) $ (-591 (-1072)))) (-15 -1222 ((-591 (-1072)) $ (-591 (-1072)))) (-15 -4106 ((-591 (-1072)) $ (-591 (-1072)))))) -((-2163 (((-1176) $) 7)) (-2686 (((-796) $) 8))) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) (-3195 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-3248 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367))))) +(-13 (-1019) (-10 -8 (-15 -4044 ($ (-1073))) (-15 -4044 ((-1073) $)) (-15 -3195 ($ (-1073) (-1073) (-1073))) (-15 -3827 ((-1073) $)) (-15 -3515 ((-1073) $)) (-15 -1629 ((-1073) $)) (-15 -2620 ((-108) $)) (-15 -3021 ((-108) $)) (-15 -3588 ((-108) $)) (-15 -3248 ($ (-1073) (-1073) (-1073))))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-3300 (((-797) $) 50)) (-1957 (($) NIL T CONST)) (-1469 (($ $ (-855)) NIL)) (-1404 (($ $ (-855)) NIL)) (-2148 (($ $ (-855)) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3258 (($ (-713)) 26)) (-2374 (((-713)) 17)) (-1305 (((-797) $) 52)) (-1573 (($ $ $) NIL)) (-4044 (((-797) $) NIL)) (-1762 (($ $ $ $) NIL)) (-2407 (($ $ $) NIL)) (-1436 (($) 20 T CONST)) (-3899 (((-108) $ $) 28)) (-4033 (($ $) 34) (($ $ $) 36)) (-4017 (($ $ $) 37)) (** (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-368 |#1| |#2| |#3|) (-13 (-687 |#3|) (-10 -8 (-15 -2374 ((-713))) (-15 -1305 ((-797) $)) (-15 -3300 ((-797) $)) (-15 -3258 ($ (-713))))) (-713) (-713) (-160)) (T -368)) +((-2374 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-160)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3258 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-160))))) +(-13 (-687 |#3|) (-10 -8 (-15 -2374 ((-713))) (-15 -1305 ((-797) $)) (-15 -3300 ((-797) $)) (-15 -3258 ($ (-713))))) +((-2726 (((-1073)) 10)) (-1603 (((-1062 (-1073))) 28)) (-3126 (((-1177) (-1073)) 25) (((-1177) (-366)) 24)) (-3141 (((-1177)) 26)) (-1610 (((-1062 (-1073))) 27))) +(((-369) (-10 -7 (-15 -1610 ((-1062 (-1073)))) (-15 -1603 ((-1062 (-1073)))) (-15 -3141 ((-1177))) (-15 -3126 ((-1177) (-366))) (-15 -3126 ((-1177) (-1073))) (-15 -2726 ((-1073))))) (T -369)) +((-2726 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-369)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-369)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1177)) (-5 *1 (-369)))) (-3141 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-369)))) (-1603 (*1 *2) (-12 (-5 *2 (-1062 (-1073))) (-5 *1 (-369)))) (-1610 (*1 *2) (-12 (-5 *2 (-1062 (-1073))) (-5 *1 (-369))))) +(-10 -7 (-15 -1610 ((-1062 (-1073)))) (-15 -1603 ((-1062 (-1073)))) (-15 -3141 ((-1177))) (-15 -3126 ((-1177) (-366))) (-15 -3126 ((-1177) (-1073))) (-15 -2726 ((-1073)))) +((-2158 (((-713) (-314 |#1| |#2| |#3| |#4|)) 16))) +(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2158 ((-713) (-314 |#1| |#2| |#3| |#4|)))) (-13 (-346) (-341)) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -370)) +((-2158 (*1 *2 *3) (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341))) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-4 *7 (-320 *4 *5 *6)) (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7))))) +(-10 -7 (-15 -2158 ((-713) (-314 |#1| |#2| |#3| |#4|)))) +((-4044 (((-372) |#1|) 11))) +(((-371 |#1|) (-10 -7 (-15 -4044 ((-372) |#1|))) (-1019)) (T -371)) +((-4044 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1019))))) +(-10 -7 (-15 -4044 ((-372) |#1|))) +((-4028 (((-108) $ $) NIL)) (-1384 (((-592 (-1073)) $ (-592 (-1073))) 38)) (-3441 (((-592 (-1073)) $ (-592 (-1073))) 39)) (-3991 (((-592 (-1073)) $ (-592 (-1073))) 40)) (-3352 (((-592 (-1073)) $) 35)) (-3248 (($) 23)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1380 (((-592 (-1073)) $) 36)) (-4019 (((-592 (-1073)) $) 37)) (-3686 (((-1177) $ (-525)) 33) (((-1177) $) 34)) (-2923 (($ (-797) (-525)) 30)) (-4044 (((-797) $) 42) (($ (-797)) 25)) (-3899 (((-108) $ $) NIL))) +(((-372) (-13 (-1019) (-10 -8 (-15 -4044 ($ (-797))) (-15 -2923 ($ (-797) (-525))) (-15 -3686 ((-1177) $ (-525))) (-15 -3686 ((-1177) $)) (-15 -4019 ((-592 (-1073)) $)) (-15 -1380 ((-592 (-1073)) $)) (-15 -3248 ($)) (-15 -3352 ((-592 (-1073)) $)) (-15 -3991 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -3441 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -1384 ((-592 (-1073)) $ (-592 (-1073))))))) (T -372)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-372)))) (-2923 (*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-372)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-372)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-372)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-3248 (*1 *1) (-5 *1 (-372))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-3991 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-3441 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-1384 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372))))) +(-13 (-1019) (-10 -8 (-15 -4044 ($ (-797))) (-15 -2923 ($ (-797) (-525))) (-15 -3686 ((-1177) $ (-525))) (-15 -3686 ((-1177) $)) (-15 -4019 ((-592 (-1073)) $)) (-15 -1380 ((-592 (-1073)) $)) (-15 -3248 ($)) (-15 -3352 ((-592 (-1073)) $)) (-15 -3991 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -3441 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -1384 ((-592 (-1073)) $ (-592 (-1073)))))) +((-3153 (((-1177) $) 7)) (-4044 (((-797) $) 8))) (((-373) (-131)) (T -373)) -((-2163 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1176))))) -(-13 (-1125) (-565 (-796)) (-10 -8 (-15 -2163 ((-1176) $)))) -(((-565 (-796)) . T) ((-1125) . T)) -((-4174 (((-3 $ "failed") (-294 (-357))) 21) (((-3 $ "failed") (-294 (-525))) 19) (((-3 $ "failed") (-885 (-357))) 17) (((-3 $ "failed") (-885 (-525))) 15) (((-3 $ "failed") (-385 (-885 (-357)))) 13) (((-3 $ "failed") (-385 (-885 (-525)))) 11)) (-3341 (($ (-294 (-357))) 22) (($ (-294 (-525))) 20) (($ (-885 (-357))) 18) (($ (-885 (-525))) 16) (($ (-385 (-885 (-357)))) 14) (($ (-385 (-885 (-525)))) 12)) (-2163 (((-1176) $) 7)) (-2686 (((-796) $) 8) (($ (-591 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 23))) +((-3153 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1177))))) +(-13 (-1126) (-566 (-797)) (-10 -8 (-15 -3153 ((-1177) $)))) +(((-566 (-797)) . T) ((-1126) . T)) +((-2769 (((-3 $ "failed") (-294 (-357))) 21) (((-3 $ "failed") (-294 (-525))) 19) (((-3 $ "failed") (-886 (-357))) 17) (((-3 $ "failed") (-886 (-525))) 15) (((-3 $ "failed") (-385 (-886 (-357)))) 13) (((-3 $ "failed") (-385 (-886 (-525)))) 11)) (-2068 (($ (-294 (-357))) 22) (($ (-294 (-525))) 20) (($ (-886 (-357))) 18) (($ (-886 (-525))) 16) (($ (-385 (-886 (-357)))) 14) (($ (-385 (-886 (-525)))) 12)) (-3153 (((-1177) $) 7)) (-4044 (((-797) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 23))) (((-374) (-131)) (T -374)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-374)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) (-4 *1 (-374)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-885 (-357))) (-4 *1 (-374)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-885 (-357))) (-4 *1 (-374)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-885 (-525))) (-4 *1 (-374)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-885 (-525))) (-4 *1 (-374)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-385 (-885 (-357)))) (-4 *1 (-374)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-885 (-357)))) (-4 *1 (-374)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-385 (-885 (-525)))) (-4 *1 (-374)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-885 (-525)))) (-4 *1 (-374))))) -(-13 (-373) (-10 -8 (-15 -2686 ($ (-591 (-308)))) (-15 -2686 ($ (-308))) (-15 -2686 ($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308)))))) (-15 -3341 ($ (-294 (-357)))) (-15 -4174 ((-3 $ "failed") (-294 (-357)))) (-15 -3341 ($ (-294 (-525)))) (-15 -4174 ((-3 $ "failed") (-294 (-525)))) (-15 -3341 ($ (-885 (-357)))) (-15 -4174 ((-3 $ "failed") (-885 (-357)))) (-15 -3341 ($ (-885 (-525)))) (-15 -4174 ((-3 $ "failed") (-885 (-525)))) (-15 -3341 ($ (-385 (-885 (-357))))) (-15 -4174 ((-3 $ "failed") (-385 (-885 (-357))))) (-15 -3341 ($ (-385 (-885 (-525))))) (-15 -4174 ((-3 $ "failed") (-385 (-885 (-525))))))) -(((-565 (-796)) . T) ((-373) . T) ((-1125) . T)) -((-3561 (((-591 (-1072)) (-591 (-1072))) 9)) (-2163 (((-1176) (-366)) 27)) (-3734 (((-1022) (-1089) (-591 (-1089)) (-1092) (-591 (-1089))) 60) (((-1022) (-1089) (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089)))) (-591 (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089))))) (-591 (-1089)) (-1089)) 35) (((-1022) (-1089) (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089)))) (-591 (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089))))) (-591 (-1089))) 34))) -(((-375) (-10 -7 (-15 -3734 ((-1022) (-1089) (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089)))) (-591 (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089))))) (-591 (-1089)))) (-15 -3734 ((-1022) (-1089) (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089)))) (-591 (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089))))) (-591 (-1089)) (-1089))) (-15 -3734 ((-1022) (-1089) (-591 (-1089)) (-1092) (-591 (-1089)))) (-15 -2163 ((-1176) (-366))) (-15 -3561 ((-591 (-1072)) (-591 (-1072)))))) (T -375)) -((-3561 (*1 *2 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-375)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1176)) (-5 *1 (-375)))) (-3734 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-591 (-1089))) (-5 *5 (-1092)) (-5 *3 (-1089)) (-5 *2 (-1022)) (-5 *1 (-375)))) (-3734 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-591 (-591 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-591 (-3 (|:| |array| (-591 *3)) (|:| |scalar| (-1089))))) (-5 *6 (-591 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1022)) (-5 *1 (-375)))) (-3734 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-591 (-591 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-591 (-3 (|:| |array| (-591 *3)) (|:| |scalar| (-1089))))) (-5 *6 (-591 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1022)) (-5 *1 (-375))))) -(-10 -7 (-15 -3734 ((-1022) (-1089) (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089)))) (-591 (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089))))) (-591 (-1089)))) (-15 -3734 ((-1022) (-1089) (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089)))) (-591 (-591 (-3 (|:| |array| (-591 (-1089))) (|:| |scalar| (-1089))))) (-591 (-1089)) (-1089))) (-15 -3734 ((-1022) (-1089) (-591 (-1089)) (-1092) (-591 (-1089)))) (-15 -2163 ((-1176) (-366))) (-15 -3561 ((-591 (-1072)) (-591 (-1072))))) -((-2163 (((-1176) $) 38)) (-2686 (((-796) $) 98) (($ (-308)) 100) (($ (-591 (-308))) 99) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 97) (($ (-294 (-642))) 54) (($ (-294 (-640))) 73) (($ (-294 (-635))) 86) (($ (-273 (-294 (-642)))) 68) (($ (-273 (-294 (-640)))) 81) (($ (-273 (-294 (-635)))) 94) (($ (-294 (-525))) 104) (($ (-294 (-357))) 117) (($ (-294 (-157 (-357)))) 130) (($ (-273 (-294 (-525)))) 112) (($ (-273 (-294 (-357)))) 125) (($ (-273 (-294 (-157 (-357))))) 138))) -(((-376 |#1| |#2| |#3| |#4|) (-13 (-373) (-10 -8 (-15 -2686 ($ (-308))) (-15 -2686 ($ (-591 (-308)))) (-15 -2686 ($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308)))))) (-15 -2686 ($ (-294 (-642)))) (-15 -2686 ($ (-294 (-640)))) (-15 -2686 ($ (-294 (-635)))) (-15 -2686 ($ (-273 (-294 (-642))))) (-15 -2686 ($ (-273 (-294 (-640))))) (-15 -2686 ($ (-273 (-294 (-635))))) (-15 -2686 ($ (-294 (-525)))) (-15 -2686 ($ (-294 (-357)))) (-15 -2686 ($ (-294 (-157 (-357))))) (-15 -2686 ($ (-273 (-294 (-525))))) (-15 -2686 ($ (-273 (-294 (-357))))) (-15 -2686 ($ (-273 (-294 (-157 (-357)))))))) (-1089) (-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-591 (-1089)) (-1093)) (T -376)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-294 (-642))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-294 (-640))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-294 (-635))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-642)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-640)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-635)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-14 *5 (-591 (-1089))) (-14 *6 (-1093))))) -(-13 (-373) (-10 -8 (-15 -2686 ($ (-308))) (-15 -2686 ($ (-591 (-308)))) (-15 -2686 ($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308)))))) (-15 -2686 ($ (-294 (-642)))) (-15 -2686 ($ (-294 (-640)))) (-15 -2686 ($ (-294 (-635)))) (-15 -2686 ($ (-273 (-294 (-642))))) (-15 -2686 ($ (-273 (-294 (-640))))) (-15 -2686 ($ (-273 (-294 (-635))))) (-15 -2686 ($ (-294 (-525)))) (-15 -2686 ($ (-294 (-357)))) (-15 -2686 ($ (-294 (-157 (-357))))) (-15 -2686 ($ (-273 (-294 (-525))))) (-15 -2686 ($ (-273 (-294 (-357))))) (-15 -2686 ($ (-273 (-294 (-157 (-357)))))))) -((-2673 (((-108) $ $) NIL)) (-3125 ((|#2| $) 36)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1828 (($ (-385 |#2|)) 85)) (-3484 (((-591 (-2 (|:| -3987 (-712)) (|:| -1708 |#2|) (|:| |num| |#2|))) $) 37)) (-2209 (($ $) 32) (($ $ (-712)) 34)) (-1300 (((-385 |#2|) $) 46)) (-2695 (($ (-591 (-2 (|:| -3987 (-712)) (|:| -1708 |#2|) (|:| |num| |#2|)))) 31)) (-2686 (((-796) $) 120)) (-1796 (($ $) 33) (($ $ (-712)) 35)) (-3944 (((-108) $ $) NIL)) (-4036 (($ |#2| $) 39))) -(((-377 |#1| |#2|) (-13 (-1018) (-566 (-385 |#2|)) (-10 -8 (-15 -4036 ($ |#2| $)) (-15 -1828 ($ (-385 |#2|))) (-15 -3125 (|#2| $)) (-15 -3484 ((-591 (-2 (|:| -3987 (-712)) (|:| -1708 |#2|) (|:| |num| |#2|))) $)) (-15 -2695 ($ (-591 (-2 (|:| -3987 (-712)) (|:| -1708 |#2|) (|:| |num| |#2|))))) (-15 -2209 ($ $)) (-15 -1796 ($ $)) (-15 -2209 ($ $ (-712))) (-15 -1796 ($ $ (-712))))) (-13 (-341) (-138)) (-1147 |#1|)) (T -377)) -((-4036 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *2)) (-4 *2 (-1147 *3)))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-385 *4)) (-4 *4 (-1147 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-3125 (*1 *2 *1) (-12 (-4 *2 (-1147 *3)) (-5 *1 (-377 *3 *2)) (-4 *3 (-13 (-341) (-138))))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *2 (-591 (-2 (|:| -3987 (-712)) (|:| -1708 *4) (|:| |num| *4)))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1147 *3)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-591 (-2 (|:| -3987 (-712)) (|:| -1708 *4) (|:| |num| *4)))) (-4 *4 (-1147 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-2209 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1147 *2)))) (-1796 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1147 *2)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1147 *3)))) (-1796 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1147 *3))))) -(-13 (-1018) (-566 (-385 |#2|)) (-10 -8 (-15 -4036 ($ |#2| $)) (-15 -1828 ($ (-385 |#2|))) (-15 -3125 (|#2| $)) (-15 -3484 ((-591 (-2 (|:| -3987 (-712)) (|:| -1708 |#2|) (|:| |num| |#2|))) $)) (-15 -2695 ($ (-591 (-2 (|:| -3987 (-712)) (|:| -1708 |#2|) (|:| |num| |#2|))))) (-15 -2209 ($ $)) (-15 -1796 ($ $)) (-15 -2209 ($ $ (-712))) (-15 -1796 ($ $ (-712))))) -((-2673 (((-108) $ $) 9 (-3150 (|has| |#1| (-819 (-525))) (|has| |#1| (-819 (-357)))))) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 15 (|has| |#1| (-819 (-357)))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 14 (|has| |#1| (-819 (-525))))) (-2621 (((-1072) $) 13 (-3150 (|has| |#1| (-819 (-525))) (|has| |#1| (-819 (-357)))))) (-2937 (((-1036) $) 12 (-3150 (|has| |#1| (-819 (-525))) (|has| |#1| (-819 (-357)))))) (-2686 (((-796) $) 11 (-3150 (|has| |#1| (-819 (-525))) (|has| |#1| (-819 (-357)))))) (-3944 (((-108) $ $) 10 (-3150 (|has| |#1| (-819 (-525))) (|has| |#1| (-819 (-357))))))) -(((-378 |#1|) (-131) (-1125)) (T -378)) -NIL -(-13 (-1125) (-10 -7 (IF (|has| |t#1| (-819 (-525))) (-6 (-819 (-525))) |%noBranch|) (IF (|has| |t#1| (-819 (-357))) (-6 (-819 (-357))) |%noBranch|))) -(((-97) -3150 (|has| |#1| (-819 (-525))) (|has| |#1| (-819 (-357)))) ((-565 (-796)) -3150 (|has| |#1| (-819 (-525))) (|has| |#1| (-819 (-357)))) ((-819 (-357)) |has| |#1| (-819 (-357))) ((-819 (-525)) |has| |#1| (-819 (-525))) ((-1018) -3150 (|has| |#1| (-819 (-525))) (|has| |#1| (-819 (-357)))) ((-1125) . T)) -((-3477 (($ $) 10) (($ $ (-712)) 11))) -(((-379 |#1|) (-10 -8 (-15 -3477 (|#1| |#1| (-712))) (-15 -3477 (|#1| |#1|))) (-380)) (T -379)) -NIL -(-10 -8 (-15 -3477 (|#1| |#1| (-712))) (-15 -3477 (|#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-1965 (((-108) $ $) 59)) (-2055 (($) 17 T CONST)) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-3477 (($ $) 79) (($ $ (-712)) 78)) (-2393 (((-108) $) 71)) (-1676 (((-774 (-854)) $) 81)) (-3865 (((-108) $) 31)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 70)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-2542 (((-396 $) $) 74)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-2652 (((-3 (-712) "failed") $ $) 80)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3751 (((-3 $ "failed") $) 82)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ $) 64)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-374)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) (-4 *1 (-374)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-886 (-357))) (-4 *1 (-374)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-357))) (-4 *1 (-374)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-374)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-525))) (-4 *1 (-374)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-357)))) (-4 *1 (-374)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-886 (-357)))) (-4 *1 (-374)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-525)))) (-4 *1 (-374)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-886 (-525)))) (-4 *1 (-374))))) +(-13 (-373) (-10 -8 (-15 -4044 ($ (-592 (-308)))) (-15 -4044 ($ (-308))) (-15 -4044 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308)))))) (-15 -2068 ($ (-294 (-357)))) (-15 -2769 ((-3 $ "failed") (-294 (-357)))) (-15 -2068 ($ (-294 (-525)))) (-15 -2769 ((-3 $ "failed") (-294 (-525)))) (-15 -2068 ($ (-886 (-357)))) (-15 -2769 ((-3 $ "failed") (-886 (-357)))) (-15 -2068 ($ (-886 (-525)))) (-15 -2769 ((-3 $ "failed") (-886 (-525)))) (-15 -2068 ($ (-385 (-886 (-357))))) (-15 -2769 ((-3 $ "failed") (-385 (-886 (-357))))) (-15 -2068 ($ (-385 (-886 (-525))))) (-15 -2769 ((-3 $ "failed") (-385 (-886 (-525))))))) +(((-566 (-797)) . T) ((-373) . T) ((-1126) . T)) +((-3467 (((-592 (-1073)) (-592 (-1073))) 9)) (-3153 (((-1177) (-366)) 27)) (-3040 (((-1023) (-1090) (-592 (-1090)) (-1093) (-592 (-1090))) 60) (((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)) (-1090)) 35) (((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090))) 34))) +(((-375) (-10 -7 (-15 -3040 ((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)))) (-15 -3040 ((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)) (-1090))) (-15 -3040 ((-1023) (-1090) (-592 (-1090)) (-1093) (-592 (-1090)))) (-15 -3153 ((-1177) (-366))) (-15 -3467 ((-592 (-1073)) (-592 (-1073)))))) (T -375)) +((-3467 (*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-375)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1177)) (-5 *1 (-375)))) (-3040 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-592 (-1090))) (-5 *5 (-1093)) (-5 *3 (-1090)) (-5 *2 (-1023)) (-5 *1 (-375)))) (-3040 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1090))))) (-5 *6 (-592 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1023)) (-5 *1 (-375)))) (-3040 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1090))))) (-5 *6 (-592 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1023)) (-5 *1 (-375))))) +(-10 -7 (-15 -3040 ((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)))) (-15 -3040 ((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)) (-1090))) (-15 -3040 ((-1023) (-1090) (-592 (-1090)) (-1093) (-592 (-1090)))) (-15 -3153 ((-1177) (-366))) (-15 -3467 ((-592 (-1073)) (-592 (-1073))))) +((-3153 (((-1177) $) 38)) (-4044 (((-797) $) 98) (($ (-308)) 100) (($ (-592 (-308))) 99) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 97) (($ (-294 (-643))) 54) (($ (-294 (-641))) 73) (($ (-294 (-636))) 86) (($ (-273 (-294 (-643)))) 68) (($ (-273 (-294 (-641)))) 81) (($ (-273 (-294 (-636)))) 94) (($ (-294 (-525))) 104) (($ (-294 (-357))) 117) (($ (-294 (-157 (-357)))) 130) (($ (-273 (-294 (-525)))) 112) (($ (-273 (-294 (-357)))) 125) (($ (-273 (-294 (-157 (-357))))) 138))) +(((-376 |#1| |#2| |#3| |#4|) (-13 (-373) (-10 -8 (-15 -4044 ($ (-308))) (-15 -4044 ($ (-592 (-308)))) (-15 -4044 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308)))))) (-15 -4044 ($ (-294 (-643)))) (-15 -4044 ($ (-294 (-641)))) (-15 -4044 ($ (-294 (-636)))) (-15 -4044 ($ (-273 (-294 (-643))))) (-15 -4044 ($ (-273 (-294 (-641))))) (-15 -4044 ($ (-273 (-294 (-636))))) (-15 -4044 ($ (-294 (-525)))) (-15 -4044 ($ (-294 (-357)))) (-15 -4044 ($ (-294 (-157 (-357))))) (-15 -4044 ($ (-273 (-294 (-525))))) (-15 -4044 ($ (-273 (-294 (-357))))) (-15 -4044 ($ (-273 (-294 (-157 (-357)))))))) (-1090) (-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-592 (-1090)) (-1094)) (T -376)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-643)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-641)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-636)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))) +(-13 (-373) (-10 -8 (-15 -4044 ($ (-308))) (-15 -4044 ($ (-592 (-308)))) (-15 -4044 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308)))))) (-15 -4044 ($ (-294 (-643)))) (-15 -4044 ($ (-294 (-641)))) (-15 -4044 ($ (-294 (-636)))) (-15 -4044 ($ (-273 (-294 (-643))))) (-15 -4044 ($ (-273 (-294 (-641))))) (-15 -4044 ($ (-273 (-294 (-636))))) (-15 -4044 ($ (-294 (-525)))) (-15 -4044 ($ (-294 (-357)))) (-15 -4044 ($ (-294 (-157 (-357))))) (-15 -4044 ($ (-273 (-294 (-525))))) (-15 -4044 ($ (-273 (-294 (-357))))) (-15 -4044 ($ (-273 (-294 (-157 (-357)))))))) +((-4028 (((-108) $ $) NIL)) (-2486 ((|#2| $) 36)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2292 (($ (-385 |#2|)) 85)) (-2571 (((-592 (-2 (|:| -1737 (-713)) (|:| -3448 |#2|) (|:| |num| |#2|))) $) 37)) (-1576 (($ $) 32) (($ $ (-713)) 34)) (-2923 (((-385 |#2|) $) 46)) (-4059 (($ (-592 (-2 (|:| -1737 (-713)) (|:| -3448 |#2|) (|:| |num| |#2|)))) 31)) (-4044 (((-797) $) 120)) (-1990 (($ $) 33) (($ $ (-713)) 35)) (-3899 (((-108) $ $) NIL)) (-4017 (($ |#2| $) 39))) +(((-377 |#1| |#2|) (-13 (-1019) (-567 (-385 |#2|)) (-10 -8 (-15 -4017 ($ |#2| $)) (-15 -2292 ($ (-385 |#2|))) (-15 -2486 (|#2| $)) (-15 -2571 ((-592 (-2 (|:| -1737 (-713)) (|:| -3448 |#2|) (|:| |num| |#2|))) $)) (-15 -4059 ($ (-592 (-2 (|:| -1737 (-713)) (|:| -3448 |#2|) (|:| |num| |#2|))))) (-15 -1576 ($ $)) (-15 -1990 ($ $)) (-15 -1576 ($ $ (-713))) (-15 -1990 ($ $ (-713))))) (-13 (-341) (-138)) (-1148 |#1|)) (T -377)) +((-4017 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *2)) (-4 *2 (-1148 *3)))) (-2292 (*1 *1 *2) (-12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-2486 (*1 *2 *1) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-377 *3 *2)) (-4 *3 (-13 (-341) (-138))))) (-2571 (*1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *2 (-592 (-2 (|:| -1737 (-713)) (|:| -3448 *4) (|:| |num| *4)))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1148 *3)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1737 (-713)) (|:| -3448 *4) (|:| |num| *4)))) (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-1576 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1148 *2)))) (-1990 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1148 *2)))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1148 *3)))) (-1990 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1148 *3))))) +(-13 (-1019) (-567 (-385 |#2|)) (-10 -8 (-15 -4017 ($ |#2| $)) (-15 -2292 ($ (-385 |#2|))) (-15 -2486 (|#2| $)) (-15 -2571 ((-592 (-2 (|:| -1737 (-713)) (|:| -3448 |#2|) (|:| |num| |#2|))) $)) (-15 -4059 ($ (-592 (-2 (|:| -1737 (-713)) (|:| -3448 |#2|) (|:| |num| |#2|))))) (-15 -1576 ($ $)) (-15 -1990 ($ $)) (-15 -1576 ($ $ (-713))) (-15 -1990 ($ $ (-713))))) +((-4028 (((-108) $ $) 9 (-3215 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))))) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 15 (|has| |#1| (-820 (-357)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 14 (|has| |#1| (-820 (-525))))) (-1707 (((-1073) $) 13 (-3215 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))))) (-3027 (((-1037) $) 12 (-3215 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))))) (-4044 (((-797) $) 11 (-3215 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))))) (-3899 (((-108) $ $) 10 (-3215 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357))))))) +(((-378 |#1|) (-131) (-1126)) (T -378)) +NIL +(-13 (-1126) (-10 -7 (IF (|has| |t#1| (-820 (-525))) (-6 (-820 (-525))) |%noBranch|) (IF (|has| |t#1| (-820 (-357))) (-6 (-820 (-357))) |%noBranch|))) +(((-97) -3215 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))) ((-566 (-797)) -3215 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-1019) -3215 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))) ((-1126) . T)) +((-3351 (($ $) 10) (($ $ (-713)) 11))) +(((-379 |#1|) (-10 -8 (-15 -3351 (|#1| |#1| (-713))) (-15 -3351 (|#1| |#1|))) (-380)) (T -379)) +NIL +(-10 -8 (-15 -3351 (|#1| |#1| (-713))) (-15 -3351 (|#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-1700 (((-108) $ $) 59)) (-1957 (($) 17 T CONST)) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-3351 (($ $) 79) (($ $ (-713)) 78)) (-2069 (((-108) $) 71)) (-2158 (((-775 (-855)) $) 81)) (-2507 (((-108) $) 31)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 70)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2961 (((-396 $) $) 74)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-2729 (((-3 (-713) "failed") $ $) 80)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-1279 (((-3 $ "failed") $) 82)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ $) 64)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) (((-380) (-131)) (T -380)) -((-1676 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-774 (-854))))) (-2652 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-712)))) (-3477 (*1 *1 *1) (-4 *1 (-380))) (-3477 (*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-712))))) -(-13 (-341) (-136) (-10 -8 (-15 -1676 ((-774 (-854)) $)) (-15 -2652 ((-3 (-712) "failed") $ $)) (-15 -3477 ($ $)) (-15 -3477 ($ $ (-712))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-565 (-796)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-593 #0#) . T) ((-593 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-668) . T) ((-853) . T) ((-981 #0#) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) . T)) -((-2925 (($ (-525) (-525)) 11) (($ (-525) (-525) (-854)) NIL)) (-3439 (((-854)) 16) (((-854) (-854)) NIL))) -(((-381 |#1|) (-10 -8 (-15 -3439 ((-854) (-854))) (-15 -3439 ((-854))) (-15 -2925 (|#1| (-525) (-525) (-854))) (-15 -2925 (|#1| (-525) (-525)))) (-382)) (T -381)) -((-3439 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-381 *3)) (-4 *3 (-382))))) -(-10 -8 (-15 -3439 ((-854) (-854))) (-15 -3439 ((-854))) (-15 -2925 (|#1| (-525) (-525) (-854))) (-15 -2925 (|#1| (-525) (-525)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2314 (((-525) $) 89)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3328 (($ $) 87)) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-2551 (($ $) 97)) (-1965 (((-108) $ $) 59)) (-4188 (((-525) $) 114)) (-2055 (($) 17 T CONST)) (-3032 (($ $) 86)) (-4174 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-3341 (((-525) $) 101) (((-385 (-525)) $) 98)) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-2393 (((-108) $) 71)) (-2008 (((-854)) 130) (((-854) (-854)) 127 (|has| $ (-6 -4241)))) (-3489 (((-108) $) 112)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 93)) (-1676 (((-525) $) 136)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 96)) (-1525 (($ $) 92)) (-2256 (((-108) $) 113)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-1923 (($ $ $) 111) (($) 124 (-12 (-3389 (|has| $ (-6 -4241))) (-3389 (|has| $ (-6 -4233)))))) (-3475 (($ $ $) 110) (($) 123 (-12 (-3389 (|has| $ (-6 -4241))) (-3389 (|has| $ (-6 -4233)))))) (-1630 (((-525) $) 133)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 70)) (-3474 (((-854) (-525)) 126 (|has| $ (-6 -4241)))) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-1583 (($ $) 88)) (-2767 (($ $) 90)) (-2925 (($ (-525) (-525)) 138) (($ (-525) (-525) (-854)) 137)) (-2542 (((-396 $) $) 74)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3987 (((-525) $) 134)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-3439 (((-854)) 131) (((-854) (-854)) 128 (|has| $ (-6 -4241)))) (-2599 (((-854) (-525)) 125 (|has| $ (-6 -4241)))) (-1300 (((-357) $) 105) (((-205) $) 104) (((-825 (-357)) $) 94)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-3425 (((-712)) 29)) (-1584 (($ $) 91)) (-2901 (((-854)) 132) (((-854) (-854)) 129 (|has| $ (-6 -4241)))) (-3523 (((-854)) 135)) (-1724 (((-108) $ $) 39)) (-1460 (($ $) 115)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-4004 (((-108) $ $) 108)) (-3982 (((-108) $ $) 107)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 109)) (-3971 (((-108) $ $) 106)) (-4059 (($ $ $) 64)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) +((-2158 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-855))))) (-2729 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713)))) (-3351 (*1 *1 *1) (-4 *1 (-380))) (-3351 (*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713))))) +(-13 (-341) (-136) (-10 -8 (-15 -2158 ((-775 (-855)) $)) (-15 -2729 ((-3 (-713) "failed") $ $)) (-15 -3351 ($ $)) (-15 -3351 ($ $ (-713))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T)) +((-3024 (($ (-525) (-525)) 11) (($ (-525) (-525) (-855)) NIL)) (-3943 (((-855)) 16) (((-855) (-855)) NIL))) +(((-381 |#1|) (-10 -8 (-15 -3943 ((-855) (-855))) (-15 -3943 ((-855))) (-15 -3024 (|#1| (-525) (-525) (-855))) (-15 -3024 (|#1| (-525) (-525)))) (-382)) (T -381)) +((-3943 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-381 *3)) (-4 *3 (-382))))) +(-10 -8 (-15 -3943 ((-855) (-855))) (-15 -3943 ((-855))) (-15 -3024 (|#1| (-525) (-525) (-855))) (-15 -3024 (|#1| (-525) (-525)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-4094 (((-525) $) 89)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3948 (($ $) 87)) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-2975 (($ $) 97)) (-1700 (((-108) $ $) 59)) (-2780 (((-525) $) 114)) (-1957 (($) 17 T CONST)) (-1325 (($ $) 86)) (-2769 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-2068 (((-525) $) 101) (((-385 (-525)) $) 98)) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2069 (((-108) $) 71)) (-2229 (((-855)) 130) (((-855) (-855)) 127 (|has| $ (-6 -4245)))) (-2973 (((-108) $) 112)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 93)) (-2158 (((-525) $) 136)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 96)) (-2281 (($ $) 92)) (-3721 (((-108) $) 113)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-1260 (($ $ $) 111) (($) 124 (-12 (-2823 (|has| $ (-6 -4245))) (-2823 (|has| $ (-6 -4237)))))) (-2154 (($ $ $) 110) (($) 123 (-12 (-2823 (|has| $ (-6 -4245))) (-2823 (|has| $ (-6 -4237)))))) (-2243 (((-525) $) 133)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 70)) (-3196 (((-855) (-525)) 126 (|has| $ (-6 -4245)))) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-1341 (($ $) 88)) (-2473 (($ $) 90)) (-3024 (($ (-525) (-525)) 138) (($ (-525) (-525) (-855)) 137)) (-2961 (((-396 $) $) 74)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1737 (((-525) $) 134)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-3943 (((-855)) 131) (((-855) (-855)) 128 (|has| $ (-6 -4245)))) (-3043 (((-855) (-525)) 125 (|has| $ (-6 -4245)))) (-2923 (((-357) $) 105) (((-205) $) 104) (((-826 (-357)) $) 94)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-2502 (((-713)) 29)) (-1448 (($ $) 91)) (-3082 (((-855)) 132) (((-855) (-855)) 129 (|has| $ (-6 -4245)))) (-3758 (((-855)) 135)) (-3787 (((-108) $ $) 39)) (-2053 (($ $) 115)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3973 (((-108) $ $) 108)) (-3944 (((-108) $ $) 107)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 109)) (-3928 (((-108) $ $) 106)) (-4047 (($ $ $) 64)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) (((-382) (-131)) (T -382)) -((-2925 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382)))) (-2925 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-854)) (-4 *1 (-382)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-3523 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-854)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-2901 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-854)))) (-3439 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-854)))) (-2008 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-854)))) (-2901 (*1 *2 *2) (-12 (-5 *2 (-854)) (|has| *1 (-6 -4241)) (-4 *1 (-382)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-854)) (|has| *1 (-6 -4241)) (-4 *1 (-382)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-854)) (|has| *1 (-6 -4241)) (-4 *1 (-382)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4241)) (-4 *1 (-382)) (-5 *2 (-854)))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4241)) (-4 *1 (-382)) (-5 *2 (-854)))) (-1923 (*1 *1) (-12 (-4 *1 (-382)) (-3389 (|has| *1 (-6 -4241))) (-3389 (|has| *1 (-6 -4233))))) (-3475 (*1 *1) (-12 (-4 *1 (-382)) (-3389 (|has| *1 (-6 -4241))) (-3389 (|has| *1 (-6 -4233)))))) -(-13 (-984) (-10 -8 (-6 -4173) (-15 -2925 ($ (-525) (-525))) (-15 -2925 ($ (-525) (-525) (-854))) (-15 -1676 ((-525) $)) (-15 -3523 ((-854))) (-15 -3987 ((-525) $)) (-15 -1630 ((-525) $)) (-15 -2901 ((-854))) (-15 -3439 ((-854))) (-15 -2008 ((-854))) (IF (|has| $ (-6 -4241)) (PROGN (-15 -2901 ((-854) (-854))) (-15 -3439 ((-854) (-854))) (-15 -2008 ((-854) (-854))) (-15 -3474 ((-854) (-525))) (-15 -2599 ((-854) (-525)))) |%noBranch|) (IF (|has| $ (-6 -4233)) |%noBranch| (IF (|has| $ (-6 -4241)) |%noBranch| (PROGN (-15 -1923 ($)) (-15 -3475 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-565 (-796)) . T) ((-160) . T) ((-566 (-205)) . T) ((-566 (-357)) . T) ((-566 (-825 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-593 #0#) . T) ((-593 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-668) . T) ((-732) . T) ((-733) . T) ((-735) . T) ((-736) . T) ((-786) . T) ((-788) . T) ((-819 (-357)) . T) ((-853) . T) ((-932) . T) ((-951) . T) ((-984) . T) ((-966 (-385 (-525))) . T) ((-966 (-525)) . T) ((-981 #0#) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) . T)) -((-1257 (((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)) 20))) -(((-383 |#1| |#2|) (-10 -7 (-15 -1257 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)))) (-517) (-517)) (T -383)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6))))) -(-10 -7 (-15 -1257 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)))) -((-1257 (((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)) 13))) -(((-384 |#1| |#2|) (-10 -7 (-15 -1257 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)))) (-517) (-517)) (T -384)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6))))) -(-10 -7 (-15 -1257 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 13)) (-2314 ((|#1| $) 21 (|has| |#1| (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL (|has| |#1| (-761)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) 17) (((-3 (-1089) "failed") $) NIL (|has| |#1| (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) 70 (|has| |#1| (-966 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525))))) (-3341 ((|#1| $) 15) (((-1089) $) NIL (|has| |#1| (-966 (-1089)))) (((-385 (-525)) $) 67 (|has| |#1| (-966 (-525)))) (((-525) $) NIL (|has| |#1| (-966 (-525))))) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) 50)) (-1325 (($) NIL (|has| |#1| (-510)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3489 (((-108) $) NIL (|has| |#1| (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| |#1| (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| |#1| (-819 (-357))))) (-3865 (((-108) $) 64)) (-2920 (($ $) NIL)) (-1384 ((|#1| $) 71)) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-1065)))) (-2256 (((-108) $) NIL (|has| |#1| (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| |#1| (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 97)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL (|has| |#1| (-286)))) (-2767 ((|#1| $) 28 (|has| |#1| (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) 135 (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) 131 (|has| |#1| (-842)))) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-591 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) NIL (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) |#1|) NIL (|has| |#1| (-486 (-1089) |#1|)))) (-3048 (((-712) $) NIL)) (-1881 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2774 (($ $) NIL)) (-1396 ((|#1| $) 73)) (-1300 (((-825 (-525)) $) NIL (|has| |#1| (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| |#1| (-566 (-825 (-357))))) (((-501) $) NIL (|has| |#1| (-566 (-501)))) (((-357) $) NIL (|has| |#1| (-951))) (((-205) $) NIL (|has| |#1| (-951)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 115 (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 10) (($ (-1089)) NIL (|has| |#1| (-966 (-1089))))) (-3751 (((-3 $ "failed") $) 99 (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) 100)) (-1584 ((|#1| $) 26 (|has| |#1| (-510)))) (-1724 (((-108) $ $) NIL)) (-1460 (($ $) NIL (|has| |#1| (-761)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 22 T CONST)) (-1839 (($) 8 T CONST)) (-3042 (((-1072) $) 43 (-12 (|has| |#1| (-510)) (|has| |#1| (-769)))) (((-1072) $ (-108)) 44 (-12 (|has| |#1| (-510)) (|has| |#1| (-769)))) (((-1176) (-763) $) 45 (-12 (|has| |#1| (-510)) (|has| |#1| (-769)))) (((-1176) (-763) $ (-108)) 46 (-12 (|has| |#1| (-510)) (|has| |#1| (-769))))) (-1796 (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) 56)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) 24 (|has| |#1| (-788)))) (-4059 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4047 (($ $) 25) (($ $ $) 55)) (-4036 (($ $ $) 53)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 125)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 60) (($ $ $) 57) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-385 |#1|) (-13 (-923 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4237)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4248)) (-6 -4237) |%noBranch|) |%noBranch|) |%noBranch|))) (-517)) (T -385)) -NIL -(-13 (-923 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4237)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4248)) (-6 -4237) |%noBranch|) |%noBranch|) |%noBranch|))) -((-1712 (((-631 |#2|) (-1171 $)) NIL) (((-631 |#2|)) 18)) (-1554 (($ (-1171 |#2|) (-1171 $)) NIL) (($ (-1171 |#2|)) 26)) (-4054 (((-631 |#2|) $ (-1171 $)) NIL) (((-631 |#2|) $) 22)) (-3205 ((|#3| $) 60)) (-2858 ((|#2| (-1171 $)) NIL) ((|#2|) 20)) (-1671 (((-1171 |#2|) $ (-1171 $)) NIL) (((-631 |#2|) (-1171 $) (-1171 $)) NIL) (((-1171 |#2|) $) NIL) (((-631 |#2|) (-1171 $)) 24)) (-1300 (((-1171 |#2|) $) 11) (($ (-1171 |#2|)) 13)) (-2173 ((|#3| $) 52))) -(((-386 |#1| |#2| |#3|) (-10 -8 (-15 -4054 ((-631 |#2|) |#1|)) (-15 -2858 (|#2|)) (-15 -1712 ((-631 |#2|))) (-15 -1300 (|#1| (-1171 |#2|))) (-15 -1300 ((-1171 |#2|) |#1|)) (-15 -1554 (|#1| (-1171 |#2|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1|)) (-15 -3205 (|#3| |#1|)) (-15 -2173 (|#3| |#1|)) (-15 -1712 ((-631 |#2|) (-1171 |#1|))) (-15 -2858 (|#2| (-1171 |#1|))) (-15 -1554 (|#1| (-1171 |#2|) (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -4054 ((-631 |#2|) |#1| (-1171 |#1|)))) (-387 |#2| |#3|) (-160) (-1147 |#2|)) (T -386)) -((-1712 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)) (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5)))) (-2858 (*1 *2) (-12 (-4 *4 (-1147 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4)) (-4 *3 (-387 *2 *4))))) -(-10 -8 (-15 -4054 ((-631 |#2|) |#1|)) (-15 -2858 (|#2|)) (-15 -1712 ((-631 |#2|))) (-15 -1300 (|#1| (-1171 |#2|))) (-15 -1300 ((-1171 |#2|) |#1|)) (-15 -1554 (|#1| (-1171 |#2|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1|)) (-15 -3205 (|#3| |#1|)) (-15 -2173 (|#3| |#1|)) (-15 -1712 ((-631 |#2|) (-1171 |#1|))) (-15 -2858 (|#2| (-1171 |#1|))) (-15 -1554 (|#1| (-1171 |#2|) (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -4054 ((-631 |#2|) |#1| (-1171 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1712 (((-631 |#1|) (-1171 $)) 46) (((-631 |#1|)) 61)) (-1481 ((|#1| $) 52)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1554 (($ (-1171 |#1|) (-1171 $)) 48) (($ (-1171 |#1|)) 64)) (-4054 (((-631 |#1|) $ (-1171 $)) 53) (((-631 |#1|) $) 59)) (-1522 (((-3 $ "failed") $) 34)) (-2193 (((-854)) 54)) (-3865 (((-108) $) 31)) (-1525 ((|#1| $) 51)) (-3205 ((|#2| $) 44 (|has| |#1| (-341)))) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2858 ((|#1| (-1171 $)) 47) ((|#1|) 60)) (-1671 (((-1171 |#1|) $ (-1171 $)) 50) (((-631 |#1|) (-1171 $) (-1171 $)) 49) (((-1171 |#1|) $) 66) (((-631 |#1|) (-1171 $)) 65)) (-1300 (((-1171 |#1|) $) 63) (($ (-1171 |#1|)) 62)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3751 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-2173 ((|#2| $) 45)) (-3425 (((-712)) 29)) (-3612 (((-1171 $)) 67)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-387 |#1| |#2|) (-131) (-160) (-1147 |t#1|)) (T -387)) -((-3612 (*1 *2) (-12 (-4 *3 (-160)) (-4 *4 (-1147 *3)) (-5 *2 (-1171 *1)) (-4 *1 (-387 *3 *4)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) (-5 *2 (-1171 *3)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1147 *3)))) (-1300 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) (-5 *2 (-1171 *3)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1147 *3)))) (-1712 (*1 *2) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) (-5 *2 (-631 *3)))) (-2858 (*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1147 *2)) (-4 *2 (-160)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) (-5 *2 (-631 *3))))) -(-13 (-348 |t#1| |t#2|) (-10 -8 (-15 -3612 ((-1171 $))) (-15 -1671 ((-1171 |t#1|) $)) (-15 -1671 ((-631 |t#1|) (-1171 $))) (-15 -1554 ($ (-1171 |t#1|))) (-15 -1300 ((-1171 |t#1|) $)) (-15 -1300 ($ (-1171 |t#1|))) (-15 -1712 ((-631 |t#1|))) (-15 -2858 (|t#1|)) (-15 -4054 ((-631 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-348 |#1| |#2|) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-659 |#1|) . T) ((-668) . T) ((-981 |#1|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) 27) (((-3 (-525) "failed") $) 19)) (-3341 ((|#2| $) NIL) (((-385 (-525)) $) 24) (((-525) $) 14)) (-2686 (($ |#2|) NIL) (($ (-385 (-525))) 22) (($ (-525)) 11))) -(((-388 |#1| |#2|) (-10 -8 (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -2686 (|#1| (-525))) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -3341 (|#2| |#1|))) (-389 |#2|) (-1125)) (T -388)) -NIL -(-10 -8 (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -2686 (|#1| (-525))) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -3341 (|#2| |#1|))) -((-4174 (((-3 |#1| "failed") $) 7) (((-3 (-385 (-525)) "failed") $) 16 (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) 13 (|has| |#1| (-966 (-525))))) (-3341 ((|#1| $) 8) (((-385 (-525)) $) 15 (|has| |#1| (-966 (-385 (-525))))) (((-525) $) 12 (|has| |#1| (-966 (-525))))) (-2686 (($ |#1|) 6) (($ (-385 (-525))) 17 (|has| |#1| (-966 (-385 (-525))))) (($ (-525)) 14 (|has| |#1| (-966 (-525)))))) -(((-389 |#1|) (-131) (-1125)) (T -389)) -NIL -(-13 (-966 |t#1|) (-10 -7 (IF (|has| |t#1| (-966 (-525))) (-6 (-966 (-525))) |%noBranch|) (IF (|has| |t#1| (-966 (-385 (-525)))) (-6 (-966 (-385 (-525)))) |%noBranch|))) -(((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T)) -((-1257 (((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)) 33))) -(((-390 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1257 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)))) (-286) (-923 |#1|) (-1147 |#2|) (-13 (-387 |#2| |#3|) (-966 |#2|)) (-286) (-923 |#5|) (-1147 |#6|) (-13 (-387 |#6| |#7|) (-966 |#6|))) (T -390)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286)) (-4 *6 (-923 *5)) (-4 *7 (-1147 *6)) (-4 *8 (-13 (-387 *6 *7) (-966 *6))) (-4 *9 (-286)) (-4 *10 (-923 *9)) (-4 *11 (-1147 *10)) (-5 *2 (-391 *9 *10 *11 *12)) (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-387 *10 *11) (-966 *10)))))) -(-10 -7 (-15 -1257 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)))) -((-2673 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-1402 ((|#4| (-712) (-1171 |#4|)) 56)) (-3865 (((-108) $) NIL)) (-1384 (((-1171 |#4|) $) 17)) (-1525 ((|#2| $) 54)) (-3302 (($ $) 139)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 100)) (-1432 (($ (-1171 |#4|)) 99)) (-2937 (((-1036) $) NIL)) (-1396 ((|#1| $) 18)) (-3369 (($ $ $) NIL)) (-4027 (($ $ $) NIL)) (-2686 (((-796) $) 134)) (-3612 (((-1171 |#4|) $) 129)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1839 (($) 11 T CONST)) (-3944 (((-108) $ $) 40)) (-4059 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 122)) (* (($ $ $) 121))) -(((-391 |#1| |#2| |#3| |#4|) (-13 (-450) (-10 -8 (-15 -1432 ($ (-1171 |#4|))) (-15 -3612 ((-1171 |#4|) $)) (-15 -1525 (|#2| $)) (-15 -1384 ((-1171 |#4|) $)) (-15 -1396 (|#1| $)) (-15 -3302 ($ $)) (-15 -1402 (|#4| (-712) (-1171 |#4|))))) (-286) (-923 |#1|) (-1147 |#2|) (-13 (-387 |#2| |#3|) (-966 |#2|))) (T -391)) -((-1432 (*1 *1 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-13 (-387 *4 *5) (-966 *4))) (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) (-4 *3 (-286)) (-5 *1 (-391 *3 *4 *5 *6)))) (-3612 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) (-5 *2 (-1171 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-966 *4))))) (-1525 (*1 *2 *1) (-12 (-4 *4 (-1147 *2)) (-4 *2 (-923 *3)) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-966 *2))))) (-1384 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) (-5 *2 (-1171 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-966 *4))))) (-1396 (*1 *2 *1) (-12 (-4 *3 (-923 *2)) (-4 *4 (-1147 *3)) (-4 *2 (-286)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-966 *3))))) (-3302 (*1 *1 *1) (-12 (-4 *2 (-286)) (-4 *3 (-923 *2)) (-4 *4 (-1147 *3)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-966 *3))))) (-1402 (*1 *2 *3 *4) (-12 (-5 *3 (-712)) (-5 *4 (-1171 *2)) (-4 *5 (-286)) (-4 *6 (-923 *5)) (-4 *2 (-13 (-387 *6 *7) (-966 *6))) (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1147 *6))))) -(-13 (-450) (-10 -8 (-15 -1432 ($ (-1171 |#4|))) (-15 -3612 ((-1171 |#4|) $)) (-15 -1525 (|#2| $)) (-15 -1384 ((-1171 |#4|) $)) (-15 -1396 (|#1| $)) (-15 -3302 ($ $)) (-15 -1402 (|#4| (-712) (-1171 |#4|))))) -((-2673 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-1525 ((|#2| $) 61)) (-4183 (($ (-1171 |#4|)) 25) (($ (-391 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-966 |#2|)))) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 34)) (-3612 (((-1171 |#4|) $) 26)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1839 (($) 23 T CONST)) (-3944 (((-108) $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ $ $) 72))) -(((-392 |#1| |#2| |#3| |#4| |#5|) (-13 (-668) (-10 -8 (-15 -3612 ((-1171 |#4|) $)) (-15 -1525 (|#2| $)) (-15 -4183 ($ (-1171 |#4|))) (IF (|has| |#4| (-966 |#2|)) (-15 -4183 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-286) (-923 |#1|) (-1147 |#2|) (-387 |#2| |#3|) (-1171 |#4|)) (T -392)) -((-3612 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) (-5 *2 (-1171 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-4 *6 (-387 *4 *5)) (-14 *7 *2))) (-1525 (*1 *2 *1) (-12 (-4 *4 (-1147 *2)) (-4 *2 (-923 *3)) (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4)) (-14 *6 (-1171 *5)))) (-4183 (*1 *1 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-387 *4 *5)) (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-4183 (*1 *1 *2) (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-966 *4)) (-4 *3 (-286)) (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1171 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))))) -(-13 (-668) (-10 -8 (-15 -3612 ((-1171 |#4|) $)) (-15 -1525 (|#2| $)) (-15 -4183 ($ (-1171 |#4|))) (IF (|has| |#4| (-966 |#2|)) (-15 -4183 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-1257 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 (|#3| (-1 |#4| |#2|) |#1|))) (-395 |#2|) (-160) (-395 |#4|) (-160)) (T -393)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5))))) -(-10 -7 (-15 -1257 (|#3| (-1 |#4| |#2|) |#1|))) -((-1851 (((-3 $ "failed")) 86)) (-2010 (((-1171 (-631 |#2|)) (-1171 $)) NIL) (((-1171 (-631 |#2|))) 91)) (-4007 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) 85)) (-4088 (((-3 $ "failed")) 84)) (-2004 (((-631 |#2|) (-1171 $)) NIL) (((-631 |#2|)) 102)) (-2465 (((-631 |#2|) $ (-1171 $)) NIL) (((-631 |#2|) $) 110)) (-4182 (((-1085 (-885 |#2|))) 55)) (-1321 ((|#2| (-1171 $)) NIL) ((|#2|) 106)) (-1554 (($ (-1171 |#2|) (-1171 $)) NIL) (($ (-1171 |#2|)) 113)) (-1779 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) 83)) (-2727 (((-3 $ "failed")) 75)) (-1529 (((-631 |#2|) (-1171 $)) NIL) (((-631 |#2|)) 100)) (-2000 (((-631 |#2|) $ (-1171 $)) NIL) (((-631 |#2|) $) 108)) (-2679 (((-1085 (-885 |#2|))) 54)) (-2336 ((|#2| (-1171 $)) NIL) ((|#2|) 104)) (-1671 (((-1171 |#2|) $ (-1171 $)) NIL) (((-631 |#2|) (-1171 $) (-1171 $)) NIL) (((-1171 |#2|) $) NIL) (((-631 |#2|) (-1171 $)) 112)) (-1300 (((-1171 |#2|) $) 96) (($ (-1171 |#2|)) 98)) (-3277 (((-591 (-885 |#2|)) (-1171 $)) NIL) (((-591 (-885 |#2|))) 94)) (-2814 (($ (-631 |#2|) $) 90))) -(((-394 |#1| |#2|) (-10 -8 (-15 -2814 (|#1| (-631 |#2|) |#1|)) (-15 -4182 ((-1085 (-885 |#2|)))) (-15 -2679 ((-1085 (-885 |#2|)))) (-15 -2465 ((-631 |#2|) |#1|)) (-15 -2000 ((-631 |#2|) |#1|)) (-15 -2004 ((-631 |#2|))) (-15 -1529 ((-631 |#2|))) (-15 -1321 (|#2|)) (-15 -2336 (|#2|)) (-15 -1300 (|#1| (-1171 |#2|))) (-15 -1300 ((-1171 |#2|) |#1|)) (-15 -1554 (|#1| (-1171 |#2|))) (-15 -3277 ((-591 (-885 |#2|)))) (-15 -2010 ((-1171 (-631 |#2|)))) (-15 -1671 ((-631 |#2|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1|)) (-15 -1851 ((-3 |#1| "failed"))) (-15 -4088 ((-3 |#1| "failed"))) (-15 -2727 ((-3 |#1| "failed"))) (-15 -4007 ((-3 (-2 (|:| |particular| |#1|) (|:| -3612 (-591 |#1|))) "failed"))) (-15 -1779 ((-3 (-2 (|:| |particular| |#1|) (|:| -3612 (-591 |#1|))) "failed"))) (-15 -2004 ((-631 |#2|) (-1171 |#1|))) (-15 -1529 ((-631 |#2|) (-1171 |#1|))) (-15 -1321 (|#2| (-1171 |#1|))) (-15 -2336 (|#2| (-1171 |#1|))) (-15 -1554 (|#1| (-1171 |#2|) (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -2465 ((-631 |#2|) |#1| (-1171 |#1|))) (-15 -2000 ((-631 |#2|) |#1| (-1171 |#1|))) (-15 -2010 ((-1171 (-631 |#2|)) (-1171 |#1|))) (-15 -3277 ((-591 (-885 |#2|)) (-1171 |#1|)))) (-395 |#2|) (-160)) (T -394)) -((-2010 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1171 (-631 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-3277 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-591 (-885 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2336 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-1321 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-1529 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-631 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2004 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-631 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2679 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1085 (-885 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-4182 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1085 (-885 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4))))) -(-10 -8 (-15 -2814 (|#1| (-631 |#2|) |#1|)) (-15 -4182 ((-1085 (-885 |#2|)))) (-15 -2679 ((-1085 (-885 |#2|)))) (-15 -2465 ((-631 |#2|) |#1|)) (-15 -2000 ((-631 |#2|) |#1|)) (-15 -2004 ((-631 |#2|))) (-15 -1529 ((-631 |#2|))) (-15 -1321 (|#2|)) (-15 -2336 (|#2|)) (-15 -1300 (|#1| (-1171 |#2|))) (-15 -1300 ((-1171 |#2|) |#1|)) (-15 -1554 (|#1| (-1171 |#2|))) (-15 -3277 ((-591 (-885 |#2|)))) (-15 -2010 ((-1171 (-631 |#2|)))) (-15 -1671 ((-631 |#2|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1|)) (-15 -1851 ((-3 |#1| "failed"))) (-15 -4088 ((-3 |#1| "failed"))) (-15 -2727 ((-3 |#1| "failed"))) (-15 -4007 ((-3 (-2 (|:| |particular| |#1|) (|:| -3612 (-591 |#1|))) "failed"))) (-15 -1779 ((-3 (-2 (|:| |particular| |#1|) (|:| -3612 (-591 |#1|))) "failed"))) (-15 -2004 ((-631 |#2|) (-1171 |#1|))) (-15 -1529 ((-631 |#2|) (-1171 |#1|))) (-15 -1321 (|#2| (-1171 |#1|))) (-15 -2336 (|#2| (-1171 |#1|))) (-15 -1554 (|#1| (-1171 |#2|) (-1171 |#1|))) (-15 -1671 ((-631 |#2|) (-1171 |#1|) (-1171 |#1|))) (-15 -1671 ((-1171 |#2|) |#1| (-1171 |#1|))) (-15 -2465 ((-631 |#2|) |#1| (-1171 |#1|))) (-15 -2000 ((-631 |#2|) |#1| (-1171 |#1|))) (-15 -2010 ((-1171 (-631 |#2|)) (-1171 |#1|))) (-15 -3277 ((-591 (-885 |#2|)) (-1171 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1851 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) 19)) (-2010 (((-1171 (-631 |#1|)) (-1171 $)) 78) (((-1171 (-631 |#1|))) 100)) (-3483 (((-1171 $)) 81)) (-2055 (($) 17 T CONST)) (-4007 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) 40 (|has| |#1| (-517)))) (-4088 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-2004 (((-631 |#1|) (-1171 $)) 65) (((-631 |#1|)) 92)) (-3681 ((|#1| $) 74)) (-2465 (((-631 |#1|) $ (-1171 $)) 76) (((-631 |#1|) $) 90)) (-2397 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-4182 (((-1085 (-885 |#1|))) 88 (|has| |#1| (-341)))) (-2681 (($ $ (-854)) 28)) (-3549 ((|#1| $) 72)) (-1865 (((-1085 |#1|) $) 42 (|has| |#1| (-517)))) (-1321 ((|#1| (-1171 $)) 67) ((|#1|) 94)) (-3985 (((-1085 |#1|) $) 63)) (-1532 (((-108)) 57)) (-1554 (($ (-1171 |#1|) (-1171 $)) 69) (($ (-1171 |#1|)) 98)) (-1522 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-2193 (((-854)) 80)) (-3595 (((-108)) 54)) (-1447 (($ $ (-854)) 33)) (-3999 (((-108)) 50)) (-3319 (((-108)) 48)) (-1219 (((-108)) 52)) (-1779 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) 41 (|has| |#1| (-517)))) (-2727 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-1529 (((-631 |#1|) (-1171 $)) 66) (((-631 |#1|)) 93)) (-2671 ((|#1| $) 75)) (-2000 (((-631 |#1|) $ (-1171 $)) 77) (((-631 |#1|) $) 91)) (-3917 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-2679 (((-1085 (-885 |#1|))) 89 (|has| |#1| (-341)))) (-2832 (($ $ (-854)) 29)) (-1984 ((|#1| $) 73)) (-4130 (((-1085 |#1|) $) 43 (|has| |#1| (-517)))) (-2336 ((|#1| (-1171 $)) 68) ((|#1|) 95)) (-3019 (((-1085 |#1|) $) 64)) (-1312 (((-108)) 58)) (-2621 (((-1072) $) 9)) (-3440 (((-108)) 49)) (-3615 (((-108)) 51)) (-1821 (((-108)) 53)) (-2937 (((-1036) $) 10)) (-1492 (((-108)) 56)) (-1881 ((|#1| $ (-525)) 101)) (-1671 (((-1171 |#1|) $ (-1171 $)) 71) (((-631 |#1|) (-1171 $) (-1171 $)) 70) (((-1171 |#1|) $) 103) (((-631 |#1|) (-1171 $)) 102)) (-1300 (((-1171 |#1|) $) 97) (($ (-1171 |#1|)) 96)) (-3277 (((-591 (-885 |#1|)) (-1171 $)) 79) (((-591 (-885 |#1|))) 99)) (-4027 (($ $ $) 25)) (-2003 (((-108)) 62)) (-2686 (((-796) $) 11)) (-3612 (((-1171 $)) 104)) (-3674 (((-591 (-1171 |#1|))) 44 (|has| |#1| (-517)))) (-1894 (($ $ $ $) 26)) (-2535 (((-108)) 60)) (-2814 (($ (-631 |#1|) $) 87)) (-1971 (($ $ $) 24)) (-3887 (((-108)) 61)) (-1394 (((-108)) 59)) (-2659 (((-108)) 55)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 30)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-3024 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382)))) (-3024 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-855)) (-4 *1 (-382)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-3758 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-3082 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) (-3943 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) (-2229 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) (-3082 (*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382)))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4245)) (-4 *1 (-382)) (-5 *2 (-855)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4245)) (-4 *1 (-382)) (-5 *2 (-855)))) (-1260 (*1 *1) (-12 (-4 *1 (-382)) (-2823 (|has| *1 (-6 -4245))) (-2823 (|has| *1 (-6 -4237))))) (-2154 (*1 *1) (-12 (-4 *1 (-382)) (-2823 (|has| *1 (-6 -4245))) (-2823 (|has| *1 (-6 -4237)))))) +(-13 (-985) (-10 -8 (-6 -2371) (-15 -3024 ($ (-525) (-525))) (-15 -3024 ($ (-525) (-525) (-855))) (-15 -2158 ((-525) $)) (-15 -3758 ((-855))) (-15 -1737 ((-525) $)) (-15 -2243 ((-525) $)) (-15 -3082 ((-855))) (-15 -3943 ((-855))) (-15 -2229 ((-855))) (IF (|has| $ (-6 -4245)) (PROGN (-15 -3082 ((-855) (-855))) (-15 -3943 ((-855) (-855))) (-15 -2229 ((-855) (-855))) (-15 -3196 ((-855) (-525))) (-15 -3043 ((-855) (-525)))) |%noBranch|) (IF (|has| $ (-6 -4237)) |%noBranch| (IF (|has| $ (-6 -4245)) |%noBranch| (PROGN (-15 -1260 ($)) (-15 -2154 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-826 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-820 (-357)) . T) ((-854) . T) ((-933) . T) ((-952) . T) ((-985) . T) ((-967 (-385 (-525))) . T) ((-967 (-525)) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T)) +((-2868 (((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)) 20))) +(((-383 |#1| |#2|) (-10 -7 (-15 -2868 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)))) (-517) (-517)) (T -383)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6))))) +(-10 -7 (-15 -2868 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)))) +((-2868 (((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)) 13))) +(((-384 |#1| |#2|) (-10 -7 (-15 -2868 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)))) (-517) (-517)) (T -384)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6))))) +(-10 -7 (-15 -2868 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 13)) (-4094 ((|#1| $) 21 (|has| |#1| (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL (|has| |#1| (-762)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) 17) (((-3 (-1090) "failed") $) NIL (|has| |#1| (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) 70 (|has| |#1| (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525))))) (-2068 ((|#1| $) 15) (((-1090) $) NIL (|has| |#1| (-967 (-1090)))) (((-385 (-525)) $) 67 (|has| |#1| (-967 (-525)))) (((-525) $) NIL (|has| |#1| (-967 (-525))))) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) 50)) (-1527 (($) NIL (|has| |#1| (-510)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2973 (((-108) $) NIL (|has| |#1| (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| |#1| (-820 (-357))))) (-2507 (((-108) $) 64)) (-4055 (($ $) NIL)) (-1936 ((|#1| $) 71)) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-1066)))) (-3721 (((-108) $) NIL (|has| |#1| (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| |#1| (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 97)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL (|has| |#1| (-286)))) (-2473 ((|#1| $) 28 (|has| |#1| (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) 135 (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) 131 (|has| |#1| (-843)))) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|)))) (-2824 (((-713) $) NIL)) (-1496 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1987 (($ $) NIL)) (-1945 ((|#1| $) 73)) (-2923 (((-826 (-525)) $) NIL (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| |#1| (-567 (-826 (-357))))) (((-501) $) NIL (|has| |#1| (-567 (-501)))) (((-357) $) NIL (|has| |#1| (-952))) (((-205) $) NIL (|has| |#1| (-952)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 115 (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 10) (($ (-1090)) NIL (|has| |#1| (-967 (-1090))))) (-1279 (((-3 $ "failed") $) 99 (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) 100)) (-1448 ((|#1| $) 26 (|has| |#1| (-510)))) (-3787 (((-108) $ $) NIL)) (-2053 (($ $) NIL (|has| |#1| (-762)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 22 T CONST)) (-1449 (($) 8 T CONST)) (-2453 (((-1073) $) 43 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1073) $ (-108)) 44 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1177) (-764) $) 45 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1177) (-764) $ (-108)) 46 (-12 (|has| |#1| (-510)) (|has| |#1| (-770))))) (-1990 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) 56)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) 24 (|has| |#1| (-789)))) (-4047 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4033 (($ $) 25) (($ $ $) 55)) (-4017 (($ $ $) 53)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 125)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 60) (($ $ $) 57) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-385 |#1|) (-13 (-924 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4252)) (-6 -4241) |%noBranch|) |%noBranch|) |%noBranch|))) (-517)) (T -385)) +NIL +(-13 (-924 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4252)) (-6 -4241) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3852 (((-632 |#2|) (-1172 $)) NIL) (((-632 |#2|)) 18)) (-1689 (($ (-1172 |#2|) (-1172 $)) NIL) (($ (-1172 |#2|)) 26)) (-3198 (((-632 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) $) 22)) (-3800 ((|#3| $) 60)) (-2257 ((|#2| (-1172 $)) NIL) ((|#2|) 20)) (-1625 (((-1172 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) NIL) (((-1172 |#2|) $) NIL) (((-632 |#2|) (-1172 $)) 24)) (-2923 (((-1172 |#2|) $) 11) (($ (-1172 |#2|)) 13)) (-2867 ((|#3| $) 52))) +(((-386 |#1| |#2| |#3|) (-10 -8 (-15 -3198 ((-632 |#2|) |#1|)) (-15 -2257 (|#2|)) (-15 -3852 ((-632 |#2|))) (-15 -2923 (|#1| (-1172 |#2|))) (-15 -2923 ((-1172 |#2|) |#1|)) (-15 -1689 (|#1| (-1172 |#2|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1|)) (-15 -3800 (|#3| |#1|)) (-15 -2867 (|#3| |#1|)) (-15 -3852 ((-632 |#2|) (-1172 |#1|))) (-15 -2257 (|#2| (-1172 |#1|))) (-15 -1689 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3198 ((-632 |#2|) |#1| (-1172 |#1|)))) (-387 |#2| |#3|) (-160) (-1148 |#2|)) (T -386)) +((-3852 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)) (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5)))) (-2257 (*1 *2) (-12 (-4 *4 (-1148 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4)) (-4 *3 (-387 *2 *4))))) +(-10 -8 (-15 -3198 ((-632 |#2|) |#1|)) (-15 -2257 (|#2|)) (-15 -3852 ((-632 |#2|))) (-15 -2923 (|#1| (-1172 |#2|))) (-15 -2923 ((-1172 |#2|) |#1|)) (-15 -1689 (|#1| (-1172 |#2|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1|)) (-15 -3800 (|#3| |#1|)) (-15 -2867 (|#3| |#1|)) (-15 -3852 ((-632 |#2|) (-1172 |#1|))) (-15 -2257 (|#2| (-1172 |#1|))) (-15 -1689 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3198 ((-632 |#2|) |#1| (-1172 |#1|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3852 (((-632 |#1|) (-1172 $)) 46) (((-632 |#1|)) 61)) (-3942 ((|#1| $) 52)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1689 (($ (-1172 |#1|) (-1172 $)) 48) (($ (-1172 |#1|)) 64)) (-3198 (((-632 |#1|) $ (-1172 $)) 53) (((-632 |#1|) $) 59)) (-1645 (((-3 $ "failed") $) 34)) (-3439 (((-855)) 54)) (-2507 (((-108) $) 31)) (-2281 ((|#1| $) 51)) (-3800 ((|#2| $) 44 (|has| |#1| (-341)))) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2257 ((|#1| (-1172 $)) 47) ((|#1|) 60)) (-1625 (((-1172 |#1|) $ (-1172 $)) 50) (((-632 |#1|) (-1172 $) (-1172 $)) 49) (((-1172 |#1|) $) 66) (((-632 |#1|) (-1172 $)) 65)) (-2923 (((-1172 |#1|) $) 63) (($ (-1172 |#1|)) 62)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-1279 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-2867 ((|#2| $) 45)) (-2502 (((-713)) 29)) (-2734 (((-1172 $)) 67)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-387 |#1| |#2|) (-131) (-160) (-1148 |t#1|)) (T -387)) +((-2734 (*1 *2) (-12 (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-1172 *1)) (-4 *1 (-387 *3 *4)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-1172 *3)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) (-1689 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1148 *3)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-1172 *3)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1148 *3)))) (-3852 (*1 *2) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-632 *3)))) (-2257 (*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-632 *3))))) +(-13 (-348 |t#1| |t#2|) (-10 -8 (-15 -2734 ((-1172 $))) (-15 -1625 ((-1172 |t#1|) $)) (-15 -1625 ((-632 |t#1|) (-1172 $))) (-15 -1689 ($ (-1172 |t#1|))) (-15 -2923 ((-1172 |t#1|) $)) (-15 -2923 ($ (-1172 |t#1|))) (-15 -3852 ((-632 |t#1|))) (-15 -2257 (|t#1|)) (-15 -3198 ((-632 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-348 |#1| |#2|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) 27) (((-3 (-525) "failed") $) 19)) (-2068 ((|#2| $) NIL) (((-385 (-525)) $) 24) (((-525) $) 14)) (-4044 (($ |#2|) NIL) (($ (-385 (-525))) 22) (($ (-525)) 11))) +(((-388 |#1| |#2|) (-10 -8 (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -4044 (|#1| (-525))) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2068 (|#2| |#1|))) (-389 |#2|) (-1126)) (T -388)) +NIL +(-10 -8 (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -4044 (|#1| (-525))) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2068 (|#2| |#1|))) +((-2769 (((-3 |#1| "failed") $) 7) (((-3 (-385 (-525)) "failed") $) 16 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 13 (|has| |#1| (-967 (-525))))) (-2068 ((|#1| $) 8) (((-385 (-525)) $) 15 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 12 (|has| |#1| (-967 (-525))))) (-4044 (($ |#1|) 6) (($ (-385 (-525))) 17 (|has| |#1| (-967 (-385 (-525))))) (($ (-525)) 14 (|has| |#1| (-967 (-525)))))) +(((-389 |#1|) (-131) (-1126)) (T -389)) +NIL +(-13 (-967 |t#1|) (-10 -7 (IF (|has| |t#1| (-967 (-525))) (-6 (-967 (-525))) |%noBranch|) (IF (|has| |t#1| (-967 (-385 (-525)))) (-6 (-967 (-385 (-525)))) |%noBranch|))) +(((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T)) +((-2868 (((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)) 33))) +(((-390 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2868 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)))) (-286) (-924 |#1|) (-1148 |#2|) (-13 (-387 |#2| |#3|) (-967 |#2|)) (-286) (-924 |#5|) (-1148 |#6|) (-13 (-387 |#6| |#7|) (-967 |#6|))) (T -390)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286)) (-4 *6 (-924 *5)) (-4 *7 (-1148 *6)) (-4 *8 (-13 (-387 *6 *7) (-967 *6))) (-4 *9 (-286)) (-4 *10 (-924 *9)) (-4 *11 (-1148 *10)) (-5 *2 (-391 *9 *10 *11 *12)) (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-387 *10 *11) (-967 *10)))))) +(-10 -7 (-15 -2868 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)))) +((-4028 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2830 ((|#4| (-713) (-1172 |#4|)) 56)) (-2507 (((-108) $) NIL)) (-1936 (((-1172 |#4|) $) 17)) (-2281 ((|#2| $) 54)) (-3841 (($ $) 139)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 100)) (-3691 (($ (-1172 |#4|)) 99)) (-3027 (((-1037) $) NIL)) (-1945 ((|#1| $) 18)) (-4025 (($ $ $) NIL)) (-1573 (($ $ $) NIL)) (-4044 (((-797) $) 134)) (-2734 (((-1172 |#4|) $) 129)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1449 (($) 11 T CONST)) (-3899 (((-108) $ $) 40)) (-4047 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 122)) (* (($ $ $) 121))) +(((-391 |#1| |#2| |#3| |#4|) (-13 (-450) (-10 -8 (-15 -3691 ($ (-1172 |#4|))) (-15 -2734 ((-1172 |#4|) $)) (-15 -2281 (|#2| $)) (-15 -1936 ((-1172 |#4|) $)) (-15 -1945 (|#1| $)) (-15 -3841 ($ $)) (-15 -2830 (|#4| (-713) (-1172 |#4|))))) (-286) (-924 |#1|) (-1148 |#2|) (-13 (-387 |#2| |#3|) (-967 |#2|))) (T -391)) +((-3691 (*1 *1 *2) (-12 (-5 *2 (-1172 *6)) (-4 *6 (-13 (-387 *4 *5) (-967 *4))) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *3 (-286)) (-5 *1 (-391 *3 *4 *5 *6)))) (-2734 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-1172 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-967 *4))))) (-2281 (*1 *2 *1) (-12 (-4 *4 (-1148 *2)) (-4 *2 (-924 *3)) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-967 *2))))) (-1936 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-1172 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-967 *4))))) (-1945 (*1 *2 *1) (-12 (-4 *3 (-924 *2)) (-4 *4 (-1148 *3)) (-4 *2 (-286)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-967 *3))))) (-3841 (*1 *1 *1) (-12 (-4 *2 (-286)) (-4 *3 (-924 *2)) (-4 *4 (-1148 *3)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-967 *3))))) (-2830 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1172 *2)) (-4 *5 (-286)) (-4 *6 (-924 *5)) (-4 *2 (-13 (-387 *6 *7) (-967 *6))) (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1148 *6))))) +(-13 (-450) (-10 -8 (-15 -3691 ($ (-1172 |#4|))) (-15 -2734 ((-1172 |#4|) $)) (-15 -2281 (|#2| $)) (-15 -1936 ((-1172 |#4|) $)) (-15 -1945 (|#1| $)) (-15 -3841 ($ $)) (-15 -2830 (|#4| (-713) (-1172 |#4|))))) +((-4028 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-2281 ((|#2| $) 61)) (-3615 (($ (-1172 |#4|)) 25) (($ (-391 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-967 |#2|)))) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 34)) (-2734 (((-1172 |#4|) $) 26)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1449 (($) 23 T CONST)) (-3899 (((-108) $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ $ $) 72))) +(((-392 |#1| |#2| |#3| |#4| |#5|) (-13 (-669) (-10 -8 (-15 -2734 ((-1172 |#4|) $)) (-15 -2281 (|#2| $)) (-15 -3615 ($ (-1172 |#4|))) (IF (|has| |#4| (-967 |#2|)) (-15 -3615 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-286) (-924 |#1|) (-1148 |#2|) (-387 |#2| |#3|) (-1172 |#4|)) (T -392)) +((-2734 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-1172 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-4 *6 (-387 *4 *5)) (-14 *7 *2))) (-2281 (*1 *2 *1) (-12 (-4 *4 (-1148 *2)) (-4 *2 (-924 *3)) (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4)) (-14 *6 (-1172 *5)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-1172 *6)) (-4 *6 (-387 *4 *5)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-967 *4)) (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1172 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))))) +(-13 (-669) (-10 -8 (-15 -2734 ((-1172 |#4|) $)) (-15 -2281 (|#2| $)) (-15 -3615 ($ (-1172 |#4|))) (IF (|has| |#4| (-967 |#2|)) (-15 -3615 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-2868 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 (|#3| (-1 |#4| |#2|) |#1|))) (-395 |#2|) (-160) (-395 |#4|) (-160)) (T -393)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5))))) +(-10 -7 (-15 -2868 (|#3| (-1 |#4| |#2|) |#1|))) +((-3603 (((-3 $ "failed")) 86)) (-1545 (((-1172 (-632 |#2|)) (-1172 $)) NIL) (((-1172 (-632 |#2|))) 91)) (-1922 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) 85)) (-3537 (((-3 $ "failed")) 84)) (-1953 (((-632 |#2|) (-1172 $)) NIL) (((-632 |#2|)) 102)) (-3663 (((-632 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) $) 110)) (-3558 (((-1086 (-886 |#2|))) 55)) (-1452 ((|#2| (-1172 $)) NIL) ((|#2|) 106)) (-1689 (($ (-1172 |#2|) (-1172 $)) NIL) (($ (-1172 |#2|)) 113)) (-3609 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) 83)) (-2167 (((-3 $ "failed")) 75)) (-1301 (((-632 |#2|) (-1172 $)) NIL) (((-632 |#2|)) 100)) (-2562 (((-632 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) $) 108)) (-1376 (((-1086 (-886 |#2|))) 54)) (-4087 ((|#2| (-1172 $)) NIL) ((|#2|) 104)) (-1625 (((-1172 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) NIL) (((-1172 |#2|) $) NIL) (((-632 |#2|) (-1172 $)) 112)) (-2923 (((-1172 |#2|) $) 96) (($ (-1172 |#2|)) 98)) (-4125 (((-592 (-886 |#2|)) (-1172 $)) NIL) (((-592 (-886 |#2|))) 94)) (-1627 (($ (-632 |#2|) $) 90))) +(((-394 |#1| |#2|) (-10 -8 (-15 -1627 (|#1| (-632 |#2|) |#1|)) (-15 -3558 ((-1086 (-886 |#2|)))) (-15 -1376 ((-1086 (-886 |#2|)))) (-15 -3663 ((-632 |#2|) |#1|)) (-15 -2562 ((-632 |#2|) |#1|)) (-15 -1953 ((-632 |#2|))) (-15 -1301 ((-632 |#2|))) (-15 -1452 (|#2|)) (-15 -4087 (|#2|)) (-15 -2923 (|#1| (-1172 |#2|))) (-15 -2923 ((-1172 |#2|) |#1|)) (-15 -1689 (|#1| (-1172 |#2|))) (-15 -4125 ((-592 (-886 |#2|)))) (-15 -1545 ((-1172 (-632 |#2|)))) (-15 -1625 ((-632 |#2|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1|)) (-15 -3603 ((-3 |#1| "failed"))) (-15 -3537 ((-3 |#1| "failed"))) (-15 -2167 ((-3 |#1| "failed"))) (-15 -1922 ((-3 (-2 (|:| |particular| |#1|) (|:| -2734 (-592 |#1|))) "failed"))) (-15 -3609 ((-3 (-2 (|:| |particular| |#1|) (|:| -2734 (-592 |#1|))) "failed"))) (-15 -1953 ((-632 |#2|) (-1172 |#1|))) (-15 -1301 ((-632 |#2|) (-1172 |#1|))) (-15 -1452 (|#2| (-1172 |#1|))) (-15 -4087 (|#2| (-1172 |#1|))) (-15 -1689 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3663 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -2562 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -1545 ((-1172 (-632 |#2|)) (-1172 |#1|))) (-15 -4125 ((-592 (-886 |#2|)) (-1172 |#1|)))) (-395 |#2|) (-160)) (T -394)) +((-1545 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-4125 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-886 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-4087 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-1452 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-1301 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-1953 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-1376 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1086 (-886 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-3558 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1086 (-886 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4))))) +(-10 -8 (-15 -1627 (|#1| (-632 |#2|) |#1|)) (-15 -3558 ((-1086 (-886 |#2|)))) (-15 -1376 ((-1086 (-886 |#2|)))) (-15 -3663 ((-632 |#2|) |#1|)) (-15 -2562 ((-632 |#2|) |#1|)) (-15 -1953 ((-632 |#2|))) (-15 -1301 ((-632 |#2|))) (-15 -1452 (|#2|)) (-15 -4087 (|#2|)) (-15 -2923 (|#1| (-1172 |#2|))) (-15 -2923 ((-1172 |#2|) |#1|)) (-15 -1689 (|#1| (-1172 |#2|))) (-15 -4125 ((-592 (-886 |#2|)))) (-15 -1545 ((-1172 (-632 |#2|)))) (-15 -1625 ((-632 |#2|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1|)) (-15 -3603 ((-3 |#1| "failed"))) (-15 -3537 ((-3 |#1| "failed"))) (-15 -2167 ((-3 |#1| "failed"))) (-15 -1922 ((-3 (-2 (|:| |particular| |#1|) (|:| -2734 (-592 |#1|))) "failed"))) (-15 -3609 ((-3 (-2 (|:| |particular| |#1|) (|:| -2734 (-592 |#1|))) "failed"))) (-15 -1953 ((-632 |#2|) (-1172 |#1|))) (-15 -1301 ((-632 |#2|) (-1172 |#1|))) (-15 -1452 (|#2| (-1172 |#1|))) (-15 -4087 (|#2| (-1172 |#1|))) (-15 -1689 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -1625 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -1625 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3663 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -2562 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -1545 ((-1172 (-632 |#2|)) (-1172 |#1|))) (-15 -4125 ((-592 (-886 |#2|)) (-1172 |#1|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3603 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) 19)) (-1545 (((-1172 (-632 |#1|)) (-1172 $)) 78) (((-1172 (-632 |#1|))) 100)) (-2489 (((-1172 $)) 81)) (-1957 (($) 17 T CONST)) (-1922 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-3537 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-1953 (((-632 |#1|) (-1172 $)) 65) (((-632 |#1|)) 92)) (-3497 ((|#1| $) 74)) (-3663 (((-632 |#1|) $ (-1172 $)) 76) (((-632 |#1|) $) 90)) (-2256 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-3558 (((-1086 (-886 |#1|))) 88 (|has| |#1| (-341)))) (-1469 (($ $ (-855)) 28)) (-3655 ((|#1| $) 72)) (-1911 (((-1086 |#1|) $) 42 (|has| |#1| (-517)))) (-1452 ((|#1| (-1172 $)) 67) ((|#1|) 94)) (-1492 (((-1086 |#1|) $) 63)) (-2790 (((-108)) 57)) (-1689 (($ (-1172 |#1|) (-1172 $)) 69) (($ (-1172 |#1|)) 98)) (-1645 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-3439 (((-855)) 80)) (-2404 (((-108)) 54)) (-1404 (($ $ (-855)) 33)) (-1552 (((-108)) 50)) (-2383 (((-108)) 48)) (-3076 (((-108)) 52)) (-3609 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-2167 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-1301 (((-632 |#1|) (-1172 $)) 66) (((-632 |#1|)) 93)) (-4139 ((|#1| $) 75)) (-2562 (((-632 |#1|) $ (-1172 $)) 77) (((-632 |#1|) $) 91)) (-1709 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-1376 (((-1086 (-886 |#1|))) 89 (|has| |#1| (-341)))) (-2148 (($ $ (-855)) 29)) (-1855 ((|#1| $) 73)) (-4067 (((-1086 |#1|) $) 43 (|has| |#1| (-517)))) (-4087 ((|#1| (-1172 $)) 68) ((|#1|) 95)) (-1488 (((-1086 |#1|) $) 64)) (-2085 (((-108)) 58)) (-1707 (((-1073) $) 9)) (-4062 (((-108)) 49)) (-1985 (((-108)) 51)) (-2744 (((-108)) 53)) (-3027 (((-1037) $) 10)) (-3587 (((-108)) 56)) (-1496 ((|#1| $ (-525)) 101)) (-1625 (((-1172 |#1|) $ (-1172 $)) 71) (((-632 |#1|) (-1172 $) (-1172 $)) 70) (((-1172 |#1|) $) 103) (((-632 |#1|) (-1172 $)) 102)) (-2923 (((-1172 |#1|) $) 97) (($ (-1172 |#1|)) 96)) (-4125 (((-592 (-886 |#1|)) (-1172 $)) 79) (((-592 (-886 |#1|))) 99)) (-1573 (($ $ $) 25)) (-2880 (((-108)) 62)) (-4044 (((-797) $) 11)) (-2734 (((-1172 $)) 104)) (-4194 (((-592 (-1172 |#1|))) 44 (|has| |#1| (-517)))) (-1762 (($ $ $ $) 26)) (-2986 (((-108)) 60)) (-1627 (($ (-632 |#1|) $) 87)) (-2407 (($ $ $) 24)) (-2046 (((-108)) 61)) (-3367 (((-108)) 59)) (-3026 (((-108)) 55)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-395 |#1|) (-131) (-160)) (T -395)) -((-3612 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1171 *1)) (-4 *1 (-395 *3)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1171 *3)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160)) (-5 *2 (-631 *4)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-2010 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1171 (-631 *3))))) (-3277 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-591 (-885 *3))))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-1300 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1171 *3)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-2336 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-1321 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-1529 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-631 *3)))) (-2004 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-631 *3)))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-631 *3)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-631 *3)))) (-2679 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1085 (-885 *3))))) (-4182 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1085 (-885 *3))))) (-2814 (*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160))))) -(-13 (-345 |t#1|) (-10 -8 (-15 -3612 ((-1171 $))) (-15 -1671 ((-1171 |t#1|) $)) (-15 -1671 ((-631 |t#1|) (-1171 $))) (-15 -1881 (|t#1| $ (-525))) (-15 -2010 ((-1171 (-631 |t#1|)))) (-15 -3277 ((-591 (-885 |t#1|)))) (-15 -1554 ($ (-1171 |t#1|))) (-15 -1300 ((-1171 |t#1|) $)) (-15 -1300 ($ (-1171 |t#1|))) (-15 -2336 (|t#1|)) (-15 -1321 (|t#1|)) (-15 -1529 ((-631 |t#1|))) (-15 -2004 ((-631 |t#1|))) (-15 -2000 ((-631 |t#1|) $)) (-15 -2465 ((-631 |t#1|) $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -2679 ((-1085 (-885 |t#1|)))) (-15 -4182 ((-1085 (-885 |t#1|))))) |%noBranch|) (-15 -2814 ($ (-631 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-345 |#1|) . T) ((-593 |#1|) . T) ((-659 |#1|) . T) ((-662) . T) ((-686 |#1|) . T) ((-703) . T) ((-981 |#1|) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 42)) (-1241 (($ $) 57)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 145)) (-3641 (($ $) NIL)) (-3077 (((-108) $) 36)) (-1851 ((|#1| $) 13)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| |#1| (-1129)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-1129)))) (-3488 (($ |#1| (-525)) 31)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 115)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 55)) (-1522 (((-3 $ "failed") $) 130)) (-2350 (((-3 (-385 (-525)) "failed") $) 63 (|has| |#1| (-510)))) (-2157 (((-108) $) 59 (|has| |#1| (-510)))) (-3184 (((-385 (-525)) $) 61 (|has| |#1| (-510)))) (-3390 (($ |#1| (-525)) 33)) (-2393 (((-108) $) 151 (|has| |#1| (-1129)))) (-3865 (((-108) $) 43)) (-3702 (((-712) $) 38)) (-1956 (((-3 "nil" "sqfr" "irred" "prime") $ (-525)) 136)) (-2178 ((|#1| $ (-525)) 135)) (-4078 (((-525) $ (-525)) 134)) (-1937 (($ |#1| (-525)) 30)) (-1257 (($ (-1 |#1| |#1|) $) 142)) (-2641 (($ |#1| (-591 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525))))) 58)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2621 (((-1072) $) NIL)) (-3828 (($ |#1| (-525)) 32)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) 146 (|has| |#1| (-429)))) (-1847 (($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-1908 (((-591 (-2 (|:| -2542 |#1|) (|:| -3987 (-525)))) $) 54)) (-1793 (((-591 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $) 12)) (-2542 (((-396 $) $) NIL (|has| |#1| (-1129)))) (-3210 (((-3 $ "failed") $ $) 137)) (-3987 (((-525) $) 131)) (-2431 ((|#1| $) 56)) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-591 (-273 |#1|))) 78 (|has| |#1| (-288 |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) 84 (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) |#1|) NIL (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) $) NIL (|has| |#1| (-486 (-1089) $))) (($ $ (-591 (-1089)) (-591 $)) 85 (|has| |#1| (-486 (-1089) $))) (($ $ (-591 (-273 $))) 81 (|has| |#1| (-288 $))) (($ $ (-273 $)) NIL (|has| |#1| (-288 $))) (($ $ $ $) NIL (|has| |#1| (-288 $))) (($ $ (-591 $) (-591 $)) NIL (|has| |#1| (-288 $)))) (-1881 (($ $ |#1|) 70 (|has| |#1| (-265 |#1| |#1|))) (($ $ $) 71 (|has| |#1| (-265 $ $)))) (-2209 (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) 141)) (-1300 (((-501) $) 27 (|has| |#1| (-566 (-501)))) (((-357) $) 91 (|has| |#1| (-951))) (((-205) $) 94 (|has| |#1| (-951)))) (-2686 (((-796) $) 113) (($ (-525)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-385 (-525))) NIL (|has| |#1| (-966 (-385 (-525)))))) (-3425 (((-712)) 48)) (-1724 (((-108) $ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 40 T CONST)) (-1839 (($) 39 T CONST)) (-1796 (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3944 (((-108) $ $) 95)) (-4047 (($ $) 127) (($ $ $) NIL)) (-4036 (($ $ $) 139)) (** (($ $ (-854)) NIL) (($ $ (-712)) 101)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) -(((-396 |#1|) (-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -2431 (|#1| $)) (-15 -3987 ((-525) $)) (-15 -2641 ($ |#1| (-591 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -1793 ((-591 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -1937 ($ |#1| (-525))) (-15 -1908 ((-591 (-2 (|:| -2542 |#1|) (|:| -3987 (-525)))) $)) (-15 -3828 ($ |#1| (-525))) (-15 -4078 ((-525) $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -1956 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -3702 ((-712) $)) (-15 -3390 ($ |#1| (-525))) (-15 -3488 ($ |#1| (-525))) (-15 -1847 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1851 (|#1| $)) (-15 -1241 ($ $)) (-15 -1257 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-951)) (-6 (-951)) |%noBranch|) (IF (|has| |#1| (-1129)) (-6 (-1129)) |%noBranch|) (IF (|has| |#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1089) $)) (-6 (-486 (-1089) $)) |%noBranch|))) (-517)) (T -396)) -((-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3)))) (-2431 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-2641 (*1 *1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-525))))) (-4 *2 (-517)) (-5 *1 (-396 *2)))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-1937 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| -2542 *3) (|:| -3987 (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3828 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-4078 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1956 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *4)) (-4 *4 (-517)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3390 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3488 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1847 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1851 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1241 (*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-2350 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517))))) -(-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -2431 (|#1| $)) (-15 -3987 ((-525) $)) (-15 -2641 ($ |#1| (-591 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -1793 ((-591 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -1937 ($ |#1| (-525))) (-15 -1908 ((-591 (-2 (|:| -2542 |#1|) (|:| -3987 (-525)))) $)) (-15 -3828 ($ |#1| (-525))) (-15 -4078 ((-525) $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -1956 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -3702 ((-712) $)) (-15 -3390 ($ |#1| (-525))) (-15 -3488 ($ |#1| (-525))) (-15 -1847 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1851 (|#1| $)) (-15 -1241 ($ $)) (-15 -1257 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-951)) (-6 (-951)) |%noBranch|) (IF (|has| |#1| (-1129)) (-6 (-1129)) |%noBranch|) (IF (|has| |#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1089) $)) (-6 (-486 (-1089) $)) |%noBranch|))) -((-2713 (((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|)) 21)) (-4113 (((-396 |#1|) (-396 |#1|) (-396 |#1|)) 16))) -(((-397 |#1|) (-10 -7 (-15 -2713 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -4113 ((-396 |#1|) (-396 |#1|) (-396 |#1|)))) (-517)) (T -397)) -((-4113 (*1 *2 *2 *2) (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))) (-2713 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *2 (-396 *4)) (-5 *1 (-397 *4))))) -(-10 -7 (-15 -2713 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -4113 ((-396 |#1|) (-396 |#1|) (-396 |#1|)))) -((-3536 ((|#2| |#2|) 166)) (-1482 (((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-108)) 57))) -(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1482 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-108))) (-15 -3536 (|#2| |#2|))) (-13 (-429) (-788) (-966 (-525)) (-587 (-525))) (-13 (-27) (-1111) (-408 |#1|)) (-1089) |#2|) (T -398)) -((-3536 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1111) (-408 *3))) (-14 *4 (-1089)) (-14 *5 *2))) (-1482 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-3 (|:| |%expansion| (-291 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) (-14 *6 (-1089)) (-14 *7 *3)))) -(-10 -7 (-15 -1482 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-108))) (-15 -3536 (|#2| |#2|))) -((-1257 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-975) (-788)) (-408 |#1|) (-13 (-975) (-788)) (-408 |#3|)) (T -399)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-975) (-788))) (-4 *6 (-13 (-975) (-788))) (-4 *2 (-408 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5))))) -(-10 -7 (-15 -1257 (|#4| (-1 |#3| |#1|) |#2|))) -((-3536 ((|#2| |#2|) 90)) (-2733 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-108) (-1072)) 48)) (-3661 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-108) (-1072)) 154))) -(((-400 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2733 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-108) (-1072))) (-15 -3661 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-108) (-1072))) (-15 -3536 (|#2| |#2|))) (-13 (-429) (-788) (-966 (-525)) (-587 (-525))) (-13 (-27) (-1111) (-408 |#1|) (-10 -8 (-15 -2686 ($ |#3|)))) (-786) (-13 (-1149 |#2| |#3|) (-341) (-1111) (-10 -8 (-15 -2209 ($ $)) (-15 -2452 ($ $)))) (-914 |#4|) (-1089)) (T -400)) -((-3536 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-4 *2 (-13 (-27) (-1111) (-408 *3) (-10 -8 (-15 -2686 ($ *4))))) (-4 *4 (-786)) (-4 *5 (-13 (-1149 *2 *4) (-341) (-1111) (-10 -8 (-15 -2209 ($ $)) (-15 -2452 ($ $))))) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-914 *5)) (-14 *7 (-1089)))) (-3661 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-4 *3 (-13 (-27) (-1111) (-408 *6) (-10 -8 (-15 -2686 ($ *7))))) (-4 *7 (-786)) (-4 *8 (-13 (-1149 *3 *7) (-341) (-1111) (-10 -8 (-15 -2209 ($ $)) (-15 -2452 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-914 *8)) (-14 *10 (-1089)))) (-2733 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-4 *3 (-13 (-27) (-1111) (-408 *6) (-10 -8 (-15 -2686 ($ *7))))) (-4 *7 (-786)) (-4 *8 (-13 (-1149 *3 *7) (-341) (-1111) (-10 -8 (-15 -2209 ($ $)) (-15 -2452 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-914 *8)) (-14 *10 (-1089))))) -(-10 -7 (-15 -2733 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-108) (-1072))) (-15 -3661 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-108) (-1072))) (-15 -3536 (|#2| |#2|))) -((-1350 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3618 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1257 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3618 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1350 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1018) (-403 |#1|) (-1018) (-403 |#3|)) (T -401)) -((-1350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1018)) (-4 *5 (-1018)) (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6)))) (-3618 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018)) (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5))))) -(-10 -7 (-15 -1257 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3618 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1350 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2011 (($) 44)) (-2141 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3772 (($ $ $) 39)) (-3218 (((-108) $ $) 28)) (-2834 (((-712)) 47)) (-1373 (($ (-591 |#2|)) 20) (($) NIL)) (-1325 (($) 53)) (-1923 ((|#2| $) 61)) (-3475 ((|#2| $) 59)) (-1970 (((-854) $) 55)) (-2318 (($ $ $) 35)) (-3229 (($ (-854)) 50)) (-1614 (($ $ |#2|) NIL) (($ $ $) 38)) (-2960 (((-712) (-1 (-108) |#2|) $) NIL) (((-712) |#2| $) 26)) (-2695 (($ (-591 |#2|)) 24)) (-2103 (($ $) 46)) (-2686 (((-796) $) 33)) (-3770 (((-712) $) 21)) (-2892 (($ (-591 |#2|)) 19) (($) NIL)) (-3944 (((-108) $ $) 16)) (-3971 (((-108) $ $) 13))) -(((-402 |#1| |#2|) (-10 -8 (-15 -2834 ((-712))) (-15 -3229 (|#1| (-854))) (-15 -1970 ((-854) |#1|)) (-15 -1325 (|#1|)) (-15 -1923 (|#2| |#1|)) (-15 -3475 (|#2| |#1|)) (-15 -2011 (|#1|)) (-15 -2103 (|#1| |#1|)) (-15 -3770 ((-712) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -2892 (|#1|)) (-15 -2892 (|#1| (-591 |#2|))) (-15 -1373 (|#1|)) (-15 -1373 (|#1| (-591 |#2|))) (-15 -2318 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#2|)) (-15 -3772 (|#1| |#1| |#1|)) (-15 -3218 ((-108) |#1| |#1|)) (-15 -2141 (|#1| |#1| |#1|)) (-15 -2141 (|#1| |#1| |#2|)) (-15 -2141 (|#1| |#2| |#1|)) (-15 -2695 (|#1| (-591 |#2|))) (-15 -2960 ((-712) |#2| |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|))) (-403 |#2|) (-1018)) (T -402)) -((-2834 (*1 *2) (-12 (-4 *4 (-1018)) (-5 *2 (-712)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4))))) -(-10 -8 (-15 -2834 ((-712))) (-15 -3229 (|#1| (-854))) (-15 -1970 ((-854) |#1|)) (-15 -1325 (|#1|)) (-15 -1923 (|#2| |#1|)) (-15 -3475 (|#2| |#1|)) (-15 -2011 (|#1|)) (-15 -2103 (|#1| |#1|)) (-15 -3770 ((-712) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -2892 (|#1|)) (-15 -2892 (|#1| (-591 |#2|))) (-15 -1373 (|#1|)) (-15 -1373 (|#1| (-591 |#2|))) (-15 -2318 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#2|)) (-15 -3772 (|#1| |#1| |#1|)) (-15 -3218 ((-108) |#1| |#1|)) (-15 -2141 (|#1| |#1| |#1|)) (-15 -2141 (|#1| |#1| |#2|)) (-15 -2141 (|#1| |#2| |#1|)) (-15 -2695 (|#1| (-591 |#2|))) (-15 -2960 ((-712) |#2| |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|))) -((-2673 (((-108) $ $) 19)) (-2011 (($) 67 (|has| |#1| (-346)))) (-2141 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3772 (($ $ $) 78)) (-3218 (((-108) $ $) 79)) (-3727 (((-108) $ (-712)) 8)) (-2834 (((-712)) 61 (|has| |#1| (-346)))) (-1373 (($ (-591 |#1|)) 74) (($) 73)) (-1288 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-2908 (($ $) 58 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ |#1| $) 47 (|has| $ (-6 -4250))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4250)))) (-2537 (($ |#1| $) 57 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4250)))) (-1325 (($) 64 (|has| |#1| (-346)))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-1923 ((|#1| $) 65 (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3475 ((|#1| $) 66 (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-1970 (((-854) $) 63 (|has| |#1| (-346)))) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22)) (-2318 (($ $ $) 75)) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40)) (-3229 (($ (-854)) 62 (|has| |#1| (-346)))) (-2937 (((-1036) $) 21)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1614 (($ $ |#1|) 77) (($ $ $) 76)) (-3583 (($) 49) (($ (-591 |#1|)) 48)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 59 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 50)) (-2103 (($ $) 68 (|has| |#1| (-346)))) (-2686 (((-796) $) 18)) (-3770 (((-712) $) 69)) (-2892 (($ (-591 |#1|)) 72) (($) 71)) (-2453 (($ (-591 |#1|)) 42)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20)) (-3971 (((-108) $ $) 70)) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-403 |#1|) (-131) (-1018)) (T -403)) -((-3770 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1018)) (-5 *2 (-712)))) (-2103 (*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1018)) (-4 *2 (-346)))) (-2011 (*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1018)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1018)) (-4 *2 (-788)))) (-1923 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1018)) (-4 *2 (-788))))) -(-13 (-209 |t#1|) (-1016 |t#1|) (-10 -8 (-6 -4250) (-15 -3770 ((-712) $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-346)) (-15 -2103 ($ $)) (-15 -2011 ($))) |%noBranch|) (IF (|has| |t#1| (-788)) (PROGN (-15 -3475 (|t#1| $)) (-15 -1923 (|t#1| $))) |%noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-565 (-796)) . T) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-209 |#1|) . T) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-346) |has| |#1| (-346)) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1016 |#1|) . T) ((-1018) . T) ((-1125) . T)) -((-3730 (((-542 |#2|) |#2| (-1089)) 36)) (-2244 (((-542 |#2|) |#2| (-1089)) 20)) (-3937 ((|#2| |#2| (-1089)) 25))) -(((-404 |#1| |#2|) (-10 -7 (-15 -2244 ((-542 |#2|) |#2| (-1089))) (-15 -3730 ((-542 |#2|) |#2| (-1089))) (-15 -3937 (|#2| |#2| (-1089)))) (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525))) (-13 (-1111) (-29 |#1|))) (T -404)) -((-3937 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1111) (-29 *4))))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1111) (-29 *5))))) (-2244 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1111) (-29 *5)))))) -(-10 -7 (-15 -2244 ((-542 |#2|) |#2| (-1089))) (-15 -3730 ((-542 |#2|) |#2| (-1089))) (-15 -3937 (|#2| |#2| (-1089)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-2280 (($ |#2| |#1|) 35)) (-4009 (($ |#2| |#1|) 33)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-309 |#2|)) 25)) (-3425 (((-712)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 10 T CONST)) (-1839 (($) 16 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 34)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-405 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4237)) (IF (|has| |#1| (-6 -4237)) (-6 -4237) |%noBranch|) |%noBranch|) (-15 -2686 ($ |#1|)) (-15 -2686 ($ (-309 |#2|))) (-15 -2280 ($ |#2| |#1|)) (-15 -4009 ($ |#2| |#1|)))) (-13 (-160) (-37 (-385 (-525)))) (-13 (-788) (-21))) (T -405)) -((-2686 (*1 *1 *2) (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525))))) (-4 *3 (-13 (-788) (-21))))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-788) (-21))) (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))))) (-2280 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-788) (-21))))) (-4009 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-788) (-21)))))) -(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4237)) (IF (|has| |#1| (-6 -4237)) (-6 -4237) |%noBranch|) |%noBranch|) (-15 -2686 ($ |#1|)) (-15 -2686 ($ (-309 |#2|))) (-15 -2280 ($ |#2| |#1|)) (-15 -4009 ($ |#2| |#1|)))) -((-2452 (((-3 |#2| (-591 |#2|)) |#2| (-1089)) 109))) -(((-406 |#1| |#2|) (-10 -7 (-15 -2452 ((-3 |#2| (-591 |#2|)) |#2| (-1089)))) (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525))) (-13 (-1111) (-891) (-29 |#1|))) (T -406)) -((-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-3 *3 (-591 *3))) (-5 *1 (-406 *5 *3)) (-4 *3 (-13 (-1111) (-891) (-29 *5)))))) -(-10 -7 (-15 -2452 ((-3 |#2| (-591 |#2|)) |#2| (-1089)))) -((-1444 (((-591 (-1089)) $) 72)) (-2514 (((-385 (-1085 $)) $ (-564 $)) 273)) (-3449 (($ $ (-273 $)) NIL) (($ $ (-591 (-273 $))) NIL) (($ $ (-591 (-564 $)) (-591 $)) 237)) (-4174 (((-3 (-564 $) "failed") $) NIL) (((-3 (-1089) "failed") $) 75) (((-3 (-525) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-385 (-885 |#2|)) "failed") $) 324) (((-3 (-885 |#2|) "failed") $) 235) (((-3 (-385 (-525)) "failed") $) NIL)) (-3341 (((-564 $) $) NIL) (((-1089) $) 30) (((-525) $) NIL) ((|#2| $) 231) (((-385 (-885 |#2|)) $) 305) (((-885 |#2|) $) 232) (((-385 (-525)) $) NIL)) (-3259 (((-110) (-110)) 47)) (-2920 (($ $) 87)) (-3415 (((-3 (-564 $) "failed") $) 228)) (-2504 (((-591 (-564 $)) $) 229)) (-3401 (((-3 (-591 $) "failed") $) 247)) (-1713 (((-3 (-2 (|:| |val| $) (|:| -3987 (-525))) "failed") $) 254)) (-4008 (((-3 (-591 $) "failed") $) 245)) (-2831 (((-3 (-2 (|:| -2976 (-525)) (|:| |var| (-564 $))) "failed") $) 264)) (-3410 (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $) 251) (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-110)) 217) (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-1089)) 219)) (-1531 (((-108) $) 19)) (-1540 ((|#2| $) 21)) (-1980 (($ $ (-564 $) $) NIL) (($ $ (-591 (-564 $)) (-591 $)) 236) (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ $))) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ (-591 $)))) 96) (($ $ (-1089) (-1 $ (-591 $))) NIL) (($ $ (-1089) (-1 $ $)) NIL) (($ $ (-591 (-110)) (-591 (-1 $ $))) NIL) (($ $ (-591 (-110)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-110) (-1 $ (-591 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1089)) 57) (($ $ (-591 (-1089))) 240) (($ $) 241) (($ $ (-110) $ (-1089)) 60) (($ $ (-591 (-110)) (-591 $) (-1089)) 67) (($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ $))) 107) (($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ (-591 $)))) 242) (($ $ (-1089) (-712) (-1 $ (-591 $))) 94) (($ $ (-1089) (-712) (-1 $ $)) 93)) (-1881 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-591 $)) 106)) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) 238)) (-2774 (($ $) 284)) (-1300 (((-825 (-525)) $) 257) (((-825 (-357)) $) 261) (($ (-396 $)) 320) (((-501) $) NIL)) (-2686 (((-796) $) 239) (($ (-564 $)) 84) (($ (-1089)) 26) (($ |#2|) NIL) (($ (-1041 |#2| (-564 $))) NIL) (($ (-385 |#2|)) 289) (($ (-885 (-385 |#2|))) 329) (($ (-385 (-885 (-385 |#2|)))) 301) (($ (-385 (-885 |#2|))) 295) (($ $) NIL) (($ (-885 |#2|)) 185) (($ (-385 (-525))) 334) (($ (-525)) NIL)) (-3425 (((-712)) 79)) (-2754 (((-108) (-110)) 41)) (-4229 (($ (-1089) $) 33) (($ (-1089) $ $) 34) (($ (-1089) $ $ $) 35) (($ (-1089) $ $ $ $) 36) (($ (-1089) (-591 $)) 39)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-712) $) NIL) (($ (-854) $) NIL))) -(((-407 |#1| |#2|) (-10 -8 (-15 * (|#1| (-854) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3425 ((-712))) (-15 -2686 (|#1| (-525))) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -1300 ((-501) |#1|)) (-15 -3341 ((-885 |#2|) |#1|)) (-15 -4174 ((-3 (-885 |#2|) "failed") |#1|)) (-15 -2686 (|#1| (-885 |#2|))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2686 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -3341 ((-385 (-885 |#2|)) |#1|)) (-15 -4174 ((-3 (-385 (-885 |#2|)) "failed") |#1|)) (-15 -2686 (|#1| (-385 (-885 |#2|)))) (-15 -2514 ((-385 (-1085 |#1|)) |#1| (-564 |#1|))) (-15 -2686 (|#1| (-385 (-885 (-385 |#2|))))) (-15 -2686 (|#1| (-885 (-385 |#2|)))) (-15 -2686 (|#1| (-385 |#2|))) (-15 -2774 (|#1| |#1|)) (-15 -1300 (|#1| (-396 |#1|))) (-15 -1980 (|#1| |#1| (-1089) (-712) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-1089) (-712) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-712)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-712)) (-591 (-1 |#1| |#1|)))) (-15 -1713 ((-3 (-2 (|:| |val| |#1|) (|:| -3987 (-525))) "failed") |#1|)) (-15 -3410 ((-3 (-2 (|:| |var| (-564 |#1|)) (|:| -3987 (-525))) "failed") |#1| (-1089))) (-15 -3410 ((-3 (-2 (|:| |var| (-564 |#1|)) (|:| -3987 (-525))) "failed") |#1| (-110))) (-15 -2920 (|#1| |#1|)) (-15 -2686 (|#1| (-1041 |#2| (-564 |#1|)))) (-15 -2831 ((-3 (-2 (|:| -2976 (-525)) (|:| |var| (-564 |#1|))) "failed") |#1|)) (-15 -4008 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3410 ((-3 (-2 (|:| |var| (-564 |#1|)) (|:| -3987 (-525))) "failed") |#1|)) (-15 -3401 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 |#1|) (-1089))) (-15 -1980 (|#1| |#1| (-110) |#1| (-1089))) (-15 -1980 (|#1| |#1|)) (-15 -1980 (|#1| |#1| (-591 (-1089)))) (-15 -1980 (|#1| |#1| (-1089))) (-15 -4229 (|#1| (-1089) (-591 |#1|))) (-15 -4229 (|#1| (-1089) |#1| |#1| |#1| |#1|)) (-15 -4229 (|#1| (-1089) |#1| |#1| |#1|)) (-15 -4229 (|#1| (-1089) |#1| |#1|)) (-15 -4229 (|#1| (-1089) |#1|)) (-15 -1444 ((-591 (-1089)) |#1|)) (-15 -1540 (|#2| |#1|)) (-15 -1531 ((-108) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -3341 ((-1089) |#1|)) (-15 -4174 ((-3 (-1089) "failed") |#1|)) (-15 -2686 (|#1| (-1089))) (-15 -1980 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-110) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 (-1 |#1| |#1|)))) (-15 -1980 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-1089) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-1 |#1| |#1|)))) (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -2504 ((-591 (-564 |#1|)) |#1|)) (-15 -3415 ((-3 (-564 |#1|) "failed") |#1|)) (-15 -3449 (|#1| |#1| (-591 (-564 |#1|)) (-591 |#1|))) (-15 -3449 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -3449 (|#1| |#1| (-273 |#1|))) (-15 -1881 (|#1| (-110) (-591 |#1|))) (-15 -1881 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-564 |#1|)) (-591 |#1|))) (-15 -1980 (|#1| |#1| (-564 |#1|) |#1|)) (-15 -3341 ((-564 |#1|) |#1|)) (-15 -4174 ((-3 (-564 |#1|) "failed") |#1|)) (-15 -2686 (|#1| (-564 |#1|))) (-15 -2686 ((-796) |#1|))) (-408 |#2|) (-788)) (T -407)) -((-3259 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-788)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-788)) (-5 *2 (-108)) (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5)))) (-3425 (*1 *2) (-12 (-4 *4 (-788)) (-5 *2 (-712)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4))))) -(-10 -8 (-15 * (|#1| (-854) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3425 ((-712))) (-15 -2686 (|#1| (-525))) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -1300 ((-501) |#1|)) (-15 -3341 ((-885 |#2|) |#1|)) (-15 -4174 ((-3 (-885 |#2|) "failed") |#1|)) (-15 -2686 (|#1| (-885 |#2|))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2686 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -3341 ((-385 (-885 |#2|)) |#1|)) (-15 -4174 ((-3 (-385 (-885 |#2|)) "failed") |#1|)) (-15 -2686 (|#1| (-385 (-885 |#2|)))) (-15 -2514 ((-385 (-1085 |#1|)) |#1| (-564 |#1|))) (-15 -2686 (|#1| (-385 (-885 (-385 |#2|))))) (-15 -2686 (|#1| (-885 (-385 |#2|)))) (-15 -2686 (|#1| (-385 |#2|))) (-15 -2774 (|#1| |#1|)) (-15 -1300 (|#1| (-396 |#1|))) (-15 -1980 (|#1| |#1| (-1089) (-712) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-1089) (-712) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-712)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-712)) (-591 (-1 |#1| |#1|)))) (-15 -1713 ((-3 (-2 (|:| |val| |#1|) (|:| -3987 (-525))) "failed") |#1|)) (-15 -3410 ((-3 (-2 (|:| |var| (-564 |#1|)) (|:| -3987 (-525))) "failed") |#1| (-1089))) (-15 -3410 ((-3 (-2 (|:| |var| (-564 |#1|)) (|:| -3987 (-525))) "failed") |#1| (-110))) (-15 -2920 (|#1| |#1|)) (-15 -2686 (|#1| (-1041 |#2| (-564 |#1|)))) (-15 -2831 ((-3 (-2 (|:| -2976 (-525)) (|:| |var| (-564 |#1|))) "failed") |#1|)) (-15 -4008 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3410 ((-3 (-2 (|:| |var| (-564 |#1|)) (|:| -3987 (-525))) "failed") |#1|)) (-15 -3401 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 |#1|) (-1089))) (-15 -1980 (|#1| |#1| (-110) |#1| (-1089))) (-15 -1980 (|#1| |#1|)) (-15 -1980 (|#1| |#1| (-591 (-1089)))) (-15 -1980 (|#1| |#1| (-1089))) (-15 -4229 (|#1| (-1089) (-591 |#1|))) (-15 -4229 (|#1| (-1089) |#1| |#1| |#1| |#1|)) (-15 -4229 (|#1| (-1089) |#1| |#1| |#1|)) (-15 -4229 (|#1| (-1089) |#1| |#1|)) (-15 -4229 (|#1| (-1089) |#1|)) (-15 -1444 ((-591 (-1089)) |#1|)) (-15 -1540 (|#2| |#1|)) (-15 -1531 ((-108) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -3341 ((-1089) |#1|)) (-15 -4174 ((-3 (-1089) "failed") |#1|)) (-15 -2686 (|#1| (-1089))) (-15 -1980 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-110) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-110)) (-591 (-1 |#1| |#1|)))) (-15 -1980 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -1980 (|#1| |#1| (-1089) (-1 |#1| (-591 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-1 |#1| (-591 |#1|))))) (-15 -1980 (|#1| |#1| (-591 (-1089)) (-591 (-1 |#1| |#1|)))) (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -2504 ((-591 (-564 |#1|)) |#1|)) (-15 -3415 ((-3 (-564 |#1|) "failed") |#1|)) (-15 -3449 (|#1| |#1| (-591 (-564 |#1|)) (-591 |#1|))) (-15 -3449 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -3449 (|#1| |#1| (-273 |#1|))) (-15 -1881 (|#1| (-110) (-591 |#1|))) (-15 -1881 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1| |#1|)) (-15 -1881 (|#1| (-110) |#1|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -1980 (|#1| |#1| (-591 (-564 |#1|)) (-591 |#1|))) (-15 -1980 (|#1| |#1| (-564 |#1|) |#1|)) (-15 -3341 ((-564 |#1|) |#1|)) (-15 -4174 ((-3 (-564 |#1|) "failed") |#1|)) (-15 -2686 (|#1| (-564 |#1|))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 116 (|has| |#1| (-25)))) (-1444 (((-591 (-1089)) $) 203)) (-2514 (((-385 (-1085 $)) $ (-564 $)) 171 (|has| |#1| (-517)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 143 (|has| |#1| (-517)))) (-3641 (($ $) 144 (|has| |#1| (-517)))) (-3077 (((-108) $) 146 (|has| |#1| (-517)))) (-3585 (((-591 (-564 $)) $) 44)) (-3332 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3449 (($ $ (-273 $)) 56) (($ $ (-591 (-273 $))) 55) (($ $ (-591 (-564 $)) (-591 $)) 54)) (-1720 (($ $) 163 (|has| |#1| (-517)))) (-3898 (((-396 $) $) 164 (|has| |#1| (-517)))) (-1965 (((-108) $ $) 154 (|has| |#1| (-517)))) (-2055 (($) 102 (-3150 (|has| |#1| (-1030)) (|has| |#1| (-25))) CONST)) (-4174 (((-3 (-564 $) "failed") $) 69) (((-3 (-1089) "failed") $) 216) (((-3 (-525) "failed") $) 209 (|has| |#1| (-966 (-525)))) (((-3 |#1| "failed") $) 207) (((-3 (-385 (-885 |#1|)) "failed") $) 169 (|has| |#1| (-517))) (((-3 (-885 |#1|) "failed") $) 123 (|has| |#1| (-975))) (((-3 (-385 (-525)) "failed") $) 95 (-3150 (-12 (|has| |#1| (-966 (-525))) (|has| |#1| (-517))) (|has| |#1| (-966 (-385 (-525))))))) (-3341 (((-564 $) $) 68) (((-1089) $) 215) (((-525) $) 210 (|has| |#1| (-966 (-525)))) ((|#1| $) 206) (((-385 (-885 |#1|)) $) 168 (|has| |#1| (-517))) (((-885 |#1|) $) 122 (|has| |#1| (-975))) (((-385 (-525)) $) 94 (-3150 (-12 (|has| |#1| (-966 (-525))) (|has| |#1| (-517))) (|has| |#1| (-966 (-385 (-525))))))) (-3265 (($ $ $) 158 (|has| |#1| (-517)))) (-3925 (((-631 (-525)) (-631 $)) 137 (-3543 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 136 (-3543 (|has| |#1| (-587 (-525))) (|has| |#1| (-975)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 135 (|has| |#1| (-975))) (((-631 |#1|) (-631 $)) 134 (|has| |#1| (-975)))) (-1522 (((-3 $ "failed") $) 105 (|has| |#1| (-1030)))) (-3239 (($ $ $) 157 (|has| |#1| (-517)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 152 (|has| |#1| (-517)))) (-2393 (((-108) $) 165 (|has| |#1| (-517)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 212 (|has| |#1| (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 211 (|has| |#1| (-819 (-357))))) (-3625 (($ $) 51) (($ (-591 $)) 50)) (-3714 (((-591 (-110)) $) 43)) (-3259 (((-110) (-110)) 42)) (-3865 (((-108) $) 103 (|has| |#1| (-1030)))) (-2116 (((-108) $) 22 (|has| $ (-966 (-525))))) (-2920 (($ $) 186 (|has| |#1| (-975)))) (-1384 (((-1041 |#1| (-564 $)) $) 187 (|has| |#1| (-975)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 161 (|has| |#1| (-517)))) (-1873 (((-1085 $) (-564 $)) 25 (|has| $ (-975)))) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-1257 (($ (-1 $ $) (-564 $)) 36)) (-3415 (((-3 (-564 $) "failed") $) 46)) (-2081 (($ (-591 $)) 150 (|has| |#1| (-517))) (($ $ $) 149 (|has| |#1| (-517)))) (-2621 (((-1072) $) 9)) (-2504 (((-591 (-564 $)) $) 45)) (-2899 (($ (-110) $) 38) (($ (-110) (-591 $)) 37)) (-3401 (((-3 (-591 $) "failed") $) 192 (|has| |#1| (-1030)))) (-1713 (((-3 (-2 (|:| |val| $) (|:| -3987 (-525))) "failed") $) 183 (|has| |#1| (-975)))) (-4008 (((-3 (-591 $) "failed") $) 190 (|has| |#1| (-25)))) (-2831 (((-3 (-2 (|:| -2976 (-525)) (|:| |var| (-564 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3410 (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $) 191 (|has| |#1| (-1030))) (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-110)) 185 (|has| |#1| (-975))) (((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-1089)) 184 (|has| |#1| (-975)))) (-3029 (((-108) $ (-110)) 40) (((-108) $ (-1089)) 39)) (-1523 (($ $) 107 (-3150 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-3457 (((-712) $) 47)) (-2937 (((-1036) $) 10)) (-1531 (((-108) $) 205)) (-1540 ((|#1| $) 204)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 151 (|has| |#1| (-517)))) (-2124 (($ (-591 $)) 148 (|has| |#1| (-517))) (($ $ $) 147 (|has| |#1| (-517)))) (-4064 (((-108) $ $) 35) (((-108) $ (-1089)) 34)) (-2542 (((-396 $) $) 162 (|has| |#1| (-517)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 159 (|has| |#1| (-517)))) (-3210 (((-3 $ "failed") $ $) 142 (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 153 (|has| |#1| (-517)))) (-2882 (((-108) $) 23 (|has| $ (-966 (-525))))) (-1980 (($ $ (-564 $) $) 67) (($ $ (-591 (-564 $)) (-591 $)) 66) (($ $ (-591 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-591 $) (-591 $)) 62) (($ $ (-591 (-1089)) (-591 (-1 $ $))) 33) (($ $ (-591 (-1089)) (-591 (-1 $ (-591 $)))) 32) (($ $ (-1089) (-1 $ (-591 $))) 31) (($ $ (-1089) (-1 $ $)) 30) (($ $ (-591 (-110)) (-591 (-1 $ $))) 29) (($ $ (-591 (-110)) (-591 (-1 $ (-591 $)))) 28) (($ $ (-110) (-1 $ (-591 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1089)) 197 (|has| |#1| (-566 (-501)))) (($ $ (-591 (-1089))) 196 (|has| |#1| (-566 (-501)))) (($ $) 195 (|has| |#1| (-566 (-501)))) (($ $ (-110) $ (-1089)) 194 (|has| |#1| (-566 (-501)))) (($ $ (-591 (-110)) (-591 $) (-1089)) 193 (|has| |#1| (-566 (-501)))) (($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ $))) 182 (|has| |#1| (-975))) (($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ (-591 $)))) 181 (|has| |#1| (-975))) (($ $ (-1089) (-712) (-1 $ (-591 $))) 180 (|has| |#1| (-975))) (($ $ (-1089) (-712) (-1 $ $)) 179 (|has| |#1| (-975)))) (-3048 (((-712) $) 155 (|has| |#1| (-517)))) (-1881 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-591 $)) 57)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 156 (|has| |#1| (-517)))) (-1390 (($ $) 49) (($ $ $) 48)) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) 128 (|has| |#1| (-975))) (($ $ (-1089) (-712)) 127 (|has| |#1| (-975))) (($ $ (-591 (-1089))) 126 (|has| |#1| (-975))) (($ $ (-1089)) 125 (|has| |#1| (-975)))) (-2774 (($ $) 176 (|has| |#1| (-517)))) (-1396 (((-1041 |#1| (-564 $)) $) 177 (|has| |#1| (-517)))) (-1341 (($ $) 24 (|has| $ (-975)))) (-1300 (((-825 (-525)) $) 214 (|has| |#1| (-566 (-825 (-525))))) (((-825 (-357)) $) 213 (|has| |#1| (-566 (-825 (-357))))) (($ (-396 $)) 178 (|has| |#1| (-517))) (((-501) $) 97 (|has| |#1| (-566 (-501))))) (-3369 (($ $ $) 111 (|has| |#1| (-450)))) (-4027 (($ $ $) 112 (|has| |#1| (-450)))) (-2686 (((-796) $) 11) (($ (-564 $)) 70) (($ (-1089)) 217) (($ |#1|) 208) (($ (-1041 |#1| (-564 $))) 188 (|has| |#1| (-975))) (($ (-385 |#1|)) 174 (|has| |#1| (-517))) (($ (-885 (-385 |#1|))) 173 (|has| |#1| (-517))) (($ (-385 (-885 (-385 |#1|)))) 172 (|has| |#1| (-517))) (($ (-385 (-885 |#1|))) 170 (|has| |#1| (-517))) (($ $) 141 (|has| |#1| (-517))) (($ (-885 |#1|)) 124 (|has| |#1| (-975))) (($ (-385 (-525))) 96 (-3150 (|has| |#1| (-517)) (-12 (|has| |#1| (-966 (-525))) (|has| |#1| (-517))) (|has| |#1| (-966 (-385 (-525)))))) (($ (-525)) 93 (-3150 (|has| |#1| (-975)) (|has| |#1| (-966 (-525)))))) (-3751 (((-3 $ "failed") $) 138 (|has| |#1| (-136)))) (-3425 (((-712)) 133 (|has| |#1| (-975)))) (-3800 (($ $) 53) (($ (-591 $)) 52)) (-2754 (((-108) (-110)) 41)) (-1724 (((-108) $ $) 145 (|has| |#1| (-517)))) (-4229 (($ (-1089) $) 202) (($ (-1089) $ $) 201) (($ (-1089) $ $ $) 200) (($ (-1089) $ $ $ $) 199) (($ (-1089) (-591 $)) 198)) (-1401 (($ $ (-525)) 110 (-3150 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-712)) 104 (|has| |#1| (-1030))) (($ $ (-854)) 100 (|has| |#1| (-1030)))) (-1830 (($) 115 (|has| |#1| (-25)) CONST)) (-1839 (($) 101 (|has| |#1| (-1030)) CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) 132 (|has| |#1| (-975))) (($ $ (-1089) (-712)) 131 (|has| |#1| (-975))) (($ $ (-591 (-1089))) 130 (|has| |#1| (-975))) (($ $ (-1089)) 129 (|has| |#1| (-975)))) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18)) (-4059 (($ (-1041 |#1| (-564 $)) (-1041 |#1| (-564 $))) 175 (|has| |#1| (-517))) (($ $ $) 108 (-3150 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4047 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-4036 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-525)) 109 (-3150 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-712)) 106 (|has| |#1| (-1030))) (($ $ (-854)) 99 (|has| |#1| (-1030)))) (* (($ (-385 (-525)) $) 167 (|has| |#1| (-517))) (($ $ (-385 (-525))) 166 (|has| |#1| (-517))) (($ |#1| $) 140 (|has| |#1| (-160))) (($ $ |#1|) 139 (|has| |#1| (-160))) (($ (-525) $) 121 (|has| |#1| (-21))) (($ (-712) $) 117 (|has| |#1| (-25))) (($ (-854) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1030))))) -(((-408 |#1|) (-131) (-788)) (T -408)) -((-1531 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-788)) (-5 *2 (-108)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-788)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-788)) (-5 *2 (-591 (-1089))))) (-4229 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788)))) (-4229 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788)))) (-4229 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788)))) (-4229 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788)))) (-4229 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-591 *1)) (-4 *1 (-408 *4)) (-4 *4 (-788)))) (-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788)) (-4 *3 (-566 (-501))))) (-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-1089))) (-4 *1 (-408 *3)) (-4 *3 (-788)) (-4 *3 (-566 (-501))))) (-1980 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-788)) (-4 *2 (-566 (-501))))) (-1980 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1089)) (-4 *1 (-408 *4)) (-4 *4 (-788)) (-4 *4 (-566 (-501))))) (-1980 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-591 (-110))) (-5 *3 (-591 *1)) (-5 *4 (-1089)) (-4 *1 (-408 *5)) (-4 *5 (-788)) (-4 *5 (-566 (-501))))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-1030)) (-4 *3 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-408 *3)))) (-3410 (*1 *2 *1) (|partial| -12 (-4 *3 (-1030)) (-4 *3 (-788)) (-5 *2 (-2 (|:| |var| (-564 *1)) (|:| -3987 (-525)))) (-4 *1 (-408 *3)))) (-4008 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-408 *3)))) (-2831 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-788)) (-5 *2 (-2 (|:| -2976 (-525)) (|:| |var| (-564 *1)))) (-4 *1 (-408 *3)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1041 *3 (-564 *1))) (-4 *3 (-975)) (-4 *3 (-788)) (-4 *1 (-408 *3)))) (-1384 (*1 *2 *1) (-12 (-4 *3 (-975)) (-4 *3 (-788)) (-5 *2 (-1041 *3 (-564 *1))) (-4 *1 (-408 *3)))) (-2920 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-788)) (-4 *2 (-975)))) (-3410 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-975)) (-4 *4 (-788)) (-5 *2 (-2 (|:| |var| (-564 *1)) (|:| -3987 (-525)))) (-4 *1 (-408 *4)))) (-3410 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-975)) (-4 *4 (-788)) (-5 *2 (-2 (|:| |var| (-564 *1)) (|:| -3987 (-525)))) (-4 *1 (-408 *4)))) (-1713 (*1 *2 *1) (|partial| -12 (-4 *3 (-975)) (-4 *3 (-788)) (-5 *2 (-2 (|:| |val| *1) (|:| -3987 (-525)))) (-4 *1 (-408 *3)))) (-1980 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-591 (-712))) (-5 *4 (-591 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-788)) (-4 *5 (-975)))) (-1980 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-591 (-712))) (-5 *4 (-591 (-1 *1 (-591 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-788)) (-4 *5 (-975)))) (-1980 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-712)) (-5 *4 (-1 *1 (-591 *1))) (-4 *1 (-408 *5)) (-4 *5 (-788)) (-4 *5 (-975)))) (-1980 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-712)) (-5 *4 (-1 *1 *1)) (-4 *1 (-408 *5)) (-4 *5 (-788)) (-4 *5 (-975)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517)) (-4 *3 (-788)))) (-1396 (*1 *2 *1) (-12 (-4 *3 (-517)) (-4 *3 (-788)) (-5 *2 (-1041 *3 (-564 *1))) (-4 *1 (-408 *3)))) (-2774 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-788)) (-4 *2 (-517)))) (-4059 (*1 *1 *2 *2) (-12 (-5 *2 (-1041 *3 (-564 *1))) (-4 *3 (-517)) (-4 *3 (-788)) (-4 *1 (-408 *3)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-788)) (-4 *1 (-408 *3)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-885 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-788)) (-4 *1 (-408 *3)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-385 (-885 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-788)) (-4 *1 (-408 *3)))) (-2514 (*1 *2 *1 *3) (-12 (-5 *3 (-564 *1)) (-4 *1 (-408 *4)) (-4 *4 (-788)) (-4 *4 (-517)) (-5 *2 (-385 (-1085 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-408 *3)) (-4 *3 (-788)) (-4 *3 (-1030))))) -(-13 (-281) (-966 (-1089)) (-817 |t#1|) (-378 |t#1|) (-389 |t#1|) (-10 -8 (-15 -1531 ((-108) $)) (-15 -1540 (|t#1| $)) (-15 -1444 ((-591 (-1089)) $)) (-15 -4229 ($ (-1089) $)) (-15 -4229 ($ (-1089) $ $)) (-15 -4229 ($ (-1089) $ $ $)) (-15 -4229 ($ (-1089) $ $ $ $)) (-15 -4229 ($ (-1089) (-591 $))) (IF (|has| |t#1| (-566 (-501))) (PROGN (-6 (-566 (-501))) (-15 -1980 ($ $ (-1089))) (-15 -1980 ($ $ (-591 (-1089)))) (-15 -1980 ($ $)) (-15 -1980 ($ $ (-110) $ (-1089))) (-15 -1980 ($ $ (-591 (-110)) (-591 $) (-1089)))) |%noBranch|) (IF (|has| |t#1| (-1030)) (PROGN (-6 (-668)) (-15 ** ($ $ (-712))) (-15 -3401 ((-3 (-591 $) "failed") $)) (-15 -3410 ((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4008 ((-3 (-591 $) "failed") $)) (-15 -2831 ((-3 (-2 (|:| -2976 (-525)) (|:| |var| (-564 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-975)) (PROGN (-6 (-975)) (-6 (-966 (-885 |t#1|))) (-6 (-833 (-1089))) (-6 (-355 |t#1|)) (-15 -2686 ($ (-1041 |t#1| (-564 $)))) (-15 -1384 ((-1041 |t#1| (-564 $)) $)) (-15 -2920 ($ $)) (-15 -3410 ((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-110))) (-15 -3410 ((-3 (-2 (|:| |var| (-564 $)) (|:| -3987 (-525))) "failed") $ (-1089))) (-15 -1713 ((-3 (-2 (|:| |val| $) (|:| -3987 (-525))) "failed") $)) (-15 -1980 ($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ $)))) (-15 -1980 ($ $ (-591 (-1089)) (-591 (-712)) (-591 (-1 $ (-591 $))))) (-15 -1980 ($ $ (-1089) (-712) (-1 $ (-591 $)))) (-15 -1980 ($ $ (-1089) (-712) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-341)) (-6 (-966 (-385 (-885 |t#1|)))) (-15 -1300 ($ (-396 $))) (-15 -1396 ((-1041 |t#1| (-564 $)) $)) (-15 -2774 ($ $)) (-15 -4059 ($ (-1041 |t#1| (-564 $)) (-1041 |t#1| (-564 $)))) (-15 -2686 ($ (-385 |t#1|))) (-15 -2686 ($ (-885 (-385 |t#1|)))) (-15 -2686 ($ (-385 (-885 (-385 |t#1|))))) (-15 -2514 ((-385 (-1085 $)) $ (-564 $))) (IF (|has| |t#1| (-966 (-525))) (-6 (-966 (-385 (-525)))) |%noBranch|)) |%noBranch|))) -(((-21) -3150 (|has| |#1| (-975)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-23) -3150 (|has| |#1| (-975)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3150 (|has| |#1| (-975)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-385 (-525))) |has| |#1| (-517)) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-517)) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) |has| |#1| (-517)) ((-126) -3150 (|has| |#1| (-975)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) |has| |#1| (-517)) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-566 (-825 (-357))) |has| |#1| (-566 (-825 (-357)))) ((-566 (-825 (-525))) |has| |#1| (-566 (-825 (-525)))) ((-223) |has| |#1| (-517)) ((-269) |has| |#1| (-517)) ((-286) |has| |#1| (-517)) ((-288 $) . T) ((-281) . T) ((-341) |has| |#1| (-517)) ((-355 |#1|) |has| |#1| (-975)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) |has| |#1| (-517)) ((-450) |has| |#1| (-450)) ((-486 (-564 $) $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-593 #0#) |has| |#1| (-517)) ((-593 |#1|) |has| |#1| (-160)) ((-593 $) -3150 (|has| |#1| (-975)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-587 (-525)) -12 (|has| |#1| (-587 (-525))) (|has| |#1| (-975))) ((-587 |#1|) |has| |#1| (-975)) ((-659 #0#) |has| |#1| (-517)) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) |has| |#1| (-517)) ((-668) -3150 (|has| |#1| (-1030)) (|has| |#1| (-975)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-788) . T) ((-833 (-1089)) |has| |#1| (-975)) ((-819 (-357)) |has| |#1| (-819 (-357))) ((-819 (-525)) |has| |#1| (-819 (-525))) ((-817 |#1|) . T) ((-853) |has| |#1| (-517)) ((-966 (-385 (-525))) -3150 (|has| |#1| (-966 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-966 (-525))))) ((-966 (-385 (-885 |#1|))) |has| |#1| (-517)) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 (-564 $)) . T) ((-966 (-885 |#1|)) |has| |#1| (-975)) ((-966 (-1089)) . T) ((-966 |#1|) . T) ((-981 #0#) |has| |#1| (-517)) ((-981 |#1|) |has| |#1| (-160)) ((-981 $) |has| |#1| (-517)) ((-975) -3150 (|has| |#1| (-975)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-982) -3150 (|has| |#1| (-975)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1030) -3150 (|has| |#1| (-1030)) (|has| |#1| (-975)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1018) . T) ((-1125) . T) ((-1129) |has| |#1| (-517))) -((-3548 ((|#2| |#2| |#2|) 33)) (-3259 (((-110) (-110)) 44)) (-3635 ((|#2| |#2|) 66)) (-3354 ((|#2| |#2|) 69)) (-3333 ((|#2| |#2|) 32)) (-3196 ((|#2| |#2| |#2|) 35)) (-1925 ((|#2| |#2| |#2|) 37)) (-2306 ((|#2| |#2| |#2|) 34)) (-1827 ((|#2| |#2| |#2|) 36)) (-2754 (((-108) (-110)) 42)) (-2753 ((|#2| |#2|) 39)) (-2369 ((|#2| |#2|) 38)) (-1460 ((|#2| |#2|) 27)) (-1353 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3408 ((|#2| |#2| |#2|) 31))) -(((-409 |#1| |#2|) (-10 -7 (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -1460 (|#2| |#2|)) (-15 -1353 (|#2| |#2|)) (-15 -1353 (|#2| |#2| |#2|)) (-15 -3408 (|#2| |#2| |#2|)) (-15 -3333 (|#2| |#2|)) (-15 -3548 (|#2| |#2| |#2|)) (-15 -2306 (|#2| |#2| |#2|)) (-15 -3196 (|#2| |#2| |#2|)) (-15 -1827 (|#2| |#2| |#2|)) (-15 -1925 (|#2| |#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -3635 (|#2| |#2|))) (-13 (-788) (-517)) (-408 |#1|)) (T -409)) -((-3635 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3354 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1925 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1827 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3196 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2306 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3548 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3333 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3408 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1353 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1353 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1460 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *4)) (-4 *4 (-408 *3)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4))))) -(-10 -7 (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -1460 (|#2| |#2|)) (-15 -1353 (|#2| |#2|)) (-15 -1353 (|#2| |#2| |#2|)) (-15 -3408 (|#2| |#2| |#2|)) (-15 -3333 (|#2| |#2|)) (-15 -3548 (|#2| |#2| |#2|)) (-15 -2306 (|#2| |#2| |#2|)) (-15 -3196 (|#2| |#2| |#2|)) (-15 -1827 (|#2| |#2| |#2|)) (-15 -1925 (|#2| |#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -3635 (|#2| |#2|))) -((-1268 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1085 |#2|)) (|:| |pol2| (-1085 |#2|)) (|:| |prim| (-1085 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-591 (-1085 |#2|))) (|:| |prim| (-1085 |#2|))) (-591 |#2|)) 61))) -(((-410 |#1| |#2|) (-10 -7 (-15 -1268 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-591 (-1085 |#2|))) (|:| |prim| (-1085 |#2|))) (-591 |#2|))) (IF (|has| |#2| (-27)) (-15 -1268 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1085 |#2|)) (|:| |pol2| (-1085 |#2|)) (|:| |prim| (-1085 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-517) (-788) (-138)) (-408 |#1|)) (T -410)) -((-1268 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-517) (-788) (-138))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1085 *3)) (|:| |pol2| (-1085 *3)) (|:| |prim| (-1085 *3)))) (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4)))) (-1268 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-517) (-788) (-138))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-591 (-1085 *5))) (|:| |prim| (-1085 *5)))) (-5 *1 (-410 *4 *5))))) -(-10 -7 (-15 -1268 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-591 (-1085 |#2|))) (|:| |prim| (-1085 |#2|))) (-591 |#2|))) (IF (|has| |#2| (-27)) (-15 -1268 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1085 |#2|)) (|:| |pol2| (-1085 |#2|)) (|:| |prim| (-1085 |#2|))) |#2| |#2|)) |%noBranch|)) -((-3538 (((-1176)) 19)) (-1501 (((-1085 (-385 (-525))) |#2| (-564 |#2|)) 41) (((-385 (-525)) |#2|) 25))) -(((-411 |#1| |#2|) (-10 -7 (-15 -1501 ((-385 (-525)) |#2|)) (-15 -1501 ((-1085 (-385 (-525))) |#2| (-564 |#2|))) (-15 -3538 ((-1176)))) (-13 (-788) (-517) (-966 (-525))) (-408 |#1|)) (T -411)) -((-3538 (*1 *2) (-12 (-4 *3 (-13 (-788) (-517) (-966 (-525)))) (-5 *2 (-1176)) (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *4 (-564 *3)) (-4 *3 (-408 *5)) (-4 *5 (-13 (-788) (-517) (-966 (-525)))) (-5 *2 (-1085 (-385 (-525)))) (-5 *1 (-411 *5 *3)))) (-1501 (*1 *2 *3) (-12 (-4 *4 (-13 (-788) (-517) (-966 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4))))) -(-10 -7 (-15 -1501 ((-385 (-525)) |#2|)) (-15 -1501 ((-1085 (-385 (-525))) |#2| (-564 |#2|))) (-15 -3538 ((-1176)))) -((-2174 (((-108) $) 28)) (-3376 (((-108) $) 30)) (-2809 (((-108) $) 31)) (-2448 (((-108) $) 34)) (-2417 (((-108) $) 29)) (-3586 (((-108) $) 33)) (-2686 (((-796) $) 18) (($ (-1072)) 27) (($ (-1089)) 23) (((-1089) $) 22) (((-1022) $) 21)) (-1723 (((-108) $) 32)) (-3944 (((-108) $ $) 15))) -(((-412) (-13 (-565 (-796)) (-10 -8 (-15 -2686 ($ (-1072))) (-15 -2686 ($ (-1089))) (-15 -2686 ((-1089) $)) (-15 -2686 ((-1022) $)) (-15 -2174 ((-108) $)) (-15 -2417 ((-108) $)) (-15 -2809 ((-108) $)) (-15 -3586 ((-108) $)) (-15 -2448 ((-108) $)) (-15 -1723 ((-108) $)) (-15 -3376 ((-108) $)) (-15 -3944 ((-108) $ $))))) (T -412)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-412)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-412)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-412)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-412)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3944 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) -(-13 (-565 (-796)) (-10 -8 (-15 -2686 ($ (-1072))) (-15 -2686 ($ (-1089))) (-15 -2686 ((-1089) $)) (-15 -2686 ((-1022) $)) (-15 -2174 ((-108) $)) (-15 -2417 ((-108) $)) (-15 -2809 ((-108) $)) (-15 -3586 ((-108) $)) (-15 -2448 ((-108) $)) (-15 -1723 ((-108) $)) (-15 -3376 ((-108) $)) (-15 -3944 ((-108) $ $)))) -((-1702 (((-3 (-396 (-1085 (-385 (-525)))) "failed") |#3|) 69)) (-2824 (((-396 |#3|) |#3|) 34)) (-2861 (((-3 (-396 (-1085 (-47))) "failed") |#3|) 29 (|has| |#2| (-966 (-47))))) (-1301 (((-3 (|:| |overq| (-1085 (-385 (-525)))) (|:| |overan| (-1085 (-47))) (|:| -4081 (-108))) |#3|) 37))) -(((-413 |#1| |#2| |#3|) (-10 -7 (-15 -2824 ((-396 |#3|) |#3|)) (-15 -1702 ((-3 (-396 (-1085 (-385 (-525)))) "failed") |#3|)) (-15 -1301 ((-3 (|:| |overq| (-1085 (-385 (-525)))) (|:| |overan| (-1085 (-47))) (|:| -4081 (-108))) |#3|)) (IF (|has| |#2| (-966 (-47))) (-15 -2861 ((-3 (-396 (-1085 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-517) (-788) (-966 (-525))) (-408 |#1|) (-1147 |#2|)) (T -413)) -((-2861 (*1 *2 *3) (|partial| -12 (-4 *5 (-966 (-47))) (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1085 (-47)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1147 *5)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-3 (|:| |overq| (-1085 (-385 (-525)))) (|:| |overan| (-1085 (-47))) (|:| -4081 (-108)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1147 *5)))) (-1702 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1085 (-385 (-525))))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1147 *5)))) (-2824 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1147 *5))))) -(-10 -7 (-15 -2824 ((-396 |#3|) |#3|)) (-15 -1702 ((-3 (-396 (-1085 (-385 (-525)))) "failed") |#3|)) (-15 -1301 ((-3 (|:| |overq| (-1085 (-385 (-525)))) (|:| |overan| (-1085 (-47))) (|:| -4081 (-108))) |#3|)) (IF (|has| |#2| (-966 (-47))) (-15 -2861 ((-3 (-396 (-1085 (-47))) "failed") |#3|)) |%noBranch|)) -((-2673 (((-108) $ $) NIL)) (-3806 (((-1072) $ (-1072)) NIL)) (-2375 (($ $ (-1072)) NIL)) (-1608 (((-1072) $) NIL)) (-2707 (((-366) (-366) (-366)) 17) (((-366) (-366)) 15)) (-1472 (($ (-366)) NIL) (($ (-366) (-1072)) NIL)) (-3419 (((-366) $) NIL)) (-2621 (((-1072) $) NIL)) (-4052 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3310 (((-1176) (-1072)) 9)) (-3313 (((-1176) (-1072)) 10)) (-3499 (((-1176)) 11)) (-2686 (((-796) $) NIL)) (-3236 (($ $) 35)) (-3944 (((-108) $ $) NIL))) -(((-414) (-13 (-342 (-366) (-1072)) (-10 -7 (-15 -2707 ((-366) (-366) (-366))) (-15 -2707 ((-366) (-366))) (-15 -3310 ((-1176) (-1072))) (-15 -3313 ((-1176) (-1072))) (-15 -3499 ((-1176)))))) (T -414)) -((-2707 (*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-2707 (*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-414)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-414)))) (-3499 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-414))))) -(-13 (-342 (-366) (-1072)) (-10 -7 (-15 -2707 ((-366) (-366) (-366))) (-15 -2707 ((-366) (-366))) (-15 -3310 ((-1176) (-1072))) (-15 -3313 ((-1176) (-1072))) (-15 -3499 ((-1176))))) -((-2673 (((-108) $ $) NIL)) (-1792 (((-3 (|:| |fst| (-412)) (|:| -1411 "void")) $) 11)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3436 (($) 32)) (-1974 (($) 38)) (-3434 (($) 34)) (-2579 (($) 36)) (-3098 (($) 33)) (-3894 (($) 35)) (-1283 (($) 37)) (-3621 (((-108) $) 8)) (-2109 (((-591 (-885 (-525))) $) 19)) (-2695 (($ (-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-591 (-1089)) (-108)) 27) (($ (-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-591 (-885 (-525))) (-108)) 28)) (-2686 (((-796) $) 23) (($ (-412)) 29)) (-3944 (((-108) $ $) NIL))) -(((-415) (-13 (-1018) (-10 -8 (-15 -2686 ((-796) $)) (-15 -2686 ($ (-412))) (-15 -1792 ((-3 (|:| |fst| (-412)) (|:| -1411 "void")) $)) (-15 -2109 ((-591 (-885 (-525))) $)) (-15 -3621 ((-108) $)) (-15 -2695 ($ (-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-591 (-1089)) (-108))) (-15 -2695 ($ (-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-591 (-885 (-525))) (-108))) (-15 -3436 ($)) (-15 -3098 ($)) (-15 -3434 ($)) (-15 -1974 ($)) (-15 -3894 ($)) (-15 -2579 ($)) (-15 -1283 ($))))) (T -415)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-415)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415)))) (-1792 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *1 (-415)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-591 (-885 (-525)))) (-5 *1 (-415)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))) (-2695 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *3 (-591 (-1089))) (-5 *4 (-108)) (-5 *1 (-415)))) (-2695 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-108)) (-5 *1 (-415)))) (-3436 (*1 *1) (-5 *1 (-415))) (-3098 (*1 *1) (-5 *1 (-415))) (-3434 (*1 *1) (-5 *1 (-415))) (-1974 (*1 *1) (-5 *1 (-415))) (-3894 (*1 *1) (-5 *1 (-415))) (-2579 (*1 *1) (-5 *1 (-415))) (-1283 (*1 *1) (-5 *1 (-415)))) -(-13 (-1018) (-10 -8 (-15 -2686 ((-796) $)) (-15 -2686 ($ (-412))) (-15 -1792 ((-3 (|:| |fst| (-412)) (|:| -1411 "void")) $)) (-15 -2109 ((-591 (-885 (-525))) $)) (-15 -3621 ((-108) $)) (-15 -2695 ($ (-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-591 (-1089)) (-108))) (-15 -2695 ($ (-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-591 (-885 (-525))) (-108))) (-15 -3436 ($)) (-15 -3098 ($)) (-15 -3434 ($)) (-15 -1974 ($)) (-15 -3894 ($)) (-15 -2579 ($)) (-15 -1283 ($)))) -((-2673 (((-108) $ $) NIL)) (-3419 (((-1089) $) 8)) (-2621 (((-1072) $) 16)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 13))) -(((-416 |#1|) (-13 (-1018) (-10 -8 (-15 -3419 ((-1089) $)))) (-1089)) (T -416)) -((-3419 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-416 *3)) (-14 *3 *2)))) -(-13 (-1018) (-10 -8 (-15 -3419 ((-1089) $)))) -((-2163 (((-1176) $) 7)) (-2686 (((-796) $) 8) (($ (-1171 (-640))) 14) (($ (-591 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 11))) +((-2734 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1172 *1)) (-4 *1 (-395 *3)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 *3)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-1545 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 (-632 *3))))) (-4125 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-886 *3))))) (-1689 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 *3)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-4087 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-1452 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-1301 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-1953 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-2562 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-1376 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1086 (-886 *3))))) (-3558 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1086 (-886 *3))))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160))))) +(-13 (-345 |t#1|) (-10 -8 (-15 -2734 ((-1172 $))) (-15 -1625 ((-1172 |t#1|) $)) (-15 -1625 ((-632 |t#1|) (-1172 $))) (-15 -1496 (|t#1| $ (-525))) (-15 -1545 ((-1172 (-632 |t#1|)))) (-15 -4125 ((-592 (-886 |t#1|)))) (-15 -1689 ($ (-1172 |t#1|))) (-15 -2923 ((-1172 |t#1|) $)) (-15 -2923 ($ (-1172 |t#1|))) (-15 -4087 (|t#1|)) (-15 -1452 (|t#1|)) (-15 -1301 ((-632 |t#1|))) (-15 -1953 ((-632 |t#1|))) (-15 -2562 ((-632 |t#1|) $)) (-15 -3663 ((-632 |t#1|) $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -1376 ((-1086 (-886 |t#1|)))) (-15 -3558 ((-1086 (-886 |t#1|))))) |%noBranch|) (-15 -1627 ($ (-632 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-345 |#1|) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-687 |#1|) . T) ((-704) . T) ((-982 |#1|) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 42)) (-4198 (($ $) 57)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 145)) (-2609 (($ $) NIL)) (-1220 (((-108) $) 36)) (-3603 ((|#1| $) 13)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| |#1| (-1130)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-1130)))) (-2873 (($ |#1| (-525)) 31)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 115)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 55)) (-1645 (((-3 $ "failed") $) 130)) (-2132 (((-3 (-385 (-525)) "failed") $) 63 (|has| |#1| (-510)))) (-3748 (((-108) $) 59 (|has| |#1| (-510)))) (-1675 (((-385 (-525)) $) 61 (|has| |#1| (-510)))) (-1502 (($ |#1| (-525)) 33)) (-2069 (((-108) $) 151 (|has| |#1| (-1130)))) (-2507 (((-108) $) 43)) (-1955 (((-713) $) 38)) (-3052 (((-3 "nil" "sqfr" "irred" "prime") $ (-525)) 136)) (-2339 ((|#1| $ (-525)) 135)) (-3119 (((-525) $ (-525)) 134)) (-3574 (($ |#1| (-525)) 30)) (-2868 (($ (-1 |#1| |#1|) $) 142)) (-1892 (($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525))))) 58)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1707 (((-1073) $) NIL)) (-3543 (($ |#1| (-525)) 32)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 146 (|has| |#1| (-429)))) (-3373 (($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-2826 (((-592 (-2 (|:| -2961 |#1|) (|:| -1737 (-525)))) $) 54)) (-3628 (((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $) 12)) (-2961 (((-396 $) $) NIL (|has| |#1| (-1130)))) (-2675 (((-3 $ "failed") $ $) 137)) (-1737 (((-525) $) 131)) (-1203 ((|#1| $) 56)) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 78 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 84 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) $) NIL (|has| |#1| (-486 (-1090) $))) (($ $ (-592 (-1090)) (-592 $)) 85 (|has| |#1| (-486 (-1090) $))) (($ $ (-592 (-273 $))) 81 (|has| |#1| (-288 $))) (($ $ (-273 $)) NIL (|has| |#1| (-288 $))) (($ $ $ $) NIL (|has| |#1| (-288 $))) (($ $ (-592 $) (-592 $)) NIL (|has| |#1| (-288 $)))) (-1496 (($ $ |#1|) 70 (|has| |#1| (-265 |#1| |#1|))) (($ $ $) 71 (|has| |#1| (-265 $ $)))) (-1576 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 141)) (-2923 (((-501) $) 27 (|has| |#1| (-567 (-501)))) (((-357) $) 91 (|has| |#1| (-952))) (((-205) $) 94 (|has| |#1| (-952)))) (-4044 (((-797) $) 113) (($ (-525)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525)))))) (-2502 (((-713)) 48)) (-3787 (((-108) $ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 40 T CONST)) (-1449 (($) 39 T CONST)) (-1990 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3899 (((-108) $ $) 95)) (-4033 (($ $) 127) (($ $ $) NIL)) (-4017 (($ $ $) 139)) (** (($ $ (-855)) NIL) (($ $ (-713)) 101)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) +(((-396 |#1|) (-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -1203 (|#1| $)) (-15 -1737 ((-525) $)) (-15 -1892 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -3628 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -3574 ($ |#1| (-525))) (-15 -2826 ((-592 (-2 (|:| -2961 |#1|) (|:| -1737 (-525)))) $)) (-15 -3543 ($ |#1| (-525))) (-15 -3119 ((-525) $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -3052 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -1955 ((-713) $)) (-15 -1502 ($ |#1| (-525))) (-15 -2873 ($ |#1| (-525))) (-15 -3373 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3603 (|#1| $)) (-15 -4198 ($ $)) (-15 -2868 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-952)) (-6 (-952)) |%noBranch|) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1090) $)) (-6 (-486 (-1090) $)) |%noBranch|))) (-517)) (T -396)) +((-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3)))) (-1203 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-1892 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-525))))) (-4 *2 (-517)) (-5 *1 (-396 *2)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3574 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -2961 *3) (|:| -1737 (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3543 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3119 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3052 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *4)) (-4 *4 (-517)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2873 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3373 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3603 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-4198 (*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-2132 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517))))) +(-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -1203 (|#1| $)) (-15 -1737 ((-525) $)) (-15 -1892 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -3628 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -3574 ($ |#1| (-525))) (-15 -2826 ((-592 (-2 (|:| -2961 |#1|) (|:| -1737 (-525)))) $)) (-15 -3543 ($ |#1| (-525))) (-15 -3119 ((-525) $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -3052 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -1955 ((-713) $)) (-15 -1502 ($ |#1| (-525))) (-15 -2873 ($ |#1| (-525))) (-15 -3373 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3603 (|#1| $)) (-15 -4198 ($ $)) (-15 -2868 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-952)) (-6 (-952)) |%noBranch|) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1090) $)) (-6 (-486 (-1090) $)) |%noBranch|))) +((-3563 (((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|)) 21)) (-1947 (((-396 |#1|) (-396 |#1|) (-396 |#1|)) 16))) +(((-397 |#1|) (-10 -7 (-15 -3563 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -1947 ((-396 |#1|) (-396 |#1|) (-396 |#1|)))) (-517)) (T -397)) +((-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))) (-3563 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *2 (-396 *4)) (-5 *1 (-397 *4))))) +(-10 -7 (-15 -3563 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -1947 ((-396 |#1|) (-396 |#1|) (-396 |#1|)))) +((-2088 ((|#2| |#2|) 166)) (-1761 (((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108)) 57))) +(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1761 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108))) (-15 -2088 (|#2| |#2|))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|)) (-1090) |#2|) (T -398)) +((-2088 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1112) (-408 *3))) (-14 *4 (-1090)) (-14 *5 *2))) (-1761 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |%expansion| (-291 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-14 *6 (-1090)) (-14 *7 *3)))) +(-10 -7 (-15 -1761 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108))) (-15 -2088 (|#2| |#2|))) +((-2868 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-976) (-789)) (-408 |#1|) (-13 (-976) (-789)) (-408 |#3|)) (T -399)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-976) (-789))) (-4 *6 (-13 (-976) (-789))) (-4 *2 (-408 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5))))) +(-10 -7 (-15 -2868 (|#4| (-1 |#3| |#1|) |#2|))) +((-2088 ((|#2| |#2|) 90)) (-1516 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073)) 48)) (-3175 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073)) 154))) +(((-400 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1516 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073))) (-15 -3175 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073))) (-15 -2088 (|#2| |#2|))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|) (-10 -8 (-15 -4044 ($ |#3|)))) (-787) (-13 (-1150 |#2| |#3|) (-341) (-1112) (-10 -8 (-15 -1576 ($ $)) (-15 -2313 ($ $)))) (-915 |#4|) (-1090)) (T -400)) +((-2088 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-4 *2 (-13 (-27) (-1112) (-408 *3) (-10 -8 (-15 -4044 ($ *4))))) (-4 *4 (-787)) (-4 *5 (-13 (-1150 *2 *4) (-341) (-1112) (-10 -8 (-15 -1576 ($ $)) (-15 -2313 ($ $))))) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-915 *5)) (-14 *7 (-1090)))) (-3175 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1112) (-408 *6) (-10 -8 (-15 -4044 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1150 *3 *7) (-341) (-1112) (-10 -8 (-15 -1576 ($ $)) (-15 -2313 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-915 *8)) (-14 *10 (-1090)))) (-1516 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1112) (-408 *6) (-10 -8 (-15 -4044 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1150 *3 *7) (-341) (-1112) (-10 -8 (-15 -1576 ($ $)) (-15 -2313 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-915 *8)) (-14 *10 (-1090))))) +(-10 -7 (-15 -1516 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073))) (-15 -3175 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073))) (-15 -2088 (|#2| |#2|))) +((-2225 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3336 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2868 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3336 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2225 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1019) (-403 |#1|) (-1019) (-403 |#3|)) (T -401)) +((-2225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1019)) (-4 *5 (-1019)) (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6)))) (-3336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1019)) (-4 *2 (-1019)) (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5))))) +(-10 -7 (-15 -2868 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3336 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2225 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1674 (($) 44)) (-2272 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3893 (($ $ $) 39)) (-2398 (((-108) $ $) 28)) (-1651 (((-713)) 47)) (-3792 (($ (-592 |#2|)) 20) (($) NIL)) (-1527 (($) 53)) (-1260 ((|#2| $) 61)) (-2154 ((|#2| $) 59)) (-2111 (((-855) $) 55)) (-2021 (($ $ $) 35)) (-3381 (($ (-855)) 50)) (-2472 (($ $ |#2|) NIL) (($ $ $) 38)) (-3053 (((-713) (-1 (-108) |#2|) $) NIL) (((-713) |#2| $) 26)) (-4059 (($ (-592 |#2|)) 24)) (-3128 (($ $) 46)) (-4044 (((-797) $) 33)) (-3713 (((-713) $) 21)) (-3012 (($ (-592 |#2|)) 19) (($) NIL)) (-3899 (((-108) $ $) 16)) (-3928 (((-108) $ $) 13))) +(((-402 |#1| |#2|) (-10 -8 (-15 -1651 ((-713))) (-15 -3381 (|#1| (-855))) (-15 -2111 ((-855) |#1|)) (-15 -1527 (|#1|)) (-15 -1260 (|#2| |#1|)) (-15 -2154 (|#2| |#1|)) (-15 -1674 (|#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3713 ((-713) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -3012 (|#1|)) (-15 -3012 (|#1| (-592 |#2|))) (-15 -3792 (|#1|)) (-15 -3792 (|#1| (-592 |#2|))) (-15 -2021 (|#1| |#1| |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -2472 (|#1| |#1| |#2|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -2398 ((-108) |#1| |#1|)) (-15 -2272 (|#1| |#1| |#1|)) (-15 -2272 (|#1| |#1| |#2|)) (-15 -2272 (|#1| |#2| |#1|)) (-15 -4059 (|#1| (-592 |#2|))) (-15 -3053 ((-713) |#2| |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|))) (-403 |#2|) (-1019)) (T -402)) +((-1651 (*1 *2) (-12 (-4 *4 (-1019)) (-5 *2 (-713)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4))))) +(-10 -8 (-15 -1651 ((-713))) (-15 -3381 (|#1| (-855))) (-15 -2111 ((-855) |#1|)) (-15 -1527 (|#1|)) (-15 -1260 (|#2| |#1|)) (-15 -2154 (|#2| |#1|)) (-15 -1674 (|#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3713 ((-713) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -3012 (|#1|)) (-15 -3012 (|#1| (-592 |#2|))) (-15 -3792 (|#1|)) (-15 -3792 (|#1| (-592 |#2|))) (-15 -2021 (|#1| |#1| |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -2472 (|#1| |#1| |#2|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -2398 ((-108) |#1| |#1|)) (-15 -2272 (|#1| |#1| |#1|)) (-15 -2272 (|#1| |#1| |#2|)) (-15 -2272 (|#1| |#2| |#1|)) (-15 -4059 (|#1| (-592 |#2|))) (-15 -3053 ((-713) |#2| |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|))) +((-4028 (((-108) $ $) 19)) (-1674 (($) 67 (|has| |#1| (-346)))) (-2272 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3893 (($ $ $) 78)) (-2398 (((-108) $ $) 79)) (-2583 (((-108) $ (-713)) 8)) (-1651 (((-713)) 61 (|has| |#1| (-346)))) (-3792 (($ (-592 |#1|)) 74) (($) 73)) (-2696 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-1716 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2591 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-1527 (($) 64 (|has| |#1| (-346)))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-1260 ((|#1| $) 65 (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2154 ((|#1| $) 66 (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2111 (((-855) $) 63 (|has| |#1| (-346)))) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22)) (-2021 (($ $ $) 75)) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40)) (-3381 (($ (-855)) 62 (|has| |#1| (-346)))) (-3027 (((-1037) $) 21)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-2472 (($ $ |#1|) 77) (($ $ $) 76)) (-3607 (($) 49) (($ (-592 |#1|)) 48)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 50)) (-3128 (($ $) 68 (|has| |#1| (-346)))) (-4044 (((-797) $) 18)) (-3713 (((-713) $) 69)) (-3012 (($ (-592 |#1|)) 72) (($) 71)) (-1326 (($ (-592 |#1|)) 42)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20)) (-3928 (((-108) $ $) 70)) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-403 |#1|) (-131) (-1019)) (T -403)) +((-3713 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1019)) (-5 *2 (-713)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-346)))) (-1674 (*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1019)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-789)))) (-1260 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-789))))) +(-13 (-209 |t#1|) (-1017 |t#1|) (-10 -8 (-6 -4254) (-15 -3713 ((-713) $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-346)) (-15 -3128 ($ $)) (-15 -1674 ($))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -2154 (|t#1| $)) (-15 -1260 (|t#1| $))) |%noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-209 |#1|) . T) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-346) |has| |#1| (-346)) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1017 |#1|) . T) ((-1019) . T) ((-1126) . T)) +((-2550 (((-542 |#2|) |#2| (-1090)) 36)) (-3071 (((-542 |#2|) |#2| (-1090)) 20)) (-1447 ((|#2| |#2| (-1090)) 25))) +(((-404 |#1| |#2|) (-10 -7 (-15 -3071 ((-542 |#2|) |#2| (-1090))) (-15 -2550 ((-542 |#2|) |#2| (-1090))) (-15 -1447 (|#2| |#2| (-1090)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-29 |#1|))) (T -404)) +((-1447 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1112) (-29 *4))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1112) (-29 *5))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1112) (-29 *5)))))) +(-10 -7 (-15 -3071 ((-542 |#2|) |#2| (-1090))) (-15 -2550 ((-542 |#2|) |#2| (-1090))) (-15 -1447 (|#2| |#2| (-1090)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-2254 (($ |#2| |#1|) 35)) (-4233 (($ |#2| |#1|) 33)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-309 |#2|)) 25)) (-2502 (((-713)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 10 T CONST)) (-1449 (($) 16 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 34)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-405 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4241)) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) |%noBranch|) (-15 -4044 ($ |#1|)) (-15 -4044 ($ (-309 |#2|))) (-15 -2254 ($ |#2| |#1|)) (-15 -4233 ($ |#2| |#1|)))) (-13 (-160) (-37 (-385 (-525)))) (-13 (-789) (-21))) (T -405)) +((-4044 (*1 *1 *2) (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525))))) (-4 *3 (-13 (-789) (-21))))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-789) (-21))) (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))))) (-2254 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21))))) (-4233 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21)))))) +(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4241)) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) |%noBranch|) (-15 -4044 ($ |#1|)) (-15 -4044 ($ (-309 |#2|))) (-15 -2254 ($ |#2| |#1|)) (-15 -4233 ($ |#2| |#1|)))) +((-2313 (((-3 |#2| (-592 |#2|)) |#2| (-1090)) 109))) +(((-406 |#1| |#2|) (-10 -7 (-15 -2313 ((-3 |#2| (-592 |#2|)) |#2| (-1090)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-892) (-29 |#1|))) (T -406)) +((-2313 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3)) (-4 *3 (-13 (-1112) (-892) (-29 *5)))))) +(-10 -7 (-15 -2313 ((-3 |#2| (-592 |#2|)) |#2| (-1090)))) +((-3122 (((-592 (-1090)) $) 72)) (-1315 (((-385 (-1086 $)) $ (-565 $)) 273)) (-3687 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) 237)) (-2769 (((-3 (-565 $) "failed") $) NIL) (((-3 (-1090) "failed") $) 75) (((-3 (-525) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-385 (-886 |#2|)) "failed") $) 324) (((-3 (-886 |#2|) "failed") $) 235) (((-3 (-385 (-525)) "failed") $) NIL)) (-2068 (((-565 $) $) NIL) (((-1090) $) 30) (((-525) $) NIL) ((|#2| $) 231) (((-385 (-886 |#2|)) $) 305) (((-886 |#2|) $) 232) (((-385 (-525)) $) NIL)) (-1885 (((-110) (-110)) 47)) (-4055 (($ $) 87)) (-1688 (((-3 (-565 $) "failed") $) 228)) (-1304 (((-592 (-565 $)) $) 229)) (-3466 (((-3 (-592 $) "failed") $) 247)) (-4098 (((-3 (-2 (|:| |val| $) (|:| -1737 (-525))) "failed") $) 254)) (-4103 (((-3 (-592 $) "failed") $) 245)) (-2054 (((-3 (-2 (|:| -2059 (-525)) (|:| |var| (-565 $))) "failed") $) 264)) (-1850 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $) 251) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-110)) 217) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-1090)) 219)) (-3256 (((-108) $) 19)) (-3267 ((|#2| $) 21)) (-2168 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 236) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) 96) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1090)) 57) (($ $ (-592 (-1090))) 240) (($ $) 241) (($ $ (-110) $ (-1090)) 60) (($ $ (-592 (-110)) (-592 $) (-1090)) 67) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $))) 107) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 242) (($ $ (-1090) (-713) (-1 $ (-592 $))) 94) (($ $ (-1090) (-713) (-1 $ $)) 93)) (-1496 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) 106)) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) 238)) (-1987 (($ $) 284)) (-2923 (((-826 (-525)) $) 257) (((-826 (-357)) $) 261) (($ (-396 $)) 320) (((-501) $) NIL)) (-4044 (((-797) $) 239) (($ (-565 $)) 84) (($ (-1090)) 26) (($ |#2|) NIL) (($ (-1042 |#2| (-565 $))) NIL) (($ (-385 |#2|)) 289) (($ (-886 (-385 |#2|))) 329) (($ (-385 (-886 (-385 |#2|)))) 301) (($ (-385 (-886 |#2|))) 295) (($ $) NIL) (($ (-886 |#2|)) 185) (($ (-385 (-525))) 334) (($ (-525)) NIL)) (-2502 (((-713)) 79)) (-3712 (((-108) (-110)) 41)) (-4075 (($ (-1090) $) 33) (($ (-1090) $ $) 34) (($ (-1090) $ $ $) 35) (($ (-1090) $ $ $ $) 36) (($ (-1090) (-592 $)) 39)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL))) +(((-407 |#1| |#2|) (-10 -8 (-15 * (|#1| (-855) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2502 ((-713))) (-15 -4044 (|#1| (-525))) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2923 ((-501) |#1|)) (-15 -2068 ((-886 |#2|) |#1|)) (-15 -2769 ((-3 (-886 |#2|) "failed") |#1|)) (-15 -4044 (|#1| (-886 |#2|))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2068 ((-385 (-886 |#2|)) |#1|)) (-15 -2769 ((-3 (-385 (-886 |#2|)) "failed") |#1|)) (-15 -4044 (|#1| (-385 (-886 |#2|)))) (-15 -1315 ((-385 (-1086 |#1|)) |#1| (-565 |#1|))) (-15 -4044 (|#1| (-385 (-886 (-385 |#2|))))) (-15 -4044 (|#1| (-886 (-385 |#2|)))) (-15 -4044 (|#1| (-385 |#2|))) (-15 -1987 (|#1| |#1|)) (-15 -2923 (|#1| (-396 |#1|))) (-15 -2168 (|#1| |#1| (-1090) (-713) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-1090) (-713) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -4098 ((-3 (-2 (|:| |val| |#1|) (|:| -1737 (-525))) "failed") |#1|)) (-15 -1850 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1737 (-525))) "failed") |#1| (-1090))) (-15 -1850 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1737 (-525))) "failed") |#1| (-110))) (-15 -4055 (|#1| |#1|)) (-15 -4044 (|#1| (-1042 |#2| (-565 |#1|)))) (-15 -2054 ((-3 (-2 (|:| -2059 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -4103 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -1850 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1737 (-525))) "failed") |#1|)) (-15 -3466 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1090))) (-15 -2168 (|#1| |#1| (-110) |#1| (-1090))) (-15 -2168 (|#1| |#1|)) (-15 -2168 (|#1| |#1| (-592 (-1090)))) (-15 -2168 (|#1| |#1| (-1090))) (-15 -4075 (|#1| (-1090) (-592 |#1|))) (-15 -4075 (|#1| (-1090) |#1| |#1| |#1| |#1|)) (-15 -4075 (|#1| (-1090) |#1| |#1| |#1|)) (-15 -4075 (|#1| (-1090) |#1| |#1|)) (-15 -4075 (|#1| (-1090) |#1|)) (-15 -3122 ((-592 (-1090)) |#1|)) (-15 -3267 (|#2| |#1|)) (-15 -3256 ((-108) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2068 ((-1090) |#1|)) (-15 -2769 ((-3 (-1090) "failed") |#1|)) (-15 -4044 (|#1| (-1090))) (-15 -2168 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2168 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-1090) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| |#1|)))) (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -1304 ((-592 (-565 |#1|)) |#1|)) (-15 -1688 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -3687 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3687 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3687 (|#1| |#1| (-273 |#1|))) (-15 -1496 (|#1| (-110) (-592 |#1|))) (-15 -1496 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2168 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -2068 ((-565 |#1|) |#1|)) (-15 -2769 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -4044 (|#1| (-565 |#1|))) (-15 -4044 ((-797) |#1|))) (-408 |#2|) (-789)) (T -407)) +((-1885 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5)))) (-2502 (*1 *2) (-12 (-4 *4 (-789)) (-5 *2 (-713)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4))))) +(-10 -8 (-15 * (|#1| (-855) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2502 ((-713))) (-15 -4044 (|#1| (-525))) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2923 ((-501) |#1|)) (-15 -2068 ((-886 |#2|) |#1|)) (-15 -2769 ((-3 (-886 |#2|) "failed") |#1|)) (-15 -4044 (|#1| (-886 |#2|))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2068 ((-385 (-886 |#2|)) |#1|)) (-15 -2769 ((-3 (-385 (-886 |#2|)) "failed") |#1|)) (-15 -4044 (|#1| (-385 (-886 |#2|)))) (-15 -1315 ((-385 (-1086 |#1|)) |#1| (-565 |#1|))) (-15 -4044 (|#1| (-385 (-886 (-385 |#2|))))) (-15 -4044 (|#1| (-886 (-385 |#2|)))) (-15 -4044 (|#1| (-385 |#2|))) (-15 -1987 (|#1| |#1|)) (-15 -2923 (|#1| (-396 |#1|))) (-15 -2168 (|#1| |#1| (-1090) (-713) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-1090) (-713) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -4098 ((-3 (-2 (|:| |val| |#1|) (|:| -1737 (-525))) "failed") |#1|)) (-15 -1850 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1737 (-525))) "failed") |#1| (-1090))) (-15 -1850 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1737 (-525))) "failed") |#1| (-110))) (-15 -4055 (|#1| |#1|)) (-15 -4044 (|#1| (-1042 |#2| (-565 |#1|)))) (-15 -2054 ((-3 (-2 (|:| -2059 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -4103 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -1850 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1737 (-525))) "failed") |#1|)) (-15 -3466 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1090))) (-15 -2168 (|#1| |#1| (-110) |#1| (-1090))) (-15 -2168 (|#1| |#1|)) (-15 -2168 (|#1| |#1| (-592 (-1090)))) (-15 -2168 (|#1| |#1| (-1090))) (-15 -4075 (|#1| (-1090) (-592 |#1|))) (-15 -4075 (|#1| (-1090) |#1| |#1| |#1| |#1|)) (-15 -4075 (|#1| (-1090) |#1| |#1| |#1|)) (-15 -4075 (|#1| (-1090) |#1| |#1|)) (-15 -4075 (|#1| (-1090) |#1|)) (-15 -3122 ((-592 (-1090)) |#1|)) (-15 -3267 (|#2| |#1|)) (-15 -3256 ((-108) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2068 ((-1090) |#1|)) (-15 -2769 ((-3 (-1090) "failed") |#1|)) (-15 -4044 (|#1| (-1090))) (-15 -2168 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2168 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -2168 (|#1| |#1| (-1090) (-1 |#1| (-592 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2168 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| |#1|)))) (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -1304 ((-592 (-565 |#1|)) |#1|)) (-15 -1688 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -3687 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3687 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3687 (|#1| |#1| (-273 |#1|))) (-15 -1496 (|#1| (-110) (-592 |#1|))) (-15 -1496 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1| |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1| |#1|)) (-15 -1496 (|#1| (-110) |#1|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2168 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2168 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -2068 ((-565 |#1|) |#1|)) (-15 -2769 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -4044 (|#1| (-565 |#1|))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 116 (|has| |#1| (-25)))) (-3122 (((-592 (-1090)) $) 203)) (-1315 (((-385 (-1086 $)) $ (-565 $)) 171 (|has| |#1| (-517)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 143 (|has| |#1| (-517)))) (-2609 (($ $) 144 (|has| |#1| (-517)))) (-1220 (((-108) $) 146 (|has| |#1| (-517)))) (-2249 (((-592 (-565 $)) $) 44)) (-3004 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3687 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-2701 (($ $) 163 (|has| |#1| (-517)))) (-1259 (((-396 $) $) 164 (|has| |#1| (-517)))) (-1700 (((-108) $ $) 154 (|has| |#1| (-517)))) (-1957 (($) 102 (-3215 (|has| |#1| (-1031)) (|has| |#1| (-25))) CONST)) (-2769 (((-3 (-565 $) "failed") $) 69) (((-3 (-1090) "failed") $) 216) (((-3 (-525) "failed") $) 209 (|has| |#1| (-967 (-525)))) (((-3 |#1| "failed") $) 207) (((-3 (-385 (-886 |#1|)) "failed") $) 169 (|has| |#1| (-517))) (((-3 (-886 |#1|) "failed") $) 123 (|has| |#1| (-976))) (((-3 (-385 (-525)) "failed") $) 95 (-3215 (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525))))))) (-2068 (((-565 $) $) 68) (((-1090) $) 215) (((-525) $) 210 (|has| |#1| (-967 (-525)))) ((|#1| $) 206) (((-385 (-886 |#1|)) $) 168 (|has| |#1| (-517))) (((-886 |#1|) $) 122 (|has| |#1| (-976))) (((-385 (-525)) $) 94 (-3215 (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525))))))) (-2720 (($ $ $) 158 (|has| |#1| (-517)))) (-1307 (((-632 (-525)) (-632 $)) 137 (-2385 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 136 (-2385 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 135 (|has| |#1| (-976))) (((-632 |#1|) (-632 $)) 134 (|has| |#1| (-976)))) (-1645 (((-3 $ "failed") $) 105 (|has| |#1| (-1031)))) (-2699 (($ $ $) 157 (|has| |#1| (-517)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 152 (|has| |#1| (-517)))) (-2069 (((-108) $) 165 (|has| |#1| (-517)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 212 (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 211 (|has| |#1| (-820 (-357))))) (-1759 (($ $) 51) (($ (-592 $)) 50)) (-4131 (((-592 (-110)) $) 43)) (-1885 (((-110) (-110)) 42)) (-2507 (((-108) $) 103 (|has| |#1| (-1031)))) (-2057 (((-108) $) 22 (|has| $ (-967 (-525))))) (-4055 (($ $) 186 (|has| |#1| (-976)))) (-1936 (((-1042 |#1| (-565 $)) $) 187 (|has| |#1| (-976)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 161 (|has| |#1| (-517)))) (-2605 (((-1086 $) (-565 $)) 25 (|has| $ (-976)))) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-2868 (($ (-1 $ $) (-565 $)) 36)) (-1688 (((-3 (-565 $) "failed") $) 46)) (-2226 (($ (-592 $)) 150 (|has| |#1| (-517))) (($ $ $) 149 (|has| |#1| (-517)))) (-1707 (((-1073) $) 9)) (-1304 (((-592 (-565 $)) $) 45)) (-1996 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-3466 (((-3 (-592 $) "failed") $) 192 (|has| |#1| (-1031)))) (-4098 (((-3 (-2 (|:| |val| $) (|:| -1737 (-525))) "failed") $) 183 (|has| |#1| (-976)))) (-4103 (((-3 (-592 $) "failed") $) 190 (|has| |#1| (-25)))) (-2054 (((-3 (-2 (|:| -2059 (-525)) (|:| |var| (-565 $))) "failed") $) 189 (|has| |#1| (-25)))) (-1850 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $) 191 (|has| |#1| (-1031))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-110)) 185 (|has| |#1| (-976))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-1090)) 184 (|has| |#1| (-976)))) (-4084 (((-108) $ (-110)) 40) (((-108) $ (-1090)) 39)) (-3243 (($ $) 107 (-3215 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-2138 (((-713) $) 47)) (-3027 (((-1037) $) 10)) (-3256 (((-108) $) 205)) (-3267 ((|#1| $) 204)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 151 (|has| |#1| (-517)))) (-2262 (($ (-592 $)) 148 (|has| |#1| (-517))) (($ $ $) 147 (|has| |#1| (-517)))) (-1680 (((-108) $ $) 35) (((-108) $ (-1090)) 34)) (-2961 (((-396 $) $) 162 (|has| |#1| (-517)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 159 (|has| |#1| (-517)))) (-2675 (((-3 $ "failed") $ $) 142 (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 153 (|has| |#1| (-517)))) (-3524 (((-108) $) 23 (|has| $ (-967 (-525))))) (-2168 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1090)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1090) (-1 $ (-592 $))) 31) (($ $ (-1090) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1090)) 197 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090))) 196 (|has| |#1| (-567 (-501)))) (($ $) 195 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1090)) 194 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1090)) 193 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $))) 182 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 181 (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ (-592 $))) 180 (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ $)) 179 (|has| |#1| (-976)))) (-2824 (((-713) $) 155 (|has| |#1| (-517)))) (-1496 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 156 (|has| |#1| (-517)))) (-3080 (($ $) 49) (($ $ $) 48)) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) 128 (|has| |#1| (-976))) (($ $ (-1090) (-713)) 127 (|has| |#1| (-976))) (($ $ (-592 (-1090))) 126 (|has| |#1| (-976))) (($ $ (-1090)) 125 (|has| |#1| (-976)))) (-1987 (($ $) 176 (|has| |#1| (-517)))) (-1945 (((-1042 |#1| (-565 $)) $) 177 (|has| |#1| (-517)))) (-2775 (($ $) 24 (|has| $ (-976)))) (-2923 (((-826 (-525)) $) 214 (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) 213 (|has| |#1| (-567 (-826 (-357))))) (($ (-396 $)) 178 (|has| |#1| (-517))) (((-501) $) 97 (|has| |#1| (-567 (-501))))) (-4025 (($ $ $) 111 (|has| |#1| (-450)))) (-1573 (($ $ $) 112 (|has| |#1| (-450)))) (-4044 (((-797) $) 11) (($ (-565 $)) 70) (($ (-1090)) 217) (($ |#1|) 208) (($ (-1042 |#1| (-565 $))) 188 (|has| |#1| (-976))) (($ (-385 |#1|)) 174 (|has| |#1| (-517))) (($ (-886 (-385 |#1|))) 173 (|has| |#1| (-517))) (($ (-385 (-886 (-385 |#1|)))) 172 (|has| |#1| (-517))) (($ (-385 (-886 |#1|))) 170 (|has| |#1| (-517))) (($ $) 141 (|has| |#1| (-517))) (($ (-886 |#1|)) 124 (|has| |#1| (-976))) (($ (-385 (-525))) 96 (-3215 (|has| |#1| (-517)) (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525)))))) (($ (-525)) 93 (-3215 (|has| |#1| (-976)) (|has| |#1| (-967 (-525)))))) (-1279 (((-3 $ "failed") $) 138 (|has| |#1| (-136)))) (-2502 (((-713)) 133 (|has| |#1| (-976)))) (-3882 (($ $) 53) (($ (-592 $)) 52)) (-3712 (((-108) (-110)) 41)) (-3787 (((-108) $ $) 145 (|has| |#1| (-517)))) (-4075 (($ (-1090) $) 202) (($ (-1090) $ $) 201) (($ (-1090) $ $ $) 200) (($ (-1090) $ $ $ $) 199) (($ (-1090) (-592 $)) 198)) (-1594 (($ $ (-525)) 110 (-3215 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 104 (|has| |#1| (-1031))) (($ $ (-855)) 100 (|has| |#1| (-1031)))) (-1436 (($) 115 (|has| |#1| (-25)) CONST)) (-1449 (($) 101 (|has| |#1| (-1031)) CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) 132 (|has| |#1| (-976))) (($ $ (-1090) (-713)) 131 (|has| |#1| (-976))) (($ $ (-592 (-1090))) 130 (|has| |#1| (-976))) (($ $ (-1090)) 129 (|has| |#1| (-976)))) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18)) (-4047 (($ (-1042 |#1| (-565 $)) (-1042 |#1| (-565 $))) 175 (|has| |#1| (-517))) (($ $ $) 108 (-3215 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4033 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-4017 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-525)) 109 (-3215 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 106 (|has| |#1| (-1031))) (($ $ (-855)) 99 (|has| |#1| (-1031)))) (* (($ (-385 (-525)) $) 167 (|has| |#1| (-517))) (($ $ (-385 (-525))) 166 (|has| |#1| (-517))) (($ |#1| $) 140 (|has| |#1| (-160))) (($ $ |#1|) 139 (|has| |#1| (-160))) (($ (-525) $) 121 (|has| |#1| (-21))) (($ (-713) $) 117 (|has| |#1| (-25))) (($ (-855) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1031))))) +(((-408 |#1|) (-131) (-789)) (T -408)) +((-3256 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1090))))) (-4075 (*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4075 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4075 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4075 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4075 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)))) (-2168 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-2168 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1090))) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-2168 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-567 (-501))))) (-2168 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1090)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-567 (-501))))) (-2168 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1090)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-567 (-501))))) (-3466 (*1 *2 *1) (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-1850 (*1 *2 *1) (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1737 (-525)))) (-4 *1 (-408 *3)))) (-4103 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-2054 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -2059 (-525)) (|:| |var| (-565 *1)))) (-4 *1 (-408 *3)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1042 *3 (-565 *1))) (-4 *3 (-976)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1936 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *3 (-789)) (-5 *2 (-1042 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-4055 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-976)))) (-1850 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-976)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1737 (-525)))) (-4 *1 (-408 *4)))) (-1850 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-976)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1737 (-525)))) (-4 *1 (-408 *4)))) (-4098 (*1 *2 *1) (|partial| -12 (-4 *3 (-976)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |val| *1) (|:| -1737 (-525)))) (-4 *1 (-408 *3)))) (-2168 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) (-2168 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) (-2168 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) (-2168 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-1945 (*1 *2 *1) (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1042 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-1987 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517)))) (-4047 (*1 *1 *2 *2) (-12 (-5 *2 (-1042 *3 (-565 *1))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-886 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1315 (*1 *2 *1 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-517)) (-5 *2 (-385 (-1086 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1031))))) +(-13 (-281) (-967 (-1090)) (-818 |t#1|) (-378 |t#1|) (-389 |t#1|) (-10 -8 (-15 -3256 ((-108) $)) (-15 -3267 (|t#1| $)) (-15 -3122 ((-592 (-1090)) $)) (-15 -4075 ($ (-1090) $)) (-15 -4075 ($ (-1090) $ $)) (-15 -4075 ($ (-1090) $ $ $)) (-15 -4075 ($ (-1090) $ $ $ $)) (-15 -4075 ($ (-1090) (-592 $))) (IF (|has| |t#1| (-567 (-501))) (PROGN (-6 (-567 (-501))) (-15 -2168 ($ $ (-1090))) (-15 -2168 ($ $ (-592 (-1090)))) (-15 -2168 ($ $)) (-15 -2168 ($ $ (-110) $ (-1090))) (-15 -2168 ($ $ (-592 (-110)) (-592 $) (-1090)))) |%noBranch|) (IF (|has| |t#1| (-1031)) (PROGN (-6 (-669)) (-15 ** ($ $ (-713))) (-15 -3466 ((-3 (-592 $) "failed") $)) (-15 -1850 ((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4103 ((-3 (-592 $) "failed") $)) (-15 -2054 ((-3 (-2 (|:| -2059 (-525)) (|:| |var| (-565 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-976)) (PROGN (-6 (-976)) (-6 (-967 (-886 |t#1|))) (-6 (-834 (-1090))) (-6 (-355 |t#1|)) (-15 -4044 ($ (-1042 |t#1| (-565 $)))) (-15 -1936 ((-1042 |t#1| (-565 $)) $)) (-15 -4055 ($ $)) (-15 -1850 ((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-110))) (-15 -1850 ((-3 (-2 (|:| |var| (-565 $)) (|:| -1737 (-525))) "failed") $ (-1090))) (-15 -4098 ((-3 (-2 (|:| |val| $) (|:| -1737 (-525))) "failed") $)) (-15 -2168 ($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $)))) (-15 -2168 ($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $))))) (-15 -2168 ($ $ (-1090) (-713) (-1 $ (-592 $)))) (-15 -2168 ($ $ (-1090) (-713) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-341)) (-6 (-967 (-385 (-886 |t#1|)))) (-15 -2923 ($ (-396 $))) (-15 -1945 ((-1042 |t#1| (-565 $)) $)) (-15 -1987 ($ $)) (-15 -4047 ($ (-1042 |t#1| (-565 $)) (-1042 |t#1| (-565 $)))) (-15 -4044 ($ (-385 |t#1|))) (-15 -4044 ($ (-886 (-385 |t#1|)))) (-15 -4044 ($ (-385 (-886 (-385 |t#1|))))) (-15 -1315 ((-385 (-1086 $)) $ (-565 $))) (IF (|has| |t#1| (-967 (-525))) (-6 (-967 (-385 (-525)))) |%noBranch|)) |%noBranch|))) +(((-21) -3215 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-23) -3215 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3215 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-385 (-525))) |has| |#1| (-517)) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-517)) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) |has| |#1| (-517)) ((-126) -3215 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) |has| |#1| (-517)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525)))) ((-223) |has| |#1| (-517)) ((-269) |has| |#1| (-517)) ((-286) |has| |#1| (-517)) ((-288 $) . T) ((-281) . T) ((-341) |has| |#1| (-517)) ((-355 |#1|) |has| |#1| (-976)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) |has| |#1| (-517)) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-517)) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) -3215 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) ((-588 |#1|) |has| |#1| (-976)) ((-660 #0#) |has| |#1| (-517)) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) -3215 (|has| |#1| (-1031)) (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-789) . T) ((-834 (-1090)) |has| |#1| (-976)) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-818 |#1|) . T) ((-854) |has| |#1| (-517)) ((-967 (-385 (-525))) -3215 (|has| |#1| (-967 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) ((-967 (-385 (-886 |#1|))) |has| |#1| (-517)) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 (-565 $)) . T) ((-967 (-886 |#1|)) |has| |#1| (-976)) ((-967 (-1090)) . T) ((-967 |#1|) . T) ((-982 #0#) |has| |#1| (-517)) ((-982 |#1|) |has| |#1| (-160)) ((-982 $) |has| |#1| (-517)) ((-976) -3215 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-983) -3215 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1031) -3215 (|has| |#1| (-1031)) (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1019) . T) ((-1126) . T) ((-1130) |has| |#1| (-517))) +((-1857 ((|#2| |#2| |#2|) 33)) (-1885 (((-110) (-110)) 44)) (-1330 ((|#2| |#2|) 66)) (-3150 ((|#2| |#2|) 69)) (-3156 ((|#2| |#2|) 32)) (-3220 ((|#2| |#2| |#2|) 35)) (-3579 ((|#2| |#2| |#2|) 37)) (-1949 ((|#2| |#2| |#2|) 34)) (-2200 ((|#2| |#2| |#2|) 36)) (-3712 (((-108) (-110)) 42)) (-3653 ((|#2| |#2|) 39)) (-1228 ((|#2| |#2|) 38)) (-2053 ((|#2| |#2|) 27)) (-1406 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1208 ((|#2| |#2| |#2|) 31))) +(((-409 |#1| |#2|) (-10 -7 (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -2053 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -1406 (|#2| |#2| |#2|)) (-15 -1208 (|#2| |#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -1857 (|#2| |#2| |#2|)) (-15 -1949 (|#2| |#2| |#2|)) (-15 -3220 (|#2| |#2| |#2|)) (-15 -2200 (|#2| |#2| |#2|)) (-15 -3579 (|#2| |#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -1330 (|#2| |#2|))) (-13 (-789) (-517)) (-408 |#1|)) (T -409)) +((-1330 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3150 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3579 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2200 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3220 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1949 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1857 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1208 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1406 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2053 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4)) (-4 *4 (-408 *3)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4))))) +(-10 -7 (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -2053 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -1406 (|#2| |#2| |#2|)) (-15 -1208 (|#2| |#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -1857 (|#2| |#2| |#2|)) (-15 -1949 (|#2| |#2| |#2|)) (-15 -3220 (|#2| |#2| |#2|)) (-15 -2200 (|#2| |#2| |#2|)) (-15 -3579 (|#2| |#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -1330 (|#2| |#2|))) +((-2376 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-592 |#2|)) 61))) +(((-410 |#1| |#2|) (-10 -7 (-15 -2376 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -2376 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-517) (-789) (-138)) (-408 |#1|)) (T -410)) +((-2376 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) (|:| |prim| (-1086 *3)))) (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-410 *4 *5))))) +(-10 -7 (-15 -2376 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -2376 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2222 (((-1177)) 19)) (-1950 (((-1086 (-385 (-525))) |#2| (-565 |#2|)) 41) (((-385 (-525)) |#2|) 25))) +(((-411 |#1| |#2|) (-10 -7 (-15 -1950 ((-385 (-525)) |#2|)) (-15 -1950 ((-1086 (-385 (-525))) |#2| (-565 |#2|))) (-15 -2222 ((-1177)))) (-13 (-789) (-517) (-967 (-525))) (-408 |#1|)) (T -411)) +((-2222 (*1 *2) (-12 (-4 *3 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-1177)) (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))) (-1950 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-411 *5 *3)))) (-1950 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4))))) +(-10 -7 (-15 -1950 ((-385 (-525)) |#2|)) (-15 -1950 ((-1086 (-385 (-525))) |#2| (-565 |#2|))) (-15 -2222 ((-1177)))) +((-1942 (((-108) $) 28)) (-3454 (((-108) $) 30)) (-2714 (((-108) $) 31)) (-2014 (((-108) $) 34)) (-3478 (((-108) $) 29)) (-2517 (((-108) $) 33)) (-4044 (((-797) $) 18) (($ (-1073)) 27) (($ (-1090)) 23) (((-1090) $) 22) (((-1023) $) 21)) (-3667 (((-108) $) 32)) (-3899 (((-108) $ $) 15))) +(((-412) (-13 (-566 (-797)) (-10 -8 (-15 -4044 ($ (-1073))) (-15 -4044 ($ (-1090))) (-15 -4044 ((-1090) $)) (-15 -4044 ((-1023) $)) (-15 -1942 ((-108) $)) (-15 -3478 ((-108) $)) (-15 -2714 ((-108) $)) (-15 -2517 ((-108) $)) (-15 -2014 ((-108) $)) (-15 -3667 ((-108) $)) (-15 -3454 ((-108) $)) (-15 -3899 ((-108) $ $))))) (T -412)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-412)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-412)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-412)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-412)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3899 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) +(-13 (-566 (-797)) (-10 -8 (-15 -4044 ($ (-1073))) (-15 -4044 ($ (-1090))) (-15 -4044 ((-1090) $)) (-15 -4044 ((-1023) $)) (-15 -1942 ((-108) $)) (-15 -3478 ((-108) $)) (-15 -2714 ((-108) $)) (-15 -2517 ((-108) $)) (-15 -2014 ((-108) $)) (-15 -3667 ((-108) $)) (-15 -3454 ((-108) $)) (-15 -3899 ((-108) $ $)))) +((-2063 (((-3 (-396 (-1086 (-385 (-525)))) "failed") |#3|) 69)) (-2476 (((-396 |#3|) |#3|) 34)) (-2402 (((-3 (-396 (-1086 (-47))) "failed") |#3|) 29 (|has| |#2| (-967 (-47))))) (-4161 (((-3 (|:| |overq| (-1086 (-385 (-525)))) (|:| |overan| (-1086 (-47))) (|:| -4081 (-108))) |#3|) 37))) +(((-413 |#1| |#2| |#3|) (-10 -7 (-15 -2476 ((-396 |#3|) |#3|)) (-15 -2063 ((-3 (-396 (-1086 (-385 (-525)))) "failed") |#3|)) (-15 -4161 ((-3 (|:| |overq| (-1086 (-385 (-525)))) (|:| |overan| (-1086 (-47))) (|:| -4081 (-108))) |#3|)) (IF (|has| |#2| (-967 (-47))) (-15 -2402 ((-3 (-396 (-1086 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-517) (-789) (-967 (-525))) (-408 |#1|) (-1148 |#2|)) (T -413)) +((-2402 (*1 *2 *3) (|partial| -12 (-4 *5 (-967 (-47))) (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1086 (-47)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-3 (|:| |overq| (-1086 (-385 (-525)))) (|:| |overan| (-1086 (-47))) (|:| -4081 (-108)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))) (-2063 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1086 (-385 (-525))))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))) (-2476 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5))))) +(-10 -7 (-15 -2476 ((-396 |#3|) |#3|)) (-15 -2063 ((-3 (-396 (-1086 (-385 (-525)))) "failed") |#3|)) (-15 -4161 ((-3 (|:| |overq| (-1086 (-385 (-525)))) (|:| |overan| (-1086 (-47))) (|:| -4081 (-108))) |#3|)) (IF (|has| |#2| (-967 (-47))) (-15 -2402 ((-3 (-396 (-1086 (-47))) "failed") |#3|)) |%noBranch|)) +((-4028 (((-108) $ $) NIL)) (-1817 (((-1073) $ (-1073)) NIL)) (-3343 (($ $ (-1073)) NIL)) (-2872 (((-1073) $) NIL)) (-3177 (((-366) (-366) (-366)) 17) (((-366) (-366)) 15)) (-3864 (($ (-366)) NIL) (($ (-366) (-1073)) NIL)) (-3515 (((-366) $) NIL)) (-1707 (((-1073) $) NIL)) (-3036 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2498 (((-1177) (-1073)) 9)) (-2916 (((-1177) (-1073)) 10)) (-1455 (((-1177)) 11)) (-4044 (((-797) $) NIL)) (-3069 (($ $) 35)) (-3899 (((-108) $ $) NIL))) +(((-414) (-13 (-342 (-366) (-1073)) (-10 -7 (-15 -3177 ((-366) (-366) (-366))) (-15 -3177 ((-366) (-366))) (-15 -2498 ((-1177) (-1073))) (-15 -2916 ((-1177) (-1073))) (-15 -1455 ((-1177)))))) (T -414)) +((-3177 (*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-414)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-414)))) (-1455 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-414))))) +(-13 (-342 (-366) (-1073)) (-10 -7 (-15 -3177 ((-366) (-366) (-366))) (-15 -3177 ((-366) (-366))) (-15 -2498 ((-1177) (-1073))) (-15 -2916 ((-1177) (-1073))) (-15 -1455 ((-1177))))) +((-4028 (((-108) $ $) NIL)) (-1646 (((-3 (|:| |fst| (-412)) (|:| -3089 "void")) $) 11)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3613 (($) 32)) (-1367 (($) 38)) (-4009 (($) 34)) (-3016 (($) 36)) (-2157 (($) 33)) (-1834 (($) 35)) (-2848 (($) 37)) (-2418 (((-108) $) 8)) (-2551 (((-592 (-886 (-525))) $) 19)) (-4059 (($ (-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-592 (-1090)) (-108)) 27) (($ (-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-592 (-886 (-525))) (-108)) 28)) (-4044 (((-797) $) 23) (($ (-412)) 29)) (-3899 (((-108) $ $) NIL))) +(((-415) (-13 (-1019) (-10 -8 (-15 -4044 ((-797) $)) (-15 -4044 ($ (-412))) (-15 -1646 ((-3 (|:| |fst| (-412)) (|:| -3089 "void")) $)) (-15 -2551 ((-592 (-886 (-525))) $)) (-15 -2418 ((-108) $)) (-15 -4059 ($ (-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-592 (-1090)) (-108))) (-15 -4059 ($ (-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-592 (-886 (-525))) (-108))) (-15 -3613 ($)) (-15 -2157 ($)) (-15 -4009 ($)) (-15 -1367 ($)) (-15 -1834 ($)) (-15 -3016 ($)) (-15 -2848 ($))))) (T -415)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-415)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *1 (-415)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-592 (-886 (-525)))) (-5 *1 (-415)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))) (-4059 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *3 (-592 (-1090))) (-5 *4 (-108)) (-5 *1 (-415)))) (-4059 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-108)) (-5 *1 (-415)))) (-3613 (*1 *1) (-5 *1 (-415))) (-2157 (*1 *1) (-5 *1 (-415))) (-4009 (*1 *1) (-5 *1 (-415))) (-1367 (*1 *1) (-5 *1 (-415))) (-1834 (*1 *1) (-5 *1 (-415))) (-3016 (*1 *1) (-5 *1 (-415))) (-2848 (*1 *1) (-5 *1 (-415)))) +(-13 (-1019) (-10 -8 (-15 -4044 ((-797) $)) (-15 -4044 ($ (-412))) (-15 -1646 ((-3 (|:| |fst| (-412)) (|:| -3089 "void")) $)) (-15 -2551 ((-592 (-886 (-525))) $)) (-15 -2418 ((-108) $)) (-15 -4059 ($ (-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-592 (-1090)) (-108))) (-15 -4059 ($ (-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-592 (-886 (-525))) (-108))) (-15 -3613 ($)) (-15 -2157 ($)) (-15 -4009 ($)) (-15 -1367 ($)) (-15 -1834 ($)) (-15 -3016 ($)) (-15 -2848 ($)))) +((-4028 (((-108) $ $) NIL)) (-3515 (((-1090) $) 8)) (-1707 (((-1073) $) 16)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 13))) +(((-416 |#1|) (-13 (-1019) (-10 -8 (-15 -3515 ((-1090) $)))) (-1090)) (T -416)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-416 *3)) (-14 *3 *2)))) +(-13 (-1019) (-10 -8 (-15 -3515 ((-1090) $)))) +((-3153 (((-1177) $) 7)) (-4044 (((-797) $) 8) (($ (-1172 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 11))) (((-417) (-131)) (T -417)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-640))) (-4 *1 (-417)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-417)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) (-4 *1 (-417))))) -(-13 (-373) (-10 -8 (-15 -2686 ($ (-1171 (-640)))) (-15 -2686 ($ (-591 (-308)))) (-15 -2686 ($ (-308))) (-15 -2686 ($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308)))))))) -(((-565 (-796)) . T) ((-373) . T) ((-1125) . T)) -((-4174 (((-3 $ "failed") (-1171 (-294 (-357)))) 21) (((-3 $ "failed") (-1171 (-294 (-525)))) 19) (((-3 $ "failed") (-1171 (-885 (-357)))) 17) (((-3 $ "failed") (-1171 (-885 (-525)))) 15) (((-3 $ "failed") (-1171 (-385 (-885 (-357))))) 13) (((-3 $ "failed") (-1171 (-385 (-885 (-525))))) 11)) (-3341 (($ (-1171 (-294 (-357)))) 22) (($ (-1171 (-294 (-525)))) 20) (($ (-1171 (-885 (-357)))) 18) (($ (-1171 (-885 (-525)))) 16) (($ (-1171 (-385 (-885 (-357))))) 14) (($ (-1171 (-385 (-885 (-525))))) 12)) (-2163 (((-1176) $) 7)) (-2686 (((-796) $) 8) (($ (-591 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) 23))) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-641))) (-4 *1 (-417)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-417)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) (-4 *1 (-417))))) +(-13 (-373) (-10 -8 (-15 -4044 ($ (-1172 (-641)))) (-15 -4044 ($ (-592 (-308)))) (-15 -4044 ($ (-308))) (-15 -4044 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308)))))))) +(((-566 (-797)) . T) ((-373) . T) ((-1126) . T)) +((-2769 (((-3 $ "failed") (-1172 (-294 (-357)))) 21) (((-3 $ "failed") (-1172 (-294 (-525)))) 19) (((-3 $ "failed") (-1172 (-886 (-357)))) 17) (((-3 $ "failed") (-1172 (-886 (-525)))) 15) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 13) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 11)) (-2068 (($ (-1172 (-294 (-357)))) 22) (($ (-1172 (-294 (-525)))) 20) (($ (-1172 (-886 (-357)))) 18) (($ (-1172 (-886 (-525)))) 16) (($ (-1172 (-385 (-886 (-357))))) 14) (($ (-1172 (-385 (-886 (-525))))) 12)) (-3153 (((-1177) $) 7)) (-4044 (((-797) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) 23))) (((-418) (-131)) (T -418)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-418)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) (-4 *1 (-418)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1171 (-294 (-357)))) (-4 *1 (-418)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-1171 (-294 (-357)))) (-4 *1 (-418)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1171 (-294 (-525)))) (-4 *1 (-418)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-1171 (-294 (-525)))) (-4 *1 (-418)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1171 (-885 (-357)))) (-4 *1 (-418)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-1171 (-885 (-357)))) (-4 *1 (-418)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1171 (-885 (-525)))) (-4 *1 (-418)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-1171 (-885 (-525)))) (-4 *1 (-418)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1171 (-385 (-885 (-357))))) (-4 *1 (-418)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-1171 (-385 (-885 (-357))))) (-4 *1 (-418)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1171 (-385 (-885 (-525))))) (-4 *1 (-418)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-1171 (-385 (-885 (-525))))) (-4 *1 (-418))))) -(-13 (-373) (-10 -8 (-15 -2686 ($ (-591 (-308)))) (-15 -2686 ($ (-308))) (-15 -2686 ($ (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308)))))) (-15 -3341 ($ (-1171 (-294 (-357))))) (-15 -4174 ((-3 $ "failed") (-1171 (-294 (-357))))) (-15 -3341 ($ (-1171 (-294 (-525))))) (-15 -4174 ((-3 $ "failed") (-1171 (-294 (-525))))) (-15 -3341 ($ (-1171 (-885 (-357))))) (-15 -4174 ((-3 $ "failed") (-1171 (-885 (-357))))) (-15 -3341 ($ (-1171 (-885 (-525))))) (-15 -4174 ((-3 $ "failed") (-1171 (-885 (-525))))) (-15 -3341 ($ (-1171 (-385 (-885 (-357)))))) (-15 -4174 ((-3 $ "failed") (-1171 (-385 (-885 (-357)))))) (-15 -3341 ($ (-1171 (-385 (-885 (-525)))))) (-15 -4174 ((-3 $ "failed") (-1171 (-385 (-885 (-525)))))))) -(((-565 (-796)) . T) ((-373) . T) ((-1125) . T)) -((-2403 (((-108)) 17)) (-2759 (((-108) (-108)) 18)) (-2112 (((-108)) 13)) (-3025 (((-108) (-108)) 14)) (-1508 (((-108)) 15)) (-3155 (((-108) (-108)) 16)) (-4157 (((-854) (-854)) 21) (((-854)) 20)) (-3702 (((-712) (-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525))))) 42)) (-2427 (((-854) (-854)) 23) (((-854)) 22)) (-3111 (((-2 (|:| -3872 (-525)) (|:| -1908 (-591 |#1|))) |#1|) 62)) (-2641 (((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525))))))) 126)) (-3960 (((-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))) |#1| (-108)) 152)) (-3033 (((-396 |#1|) |#1| (-712) (-712)) 165) (((-396 |#1|) |#1| (-591 (-712)) (-712)) 162) (((-396 |#1|) |#1| (-591 (-712))) 164) (((-396 |#1|) |#1| (-712)) 163) (((-396 |#1|) |#1|) 161)) (-2078 (((-3 |#1| "failed") (-854) |#1| (-591 (-712)) (-712) (-108)) 167) (((-3 |#1| "failed") (-854) |#1| (-591 (-712)) (-712)) 168) (((-3 |#1| "failed") (-854) |#1| (-591 (-712))) 170) (((-3 |#1| "failed") (-854) |#1| (-712)) 169) (((-3 |#1| "failed") (-854) |#1|) 171)) (-2542 (((-396 |#1|) |#1| (-712) (-712)) 160) (((-396 |#1|) |#1| (-591 (-712)) (-712)) 156) (((-396 |#1|) |#1| (-591 (-712))) 158) (((-396 |#1|) |#1| (-712)) 157) (((-396 |#1|) |#1|) 155)) (-1967 (((-108) |#1|) 37)) (-2385 (((-679 (-712)) (-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525))))) 67)) (-2315 (((-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))) |#1| (-108) (-1020 (-712)) (-712)) 154))) -(((-419 |#1|) (-10 -7 (-15 -2641 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))))) (-15 -2385 ((-679 (-712)) (-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))))) (-15 -2427 ((-854))) (-15 -2427 ((-854) (-854))) (-15 -4157 ((-854))) (-15 -4157 ((-854) (-854))) (-15 -3702 ((-712) (-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))))) (-15 -3111 ((-2 (|:| -3872 (-525)) (|:| -1908 (-591 |#1|))) |#1|)) (-15 -2403 ((-108))) (-15 -2759 ((-108) (-108))) (-15 -2112 ((-108))) (-15 -3025 ((-108) (-108))) (-15 -1967 ((-108) |#1|)) (-15 -1508 ((-108))) (-15 -3155 ((-108) (-108))) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -2542 ((-396 |#1|) |#1| (-712))) (-15 -2542 ((-396 |#1|) |#1| (-591 (-712)))) (-15 -2542 ((-396 |#1|) |#1| (-591 (-712)) (-712))) (-15 -2542 ((-396 |#1|) |#1| (-712) (-712))) (-15 -3033 ((-396 |#1|) |#1|)) (-15 -3033 ((-396 |#1|) |#1| (-712))) (-15 -3033 ((-396 |#1|) |#1| (-591 (-712)))) (-15 -3033 ((-396 |#1|) |#1| (-591 (-712)) (-712))) (-15 -3033 ((-396 |#1|) |#1| (-712) (-712))) (-15 -2078 ((-3 |#1| "failed") (-854) |#1|)) (-15 -2078 ((-3 |#1| "failed") (-854) |#1| (-712))) (-15 -2078 ((-3 |#1| "failed") (-854) |#1| (-591 (-712)))) (-15 -2078 ((-3 |#1| "failed") (-854) |#1| (-591 (-712)) (-712))) (-15 -2078 ((-3 |#1| "failed") (-854) |#1| (-591 (-712)) (-712) (-108))) (-15 -3960 ((-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))) |#1| (-108))) (-15 -2315 ((-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))) |#1| (-108) (-1020 (-712)) (-712)))) (-1147 (-525))) (T -419)) -((-2315 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1020 (-712))) (-5 *6 (-712)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| *3) (|:| -3630 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-3960 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| *3) (|:| -3630 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2078 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-854)) (-5 *4 (-591 (-712))) (-5 *5 (-712)) (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1147 (-525))))) (-2078 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-854)) (-5 *4 (-591 (-712))) (-5 *5 (-712)) (-5 *1 (-419 *2)) (-4 *2 (-1147 (-525))))) (-2078 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-854)) (-5 *4 (-591 (-712))) (-5 *1 (-419 *2)) (-4 *2 (-1147 (-525))))) (-2078 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-854)) (-5 *4 (-712)) (-5 *1 (-419 *2)) (-4 *2 (-1147 (-525))))) (-2078 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-854)) (-5 *1 (-419 *2)) (-4 *2 (-1147 (-525))))) (-3033 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-3033 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-591 (-712))) (-5 *5 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-3033 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-712))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-3033 (*1 *2 *3 *4) (-12 (-5 *4 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-3033 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2542 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2542 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-591 (-712))) (-5 *5 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-712))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-1508 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-1967 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2112 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2759 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2403 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-3111 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3872 (-525)) (|:| -1908 (-591 *3)))) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| -2542 *4) (|:| -2743 (-525))))) (-4 *4 (-1147 (-525))) (-5 *2 (-712)) (-5 *1 (-419 *4)))) (-4157 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-4157 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2427 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2427 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| -2542 *4) (|:| -2743 (-525))))) (-4 *4 (-1147 (-525))) (-5 *2 (-679 (-712))) (-5 *1 (-419 *4)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| *4) (|:| -3630 (-525))))))) (-4 *4 (-1147 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4))))) -(-10 -7 (-15 -2641 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))))) (-15 -2385 ((-679 (-712)) (-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))))) (-15 -2427 ((-854))) (-15 -2427 ((-854) (-854))) (-15 -4157 ((-854))) (-15 -4157 ((-854) (-854))) (-15 -3702 ((-712) (-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))))) (-15 -3111 ((-2 (|:| -3872 (-525)) (|:| -1908 (-591 |#1|))) |#1|)) (-15 -2403 ((-108))) (-15 -2759 ((-108) (-108))) (-15 -2112 ((-108))) (-15 -3025 ((-108) (-108))) (-15 -1967 ((-108) |#1|)) (-15 -1508 ((-108))) (-15 -3155 ((-108) (-108))) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -2542 ((-396 |#1|) |#1| (-712))) (-15 -2542 ((-396 |#1|) |#1| (-591 (-712)))) (-15 -2542 ((-396 |#1|) |#1| (-591 (-712)) (-712))) (-15 -2542 ((-396 |#1|) |#1| (-712) (-712))) (-15 -3033 ((-396 |#1|) |#1|)) (-15 -3033 ((-396 |#1|) |#1| (-712))) (-15 -3033 ((-396 |#1|) |#1| (-591 (-712)))) (-15 -3033 ((-396 |#1|) |#1| (-591 (-712)) (-712))) (-15 -3033 ((-396 |#1|) |#1| (-712) (-712))) (-15 -2078 ((-3 |#1| "failed") (-854) |#1|)) (-15 -2078 ((-3 |#1| "failed") (-854) |#1| (-712))) (-15 -2078 ((-3 |#1| "failed") (-854) |#1| (-591 (-712)))) (-15 -2078 ((-3 |#1| "failed") (-854) |#1| (-591 (-712)) (-712))) (-15 -2078 ((-3 |#1| "failed") (-854) |#1| (-591 (-712)) (-712) (-108))) (-15 -3960 ((-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))) |#1| (-108))) (-15 -2315 ((-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))) |#1| (-108) (-1020 (-712)) (-712)))) -((-2482 (((-525) |#2|) 48) (((-525) |#2| (-712)) 47)) (-3566 (((-525) |#2|) 55)) (-2634 ((|#3| |#2|) 25)) (-1525 ((|#3| |#2| (-854)) 14)) (-2445 ((|#3| |#2|) 15)) (-2319 ((|#3| |#2|) 9)) (-3457 ((|#3| |#2|) 10)) (-1692 ((|#3| |#2| (-854)) 62) ((|#3| |#2|) 30)) (-1363 (((-525) |#2|) 57))) -(((-420 |#1| |#2| |#3|) (-10 -7 (-15 -1363 ((-525) |#2|)) (-15 -1692 (|#3| |#2|)) (-15 -1692 (|#3| |#2| (-854))) (-15 -3566 ((-525) |#2|)) (-15 -2482 ((-525) |#2| (-712))) (-15 -2482 ((-525) |#2|)) (-15 -1525 (|#3| |#2| (-854))) (-15 -2634 (|#3| |#2|)) (-15 -2319 (|#3| |#2|)) (-15 -3457 (|#3| |#2|)) (-15 -2445 (|#3| |#2|))) (-975) (-1147 |#1|) (-13 (-382) (-966 |#1|) (-341) (-1111) (-263))) (T -420)) -((-2445 (*1 *2 *3) (-12 (-4 *4 (-975)) (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4)))) (-3457 (*1 *2 *3) (-12 (-4 *4 (-975)) (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4)))) (-2319 (*1 *2 *3) (-12 (-4 *4 (-975)) (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4)))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-975)) (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *4 (-854)) (-4 *5 (-975)) (-4 *2 (-13 (-382) (-966 *5) (-341) (-1111) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1147 *5)))) (-2482 (*1 *2 *3) (-12 (-4 *4 (-975)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1147 *4)) (-4 *5 (-13 (-382) (-966 *4) (-341) (-1111) (-263))))) (-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-712)) (-4 *5 (-975)) (-5 *2 (-525)) (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1147 *5)) (-4 *6 (-13 (-382) (-966 *5) (-341) (-1111) (-263))))) (-3566 (*1 *2 *3) (-12 (-4 *4 (-975)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1147 *4)) (-4 *5 (-13 (-382) (-966 *4) (-341) (-1111) (-263))))) (-1692 (*1 *2 *3 *4) (-12 (-5 *4 (-854)) (-4 *5 (-975)) (-4 *2 (-13 (-382) (-966 *5) (-341) (-1111) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1147 *5)))) (-1692 (*1 *2 *3) (-12 (-4 *4 (-975)) (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4)))) (-1363 (*1 *2 *3) (-12 (-4 *4 (-975)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1147 *4)) (-4 *5 (-13 (-382) (-966 *4) (-341) (-1111) (-263)))))) -(-10 -7 (-15 -1363 ((-525) |#2|)) (-15 -1692 (|#3| |#2|)) (-15 -1692 (|#3| |#2| (-854))) (-15 -3566 ((-525) |#2|)) (-15 -2482 ((-525) |#2| (-712))) (-15 -2482 ((-525) |#2|)) (-15 -1525 (|#3| |#2| (-854))) (-15 -2634 (|#3| |#2|)) (-15 -2319 (|#3| |#2|)) (-15 -3457 (|#3| |#2|)) (-15 -2445 (|#3| |#2|))) -((-1273 ((|#2| (-1171 |#1|)) 36)) (-3138 ((|#2| |#2| |#1|) 49)) (-1430 ((|#2| |#2| |#1|) 41)) (-2747 ((|#2| |#2|) 38)) (-4160 (((-108) |#2|) 30)) (-1284 (((-591 |#2|) (-854) (-396 |#2|)) 17)) (-2078 ((|#2| (-854) (-396 |#2|)) 21)) (-2385 (((-679 (-712)) (-396 |#2|)) 25))) -(((-421 |#1| |#2|) (-10 -7 (-15 -4160 ((-108) |#2|)) (-15 -1273 (|#2| (-1171 |#1|))) (-15 -2747 (|#2| |#2|)) (-15 -1430 (|#2| |#2| |#1|)) (-15 -3138 (|#2| |#2| |#1|)) (-15 -2385 ((-679 (-712)) (-396 |#2|))) (-15 -2078 (|#2| (-854) (-396 |#2|))) (-15 -1284 ((-591 |#2|) (-854) (-396 |#2|)))) (-975) (-1147 |#1|)) (T -421)) -((-1284 (*1 *2 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-396 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-975)) (-5 *2 (-591 *6)) (-5 *1 (-421 *5 *6)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-396 *2)) (-4 *2 (-1147 *5)) (-5 *1 (-421 *5 *2)) (-4 *5 (-975)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-396 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-975)) (-5 *2 (-679 (-712))) (-5 *1 (-421 *4 *5)))) (-3138 (*1 *2 *2 *3) (-12 (-4 *3 (-975)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1147 *3)))) (-1430 (*1 *2 *2 *3) (-12 (-4 *3 (-975)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1147 *3)))) (-2747 (*1 *2 *2) (-12 (-4 *3 (-975)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1147 *3)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-975)) (-4 *2 (-1147 *4)) (-5 *1 (-421 *4 *2)))) (-4160 (*1 *2 *3) (-12 (-4 *4 (-975)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -4160 ((-108) |#2|)) (-15 -1273 (|#2| (-1171 |#1|))) (-15 -2747 (|#2| |#2|)) (-15 -1430 (|#2| |#2| |#1|)) (-15 -3138 (|#2| |#2| |#1|)) (-15 -2385 ((-679 (-712)) (-396 |#2|))) (-15 -2078 (|#2| (-854) (-396 |#2|))) (-15 -1284 ((-591 |#2|) (-854) (-396 |#2|)))) -((-3238 (((-712)) 41)) (-3085 (((-712)) 23 (|has| |#1| (-382))) (((-712) (-712)) 22 (|has| |#1| (-382)))) (-1741 (((-525) |#1|) 18 (|has| |#1| (-382)))) (-3628 (((-525) |#1|) 20 (|has| |#1| (-382)))) (-3303 (((-712)) 40) (((-712) (-712)) 39)) (-2292 ((|#1| (-712) (-525)) 29)) (-3251 (((-1176)) 43))) -(((-422 |#1|) (-10 -7 (-15 -2292 (|#1| (-712) (-525))) (-15 -3303 ((-712) (-712))) (-15 -3303 ((-712))) (-15 -3238 ((-712))) (-15 -3251 ((-1176))) (IF (|has| |#1| (-382)) (PROGN (-15 -3628 ((-525) |#1|)) (-15 -1741 ((-525) |#1|)) (-15 -3085 ((-712) (-712))) (-15 -3085 ((-712)))) |%noBranch|)) (-975)) (T -422)) -((-3085 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-975)))) (-3085 (*1 *2 *2) (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-975)))) (-1741 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-975)))) (-3628 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-975)))) (-3251 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-422 *3)) (-4 *3 (-975)))) (-3238 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-975)))) (-3303 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-975)))) (-3303 (*1 *2 *2) (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-975)))) (-2292 (*1 *2 *3 *4) (-12 (-5 *3 (-712)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-975))))) -(-10 -7 (-15 -2292 (|#1| (-712) (-525))) (-15 -3303 ((-712) (-712))) (-15 -3303 ((-712))) (-15 -3238 ((-712))) (-15 -3251 ((-1176))) (IF (|has| |#1| (-382)) (PROGN (-15 -3628 ((-525) |#1|)) (-15 -1741 ((-525) |#1|)) (-15 -3085 ((-712) (-712))) (-15 -3085 ((-712)))) |%noBranch|)) -((-3471 (((-591 (-525)) (-525)) 61)) (-2393 (((-108) (-157 (-525))) 65)) (-2542 (((-396 (-157 (-525))) (-157 (-525))) 60))) -(((-423) (-10 -7 (-15 -2542 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -3471 ((-591 (-525)) (-525))) (-15 -2393 ((-108) (-157 (-525)))))) (T -423)) -((-2393 (*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423)) (-5 *3 (-157 (-525)))))) -(-10 -7 (-15 -2542 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -3471 ((-591 (-525)) (-525))) (-15 -2393 ((-108) (-157 (-525))))) -((-3569 ((|#4| |#4| (-591 |#4|)) 61)) (-3735 (((-591 |#4|) (-591 |#4|) (-1072) (-1072)) 17) (((-591 |#4|) (-591 |#4|) (-1072)) 16) (((-591 |#4|) (-591 |#4|)) 11))) -(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3569 (|#4| |#4| (-591 |#4|))) (-15 -3735 ((-591 |#4|) (-591 |#4|))) (-15 -3735 ((-591 |#4|) (-591 |#4|) (-1072))) (-15 -3735 ((-591 |#4|) (-591 |#4|) (-1072) (-1072)))) (-286) (-734) (-788) (-882 |#1| |#2| |#3|)) (T -424)) -((-3735 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-591 *7)) (-5 *3 (-1072)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3735 (*1 *2 *2 *3) (-12 (-5 *2 (-591 *7)) (-5 *3 (-1072)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-286)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-424 *3 *4 *5 *6)))) (-3569 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-424 *4 *5 *6 *2))))) -(-10 -7 (-15 -3569 (|#4| |#4| (-591 |#4|))) (-15 -3735 ((-591 |#4|) (-591 |#4|))) (-15 -3735 ((-591 |#4|) (-591 |#4|) (-1072))) (-15 -3735 ((-591 |#4|) (-591 |#4|) (-1072) (-1072)))) -((-3404 (((-591 (-591 |#4|)) (-591 |#4|) (-108)) 73) (((-591 (-591 |#4|)) (-591 |#4|)) 72) (((-591 (-591 |#4|)) (-591 |#4|) (-591 |#4|) (-108)) 66) (((-591 (-591 |#4|)) (-591 |#4|) (-591 |#4|)) 67)) (-1474 (((-591 (-591 |#4|)) (-591 |#4|) (-108)) 42) (((-591 (-591 |#4|)) (-591 |#4|)) 63))) -(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1474 ((-591 (-591 |#4|)) (-591 |#4|))) (-15 -1474 ((-591 (-591 |#4|)) (-591 |#4|) (-108))) (-15 -3404 ((-591 (-591 |#4|)) (-591 |#4|) (-591 |#4|))) (-15 -3404 ((-591 (-591 |#4|)) (-591 |#4|) (-591 |#4|) (-108))) (-15 -3404 ((-591 (-591 |#4|)) (-591 |#4|))) (-15 -3404 ((-591 (-591 |#4|)) (-591 |#4|) (-108)))) (-13 (-286) (-138)) (-734) (-788) (-882 |#1| |#2| |#3|)) (T -425)) -((-3404 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-882 *5 *6 *7)) (-5 *2 (-591 (-591 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-591 *8)))) (-3404 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-591 (-591 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) (-3404 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-882 *5 *6 *7)) (-5 *2 (-591 (-591 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-591 *8)))) (-3404 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-591 (-591 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) (-1474 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-882 *5 *6 *7)) (-5 *2 (-591 (-591 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-591 *8)))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-591 (-591 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-591 *7))))) -(-10 -7 (-15 -1474 ((-591 (-591 |#4|)) (-591 |#4|))) (-15 -1474 ((-591 (-591 |#4|)) (-591 |#4|) (-108))) (-15 -3404 ((-591 (-591 |#4|)) (-591 |#4|) (-591 |#4|))) (-15 -3404 ((-591 (-591 |#4|)) (-591 |#4|) (-591 |#4|) (-108))) (-15 -3404 ((-591 (-591 |#4|)) (-591 |#4|))) (-15 -3404 ((-591 (-591 |#4|)) (-591 |#4|) (-108)))) -((-1459 (((-712) |#4|) 12)) (-4191 (((-591 (-2 (|:| |totdeg| (-712)) (|:| -2217 |#4|))) |#4| (-712) (-591 (-2 (|:| |totdeg| (-712)) (|:| -2217 |#4|)))) 31)) (-2577 (((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2454 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-4227 ((|#4| |#4| (-591 |#4|)) 40)) (-1334 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-591 |#4|)) 70)) (-4108 (((-1176) |#4|) 42)) (-2386 (((-1176) (-591 |#4|)) 51)) (-4143 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525)) 48)) (-3972 (((-1176) (-525)) 79)) (-3600 (((-591 |#4|) (-591 |#4|)) 77)) (-1456 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-712)) (|:| -2217 |#4|)) |#4| (-712)) 25)) (-2365 (((-525) |#4|) 78)) (-2693 ((|#4| |#4|) 29)) (-1976 (((-591 |#4|) (-591 |#4|) (-525) (-525)) 56)) (-1423 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525)) 89)) (-3870 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3493 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2396 (((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2550 (((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3895 (((-108) |#2| |#2|) 57)) (-3582 (((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3707 (((-108) |#2| |#2| |#2| |#2|) 60)) (-3041 ((|#4| |#4| (-591 |#4|)) 71))) -(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3041 (|#4| |#4| (-591 |#4|))) (-15 -4227 (|#4| |#4| (-591 |#4|))) (-15 -1976 ((-591 |#4|) (-591 |#4|) (-525) (-525))) (-15 -3493 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3895 ((-108) |#2| |#2|)) (-15 -3707 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3582 ((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2550 ((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2396 ((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1334 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-591 |#4|))) (-15 -2693 (|#4| |#4|)) (-15 -4191 ((-591 (-2 (|:| |totdeg| (-712)) (|:| -2217 |#4|))) |#4| (-712) (-591 (-2 (|:| |totdeg| (-712)) (|:| -2217 |#4|))))) (-15 -2454 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2577 ((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3600 ((-591 |#4|) (-591 |#4|))) (-15 -2365 ((-525) |#4|)) (-15 -4108 ((-1176) |#4|)) (-15 -4143 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -1423 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -2386 ((-1176) (-591 |#4|))) (-15 -3972 ((-1176) (-525))) (-15 -3870 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1456 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-712)) (|:| -2217 |#4|)) |#4| (-712))) (-15 -1459 ((-712) |#4|))) (-429) (-734) (-788) (-882 |#1| |#2| |#3|)) (T -426)) -((-1459 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-712)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6)))) (-1456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-712)) (|:| -2217 *4))) (-5 *5 (-712)) (-4 *4 (-882 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-426 *6 *7 *8 *4)))) (-3870 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-712)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-734)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1176)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-882 *4 *5 *6)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1176)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1423 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-712)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-734)) (-4 *4 (-882 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-788)) (-5 *1 (-426 *5 *6 *7 *4)))) (-4143 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-712)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-734)) (-4 *4 (-882 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-788)) (-5 *1 (-426 *5 *6 *7 *4)))) (-4108 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1176)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6)))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-525)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6)))) (-3600 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2577 (*1 *2 *2 *2) (-12 (-5 *2 (-591 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-712)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-734)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-788)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-712)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-734)) (-4 *2 (-882 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2)) (-4 *4 (-429)) (-4 *6 (-788)))) (-4191 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-591 (-2 (|:| |totdeg| (-712)) (|:| -2217 *3)))) (-5 *4 (-712)) (-4 *3 (-882 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-426 *5 *6 *7 *3)))) (-2693 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-882 *3 *4 *5)))) (-1334 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-882 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-426 *5 *6 *7 *3)))) (-2396 (*1 *2 *3 *2) (-12 (-5 *2 (-591 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-712)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-734)) (-4 *6 (-882 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-788)) (-5 *1 (-426 *4 *3 *5 *6)))) (-2550 (*1 *2 *2) (-12 (-5 *2 (-591 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-712)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-734)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-788)) (-5 *1 (-426 *3 *4 *5 *6)))) (-3582 (*1 *2 *3 *2) (-12 (-5 *2 (-591 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-712)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-734)) (-4 *3 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-788)) (-5 *1 (-426 *4 *5 *6 *3)))) (-3707 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-882 *4 *3 *5)))) (-3895 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-882 *4 *3 *5)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-712)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-734)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1976 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-591 *7)) (-5 *3 (-525)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-426 *4 *5 *6 *7)))) (-4227 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-426 *4 *5 *6 *2)))) (-3041 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-426 *4 *5 *6 *2))))) -(-10 -7 (-15 -3041 (|#4| |#4| (-591 |#4|))) (-15 -4227 (|#4| |#4| (-591 |#4|))) (-15 -1976 ((-591 |#4|) (-591 |#4|) (-525) (-525))) (-15 -3493 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3895 ((-108) |#2| |#2|)) (-15 -3707 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3582 ((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2550 ((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2396 ((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1334 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-591 |#4|))) (-15 -2693 (|#4| |#4|)) (-15 -4191 ((-591 (-2 (|:| |totdeg| (-712)) (|:| -2217 |#4|))) |#4| (-712) (-591 (-2 (|:| |totdeg| (-712)) (|:| -2217 |#4|))))) (-15 -2454 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2577 ((-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-591 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3600 ((-591 |#4|) (-591 |#4|))) (-15 -2365 ((-525) |#4|)) (-15 -4108 ((-1176) |#4|)) (-15 -4143 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -1423 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -2386 ((-1176) (-591 |#4|))) (-15 -3972 ((-1176) (-525))) (-15 -3870 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1456 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-712)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-712)) (|:| -2217 |#4|)) |#4| (-712))) (-15 -1459 ((-712) |#4|))) -((-3853 ((|#4| |#4| (-591 |#4|)) 22 (|has| |#1| (-341)))) (-2155 (((-591 |#4|) (-591 |#4|) (-1072) (-1072)) 41) (((-591 |#4|) (-591 |#4|) (-1072)) 40) (((-591 |#4|) (-591 |#4|)) 35))) -(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2155 ((-591 |#4|) (-591 |#4|))) (-15 -2155 ((-591 |#4|) (-591 |#4|) (-1072))) (-15 -2155 ((-591 |#4|) (-591 |#4|) (-1072) (-1072))) (IF (|has| |#1| (-341)) (-15 -3853 (|#4| |#4| (-591 |#4|))) |%noBranch|)) (-429) (-734) (-788) (-882 |#1| |#2| |#3|)) (T -427)) -((-3853 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *4 *5 *6)) (-4 *4 (-341)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-427 *4 *5 *6 *2)))) (-2155 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-591 *7)) (-5 *3 (-1072)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2155 (*1 *2 *2 *3) (-12 (-5 *2 (-591 *7)) (-5 *3 (-1072)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-427 *3 *4 *5 *6))))) -(-10 -7 (-15 -2155 ((-591 |#4|) (-591 |#4|))) (-15 -2155 ((-591 |#4|) (-591 |#4|) (-1072))) (-15 -2155 ((-591 |#4|) (-591 |#4|) (-1072) (-1072))) (IF (|has| |#1| (-341)) (-15 -3853 (|#4| |#4| (-591 |#4|))) |%noBranch|)) -((-2081 (($ $ $) 14) (($ (-591 $)) 21)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 41)) (-2124 (($ $ $) NIL) (($ (-591 $)) 22))) -(((-428 |#1|) (-10 -8 (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -2081 (|#1| (-591 |#1|))) (-15 -2081 (|#1| |#1| |#1|)) (-15 -2124 (|#1| (-591 |#1|))) (-15 -2124 (|#1| |#1| |#1|))) (-429)) (T -428)) -NIL -(-10 -8 (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -2081 (|#1| (-591 |#1|))) (-15 -2081 (|#1| |#1| |#1|)) (-15 -2124 (|#1| (-591 |#1|))) (-15 -2124 (|#1| |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-3210 (((-3 $ "failed") $ $) 42)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-418)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) (-4 *1 (-418)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-1172 (-294 (-357)))) (-4 *1 (-418)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-294 (-357)))) (-4 *1 (-418)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-1172 (-294 (-525)))) (-4 *1 (-418)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-294 (-525)))) (-4 *1 (-418)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-1172 (-886 (-357)))) (-4 *1 (-418)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-886 (-357)))) (-4 *1 (-418)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-1172 (-886 (-525)))) (-4 *1 (-418)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-886 (-525)))) (-4 *1 (-418)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 (-357))))) (-4 *1 (-418)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-385 (-886 (-357))))) (-4 *1 (-418)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 (-525))))) (-4 *1 (-418)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-385 (-886 (-525))))) (-4 *1 (-418))))) +(-13 (-373) (-10 -8 (-15 -4044 ($ (-592 (-308)))) (-15 -4044 ($ (-308))) (-15 -4044 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308)))))) (-15 -2068 ($ (-1172 (-294 (-357))))) (-15 -2769 ((-3 $ "failed") (-1172 (-294 (-357))))) (-15 -2068 ($ (-1172 (-294 (-525))))) (-15 -2769 ((-3 $ "failed") (-1172 (-294 (-525))))) (-15 -2068 ($ (-1172 (-886 (-357))))) (-15 -2769 ((-3 $ "failed") (-1172 (-886 (-357))))) (-15 -2068 ($ (-1172 (-886 (-525))))) (-15 -2769 ((-3 $ "failed") (-1172 (-886 (-525))))) (-15 -2068 ($ (-1172 (-385 (-886 (-357)))))) (-15 -2769 ((-3 $ "failed") (-1172 (-385 (-886 (-357)))))) (-15 -2068 ($ (-1172 (-385 (-886 (-525)))))) (-15 -2769 ((-3 $ "failed") (-1172 (-385 (-886 (-525)))))))) +(((-566 (-797)) . T) ((-373) . T) ((-1126) . T)) +((-1557 (((-108)) 17)) (-4093 (((-108) (-108)) 18)) (-2763 (((-108)) 13)) (-3661 (((-108) (-108)) 14)) (-2049 (((-108)) 15)) (-1519 (((-108) (-108)) 16)) (-1513 (((-855) (-855)) 21) (((-855)) 20)) (-1955 (((-713) (-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525))))) 42)) (-4177 (((-855) (-855)) 23) (((-855)) 22)) (-3846 (((-2 (|:| -1951 (-525)) (|:| -2826 (-592 |#1|))) |#1|) 62)) (-1892 (((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525))))))) 126)) (-3952 (((-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))) |#1| (-108)) 152)) (-3167 (((-396 |#1|) |#1| (-713) (-713)) 165) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 162) (((-396 |#1|) |#1| (-592 (-713))) 164) (((-396 |#1|) |#1| (-713)) 163) (((-396 |#1|) |#1|) 161)) (-3230 (((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713) (-108)) 167) (((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713)) 168) (((-3 |#1| "failed") (-855) |#1| (-592 (-713))) 170) (((-3 |#1| "failed") (-855) |#1| (-713)) 169) (((-3 |#1| "failed") (-855) |#1|) 171)) (-2961 (((-396 |#1|) |#1| (-713) (-713)) 160) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 156) (((-396 |#1|) |#1| (-592 (-713))) 158) (((-396 |#1|) |#1| (-713)) 157) (((-396 |#1|) |#1|) 155)) (-3999 (((-108) |#1|) 37)) (-2650 (((-680 (-713)) (-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525))))) 67)) (-4209 (((-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))) |#1| (-108) (-1021 (-713)) (-713)) 154))) +(((-419 |#1|) (-10 -7 (-15 -1892 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))))) (-15 -2650 ((-680 (-713)) (-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))))) (-15 -4177 ((-855))) (-15 -4177 ((-855) (-855))) (-15 -1513 ((-855))) (-15 -1513 ((-855) (-855))) (-15 -1955 ((-713) (-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))))) (-15 -3846 ((-2 (|:| -1951 (-525)) (|:| -2826 (-592 |#1|))) |#1|)) (-15 -1557 ((-108))) (-15 -4093 ((-108) (-108))) (-15 -2763 ((-108))) (-15 -3661 ((-108) (-108))) (-15 -3999 ((-108) |#1|)) (-15 -2049 ((-108))) (-15 -1519 ((-108) (-108))) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -2961 ((-396 |#1|) |#1| (-713))) (-15 -2961 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -2961 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -2961 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3167 ((-396 |#1|) |#1|)) (-15 -3167 ((-396 |#1|) |#1| (-713))) (-15 -3167 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -3167 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -3167 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3230 ((-3 |#1| "failed") (-855) |#1|)) (-15 -3230 ((-3 |#1| "failed") (-855) |#1| (-713))) (-15 -3230 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)))) (-15 -3230 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713))) (-15 -3230 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713) (-108))) (-15 -3952 ((-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))) |#1| (-108))) (-15 -4209 ((-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))) |#1| (-108) (-1021 (-713)) (-713)))) (-1148 (-525))) (T -419)) +((-4209 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1021 (-713))) (-5 *6 (-713)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| *3) (|:| -3862 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| *3) (|:| -3862 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3230 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-3230 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-3230 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-3230 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-855)) (-5 *4 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-3230 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-855)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-3167 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3167 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3167 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3167 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3167 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2961 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2961 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2961 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-1519 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2049 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3999 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3661 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2763 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-1557 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3846 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1951 (-525)) (|:| -2826 (-592 *3)))) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2961 *4) (|:| -1486 (-525))))) (-4 *4 (-1148 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-1513 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-4177 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-4177 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2961 *4) (|:| -1486 (-525))))) (-4 *4 (-1148 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| *4) (|:| -3862 (-525))))))) (-4 *4 (-1148 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4))))) +(-10 -7 (-15 -1892 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))))) (-15 -2650 ((-680 (-713)) (-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))))) (-15 -4177 ((-855))) (-15 -4177 ((-855) (-855))) (-15 -1513 ((-855))) (-15 -1513 ((-855) (-855))) (-15 -1955 ((-713) (-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))))) (-15 -3846 ((-2 (|:| -1951 (-525)) (|:| -2826 (-592 |#1|))) |#1|)) (-15 -1557 ((-108))) (-15 -4093 ((-108) (-108))) (-15 -2763 ((-108))) (-15 -3661 ((-108) (-108))) (-15 -3999 ((-108) |#1|)) (-15 -2049 ((-108))) (-15 -1519 ((-108) (-108))) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -2961 ((-396 |#1|) |#1| (-713))) (-15 -2961 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -2961 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -2961 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3167 ((-396 |#1|) |#1|)) (-15 -3167 ((-396 |#1|) |#1| (-713))) (-15 -3167 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -3167 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -3167 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3230 ((-3 |#1| "failed") (-855) |#1|)) (-15 -3230 ((-3 |#1| "failed") (-855) |#1| (-713))) (-15 -3230 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)))) (-15 -3230 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713))) (-15 -3230 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713) (-108))) (-15 -3952 ((-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))) |#1| (-108))) (-15 -4209 ((-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))) |#1| (-108) (-1021 (-713)) (-713)))) +((-3608 (((-525) |#2|) 48) (((-525) |#2| (-713)) 47)) (-2547 (((-525) |#2|) 55)) (-1574 ((|#3| |#2|) 25)) (-2281 ((|#3| |#2| (-855)) 14)) (-2520 ((|#3| |#2|) 15)) (-2480 ((|#3| |#2|) 9)) (-2138 ((|#3| |#2|) 10)) (-3157 ((|#3| |#2| (-855)) 62) ((|#3| |#2|) 30)) (-1607 (((-525) |#2|) 57))) +(((-420 |#1| |#2| |#3|) (-10 -7 (-15 -1607 ((-525) |#2|)) (-15 -3157 (|#3| |#2|)) (-15 -3157 (|#3| |#2| (-855))) (-15 -2547 ((-525) |#2|)) (-15 -3608 ((-525) |#2| (-713))) (-15 -3608 ((-525) |#2|)) (-15 -2281 (|#3| |#2| (-855))) (-15 -1574 (|#3| |#2|)) (-15 -2480 (|#3| |#2|)) (-15 -2138 (|#3| |#2|)) (-15 -2520 (|#3| |#2|))) (-976) (-1148 |#1|) (-13 (-382) (-967 |#1|) (-341) (-1112) (-263))) (T -420)) +((-2520 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-2138 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-2480 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-1574 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-2281 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-4 *5 (-976)) (-4 *2 (-13 (-382) (-967 *5) (-341) (-1112) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1148 *5)))) (-3608 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1148 *4)) (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263))))) (-3608 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1148 *5)) (-4 *6 (-13 (-382) (-967 *5) (-341) (-1112) (-263))))) (-2547 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1148 *4)) (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263))))) (-3157 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-4 *5 (-976)) (-4 *2 (-13 (-382) (-967 *5) (-341) (-1112) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1148 *5)))) (-3157 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1148 *4)) (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263)))))) +(-10 -7 (-15 -1607 ((-525) |#2|)) (-15 -3157 (|#3| |#2|)) (-15 -3157 (|#3| |#2| (-855))) (-15 -2547 ((-525) |#2|)) (-15 -3608 ((-525) |#2| (-713))) (-15 -3608 ((-525) |#2|)) (-15 -2281 (|#3| |#2| (-855))) (-15 -1574 (|#3| |#2|)) (-15 -2480 (|#3| |#2|)) (-15 -2138 (|#3| |#2|)) (-15 -2520 (|#3| |#2|))) +((-1720 ((|#2| (-1172 |#1|)) 36)) (-2288 ((|#2| |#2| |#1|) 49)) (-1774 ((|#2| |#2| |#1|) 41)) (-3263 ((|#2| |#2|) 38)) (-1747 (((-108) |#2|) 30)) (-2388 (((-592 |#2|) (-855) (-396 |#2|)) 17)) (-3230 ((|#2| (-855) (-396 |#2|)) 21)) (-2650 (((-680 (-713)) (-396 |#2|)) 25))) +(((-421 |#1| |#2|) (-10 -7 (-15 -1747 ((-108) |#2|)) (-15 -1720 (|#2| (-1172 |#1|))) (-15 -3263 (|#2| |#2|)) (-15 -1774 (|#2| |#2| |#1|)) (-15 -2288 (|#2| |#2| |#1|)) (-15 -2650 ((-680 (-713)) (-396 |#2|))) (-15 -3230 (|#2| (-855) (-396 |#2|))) (-15 -2388 ((-592 |#2|) (-855) (-396 |#2|)))) (-976) (-1148 |#1|)) (T -421)) +((-2388 (*1 *2 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-396 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-976)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-396 *2)) (-4 *2 (-1148 *5)) (-5 *1 (-421 *5 *2)) (-4 *5 (-976)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-396 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-976)) (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5)))) (-2288 (*1 *2 *2 *3) (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3)))) (-1774 (*1 *2 *2 *3) (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3)))) (-3263 (*1 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-976)) (-4 *2 (-1148 *4)) (-5 *1 (-421 *4 *2)))) (-1747 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -1747 ((-108) |#2|)) (-15 -1720 (|#2| (-1172 |#1|))) (-15 -3263 (|#2| |#2|)) (-15 -1774 (|#2| |#2| |#1|)) (-15 -2288 (|#2| |#2| |#1|)) (-15 -2650 ((-680 (-713)) (-396 |#2|))) (-15 -3230 (|#2| (-855) (-396 |#2|))) (-15 -2388 ((-592 |#2|) (-855) (-396 |#2|)))) +((-3273 (((-713)) 41)) (-3340 (((-713)) 23 (|has| |#1| (-382))) (((-713) (-713)) 22 (|has| |#1| (-382)))) (-2022 (((-525) |#1|) 18 (|has| |#1| (-382)))) (-1928 (((-525) |#1|) 20 (|has| |#1| (-382)))) (-4042 (((-713)) 40) (((-713) (-713)) 39)) (-1976 ((|#1| (-713) (-525)) 29)) (-2206 (((-1177)) 43))) +(((-422 |#1|) (-10 -7 (-15 -1976 (|#1| (-713) (-525))) (-15 -4042 ((-713) (-713))) (-15 -4042 ((-713))) (-15 -3273 ((-713))) (-15 -2206 ((-1177))) (IF (|has| |#1| (-382)) (PROGN (-15 -1928 ((-525) |#1|)) (-15 -2022 ((-525) |#1|)) (-15 -3340 ((-713) (-713))) (-15 -3340 ((-713)))) |%noBranch|)) (-976)) (T -422)) +((-3340 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))) (-2022 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))) (-1928 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))) (-2206 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-422 *3)) (-4 *3 (-976)))) (-3273 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976)))) (-4042 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976)))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-976))))) +(-10 -7 (-15 -1976 (|#1| (-713) (-525))) (-15 -4042 ((-713) (-713))) (-15 -4042 ((-713))) (-15 -3273 ((-713))) (-15 -2206 ((-1177))) (IF (|has| |#1| (-382)) (PROGN (-15 -1928 ((-525) |#1|)) (-15 -2022 ((-525) |#1|)) (-15 -3340 ((-713) (-713))) (-15 -3340 ((-713)))) |%noBranch|)) +((-1213 (((-592 (-525)) (-525)) 61)) (-2069 (((-108) (-157 (-525))) 65)) (-2961 (((-396 (-157 (-525))) (-157 (-525))) 60))) +(((-423) (-10 -7 (-15 -2961 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -1213 ((-592 (-525)) (-525))) (-15 -2069 ((-108) (-157 (-525)))))) (T -423)) +((-2069 (*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423)))) (-1213 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))) (-2961 (*1 *2 *3) (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423)) (-5 *3 (-157 (-525)))))) +(-10 -7 (-15 -2961 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -1213 ((-592 (-525)) (-525))) (-15 -2069 ((-108) (-157 (-525))))) +((-2816 ((|#4| |#4| (-592 |#4|)) 61)) (-1623 (((-592 |#4|) (-592 |#4|) (-1073) (-1073)) 17) (((-592 |#4|) (-592 |#4|) (-1073)) 16) (((-592 |#4|) (-592 |#4|)) 11))) +(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2816 (|#4| |#4| (-592 |#4|))) (-15 -1623 ((-592 |#4|) (-592 |#4|))) (-15 -1623 ((-592 |#4|) (-592 |#4|) (-1073))) (-15 -1623 ((-592 |#4|) (-592 |#4|) (-1073) (-1073)))) (-286) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -424)) +((-1623 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-1623 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-1623 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-424 *3 *4 *5 *6)))) (-2816 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2))))) +(-10 -7 (-15 -2816 (|#4| |#4| (-592 |#4|))) (-15 -1623 ((-592 |#4|) (-592 |#4|))) (-15 -1623 ((-592 |#4|) (-592 |#4|) (-1073))) (-15 -1623 ((-592 |#4|) (-592 |#4|) (-1073) (-1073)))) +((-1531 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 73) (((-592 (-592 |#4|)) (-592 |#4|)) 72) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108)) 66) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|)) 67)) (-3551 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 42) (((-592 (-592 |#4|)) (-592 |#4|)) 63))) +(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3551 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -3551 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -1531 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -1531 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -1531 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -1531 ((-592 (-592 |#4|)) (-592 |#4|) (-108)))) (-13 (-286) (-138)) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -425)) +((-1531 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-1531 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1531 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-1531 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-3551 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))) +(-10 -7 (-15 -3551 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -3551 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -1531 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -1531 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -1531 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -1531 ((-592 (-592 |#4|)) (-592 |#4|) (-108)))) +((-2895 (((-713) |#4|) 12)) (-1931 (((-592 (-2 (|:| |totdeg| (-713)) (|:| -3932 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3932 |#4|)))) 31)) (-2629 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1417 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3570 ((|#4| |#4| (-592 |#4|)) 40)) (-1238 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|)) 70)) (-1568 (((-1177) |#4|) 42)) (-2733 (((-1177) (-592 |#4|)) 51)) (-2742 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525)) 48)) (-3526 (((-1177) (-525)) 79)) (-1889 (((-592 |#4|) (-592 |#4|)) 77)) (-2490 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3932 |#4|)) |#4| (-713)) 25)) (-3817 (((-525) |#4|) 78)) (-1550 ((|#4| |#4|) 29)) (-1609 (((-592 |#4|) (-592 |#4|) (-525) (-525)) 56)) (-2355 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525)) 89)) (-2875 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2060 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2181 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-3750 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3704 (((-108) |#2| |#2|) 57)) (-3502 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3583 (((-108) |#2| |#2| |#2| |#2|) 60)) (-3580 ((|#4| |#4| (-592 |#4|)) 71))) +(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3580 (|#4| |#4| (-592 |#4|))) (-15 -3570 (|#4| |#4| (-592 |#4|))) (-15 -1609 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -2060 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3704 ((-108) |#2| |#2|)) (-15 -3583 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3502 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3750 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2181 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1238 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -1550 (|#4| |#4|)) (-15 -1931 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -3932 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3932 |#4|))))) (-15 -1417 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2629 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1889 ((-592 |#4|) (-592 |#4|))) (-15 -3817 ((-525) |#4|)) (-15 -1568 ((-1177) |#4|)) (-15 -2742 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -2355 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -2733 ((-1177) (-592 |#4|))) (-15 -3526 ((-1177) (-525))) (-15 -2875 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2490 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3932 |#4|)) |#4| (-713))) (-15 -2895 ((-713) |#4|))) (-429) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -426)) +((-2895 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-2490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -3932 *4))) (-5 *5 (-713)) (-4 *4 (-883 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-426 *6 *7 *8 *4)))) (-2875 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177)) (-5 *1 (-426 *4 *5 *6 *7)))) (-2355 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-2742 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-1568 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-3817 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2629 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-735)) (-4 *2 (-883 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2)) (-4 *4 (-429)) (-4 *6 (-789)))) (-1931 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -3932 *3)))) (-5 *4 (-713)) (-4 *3 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5)))) (-1238 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-426 *5 *6 *7 *3)))) (-2181 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-735)) (-4 *6 (-883 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *4 *3 *5 *6)))) (-3750 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-3502 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-735)) (-4 *3 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *3)))) (-3583 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-883 *4 *3 *5)))) (-3704 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-883 *4 *3 *5)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1609 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *7)))) (-3570 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2))))) +(-10 -7 (-15 -3580 (|#4| |#4| (-592 |#4|))) (-15 -3570 (|#4| |#4| (-592 |#4|))) (-15 -1609 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -2060 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3704 ((-108) |#2| |#2|)) (-15 -3583 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3502 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3750 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2181 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1238 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -1550 (|#4| |#4|)) (-15 -1931 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -3932 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3932 |#4|))))) (-15 -1417 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2629 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1889 ((-592 |#4|) (-592 |#4|))) (-15 -3817 ((-525) |#4|)) (-15 -1568 ((-1177) |#4|)) (-15 -2742 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -2355 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -2733 ((-1177) (-592 |#4|))) (-15 -3526 ((-1177) (-525))) (-15 -2875 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2490 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3932 |#4|)) |#4| (-713))) (-15 -2895 ((-713) |#4|))) +((-4127 ((|#4| |#4| (-592 |#4|)) 22 (|has| |#1| (-341)))) (-1820 (((-592 |#4|) (-592 |#4|) (-1073) (-1073)) 41) (((-592 |#4|) (-592 |#4|) (-1073)) 40) (((-592 |#4|) (-592 |#4|)) 35))) +(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 ((-592 |#4|) (-592 |#4|))) (-15 -1820 ((-592 |#4|) (-592 |#4|) (-1073))) (-15 -1820 ((-592 |#4|) (-592 |#4|) (-1073) (-1073))) (IF (|has| |#1| (-341)) (-15 -4127 (|#4| |#4| (-592 |#4|))) |%noBranch|)) (-429) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -427)) +((-4127 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-341)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *2)))) (-1820 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1820 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6))))) +(-10 -7 (-15 -1820 ((-592 |#4|) (-592 |#4|))) (-15 -1820 ((-592 |#4|) (-592 |#4|) (-1073))) (-15 -1820 ((-592 |#4|) (-592 |#4|) (-1073) (-1073))) (IF (|has| |#1| (-341)) (-15 -4127 (|#4| |#4| (-592 |#4|))) |%noBranch|)) +((-2226 (($ $ $) 14) (($ (-592 $)) 21)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 41)) (-2262 (($ $ $) NIL) (($ (-592 $)) 22))) +(((-428 |#1|) (-10 -8 (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -2226 (|#1| (-592 |#1|))) (-15 -2226 (|#1| |#1| |#1|)) (-15 -2262 (|#1| (-592 |#1|))) (-15 -2262 (|#1| |#1| |#1|))) (-429)) (T -428)) +NIL +(-10 -8 (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -2226 (|#1| (-592 |#1|))) (-15 -2226 (|#1| |#1| |#1|)) (-15 -2262 (|#1| (-592 |#1|))) (-15 -2262 (|#1| |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2675 (((-3 $ "failed") $ $) 42)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-429) (-131)) (T -429)) -((-2124 (*1 *1 *1 *1) (-4 *1 (-429))) (-2124 (*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-429)))) (-2081 (*1 *1 *1 *1) (-4 *1 (-429))) (-2081 (*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-429)))) (-3910 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-429))))) -(-13 (-517) (-10 -8 (-15 -2124 ($ $ $)) (-15 -2124 ($ (-591 $))) (-15 -2081 ($ $ $)) (-15 -2081 ($ (-591 $))) (-15 -3910 ((-1085 $) (-1085 $) (-1085 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1851 (((-3 $ "failed")) NIL (|has| (-385 (-885 |#1|)) (-517)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2010 (((-1171 (-631 (-385 (-885 |#1|)))) (-1171 $)) NIL) (((-1171 (-631 (-385 (-885 |#1|))))) NIL)) (-3483 (((-1171 $)) NIL)) (-2055 (($) NIL T CONST)) (-4007 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL)) (-4088 (((-3 $ "failed")) NIL (|has| (-385 (-885 |#1|)) (-517)))) (-2004 (((-631 (-385 (-885 |#1|))) (-1171 $)) NIL) (((-631 (-385 (-885 |#1|)))) NIL)) (-3681 (((-385 (-885 |#1|)) $) NIL)) (-2465 (((-631 (-385 (-885 |#1|))) $ (-1171 $)) NIL) (((-631 (-385 (-885 |#1|))) $) NIL)) (-2397 (((-3 $ "failed") $) NIL (|has| (-385 (-885 |#1|)) (-517)))) (-4182 (((-1085 (-885 (-385 (-885 |#1|))))) NIL (|has| (-385 (-885 |#1|)) (-341))) (((-1085 (-385 (-885 |#1|)))) 82 (|has| |#1| (-517)))) (-2681 (($ $ (-854)) NIL)) (-3549 (((-385 (-885 |#1|)) $) NIL)) (-1865 (((-1085 (-385 (-885 |#1|))) $) 80 (|has| (-385 (-885 |#1|)) (-517)))) (-1321 (((-385 (-885 |#1|)) (-1171 $)) NIL) (((-385 (-885 |#1|))) NIL)) (-3985 (((-1085 (-385 (-885 |#1|))) $) NIL)) (-1532 (((-108)) NIL)) (-1554 (($ (-1171 (-385 (-885 |#1|))) (-1171 $)) 99) (($ (-1171 (-385 (-885 |#1|)))) NIL)) (-1522 (((-3 $ "failed") $) NIL (|has| (-385 (-885 |#1|)) (-517)))) (-2193 (((-854)) NIL)) (-3595 (((-108)) NIL)) (-1447 (($ $ (-854)) NIL)) (-3999 (((-108)) NIL)) (-3319 (((-108)) NIL)) (-1219 (((-108)) NIL)) (-1779 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL)) (-2727 (((-3 $ "failed")) NIL (|has| (-385 (-885 |#1|)) (-517)))) (-1529 (((-631 (-385 (-885 |#1|))) (-1171 $)) NIL) (((-631 (-385 (-885 |#1|)))) NIL)) (-2671 (((-385 (-885 |#1|)) $) NIL)) (-2000 (((-631 (-385 (-885 |#1|))) $ (-1171 $)) NIL) (((-631 (-385 (-885 |#1|))) $) NIL)) (-3917 (((-3 $ "failed") $) NIL (|has| (-385 (-885 |#1|)) (-517)))) (-2679 (((-1085 (-885 (-385 (-885 |#1|))))) NIL (|has| (-385 (-885 |#1|)) (-341))) (((-1085 (-385 (-885 |#1|)))) 81 (|has| |#1| (-517)))) (-2832 (($ $ (-854)) NIL)) (-1984 (((-385 (-885 |#1|)) $) NIL)) (-4130 (((-1085 (-385 (-885 |#1|))) $) 75 (|has| (-385 (-885 |#1|)) (-517)))) (-2336 (((-385 (-885 |#1|)) (-1171 $)) NIL) (((-385 (-885 |#1|))) NIL)) (-3019 (((-1085 (-385 (-885 |#1|))) $) NIL)) (-1312 (((-108)) NIL)) (-2621 (((-1072) $) NIL)) (-3440 (((-108)) NIL)) (-3615 (((-108)) NIL)) (-1821 (((-108)) NIL)) (-2937 (((-1036) $) NIL)) (-1731 (((-385 (-885 |#1|)) $ $) 69 (|has| |#1| (-517)))) (-3799 (((-385 (-885 |#1|)) $) 68 (|has| |#1| (-517)))) (-3426 (((-385 (-885 |#1|)) $) 91 (|has| |#1| (-517)))) (-3348 (((-1085 (-385 (-885 |#1|))) $) 86 (|has| |#1| (-517)))) (-2789 (((-385 (-885 |#1|))) 70 (|has| |#1| (-517)))) (-3636 (((-385 (-885 |#1|)) $ $) 58 (|has| |#1| (-517)))) (-2145 (((-385 (-885 |#1|)) $) 57 (|has| |#1| (-517)))) (-4013 (((-385 (-885 |#1|)) $) 90 (|has| |#1| (-517)))) (-2968 (((-1085 (-385 (-885 |#1|))) $) 85 (|has| |#1| (-517)))) (-2703 (((-385 (-885 |#1|))) 67 (|has| |#1| (-517)))) (-3024 (($) 97) (($ (-1089)) 103) (($ (-1171 (-1089))) 102) (($ (-1171 $)) 92) (($ (-1089) (-1171 $)) 101) (($ (-1171 (-1089)) (-1171 $)) 100)) (-1492 (((-108)) NIL)) (-1881 (((-385 (-885 |#1|)) $ (-525)) NIL)) (-1671 (((-1171 (-385 (-885 |#1|))) $ (-1171 $)) 94) (((-631 (-385 (-885 |#1|))) (-1171 $) (-1171 $)) NIL) (((-1171 (-385 (-885 |#1|))) $) 40) (((-631 (-385 (-885 |#1|))) (-1171 $)) NIL)) (-1300 (((-1171 (-385 (-885 |#1|))) $) NIL) (($ (-1171 (-385 (-885 |#1|)))) 37)) (-3277 (((-591 (-885 (-385 (-885 |#1|)))) (-1171 $)) NIL) (((-591 (-885 (-385 (-885 |#1|))))) NIL) (((-591 (-885 |#1|)) (-1171 $)) 95 (|has| |#1| (-517))) (((-591 (-885 |#1|))) 96 (|has| |#1| (-517)))) (-4027 (($ $ $) NIL)) (-2003 (((-108)) NIL)) (-2686 (((-796) $) NIL) (($ (-1171 (-385 (-885 |#1|)))) NIL)) (-3612 (((-1171 $)) 60)) (-3674 (((-591 (-1171 (-385 (-885 |#1|))))) NIL (|has| (-385 (-885 |#1|)) (-517)))) (-1894 (($ $ $ $) NIL)) (-2535 (((-108)) NIL)) (-2814 (($ (-631 (-385 (-885 |#1|))) $) NIL)) (-1971 (($ $ $) NIL)) (-3887 (((-108)) NIL)) (-1394 (((-108)) NIL)) (-2659 (((-108)) NIL)) (-1830 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) 93)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 56) (($ $ (-385 (-885 |#1|))) NIL) (($ (-385 (-885 |#1|)) $) NIL) (($ (-1056 |#2| (-385 (-885 |#1|))) $) NIL))) -(((-430 |#1| |#2| |#3| |#4|) (-13 (-395 (-385 (-885 |#1|))) (-593 (-1056 |#2| (-385 (-885 |#1|)))) (-10 -8 (-15 -2686 ($ (-1171 (-385 (-885 |#1|))))) (-15 -1779 ((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed"))) (-15 -4007 ((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed"))) (-15 -3024 ($)) (-15 -3024 ($ (-1089))) (-15 -3024 ($ (-1171 (-1089)))) (-15 -3024 ($ (-1171 $))) (-15 -3024 ($ (-1089) (-1171 $))) (-15 -3024 ($ (-1171 (-1089)) (-1171 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -2679 ((-1085 (-385 (-885 |#1|))))) (-15 -2968 ((-1085 (-385 (-885 |#1|))) $)) (-15 -2145 ((-385 (-885 |#1|)) $)) (-15 -4013 ((-385 (-885 |#1|)) $)) (-15 -4182 ((-1085 (-385 (-885 |#1|))))) (-15 -3348 ((-1085 (-385 (-885 |#1|))) $)) (-15 -3799 ((-385 (-885 |#1|)) $)) (-15 -3426 ((-385 (-885 |#1|)) $)) (-15 -3636 ((-385 (-885 |#1|)) $ $)) (-15 -2703 ((-385 (-885 |#1|)))) (-15 -1731 ((-385 (-885 |#1|)) $ $)) (-15 -2789 ((-385 (-885 |#1|)))) (-15 -3277 ((-591 (-885 |#1|)) (-1171 $))) (-15 -3277 ((-591 (-885 |#1|))))) |%noBranch|))) (-160) (-854) (-591 (-1089)) (-1171 (-631 |#1|))) (T -430)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1171 (-385 (-885 *3)))) (-4 *3 (-160)) (-14 *6 (-1171 (-631 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))))) (-1779 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -3612 (-591 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-4007 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -3612 (-591 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-3024 (*1 *1) (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-854)) (-14 *4 (-591 (-1089))) (-14 *5 (-1171 (-631 *2))))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 *2)) (-14 *6 (-1171 (-631 *3))))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-1171 (-1089))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-1171 (-430 *3 *4 *5 *6))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-3024 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-430 *4 *5 *6 *7))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-854)) (-14 *6 (-591 *2)) (-14 *7 (-1171 (-631 *4))))) (-3024 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 (-1089))) (-5 *3 (-1171 (-430 *4 *5 *6 *7))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-854)) (-14 *6 (-591 (-1089))) (-14 *7 (-1171 (-631 *4))))) (-2679 (*1 *2) (-12 (-5 *2 (-1085 (-385 (-885 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-1085 (-385 (-885 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-4013 (*1 *2 *1) (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-4182 (*1 *2) (-12 (-5 *2 (-1085 (-385 (-885 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-1085 (-385 (-885 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-3636 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-2703 (*1 *2) (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-1731 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-2789 (*1 *2) (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-1171 (-430 *4 *5 *6 *7))) (-5 *2 (-591 (-885 *4))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *4 (-160)) (-14 *5 (-854)) (-14 *6 (-591 (-1089))) (-14 *7 (-1171 (-631 *4))))) (-3277 (*1 *2) (-12 (-5 *2 (-591 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(-13 (-395 (-385 (-885 |#1|))) (-593 (-1056 |#2| (-385 (-885 |#1|)))) (-10 -8 (-15 -2686 ($ (-1171 (-385 (-885 |#1|))))) (-15 -1779 ((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed"))) (-15 -4007 ((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed"))) (-15 -3024 ($)) (-15 -3024 ($ (-1089))) (-15 -3024 ($ (-1171 (-1089)))) (-15 -3024 ($ (-1171 $))) (-15 -3024 ($ (-1089) (-1171 $))) (-15 -3024 ($ (-1171 (-1089)) (-1171 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -2679 ((-1085 (-385 (-885 |#1|))))) (-15 -2968 ((-1085 (-385 (-885 |#1|))) $)) (-15 -2145 ((-385 (-885 |#1|)) $)) (-15 -4013 ((-385 (-885 |#1|)) $)) (-15 -4182 ((-1085 (-385 (-885 |#1|))))) (-15 -3348 ((-1085 (-385 (-885 |#1|))) $)) (-15 -3799 ((-385 (-885 |#1|)) $)) (-15 -3426 ((-385 (-885 |#1|)) $)) (-15 -3636 ((-385 (-885 |#1|)) $ $)) (-15 -2703 ((-385 (-885 |#1|)))) (-15 -1731 ((-385 (-885 |#1|)) $ $)) (-15 -2789 ((-385 (-885 |#1|)))) (-15 -3277 ((-591 (-885 |#1|)) (-1171 $))) (-15 -3277 ((-591 (-885 |#1|))))) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 13)) (-1444 (((-591 (-798 |#1|)) $) 75)) (-2514 (((-1085 $) $ (-798 |#1|)) 46) (((-1085 |#2|) $) 118)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3641 (($ $) NIL (|has| |#2| (-517)))) (-3077 (((-108) $) NIL (|has| |#2| (-517)))) (-1978 (((-712) $) 21) (((-712) $ (-591 (-798 |#1|))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-1720 (($ $) NIL (|has| |#2| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) 44) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-966 (-525)))) (((-3 (-798 |#1|) "failed") $) NIL)) (-3341 ((|#2| $) 42) (((-385 (-525)) $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-966 (-525)))) (((-798 |#1|) $) NIL)) (-1788 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-160)))) (-3742 (($ $ (-591 (-525))) 80)) (-1575 (($ $) 68)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL) (((-631 |#2|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#2| (-429))) (($ $ (-798 |#1|)) NIL (|has| |#2| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#2| (-842)))) (-2615 (($ $ |#2| |#3| $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-798 |#1|) (-819 (-357))) (|has| |#2| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-798 |#1|) (-819 (-525))) (|has| |#2| (-819 (-525)))))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) 58)) (-1434 (($ (-1085 |#2|) (-798 |#1|)) 123) (($ (-1085 $) (-798 |#1|)) 52)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) 59)) (-1422 (($ |#2| |#3|) 28) (($ $ (-798 |#1|) (-712)) 30) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-798 |#1|)) NIL)) (-3629 ((|#3| $) NIL) (((-712) $ (-798 |#1|)) 50) (((-591 (-712)) $ (-591 (-798 |#1|))) 57)) (-1923 (($ $ $) NIL (|has| |#2| (-788)))) (-3475 (($ $ $) NIL (|has| |#2| (-788)))) (-2508 (($ (-1 |#3| |#3|) $) NIL)) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-3027 (((-3 (-798 |#1|) "failed") $) 39)) (-1548 (($ $) NIL)) (-1556 ((|#2| $) 41)) (-2081 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2621 (((-1072) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -3987 (-712))) "failed") $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) 40)) (-1540 ((|#2| $) 116)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) 128 (|has| |#2| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#2| (-842)))) (-3210 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-798 |#1|) |#2|) 87) (($ $ (-591 (-798 |#1|)) (-591 |#2|)) 90) (($ $ (-798 |#1|) $) 85) (($ $ (-591 (-798 |#1|)) (-591 $)) 106)) (-2858 (($ $ (-798 |#1|)) NIL (|has| |#2| (-160)))) (-2209 (($ $ (-798 |#1|)) 53) (($ $ (-591 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-2743 ((|#3| $) 67) (((-712) $ (-798 |#1|)) 37) (((-591 (-712)) $ (-591 (-798 |#1|))) 56)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-798 |#1|) (-566 (-825 (-357)))) (|has| |#2| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-798 |#1|) (-566 (-825 (-525)))) (|has| |#2| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-798 |#1|) (-566 (-501))) (|has| |#2| (-566 (-501)))))) (-2827 ((|#2| $) 125 (|has| |#2| (-429))) (($ $ (-798 |#1|)) NIL (|has| |#2| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-842))))) (-2686 (((-796) $) 145) (($ (-525)) NIL) (($ |#2|) 86) (($ (-798 |#1|)) 31) (($ (-385 (-525))) NIL (-3150 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3109 (((-591 |#2|) $) NIL)) (-1263 ((|#2| $ |#3|) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#2| (-842))) (|has| |#2| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#2| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 17 T CONST)) (-1839 (($) 25 T CONST)) (-1796 (($ $ (-798 |#1|)) NIL) (($ $ (-591 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-4004 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#2| (-788)))) (-4059 (($ $ |#2|) 64 (|has| |#2| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 111)) (** (($ $ (-854)) NIL) (($ $ (-712)) 109)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 29) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-431 |#1| |#2| |#3|) (-13 (-882 |#2| |#3| (-798 |#1|)) (-10 -8 (-15 -3742 ($ $ (-591 (-525)))))) (-591 (-1089)) (-975) (-218 (-2028 |#1|) (-712))) (T -431)) -((-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-14 *3 (-591 (-1089))) (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-975)) (-4 *5 (-218 (-2028 *3) (-712)))))) -(-13 (-882 |#2| |#3| (-798 |#1|)) (-10 -8 (-15 -3742 ($ $ (-591 (-525)))))) -((-3478 (((-108) |#1| (-591 |#2|)) 69)) (-2312 (((-3 (-1171 (-591 |#2|)) "failed") (-712) |#1| (-591 |#2|)) 78)) (-2662 (((-3 (-591 |#2|) "failed") |#2| |#1| (-1171 (-591 |#2|))) 80)) (-1466 ((|#2| |#2| |#1|) 28)) (-3448 (((-712) |#2| (-591 |#2|)) 20))) -(((-432 |#1| |#2|) (-10 -7 (-15 -1466 (|#2| |#2| |#1|)) (-15 -3448 ((-712) |#2| (-591 |#2|))) (-15 -2312 ((-3 (-1171 (-591 |#2|)) "failed") (-712) |#1| (-591 |#2|))) (-15 -2662 ((-3 (-591 |#2|) "failed") |#2| |#1| (-1171 (-591 |#2|)))) (-15 -3478 ((-108) |#1| (-591 |#2|)))) (-286) (-1147 |#1|)) (T -432)) -((-3478 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *5)) (-4 *5 (-1147 *3)) (-4 *3 (-286)) (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))) (-2662 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1171 (-591 *3))) (-4 *4 (-286)) (-5 *2 (-591 *3)) (-5 *1 (-432 *4 *3)) (-4 *3 (-1147 *4)))) (-2312 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-712)) (-4 *4 (-286)) (-4 *6 (-1147 *4)) (-5 *2 (-1171 (-591 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-591 *6)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-286)) (-5 *2 (-712)) (-5 *1 (-432 *5 *3)))) (-1466 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1147 *3))))) -(-10 -7 (-15 -1466 (|#2| |#2| |#1|)) (-15 -3448 ((-712) |#2| (-591 |#2|))) (-15 -2312 ((-3 (-1171 (-591 |#2|)) "failed") (-712) |#1| (-591 |#2|))) (-15 -2662 ((-3 (-591 |#2|) "failed") |#2| |#1| (-1171 (-591 |#2|)))) (-15 -3478 ((-108) |#1| (-591 |#2|)))) -((-2542 (((-396 |#5|) |#5|) 24))) -(((-433 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2542 ((-396 |#5|) |#5|))) (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089))))) (-734) (-517) (-517) (-882 |#4| |#2| |#1|)) (T -433)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089)))))) (-4 *5 (-734)) (-4 *7 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517)) (-4 *3 (-882 *7 *5 *4))))) -(-10 -7 (-15 -2542 ((-396 |#5|) |#5|))) -((-1397 ((|#3|) 37)) (-3910 (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 33))) -(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3910 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -1397 (|#3|))) (-734) (-788) (-842) (-882 |#3| |#1| |#2|)) (T -434)) -((-1397 (*1 *2) (-12 (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-842)) (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-882 *2 *3 *4)))) (-3910 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-882 *5 *3 *4)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-434 *3 *4 *5 *6))))) -(-10 -7 (-15 -3910 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -1397 (|#3|))) -((-2542 (((-396 (-1085 |#1|)) (-1085 |#1|)) 43))) -(((-435 |#1|) (-10 -7 (-15 -2542 ((-396 (-1085 |#1|)) (-1085 |#1|)))) (-286)) (T -435)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1085 *4))) (-5 *1 (-435 *4)) (-5 *3 (-1085 *4))))) -(-10 -7 (-15 -2542 ((-396 (-1085 |#1|)) (-1085 |#1|)))) -((-1487 (((-51) |#2| (-1089) (-273 |#2|) (-1138 (-712))) 42) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1138 (-712))) 41) (((-51) |#2| (-1089) (-273 |#2|)) 35) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 28)) (-1895 (((-51) |#2| (-1089) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525))) 80) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525))) 79) (((-51) |#2| (-1089) (-273 |#2|) (-1138 (-525))) 78) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1138 (-525))) 77) (((-51) |#2| (-1089) (-273 |#2|)) 72) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 71)) (-1507 (((-51) |#2| (-1089) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525))) 66) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525))) 64)) (-1497 (((-51) |#2| (-1089) (-273 |#2|) (-1138 (-525))) 48) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1138 (-525))) 47))) -(((-436 |#1| |#2|) (-10 -7 (-15 -1487 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -1487 ((-51) |#2| (-1089) (-273 |#2|))) (-15 -1487 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1138 (-712)))) (-15 -1487 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-712)))) (-15 -1497 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1138 (-525)))) (-15 -1497 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-525)))) (-15 -1507 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525)))) (-15 -1507 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525)))) (-15 -1895 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -1895 ((-51) |#2| (-1089) (-273 |#2|))) (-15 -1895 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1138 (-525)))) (-15 -1895 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-525)))) (-15 -1895 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525)))) (-15 -1895 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525))))) (-13 (-517) (-788) (-966 (-525)) (-587 (-525))) (-13 (-27) (-1111) (-408 |#1|))) (T -436)) -((-1895 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1111) (-408 *8))) (-4 *8 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-1895 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1138 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1111) (-408 *7))) (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-1895 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-525))) (-4 *3 (-13 (-27) (-1111) (-408 *7))) (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-1895 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1138 (-525))) (-4 *7 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-1895 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1111) (-408 *5))) (-4 *5 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) (-1507 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1111) (-408 *8))) (-4 *8 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-1507 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1138 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1111) (-408 *7))) (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-1497 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-525))) (-4 *3 (-13 (-27) (-1111) (-408 *7))) (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1138 (-525))) (-4 *7 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-1487 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-712))) (-4 *3 (-13 (-27) (-1111) (-408 *7))) (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1138 (-712))) (-4 *7 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1111) (-408 *5))) (-4 *5 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))) -(-10 -7 (-15 -1487 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -1487 ((-51) |#2| (-1089) (-273 |#2|))) (-15 -1487 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1138 (-712)))) (-15 -1487 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-712)))) (-15 -1497 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1138 (-525)))) (-15 -1497 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-525)))) (-15 -1507 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525)))) (-15 -1507 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525)))) (-15 -1895 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -1895 ((-51) |#2| (-1089) (-273 |#2|))) (-15 -1895 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1138 (-525)))) (-15 -1895 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-525)))) (-15 -1895 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525)))) (-15 -1895 ((-51) |#2| (-1089) (-273 |#2|) (-1138 (-385 (-525))) (-385 (-525))))) -((-1466 ((|#2| |#2| |#1|) 15)) (-3167 (((-591 |#2|) |#2| (-591 |#2|) |#1| (-854)) 69)) (-1637 (((-2 (|:| |plist| (-591 |#2|)) (|:| |modulo| |#1|)) |#2| (-591 |#2|) |#1| (-854)) 60))) -(((-437 |#1| |#2|) (-10 -7 (-15 -1637 ((-2 (|:| |plist| (-591 |#2|)) (|:| |modulo| |#1|)) |#2| (-591 |#2|) |#1| (-854))) (-15 -3167 ((-591 |#2|) |#2| (-591 |#2|) |#1| (-854))) (-15 -1466 (|#2| |#2| |#1|))) (-286) (-1147 |#1|)) (T -437)) -((-1466 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1147 *3)))) (-3167 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-591 *3)) (-5 *5 (-854)) (-4 *3 (-1147 *4)) (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))) (-1637 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-854)) (-4 *5 (-286)) (-4 *3 (-1147 *5)) (-5 *2 (-2 (|:| |plist| (-591 *3)) (|:| |modulo| *5))) (-5 *1 (-437 *5 *3)) (-5 *4 (-591 *3))))) -(-10 -7 (-15 -1637 ((-2 (|:| |plist| (-591 |#2|)) (|:| |modulo| |#1|)) |#2| (-591 |#2|) |#1| (-854))) (-15 -3167 ((-591 |#2|) |#2| (-591 |#2|) |#1| (-854))) (-15 -1466 (|#2| |#2| |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 28)) (-2191 (($ |#3|) 25)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1575 (($ $) 32)) (-2054 (($ |#2| |#4| $) 33)) (-1422 (($ |#2| (-655 |#3| |#4| |#5|)) 24)) (-1548 (((-655 |#3| |#4| |#5|) $) 15)) (-3454 ((|#3| $) 19)) (-1242 ((|#4| $) 17)) (-1556 ((|#2| $) 29)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-3373 (($ |#2| |#3| |#4|) 26)) (-1830 (($) 36 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 34)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-438 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-659 |#6|) (-659 |#2|) (-10 -8 (-15 -1556 (|#2| $)) (-15 -1548 ((-655 |#3| |#4| |#5|) $)) (-15 -1242 (|#4| $)) (-15 -3454 (|#3| $)) (-15 -1575 ($ $)) (-15 -1422 ($ |#2| (-655 |#3| |#4| |#5|))) (-15 -2191 ($ |#3|)) (-15 -3373 ($ |#2| |#3| |#4|)) (-15 -2054 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-591 (-1089)) (-160) (-788) (-218 (-2028 |#1|) (-712)) (-1 (-108) (-2 (|:| -3229 |#3|) (|:| -3987 |#4|)) (-2 (|:| -3229 |#3|) (|:| -3987 |#4|))) (-882 |#2| |#4| (-798 |#1|))) (T -438)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) (-4 *6 (-218 (-2028 *3) (-712))) (-14 *7 (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *6)) (-2 (|:| -3229 *5) (|:| -3987 *6)))) (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-788)) (-4 *2 (-882 *4 *6 (-798 *3))))) (-1556 (*1 *2 *1) (-12 (-14 *3 (-591 (-1089))) (-4 *5 (-218 (-2028 *3) (-712))) (-14 *6 (-1 (-108) (-2 (|:| -3229 *4) (|:| -3987 *5)) (-2 (|:| -3229 *4) (|:| -3987 *5)))) (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-788)) (-4 *7 (-882 *2 *5 (-798 *3))))) (-1548 (*1 *2 *1) (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) (-4 *6 (-218 (-2028 *3) (-712))) (-14 *7 (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *6)) (-2 (|:| -3229 *5) (|:| -3987 *6)))) (-5 *2 (-655 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8)) (-4 *5 (-788)) (-4 *8 (-882 *4 *6 (-798 *3))))) (-1242 (*1 *2 *1) (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) (-14 *6 (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *2)) (-2 (|:| -3229 *5) (|:| -3987 *2)))) (-4 *2 (-218 (-2028 *3) (-712))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7)) (-4 *5 (-788)) (-4 *7 (-882 *4 *2 (-798 *3))))) (-3454 (*1 *2 *1) (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) (-4 *5 (-218 (-2028 *3) (-712))) (-14 *6 (-1 (-108) (-2 (|:| -3229 *2) (|:| -3987 *5)) (-2 (|:| -3229 *2) (|:| -3987 *5)))) (-4 *2 (-788)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *7 (-882 *4 *5 (-798 *3))))) (-1575 (*1 *1 *1) (-12 (-14 *2 (-591 (-1089))) (-4 *3 (-160)) (-4 *5 (-218 (-2028 *2) (-712))) (-14 *6 (-1 (-108) (-2 (|:| -3229 *4) (|:| -3987 *5)) (-2 (|:| -3229 *4) (|:| -3987 *5)))) (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-788)) (-4 *7 (-882 *3 *5 (-798 *2))))) (-1422 (*1 *1 *2 *3) (-12 (-5 *3 (-655 *5 *6 *7)) (-4 *5 (-788)) (-4 *6 (-218 (-2028 *4) (-712))) (-14 *7 (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *6)) (-2 (|:| -3229 *5) (|:| -3987 *6)))) (-14 *4 (-591 (-1089))) (-4 *2 (-160)) (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-882 *2 *6 (-798 *4))))) (-2191 (*1 *1 *2) (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) (-4 *5 (-218 (-2028 *3) (-712))) (-14 *6 (-1 (-108) (-2 (|:| -3229 *2) (|:| -3987 *5)) (-2 (|:| -3229 *2) (|:| -3987 *5)))) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-788)) (-4 *7 (-882 *4 *5 (-798 *3))))) (-3373 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-591 (-1089))) (-4 *2 (-160)) (-4 *4 (-218 (-2028 *5) (-712))) (-14 *6 (-1 (-108) (-2 (|:| -3229 *3) (|:| -3987 *4)) (-2 (|:| -3229 *3) (|:| -3987 *4)))) (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-788)) (-4 *7 (-882 *2 *4 (-798 *5))))) (-2054 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-591 (-1089))) (-4 *2 (-160)) (-4 *3 (-218 (-2028 *4) (-712))) (-14 *6 (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *3)) (-2 (|:| -3229 *5) (|:| -3987 *3)))) (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-788)) (-4 *7 (-882 *2 *3 (-798 *4)))))) -(-13 (-659 |#6|) (-659 |#2|) (-10 -8 (-15 -1556 (|#2| $)) (-15 -1548 ((-655 |#3| |#4| |#5|) $)) (-15 -1242 (|#4| $)) (-15 -3454 (|#3| $)) (-15 -1575 ($ $)) (-15 -1422 ($ |#2| (-655 |#3| |#4| |#5|))) (-15 -2191 ($ |#3|)) (-15 -3373 ($ |#2| |#3| |#4|)) (-15 -2054 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-3843 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-439 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3843 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-734) (-788) (-517) (-882 |#3| |#1| |#2|) (-13 (-966 (-385 (-525))) (-341) (-10 -8 (-15 -2686 ($ |#4|)) (-15 -1384 (|#4| $)) (-15 -1396 (|#4| $))))) (T -439)) -((-3843 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-788)) (-4 *5 (-734)) (-4 *6 (-517)) (-4 *7 (-882 *6 *5 *3)) (-5 *1 (-439 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-966 (-385 (-525))) (-341) (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $)))))))) -(-10 -7 (-15 -3843 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2673 (((-108) $ $) NIL)) (-1444 (((-591 |#3|) $) 41)) (-3713 (((-108) $) NIL)) (-1996 (((-108) $) NIL (|has| |#1| (-517)))) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2467 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3435 (((-108) $) NIL (|has| |#1| (-517)))) (-2342 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2605 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2167 (((-108) $) NIL (|has| |#1| (-517)))) (-1533 (((-591 |#4|) (-591 |#4|) $) NIL (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) NIL (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) 47)) (-3341 (($ (-591 |#4|)) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-2537 (($ |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4250)))) (-2916 (((-591 |#4|) $) 18 (|has| $ (-6 -4250)))) (-3998 ((|#3| $) 45)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#4|) $) 14 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-4192 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 21)) (-3520 (((-591 |#3|) $) NIL)) (-1574 (((-108) |#3| $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2937 (((-1036) $) NIL)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3465 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 39)) (-3164 (($) 17)) (-2960 (((-712) |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (((-712) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) 16)) (-1300 (((-501) $) NIL (|has| |#4| (-566 (-501)))) (($ (-591 |#4|)) 49)) (-2695 (($ (-591 |#4|)) 13)) (-3786 (($ $ |#3|) NIL)) (-2794 (($ $ |#3|) NIL)) (-1918 (($ $ |#3|) NIL)) (-2686 (((-796) $) 38) (((-591 |#4|) $) 48)) (-1475 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 30)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-440 |#1| |#2| |#3| |#4|) (-13 (-907 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1300 ($ (-591 |#4|))) (-6 -4250) (-6 -4251))) (-975) (-734) (-788) (-989 |#1| |#2| |#3|)) (T -440)) -((-1300 (*1 *1 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-440 *3 *4 *5 *6))))) -(-13 (-907 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1300 ($ (-591 |#4|))) (-6 -4250) (-6 -4251))) -((-1830 (($) 11)) (-1839 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-441 |#1| |#2| |#3|) (-10 -8 (-15 -1839 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1830 (|#1|))) (-442 |#2| |#3|) (-160) (-23)) (T -441)) -NIL -(-10 -8 (-15 -1839 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1830 (|#1|))) -((-2673 (((-108) $ $) 7)) (-4174 (((-3 |#1| "failed") $) 26)) (-3341 ((|#1| $) 25)) (-1922 (($ $ $) 23)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2743 ((|#2| $) 19)) (-2686 (((-796) $) 11) (($ |#1|) 27)) (-1830 (($) 18 T CONST)) (-1839 (($) 24 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 15) (($ $ $) 13)) (-4036 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-2262 (*1 *1 *1 *1) (-4 *1 (-429))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-2226 (*1 *1 *1 *1) (-4 *1 (-429))) (-2226 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-2160 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-429))))) +(-13 (-517) (-10 -8 (-15 -2262 ($ $ $)) (-15 -2262 ($ (-592 $))) (-15 -2226 ($ $ $)) (-15 -2226 ($ (-592 $))) (-15 -2160 ((-1086 $) (-1086 $) (-1086 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3603 (((-3 $ "failed")) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1545 (((-1172 (-632 (-385 (-886 |#1|)))) (-1172 $)) NIL) (((-1172 (-632 (-385 (-886 |#1|))))) NIL)) (-2489 (((-1172 $)) NIL)) (-1957 (($) NIL T CONST)) (-1922 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL)) (-3537 (((-3 $ "failed")) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-1953 (((-632 (-385 (-886 |#1|))) (-1172 $)) NIL) (((-632 (-385 (-886 |#1|)))) NIL)) (-3497 (((-385 (-886 |#1|)) $) NIL)) (-3663 (((-632 (-385 (-886 |#1|))) $ (-1172 $)) NIL) (((-632 (-385 (-886 |#1|))) $) NIL)) (-2256 (((-3 $ "failed") $) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-3558 (((-1086 (-886 (-385 (-886 |#1|))))) NIL (|has| (-385 (-886 |#1|)) (-341))) (((-1086 (-385 (-886 |#1|)))) 82 (|has| |#1| (-517)))) (-1469 (($ $ (-855)) NIL)) (-3655 (((-385 (-886 |#1|)) $) NIL)) (-1911 (((-1086 (-385 (-886 |#1|))) $) 80 (|has| (-385 (-886 |#1|)) (-517)))) (-1452 (((-385 (-886 |#1|)) (-1172 $)) NIL) (((-385 (-886 |#1|))) NIL)) (-1492 (((-1086 (-385 (-886 |#1|))) $) NIL)) (-2790 (((-108)) NIL)) (-1689 (($ (-1172 (-385 (-886 |#1|))) (-1172 $)) 99) (($ (-1172 (-385 (-886 |#1|)))) NIL)) (-1645 (((-3 $ "failed") $) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-3439 (((-855)) NIL)) (-2404 (((-108)) NIL)) (-1404 (($ $ (-855)) NIL)) (-1552 (((-108)) NIL)) (-2383 (((-108)) NIL)) (-3076 (((-108)) NIL)) (-3609 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL)) (-2167 (((-3 $ "failed")) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-1301 (((-632 (-385 (-886 |#1|))) (-1172 $)) NIL) (((-632 (-385 (-886 |#1|)))) NIL)) (-4139 (((-385 (-886 |#1|)) $) NIL)) (-2562 (((-632 (-385 (-886 |#1|))) $ (-1172 $)) NIL) (((-632 (-385 (-886 |#1|))) $) NIL)) (-1709 (((-3 $ "failed") $) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-1376 (((-1086 (-886 (-385 (-886 |#1|))))) NIL (|has| (-385 (-886 |#1|)) (-341))) (((-1086 (-385 (-886 |#1|)))) 81 (|has| |#1| (-517)))) (-2148 (($ $ (-855)) NIL)) (-1855 (((-385 (-886 |#1|)) $) NIL)) (-4067 (((-1086 (-385 (-886 |#1|))) $) 75 (|has| (-385 (-886 |#1|)) (-517)))) (-4087 (((-385 (-886 |#1|)) (-1172 $)) NIL) (((-385 (-886 |#1|))) NIL)) (-1488 (((-1086 (-385 (-886 |#1|))) $) NIL)) (-2085 (((-108)) NIL)) (-1707 (((-1073) $) NIL)) (-4062 (((-108)) NIL)) (-1985 (((-108)) NIL)) (-2744 (((-108)) NIL)) (-3027 (((-1037) $) NIL)) (-3312 (((-385 (-886 |#1|)) $ $) 69 (|has| |#1| (-517)))) (-2314 (((-385 (-886 |#1|)) $) 68 (|has| |#1| (-517)))) (-2638 (((-385 (-886 |#1|)) $) 91 (|has| |#1| (-517)))) (-1517 (((-1086 (-385 (-886 |#1|))) $) 86 (|has| |#1| (-517)))) (-1847 (((-385 (-886 |#1|))) 70 (|has| |#1| (-517)))) (-3186 (((-385 (-886 |#1|)) $ $) 58 (|has| |#1| (-517)))) (-3371 (((-385 (-886 |#1|)) $) 57 (|has| |#1| (-517)))) (-2656 (((-385 (-886 |#1|)) $) 90 (|has| |#1| (-517)))) (-1863 (((-1086 (-385 (-886 |#1|))) $) 85 (|has| |#1| (-517)))) (-4097 (((-385 (-886 |#1|))) 67 (|has| |#1| (-517)))) (-1879 (($) 97) (($ (-1090)) 103) (($ (-1172 (-1090))) 102) (($ (-1172 $)) 92) (($ (-1090) (-1172 $)) 101) (($ (-1172 (-1090)) (-1172 $)) 100)) (-3587 (((-108)) NIL)) (-1496 (((-385 (-886 |#1|)) $ (-525)) NIL)) (-1625 (((-1172 (-385 (-886 |#1|))) $ (-1172 $)) 94) (((-632 (-385 (-886 |#1|))) (-1172 $) (-1172 $)) NIL) (((-1172 (-385 (-886 |#1|))) $) 40) (((-632 (-385 (-886 |#1|))) (-1172 $)) NIL)) (-2923 (((-1172 (-385 (-886 |#1|))) $) NIL) (($ (-1172 (-385 (-886 |#1|)))) 37)) (-4125 (((-592 (-886 (-385 (-886 |#1|)))) (-1172 $)) NIL) (((-592 (-886 (-385 (-886 |#1|))))) NIL) (((-592 (-886 |#1|)) (-1172 $)) 95 (|has| |#1| (-517))) (((-592 (-886 |#1|))) 96 (|has| |#1| (-517)))) (-1573 (($ $ $) NIL)) (-2880 (((-108)) NIL)) (-4044 (((-797) $) NIL) (($ (-1172 (-385 (-886 |#1|)))) NIL)) (-2734 (((-1172 $)) 60)) (-4194 (((-592 (-1172 (-385 (-886 |#1|))))) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-1762 (($ $ $ $) NIL)) (-2986 (((-108)) NIL)) (-1627 (($ (-632 (-385 (-886 |#1|))) $) NIL)) (-2407 (($ $ $) NIL)) (-2046 (((-108)) NIL)) (-3367 (((-108)) NIL)) (-3026 (((-108)) NIL)) (-1436 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) 93)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 56) (($ $ (-385 (-886 |#1|))) NIL) (($ (-385 (-886 |#1|)) $) NIL) (($ (-1057 |#2| (-385 (-886 |#1|))) $) NIL))) +(((-430 |#1| |#2| |#3| |#4|) (-13 (-395 (-385 (-886 |#1|))) (-594 (-1057 |#2| (-385 (-886 |#1|)))) (-10 -8 (-15 -4044 ($ (-1172 (-385 (-886 |#1|))))) (-15 -3609 ((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed"))) (-15 -1922 ((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed"))) (-15 -1879 ($)) (-15 -1879 ($ (-1090))) (-15 -1879 ($ (-1172 (-1090)))) (-15 -1879 ($ (-1172 $))) (-15 -1879 ($ (-1090) (-1172 $))) (-15 -1879 ($ (-1172 (-1090)) (-1172 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -1376 ((-1086 (-385 (-886 |#1|))))) (-15 -1863 ((-1086 (-385 (-886 |#1|))) $)) (-15 -3371 ((-385 (-886 |#1|)) $)) (-15 -2656 ((-385 (-886 |#1|)) $)) (-15 -3558 ((-1086 (-385 (-886 |#1|))))) (-15 -1517 ((-1086 (-385 (-886 |#1|))) $)) (-15 -2314 ((-385 (-886 |#1|)) $)) (-15 -2638 ((-385 (-886 |#1|)) $)) (-15 -3186 ((-385 (-886 |#1|)) $ $)) (-15 -4097 ((-385 (-886 |#1|)))) (-15 -3312 ((-385 (-886 |#1|)) $ $)) (-15 -1847 ((-385 (-886 |#1|)))) (-15 -4125 ((-592 (-886 |#1|)) (-1172 $))) (-15 -4125 ((-592 (-886 |#1|))))) |%noBranch|))) (-160) (-855) (-592 (-1090)) (-1172 (-632 |#1|))) (T -430)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 *3)))) (-4 *3 (-160)) (-14 *6 (-1172 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))))) (-3609 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -2734 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-1922 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -2734 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-1879 (*1 *1) (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-855)) (-14 *4 (-592 (-1090))) (-14 *5 (-1172 (-632 *2))))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 *2)) (-14 *6 (-1172 (-632 *3))))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-1172 (-1090))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-1172 (-430 *3 *4 *5 *6))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-1879 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-430 *4 *5 *6 *7))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-855)) (-14 *6 (-592 *2)) (-14 *7 (-1172 (-632 *4))))) (-1879 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 (-1090))) (-5 *3 (-1172 (-430 *4 *5 *6 *7))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-855)) (-14 *6 (-592 (-1090))) (-14 *7 (-1172 (-632 *4))))) (-1376 (*1 *2) (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3558 (*1 *2) (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3186 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-4097 (*1 *2) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3312 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-1847 (*1 *2) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-1172 (-430 *4 *5 *6 *7))) (-5 *2 (-592 (-886 *4))) (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *4 (-160)) (-14 *5 (-855)) (-14 *6 (-592 (-1090))) (-14 *7 (-1172 (-632 *4))))) (-4125 (*1 *2) (-12 (-5 *2 (-592 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(-13 (-395 (-385 (-886 |#1|))) (-594 (-1057 |#2| (-385 (-886 |#1|)))) (-10 -8 (-15 -4044 ($ (-1172 (-385 (-886 |#1|))))) (-15 -3609 ((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed"))) (-15 -1922 ((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed"))) (-15 -1879 ($)) (-15 -1879 ($ (-1090))) (-15 -1879 ($ (-1172 (-1090)))) (-15 -1879 ($ (-1172 $))) (-15 -1879 ($ (-1090) (-1172 $))) (-15 -1879 ($ (-1172 (-1090)) (-1172 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -1376 ((-1086 (-385 (-886 |#1|))))) (-15 -1863 ((-1086 (-385 (-886 |#1|))) $)) (-15 -3371 ((-385 (-886 |#1|)) $)) (-15 -2656 ((-385 (-886 |#1|)) $)) (-15 -3558 ((-1086 (-385 (-886 |#1|))))) (-15 -1517 ((-1086 (-385 (-886 |#1|))) $)) (-15 -2314 ((-385 (-886 |#1|)) $)) (-15 -2638 ((-385 (-886 |#1|)) $)) (-15 -3186 ((-385 (-886 |#1|)) $ $)) (-15 -4097 ((-385 (-886 |#1|)))) (-15 -3312 ((-385 (-886 |#1|)) $ $)) (-15 -1847 ((-385 (-886 |#1|)))) (-15 -4125 ((-592 (-886 |#1|)) (-1172 $))) (-15 -4125 ((-592 (-886 |#1|))))) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 13)) (-3122 (((-592 (-799 |#1|)) $) 75)) (-1315 (((-1086 $) $ (-799 |#1|)) 46) (((-1086 |#2|) $) 118)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2609 (($ $) NIL (|has| |#2| (-517)))) (-1220 (((-108) $) NIL (|has| |#2| (-517)))) (-2874 (((-713) $) 21) (((-713) $ (-592 (-799 |#1|))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2701 (($ $) NIL (|has| |#2| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) 44) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-799 |#1|) "failed") $) NIL)) (-2068 ((|#2| $) 42) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-799 |#1|) $) NIL)) (-3048 (($ $ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-1711 (($ $ (-592 (-525))) 80)) (-3306 (($ $) 68)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#2| (-843)))) (-2187 (($ $ |#2| |#3| $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) 58)) (-3110 (($ (-1086 |#2|) (-799 |#1|)) 123) (($ (-1086 $) (-799 |#1|)) 52)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) 59)) (-3097 (($ |#2| |#3|) 28) (($ $ (-799 |#1|) (-713)) 30) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-799 |#1|)) NIL)) (-3762 ((|#3| $) NIL) (((-713) $ (-799 |#1|)) 50) (((-592 (-713)) $ (-592 (-799 |#1|))) 57)) (-1260 (($ $ $) NIL (|has| |#2| (-789)))) (-2154 (($ $ $) NIL (|has| |#2| (-789)))) (-2078 (($ (-1 |#3| |#3|) $) NIL)) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-3869 (((-3 (-799 |#1|) "failed") $) 39)) (-3277 (($ $) NIL)) (-3286 ((|#2| $) 41)) (-2226 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1707 (((-1073) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-799 |#1|)) (|:| -1737 (-713))) "failed") $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) 40)) (-3267 ((|#2| $) 116)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) 128 (|has| |#2| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2675 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-799 |#1|) |#2|) 87) (($ $ (-592 (-799 |#1|)) (-592 |#2|)) 90) (($ $ (-799 |#1|) $) 85) (($ $ (-592 (-799 |#1|)) (-592 $)) 106)) (-2257 (($ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-1576 (($ $ (-799 |#1|)) 53) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-1486 ((|#3| $) 67) (((-713) $ (-799 |#1|)) 37) (((-592 (-713)) $ (-592 (-799 |#1|))) 56)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-799 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2758 ((|#2| $) 125 (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-4044 (((-797) $) 145) (($ (-525)) NIL) (($ |#2|) 86) (($ (-799 |#1|)) 31) (($ (-385 (-525))) NIL (-3215 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3681 (((-592 |#2|) $) NIL)) (-2100 ((|#2| $ |#3|) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 17 T CONST)) (-1449 (($) 25 T CONST)) (-1990 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3973 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4047 (($ $ |#2|) 64 (|has| |#2| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 111)) (** (($ $ (-855)) NIL) (($ $ (-713)) 109)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 29) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-431 |#1| |#2| |#3|) (-13 (-883 |#2| |#3| (-799 |#1|)) (-10 -8 (-15 -1711 ($ $ (-592 (-525)))))) (-592 (-1090)) (-976) (-218 (-1696 |#1|) (-713))) (T -431)) +((-1711 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1090))) (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-976)) (-4 *5 (-218 (-1696 *3) (-713)))))) +(-13 (-883 |#2| |#3| (-799 |#1|)) (-10 -8 (-15 -1711 ($ $ (-592 (-525)))))) +((-3403 (((-108) |#1| (-592 |#2|)) 69)) (-2250 (((-3 (-1172 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|)) 78)) (-1750 (((-3 (-592 |#2|) "failed") |#2| |#1| (-1172 (-592 |#2|))) 80)) (-3934 ((|#2| |#2| |#1|) 28)) (-1508 (((-713) |#2| (-592 |#2|)) 20))) +(((-432 |#1| |#2|) (-10 -7 (-15 -3934 (|#2| |#2| |#1|)) (-15 -1508 ((-713) |#2| (-592 |#2|))) (-15 -2250 ((-3 (-1172 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -1750 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1172 (-592 |#2|)))) (-15 -3403 ((-108) |#1| (-592 |#2|)))) (-286) (-1148 |#1|)) (T -432)) +((-3403 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-1148 *3)) (-4 *3 (-286)) (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))) (-1750 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1172 (-592 *3))) (-4 *4 (-286)) (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)) (-4 *3 (-1148 *4)))) (-2250 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1148 *4)) (-5 *2 (-1172 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-286)) (-5 *2 (-713)) (-5 *1 (-432 *5 *3)))) (-3934 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1148 *3))))) +(-10 -7 (-15 -3934 (|#2| |#2| |#1|)) (-15 -1508 ((-713) |#2| (-592 |#2|))) (-15 -2250 ((-3 (-1172 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -1750 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1172 (-592 |#2|)))) (-15 -3403 ((-108) |#1| (-592 |#2|)))) +((-2961 (((-396 |#5|) |#5|) 24))) +(((-433 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2961 ((-396 |#5|) |#5|))) (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090))))) (-735) (-517) (-517) (-883 |#4| |#2| |#1|)) (T -433)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090)))))) (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517)) (-4 *3 (-883 *7 *5 *4))))) +(-10 -7 (-15 -2961 ((-396 |#5|) |#5|))) +((-3535 ((|#3|) 37)) (-2160 (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 33))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2160 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3535 (|#3|))) (-735) (-789) (-843) (-883 |#3| |#1| |#2|)) (T -434)) +((-3535 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-843)) (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-883 *2 *3 *4)))) (-2160 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-843)) (-5 *1 (-434 *3 *4 *5 *6))))) +(-10 -7 (-15 -2160 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3535 (|#3|))) +((-2961 (((-396 (-1086 |#1|)) (-1086 |#1|)) 43))) +(((-435 |#1|) (-10 -7 (-15 -2961 ((-396 (-1086 |#1|)) (-1086 |#1|)))) (-286)) (T -435)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1086 *4))) (-5 *1 (-435 *4)) (-5 *3 (-1086 *4))))) +(-10 -7 (-15 -2961 ((-396 (-1086 |#1|)) (-1086 |#1|)))) +((-3181 (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-713))) 42) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-713))) 41) (((-51) |#2| (-1090) (-273 |#2|)) 35) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 28)) (-4231 (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))) 80) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))) 79) (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525))) 78) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525))) 77) (((-51) |#2| (-1090) (-273 |#2|)) 72) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 71)) (-3213 (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))) 66) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))) 64)) (-3199 (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525))) 48) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525))) 47))) +(((-436 |#1| |#2|) (-10 -7 (-15 -3181 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -3181 ((-51) |#2| (-1090) (-273 |#2|))) (-15 -3181 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-713)))) (-15 -3181 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-713)))) (-15 -3199 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525)))) (-15 -3199 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525)))) (-15 -3213 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -3213 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -4231 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -4231 ((-51) |#2| (-1090) (-273 |#2|))) (-15 -4231 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525)))) (-15 -4231 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525)))) (-15 -4231 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -4231 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))))) (-13 (-517) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -436)) +((-4231 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-4231 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1139 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-4231 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-4231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-525))) (-4 *7 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-4231 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) (-3213 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-3213 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1139 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-3199 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-3199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-525))) (-4 *7 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-3181 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-713))) (-4 *3 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-3181 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-713))) (-4 *7 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-3181 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))) +(-10 -7 (-15 -3181 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -3181 ((-51) |#2| (-1090) (-273 |#2|))) (-15 -3181 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-713)))) (-15 -3181 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-713)))) (-15 -3199 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525)))) (-15 -3199 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525)))) (-15 -3213 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -3213 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -4231 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -4231 ((-51) |#2| (-1090) (-273 |#2|))) (-15 -4231 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525)))) (-15 -4231 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525)))) (-15 -4231 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -4231 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))))) +((-3934 ((|#2| |#2| |#1|) 15)) (-3581 (((-592 |#2|) |#2| (-592 |#2|) |#1| (-855)) 69)) (-2660 (((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-855)) 60))) +(((-437 |#1| |#2|) (-10 -7 (-15 -2660 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-855))) (-15 -3581 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-855))) (-15 -3934 (|#2| |#2| |#1|))) (-286) (-1148 |#1|)) (T -437)) +((-3934 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1148 *3)))) (-3581 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-592 *3)) (-5 *5 (-855)) (-4 *3 (-1148 *4)) (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))) (-2660 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-855)) (-4 *5 (-286)) (-4 *3 (-1148 *5)) (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5))) (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3))))) +(-10 -7 (-15 -2660 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-855))) (-15 -3581 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-855))) (-15 -3934 (|#2| |#2| |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 28)) (-3510 (($ |#3|) 25)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-3306 (($ $) 32)) (-2886 (($ |#2| |#4| $) 33)) (-3097 (($ |#2| (-656 |#3| |#4| |#5|)) 24)) (-3277 (((-656 |#3| |#4| |#5|) $) 15)) (-2201 ((|#3| $) 19)) (-3780 ((|#4| $) 17)) (-3286 ((|#2| $) 29)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-3188 (($ |#2| |#3| |#4|) 26)) (-1436 (($) 36 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 34)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-438 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -3286 (|#2| $)) (-15 -3277 ((-656 |#3| |#4| |#5|) $)) (-15 -3780 (|#4| $)) (-15 -2201 (|#3| $)) (-15 -3306 ($ $)) (-15 -3097 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -3510 ($ |#3|)) (-15 -3188 ($ |#2| |#3| |#4|)) (-15 -2886 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-592 (-1090)) (-160) (-789) (-218 (-1696 |#1|) (-713)) (-1 (-108) (-2 (|:| -3381 |#3|) (|:| -1737 |#4|)) (-2 (|:| -3381 |#3|) (|:| -1737 |#4|))) (-883 |#2| |#4| (-799 |#1|))) (T -438)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-4 *6 (-218 (-1696 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *6)) (-2 (|:| -3381 *5) (|:| -1737 *6)))) (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *2 (-883 *4 *6 (-799 *3))))) (-3286 (*1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *5 (-218 (-1696 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3381 *4) (|:| -1737 *5)) (-2 (|:| -3381 *4) (|:| -1737 *5)))) (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-883 *2 *5 (-799 *3))))) (-3277 (*1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-4 *6 (-218 (-1696 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *6)) (-2 (|:| -3381 *5) (|:| -1737 *6)))) (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8)) (-4 *5 (-789)) (-4 *8 (-883 *4 *6 (-799 *3))))) (-3780 (*1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-14 *6 (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *2)) (-2 (|:| -3381 *5) (|:| -1737 *2)))) (-4 *2 (-218 (-1696 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7)) (-4 *5 (-789)) (-4 *7 (-883 *4 *2 (-799 *3))))) (-2201 (*1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-4 *5 (-218 (-1696 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3381 *2) (|:| -1737 *5)) (-2 (|:| -3381 *2) (|:| -1737 *5)))) (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *7 (-883 *4 *5 (-799 *3))))) (-3306 (*1 *1 *1) (-12 (-14 *2 (-592 (-1090))) (-4 *3 (-160)) (-4 *5 (-218 (-1696 *2) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3381 *4) (|:| -1737 *5)) (-2 (|:| -3381 *4) (|:| -1737 *5)))) (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-883 *3 *5 (-799 *2))))) (-3097 (*1 *1 *2 *3) (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789)) (-4 *6 (-218 (-1696 *4) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *6)) (-2 (|:| -3381 *5) (|:| -1737 *6)))) (-14 *4 (-592 (-1090))) (-4 *2 (-160)) (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-883 *2 *6 (-799 *4))))) (-3510 (*1 *1 *2) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-4 *5 (-218 (-1696 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3381 *2) (|:| -1737 *5)) (-2 (|:| -3381 *2) (|:| -1737 *5)))) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-789)) (-4 *7 (-883 *4 *5 (-799 *3))))) (-3188 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-592 (-1090))) (-4 *2 (-160)) (-4 *4 (-218 (-1696 *5) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3381 *3) (|:| -1737 *4)) (-2 (|:| -3381 *3) (|:| -1737 *4)))) (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789)) (-4 *7 (-883 *2 *4 (-799 *5))))) (-2886 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-592 (-1090))) (-4 *2 (-160)) (-4 *3 (-218 (-1696 *4) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *3)) (-2 (|:| -3381 *5) (|:| -1737 *3)))) (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789)) (-4 *7 (-883 *2 *3 (-799 *4)))))) +(-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -3286 (|#2| $)) (-15 -3277 ((-656 |#3| |#4| |#5|) $)) (-15 -3780 (|#4| $)) (-15 -2201 (|#3| $)) (-15 -3306 ($ $)) (-15 -3097 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -3510 ($ |#3|)) (-15 -3188 ($ |#2| |#3| |#4|)) (-15 -2886 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-1543 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-439 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1543 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-735) (-789) (-517) (-883 |#3| |#1| |#2|) (-13 (-967 (-385 (-525))) (-341) (-10 -8 (-15 -4044 ($ |#4|)) (-15 -1936 (|#4| $)) (-15 -1945 (|#4| $))))) (T -439)) +((-1543 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735)) (-4 *6 (-517)) (-4 *7 (-883 *6 *5 *3)) (-5 *1 (-439 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-967 (-385 (-525))) (-341) (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $)))))))) +(-10 -7 (-15 -1543 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-4028 (((-108) $ $) NIL)) (-3122 (((-592 |#3|) $) 41)) (-4037 (((-108) $) NIL)) (-3410 (((-108) $) NIL (|has| |#1| (-517)))) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1249 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-4164 (((-108) $) NIL (|has| |#1| (-517)))) (-1333 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3508 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3364 (((-108) $) NIL (|has| |#1| (-517)))) (-2523 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) 47)) (-2068 (($ (-592 |#4|)) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254)))) (-3781 (((-592 |#4|) $) 18 (|has| $ (-6 -4254)))) (-3632 ((|#3| $) 45)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#4|) $) 14 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2540 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 21)) (-4210 (((-592 |#3|) $) NIL)) (-1506 (((-108) |#3| $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3027 (((-1037) $) NIL)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3669 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 39)) (-3266 (($) 17)) (-3053 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) 16)) (-2923 (((-501) $) NIL (|has| |#4| (-567 (-501)))) (($ (-592 |#4|)) 49)) (-4059 (($ (-592 |#4|)) 13)) (-2484 (($ $ |#3|) NIL)) (-4016 (($ $ |#3|) NIL)) (-3967 (($ $ |#3|) NIL)) (-4044 (((-797) $) 38) (((-592 |#4|) $) 48)) (-2443 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 30)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-440 |#1| |#2| |#3| |#4|) (-13 (-908 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2923 ($ (-592 |#4|))) (-6 -4254) (-6 -4255))) (-976) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -440)) +((-2923 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-440 *3 *4 *5 *6))))) +(-13 (-908 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2923 ($ (-592 |#4|))) (-6 -4254) (-6 -4255))) +((-1436 (($) 11)) (-1449 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-441 |#1| |#2| |#3|) (-10 -8 (-15 -1449 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1436 (|#1|))) (-442 |#2| |#3|) (-160) (-23)) (T -441)) +NIL +(-10 -8 (-15 -1449 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1436 (|#1|))) +((-4028 (((-108) $ $) 7)) (-2769 (((-3 |#1| "failed") $) 26)) (-2068 ((|#1| $) 25)) (-3292 (($ $ $) 23)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1486 ((|#2| $) 19)) (-4044 (((-797) $) 11) (($ |#1|) 27)) (-1436 (($) 18 T CONST)) (-1449 (($) 24 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 15) (($ $ $) 13)) (-4017 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-442 |#1| |#2|) (-131) (-160) (-23)) (T -442)) -((-1839 (*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-1922 (*1 *1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))) -(-13 (-447 |t#1| |t#2|) (-966 |t#1|) (-10 -8 (-15 (-1839) ($) -2277) (-15 -1922 ($ $ $)))) -(((-97) . T) ((-565 (-796)) . T) ((-447 |#1| |#2|) . T) ((-966 |#1|) . T) ((-1018) . T)) -((-2057 (((-1171 (-1171 (-525))) (-1171 (-1171 (-525))) (-854)) 18)) (-2566 (((-1171 (-1171 (-525))) (-854)) 16))) -(((-443) (-10 -7 (-15 -2057 ((-1171 (-1171 (-525))) (-1171 (-1171 (-525))) (-854))) (-15 -2566 ((-1171 (-1171 (-525))) (-854))))) (T -443)) -((-2566 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1171 (-1171 (-525)))) (-5 *1 (-443)))) (-2057 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-1171 (-525)))) (-5 *3 (-854)) (-5 *1 (-443))))) -(-10 -7 (-15 -2057 ((-1171 (-1171 (-525))) (-1171 (-1171 (-525))) (-854))) (-15 -2566 ((-1171 (-1171 (-525))) (-854)))) -((-2101 (((-525) (-525)) 30) (((-525)) 22)) (-1366 (((-525) (-525)) 26) (((-525)) 18)) (-2654 (((-525) (-525)) 28) (((-525)) 20)) (-2014 (((-108) (-108)) 12) (((-108)) 10)) (-2704 (((-108) (-108)) 11) (((-108)) 9)) (-3379 (((-108) (-108)) 24) (((-108)) 15))) -(((-444) (-10 -7 (-15 -2704 ((-108))) (-15 -2014 ((-108))) (-15 -2704 ((-108) (-108))) (-15 -2014 ((-108) (-108))) (-15 -3379 ((-108))) (-15 -2654 ((-525))) (-15 -1366 ((-525))) (-15 -2101 ((-525))) (-15 -3379 ((-108) (-108))) (-15 -2654 ((-525) (-525))) (-15 -1366 ((-525) (-525))) (-15 -2101 ((-525) (-525))))) (T -444)) -((-2101 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1366 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-2101 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1366 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2654 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-3379 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-2704 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-2014 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-2704 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))) -(-10 -7 (-15 -2704 ((-108))) (-15 -2014 ((-108))) (-15 -2704 ((-108) (-108))) (-15 -2014 ((-108) (-108))) (-15 -3379 ((-108))) (-15 -2654 ((-525))) (-15 -1366 ((-525))) (-15 -2101 ((-525))) (-15 -3379 ((-108) (-108))) (-15 -2654 ((-525) (-525))) (-15 -1366 ((-525) (-525))) (-15 -2101 ((-525) (-525)))) -((-2673 (((-108) $ $) NIL)) (-3094 (((-591 (-357)) $) 28) (((-591 (-357)) $ (-591 (-357))) 95)) (-3830 (((-591 (-1013 (-357))) $) 16) (((-591 (-1013 (-357))) $ (-591 (-1013 (-357)))) 92)) (-1498 (((-591 (-591 (-876 (-205)))) (-591 (-591 (-876 (-205)))) (-591 (-807))) 44)) (-3975 (((-591 (-591 (-876 (-205)))) $) 88)) (-1867 (((-1176) $ (-876 (-205)) (-807)) 107)) (-3168 (($ $) 87) (($ (-591 (-591 (-876 (-205))))) 98) (($ (-591 (-591 (-876 (-205)))) (-591 (-807)) (-591 (-807)) (-591 (-854))) 97) (($ (-591 (-591 (-876 (-205)))) (-591 (-807)) (-591 (-807)) (-591 (-854)) (-591 (-242))) 99)) (-2621 (((-1072) $) NIL)) (-1265 (((-525) $) 69)) (-2937 (((-1036) $) NIL)) (-3240 (($) 96)) (-1800 (((-591 (-205)) (-591 (-591 (-876 (-205))))) 54)) (-1952 (((-1176) $ (-591 (-876 (-205))) (-807) (-807) (-854)) 101) (((-1176) $ (-876 (-205))) 103) (((-1176) $ (-876 (-205)) (-807) (-807) (-854)) 102)) (-2686 (((-796) $) 113) (($ (-591 (-591 (-876 (-205))))) 108)) (-1270 (((-1176) $ (-876 (-205))) 106)) (-3944 (((-108) $ $) NIL))) -(((-445) (-13 (-1018) (-10 -8 (-15 -3240 ($)) (-15 -3168 ($ $)) (-15 -3168 ($ (-591 (-591 (-876 (-205)))))) (-15 -3168 ($ (-591 (-591 (-876 (-205)))) (-591 (-807)) (-591 (-807)) (-591 (-854)))) (-15 -3168 ($ (-591 (-591 (-876 (-205)))) (-591 (-807)) (-591 (-807)) (-591 (-854)) (-591 (-242)))) (-15 -3975 ((-591 (-591 (-876 (-205)))) $)) (-15 -1265 ((-525) $)) (-15 -3830 ((-591 (-1013 (-357))) $)) (-15 -3830 ((-591 (-1013 (-357))) $ (-591 (-1013 (-357))))) (-15 -3094 ((-591 (-357)) $)) (-15 -3094 ((-591 (-357)) $ (-591 (-357)))) (-15 -1952 ((-1176) $ (-591 (-876 (-205))) (-807) (-807) (-854))) (-15 -1952 ((-1176) $ (-876 (-205)))) (-15 -1952 ((-1176) $ (-876 (-205)) (-807) (-807) (-854))) (-15 -1270 ((-1176) $ (-876 (-205)))) (-15 -1867 ((-1176) $ (-876 (-205)) (-807))) (-15 -2686 ($ (-591 (-591 (-876 (-205)))))) (-15 -2686 ((-796) $)) (-15 -1498 ((-591 (-591 (-876 (-205)))) (-591 (-591 (-876 (-205)))) (-591 (-807)))) (-15 -1800 ((-591 (-205)) (-591 (-591 (-876 (-205))))))))) (T -445)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-445)))) (-3240 (*1 *1) (-5 *1 (-445))) (-3168 (*1 *1 *1) (-5 *1 (-445))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *1 (-445)))) (-3168 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *3 (-591 (-807))) (-5 *4 (-591 (-854))) (-5 *1 (-445)))) (-3168 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *3 (-591 (-807))) (-5 *4 (-591 (-854))) (-5 *5 (-591 (-242))) (-5 *1 (-445)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *1 (-445)))) (-1265 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-445)))) (-3830 (*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-445)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-591 (-357))) (-5 *1 (-445)))) (-3094 (*1 *2 *1 *2) (-12 (-5 *2 (-591 (-357))) (-5 *1 (-445)))) (-1952 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-591 (-876 (-205)))) (-5 *4 (-807)) (-5 *5 (-854)) (-5 *2 (-1176)) (-5 *1 (-445)))) (-1952 (*1 *2 *1 *3) (-12 (-5 *3 (-876 (-205))) (-5 *2 (-1176)) (-5 *1 (-445)))) (-1952 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-876 (-205))) (-5 *4 (-807)) (-5 *5 (-854)) (-5 *2 (-1176)) (-5 *1 (-445)))) (-1270 (*1 *2 *1 *3) (-12 (-5 *3 (-876 (-205))) (-5 *2 (-1176)) (-5 *1 (-445)))) (-1867 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-876 (-205))) (-5 *4 (-807)) (-5 *2 (-1176)) (-5 *1 (-445)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *1 (-445)))) (-1498 (*1 *2 *2 *3) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *3 (-591 (-807))) (-5 *1 (-445)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *2 (-591 (-205))) (-5 *1 (-445))))) -(-13 (-1018) (-10 -8 (-15 -3240 ($)) (-15 -3168 ($ $)) (-15 -3168 ($ (-591 (-591 (-876 (-205)))))) (-15 -3168 ($ (-591 (-591 (-876 (-205)))) (-591 (-807)) (-591 (-807)) (-591 (-854)))) (-15 -3168 ($ (-591 (-591 (-876 (-205)))) (-591 (-807)) (-591 (-807)) (-591 (-854)) (-591 (-242)))) (-15 -3975 ((-591 (-591 (-876 (-205)))) $)) (-15 -1265 ((-525) $)) (-15 -3830 ((-591 (-1013 (-357))) $)) (-15 -3830 ((-591 (-1013 (-357))) $ (-591 (-1013 (-357))))) (-15 -3094 ((-591 (-357)) $)) (-15 -3094 ((-591 (-357)) $ (-591 (-357)))) (-15 -1952 ((-1176) $ (-591 (-876 (-205))) (-807) (-807) (-854))) (-15 -1952 ((-1176) $ (-876 (-205)))) (-15 -1952 ((-1176) $ (-876 (-205)) (-807) (-807) (-854))) (-15 -1270 ((-1176) $ (-876 (-205)))) (-15 -1867 ((-1176) $ (-876 (-205)) (-807))) (-15 -2686 ($ (-591 (-591 (-876 (-205)))))) (-15 -2686 ((-796) $)) (-15 -1498 ((-591 (-591 (-876 (-205)))) (-591 (-591 (-876 (-205)))) (-591 (-807)))) (-15 -1800 ((-591 (-205)) (-591 (-591 (-876 (-205)))))))) -((-4047 (($ $) NIL) (($ $ $) 11))) -(((-446 |#1| |#2| |#3|) (-10 -8 (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|))) (-447 |#2| |#3|) (-160) (-23)) (T -446)) -NIL -(-10 -8 (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2743 ((|#2| $) 19)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 15) (($ $ $) 13)) (-4036 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-1449 (*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-3292 (*1 *1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))) +(-13 (-447 |t#1| |t#2|) (-967 |t#1|) (-10 -8 (-15 (-1449) ($) -3219) (-15 -3292 ($ $ $)))) +(((-97) . T) ((-566 (-797)) . T) ((-447 |#1| |#2|) . T) ((-967 |#1|) . T) ((-1019) . T)) +((-2117 (((-1172 (-1172 (-525))) (-1172 (-1172 (-525))) (-855)) 18)) (-2791 (((-1172 (-1172 (-525))) (-855)) 16))) +(((-443) (-10 -7 (-15 -2117 ((-1172 (-1172 (-525))) (-1172 (-1172 (-525))) (-855))) (-15 -2791 ((-1172 (-1172 (-525))) (-855))))) (T -443)) +((-2791 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 (-1172 (-525)))) (-5 *1 (-443)))) (-2117 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 (-1172 (-525)))) (-5 *3 (-855)) (-5 *1 (-443))))) +(-10 -7 (-15 -2117 ((-1172 (-1172 (-525))) (-1172 (-1172 (-525))) (-855))) (-15 -2791 ((-1172 (-1172 (-525))) (-855)))) +((-4108 (((-525) (-525)) 30) (((-525)) 22)) (-2800 (((-525) (-525)) 26) (((-525)) 18)) (-2566 (((-525) (-525)) 28) (((-525)) 20)) (-3680 (((-108) (-108)) 12) (((-108)) 10)) (-4199 (((-108) (-108)) 11) (((-108)) 9)) (-2521 (((-108) (-108)) 24) (((-108)) 15))) +(((-444) (-10 -7 (-15 -4199 ((-108))) (-15 -3680 ((-108))) (-15 -4199 ((-108) (-108))) (-15 -3680 ((-108) (-108))) (-15 -2521 ((-108))) (-15 -2566 ((-525))) (-15 -2800 ((-525))) (-15 -4108 ((-525))) (-15 -2521 ((-108) (-108))) (-15 -2566 ((-525) (-525))) (-15 -2800 ((-525) (-525))) (-15 -4108 ((-525) (-525))))) (T -444)) +((-4108 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2521 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-4108 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2800 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2566 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2521 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3680 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-4199 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3680 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-4199 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))) +(-10 -7 (-15 -4199 ((-108))) (-15 -3680 ((-108))) (-15 -4199 ((-108) (-108))) (-15 -3680 ((-108) (-108))) (-15 -2521 ((-108))) (-15 -2566 ((-525))) (-15 -2800 ((-525))) (-15 -4108 ((-525))) (-15 -2521 ((-108) (-108))) (-15 -2566 ((-525) (-525))) (-15 -2800 ((-525) (-525))) (-15 -4108 ((-525) (-525)))) +((-4028 (((-108) $ $) NIL)) (-3855 (((-592 (-357)) $) 28) (((-592 (-357)) $ (-592 (-357))) 95)) (-2542 (((-592 (-1014 (-357))) $) 16) (((-592 (-1014 (-357))) $ (-592 (-1014 (-357)))) 92)) (-2887 (((-592 (-592 (-877 (-205)))) (-592 (-592 (-877 (-205)))) (-592 (-808))) 44)) (-2639 (((-592 (-592 (-877 (-205)))) $) 88)) (-4183 (((-1177) $ (-877 (-205)) (-808)) 107)) (-2450 (($ $) 87) (($ (-592 (-592 (-877 (-205))))) 98) (($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855))) 97) (($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)) (-592 (-242))) 99)) (-1707 (((-1073) $) NIL)) (-3160 (((-525) $) 69)) (-3027 (((-1037) $) NIL)) (-3358 (($) 96)) (-1732 (((-592 (-205)) (-592 (-592 (-877 (-205))))) 54)) (-3019 (((-1177) $ (-592 (-877 (-205))) (-808) (-808) (-855)) 101) (((-1177) $ (-877 (-205))) 103) (((-1177) $ (-877 (-205)) (-808) (-808) (-855)) 102)) (-4044 (((-797) $) 113) (($ (-592 (-592 (-877 (-205))))) 108)) (-1394 (((-1177) $ (-877 (-205))) 106)) (-3899 (((-108) $ $) NIL))) +(((-445) (-13 (-1019) (-10 -8 (-15 -3358 ($)) (-15 -2450 ($ $)) (-15 -2450 ($ (-592 (-592 (-877 (-205)))))) (-15 -2450 ($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)))) (-15 -2450 ($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)) (-592 (-242)))) (-15 -2639 ((-592 (-592 (-877 (-205)))) $)) (-15 -3160 ((-525) $)) (-15 -2542 ((-592 (-1014 (-357))) $)) (-15 -2542 ((-592 (-1014 (-357))) $ (-592 (-1014 (-357))))) (-15 -3855 ((-592 (-357)) $)) (-15 -3855 ((-592 (-357)) $ (-592 (-357)))) (-15 -3019 ((-1177) $ (-592 (-877 (-205))) (-808) (-808) (-855))) (-15 -3019 ((-1177) $ (-877 (-205)))) (-15 -3019 ((-1177) $ (-877 (-205)) (-808) (-808) (-855))) (-15 -1394 ((-1177) $ (-877 (-205)))) (-15 -4183 ((-1177) $ (-877 (-205)) (-808))) (-15 -4044 ($ (-592 (-592 (-877 (-205)))))) (-15 -4044 ((-797) $)) (-15 -2887 ((-592 (-592 (-877 (-205)))) (-592 (-592 (-877 (-205)))) (-592 (-808)))) (-15 -1732 ((-592 (-205)) (-592 (-592 (-877 (-205))))))))) (T -445)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-445)))) (-3358 (*1 *1) (-5 *1 (-445))) (-2450 (*1 *1 *1) (-5 *1 (-445))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445)))) (-2450 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808))) (-5 *4 (-592 (-855))) (-5 *1 (-445)))) (-2450 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808))) (-5 *4 (-592 (-855))) (-5 *5 (-592 (-242))) (-5 *1 (-445)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-445)))) (-2542 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-445)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-3855 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-3019 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *4 (-808)) (-5 *5 (-855)) (-5 *2 (-1177)) (-5 *1 (-445)))) (-3019 (*1 *2 *1 *3) (-12 (-5 *3 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-445)))) (-3019 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-205))) (-5 *4 (-808)) (-5 *5 (-855)) (-5 *2 (-1177)) (-5 *1 (-445)))) (-1394 (*1 *2 *1 *3) (-12 (-5 *3 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-445)))) (-4183 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-877 (-205))) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-445)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445)))) (-2887 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808))) (-5 *1 (-445)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-592 (-205))) (-5 *1 (-445))))) +(-13 (-1019) (-10 -8 (-15 -3358 ($)) (-15 -2450 ($ $)) (-15 -2450 ($ (-592 (-592 (-877 (-205)))))) (-15 -2450 ($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)))) (-15 -2450 ($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)) (-592 (-242)))) (-15 -2639 ((-592 (-592 (-877 (-205)))) $)) (-15 -3160 ((-525) $)) (-15 -2542 ((-592 (-1014 (-357))) $)) (-15 -2542 ((-592 (-1014 (-357))) $ (-592 (-1014 (-357))))) (-15 -3855 ((-592 (-357)) $)) (-15 -3855 ((-592 (-357)) $ (-592 (-357)))) (-15 -3019 ((-1177) $ (-592 (-877 (-205))) (-808) (-808) (-855))) (-15 -3019 ((-1177) $ (-877 (-205)))) (-15 -3019 ((-1177) $ (-877 (-205)) (-808) (-808) (-855))) (-15 -1394 ((-1177) $ (-877 (-205)))) (-15 -4183 ((-1177) $ (-877 (-205)) (-808))) (-15 -4044 ($ (-592 (-592 (-877 (-205)))))) (-15 -4044 ((-797) $)) (-15 -2887 ((-592 (-592 (-877 (-205)))) (-592 (-592 (-877 (-205)))) (-592 (-808)))) (-15 -1732 ((-592 (-205)) (-592 (-592 (-877 (-205)))))))) +((-4033 (($ $) NIL) (($ $ $) 11))) +(((-446 |#1| |#2| |#3|) (-10 -8 (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|))) (-447 |#2| |#3|) (-160) (-23)) (T -446)) +NIL +(-10 -8 (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1486 ((|#2| $) 19)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 15) (($ $ $) 13)) (-4017 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-447 |#1| |#2|) (-131) (-160) (-23)) (T -447)) -((-2743 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23)))) (-1830 (*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4047 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))) -(-13 (-1018) (-10 -8 (-15 -2743 (|t#2| $)) (-15 (-1830) ($) -2277) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4047 ($ $)) (-15 -4036 ($ $ $)) (-15 -4047 ($ $ $)))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2493 (((-3 (-591 (-457 |#1| |#2|)) "failed") (-591 (-457 |#1| |#2|)) (-591 (-798 |#1|))) 93)) (-1364 (((-591 (-591 (-227 |#1| |#2|))) (-591 (-227 |#1| |#2|)) (-591 (-798 |#1|))) 91)) (-3402 (((-2 (|:| |dpolys| (-591 (-227 |#1| |#2|))) (|:| |coords| (-591 (-525)))) (-591 (-227 |#1| |#2|)) (-591 (-798 |#1|))) 61))) -(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -1364 ((-591 (-591 (-227 |#1| |#2|))) (-591 (-227 |#1| |#2|)) (-591 (-798 |#1|)))) (-15 -2493 ((-3 (-591 (-457 |#1| |#2|)) "failed") (-591 (-457 |#1| |#2|)) (-591 (-798 |#1|)))) (-15 -3402 ((-2 (|:| |dpolys| (-591 (-227 |#1| |#2|))) (|:| |coords| (-591 (-525)))) (-591 (-227 |#1| |#2|)) (-591 (-798 |#1|))))) (-591 (-1089)) (-429) (-429)) (T -448)) -((-3402 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-798 *5))) (-14 *5 (-591 (-1089))) (-4 *6 (-429)) (-5 *2 (-2 (|:| |dpolys| (-591 (-227 *5 *6))) (|:| |coords| (-591 (-525))))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-591 (-227 *5 *6))) (-4 *7 (-429)))) (-2493 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-591 (-457 *4 *5))) (-5 *3 (-591 (-798 *4))) (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6)) (-4 *6 (-429)))) (-1364 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-798 *5))) (-14 *5 (-591 (-1089))) (-4 *6 (-429)) (-5 *2 (-591 (-591 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-591 (-227 *5 *6))) (-4 *7 (-429))))) -(-10 -7 (-15 -1364 ((-591 (-591 (-227 |#1| |#2|))) (-591 (-227 |#1| |#2|)) (-591 (-798 |#1|)))) (-15 -2493 ((-3 (-591 (-457 |#1| |#2|)) "failed") (-591 (-457 |#1| |#2|)) (-591 (-798 |#1|)))) (-15 -3402 ((-2 (|:| |dpolys| (-591 (-227 |#1| |#2|))) (|:| |coords| (-591 (-525)))) (-591 (-227 |#1| |#2|)) (-591 (-798 |#1|))))) -((-1522 (((-3 $ "failed") $) 11)) (-3369 (($ $ $) 20)) (-4027 (($ $ $) 21)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 14)) (-4059 (($ $ $) 9)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 19))) -(((-449 |#1|) (-10 -8 (-15 -4027 (|#1| |#1| |#1|)) (-15 -3369 (|#1| |#1| |#1|)) (-15 -1401 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1522 ((-3 |#1| "failed") |#1|)) (-15 -1401 (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-712))) (-15 -1401 (|#1| |#1| (-854))) (-15 ** (|#1| |#1| (-854)))) (-450)) (T -449)) -NIL -(-10 -8 (-15 -4027 (|#1| |#1| |#1|)) (-15 -3369 (|#1| |#1| |#1|)) (-15 -1401 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1522 ((-3 |#1| "failed") |#1|)) (-15 -1401 (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-712))) (-15 -1401 (|#1| |#1| (-854))) (-15 ** (|#1| |#1| (-854)))) -((-2673 (((-108) $ $) 7)) (-2055 (($) 20 T CONST)) (-1522 (((-3 $ "failed") $) 16)) (-3865 (((-108) $) 19)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 27)) (-2937 (((-1036) $) 10)) (-3369 (($ $ $) 23)) (-4027 (($ $ $) 22)) (-2686 (((-796) $) 11)) (-1401 (($ $ (-854)) 13) (($ $ (-712)) 17) (($ $ (-525)) 24)) (-1839 (($) 21 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ $) 26)) (** (($ $ (-854)) 14) (($ $ (-712)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15))) +((-1486 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23)))) (-1436 (*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4033 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4017 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))) +(-13 (-1019) (-10 -8 (-15 -1486 (|t#2| $)) (-15 (-1436) ($) -3219) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4033 ($ $)) (-15 -4017 ($ $ $)) (-15 -4033 ($ $ $)))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4048 (((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-799 |#1|))) 93)) (-2854 (((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|))) 91)) (-3539 (((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|))) 61))) +(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -2854 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|)))) (-15 -4048 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-799 |#1|)))) (-15 -3539 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|))))) (-592 (-1090)) (-429) (-429)) (T -448)) +((-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-799 *5))) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-2 (|:| |dpolys| (-592 (-227 *5 *6))) (|:| |coords| (-592 (-525))))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))) (-4048 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-799 *4))) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6)) (-4 *6 (-429)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-799 *5))) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-592 (-592 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429))))) +(-10 -7 (-15 -2854 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|)))) (-15 -4048 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-799 |#1|)))) (-15 -3539 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|))))) +((-1645 (((-3 $ "failed") $) 11)) (-4025 (($ $ $) 20)) (-1573 (($ $ $) 21)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 14)) (-4047 (($ $ $) 9)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 19))) +(((-449 |#1|) (-10 -8 (-15 -1573 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -1594 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1645 ((-3 |#1| "failed") |#1|)) (-15 -1594 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1594 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855)))) (-450)) (T -449)) +NIL +(-10 -8 (-15 -1573 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -1594 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1645 ((-3 |#1| "failed") |#1|)) (-15 -1594 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1594 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855)))) +((-4028 (((-108) $ $) 7)) (-1957 (($) 20 T CONST)) (-1645 (((-3 $ "failed") $) 16)) (-2507 (((-108) $) 19)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 27)) (-3027 (((-1037) $) 10)) (-4025 (($ $ $) 23)) (-1573 (($ $ $) 22)) (-4044 (((-797) $) 11)) (-1594 (($ $ (-855)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-1449 (($) 21 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ $) 26)) (** (($ $ (-855)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15))) (((-450) (-131)) (T -450)) -((-1523 (*1 *1 *1) (-4 *1 (-450))) (-4059 (*1 *1 *1 *1) (-4 *1 (-450))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-1401 (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-3369 (*1 *1 *1 *1) (-4 *1 (-450))) (-4027 (*1 *1 *1 *1) (-4 *1 (-450)))) -(-13 (-668) (-10 -8 (-15 -1523 ($ $)) (-15 -4059 ($ $ $)) (-15 ** ($ $ (-525))) (-15 -1401 ($ $ (-525))) (-6 -4247) (-15 -3369 ($ $ $)) (-15 -4027 ($ $ $)))) -(((-97) . T) ((-565 (-796)) . T) ((-668) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) 17)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3328 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-3581 (((-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-4087 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| |#1| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4058 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-712) (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-4109 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-2393 (((-108) $) NIL (|has| |#1| (-341)))) (-1795 (((-108) $) NIL)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) NIL) (($ $ (-385 (-525))) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-385 (-525))) NIL) (($ $ (-1003) (-385 (-525))) NIL) (($ $ (-591 (-1003)) (-591 (-385 (-525)))) NIL)) (-1257 (($ (-1 |#1| |#1|) $) 22)) (-2356 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-2452 (($ $) 26 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) 33 (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111))))) (($ $ (-1167 |#2|)) 27 (|has| |#1| (-37 (-385 (-525)))))) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-1618 (($ $ (-385 (-525))) NIL)) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2288 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1030)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) 25 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1167 |#2|)) 15)) (-2743 (((-385 (-525)) $) NIL)) (-4122 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1167 |#2|)) NIL) (($ (-1156 |#1| |#2| |#3|)) 9) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1263 ((|#1| $ (-385 (-525))) NIL)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1708 ((|#1| $) 18)) (-4163 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) 24)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-451 |#1| |#2| |#3|) (-13 (-1152 |#1|) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2686 ($ (-1156 |#1| |#2| |#3|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) (-975) (-1089) |#1|) (T -451)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1156 *3 *4 *5)) (-4 *3 (-975)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-451 *3 *4 *5)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3)))) -(-13 (-1152 |#1|) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2686 ($ (-1156 |#1| |#2| |#3|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-3832 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#2| $ |#1| |#2|) 18)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 |#2| "failed") |#1| $) 19)) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) 16)) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) NIL)) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 ((|#1| $) NIL (|has| |#1| (-788)))) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-1826 ((|#1| $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4251))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2159 (((-591 |#1|) $) NIL)) (-1628 (((-108) |#1| $) NIL)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3761 (((-591 |#1|) $) NIL)) (-1675 (((-108) |#1| $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2872 ((|#2| $) NIL (|has| |#1| (-788)))) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2686 (((-796) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796))) (|has| |#2| (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-452 |#1| |#2| |#3| |#4|) (-1102 |#1| |#2|) (-1018) (-1018) (-1102 |#1| |#2|) |#2|) (T -452)) -NIL -(-1102 |#1| |#2|) -((-2673 (((-108) $ $) NIL)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |#4|)))) (-591 |#4|)) NIL)) (-3227 (((-591 $) (-591 |#4|)) NIL)) (-1444 (((-591 |#3|) $) NIL)) (-3713 (((-108) $) NIL)) (-1996 (((-108) $) NIL (|has| |#1| (-517)))) (-3750 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4123 ((|#4| |#4| $) NIL)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2467 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2055 (($) NIL T CONST)) (-3435 (((-108) $) 26 (|has| |#1| (-517)))) (-2342 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2605 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2167 (((-108) $) NIL (|has| |#1| (-517)))) (-2699 (((-591 |#4|) (-591 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1533 (((-591 |#4|) (-591 |#4|) $) NIL (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) NIL (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) NIL)) (-3341 (($ (-591 |#4|)) NIL)) (-2884 (((-3 $ "failed") $) 39)) (-2302 ((|#4| |#4| $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-2537 (($ |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3797 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2490 ((|#4| |#4| $) NIL)) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4250))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2082 (((-2 (|:| -1269 (-591 |#4|)) (|:| -1472 (-591 |#4|))) $) NIL)) (-2916 (((-591 |#4|) $) 16 (|has| $ (-6 -4250)))) (-2040 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3998 ((|#3| $) 33)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#4|) $) 17 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-4192 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 21)) (-3520 (((-591 |#3|) $) NIL)) (-1574 (((-108) |#3| $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2555 (((-3 |#4| "failed") $) 37)) (-3664 (((-591 |#4|) $) NIL)) (-1307 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3022 ((|#4| |#4| $) NIL)) (-3300 (((-108) $ $) NIL)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3255 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2246 ((|#4| |#4| $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 (((-3 |#4| "failed") $) 35)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1591 (((-3 $ "failed") $ |#4|) 47)) (-1618 (($ $ |#4|) NIL)) (-3465 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 15)) (-3164 (($) 13)) (-2743 (((-712) $) NIL)) (-2960 (((-712) |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (((-712) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) 12)) (-1300 (((-501) $) NIL (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) 20)) (-3786 (($ $ |#3|) 42)) (-2794 (($ $ |#3|) 44)) (-1656 (($ $) NIL)) (-1918 (($ $ |#3|) NIL)) (-2686 (((-796) $) 31) (((-591 |#4|) $) 40)) (-3311 (((-712) $) NIL (|has| |#3| (-346)))) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3747 (((-108) $ (-1 (-108) |#4| (-591 |#4|))) NIL)) (-1475 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1669 (((-591 |#3|) $) NIL)) (-2588 (((-108) |#3| $) NIL)) (-3944 (((-108) $ $) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-453 |#1| |#2| |#3| |#4|) (-1119 |#1| |#2| |#3| |#4|) (-517) (-734) (-788) (-989 |#1| |#2| |#3|)) (T -453)) -NIL -(-1119 |#1| |#2| |#3| |#4|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-3341 (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-1417 (($) 18)) (-3865 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-1300 (((-357) $) 22) (((-205) $) 25) (((-385 (-1085 (-525))) $) 19) (((-501) $) 52)) (-2686 (((-796) $) 50) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (((-205) $) 24) (((-357) $) 21)) (-3425 (((-712)) NIL)) (-1724 (((-108) $ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 36 T CONST)) (-1839 (($) 11 T CONST)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) -(((-454) (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))) (-951) (-565 (-205)) (-565 (-357)) (-566 (-385 (-1085 (-525)))) (-566 (-501)) (-10 -8 (-15 -1417 ($))))) (T -454)) -((-1417 (*1 *1) (-5 *1 (-454)))) -(-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))) (-951) (-565 (-205)) (-565 (-357)) (-566 (-385 (-1085 (-525)))) (-566 (-501)) (-10 -8 (-15 -1417 ($)))) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-3832 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#2| $ |#1| |#2|) 16)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 |#2| "failed") |#1| $) 20)) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) 18)) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) NIL)) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 ((|#1| $) NIL (|has| |#1| (-788)))) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-1826 ((|#1| $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4251))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2159 (((-591 |#1|) $) 13)) (-1628 (((-108) |#1| $) NIL)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3761 (((-591 |#1|) $) NIL)) (-1675 (((-108) |#1| $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2872 ((|#2| $) NIL (|has| |#1| (-788)))) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) 19)) (-1881 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2686 (((-796) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796))) (|has| |#2| (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 11 (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2028 (((-712) $) 15 (|has| $ (-6 -4250))))) -(((-455 |#1| |#2| |#3|) (-13 (-1102 |#1| |#2|) (-10 -7 (-6 -4250))) (-1018) (-1018) (-1072)) (T -455)) -NIL -(-13 (-1102 |#1| |#2|) (-10 -7 (-6 -4250))) -((-3000 (((-525) (-525) (-525)) 7)) (-1594 (((-108) (-525) (-525) (-525) (-525)) 11)) (-2399 (((-1171 (-591 (-525))) (-712) (-712)) 23))) -(((-456) (-10 -7 (-15 -3000 ((-525) (-525) (-525))) (-15 -1594 ((-108) (-525) (-525) (-525) (-525))) (-15 -2399 ((-1171 (-591 (-525))) (-712) (-712))))) (T -456)) -((-2399 (*1 *2 *3 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1171 (-591 (-525)))) (-5 *1 (-456)))) (-1594 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))) (-3000 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456))))) -(-10 -7 (-15 -3000 ((-525) (-525) (-525))) (-15 -1594 ((-108) (-525) (-525) (-525) (-525))) (-15 -2399 ((-1171 (-591 (-525))) (-712) (-712)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-798 |#1|)) $) NIL)) (-2514 (((-1085 $) $ (-798 |#1|)) NIL) (((-1085 |#2|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3641 (($ $) NIL (|has| |#2| (-517)))) (-3077 (((-108) $) NIL (|has| |#2| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-798 |#1|))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-1720 (($ $) NIL (|has| |#2| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-966 (-525)))) (((-3 (-798 |#1|) "failed") $) NIL)) (-3341 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-966 (-525)))) (((-798 |#1|) $) NIL)) (-1788 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-160)))) (-3742 (($ $ (-591 (-525))) NIL)) (-1575 (($ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL) (((-631 |#2|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#2| (-429))) (($ $ (-798 |#1|)) NIL (|has| |#2| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#2| (-842)))) (-2615 (($ $ |#2| (-458 (-2028 |#1|) (-712)) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-798 |#1|) (-819 (-357))) (|has| |#2| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-798 |#1|) (-819 (-525))) (|has| |#2| (-819 (-525)))))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-1434 (($ (-1085 |#2|) (-798 |#1|)) NIL) (($ (-1085 $) (-798 |#1|)) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#2| (-458 (-2028 |#1|) (-712))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-798 |#1|)) NIL)) (-3629 (((-458 (-2028 |#1|) (-712)) $) NIL) (((-712) $ (-798 |#1|)) NIL) (((-591 (-712)) $ (-591 (-798 |#1|))) NIL)) (-1923 (($ $ $) NIL (|has| |#2| (-788)))) (-3475 (($ $ $) NIL (|has| |#2| (-788)))) (-2508 (($ (-1 (-458 (-2028 |#1|) (-712)) (-458 (-2028 |#1|) (-712))) $) NIL)) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-3027 (((-3 (-798 |#1|) "failed") $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#2| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2621 (((-1072) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -3987 (-712))) "failed") $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#2| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#2| (-842)))) (-3210 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-798 |#1|) |#2|) NIL) (($ $ (-591 (-798 |#1|)) (-591 |#2|)) NIL) (($ $ (-798 |#1|) $) NIL) (($ $ (-591 (-798 |#1|)) (-591 $)) NIL)) (-2858 (($ $ (-798 |#1|)) NIL (|has| |#2| (-160)))) (-2209 (($ $ (-798 |#1|)) NIL) (($ $ (-591 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-2743 (((-458 (-2028 |#1|) (-712)) $) NIL) (((-712) $ (-798 |#1|)) NIL) (((-591 (-712)) $ (-591 (-798 |#1|))) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-798 |#1|) (-566 (-825 (-357)))) (|has| |#2| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-798 |#1|) (-566 (-825 (-525)))) (|has| |#2| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-798 |#1|) (-566 (-501))) (|has| |#2| (-566 (-501)))))) (-2827 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-798 |#1|)) NIL (|has| |#2| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-798 |#1|)) NIL) (($ (-385 (-525))) NIL (-3150 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3109 (((-591 |#2|) $) NIL)) (-1263 ((|#2| $ (-458 (-2028 |#1|) (-712))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#2| (-842))) (|has| |#2| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#2| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-798 |#1|)) NIL) (($ $ (-591 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-4004 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#2| (-788)))) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-457 |#1| |#2|) (-13 (-882 |#2| (-458 (-2028 |#1|) (-712)) (-798 |#1|)) (-10 -8 (-15 -3742 ($ $ (-591 (-525)))))) (-591 (-1089)) (-975)) (T -457)) -((-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-457 *3 *4)) (-14 *3 (-591 (-1089))) (-4 *4 (-975))))) -(-13 (-882 |#2| (-458 (-2028 |#1|) (-712)) (-798 |#1|)) (-10 -8 (-15 -3742 ($ $ (-591 (-525)))))) -((-2673 (((-108) $ $) NIL (|has| |#2| (-1018)))) (-1306 (((-108) $) NIL (|has| |#2| (-126)))) (-2191 (($ (-854)) NIL (|has| |#2| (-975)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3343 (($ $ $) NIL (|has| |#2| (-734)))) (-3332 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3727 (((-108) $ (-712)) NIL)) (-2834 (((-712)) NIL (|has| |#2| (-346)))) (-4188 (((-525) $) NIL (|has| |#2| (-786)))) (-2847 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1018)))) (-3341 (((-525) $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) ((|#2| $) NIL (|has| |#2| (-1018)))) (-3925 (((-631 (-525)) (-631 $)) NIL (-12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL (|has| |#2| (-975))) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-975)))) (-1522 (((-3 $ "failed") $) NIL (|has| |#2| (-975)))) (-1325 (($) NIL (|has| |#2| (-346)))) (-4205 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ (-525)) 11)) (-3489 (((-108) $) NIL (|has| |#2| (-786)))) (-2916 (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3865 (((-108) $) NIL (|has| |#2| (-975)))) (-2256 (((-108) $) NIL (|has| |#2| (-786)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-4207 (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-4192 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-1970 (((-854) $) NIL (|has| |#2| (-346)))) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#2| (-1018)))) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-3229 (($ (-854)) NIL (|has| |#2| (-346)))) (-2937 (((-1036) $) NIL (|has| |#2| (-1018)))) (-2872 ((|#2| $) NIL (|has| (-525) (-788)))) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-3183 ((|#2| $ $) NIL (|has| |#2| (-975)))) (-2580 (($ (-1171 |#2|)) NIL)) (-3840 (((-128)) NIL (|has| |#2| (-341)))) (-2209 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1 |#2| |#2|) (-712)) NIL (|has| |#2| (-975))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-975)))) (-2960 (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-1171 |#2|) $) NIL) (($ (-525)) NIL (-3150 (-12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018))) (|has| |#2| (-975)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) (($ |#2|) NIL (|has| |#2| (-1018))) (((-796) $) NIL (|has| |#2| (-565 (-796))))) (-3425 (((-712)) NIL (|has| |#2| (-975)))) (-1475 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1460 (($ $) NIL (|has| |#2| (-786)))) (-1401 (($ $ (-712)) NIL (|has| |#2| (-975))) (($ $ (-854)) NIL (|has| |#2| (-975)))) (-1830 (($) NIL (|has| |#2| (-126)) CONST)) (-1839 (($) NIL (|has| |#2| (-975)) CONST)) (-1796 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1 |#2| |#2|) (-712)) NIL (|has| |#2| (-975))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-975)))) (-4004 (((-108) $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-3982 (((-108) $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-3944 (((-108) $ $) NIL (|has| |#2| (-1018)))) (-3994 (((-108) $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-3971 (((-108) $ $) 15 (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $ $) NIL (|has| |#2| (-975))) (($ $) NIL (|has| |#2| (-975)))) (-4036 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-712)) NIL (|has| |#2| (-975))) (($ $ (-854)) NIL (|has| |#2| (-975)))) (* (($ $ $) NIL (|has| |#2| (-975))) (($ (-525) $) NIL (|has| |#2| (-975))) (($ $ |#2|) NIL (|has| |#2| (-668))) (($ |#2| $) NIL (|has| |#2| (-668))) (($ (-712) $) NIL (|has| |#2| (-126))) (($ (-854) $) NIL (|has| |#2| (-25)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-458 |#1| |#2|) (-218 |#1| |#2|) (-712) (-734)) (T -458)) +((-3243 (*1 *1 *1) (-4 *1 (-450))) (-4047 (*1 *1 *1 *1) (-4 *1 (-450))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-1594 (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-4025 (*1 *1 *1 *1) (-4 *1 (-450))) (-1573 (*1 *1 *1 *1) (-4 *1 (-450)))) +(-13 (-669) (-10 -8 (-15 -3243 ($ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ (-525))) (-15 -1594 ($ $ (-525))) (-6 -4251) (-15 -4025 ($ $ $)) (-15 -1573 ($ $ $)))) +(((-97) . T) ((-566 (-797)) . T) ((-669) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) 17)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3948 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-3423 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| |#1| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3886 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-3946 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2069 (((-108) $) NIL (|has| |#1| (-341)))) (-3951 (((-108) $) NIL)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) NIL) (($ $ (-385 (-525))) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-385 (-525))) NIL) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-2868 (($ (-1 |#1| |#1|) $) 22)) (-2412 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-2313 (($ $) 26 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 33 (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 27 (|has| |#1| (-37 (-385 (-525)))))) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1539 (($ $ (-385 (-525))) NIL)) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2840 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1031)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) 25 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1168 |#2|)) 15)) (-1486 (((-385 (-525)) $) NIL)) (-3960 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1168 |#2|)) NIL) (($ (-1157 |#1| |#2| |#3|)) 9) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-2100 ((|#1| $ (-385 (-525))) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-3448 ((|#1| $) 18)) (-4004 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) 24)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-451 |#1| |#2| |#3|) (-13 (-1153 |#1|) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -4044 ($ (-1157 |#1| |#2| |#3|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -451)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1157 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-451 *3 *4 *5)))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))) +(-13 (-1153 |#1|) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -4044 ($ (-1157 |#1| |#2| |#3|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2792 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#2| $ |#1| |#2|) 18)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 |#2| "failed") |#1| $) 19)) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 16)) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) NIL)) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 ((|#1| $) NIL (|has| |#1| (-789)))) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2112 ((|#1| $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-2183 (((-592 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-2379 (((-592 |#1|) $) NIL)) (-2030 (((-108) |#1| $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1683 ((|#2| $) NIL (|has| |#1| (-789)))) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-4044 (((-797) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-452 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2|) (-1019) (-1019) (-1103 |#1| |#2|) |#2|) (T -452)) +NIL +(-1103 |#1| |#2|) +((-4028 (((-108) $ $) NIL)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |#4|)))) (-592 |#4|)) NIL)) (-2713 (((-592 $) (-592 |#4|)) NIL)) (-3122 (((-592 |#3|) $) NIL)) (-4037 (((-108) $) NIL)) (-3410 (((-108) $) NIL (|has| |#1| (-517)))) (-2576 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1792 ((|#4| |#4| $) NIL)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1249 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1957 (($) NIL T CONST)) (-4164 (((-108) $) 26 (|has| |#1| (-517)))) (-1333 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3508 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3364 (((-108) $) NIL (|has| |#1| (-517)))) (-3722 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2523 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) NIL)) (-2068 (($ (-592 |#4|)) NIL)) (-1693 (((-3 $ "failed") $) 39)) (-4092 ((|#4| |#4| $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2175 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3025 ((|#4| |#4| $) NIL)) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2884 (((-2 (|:| -3671 (-592 |#4|)) (|:| -3864 (-592 |#4|))) $) NIL)) (-3781 (((-592 |#4|) $) 16 (|has| $ (-6 -4254)))) (-1695 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3632 ((|#3| $) 33)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#4|) $) 17 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2540 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 21)) (-4210 (((-592 |#3|) $) NIL)) (-1506 (((-108) |#3| $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2618 (((-3 |#4| "failed") $) 37)) (-2338 (((-592 |#4|) $) NIL)) (-2616 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1803 ((|#4| |#4| $) NIL)) (-1826 (((-108) $ $) NIL)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-1483 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2342 ((|#4| |#4| $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 (((-3 |#4| "failed") $) 35)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2750 (((-3 $ "failed") $ |#4|) 47)) (-1539 (($ $ |#4|) NIL)) (-3669 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 15)) (-3266 (($) 13)) (-1486 (((-713) $) NIL)) (-3053 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) 12)) (-2923 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) 20)) (-2484 (($ $ |#3|) 42)) (-4016 (($ $ |#3|) 44)) (-1287 (($ $) NIL)) (-3967 (($ $ |#3|) NIL)) (-4044 (((-797) $) 31) (((-592 |#4|) $) 40)) (-2665 (((-713) $) NIL (|has| |#3| (-346)))) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2125 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-2443 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2396 (((-592 |#3|) $) NIL)) (-2238 (((-108) |#3| $) NIL)) (-3899 (((-108) $ $) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-453 |#1| |#2| |#3| |#4|) (-1120 |#1| |#2| |#3| |#4|) (-517) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -453)) +NIL +(-1120 |#1| |#2| |#3| |#4|) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-2068 (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-1961 (($) 18)) (-2507 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2923 (((-357) $) 22) (((-205) $) 25) (((-385 (-1086 (-525))) $) 19) (((-501) $) 52)) (-4044 (((-797) $) 50) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (((-205) $) 24) (((-357) $) 21)) (-2502 (((-713)) NIL)) (-3787 (((-108) $ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 36 T CONST)) (-1449 (($) 11 T CONST)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) +(((-454) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))) (-952) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1086 (-525)))) (-567 (-501)) (-10 -8 (-15 -1961 ($))))) (T -454)) +((-1961 (*1 *1) (-5 *1 (-454)))) +(-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))) (-952) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1086 (-525)))) (-567 (-501)) (-10 -8 (-15 -1961 ($)))) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2792 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#2| $ |#1| |#2|) 16)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 |#2| "failed") |#1| $) 20)) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 18)) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) NIL)) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 ((|#1| $) NIL (|has| |#1| (-789)))) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2112 ((|#1| $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-2183 (((-592 |#1|) $) 13)) (-2781 (((-108) |#1| $) NIL)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-2379 (((-592 |#1|) $) NIL)) (-2030 (((-108) |#1| $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1683 ((|#2| $) NIL (|has| |#1| (-789)))) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) 19)) (-1496 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-4044 (((-797) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 11 (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1696 (((-713) $) 15 (|has| $ (-6 -4254))))) +(((-455 |#1| |#2| |#3|) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) (-1019) (-1019) (-1073)) (T -455)) +NIL +(-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) +((-1544 (((-525) (-525) (-525)) 7)) (-2543 (((-108) (-525) (-525) (-525) (-525)) 11)) (-4187 (((-1172 (-592 (-525))) (-713) (-713)) 23))) +(((-456) (-10 -7 (-15 -1544 ((-525) (-525) (-525))) (-15 -2543 ((-108) (-525) (-525) (-525) (-525))) (-15 -4187 ((-1172 (-592 (-525))) (-713) (-713))))) (T -456)) +((-4187 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1172 (-592 (-525)))) (-5 *1 (-456)))) (-2543 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))) (-1544 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456))))) +(-10 -7 (-15 -1544 ((-525) (-525) (-525))) (-15 -2543 ((-108) (-525) (-525) (-525) (-525))) (-15 -4187 ((-1172 (-592 (-525))) (-713) (-713)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-799 |#1|)) $) NIL)) (-1315 (((-1086 $) $ (-799 |#1|)) NIL) (((-1086 |#2|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2609 (($ $) NIL (|has| |#2| (-517)))) (-1220 (((-108) $) NIL (|has| |#2| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-799 |#1|))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2701 (($ $) NIL (|has| |#2| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-799 |#1|) "failed") $) NIL)) (-2068 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-799 |#1|) $) NIL)) (-3048 (($ $ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-1711 (($ $ (-592 (-525))) NIL)) (-3306 (($ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#2| (-843)))) (-2187 (($ $ |#2| (-458 (-1696 |#1|) (-713)) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-3110 (($ (-1086 |#2|) (-799 |#1|)) NIL) (($ (-1086 $) (-799 |#1|)) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#2| (-458 (-1696 |#1|) (-713))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-799 |#1|)) NIL)) (-3762 (((-458 (-1696 |#1|) (-713)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-1260 (($ $ $) NIL (|has| |#2| (-789)))) (-2154 (($ $ $) NIL (|has| |#2| (-789)))) (-2078 (($ (-1 (-458 (-1696 |#1|) (-713)) (-458 (-1696 |#1|) (-713))) $) NIL)) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-3869 (((-3 (-799 |#1|) "failed") $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#2| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1707 (((-1073) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-799 |#1|)) (|:| -1737 (-713))) "failed") $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#2| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2675 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-799 |#1|) |#2|) NIL) (($ $ (-592 (-799 |#1|)) (-592 |#2|)) NIL) (($ $ (-799 |#1|) $) NIL) (($ $ (-592 (-799 |#1|)) (-592 $)) NIL)) (-2257 (($ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-1576 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-1486 (((-458 (-1696 |#1|) (-713)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-799 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2758 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-799 |#1|)) NIL) (($ (-385 (-525))) NIL (-3215 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3681 (((-592 |#2|) $) NIL)) (-2100 ((|#2| $ (-458 (-1696 |#1|) (-713))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3973 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-457 |#1| |#2|) (-13 (-883 |#2| (-458 (-1696 |#1|) (-713)) (-799 |#1|)) (-10 -8 (-15 -1711 ($ $ (-592 (-525)))))) (-592 (-1090)) (-976)) (T -457)) +((-1711 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4)) (-14 *3 (-592 (-1090))) (-4 *4 (-976))))) +(-13 (-883 |#2| (-458 (-1696 |#1|) (-713)) (-799 |#1|)) (-10 -8 (-15 -1711 ($ $ (-592 (-525)))))) +((-4028 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-2464 (((-108) $) NIL (|has| |#2| (-126)))) (-3510 (($ (-855)) NIL (|has| |#2| (-976)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3207 (($ $ $) NIL (|has| |#2| (-735)))) (-3004 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-2583 (((-108) $ (-713)) NIL)) (-1651 (((-713)) NIL (|has| |#2| (-346)))) (-2780 (((-525) $) NIL (|has| |#2| (-787)))) (-1230 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1019)))) (-2068 (((-525) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) ((|#2| $) NIL (|has| |#2| (-1019)))) (-1307 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL (|has| |#2| (-976))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-976)))) (-1645 (((-3 $ "failed") $) NIL (|has| |#2| (-976)))) (-1527 (($) NIL (|has| |#2| (-346)))) (-2549 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ (-525)) 11)) (-2973 (((-108) $) NIL (|has| |#2| (-787)))) (-3781 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2507 (((-108) $) NIL (|has| |#2| (-976)))) (-3721 (((-108) $) NIL (|has| |#2| (-787)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2679 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2540 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-2111 (((-855) $) NIL (|has| |#2| (-346)))) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#2| (-1019)))) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3381 (($ (-855)) NIL (|has| |#2| (-346)))) (-3027 (((-1037) $) NIL (|has| |#2| (-1019)))) (-1683 ((|#2| $) NIL (|has| (-525) (-789)))) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-1580 ((|#2| $ $) NIL (|has| |#2| (-976)))) (-3020 (($ (-1172 |#2|)) NIL)) (-2374 (((-128)) NIL (|has| |#2| (-341)))) (-1576 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-3053 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-1172 |#2|) $) NIL) (($ (-525)) NIL (-3215 (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (|has| |#2| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (($ |#2|) NIL (|has| |#2| (-1019))) (((-797) $) NIL (|has| |#2| (-566 (-797))))) (-2502 (((-713)) NIL (|has| |#2| (-976)))) (-2443 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2053 (($ $) NIL (|has| |#2| (-787)))) (-1594 (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (-1436 (($) NIL (|has| |#2| (-126)) CONST)) (-1449 (($) NIL (|has| |#2| (-976)) CONST)) (-1990 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-3973 (((-108) $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3944 (((-108) $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3899 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-3959 (((-108) $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3928 (((-108) $ $) 15 (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $ $) NIL (|has| |#2| (-976))) (($ $) NIL (|has| |#2| (-976)))) (-4017 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (* (($ $ $) NIL (|has| |#2| (-976))) (($ (-525) $) NIL (|has| |#2| (-976))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-855) $) NIL (|has| |#2| (-25)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-458 |#1| |#2|) (-218 |#1| |#2|) (-713) (-735)) (T -458)) NIL (-218 |#1| |#2|) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) NIL)) (-2055 (($) NIL T CONST)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-3597 (($ $ $) 32)) (-3459 (($ $ $) 31)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3475 ((|#1| $) 26)) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-3949 ((|#1| $) 27)) (-1520 (($ |#1| $) 10)) (-4200 (($ (-591 |#1|)) 12)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-4166 ((|#1| $) 23)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) 9)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) 29)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) 21 (|has| $ (-6 -4250))))) -(((-459 |#1|) (-13 (-900 |#1|) (-10 -8 (-15 -4200 ($ (-591 |#1|))))) (-788)) (T -459)) -((-4200 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-459 *3))))) -(-13 (-900 |#1|) (-10 -8 (-15 -4200 ($ (-591 |#1|))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-3618 (($ $) 69)) (-2435 (((-108) $) NIL)) (-2621 (((-1072) $) NIL)) (-1432 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 44)) (-2937 (((-1036) $) NIL)) (-3965 (((-3 |#4| "failed") $) 107)) (-2991 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-525)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3601 (((-2 (|:| -1291 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2686 (((-796) $) 102)) (-1830 (($) 33 T CONST)) (-3944 (((-108) $ $) 109)) (-4047 (($ $) 72) (($ $ $) NIL)) (-4036 (($ $ $) 70)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 73))) -(((-460 |#1| |#2| |#3| |#4|) (-313 |#1| |#2| |#3| |#4|) (-341) (-1147 |#1|) (-1147 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -460)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) NIL)) (-1957 (($) NIL T CONST)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-1636 (($ $ $) 32)) (-1440 (($ $ $) 31)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2154 ((|#1| $) 26)) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2434 ((|#1| $) 27)) (-4157 (($ |#1| $) 10)) (-2296 (($ (-592 |#1|)) 12)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3672 ((|#1| $) 23)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) 9)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) 29)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) 21 (|has| $ (-6 -4254))))) +(((-459 |#1|) (-13 (-901 |#1|) (-10 -8 (-15 -2296 ($ (-592 |#1|))))) (-789)) (T -459)) +((-2296 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3))))) +(-13 (-901 |#1|) (-10 -8 (-15 -2296 ($ (-592 |#1|))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-3336 (($ $) 69)) (-3391 (((-108) $) NIL)) (-1707 (((-1073) $) NIL)) (-3691 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 44)) (-3027 (((-1037) $) NIL)) (-3258 (((-3 |#4| "failed") $) 107)) (-3829 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-525)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3756 (((-2 (|:| -1421 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4044 (((-797) $) 102)) (-1436 (($) 33 T CONST)) (-3899 (((-108) $ $) 109)) (-4033 (($ $) 72) (($ $ $) NIL)) (-4017 (($ $ $) 70)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 73))) +(((-460 |#1| |#2| |#3| |#4|) (-313 |#1| |#2| |#3| |#4|) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -460)) NIL (-313 |#1| |#2| |#3| |#4|) -((-3817 (((-525) (-591 (-525))) 30)) (-3407 ((|#1| (-591 |#1|)) 56)) (-2616 (((-591 |#1|) (-591 |#1|)) 57)) (-3588 (((-591 |#1|) (-591 |#1|)) 59)) (-2124 ((|#1| (-591 |#1|)) 58)) (-2827 (((-591 (-525)) (-591 |#1|)) 33))) -(((-461 |#1|) (-10 -7 (-15 -2124 (|#1| (-591 |#1|))) (-15 -3407 (|#1| (-591 |#1|))) (-15 -3588 ((-591 |#1|) (-591 |#1|))) (-15 -2616 ((-591 |#1|) (-591 |#1|))) (-15 -2827 ((-591 (-525)) (-591 |#1|))) (-15 -3817 ((-525) (-591 (-525))))) (-1147 (-525))) (T -461)) -((-3817 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4)) (-4 *4 (-1147 *2)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-591 *4)) (-4 *4 (-1147 (-525))) (-5 *2 (-591 (-525))) (-5 *1 (-461 *4)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1147 (-525))) (-5 *1 (-461 *3)))) (-3588 (*1 *2 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1147 (-525))) (-5 *1 (-461 *3)))) (-3407 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1147 (-525))))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1147 (-525)))))) -(-10 -7 (-15 -2124 (|#1| (-591 |#1|))) (-15 -3407 (|#1| (-591 |#1|))) (-15 -3588 ((-591 |#1|) (-591 |#1|))) (-15 -2616 ((-591 |#1|) (-591 |#1|))) (-15 -2827 ((-591 (-525)) (-591 |#1|))) (-15 -3817 ((-525) (-591 (-525))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 (((-525) $) NIL (|has| (-525) (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL (|has| (-525) (-761)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-1089) "failed") $) NIL (|has| (-525) (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-966 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-966 (-525))))) (-3341 (((-525) $) NIL) (((-1089) $) NIL (|has| (-525) (-966 (-1089)))) (((-385 (-525)) $) NIL (|has| (-525) (-966 (-525)))) (((-525) $) NIL (|has| (-525) (-966 (-525))))) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| (-525) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-525) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-631 (-525)) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-525) (-510)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3489 (((-108) $) NIL (|has| (-525) (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| (-525) (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| (-525) (-819 (-357))))) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL)) (-1384 (((-525) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| (-525) (-1065)))) (-2256 (((-108) $) NIL (|has| (-525) (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| (-525) (-788)))) (-1257 (($ (-1 (-525) (-525)) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-525) (-1065)) CONST)) (-3400 (($ (-385 (-525))) 9)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2767 (((-525) $) NIL (|has| (-525) (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1980 (($ $ (-591 (-525)) (-591 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-591 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-591 (-1089)) (-591 (-525))) NIL (|has| (-525) (-486 (-1089) (-525)))) (($ $ (-1089) (-525)) NIL (|has| (-525) (-486 (-1089) (-525))))) (-3048 (((-712) $) NIL)) (-1881 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) NIL (|has| (-525) (-213))) (($ $ (-712)) NIL (|has| (-525) (-213))) (($ $ (-1089)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1 (-525) (-525)) (-712)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2774 (($ $) NIL)) (-1396 (((-525) $) NIL)) (-1300 (((-825 (-525)) $) NIL (|has| (-525) (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| (-525) (-566 (-825 (-357))))) (((-501) $) NIL (|has| (-525) (-566 (-501)))) (((-357) $) NIL (|has| (-525) (-951))) (((-205) $) NIL (|has| (-525) (-951)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1089)) NIL (|has| (-525) (-966 (-1089)))) (((-385 (-525)) $) NIL) (((-934 16) $) 10)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| (-525) (-842))) (|has| (-525) (-136))))) (-3425 (((-712)) NIL)) (-1584 (((-525) $) NIL (|has| (-525) (-510)))) (-1724 (((-108) $ $) NIL)) (-1460 (($ $) NIL (|has| (-525) (-761)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $) NIL (|has| (-525) (-213))) (($ $ (-712)) NIL (|has| (-525) (-213))) (($ $ (-1089)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1 (-525) (-525)) (-712)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4004 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3971 (((-108) $ $) NIL (|has| (-525) (-788)))) (-4059 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL))) -(((-462) (-13 (-923 (-525)) (-10 -8 (-15 -2686 ((-385 (-525)) $)) (-15 -2686 ((-934 16) $)) (-15 -1583 ((-385 (-525)) $)) (-15 -3400 ($ (-385 (-525))))))) (T -462)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-934 16)) (-5 *1 (-462)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-3400 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))) -(-13 (-923 (-525)) (-10 -8 (-15 -2686 ((-385 (-525)) $)) (-15 -2686 ((-934 16) $)) (-15 -1583 ((-385 (-525)) $)) (-15 -3400 ($ (-385 (-525)))))) -((-4207 (((-591 |#2|) $) 23)) (-3956 (((-108) |#2| $) 28)) (-3465 (((-108) (-1 (-108) |#2|) $) 21)) (-1980 (($ $ (-591 (-273 |#2|))) 13) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-591 |#2|) (-591 |#2|)) NIL)) (-2960 (((-712) (-1 (-108) |#2|) $) 22) (((-712) |#2| $) 26)) (-2686 (((-796) $) 37)) (-1475 (((-108) (-1 (-108) |#2|) $) 20)) (-3944 (((-108) $ $) 31)) (-2028 (((-712) $) 17))) -(((-463 |#1| |#2|) (-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -1980 (|#1| |#1| (-591 |#2|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#2| |#2|)) (-15 -1980 (|#1| |#1| (-273 |#2|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#2|)))) (-15 -3956 ((-108) |#2| |#1|)) (-15 -2960 ((-712) |#2| |#1|)) (-15 -4207 ((-591 |#2|) |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2028 ((-712) |#1|))) (-464 |#2|) (-1125)) (T -463)) -NIL -(-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -1980 (|#1| |#1| (-591 |#2|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#2| |#2|)) (-15 -1980 (|#1| |#1| (-273 |#2|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#2|)))) (-15 -3956 ((-108) |#2| |#1|)) (-15 -2960 ((-712) |#2| |#1|)) (-15 -4207 ((-591 |#2|) |#1|)) (-15 -2960 ((-712) (-1 (-108) |#2|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2028 ((-712) |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-2055 (($) 7 T CONST)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-464 |#1|) (-131) (-1125)) (T -464)) -((-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1125)))) (-4192 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4251)) (-4 *1 (-464 *3)) (-4 *3 (-1125)))) (-1475 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4250)) (-4 *1 (-464 *4)) (-4 *4 (-1125)) (-5 *2 (-108)))) (-3465 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4250)) (-4 *1 (-464 *4)) (-4 *4 (-1125)) (-5 *2 (-108)))) (-2960 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4250)) (-4 *1 (-464 *4)) (-4 *4 (-1125)) (-5 *2 (-712)))) (-2916 (*1 *2 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-464 *3)) (-4 *3 (-1125)) (-5 *2 (-591 *3)))) (-4207 (*1 *2 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-464 *3)) (-4 *3 (-1125)) (-5 *2 (-591 *3)))) (-2960 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-464 *3)) (-4 *3 (-1125)) (-4 *3 (-1018)) (-5 *2 (-712)))) (-3956 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-464 *3)) (-4 *3 (-1125)) (-4 *3 (-1018)) (-5 *2 (-108))))) -(-13 (-33) (-10 -8 (IF (|has| |t#1| (-565 (-796))) (-6 (-565 (-796))) |%noBranch|) (IF (|has| |t#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |t#1| (-1018)) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1257 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4251)) (-15 -4192 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4250)) (PROGN (-15 -1475 ((-108) (-1 (-108) |t#1|) $)) (-15 -3465 ((-108) (-1 (-108) |t#1|) $)) (-15 -2960 ((-712) (-1 (-108) |t#1|) $)) (-15 -2916 ((-591 |t#1|) $)) (-15 -4207 ((-591 |t#1|) $)) (IF (|has| |t#1| (-1018)) (PROGN (-15 -2960 ((-712) |t#1| $)) (-15 -3956 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-4087 (($ $) 15)) (-4058 (($ $) 24)) (-4109 (($ $) 12)) (-4122 (($ $) 10)) (-4098 (($ $) 17)) (-4073 (($ $) 22))) -(((-465 |#1|) (-10 -8 (-15 -4073 (|#1| |#1|)) (-15 -4098 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4087 (|#1| |#1|))) (-466)) (T -465)) -NIL -(-10 -8 (-15 -4073 (|#1| |#1|)) (-15 -4098 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4087 (|#1| |#1|))) -((-4087 (($ $) 11)) (-4058 (($ $) 10)) (-4109 (($ $) 9)) (-4122 (($ $) 8)) (-4098 (($ $) 7)) (-4073 (($ $) 6))) +((-1924 (((-525) (-592 (-525))) 30)) (-4051 ((|#1| (-592 |#1|)) 56)) (-2297 (((-592 |#1|) (-592 |#1|)) 57)) (-2798 (((-592 |#1|) (-592 |#1|)) 59)) (-2262 ((|#1| (-592 |#1|)) 58)) (-2758 (((-592 (-525)) (-592 |#1|)) 33))) +(((-461 |#1|) (-10 -7 (-15 -2262 (|#1| (-592 |#1|))) (-15 -4051 (|#1| (-592 |#1|))) (-15 -2798 ((-592 |#1|) (-592 |#1|))) (-15 -2297 ((-592 |#1|) (-592 |#1|))) (-15 -2758 ((-592 (-525)) (-592 |#1|))) (-15 -1924 ((-525) (-592 (-525))))) (-1148 (-525))) (T -461)) +((-1924 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4)) (-4 *4 (-1148 *2)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1148 (-525))) (-5 *2 (-592 (-525))) (-5 *1 (-461 *4)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1148 (-525))) (-5 *1 (-461 *3)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1148 (-525))) (-5 *1 (-461 *3)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1148 (-525))))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1148 (-525)))))) +(-10 -7 (-15 -2262 (|#1| (-592 |#1|))) (-15 -4051 (|#1| (-592 |#1|))) (-15 -2798 ((-592 |#1|) (-592 |#1|))) (-15 -2297 ((-592 |#1|) (-592 |#1|))) (-15 -2758 ((-592 (-525)) (-592 |#1|))) (-15 -1924 ((-525) (-592 (-525))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 (((-525) $) NIL (|has| (-525) (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL (|has| (-525) (-762)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-525) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-967 (-525))))) (-2068 (((-525) $) NIL) (((-1090) $) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-525) (-967 (-525)))) (((-525) $) NIL (|has| (-525) (-967 (-525))))) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-525) (-510)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2973 (((-108) $) NIL (|has| (-525) (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-525) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-525) (-820 (-357))))) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL)) (-1936 (((-525) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| (-525) (-1066)))) (-3721 (((-108) $) NIL (|has| (-525) (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| (-525) (-789)))) (-2868 (($ (-1 (-525) (-525)) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-525) (-1066)) CONST)) (-3395 (($ (-385 (-525))) 9)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2473 (((-525) $) NIL (|has| (-525) (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1090)) (-592 (-525))) NIL (|has| (-525) (-486 (-1090) (-525)))) (($ $ (-1090) (-525)) NIL (|has| (-525) (-486 (-1090) (-525))))) (-2824 (((-713) $) NIL)) (-1496 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-1987 (($ $) NIL)) (-1945 (((-525) $) NIL)) (-2923 (((-826 (-525)) $) NIL (|has| (-525) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-525) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-952))) (((-205) $) NIL (|has| (-525) (-952)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1090)) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL) (((-935 16) $) 10)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| (-525) (-843))) (|has| (-525) (-136))))) (-2502 (((-713)) NIL)) (-1448 (((-525) $) NIL (|has| (-525) (-510)))) (-3787 (((-108) $ $) NIL)) (-2053 (($ $) NIL (|has| (-525) (-762)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-3973 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3928 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4047 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL))) +(((-462) (-13 (-924 (-525)) (-10 -8 (-15 -4044 ((-385 (-525)) $)) (-15 -4044 ((-935 16) $)) (-15 -1341 ((-385 (-525)) $)) (-15 -3395 ($ (-385 (-525))))))) (T -462)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-935 16)) (-5 *1 (-462)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-3395 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))) +(-13 (-924 (-525)) (-10 -8 (-15 -4044 ((-385 (-525)) $)) (-15 -4044 ((-935 16) $)) (-15 -1341 ((-385 (-525)) $)) (-15 -3395 ($ (-385 (-525)))))) +((-2679 (((-592 |#2|) $) 23)) (-1883 (((-108) |#2| $) 28)) (-3669 (((-108) (-1 (-108) |#2|) $) 21)) (-2168 (($ $ (-592 (-273 |#2|))) 13) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-3053 (((-713) (-1 (-108) |#2|) $) 22) (((-713) |#2| $) 26)) (-4044 (((-797) $) 37)) (-2443 (((-108) (-1 (-108) |#2|) $) 20)) (-3899 (((-108) $ $) 31)) (-1696 (((-713) $) 17))) +(((-463 |#1| |#2|) (-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -2168 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#2| |#2|)) (-15 -2168 (|#1| |#1| (-273 |#2|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -1883 ((-108) |#2| |#1|)) (-15 -3053 ((-713) |#2| |#1|)) (-15 -2679 ((-592 |#2|) |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1696 ((-713) |#1|))) (-464 |#2|) (-1126)) (T -463)) +NIL +(-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -2168 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#2| |#2|)) (-15 -2168 (|#1| |#1| (-273 |#2|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -1883 ((-108) |#2| |#1|)) (-15 -3053 ((-713) |#2| |#1|)) (-15 -2679 ((-592 |#2|) |#1|)) (-15 -3053 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1696 ((-713) |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-1957 (($) 7 T CONST)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-464 |#1|) (-131) (-1126)) (T -464)) +((-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1126)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1126)))) (-2443 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4)) (-4 *4 (-1126)) (-5 *2 (-108)))) (-3669 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4)) (-4 *4 (-1126)) (-5 *2 (-108)))) (-3053 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4)) (-4 *4 (-1126)) (-5 *2 (-713)))) (-3781 (*1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) (-5 *2 (-592 *3)))) (-2679 (*1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) (-5 *2 (-592 *3)))) (-3053 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-713)))) (-1883 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108))))) +(-13 (-33) (-10 -8 (IF (|has| |t#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (IF (|has| |t#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |t#1| (-1019)) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2868 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4255)) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4254)) (PROGN (-15 -2443 ((-108) (-1 (-108) |t#1|) $)) (-15 -3669 ((-108) (-1 (-108) |t#1|) $)) (-15 -3053 ((-713) (-1 (-108) |t#1|) $)) (-15 -3781 ((-592 |t#1|) $)) (-15 -2679 ((-592 |t#1|) $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -3053 ((-713) |t#1| $)) (-15 -1883 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-3915 (($ $) 15)) (-3886 (($ $) 24)) (-3946 (($ $) 12)) (-3960 (($ $) 10)) (-3930 (($ $) 17)) (-3901 (($ $) 22))) +(((-465 |#1|) (-10 -8 (-15 -3901 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3915 (|#1| |#1|))) (-466)) (T -465)) +NIL +(-10 -8 (-15 -3901 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3915 (|#1| |#1|))) +((-3915 (($ $) 11)) (-3886 (($ $) 10)) (-3946 (($ $) 9)) (-3960 (($ $) 8)) (-3930 (($ $) 7)) (-3901 (($ $) 6))) (((-466) (-131)) (T -466)) -((-4087 (*1 *1 *1) (-4 *1 (-466))) (-4058 (*1 *1 *1) (-4 *1 (-466))) (-4109 (*1 *1 *1) (-4 *1 (-466))) (-4122 (*1 *1 *1) (-4 *1 (-466))) (-4098 (*1 *1 *1) (-4 *1 (-466))) (-4073 (*1 *1 *1) (-4 *1 (-466)))) -(-13 (-10 -8 (-15 -4073 ($ $)) (-15 -4098 ($ $)) (-15 -4122 ($ $)) (-15 -4109 ($ $)) (-15 -4058 ($ $)) (-15 -4087 ($ $)))) -((-2542 (((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)) 42))) -(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2542 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)))) (-341) (-1147 |#1|) (-13 (-341) (-138) (-666 |#1| |#2|)) (-1147 |#3|)) (T -467)) -((-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) (-4 *7 (-13 (-341) (-138) (-666 *5 *6))) (-5 *2 (-396 *3)) (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1147 *7))))) -(-10 -7 (-15 -2542 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)))) -((-2673 (((-108) $ $) NIL)) (-1356 (((-591 $) (-1085 $) (-1089)) NIL) (((-591 $) (-1085 $)) NIL) (((-591 $) (-885 $)) NIL)) (-2529 (($ (-1085 $) (-1089)) NIL) (($ (-1085 $)) NIL) (($ (-885 $)) NIL)) (-1306 (((-108) $) 39)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-1477 (((-108) $ $) 64)) (-3585 (((-591 (-564 $)) $) 48)) (-3332 (((-3 $ "failed") $ $) NIL)) (-3449 (($ $ (-273 $)) NIL) (($ $ (-591 (-273 $))) NIL) (($ $ (-591 (-564 $)) (-591 $)) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-2551 (($ $) NIL)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-2266 (((-591 $) (-1085 $) (-1089)) NIL) (((-591 $) (-1085 $)) NIL) (((-591 $) (-885 $)) NIL)) (-1254 (($ (-1085 $) (-1089)) NIL) (($ (-1085 $)) NIL) (($ (-885 $)) NIL)) (-4174 (((-3 (-564 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-3341 (((-564 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) 50)) (-3265 (($ $ $) NIL)) (-3925 (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-631 (-525)) (-631 $)) NIL) (((-2 (|:| -2928 (-631 (-385 (-525)))) (|:| |vec| (-1171 (-385 (-525))))) (-631 $) (-1171 $)) NIL) (((-631 (-385 (-525))) (-631 $)) NIL)) (-3618 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3625 (($ $) NIL) (($ (-591 $)) NIL)) (-3714 (((-591 (-110)) $) NIL)) (-3259 (((-110) (-110)) NIL)) (-3865 (((-108) $) 42)) (-2116 (((-108) $) NIL (|has| $ (-966 (-525))))) (-1384 (((-1041 (-525) (-564 $)) $) 37)) (-3126 (($ $ (-525)) NIL)) (-1525 (((-1085 $) (-1085 $) (-564 $)) 78) (((-1085 $) (-1085 $) (-591 (-564 $))) 55) (($ $ (-564 $)) 67) (($ $ (-591 (-564 $))) 68)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1873 (((-1085 $) (-564 $)) 65 (|has| $ (-975)))) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1257 (($ (-1 $ $) (-564 $)) NIL)) (-3415 (((-3 (-564 $) "failed") $) NIL)) (-2081 (($ (-591 $)) NIL) (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2504 (((-591 (-564 $)) $) NIL)) (-2899 (($ (-110) $) NIL) (($ (-110) (-591 $)) NIL)) (-3029 (((-108) $ (-110)) NIL) (((-108) $ (-1089)) NIL)) (-1523 (($ $) NIL)) (-3457 (((-712) $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ (-591 $)) NIL) (($ $ $) NIL)) (-4064 (((-108) $ $) NIL) (((-108) $ (-1089)) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2882 (((-108) $) NIL (|has| $ (-966 (-525))))) (-1980 (($ $ (-564 $) $) NIL) (($ $ (-591 (-564 $)) (-591 $)) NIL) (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ $))) NIL) (($ $ (-591 (-1089)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-1089) (-1 $ (-591 $))) NIL) (($ $ (-1089) (-1 $ $)) NIL) (($ $ (-591 (-110)) (-591 (-1 $ $))) NIL) (($ $ (-591 (-110)) (-591 (-1 $ (-591 $)))) NIL) (($ $ (-110) (-1 $ (-591 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3048 (((-712) $) NIL)) (-1881 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-591 $)) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-1390 (($ $) NIL) (($ $ $) NIL)) (-2209 (($ $ (-712)) NIL) (($ $) 36)) (-1396 (((-1041 (-525) (-564 $)) $) 20)) (-1341 (($ $) NIL (|has| $ (-975)))) (-1300 (((-357) $) 92) (((-205) $) 100) (((-157 (-357)) $) 108)) (-2686 (((-796) $) NIL) (($ (-564 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1041 (-525) (-564 $))) 21)) (-3425 (((-712)) NIL)) (-3800 (($ $) NIL) (($ (-591 $)) NIL)) (-2754 (((-108) (-110)) 84)) (-1724 (((-108) $ $) NIL)) (-1401 (($ $ (-525)) NIL) (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (-1830 (($) 10 T CONST)) (-1839 (($) 22 T CONST)) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 24)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4059 (($ $ $) 44)) (-4047 (($ $ $) NIL) (($ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) 46) (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) 27) (($ (-525) $) NIL) (($ (-712) $) NIL) (($ (-854) $) NIL))) -(((-468) (-13 (-281) (-27) (-966 (-525)) (-966 (-385 (-525))) (-587 (-525)) (-951) (-587 (-385 (-525))) (-138) (-566 (-157 (-357))) (-213) (-10 -8 (-15 -2686 ($ (-1041 (-525) (-564 $)))) (-15 -1384 ((-1041 (-525) (-564 $)) $)) (-15 -1396 ((-1041 (-525) (-564 $)) $)) (-15 -3618 ($ $)) (-15 -1477 ((-108) $ $)) (-15 -1525 ((-1085 $) (-1085 $) (-564 $))) (-15 -1525 ((-1085 $) (-1085 $) (-591 (-564 $)))) (-15 -1525 ($ $ (-564 $))) (-15 -1525 ($ $ (-591 (-564 $))))))) (T -468)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1041 (-525) (-564 (-468)))) (-5 *1 (-468)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1041 (-525) (-564 (-468)))) (-5 *1 (-468)))) (-1396 (*1 *2 *1) (-12 (-5 *2 (-1041 (-525) (-564 (-468)))) (-5 *1 (-468)))) (-3618 (*1 *1 *1) (-5 *1 (-468))) (-1477 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-468))) (-5 *3 (-564 (-468))) (-5 *1 (-468)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-468))) (-5 *3 (-591 (-564 (-468)))) (-5 *1 (-468)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-564 (-468))) (-5 *1 (-468)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-564 (-468)))) (-5 *1 (-468))))) -(-13 (-281) (-27) (-966 (-525)) (-966 (-385 (-525))) (-587 (-525)) (-951) (-587 (-385 (-525))) (-138) (-566 (-157 (-357))) (-213) (-10 -8 (-15 -2686 ($ (-1041 (-525) (-564 $)))) (-15 -1384 ((-1041 (-525) (-564 $)) $)) (-15 -1396 ((-1041 (-525) (-564 $)) $)) (-15 -3618 ($ $)) (-15 -1477 ((-108) $ $)) (-15 -1525 ((-1085 $) (-1085 $) (-564 $))) (-15 -1525 ((-1085 $) (-1085 $) (-591 (-564 $)))) (-15 -1525 ($ $ (-564 $))) (-15 -1525 ($ $ (-591 (-564 $)))))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-525) |#1|) 25 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) 22 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 21)) (-1734 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018)))) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-1316 (($ (-712) |#1|) 14)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) 12 (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) 23 (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2872 ((|#1| $) NIL (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) 10 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) 13)) (-1881 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 24) (($ $ (-1138 (-525))) NIL)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) NIL)) (-1624 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-591 $)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-2028 (((-712) $) 9 (|has| $ (-6 -4250))))) -(((-469 |#1| |#2|) (-19 |#1|) (-1125) (-525)) (T -469)) +((-3915 (*1 *1 *1) (-4 *1 (-466))) (-3886 (*1 *1 *1) (-4 *1 (-466))) (-3946 (*1 *1 *1) (-4 *1 (-466))) (-3960 (*1 *1 *1) (-4 *1 (-466))) (-3930 (*1 *1 *1) (-4 *1 (-466))) (-3901 (*1 *1 *1) (-4 *1 (-466)))) +(-13 (-10 -8 (-15 -3901 ($ $)) (-15 -3930 ($ $)) (-15 -3960 ($ $)) (-15 -3946 ($ $)) (-15 -3886 ($ $)) (-15 -3915 ($ $)))) +((-2961 (((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)) 42))) +(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2961 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)))) (-341) (-1148 |#1|) (-13 (-341) (-138) (-667 |#1| |#2|)) (-1148 |#3|)) (T -467)) +((-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3)) (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1148 *7))))) +(-10 -7 (-15 -2961 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)))) +((-4028 (((-108) $ $) NIL)) (-1708 (((-592 $) (-1086 $) (-1090)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-886 $)) NIL)) (-3553 (($ (-1086 $) (-1090)) NIL) (($ (-1086 $)) NIL) (($ (-886 $)) NIL)) (-2464 (((-108) $) 39)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-2772 (((-108) $ $) 64)) (-2249 (((-592 (-565 $)) $) 48)) (-3004 (((-3 $ "failed") $ $) NIL)) (-3687 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2975 (($ $) NIL)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-3291 (((-592 $) (-1086 $) (-1090)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-886 $)) NIL)) (-2539 (($ (-1086 $) (-1090)) NIL) (($ (-1086 $)) NIL) (($ (-886 $)) NIL)) (-2769 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-2068 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) 50)) (-2720 (($ $ $) NIL)) (-1307 (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3471 (-632 (-385 (-525)))) (|:| |vec| (-1172 (-385 (-525))))) (-632 $) (-1172 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-3336 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-1759 (($ $) NIL) (($ (-592 $)) NIL)) (-4131 (((-592 (-110)) $) NIL)) (-1885 (((-110) (-110)) NIL)) (-2507 (((-108) $) 42)) (-2057 (((-108) $) NIL (|has| $ (-967 (-525))))) (-1936 (((-1042 (-525) (-565 $)) $) 37)) (-2581 (($ $ (-525)) NIL)) (-2281 (((-1086 $) (-1086 $) (-565 $)) 78) (((-1086 $) (-1086 $) (-592 (-565 $))) 55) (($ $ (-565 $)) 67) (($ $ (-592 (-565 $))) 68)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2605 (((-1086 $) (-565 $)) 65 (|has| $ (-976)))) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2868 (($ (-1 $ $) (-565 $)) NIL)) (-1688 (((-3 (-565 $) "failed") $) NIL)) (-2226 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-1304 (((-592 (-565 $)) $) NIL)) (-1996 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-4084 (((-108) $ (-110)) NIL) (((-108) $ (-1090)) NIL)) (-3243 (($ $) NIL)) (-2138 (((-713) $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1680 (((-108) $ $) NIL) (((-108) $ (-1090)) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3524 (((-108) $) NIL (|has| $ (-967 (-525))))) (-2168 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2824 (((-713) $) NIL)) (-1496 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-3080 (($ $) NIL) (($ $ $) NIL)) (-1576 (($ $ (-713)) NIL) (($ $) 36)) (-1945 (((-1042 (-525) (-565 $)) $) 20)) (-2775 (($ $) NIL (|has| $ (-976)))) (-2923 (((-357) $) 92) (((-205) $) 100) (((-157 (-357)) $) 108)) (-4044 (((-797) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1042 (-525) (-565 $))) 21)) (-2502 (((-713)) NIL)) (-3882 (($ $) NIL) (($ (-592 $)) NIL)) (-3712 (((-108) (-110)) 84)) (-3787 (((-108) $ $) NIL)) (-1594 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-1436 (($) 10 T CONST)) (-1449 (($) 22 T CONST)) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 24)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4047 (($ $ $) 44)) (-4033 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) 46) (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) 27) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL))) +(((-468) (-13 (-281) (-27) (-967 (-525)) (-967 (-385 (-525))) (-588 (-525)) (-952) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -4044 ($ (-1042 (-525) (-565 $)))) (-15 -1936 ((-1042 (-525) (-565 $)) $)) (-15 -1945 ((-1042 (-525) (-565 $)) $)) (-15 -3336 ($ $)) (-15 -2772 ((-108) $ $)) (-15 -2281 ((-1086 $) (-1086 $) (-565 $))) (-15 -2281 ((-1086 $) (-1086 $) (-592 (-565 $)))) (-15 -2281 ($ $ (-565 $))) (-15 -2281 ($ $ (-592 (-565 $))))))) (T -468)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-3336 (*1 *1 *1) (-5 *1 (-468))) (-2772 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))) (-2281 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468)))) (-2281 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-468))) (-5 *3 (-592 (-565 (-468)))) (-5 *1 (-468)))) (-2281 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-468))) (-5 *1 (-468)))) (-2281 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-468)))) (-5 *1 (-468))))) +(-13 (-281) (-27) (-967 (-525)) (-967 (-385 (-525))) (-588 (-525)) (-952) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -4044 ($ (-1042 (-525) (-565 $)))) (-15 -1936 ((-1042 (-525) (-565 $)) $)) (-15 -1945 ((-1042 (-525) (-565 $)) $)) (-15 -3336 ($ $)) (-15 -2772 ((-108) $ $)) (-15 -2281 ((-1086 $) (-1086 $) (-565 $))) (-15 -2281 ((-1086 $) (-1086 $) (-592 (-565 $)))) (-15 -2281 ($ $ (-565 $))) (-15 -2281 ($ $ (-592 (-565 $)))))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-525) |#1|) 25 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) 22 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 21)) (-1930 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3248 (($ (-713) |#1|) 14)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) 12 (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) 23 (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1683 ((|#1| $) NIL (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) 10 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) 13)) (-1496 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 24) (($ $ (-1139 (-525))) NIL)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) NIL)) (-1810 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-1696 (((-713) $) 9 (|has| $ (-6 -4254))))) +(((-469 |#1| |#2|) (-19 |#1|) (-1126) (-525)) (T -469)) NIL (-19 |#1|) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-525) (-525) |#1|) NIL)) (-1557 (($ $ (-525) (-469 |#1| |#3|)) NIL)) (-3031 (($ $ (-525) (-469 |#1| |#2|)) NIL)) (-2055 (($) NIL T CONST)) (-2578 (((-469 |#1| |#3|) $ (-525)) NIL)) (-4205 ((|#1| $ (-525) (-525) |#1|) NIL)) (-4121 ((|#1| $ (-525) (-525)) NIL)) (-2916 (((-591 |#1|) $) NIL)) (-4127 (((-712) $) NIL)) (-1316 (($ (-712) (-712) |#1|) NIL)) (-4140 (((-712) $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-3142 (((-525) $) NIL)) (-3660 (((-525) $) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3882 (((-525) $) NIL)) (-2494 (((-525) $) NIL)) (-4192 (($ (-1 |#1| |#1|) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-1858 (($ $ |#1|) NIL)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-1256 (((-469 |#1| |#2|) $ (-525)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-470 |#1| |#2| |#3|) (-55 |#1| (-469 |#1| |#3|) (-469 |#1| |#2|)) (-1125) (-525) (-525)) (T -470)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-525) (-525) |#1|) NIL)) (-1760 (($ $ (-525) (-469 |#1| |#3|)) NIL)) (-4228 (($ $ (-525) (-469 |#1| |#2|)) NIL)) (-1957 (($) NIL T CONST)) (-2914 (((-469 |#1| |#3|) $ (-525)) NIL)) (-2549 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2488 ((|#1| $ (-525) (-525)) NIL)) (-3781 (((-592 |#1|) $) NIL)) (-1431 (((-713) $) NIL)) (-3248 (($ (-713) (-713) |#1|) NIL)) (-1444 (((-713) $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-3533 (((-525) $) NIL)) (-3054 (((-525) $) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2487 (((-525) $) NIL)) (-4220 (((-525) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1614 (($ $ |#1|) NIL)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-2738 (((-469 |#1| |#2|) $ (-525)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-470 |#1| |#2| |#3|) (-55 |#1| (-469 |#1| |#3|) (-469 |#1| |#2|)) (-1126) (-525) (-525)) (T -470)) NIL (-55 |#1| (-469 |#1| |#3|) (-469 |#1| |#2|)) -((-3325 (((-591 (-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-712) (-712)) 27)) (-1793 (((-591 (-1085 |#1|)) |#1| (-712) (-712) (-712)) 34)) (-2032 (((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-591 |#3|) (-591 (-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-712)) 85))) -(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -1793 ((-591 (-1085 |#1|)) |#1| (-712) (-712) (-712))) (-15 -3325 ((-591 (-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-712) (-712))) (-15 -2032 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-591 |#3|) (-591 (-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-712)))) (-327) (-1147 |#1|) (-1147 |#2|)) (T -471)) -((-2032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 (-2 (|:| -3612 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))) (-5 *5 (-712)) (-4 *8 (-1147 *7)) (-4 *7 (-1147 *6)) (-4 *6 (-327)) (-5 *2 (-2 (|:| -3612 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) (-5 *1 (-471 *6 *7 *8)))) (-3325 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-712)) (-4 *5 (-327)) (-4 *6 (-1147 *5)) (-5 *2 (-591 (-2 (|:| -3612 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-2 (|:| -3612 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) (-4 *7 (-1147 *6)))) (-1793 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-712)) (-4 *3 (-327)) (-4 *5 (-1147 *3)) (-5 *2 (-591 (-1085 *3))) (-5 *1 (-471 *3 *5 *6)) (-4 *6 (-1147 *5))))) -(-10 -7 (-15 -1793 ((-591 (-1085 |#1|)) |#1| (-712) (-712) (-712))) (-15 -3325 ((-591 (-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-712) (-712))) (-15 -2032 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-591 |#3|) (-591 (-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-712)))) -((-1440 (((-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 62)) (-2736 ((|#1| (-631 |#1|) |#1| (-712)) 25)) (-3537 (((-712) (-712) (-712)) 30)) (-2328 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 42)) (-1551 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 50) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 47)) (-2625 ((|#1| (-631 |#1|) (-631 |#1|) |#1| (-525)) 29)) (-2102 ((|#1| (-631 |#1|)) 18))) -(((-472 |#1| |#2| |#3|) (-10 -7 (-15 -2102 (|#1| (-631 |#1|))) (-15 -2736 (|#1| (-631 |#1|) |#1| (-712))) (-15 -2625 (|#1| (-631 |#1|) (-631 |#1|) |#1| (-525))) (-15 -3537 ((-712) (-712) (-712))) (-15 -1551 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1551 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -2328 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1440 ((-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))))) (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $)))) (-1147 |#1|) (-387 |#1| |#2|)) (T -472)) -((-1440 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2328 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-1551 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-1551 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3537 (*1 *2 *2 *2) (-12 (-5 *2 (-712)) (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2625 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-525)) (-4 *2 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-4 *5 (-1147 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-2736 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-712)) (-4 *2 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-4 *5 (-1147 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *4 (-1147 *2)) (-4 *2 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4))))) -(-10 -7 (-15 -2102 (|#1| (-631 |#1|))) (-15 -2736 (|#1| (-631 |#1|) |#1| (-712))) (-15 -2625 (|#1| (-631 |#1|) (-631 |#1|) |#1| (-525))) (-15 -3537 ((-712) (-712) (-712))) (-15 -1551 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1551 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -2328 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1440 ((-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -3612 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))))) -((-2673 (((-108) $ $) NIL)) (-1426 (($ $) NIL)) (-2216 (($ $ $) 35)) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) $) NIL (|has| (-108) (-788))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2613 (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| (-108) (-788)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4251)))) (-1282 (($ $) NIL (|has| (-108) (-788))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2847 (((-108) $ (-1138 (-525)) (-108)) NIL (|has| $ (-6 -4251))) (((-108) $ (-525) (-108)) 36 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-2537 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-3618 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-4205 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4251)))) (-4121 (((-108) $ (-525)) NIL)) (-1734 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1018))) (((-525) (-108) $) NIL (|has| (-108) (-1018))) (((-525) (-1 (-108) (-108)) $) NIL)) (-2916 (((-591 (-108)) $) NIL (|has| $ (-6 -4250)))) (-3532 (($ $ $) 33)) (-3389 (($ $) NIL)) (-3200 (($ $ $) NIL)) (-1316 (($ (-712) (-108)) 23)) (-3185 (($ $ $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) 8 (|has| (-525) (-788)))) (-1923 (($ $ $) NIL)) (-3459 (($ $ $) NIL (|has| (-108) (-788))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-4207 (((-591 (-108)) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL)) (-4192 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2059 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 (((-108) $) NIL (|has| (-525) (-788)))) (-2714 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1858 (($ $ (-108)) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-108)) (-591 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018)))) (($ $ (-591 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018))))) (-2998 (((-591 (-108)) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) 24)) (-1881 (($ $ (-1138 (-525))) NIL) (((-108) $ (-525)) 18) (((-108) $ (-525) (-108)) NIL)) (-3226 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-2960 (((-712) (-108) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-108) (-1018)))) (((-712) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250)))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) 25)) (-1300 (((-501) $) NIL (|has| (-108) (-566 (-501))))) (-2695 (($ (-591 (-108))) NIL)) (-1624 (($ (-591 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2686 (((-796) $) 22)) (-1475 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4250)))) (-3543 (($ $ $) 31)) (-1401 (($ $) NIL)) (-3691 (($ $ $) NIL)) (-3589 (($ $ $) 39)) (-3598 (($ $) 37)) (-3578 (($ $ $) 38)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 26)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 27)) (-3677 (($ $ $) NIL)) (-2028 (((-712) $) 10 (|has| $ (-6 -4250))))) -(((-473 |#1|) (-13 (-119) (-10 -8 (-15 -3598 ($ $)) (-15 -3589 ($ $ $)) (-15 -3578 ($ $ $)))) (-525)) (T -473)) -((-3598 (*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-3589 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-3578 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))) -(-13 (-119) (-10 -8 (-15 -3598 ($ $)) (-15 -3589 ($ $ $)) (-15 -3578 ($ $ $)))) -((-2710 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1085 |#4|)) 35)) (-1266 (((-1085 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1085 |#4|)) 22)) (-2247 (((-3 (-631 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-631 (-1085 |#4|))) 46)) (-1380 (((-1085 (-1085 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1266 (|#2| (-1 |#1| |#4|) (-1085 |#4|))) (-15 -1266 ((-1085 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2710 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1085 |#4|))) (-15 -2247 ((-3 (-631 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-631 (-1085 |#4|)))) (-15 -1380 ((-1085 (-1085 |#4|)) (-1 |#4| |#1|) |#3|))) (-975) (-1147 |#1|) (-1147 |#2|) (-975)) (T -474)) -((-1380 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-975)) (-4 *7 (-975)) (-4 *6 (-1147 *5)) (-5 *2 (-1085 (-1085 *7))) (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1147 *6)))) (-2247 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1085 *8))) (-4 *5 (-975)) (-4 *8 (-975)) (-4 *6 (-1147 *5)) (-5 *2 (-631 *6)) (-5 *1 (-474 *5 *6 *7 *8)) (-4 *7 (-1147 *6)))) (-2710 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1085 *7)) (-4 *5 (-975)) (-4 *7 (-975)) (-4 *2 (-1147 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1147 *2)))) (-1266 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-975)) (-4 *7 (-975)) (-4 *4 (-1147 *5)) (-5 *2 (-1085 *7)) (-5 *1 (-474 *5 *4 *6 *7)) (-4 *6 (-1147 *4)))) (-1266 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1085 *7)) (-4 *5 (-975)) (-4 *7 (-975)) (-4 *2 (-1147 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1147 *2))))) -(-10 -7 (-15 -1266 (|#2| (-1 |#1| |#4|) (-1085 |#4|))) (-15 -1266 ((-1085 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2710 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1085 |#4|))) (-15 -2247 ((-3 (-631 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-631 (-1085 |#4|)))) (-15 -1380 ((-1085 (-1085 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2673 (((-108) $ $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3829 (((-1176) $) 18)) (-1881 (((-1072) $ (-1089)) 22)) (-1285 (((-1176) $) 14)) (-2686 (((-796) $) 20) (($ (-1072)) 19)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 8)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 7))) -(((-475) (-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $)) (-15 -2686 ($ (-1072)))))) (T -475)) -((-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-475)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-475)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-475)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-475))))) -(-13 (-788) (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) (-15 -3829 ((-1176) $)) (-15 -2686 ($ (-1072))))) -((-1221 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3993 ((|#1| |#4|) 10)) (-3717 ((|#3| |#4|) 17))) -(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 (|#1| |#4|)) (-15 -3717 (|#3| |#4|)) (-15 -1221 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-517) (-923 |#1|) (-351 |#1|) (-351 |#2|)) (T -476)) -((-1221 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-923 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5)))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-923 *4)) (-4 *2 (-351 *4)) (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5)))) (-3993 (*1 *2 *3) (-12 (-4 *4 (-923 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-351 *4))))) -(-10 -7 (-15 -3993 (|#1| |#4|)) (-15 -3717 (|#3| |#4|)) (-15 -1221 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2673 (((-108) $ $) NIL)) (-2941 (((-108) $ (-591 |#3|)) 104) (((-108) $) 105)) (-1306 (((-108) $) 148)) (-2549 (($ $ |#4|) 96) (($ $ |#4| (-591 |#3|)) 100)) (-2669 (((-1079 (-591 (-885 |#1|)) (-591 (-273 (-885 |#1|)))) (-591 |#4|)) 141 (|has| |#3| (-566 (-1089))))) (-2746 (($ $ $) 90) (($ $ |#4|) 88)) (-3865 (((-108) $) 147)) (-2303 (($ $) 108)) (-2621 (((-1072) $) NIL)) (-2318 (($ $ $) 82) (($ (-591 $)) 84)) (-2339 (((-108) |#4| $) 107)) (-3486 (((-108) $ $) 71)) (-1432 (($ (-591 |#4|)) 89)) (-2937 (((-1036) $) NIL)) (-2113 (($ (-591 |#4|)) 145)) (-2046 (((-108) $) 146)) (-2155 (($ $) 73)) (-1252 (((-591 |#4|) $) 57)) (-4129 (((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-591 |#3|)) NIL)) (-2816 (((-108) |#4| $) 76)) (-3840 (((-525) $ (-591 |#3|)) 109) (((-525) $) 110)) (-2686 (((-796) $) 144) (($ (-591 |#4|)) 85)) (-2836 (($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $))) NIL)) (-3944 (((-108) $ $) 72)) (-4036 (($ $ $) 92)) (** (($ $ (-712)) 95)) (* (($ $ $) 94))) -(((-477 |#1| |#2| |#3| |#4|) (-13 (-1018) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-712))) (-15 -4036 ($ $ $)) (-15 -3865 ((-108) $)) (-15 -1306 ((-108) $)) (-15 -2816 ((-108) |#4| $)) (-15 -3486 ((-108) $ $)) (-15 -2339 ((-108) |#4| $)) (-15 -2941 ((-108) $ (-591 |#3|))) (-15 -2941 ((-108) $)) (-15 -2318 ($ $ $)) (-15 -2318 ($ (-591 $))) (-15 -2746 ($ $ $)) (-15 -2746 ($ $ |#4|)) (-15 -2155 ($ $)) (-15 -4129 ((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-591 |#3|))) (-15 -2836 ($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)))) (-15 -3840 ((-525) $ (-591 |#3|))) (-15 -3840 ((-525) $)) (-15 -2303 ($ $)) (-15 -1432 ($ (-591 |#4|))) (-15 -2113 ($ (-591 |#4|))) (-15 -2046 ((-108) $)) (-15 -1252 ((-591 |#4|) $)) (-15 -2686 ($ (-591 |#4|))) (-15 -2549 ($ $ |#4|)) (-15 -2549 ($ $ |#4| (-591 |#3|))) (IF (|has| |#3| (-566 (-1089))) (-15 -2669 ((-1079 (-591 (-885 |#1|)) (-591 (-273 (-885 |#1|)))) (-591 |#4|))) |%noBranch|))) (-341) (-734) (-788) (-882 |#1| |#2| |#3|)) (T -477)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) (-3865 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-1306 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-2816 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6)))) (-3486 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-2339 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6)))) (-2941 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *6)) (-4 *6 (-788)) (-4 *4 (-341)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-882 *4 *5 *6)))) (-2941 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-2318 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) (-2318 (*1 *1 *2) (-12 (-5 *2 (-591 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-2746 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) (-2746 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-882 *3 *4 *5)))) (-2155 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) (-4129 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *6)) (-4 *6 (-788)) (-4 *4 (-341)) (-4 *5 (-734)) (-5 *2 (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) (|:| |genIdeal| (-477 *4 *5 *6 *7)))) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-882 *4 *5 *6)))) (-2836 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) (|:| |genIdeal| (-477 *3 *4 *5 *6)))) (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-3840 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *6)) (-4 *6 (-788)) (-4 *4 (-341)) (-4 *5 (-734)) (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-882 *4 *5 *6)))) (-3840 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-525)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-2303 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) (-1432 (*1 *1 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6)))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6)))) (-2046 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-1252 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *6)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6)))) (-2549 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-882 *3 *4 *5)))) (-2549 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-591 *6)) (-4 *6 (-788)) (-4 *4 (-341)) (-4 *5 (-734)) (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-882 *4 *5 *6)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *5 *6)) (-4 *6 (-566 (-1089))) (-4 *4 (-341)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1079 (-591 (-885 *4)) (-591 (-273 (-885 *4))))) (-5 *1 (-477 *4 *5 *6 *7))))) -(-13 (-1018) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-712))) (-15 -4036 ($ $ $)) (-15 -3865 ((-108) $)) (-15 -1306 ((-108) $)) (-15 -2816 ((-108) |#4| $)) (-15 -3486 ((-108) $ $)) (-15 -2339 ((-108) |#4| $)) (-15 -2941 ((-108) $ (-591 |#3|))) (-15 -2941 ((-108) $)) (-15 -2318 ($ $ $)) (-15 -2318 ($ (-591 $))) (-15 -2746 ($ $ $)) (-15 -2746 ($ $ |#4|)) (-15 -2155 ($ $)) (-15 -4129 ((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-591 |#3|))) (-15 -2836 ($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)))) (-15 -3840 ((-525) $ (-591 |#3|))) (-15 -3840 ((-525) $)) (-15 -2303 ($ $)) (-15 -1432 ($ (-591 |#4|))) (-15 -2113 ($ (-591 |#4|))) (-15 -2046 ((-108) $)) (-15 -1252 ((-591 |#4|) $)) (-15 -2686 ($ (-591 |#4|))) (-15 -2549 ($ $ |#4|)) (-15 -2549 ($ $ |#4| (-591 |#3|))) (IF (|has| |#3| (-566 (-1089))) (-15 -2669 ((-1079 (-591 (-885 |#1|)) (-591 (-273 (-885 |#1|)))) (-591 |#4|))) |%noBranch|))) -((-1770 (((-108) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525))))) 149)) (-1696 (((-108) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525))))) 150)) (-2947 (((-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525))))) 108)) (-2393 (((-108) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525))))) NIL)) (-3608 (((-591 (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525))))) 152)) (-3511 (((-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))) (-591 (-798 |#1|))) 164))) -(((-478 |#1| |#2|) (-10 -7 (-15 -1770 ((-108) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1696 ((-108) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2393 ((-108) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2947 ((-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3608 ((-591 (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3511 ((-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))) (-591 (-798 |#1|))))) (-591 (-1089)) (-712)) (T -478)) -((-3511 (*1 *2 *2 *3) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) (-227 *4 (-385 (-525))))) (-5 *3 (-591 (-798 *4))) (-14 *4 (-591 (-1089))) (-14 *5 (-712)) (-5 *1 (-478 *4 *5)))) (-3608 (*1 *2 *3) (-12 (-14 *4 (-591 (-1089))) (-14 *5 (-712)) (-5 *2 (-591 (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) (-227 *4 (-385 (-525)))))) (-5 *1 (-478 *4 *5)) (-5 *3 (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) (-227 *4 (-385 (-525))))))) (-2947 (*1 *2 *2) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *4 (-712)) (-798 *3) (-227 *3 (-385 (-525))))) (-14 *3 (-591 (-1089))) (-14 *4 (-712)) (-5 *1 (-478 *3 *4)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-591 (-1089))) (-14 *5 (-712)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-591 (-1089))) (-14 *5 (-712)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-591 (-1089))) (-14 *5 (-712)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5))))) -(-10 -7 (-15 -1770 ((-108) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1696 ((-108) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2393 ((-108) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2947 ((-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3608 ((-591 (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3511 ((-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-712)) (-798 |#1|) (-227 |#1| (-385 (-525)))) (-591 (-798 |#1|))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1422 (($ |#1| |#2|) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1258 ((|#2| $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-1830 (($) 12 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) 11) (($ $ $) 24)) (-4036 (($ $ $) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 18))) -(((-479 |#1| |#2|) (-13 (-21) (-481 |#1| |#2|)) (-21) (-788)) (T -479)) +((-1888 (((-592 (-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713)) 27)) (-3628 (((-592 (-1086 |#1|)) |#1| (-713) (-713) (-713)) 34)) (-2020 (((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)) 85))) +(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-592 (-1086 |#1|)) |#1| (-713) (-713) (-713))) (-15 -1888 ((-592 (-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -2020 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)))) (-327) (-1148 |#1|) (-1148 |#2|)) (T -471)) +((-2020 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-2 (|:| -2734 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7))))) (-5 *5 (-713)) (-4 *8 (-1148 *7)) (-4 *7 (-1148 *6)) (-4 *6 (-327)) (-5 *2 (-2 (|:| -2734 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) (-5 *1 (-471 *6 *7 *8)))) (-1888 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -2734 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-2 (|:| -2734 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) (-4 *7 (-1148 *6)))) (-3628 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1148 *3)) (-5 *2 (-592 (-1086 *3))) (-5 *1 (-471 *3 *5 *6)) (-4 *6 (-1148 *5))))) +(-10 -7 (-15 -3628 ((-592 (-1086 |#1|)) |#1| (-713) (-713) (-713))) (-15 -1888 ((-592 (-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -2020 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)))) +((-3051 (((-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 62)) (-1832 ((|#1| (-632 |#1|) |#1| (-713)) 25)) (-2164 (((-713) (-713) (-713)) 30)) (-4022 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 42)) (-2395 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 50) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 47)) (-2659 ((|#1| (-632 |#1|) (-632 |#1|) |#1| (-525)) 29)) (-1255 ((|#1| (-632 |#1|)) 18))) +(((-472 |#1| |#2| |#3|) (-10 -7 (-15 -1255 (|#1| (-632 |#1|))) (-15 -1832 (|#1| (-632 |#1|) |#1| (-713))) (-15 -2659 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -2164 ((-713) (-713) (-713))) (-15 -2395 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2395 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -4022 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3051 ((-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))))) (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $)))) (-1148 |#1|) (-387 |#1| |#2|)) (T -472)) +((-3051 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-4022 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2395 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2395 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2164 (*1 *2 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2659 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-525)) (-4 *2 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-4 *5 (-1148 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-1832 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-713)) (-4 *2 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-4 *5 (-1148 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-1255 (*1 *2 *3) (-12 (-5 *3 (-632 *2)) (-4 *4 (-1148 *2)) (-4 *2 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4))))) +(-10 -7 (-15 -1255 (|#1| (-632 |#1|))) (-15 -1832 (|#1| (-632 |#1|) |#1| (-713))) (-15 -2659 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -2164 ((-713) (-713) (-713))) (-15 -2395 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2395 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -4022 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3051 ((-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2734 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))))) +((-4028 (((-108) $ $) NIL)) (-3803 (($ $) NIL)) (-1829 (($ $ $) 35)) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-1473 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1230 (((-108) $ (-1139 (-525)) (-108)) NIL (|has| $ (-6 -4255))) (((-108) $ (-525) (-108)) 36 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2591 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-3336 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2549 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4255)))) (-2488 (((-108) $ (-525)) NIL)) (-1930 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1019))) (((-525) (-108) $) NIL (|has| (-108) (-1019))) (((-525) (-1 (-108) (-108)) $) NIL)) (-3781 (((-592 (-108)) $) NIL (|has| $ (-6 -4254)))) (-2377 (($ $ $) 33)) (-2823 (($ $) NIL)) (-3496 (($ $ $) NIL)) (-3248 (($ (-713) (-108)) 23)) (-1773 (($ $ $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) 8 (|has| (-525) (-789)))) (-1260 (($ $ $) NIL)) (-1440 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-2679 (((-592 (-108)) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL)) (-2540 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2234 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 (((-108) $) NIL (|has| (-525) (-789)))) (-3611 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1614 (($ $ (-108)) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-4100 (((-592 (-108)) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) 24)) (-1496 (($ $ (-1139 (-525))) NIL) (((-108) $ (-525)) 18) (((-108) $ (-525) (-108)) NIL)) (-2697 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-3053 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) 25)) (-2923 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-4059 (($ (-592 (-108))) NIL)) (-1810 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-4044 (((-797) $) 22)) (-2443 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-2385 (($ $ $) 31)) (-1594 (($ $) NIL)) (-2337 (($ $ $) NIL)) (-3000 (($ $ $) 39)) (-3017 (($ $) 37)) (-2988 (($ $ $) 38)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 26)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 27)) (-2327 (($ $ $) NIL)) (-1696 (((-713) $) 10 (|has| $ (-6 -4254))))) +(((-473 |#1|) (-13 (-119) (-10 -8 (-15 -3017 ($ $)) (-15 -3000 ($ $ $)) (-15 -2988 ($ $ $)))) (-525)) (T -473)) +((-3017 (*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-3000 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-2988 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))) +(-13 (-119) (-10 -8 (-15 -3017 ($ $)) (-15 -3000 ($ $ $)) (-15 -2988 ($ $ $)))) +((-3386 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1086 |#4|)) 35)) (-2215 (((-1086 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1086 |#4|)) 22)) (-2406 (((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1086 |#4|))) 46)) (-2724 (((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2215 (|#2| (-1 |#1| |#4|) (-1086 |#4|))) (-15 -2215 ((-1086 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3386 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1086 |#4|))) (-15 -2406 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1086 |#4|)))) (-15 -2724 ((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|))) (-976) (-1148 |#1|) (-1148 |#2|) (-976)) (T -474)) +((-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-976)) (-4 *7 (-976)) (-4 *6 (-1148 *5)) (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1148 *6)))) (-2406 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1086 *8))) (-4 *5 (-976)) (-4 *8 (-976)) (-4 *6 (-1148 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8)) (-4 *7 (-1148 *6)))) (-3386 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) (-4 *5 (-976)) (-4 *7 (-976)) (-4 *2 (-1148 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1148 *2)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-976)) (-4 *7 (-976)) (-4 *4 (-1148 *5)) (-5 *2 (-1086 *7)) (-5 *1 (-474 *5 *4 *6 *7)) (-4 *6 (-1148 *4)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-976)) (-4 *7 (-976)) (-4 *2 (-1148 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1148 *2))))) +(-10 -7 (-15 -2215 (|#2| (-1 |#1| |#4|) (-1086 |#4|))) (-15 -2215 ((-1086 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3386 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1086 |#4|))) (-15 -2406 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1086 |#4|)))) (-15 -2724 ((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|))) +((-4028 (((-108) $ $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2460 (((-1177) $) 18)) (-1496 (((-1073) $ (-1090)) 22)) (-3686 (((-1177) $) 14)) (-4044 (((-797) $) 20) (($ (-1073)) 19)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 8)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 7))) +(((-475) (-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $)) (-15 -4044 ($ (-1073)))))) (T -475)) +((-1496 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-475)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-475)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-475)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-475))))) +(-13 (-789) (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) (-15 -2460 ((-1177) $)) (-15 -4044 ($ (-1073))))) +((-3338 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4172 ((|#1| |#4|) 10)) (-1904 ((|#3| |#4|) 17))) +(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4172 (|#1| |#4|)) (-15 -1904 (|#3| |#4|)) (-15 -3338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-517) (-924 |#1|) (-351 |#1|) (-351 |#2|)) (T -476)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5)))) (-1904 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-4 *2 (-351 *4)) (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5)))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-351 *4))))) +(-10 -7 (-15 -4172 (|#1| |#4|)) (-15 -1904 (|#3| |#4|)) (-15 -3338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-4028 (((-108) $ $) NIL)) (-2126 (((-108) $ (-592 |#3|)) 104) (((-108) $) 105)) (-2464 (((-108) $) 148)) (-1937 (($ $ |#4|) 96) (($ $ |#4| (-592 |#3|)) 100)) (-1813 (((-1080 (-592 (-886 |#1|)) (-592 (-273 (-886 |#1|)))) (-592 |#4|)) 141 (|has| |#3| (-567 (-1090))))) (-2877 (($ $ $) 90) (($ $ |#4|) 88)) (-2507 (((-108) $) 147)) (-4176 (($ $) 108)) (-1707 (((-1073) $) NIL)) (-2021 (($ $ $) 82) (($ (-592 $)) 84)) (-2343 (((-108) |#4| $) 107)) (-2745 (((-108) $ $) 71)) (-3691 (($ (-592 |#4|)) 89)) (-3027 (((-1037) $) NIL)) (-2870 (($ (-592 |#4|)) 145)) (-3107 (((-108) $) 146)) (-1820 (($ $) 73)) (-3594 (((-592 |#4|) $) 57)) (-2006 (((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|)) NIL)) (-2047 (((-108) |#4| $) 76)) (-2374 (((-525) $ (-592 |#3|)) 109) (((-525) $) 110)) (-4044 (((-797) $) 144) (($ (-592 |#4|)) 85)) (-1413 (($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $))) NIL)) (-3899 (((-108) $ $) 72)) (-4017 (($ $ $) 92)) (** (($ $ (-713)) 95)) (* (($ $ $) 94))) +(((-477 |#1| |#2| |#3| |#4|) (-13 (-1019) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -4017 ($ $ $)) (-15 -2507 ((-108) $)) (-15 -2464 ((-108) $)) (-15 -2047 ((-108) |#4| $)) (-15 -2745 ((-108) $ $)) (-15 -2343 ((-108) |#4| $)) (-15 -2126 ((-108) $ (-592 |#3|))) (-15 -2126 ((-108) $)) (-15 -2021 ($ $ $)) (-15 -2021 ($ (-592 $))) (-15 -2877 ($ $ $)) (-15 -2877 ($ $ |#4|)) (-15 -1820 ($ $)) (-15 -2006 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -1413 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -2374 ((-525) $ (-592 |#3|))) (-15 -2374 ((-525) $)) (-15 -4176 ($ $)) (-15 -3691 ($ (-592 |#4|))) (-15 -2870 ($ (-592 |#4|))) (-15 -3107 ((-108) $)) (-15 -3594 ((-592 |#4|) $)) (-15 -4044 ($ (-592 |#4|))) (-15 -1937 ($ $ |#4|)) (-15 -1937 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1090))) (-15 -1813 ((-1080 (-592 (-886 |#1|)) (-592 (-273 (-886 |#1|)))) (-592 |#4|))) |%noBranch|))) (-341) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -477)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-4017 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-2507 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-2464 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-2047 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-2745 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-2343 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-2126 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))) (-2126 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-2021 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-2021 (*1 *1 *2) (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-2877 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-2877 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5)))) (-1820 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-2006 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) (|:| |genIdeal| (-477 *4 *5 *6 *7)))) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))) (-1413 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) (|:| |genIdeal| (-477 *3 *4 *5 *6)))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-2374 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))) (-2374 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-4176 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-2870 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-3107 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-3594 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-1937 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5)))) (-1937 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-883 *4 *5 *6)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *6 (-567 (-1090))) (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1080 (-592 (-886 *4)) (-592 (-273 (-886 *4))))) (-5 *1 (-477 *4 *5 *6 *7))))) +(-13 (-1019) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -4017 ($ $ $)) (-15 -2507 ((-108) $)) (-15 -2464 ((-108) $)) (-15 -2047 ((-108) |#4| $)) (-15 -2745 ((-108) $ $)) (-15 -2343 ((-108) |#4| $)) (-15 -2126 ((-108) $ (-592 |#3|))) (-15 -2126 ((-108) $)) (-15 -2021 ($ $ $)) (-15 -2021 ($ (-592 $))) (-15 -2877 ($ $ $)) (-15 -2877 ($ $ |#4|)) (-15 -1820 ($ $)) (-15 -2006 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -1413 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -2374 ((-525) $ (-592 |#3|))) (-15 -2374 ((-525) $)) (-15 -4176 ($ $)) (-15 -3691 ($ (-592 |#4|))) (-15 -2870 ($ (-592 |#4|))) (-15 -3107 ((-108) $)) (-15 -3594 ((-592 |#4|) $)) (-15 -4044 ($ (-592 |#4|))) (-15 -1937 ($ $ |#4|)) (-15 -1937 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1090))) (-15 -1813 ((-1080 (-592 (-886 |#1|)) (-592 (-273 (-886 |#1|)))) (-592 |#4|))) |%noBranch|))) +((-2544 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) 149)) (-3593 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) 150)) (-3820 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) 108)) (-2069 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) NIL)) (-3562 (((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) 152)) (-3487 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-799 |#1|))) 164))) +(((-478 |#1| |#2|) (-10 -7 (-15 -2544 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3593 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2069 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3820 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3562 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3487 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-799 |#1|))))) (-592 (-1090)) (-713)) (T -478)) +((-3487 (*1 *2 *2 *3) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))) (-5 *3 (-592 (-799 *4))) (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *1 (-478 *4 *5)))) (-3562 (*1 *2 *3) (-12 (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-592 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525)))))) (-5 *1 (-478 *4 *5)) (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *4 (-713)) (-799 *3) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1090))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5))))) +(-10 -7 (-15 -2544 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3593 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2069 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3820 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3562 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3487 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-799 |#1|))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-3097 (($ |#1| |#2|) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2888 ((|#2| $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-1436 (($) 12 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) 11) (($ $ $) 24)) (-4017 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 18))) +(((-479 |#1| |#2|) (-13 (-21) (-481 |#1| |#2|)) (-21) (-789)) (T -479)) NIL (-13 (-21) (-481 |#1| |#2|)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 12)) (-2055 (($) NIL T CONST)) (-1575 (($ $) 28)) (-1422 (($ |#1| |#2|) 25)) (-1257 (($ (-1 |#1| |#1|) $) 27)) (-1258 ((|#2| $) NIL)) (-1556 ((|#1| $) 29)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-1830 (($) 10 T CONST)) (-3944 (((-108) $ $) NIL)) (-4036 (($ $ $) 18)) (* (($ (-854) $) NIL) (($ (-712) $) 23))) -(((-480 |#1| |#2|) (-13 (-23) (-481 |#1| |#2|)) (-23) (-788)) (T -480)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 12)) (-1957 (($) NIL T CONST)) (-3306 (($ $) 28)) (-3097 (($ |#1| |#2|) 25)) (-2868 (($ (-1 |#1| |#1|) $) 27)) (-2888 ((|#2| $) NIL)) (-3286 ((|#1| $) 29)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-1436 (($) 10 T CONST)) (-3899 (((-108) $ $) NIL)) (-4017 (($ $ $) 18)) (* (($ (-855) $) NIL) (($ (-713) $) 23))) +(((-480 |#1| |#2|) (-13 (-23) (-481 |#1| |#2|)) (-23) (-789)) (T -480)) NIL (-13 (-23) (-481 |#1| |#2|)) -((-2673 (((-108) $ $) 7)) (-1575 (($ $) 13)) (-1422 (($ |#1| |#2|) 16)) (-1257 (($ (-1 |#1| |#1|) $) 17)) (-1258 ((|#2| $) 14)) (-1556 ((|#1| $) 15)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 6))) -(((-481 |#1| |#2|) (-131) (-1018) (-788)) (T -481)) -((-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-788)))) (-1422 (*1 *1 *2 *3) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-788)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1018)))) (-1258 (*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-788)))) (-1575 (*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-788))))) -(-13 (-1018) (-10 -8 (-15 -1257 ($ (-1 |t#1| |t#1|) $)) (-15 -1422 ($ |t#1| |t#2|)) (-15 -1556 (|t#1| $)) (-15 -1258 (|t#2| $)) (-15 -1575 ($ $)))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1422 (($ |#1| |#2|) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1258 ((|#2| $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-1830 (($) NIL T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 13)) (-4036 (($ $ $) NIL)) (* (($ (-712) $) NIL) (($ (-854) $) NIL))) -(((-482 |#1| |#2|) (-13 (-733) (-481 |#1| |#2|)) (-733) (-788)) (T -482)) -NIL -(-13 (-733) (-481 |#1| |#2|)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3343 (($ $ $) 16)) (-3332 (((-3 $ "failed") $ $) 13)) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1422 (($ |#1| |#2|) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1258 ((|#2| $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL)) (-1830 (($) NIL T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4036 (($ $ $) NIL)) (* (($ (-712) $) NIL) (($ (-854) $) NIL))) -(((-483 |#1| |#2|) (-13 (-734) (-481 |#1| |#2|)) (-734) (-788)) (T -483)) +((-4028 (((-108) $ $) 7)) (-3306 (($ $) 13)) (-3097 (($ |#1| |#2|) 16)) (-2868 (($ (-1 |#1| |#1|) $) 17)) (-2888 ((|#2| $) 14)) (-3286 ((|#1| $) 15)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 6))) +(((-481 |#1| |#2|) (-131) (-1019) (-789)) (T -481)) +((-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-789)))) (-3097 (*1 *1 *2 *3) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-789)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1019)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-789)))) (-3306 (*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-789))))) +(-13 (-1019) (-10 -8 (-15 -2868 ($ (-1 |t#1| |t#1|) $)) (-15 -3097 ($ |t#1| |t#2|)) (-15 -3286 (|t#1| $)) (-15 -2888 (|t#2| $)) (-15 -3306 ($ $)))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-3097 (($ |#1| |#2|) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2888 ((|#2| $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-1436 (($) NIL T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 13)) (-4017 (($ $ $) NIL)) (* (($ (-713) $) NIL) (($ (-855) $) NIL))) +(((-482 |#1| |#2|) (-13 (-734) (-481 |#1| |#2|)) (-734) (-789)) (T -482)) NIL (-13 (-734) (-481 |#1| |#2|)) -((-2673 (((-108) $ $) NIL)) (-1575 (($ $) 25)) (-1422 (($ |#1| |#2|) 22)) (-1257 (($ (-1 |#1| |#1|) $) 24)) (-1258 ((|#2| $) 27)) (-1556 ((|#1| $) 26)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 21)) (-3944 (((-108) $ $) 14))) -(((-484 |#1| |#2|) (-481 |#1| |#2|) (-1018) (-788)) (T -484)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3207 (($ $ $) 16)) (-3004 (((-3 $ "failed") $ $) 13)) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-3097 (($ |#1| |#2|) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2888 ((|#2| $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL)) (-1436 (($) NIL T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-713) $) NIL) (($ (-855) $) NIL))) +(((-483 |#1| |#2|) (-13 (-735) (-481 |#1| |#2|)) (-735) (-789)) (T -483)) +NIL +(-13 (-735) (-481 |#1| |#2|)) +((-4028 (((-108) $ $) NIL)) (-3306 (($ $) 25)) (-3097 (($ |#1| |#2|) 22)) (-2868 (($ (-1 |#1| |#1|) $) 24)) (-2888 ((|#2| $) 27)) (-3286 ((|#1| $) 26)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 21)) (-3899 (((-108) $ $) 14))) +(((-484 |#1| |#2|) (-481 |#1| |#2|) (-1019) (-789)) (T -484)) NIL (-481 |#1| |#2|) -((-1980 (($ $ (-591 |#2|) (-591 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-485 |#1| |#2| |#3|) (-10 -8 (-15 -1980 (|#1| |#1| |#2| |#3|)) (-15 -1980 (|#1| |#1| (-591 |#2|) (-591 |#3|)))) (-486 |#2| |#3|) (-1018) (-1125)) (T -485)) +((-2168 (($ $ (-592 |#2|) (-592 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-485 |#1| |#2| |#3|) (-10 -8 (-15 -2168 (|#1| |#1| |#2| |#3|)) (-15 -2168 (|#1| |#1| (-592 |#2|) (-592 |#3|)))) (-486 |#2| |#3|) (-1019) (-1126)) (T -485)) NIL -(-10 -8 (-15 -1980 (|#1| |#1| |#2| |#3|)) (-15 -1980 (|#1| |#1| (-591 |#2|) (-591 |#3|)))) -((-1980 (($ $ (-591 |#1|) (-591 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-486 |#1| |#2|) (-131) (-1018) (-1125)) (T -486)) -((-1980 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 *4)) (-5 *3 (-591 *5)) (-4 *1 (-486 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-1125)))) (-1980 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1125))))) -(-13 (-10 -8 (-15 -1980 ($ $ |t#1| |t#2|)) (-15 -1980 ($ $ (-591 |t#1|) (-591 |t#2|))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 16)) (-3581 (((-591 (-2 (|:| |gen| |#1|) (|:| -2288 |#2|))) $) 18)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2834 (((-712) $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-2178 ((|#1| $ (-525)) 23)) (-2235 ((|#2| $ (-525)) 21)) (-2637 (($ (-1 |#1| |#1|) $) 46)) (-1526 (($ (-1 |#2| |#2|) $) 43)) (-2621 (((-1072) $) NIL)) (-1990 (($ $ $) 53 (|has| |#2| (-733)))) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 42) (($ |#1|) NIL)) (-1263 ((|#2| |#1| $) 49)) (-1830 (($) 11 T CONST)) (-3944 (((-108) $ $) 29)) (-4036 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-854) $) NIL) (($ (-712) $) 36) (($ |#2| |#1|) 31))) -(((-487 |#1| |#2| |#3|) (-301 |#1| |#2|) (-1018) (-126) |#2|) (T -487)) +(-10 -8 (-15 -2168 (|#1| |#1| |#2| |#3|)) (-15 -2168 (|#1| |#1| (-592 |#2|) (-592 |#3|)))) +((-2168 (($ $ (-592 |#1|) (-592 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-486 |#1| |#2|) (-131) (-1019) (-1126)) (T -486)) +((-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *5)) (-4 *1 (-486 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1126)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1126))))) +(-13 (-10 -8 (-15 -2168 ($ $ |t#1| |t#2|)) (-15 -2168 ($ $ (-592 |t#1|) (-592 |t#2|))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 16)) (-3423 (((-592 (-2 (|:| |gen| |#1|) (|:| -2840 |#2|))) $) 18)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1651 (((-713) $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-2339 ((|#1| $ (-525)) 23)) (-1434 ((|#2| $ (-525)) 21)) (-4146 (($ (-1 |#1| |#1|) $) 46)) (-2619 (($ (-1 |#2| |#2|) $) 43)) (-1707 (((-1073) $) NIL)) (-1215 (($ $ $) 53 (|has| |#2| (-734)))) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 42) (($ |#1|) NIL)) (-2100 ((|#2| |#1| $) 49)) (-1436 (($) 11 T CONST)) (-3899 (((-108) $ $) 29)) (-4017 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-855) $) NIL) (($ (-713) $) 36) (($ |#2| |#1|) 31))) +(((-487 |#1| |#2| |#3|) (-301 |#1| |#2|) (-1019) (-126) |#2|) (T -487)) NIL (-301 |#1| |#2|) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2238 (((-108) (-108)) 25)) (-2847 ((|#1| $ (-525) |#1|) 28 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251)))) (-1288 (($ (-1 (-108) |#1|) $) 52)) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-3945 (($ $) 56 (|has| |#1| (-1018)))) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3844 (($ |#1| $) NIL (|has| |#1| (-1018))) (($ (-1 (-108) |#1|) $) 44)) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-1734 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018)))) (-1966 (($ $ (-525)) 13)) (-2620 (((-712) $) 11)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-1316 (($ (-712) |#1|) 23)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) 21 (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3597 (($ $ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) 35)) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) 20 (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-1520 (($ $ $ (-525)) 51) (($ |#1| $ (-525)) 37)) (-2059 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-1232 (($ (-591 |#1|)) 29)) (-2872 ((|#1| $) NIL (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) 19 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 40)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) 16)) (-1881 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 33) (($ $ (-1138 (-525))) NIL)) (-1227 (($ $ (-1138 (-525))) 50) (($ $ (-525)) 45)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) 41 (|has| $ (-6 -4251)))) (-2873 (($ $) 32)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) NIL)) (-3729 (($ $ $) 42) (($ $ |#1|) 39)) (-1624 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-591 $)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-2028 (((-712) $) 17 (|has| $ (-6 -4250))))) -(((-488 |#1| |#2|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -1232 ($ (-591 |#1|))) (-15 -2620 ((-712) $)) (-15 -1966 ($ $ (-525))) (-15 -2238 ((-108) (-108))))) (-1125) (-525)) (T -488)) -((-1232 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-488 *3 *4)) (-14 *4 (-525)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1125)) (-14 *4 (-525)))) (-1966 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1125)) (-14 *4 *2))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1125)) (-14 *4 (-525))))) -(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -1232 ($ (-591 |#1|))) (-15 -2620 ((-712) $)) (-15 -1966 ($ $ (-525))) (-15 -2238 ((-108) (-108))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 (((-538 |#1|) $) NIL) (($ $ (-854)) NIL (|has| (-538 |#1|) (-346)))) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| (-538 |#1|) (-346)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL (|has| (-538 |#1|) (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-538 |#1|) "failed") $) NIL)) (-3341 (((-538 |#1|) $) NIL)) (-1554 (($ (-1171 (-538 |#1|))) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-538 |#1|) (-346)))) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-538 |#1|) (-346)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) NIL (|has| (-538 |#1|) (-346)))) (-2096 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-3477 (($ $ (-712)) NIL (-3150 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346)))) (($ $) NIL (-3150 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2393 (((-108) $) NIL)) (-1676 (((-854) $) NIL (|has| (-538 |#1|) (-346))) (((-774 (-854)) $) NIL (-3150 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3865 (((-108) $) NIL)) (-2805 (($) NIL (|has| (-538 |#1|) (-346)))) (-3108 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-1525 (((-538 |#1|) $) NIL) (($ $ (-854)) NIL (|has| (-538 |#1|) (-346)))) (-2115 (((-3 $ "failed") $) NIL (|has| (-538 |#1|) (-346)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 (-538 |#1|)) $) NIL) (((-1085 $) $ (-854)) NIL (|has| (-538 |#1|) (-346)))) (-1970 (((-854) $) NIL (|has| (-538 |#1|) (-346)))) (-3004 (((-1085 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346)))) (-2224 (((-1085 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-1085 (-538 |#1|)) "failed") $ $) NIL (|has| (-538 |#1|) (-346)))) (-2594 (($ $ (-1085 (-538 |#1|))) NIL (|has| (-538 |#1|) (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-538 |#1|) (-346)) CONST)) (-3229 (($ (-854)) NIL (|has| (-538 |#1|) (-346)))) (-1326 (((-108) $) NIL)) (-2937 (((-1036) $) NIL)) (-3965 (($) NIL (|has| (-538 |#1|) (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| (-538 |#1|) (-346)))) (-2542 (((-396 $) $) NIL)) (-3383 (((-774 (-854))) NIL) (((-854)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-712) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-712) "failed") $ $) NIL (-3150 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3840 (((-128)) NIL)) (-2209 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-538 |#1|) (-346)))) (-2743 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-1341 (((-1085 (-538 |#1|))) NIL)) (-3560 (($) NIL (|has| (-538 |#1|) (-346)))) (-2200 (($) NIL (|has| (-538 |#1|) (-346)))) (-1671 (((-1171 (-538 |#1|)) $) NIL) (((-631 (-538 |#1|)) (-1171 $)) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| (-538 |#1|) (-346)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-538 |#1|)) NIL)) (-3751 (($ $) NIL (|has| (-538 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3150 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) NIL) (((-1171 $) (-854)) NIL)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3861 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-538 |#1|) (-346)))) (-1796 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-712)) NIL (|has| (-538 |#1|) (-346)))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL) (($ $ (-538 |#1|)) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-538 |#1|)) NIL) (($ (-538 |#1|) $) NIL))) -(((-489 |#1| |#2|) (-307 (-538 |#1|)) (-854) (-854)) (T -489)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-2416 (((-108) (-108)) 25)) (-1230 ((|#1| $ (-525) |#1|) 28 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-2696 (($ (-1 (-108) |#1|) $) 52)) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-2987 (($ $) 56 (|has| |#1| (-1019)))) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1640 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) 44)) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-1930 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-1836 (($ $ (-525)) 13)) (-1554 (((-713) $) 11)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3248 (($ (-713) |#1|) 23)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) 21 (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1636 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 35)) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) 20 (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-4157 (($ $ $ (-525)) 51) (($ |#1| $ (-525)) 37)) (-2234 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1529 (($ (-592 |#1|)) 29)) (-1683 ((|#1| $) NIL (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) 19 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 40)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) 16)) (-1496 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 33) (($ $ (-1139 (-525))) NIL)) (-2835 (($ $ (-1139 (-525))) 50) (($ $ (-525)) 45)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) 41 (|has| $ (-6 -4255)))) (-1261 (($ $) 32)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) NIL)) (-2455 (($ $ $) 42) (($ $ |#1|) 39)) (-1810 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-1696 (((-713) $) 17 (|has| $ (-6 -4254))))) +(((-488 |#1| |#2|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -1529 ($ (-592 |#1|))) (-15 -1554 ((-713) $)) (-15 -1836 ($ $ (-525))) (-15 -2416 ((-108) (-108))))) (-1126) (-525)) (T -488)) +((-1529 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-488 *3 *4)) (-14 *4 (-525)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126)) (-14 *4 (-525)))) (-1836 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126)) (-14 *4 *2))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126)) (-14 *4 (-525))))) +(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -1529 ($ (-592 |#1|))) (-15 -1554 ((-713) $)) (-15 -1836 ($ $ (-525))) (-15 -2416 ((-108) (-108))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 (((-538 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-538 |#1|) (-346)))) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-538 |#1|) (-346)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL (|has| (-538 |#1|) (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-538 |#1|) "failed") $) NIL)) (-2068 (((-538 |#1|) $) NIL)) (-1689 (($ (-1172 (-538 |#1|))) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-538 |#1|) (-346)))) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-538 |#1|) (-346)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) NIL (|has| (-538 |#1|) (-346)))) (-3703 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-3351 (($ $ (-713)) NIL (-3215 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346)))) (($ $) NIL (-3215 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2069 (((-108) $) NIL)) (-2158 (((-855) $) NIL (|has| (-538 |#1|) (-346))) (((-775 (-855)) $) NIL (-3215 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2507 (((-108) $) NIL)) (-2431 (($) NIL (|has| (-538 |#1|) (-346)))) (-1872 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-2281 (((-538 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-538 |#1|) (-346)))) (-1978 (((-3 $ "failed") $) NIL (|has| (-538 |#1|) (-346)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 (-538 |#1|)) $) NIL) (((-1086 $) $ (-855)) NIL (|has| (-538 |#1|) (-346)))) (-2111 (((-855) $) NIL (|has| (-538 |#1|) (-346)))) (-1311 (((-1086 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346)))) (-3819 (((-1086 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-1086 (-538 |#1|)) "failed") $ $) NIL (|has| (-538 |#1|) (-346)))) (-3851 (($ $ (-1086 (-538 |#1|))) NIL (|has| (-538 |#1|) (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-538 |#1|) (-346)) CONST)) (-3381 (($ (-855)) NIL (|has| (-538 |#1|) (-346)))) (-1769 (((-108) $) NIL)) (-3027 (((-1037) $) NIL)) (-3258 (($) NIL (|has| (-538 |#1|) (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| (-538 |#1|) (-346)))) (-2961 (((-396 $) $) NIL)) (-1927 (((-775 (-855))) NIL) (((-855)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-713) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3215 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2374 (((-128)) NIL)) (-1576 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-1486 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2775 (((-1086 (-538 |#1|))) NIL)) (-3405 (($) NIL (|has| (-538 |#1|) (-346)))) (-2041 (($) NIL (|has| (-538 |#1|) (-346)))) (-1625 (((-1172 (-538 |#1|)) $) NIL) (((-632 (-538 |#1|)) (-1172 $)) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-538 |#1|) (-346)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-538 |#1|)) NIL)) (-1279 (($ $) NIL (|has| (-538 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3215 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3459 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-1990 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL) (($ $ (-538 |#1|)) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-538 |#1|)) NIL) (($ (-538 |#1|) $) NIL))) +(((-489 |#1| |#2|) (-307 (-538 |#1|)) (-855) (-855)) (T -489)) NIL (-307 (-538 |#1|)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-525) (-525) |#1|) 35)) (-1557 (($ $ (-525) |#4|) NIL)) (-3031 (($ $ (-525) |#5|) NIL)) (-2055 (($) NIL T CONST)) (-2578 ((|#4| $ (-525)) NIL)) (-4205 ((|#1| $ (-525) (-525) |#1|) 34)) (-4121 ((|#1| $ (-525) (-525)) 32)) (-2916 (((-591 |#1|) $) NIL)) (-4127 (((-712) $) 28)) (-1316 (($ (-712) (-712) |#1|) 25)) (-4140 (((-712) $) 30)) (-3491 (((-108) $ (-712)) NIL)) (-3142 (((-525) $) 26)) (-3660 (((-525) $) 27)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3882 (((-525) $) 29)) (-2494 (((-525) $) 31)) (-4192 (($ (-1 |#1| |#1|) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) 38 (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-1858 (($ $ |#1|) NIL)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 14)) (-3164 (($) 16)) (-1881 ((|#1| $ (-525) (-525)) 33) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-1256 ((|#5| $ (-525)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-490 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1125) (-525) (-525) (-351 |#1|) (-351 |#1|)) (T -490)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-525) (-525) |#1|) 35)) (-1760 (($ $ (-525) |#4|) NIL)) (-4228 (($ $ (-525) |#5|) NIL)) (-1957 (($) NIL T CONST)) (-2914 ((|#4| $ (-525)) NIL)) (-2549 ((|#1| $ (-525) (-525) |#1|) 34)) (-2488 ((|#1| $ (-525) (-525)) 32)) (-3781 (((-592 |#1|) $) NIL)) (-1431 (((-713) $) 28)) (-3248 (($ (-713) (-713) |#1|) 25)) (-1444 (((-713) $) 30)) (-2010 (((-108) $ (-713)) NIL)) (-3533 (((-525) $) 26)) (-3054 (((-525) $) 27)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2487 (((-525) $) 29)) (-4220 (((-525) $) 31)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) 38 (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1614 (($ $ |#1|) NIL)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 14)) (-3266 (($) 16)) (-1496 ((|#1| $ (-525) (-525)) 33) ((|#1| $ (-525) (-525) |#1|) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-2738 ((|#5| $ (-525)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-490 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1126) (-525) (-525) (-351 |#1|) (-351 |#1|)) (T -490)) NIL (-55 |#1| |#4| |#5|) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) NIL)) (-2434 ((|#1| $) NIL)) (-3856 (($ $) NIL)) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-2983 (($ $ (-525)) 59 (|has| $ (-6 -4251)))) (-3110 (((-108) $) NIL (|has| |#1| (-788))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2613 (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788)))) (($ (-1 (-108) |#1| |#1|) $) 57 (|has| $ (-6 -4251)))) (-1282 (($ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-3912 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-3191 (($ $ $) 23 (|has| $ (-6 -4251)))) (-2568 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-2756 ((|#1| $ |#1|) 21 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4251))) (($ $ "rest" $) 24 (|has| $ (-6 -4251))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-1288 (($ (-1 (-108) |#1|) $) NIL)) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2424 ((|#1| $) NIL)) (-2055 (($) NIL T CONST)) (-3405 (($ $) 28 (|has| $ (-6 -4251)))) (-2747 (($ $) 29)) (-2884 (($ $) 18) (($ $ (-712)) 32)) (-3945 (($ $) 55 (|has| |#1| (-1018)))) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3844 (($ |#1| $) NIL (|has| |#1| (-1018))) (($ (-1 (-108) |#1|) $) NIL)) (-2537 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-4139 (((-108) $) NIL)) (-1734 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018))) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) (-1 (-108) |#1|) $) NIL)) (-2916 (((-591 |#1|) $) 27 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1316 (($ (-712) |#1|) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) 31 (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3597 (($ $ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) 58)) (-3459 (($ $ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 53 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2750 (($ |#1|) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2065 (((-591 |#1|) $) NIL)) (-2878 (((-108) $) NIL)) (-2621 (((-1072) $) 51 (|has| |#1| (-1018)))) (-2555 ((|#1| $) NIL) (($ $ (-712)) NIL)) (-1520 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2059 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2872 ((|#1| $) 13) (($ $ (-712)) NIL)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-1622 (((-108) $) NIL)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 12)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) 17)) (-3164 (($) 16)) (-1881 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1138 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL)) (-2194 (((-525) $ $) NIL)) (-1227 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-3226 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-4133 (((-108) $) 34)) (-2349 (($ $) NIL)) (-3494 (($ $) NIL (|has| $ (-6 -4251)))) (-1248 (((-712) $) NIL)) (-3249 (($ $) 36)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) 35)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 26)) (-3729 (($ $ $) 54) (($ $ |#1|) NIL)) (-1624 (($ $ $) NIL) (($ |#1| $) 10) (($ (-591 $)) NIL) (($ $ |#1|) NIL)) (-2686 (((-796) $) 46 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) 48 (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-2028 (((-712) $) 9 (|has| $ (-6 -4250))))) -(((-491 |#1| |#2|) (-611 |#1|) (-1125) (-525)) (T -491)) -NIL -(-611 |#1|) -((-1352 ((|#4| |#4|) 27)) (-2193 (((-712) |#4|) 32)) (-1613 (((-712) |#4|) 33)) (-2523 (((-591 |#3|) |#4|) 40 (|has| |#3| (-6 -4251)))) (-2902 (((-3 |#4| "failed") |#4|) 51)) (-1687 ((|#4| |#4|) 44)) (-4145 ((|#1| |#4|) 43))) -(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1352 (|#4| |#4|)) (-15 -2193 ((-712) |#4|)) (-15 -1613 ((-712) |#4|)) (IF (|has| |#3| (-6 -4251)) (-15 -2523 ((-591 |#3|) |#4|)) |%noBranch|) (-15 -4145 (|#1| |#4|)) (-15 -1687 (|#4| |#4|)) (-15 -2902 ((-3 |#4| "failed") |#4|))) (-341) (-351 |#1|) (-351 |#1|) (-629 |#1| |#2| |#3|)) (T -492)) -((-2902 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-4145 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341)) (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) (-2523 (*1 *2 *3) (-12 (|has| *6 (-6 -4251)) (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-591 *6)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-1613 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-712)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2193 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-712)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-1352 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -(-10 -7 (-15 -1352 (|#4| |#4|)) (-15 -2193 ((-712) |#4|)) (-15 -1613 ((-712) |#4|)) (IF (|has| |#3| (-6 -4251)) (-15 -2523 ((-591 |#3|) |#4|)) |%noBranch|) (-15 -4145 (|#1| |#4|)) (-15 -1687 (|#4| |#4|)) (-15 -2902 ((-3 |#4| "failed") |#4|))) -((-1352 ((|#8| |#4|) 20)) (-2523 (((-591 |#3|) |#4|) 29 (|has| |#7| (-6 -4251)))) (-2902 (((-3 |#8| "failed") |#4|) 23))) -(((-493 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1352 (|#8| |#4|)) (-15 -2902 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4251)) (-15 -2523 ((-591 |#3|) |#4|)) |%noBranch|)) (-517) (-351 |#1|) (-351 |#1|) (-629 |#1| |#2| |#3|) (-923 |#1|) (-351 |#5|) (-351 |#5|) (-629 |#5| |#6| |#7|)) (T -493)) -((-2523 (*1 *2 *3) (-12 (|has| *9 (-6 -4251)) (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-923 *4)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)) (-5 *2 (-591 *6)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-629 *4 *5 *6)) (-4 *10 (-629 *7 *8 *9)))) (-2902 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-923 *4)) (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) (-1352 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-923 *4)) (-4 *2 (-629 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))) -(-10 -7 (-15 -1352 (|#8| |#4|)) (-15 -2902 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4251)) (-15 -2523 ((-591 |#3|) |#4|)) |%noBranch|)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3559 (($ (-712) (-712)) NIL)) (-3130 (($ $ $) NIL)) (-1616 (($ (-556 |#1| |#3|)) NIL) (($ $) NIL)) (-1711 (((-108) $) NIL)) (-2287 (($ $ (-525) (-525)) 12)) (-3519 (($ $ (-525) (-525)) NIL)) (-2688 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-4094 (($ $) NIL)) (-1478 (((-108) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2995 (($ $ (-525) (-525) $) NIL)) (-2847 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-591 (-525)) (-591 (-525)) $) NIL)) (-1557 (($ $ (-525) (-556 |#1| |#3|)) NIL)) (-3031 (($ $ (-525) (-556 |#1| |#2|)) NIL)) (-1416 (($ (-712) |#1|) NIL)) (-2055 (($) NIL T CONST)) (-1352 (($ $) 21 (|has| |#1| (-286)))) (-2578 (((-556 |#1| |#3|) $ (-525)) NIL)) (-2193 (((-712) $) 24 (|has| |#1| (-517)))) (-4205 ((|#1| $ (-525) (-525) |#1|) NIL)) (-4121 ((|#1| $ (-525) (-525)) NIL)) (-2916 (((-591 |#1|) $) NIL)) (-1613 (((-712) $) 26 (|has| |#1| (-517)))) (-2523 (((-591 (-556 |#1| |#2|)) $) 29 (|has| |#1| (-517)))) (-4127 (((-712) $) NIL)) (-1316 (($ (-712) (-712) |#1|) NIL)) (-4140 (((-712) $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-1806 ((|#1| $) 19 (|has| |#1| (-6 (-4252 "*"))))) (-3142 (((-525) $) 10)) (-3660 (((-525) $) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3882 (((-525) $) 11)) (-2494 (((-525) $) NIL)) (-1572 (($ (-591 (-591 |#1|))) NIL)) (-4192 (($ (-1 |#1| |#1|) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3093 (((-591 (-591 |#1|)) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2902 (((-3 $ "failed") $) 33 (|has| |#1| (-341)))) (-3862 (($ $ $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-1858 (($ $ |#1|) NIL)) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-591 (-525)) (-591 (-525))) NIL)) (-1968 (($ (-591 |#1|)) NIL) (($ (-591 $)) NIL)) (-2348 (((-108) $) NIL)) (-4145 ((|#1| $) 17 (|has| |#1| (-6 (-4252 "*"))))) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-1256 (((-556 |#1| |#2|) $ (-525)) NIL)) (-2686 (($ (-556 |#1| |#2|)) NIL) (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1986 (((-108) $) NIL)) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $ $) NIL) (($ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-556 |#1| |#2|) $ (-556 |#1| |#2|)) NIL) (((-556 |#1| |#3|) (-556 |#1| |#3|) $) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-494 |#1| |#2| |#3|) (-629 |#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) (-975) (-525) (-525)) (T -494)) -NIL -(-629 |#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) -((-3724 (((-1085 |#1|) (-712)) 76)) (-1481 (((-1171 |#1|) (-1171 |#1|) (-854)) 69)) (-1562 (((-1176) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))) |#1|) 84)) (-2684 (((-1171 |#1|) (-1171 |#1|) (-712)) 36)) (-1325 (((-1171 |#1|) (-854)) 71)) (-1934 (((-1171 |#1|) (-1171 |#1|) (-525)) 24)) (-2217 (((-1085 |#1|) (-1171 |#1|)) 77)) (-2805 (((-1171 |#1|) (-854)) 95)) (-3108 (((-108) (-1171 |#1|)) 80)) (-1525 (((-1171 |#1|) (-1171 |#1|) (-854)) 62)) (-3205 (((-1085 |#1|) (-1171 |#1|)) 89)) (-1970 (((-854) (-1171 |#1|)) 59)) (-1523 (((-1171 |#1|) (-1171 |#1|)) 30)) (-3229 (((-1171 |#1|) (-854) (-854)) 97)) (-3587 (((-1171 |#1|) (-1171 |#1|) (-1036) (-1036)) 23)) (-3888 (((-1171 |#1|) (-1171 |#1|) (-712) (-1036)) 37)) (-3612 (((-1171 (-1171 |#1|)) (-854)) 94)) (-4059 (((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)) 81)) (** (((-1171 |#1|) (-1171 |#1|) (-525)) 45)) (* (((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)) 25))) -(((-495 |#1|) (-10 -7 (-15 -1562 ((-1176) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))) |#1|)) (-15 -1325 ((-1171 |#1|) (-854))) (-15 -3229 ((-1171 |#1|) (-854) (-854))) (-15 -2217 ((-1085 |#1|) (-1171 |#1|))) (-15 -3724 ((-1085 |#1|) (-712))) (-15 -3888 ((-1171 |#1|) (-1171 |#1|) (-712) (-1036))) (-15 -2684 ((-1171 |#1|) (-1171 |#1|) (-712))) (-15 -3587 ((-1171 |#1|) (-1171 |#1|) (-1036) (-1036))) (-15 -1934 ((-1171 |#1|) (-1171 |#1|) (-525))) (-15 ** ((-1171 |#1|) (-1171 |#1|) (-525))) (-15 * ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -4059 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -1525 ((-1171 |#1|) (-1171 |#1|) (-854))) (-15 -1481 ((-1171 |#1|) (-1171 |#1|) (-854))) (-15 -1523 ((-1171 |#1|) (-1171 |#1|))) (-15 -1970 ((-854) (-1171 |#1|))) (-15 -3108 ((-108) (-1171 |#1|))) (-15 -3612 ((-1171 (-1171 |#1|)) (-854))) (-15 -2805 ((-1171 |#1|) (-854))) (-15 -3205 ((-1085 |#1|) (-1171 |#1|)))) (-327)) (T -495)) -((-3205 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-327)) (-5 *2 (-1085 *4)) (-5 *1 (-495 *4)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1171 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-495 *4)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-327)) (-5 *2 (-854)) (-5 *1 (-495 *4)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (-1481 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *4)) (-5 *3 (-854)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *4)) (-5 *3 (-854)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-4059 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-1934 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-3587 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1171 *4)) (-5 *3 (-1036)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2684 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *4)) (-5 *3 (-712)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-3888 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1171 *5)) (-5 *3 (-712)) (-5 *4 (-1036)) (-4 *5 (-327)) (-5 *1 (-495 *5)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1085 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-327)) (-5 *2 (-1085 *4)) (-5 *1 (-495 *4)))) (-3229 (*1 *2 *3 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1171 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1171 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) (-4 *4 (-327)) (-5 *2 (-1176)) (-5 *1 (-495 *4))))) -(-10 -7 (-15 -1562 ((-1176) (-1171 (-591 (-2 (|:| -2940 |#1|) (|:| -3229 (-1036))))) |#1|)) (-15 -1325 ((-1171 |#1|) (-854))) (-15 -3229 ((-1171 |#1|) (-854) (-854))) (-15 -2217 ((-1085 |#1|) (-1171 |#1|))) (-15 -3724 ((-1085 |#1|) (-712))) (-15 -3888 ((-1171 |#1|) (-1171 |#1|) (-712) (-1036))) (-15 -2684 ((-1171 |#1|) (-1171 |#1|) (-712))) (-15 -3587 ((-1171 |#1|) (-1171 |#1|) (-1036) (-1036))) (-15 -1934 ((-1171 |#1|) (-1171 |#1|) (-525))) (-15 ** ((-1171 |#1|) (-1171 |#1|) (-525))) (-15 * ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -4059 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -1525 ((-1171 |#1|) (-1171 |#1|) (-854))) (-15 -1481 ((-1171 |#1|) (-1171 |#1|) (-854))) (-15 -1523 ((-1171 |#1|) (-1171 |#1|))) (-15 -1970 ((-854) (-1171 |#1|))) (-15 -3108 ((-108) (-1171 |#1|))) (-15 -3612 ((-1171 (-1171 |#1|)) (-854))) (-15 -2805 ((-1171 |#1|) (-854))) (-15 -3205 ((-1085 |#1|) (-1171 |#1|)))) -((-2420 (((-1 |#1| |#1|) |#1|) 11)) (-1267 (((-1 |#1| |#1|)) 10))) -(((-496 |#1|) (-10 -7 (-15 -1267 ((-1 |#1| |#1|))) (-15 -2420 ((-1 |#1| |#1|) |#1|))) (-13 (-668) (-25))) (T -496)) -((-2420 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-668) (-25))))) (-1267 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-668) (-25)))))) -(-10 -7 (-15 -1267 ((-1 |#1| |#1|))) (-15 -2420 ((-1 |#1| |#1|) |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3343 (($ $ $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1422 (($ (-712) |#1|) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1257 (($ (-1 (-712) (-712)) $) NIL)) (-1258 ((|#1| $) NIL)) (-1556 (((-712) $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 20)) (-1830 (($) NIL T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4036 (($ $ $) NIL)) (* (($ (-712) $) NIL) (($ (-854) $) NIL))) -(((-497 |#1|) (-13 (-734) (-481 (-712) |#1|)) (-788)) (T -497)) -NIL -(-13 (-734) (-481 (-712) |#1|)) -((-1372 (((-591 |#2|) (-1085 |#1|) |#3|) 83)) (-3818 (((-591 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-396 (-1085 |#1|)) (-1085 |#1|))) 100)) (-2366 (((-1085 |#1|) (-631 |#1|)) 95))) -(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2366 ((-1085 |#1|) (-631 |#1|))) (-15 -1372 ((-591 |#2|) (-1085 |#1|) |#3|)) (-15 -3818 ((-591 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-396 (-1085 |#1|)) (-1085 |#1|))))) (-341) (-341) (-13 (-341) (-786))) (T -498)) -((-3818 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-396 (-1085 *6)) (-1085 *6))) (-4 *6 (-341)) (-5 *2 (-591 (-2 (|:| |outval| *7) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 *7)))))) (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-786))))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *5)) (-4 *5 (-341)) (-5 *2 (-591 *6)) (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-786))))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-341)) (-5 *2 (-1085 *4)) (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-786)))))) -(-10 -7 (-15 -2366 ((-1085 |#1|) (-631 |#1|))) (-15 -1372 ((-591 |#2|) (-1085 |#1|) |#3|)) (-15 -3818 ((-591 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-396 (-1085 |#1|)) (-1085 |#1|))))) -((-1888 (((-781 (-525))) 12)) (-1897 (((-781 (-525))) 14)) (-1429 (((-774 (-525))) 9))) -(((-499) (-10 -7 (-15 -1429 ((-774 (-525)))) (-15 -1888 ((-781 (-525)))) (-15 -1897 ((-781 (-525)))))) (T -499)) -((-1897 (*1 *2) (-12 (-5 *2 (-781 (-525))) (-5 *1 (-499)))) (-1888 (*1 *2) (-12 (-5 *2 (-781 (-525))) (-5 *1 (-499)))) (-1429 (*1 *2) (-12 (-5 *2 (-774 (-525))) (-5 *1 (-499))))) -(-10 -7 (-15 -1429 ((-774 (-525)))) (-15 -1888 ((-781 (-525)))) (-15 -1897 ((-781 (-525))))) -((-2739 (((-501) (-1089)) 15)) (-1391 ((|#1| (-501)) 20))) -(((-500 |#1|) (-10 -7 (-15 -2739 ((-501) (-1089))) (-15 -1391 (|#1| (-501)))) (-1125)) (T -500)) -((-1391 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1125)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-501)) (-5 *1 (-500 *4)) (-4 *4 (-1125))))) -(-10 -7 (-15 -2739 ((-501) (-1089))) (-15 -1391 (|#1| (-501)))) -((-2673 (((-108) $ $) NIL)) (-2972 (((-1072) $) 46)) (-2697 (((-108) $) 43)) (-2123 (((-1089) $) 44)) (-3127 (((-108) $) 41)) (-2610 (((-1072) $) 42)) (-2269 (((-108) $) NIL)) (-1362 (((-108) $) NIL)) (-2698 (((-108) $) NIL)) (-2621 (((-1072) $) NIL)) (-4046 (($ $ (-591 (-1089))) 20)) (-1391 (((-51) $) 22)) (-2809 (((-108) $) NIL)) (-2158 (((-525) $) NIL)) (-2937 (((-1036) $) NIL)) (-1954 (($ $ (-591 (-1089)) (-1089)) 58)) (-2148 (((-108) $) NIL)) (-2925 (((-205) $) NIL)) (-2460 (($ $) 38)) (-1555 (((-796) $) NIL)) (-2203 (((-108) $ $) NIL)) (-1881 (($ $ (-525)) NIL) (($ $ (-591 (-525))) NIL)) (-2601 (((-591 $) $) 28)) (-1962 (((-1089) (-591 $)) 47)) (-1300 (($ (-591 $)) 51) (($ (-1072)) NIL) (($ (-1089)) 18) (($ (-525)) 8) (($ (-205)) 25) (($ (-796)) NIL) (((-1022) $) 11) (($ (-1022)) 12)) (-1346 (((-1089) (-1089) (-591 $)) 50)) (-2686 (((-796) $) NIL)) (-2775 (($ $) 49)) (-2763 (($ $) 48)) (-2670 (($ $ (-591 $)) 55)) (-1739 (((-108) $) 27)) (-1830 (($) 9 T CONST)) (-1839 (($) 10 T CONST)) (-3944 (((-108) $ $) 59)) (-4059 (($ $ $) 64)) (-4036 (($ $ $) 60)) (** (($ $ (-712)) 63) (($ $ (-525)) 62)) (* (($ $ $) 61)) (-2028 (((-525) $) NIL))) -(((-501) (-13 (-1021 (-1072) (-1089) (-525) (-205) (-796)) (-566 (-1022)) (-10 -8 (-15 -1391 ((-51) $)) (-15 -1300 ($ (-1022))) (-15 -2670 ($ $ (-591 $))) (-15 -1954 ($ $ (-591 (-1089)) (-1089))) (-15 -4046 ($ $ (-591 (-1089)))) (-15 -4036 ($ $ $)) (-15 * ($ $ $)) (-15 -4059 ($ $ $)) (-15 ** ($ $ (-712))) (-15 ** ($ $ (-525))) (-15 0 ($) -2277) (-15 1 ($) -2277) (-15 -2460 ($ $)) (-15 -2972 ((-1072) $)) (-15 -1962 ((-1089) (-591 $))) (-15 -1346 ((-1089) (-1089) (-591 $)))))) (T -501)) -((-1391 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-501)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-501))) (-5 *1 (-501)))) (-1954 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-1089)) (-5 *1 (-501)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-501)))) (-4036 (*1 *1 *1 *1) (-5 *1 (-501))) (* (*1 *1 *1 *1) (-5 *1 (-501))) (-4059 (*1 *1 *1 *1) (-5 *1 (-501))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-501)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501)))) (-1830 (*1 *1) (-5 *1 (-501))) (-1839 (*1 *1) (-5 *1 (-501))) (-2460 (*1 *1 *1) (-5 *1 (-501))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-501)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-591 (-501))) (-5 *2 (-1089)) (-5 *1 (-501)))) (-1346 (*1 *2 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-501))) (-5 *1 (-501))))) -(-13 (-1021 (-1072) (-1089) (-525) (-205) (-796)) (-566 (-1022)) (-10 -8 (-15 -1391 ((-51) $)) (-15 -1300 ($ (-1022))) (-15 -2670 ($ $ (-591 $))) (-15 -1954 ($ $ (-591 (-1089)) (-1089))) (-15 -4046 ($ $ (-591 (-1089)))) (-15 -4036 ($ $ $)) (-15 * ($ $ $)) (-15 -4059 ($ $ $)) (-15 ** ($ $ (-712))) (-15 ** ($ $ (-525))) (-15 (-1830) ($) -2277) (-15 (-1839) ($) -2277) (-15 -2460 ($ $)) (-15 -2972 ((-1072) $)) (-15 -1962 ((-1089) (-591 $))) (-15 -1346 ((-1089) (-1089) (-591 $))))) -((-3451 ((|#2| |#2|) 17)) (-4006 ((|#2| |#2|) 13)) (-3429 ((|#2| |#2| (-525) (-525)) 20)) (-3811 ((|#2| |#2|) 15))) -(((-502 |#1| |#2|) (-10 -7 (-15 -4006 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3429 (|#2| |#2| (-525) (-525)))) (-13 (-517) (-138)) (-1162 |#1|)) (T -502)) -((-3429 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2)) (-4 *2 (-1162 *4)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1162 *3)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1162 *3)))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1162 *3))))) -(-10 -7 (-15 -4006 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3429 (|#2| |#2| (-525) (-525)))) -((-3355 (((-591 (-273 (-885 |#2|))) (-591 |#2|) (-591 (-1089))) 32)) (-4093 (((-591 |#2|) (-885 |#1|) |#3|) 53) (((-591 |#2|) (-1085 |#1|) |#3|) 52)) (-1260 (((-591 (-591 |#2|)) (-591 (-885 |#1|)) (-591 (-885 |#1|)) (-591 (-1089)) |#3|) 88))) -(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -4093 ((-591 |#2|) (-1085 |#1|) |#3|)) (-15 -4093 ((-591 |#2|) (-885 |#1|) |#3|)) (-15 -1260 ((-591 (-591 |#2|)) (-591 (-885 |#1|)) (-591 (-885 |#1|)) (-591 (-1089)) |#3|)) (-15 -3355 ((-591 (-273 (-885 |#2|))) (-591 |#2|) (-591 (-1089))))) (-429) (-341) (-13 (-341) (-786))) (T -503)) -((-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6)) (-5 *4 (-591 (-1089))) (-4 *6 (-341)) (-5 *2 (-591 (-273 (-885 *6)))) (-5 *1 (-503 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-13 (-341) (-786))))) (-1260 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-591 (-885 *6))) (-5 *4 (-591 (-1089))) (-4 *6 (-429)) (-5 *2 (-591 (-591 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341)) (-4 *5 (-13 (-341) (-786))))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-4 *5 (-429)) (-5 *2 (-591 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-786))))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *5)) (-4 *5 (-429)) (-5 *2 (-591 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-786)))))) -(-10 -7 (-15 -4093 ((-591 |#2|) (-1085 |#1|) |#3|)) (-15 -4093 ((-591 |#2|) (-885 |#1|) |#3|)) (-15 -1260 ((-591 (-591 |#2|)) (-591 (-885 |#1|)) (-591 (-885 |#1|)) (-591 (-1089)) |#3|)) (-15 -3355 ((-591 (-273 (-885 |#2|))) (-591 |#2|) (-591 (-1089))))) -((-1466 ((|#2| |#2| |#1|) 17)) (-3694 ((|#2| (-591 |#2|)) 27)) (-2104 ((|#2| (-591 |#2|)) 46))) -(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3694 (|#2| (-591 |#2|))) (-15 -2104 (|#2| (-591 |#2|))) (-15 -1466 (|#2| |#2| |#1|))) (-286) (-1147 |#1|) |#1| (-1 |#1| |#1| (-712))) (T -504)) -((-1466 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-712))) (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1147 *3)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-712))))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-712)))))) -(-10 -7 (-15 -3694 (|#2| (-591 |#2|))) (-15 -2104 (|#2| (-591 |#2|))) (-15 -1466 (|#2| |#2| |#1|))) -((-2542 (((-396 (-1085 |#4|)) (-1085 |#4|) (-1 (-396 (-1085 |#3|)) (-1085 |#3|))) 79) (((-396 |#4|) |#4| (-1 (-396 (-1085 |#3|)) (-1085 |#3|))) 169))) -(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2542 ((-396 |#4|) |#4| (-1 (-396 (-1085 |#3|)) (-1085 |#3|)))) (-15 -2542 ((-396 (-1085 |#4|)) (-1085 |#4|) (-1 (-396 (-1085 |#3|)) (-1085 |#3|))))) (-788) (-734) (-13 (-286) (-138)) (-882 |#3| |#2| |#1|)) (T -505)) -((-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-788)) (-4 *6 (-734)) (-4 *8 (-882 *7 *6 *5)) (-5 *2 (-396 (-1085 *8))) (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1085 *8)))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-788)) (-4 *6 (-734)) (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-882 *7 *6 *5))))) -(-10 -7 (-15 -2542 ((-396 |#4|) |#4| (-1 (-396 (-1085 |#3|)) (-1085 |#3|)))) (-15 -2542 ((-396 (-1085 |#4|)) (-1085 |#4|) (-1 (-396 (-1085 |#3|)) (-1085 |#3|))))) -((-3451 ((|#4| |#4|) 74)) (-4006 ((|#4| |#4|) 70)) (-3429 ((|#4| |#4| (-525) (-525)) 76)) (-3811 ((|#4| |#4|) 72))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4006 (|#4| |#4|)) (-15 -3811 (|#4| |#4|)) (-15 -3451 (|#4| |#4|)) (-15 -3429 (|#4| |#4| (-525) (-525)))) (-13 (-341) (-346) (-566 (-525))) (-1147 |#1|) (-666 |#1| |#2|) (-1162 |#3|)) (T -506)) -((-3429 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-566 *3))) (-4 *5 (-1147 *4)) (-4 *6 (-666 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-1162 *6)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-4 *4 (-1147 *3)) (-4 *5 (-666 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-4 *4 (-1147 *3)) (-4 *5 (-666 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-4 *4 (-1147 *3)) (-4 *5 (-666 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1162 *5))))) -(-10 -7 (-15 -4006 (|#4| |#4|)) (-15 -3811 (|#4| |#4|)) (-15 -3451 (|#4| |#4|)) (-15 -3429 (|#4| |#4| (-525) (-525)))) -((-3451 ((|#2| |#2|) 27)) (-4006 ((|#2| |#2|) 23)) (-3429 ((|#2| |#2| (-525) (-525)) 29)) (-3811 ((|#2| |#2|) 25))) -(((-507 |#1| |#2|) (-10 -7 (-15 -4006 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3429 (|#2| |#2| (-525) (-525)))) (-13 (-341) (-346) (-566 (-525))) (-1162 |#1|)) (T -507)) -((-3429 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-566 *3))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1162 *4)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1162 *3)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1162 *3)))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1162 *3))))) -(-10 -7 (-15 -4006 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3451 (|#2| |#2|)) (-15 -3429 (|#2| |#2| (-525) (-525)))) -((-2709 (((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)) 14) (((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|)) 13) (((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|)) 26))) -(((-508 |#1| |#2|) (-10 -7 (-15 -2709 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -2709 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -2709 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)))) (-975) (-1147 |#1|)) (T -508)) -((-2709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-975)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1147 *4)))) (-2709 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-975)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1147 *4)))) (-2709 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-975)) (-5 *2 (-525)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1147 *5))))) -(-10 -7 (-15 -2709 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -2709 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -2709 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)))) -((-3517 (($ $ $) 79)) (-3898 (((-396 $) $) 47)) (-4174 (((-3 (-525) "failed") $) 59)) (-3341 (((-525) $) 37)) (-2350 (((-3 (-385 (-525)) "failed") $) 74)) (-2157 (((-108) $) 24)) (-3184 (((-385 (-525)) $) 72)) (-2393 (((-108) $) 50)) (-1493 (($ $ $ $) 86)) (-3489 (((-108) $) 16)) (-4142 (($ $ $) 57)) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 69)) (-2115 (((-3 $ "failed") $) 64)) (-1576 (($ $) 23)) (-3222 (($ $ $) 84)) (-3492 (($) 60)) (-2106 (($ $) 53)) (-2542 (((-396 $) $) 45)) (-2882 (((-108) $) 14)) (-3048 (((-712) $) 28)) (-2209 (($ $ (-712)) NIL) (($ $) 10)) (-2873 (($ $) 17)) (-1300 (((-525) $) NIL) (((-501) $) 36) (((-825 (-525)) $) 40) (((-357) $) 31) (((-205) $) 33)) (-3425 (((-712)) 8)) (-3760 (((-108) $ $) 20)) (-3808 (($ $ $) 55))) -(((-509 |#1|) (-10 -8 (-15 -3222 (|#1| |#1| |#1|)) (-15 -1493 (|#1| |#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -3517 (|#1| |#1| |#1|)) (-15 -3760 ((-108) |#1| |#1|)) (-15 -2882 ((-108) |#1|)) (-15 -3492 (|#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|)) (-15 -1300 ((-205) |#1|)) (-15 -1300 ((-357) |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|))) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -1300 ((-525) |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -3489 ((-108) |#1|)) (-15 -3048 ((-712) |#1|)) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -2393 ((-108) |#1|)) (-15 -3425 ((-712)))) (-510)) (T -509)) -((-3425 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-509 *3)) (-4 *3 (-510))))) -(-10 -8 (-15 -3222 (|#1| |#1| |#1|)) (-15 -1493 (|#1| |#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -3517 (|#1| |#1| |#1|)) (-15 -3760 ((-108) |#1| |#1|)) (-15 -2882 ((-108) |#1|)) (-15 -3492 (|#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|)) (-15 -1300 ((-205) |#1|)) (-15 -1300 ((-357) |#1|)) (-15 -4142 (|#1| |#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -3808 (|#1| |#1| |#1|)) (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|))) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -1300 ((-525) |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -3489 ((-108) |#1|)) (-15 -3048 ((-712) |#1|)) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -2393 ((-108) |#1|)) (-15 -3425 ((-712)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3517 (($ $ $) 85)) (-3332 (((-3 $ "failed") $ $) 19)) (-3329 (($ $ $ $) 73)) (-1720 (($ $) 51)) (-3898 (((-396 $) $) 52)) (-1965 (((-108) $ $) 125)) (-4188 (((-525) $) 114)) (-3423 (($ $ $) 88)) (-2055 (($) 17 T CONST)) (-4174 (((-3 (-525) "failed") $) 106)) (-3341 (((-525) $) 105)) (-3265 (($ $ $) 129)) (-3925 (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 104) (((-631 (-525)) (-631 $)) 103)) (-1522 (((-3 $ "failed") $) 34)) (-2350 (((-3 (-385 (-525)) "failed") $) 82)) (-2157 (((-108) $) 84)) (-3184 (((-385 (-525)) $) 83)) (-1325 (($) 81) (($ $) 80)) (-3239 (($ $ $) 128)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 123)) (-2393 (((-108) $) 53)) (-1493 (($ $ $ $) 71)) (-2283 (($ $ $) 86)) (-3489 (((-108) $) 116)) (-4142 (($ $ $) 97)) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 100)) (-3865 (((-108) $) 31)) (-2116 (((-108) $) 92)) (-2115 (((-3 $ "failed") $) 94)) (-2256 (((-108) $) 115)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 132)) (-3480 (($ $ $ $) 72)) (-1923 (($ $ $) 117)) (-3475 (($ $ $) 118)) (-1576 (($ $) 75)) (-2445 (($ $) 89)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-3222 (($ $ $) 70)) (-3492 (($) 93 T CONST)) (-4025 (($ $) 77)) (-2937 (((-1036) $) 10) (($ $) 79)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-2106 (($ $) 98)) (-2542 (((-396 $) $) 50)) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 130)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 124)) (-2882 (((-108) $) 91)) (-3048 (((-712) $) 126)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 127)) (-2209 (($ $ (-712)) 111) (($ $) 109)) (-1853 (($ $) 76)) (-2873 (($ $) 78)) (-1300 (((-525) $) 108) (((-501) $) 102) (((-825 (-525)) $) 101) (((-357) $) 96) (((-205) $) 95)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 107)) (-3425 (((-712)) 29)) (-3760 (((-108) $ $) 87)) (-3808 (($ $ $) 99)) (-3523 (($) 90)) (-1724 (((-108) $ $) 39)) (-1825 (($ $ $ $) 74)) (-1460 (($ $) 113)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-712)) 112) (($ $) 110)) (-4004 (((-108) $ $) 120)) (-3982 (((-108) $ $) 121)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 119)) (-3971 (((-108) $ $) 122)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) NIL)) (-1212 ((|#1| $) NIL)) (-3134 (($ $) NIL)) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-2974 (($ $ (-525)) 59 (|has| $ (-6 -4255)))) (-3746 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) 57 (|has| $ (-6 -4255)))) (-1473 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-2325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-4050 (($ $ $) 23 (|has| $ (-6 -4255)))) (-3079 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-3995 ((|#1| $ |#1|) 21 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4255))) (($ $ "rest" $) 24 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-2696 (($ (-1 (-108) |#1|) $) NIL)) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4227 ((|#1| $) NIL)) (-1957 (($) NIL T CONST)) (-1626 (($ $) 28 (|has| $ (-6 -4255)))) (-3263 (($ $) 29)) (-1693 (($ $) 18) (($ $ (-713)) 32)) (-2987 (($ $) 55 (|has| |#1| (-1019)))) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1640 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) NIL)) (-2591 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-2426 (((-108) $) NIL)) (-1930 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019))) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) (-1 (-108) |#1|) $) NIL)) (-3781 (((-592 |#1|) $) 27 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3248 (($ (-713) |#1|) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) 31 (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1636 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 58)) (-1440 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 53 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1553 (($ |#1|) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-2401 (((-592 |#1|) $) NIL)) (-3260 (((-108) $) NIL)) (-1707 (((-1073) $) 51 (|has| |#1| (-1019)))) (-2618 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-4157 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2234 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1683 ((|#1| $) 13) (($ $ (-713)) NIL)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3050 (((-108) $) NIL)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 12)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) 17)) (-3266 (($) 16)) (-1496 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1139 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL)) (-3612 (((-525) $ $) NIL)) (-2835 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-2697 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-3105 (((-108) $) 34)) (-2079 (($ $) NIL)) (-2129 (($ $) NIL (|has| $ (-6 -4255)))) (-3185 (((-713) $) NIL)) (-2008 (($ $) 36)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) 35)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 26)) (-2455 (($ $ $) 54) (($ $ |#1|) NIL)) (-1810 (($ $ $) NIL) (($ |#1| $) 10) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-4044 (((-797) $) 46 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) 48 (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-1696 (((-713) $) 9 (|has| $ (-6 -4254))))) +(((-491 |#1| |#2|) (-612 |#1|) (-1126) (-525)) (T -491)) +NIL +(-612 |#1|) +((-2384 ((|#4| |#4|) 27)) (-3439 (((-713) |#4|) 32)) (-2372 (((-713) |#4|) 33)) (-4151 (((-592 |#3|) |#4|) 40 (|has| |#3| (-6 -4255)))) (-3194 (((-3 |#4| "failed") |#4|) 51)) (-3847 ((|#4| |#4|) 44)) (-2958 ((|#1| |#4|) 43))) +(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2384 (|#4| |#4|)) (-15 -3439 ((-713) |#4|)) (-15 -2372 ((-713) |#4|)) (IF (|has| |#3| (-6 -4255)) (-15 -4151 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -2958 (|#1| |#4|)) (-15 -3847 (|#4| |#4|)) (-15 -3194 ((-3 |#4| "failed") |#4|))) (-341) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -492)) +((-3194 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2958 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341)) (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-4151 (*1 *2 *3) (-12 (|has| *6 (-6 -4255)) (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2372 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3439 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))) +(-10 -7 (-15 -2384 (|#4| |#4|)) (-15 -3439 ((-713) |#4|)) (-15 -2372 ((-713) |#4|)) (IF (|has| |#3| (-6 -4255)) (-15 -4151 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -2958 (|#1| |#4|)) (-15 -3847 (|#4| |#4|)) (-15 -3194 ((-3 |#4| "failed") |#4|))) +((-2384 ((|#8| |#4|) 20)) (-4151 (((-592 |#3|) |#4|) 29 (|has| |#7| (-6 -4255)))) (-3194 (((-3 |#8| "failed") |#4|) 23))) +(((-493 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2384 (|#8| |#4|)) (-15 -3194 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4255)) (-15 -4151 ((-592 |#3|) |#4|)) |%noBranch|)) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-924 |#1|) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -493)) +((-4151 (*1 *2 *3) (-12 (|has| *9 (-6 -4255)) (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-924 *4)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)) (-5 *2 (-592 *6)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6)) (-4 *10 (-630 *7 *8 *9)))) (-3194 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-924 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) (-2384 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-924 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))) +(-10 -7 (-15 -2384 (|#8| |#4|)) (-15 -3194 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4255)) (-15 -4151 ((-592 |#3|) |#4|)) |%noBranch|)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2957 (($ (-713) (-713)) NIL)) (-2933 (($ $ $) NIL)) (-1342 (($ (-556 |#1| |#3|)) NIL) (($ $) NIL)) (-3714 (((-108) $) NIL)) (-1860 (($ $ (-525) (-525)) 12)) (-4024 (($ $ (-525) (-525)) NIL)) (-3257 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-2755 (($ $) NIL)) (-2882 (((-108) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1736 (($ $ (-525) (-525) $) NIL)) (-1230 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-1760 (($ $ (-525) (-556 |#1| |#3|)) NIL)) (-4228 (($ $ (-525) (-556 |#1| |#2|)) NIL)) (-2448 (($ (-713) |#1|) NIL)) (-1957 (($) NIL T CONST)) (-2384 (($ $) 21 (|has| |#1| (-286)))) (-2914 (((-556 |#1| |#3|) $ (-525)) NIL)) (-3439 (((-713) $) 24 (|has| |#1| (-517)))) (-2549 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2488 ((|#1| $ (-525) (-525)) NIL)) (-3781 (((-592 |#1|) $) NIL)) (-2372 (((-713) $) 26 (|has| |#1| (-517)))) (-4151 (((-592 (-556 |#1| |#2|)) $) 29 (|has| |#1| (-517)))) (-1431 (((-713) $) NIL)) (-3248 (($ (-713) (-713) |#1|) NIL)) (-1444 (((-713) $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-1302 ((|#1| $) 19 (|has| |#1| (-6 (-4256 "*"))))) (-3533 (((-525) $) 10)) (-3054 (((-525) $) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2487 (((-525) $) 11)) (-4220 (((-525) $) NIL)) (-1521 (($ (-592 (-592 |#1|))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2972 (((-592 (-592 |#1|)) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3194 (((-3 $ "failed") $) 33 (|has| |#1| (-341)))) (-3512 (($ $ $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1614 (($ $ |#1|) NIL)) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-4154 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-2804 (((-108) $) NIL)) (-2958 ((|#1| $) 17 (|has| |#1| (-6 (-4256 "*"))))) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-2738 (((-556 |#1| |#2|) $ (-525)) NIL)) (-4044 (($ (-556 |#1| |#2|)) NIL) (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3773 (((-108) $) NIL)) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-556 |#1| |#2|) $ (-556 |#1| |#2|)) NIL) (((-556 |#1| |#3|) (-556 |#1| |#3|) $) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-494 |#1| |#2| |#3|) (-630 |#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) (-976) (-525) (-525)) (T -494)) +NIL +(-630 |#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) +((-3993 (((-1086 |#1|) (-713)) 76)) (-3942 (((-1172 |#1|) (-1172 |#1|) (-855)) 69)) (-2891 (((-1177) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))) |#1|) 84)) (-2864 (((-1172 |#1|) (-1172 |#1|) (-713)) 36)) (-1527 (((-1172 |#1|) (-855)) 71)) (-2089 (((-1172 |#1|) (-1172 |#1|) (-525)) 24)) (-3932 (((-1086 |#1|) (-1172 |#1|)) 77)) (-2431 (((-1172 |#1|) (-855)) 95)) (-1872 (((-108) (-1172 |#1|)) 80)) (-2281 (((-1172 |#1|) (-1172 |#1|) (-855)) 62)) (-3800 (((-1086 |#1|) (-1172 |#1|)) 89)) (-2111 (((-855) (-1172 |#1|)) 59)) (-3243 (((-1172 |#1|) (-1172 |#1|)) 30)) (-3381 (((-1172 |#1|) (-855) (-855)) 97)) (-2657 (((-1172 |#1|) (-1172 |#1|) (-1037) (-1037)) 23)) (-2123 (((-1172 |#1|) (-1172 |#1|) (-713) (-1037)) 37)) (-2734 (((-1172 (-1172 |#1|)) (-855)) 94)) (-4047 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 81)) (** (((-1172 |#1|) (-1172 |#1|) (-525)) 45)) (* (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 25))) +(((-495 |#1|) (-10 -7 (-15 -2891 ((-1177) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))) |#1|)) (-15 -1527 ((-1172 |#1|) (-855))) (-15 -3381 ((-1172 |#1|) (-855) (-855))) (-15 -3932 ((-1086 |#1|) (-1172 |#1|))) (-15 -3993 ((-1086 |#1|) (-713))) (-15 -2123 ((-1172 |#1|) (-1172 |#1|) (-713) (-1037))) (-15 -2864 ((-1172 |#1|) (-1172 |#1|) (-713))) (-15 -2657 ((-1172 |#1|) (-1172 |#1|) (-1037) (-1037))) (-15 -2089 ((-1172 |#1|) (-1172 |#1|) (-525))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-525))) (-15 * ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -4047 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|) (-855))) (-15 -3942 ((-1172 |#1|) (-1172 |#1|) (-855))) (-15 -3243 ((-1172 |#1|) (-1172 |#1|))) (-15 -2111 ((-855) (-1172 |#1|))) (-15 -1872 ((-108) (-1172 |#1|))) (-15 -2734 ((-1172 (-1172 |#1|)) (-855))) (-15 -2431 ((-1172 |#1|) (-855))) (-15 -3800 ((-1086 |#1|) (-1172 |#1|)))) (-327)) (T -495)) +((-3800 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-1086 *4)) (-5 *1 (-495 *4)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 (-1172 *4))) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-495 *4)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-855)) (-5 *1 (-495 *4)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-855)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2281 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-855)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-4047 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2089 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2657 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1037)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2864 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2123 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1172 *5)) (-5 *3 (-713)) (-5 *4 (-1037)) (-4 *5 (-327)) (-5 *1 (-495 *5)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1086 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-1086 *4)) (-5 *1 (-495 *4)))) (-3381 (*1 *2 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) (-4 *4 (-327)) (-5 *2 (-1177)) (-5 *1 (-495 *4))))) +(-10 -7 (-15 -2891 ((-1177) (-1172 (-592 (-2 (|:| -3067 |#1|) (|:| -3381 (-1037))))) |#1|)) (-15 -1527 ((-1172 |#1|) (-855))) (-15 -3381 ((-1172 |#1|) (-855) (-855))) (-15 -3932 ((-1086 |#1|) (-1172 |#1|))) (-15 -3993 ((-1086 |#1|) (-713))) (-15 -2123 ((-1172 |#1|) (-1172 |#1|) (-713) (-1037))) (-15 -2864 ((-1172 |#1|) (-1172 |#1|) (-713))) (-15 -2657 ((-1172 |#1|) (-1172 |#1|) (-1037) (-1037))) (-15 -2089 ((-1172 |#1|) (-1172 |#1|) (-525))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-525))) (-15 * ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -4047 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -2281 ((-1172 |#1|) (-1172 |#1|) (-855))) (-15 -3942 ((-1172 |#1|) (-1172 |#1|) (-855))) (-15 -3243 ((-1172 |#1|) (-1172 |#1|))) (-15 -2111 ((-855) (-1172 |#1|))) (-15 -1872 ((-108) (-1172 |#1|))) (-15 -2734 ((-1172 (-1172 |#1|)) (-855))) (-15 -2431 ((-1172 |#1|) (-855))) (-15 -3800 ((-1086 |#1|) (-1172 |#1|)))) +((-4217 (((-1 |#1| |#1|) |#1|) 11)) (-2293 (((-1 |#1| |#1|)) 10))) +(((-496 |#1|) (-10 -7 (-15 -2293 ((-1 |#1| |#1|))) (-15 -4217 ((-1 |#1| |#1|) |#1|))) (-13 (-669) (-25))) (T -496)) +((-4217 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))) (-2293 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25)))))) +(-10 -7 (-15 -2293 ((-1 |#1| |#1|))) (-15 -4217 ((-1 |#1| |#1|) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3207 (($ $ $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-3097 (($ (-713) |#1|) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2868 (($ (-1 (-713) (-713)) $) NIL)) (-2888 ((|#1| $) NIL)) (-3286 (((-713) $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 20)) (-1436 (($) NIL T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-713) $) NIL) (($ (-855) $) NIL))) +(((-497 |#1|) (-13 (-735) (-481 (-713) |#1|)) (-789)) (T -497)) +NIL +(-13 (-735) (-481 (-713) |#1|)) +((-1316 (((-592 |#2|) (-1086 |#1|) |#3|) 83)) (-3618 (((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1086 |#1|)) (-1086 |#1|))) 100)) (-3908 (((-1086 |#1|) (-632 |#1|)) 95))) +(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3908 ((-1086 |#1|) (-632 |#1|))) (-15 -1316 ((-592 |#2|) (-1086 |#1|) |#3|)) (-15 -3618 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1086 |#1|)) (-1086 |#1|))))) (-341) (-341) (-13 (-341) (-787))) (T -498)) +((-3618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1086 *6)) (-1086 *6))) (-4 *6 (-341)) (-5 *2 (-592 (-2 (|:| |outval| *7) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *7)))))) (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787))))) (-1316 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6)) (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1086 *4)) (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787)))))) +(-10 -7 (-15 -3908 ((-1086 |#1|) (-632 |#1|))) (-15 -1316 ((-592 |#2|) (-1086 |#1|) |#3|)) (-15 -3618 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1086 |#1|)) (-1086 |#1|))))) +((-2091 (((-782 (-525))) 12)) (-2099 (((-782 (-525))) 14)) (-1968 (((-775 (-525))) 9))) +(((-499) (-10 -7 (-15 -1968 ((-775 (-525)))) (-15 -2091 ((-782 (-525)))) (-15 -2099 ((-782 (-525)))))) (T -499)) +((-2099 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-2091 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-1968 (*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499))))) +(-10 -7 (-15 -1968 ((-775 (-525)))) (-15 -2091 ((-782 (-525)))) (-15 -2099 ((-782 (-525))))) +((-3727 (((-501) (-1090)) 15)) (-1940 ((|#1| (-501)) 20))) +(((-500 |#1|) (-10 -7 (-15 -3727 ((-501) (-1090))) (-15 -1940 (|#1| (-501)))) (-1126)) (T -500)) +((-1940 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1126)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-501)) (-5 *1 (-500 *4)) (-4 *4 (-1126))))) +(-10 -7 (-15 -3727 ((-501) (-1090))) (-15 -1940 (|#1| (-501)))) +((-4028 (((-108) $ $) NIL)) (-1592 (((-1073) $) 46)) (-1837 (((-108) $) 43)) (-2855 (((-1090) $) 44)) (-2691 (((-108) $) 41)) (-2717 (((-1073) $) 42)) (-3552 (((-108) $) NIL)) (-1468 (((-108) $) NIL)) (-1898 (((-108) $) NIL)) (-1707 (((-1073) $) NIL)) (-2506 (($ $ (-592 (-1090))) 20)) (-1940 (((-51) $) 22)) (-2714 (((-108) $) NIL)) (-2876 (((-525) $) NIL)) (-3027 (((-1037) $) NIL)) (-2131 (($ $ (-592 (-1090)) (-1090)) 58)) (-3503 (((-108) $) NIL)) (-3024 (((-205) $) NIL)) (-1244 (($ $) 38)) (-2778 (((-797) $) NIL)) (-3941 (((-108) $ $) NIL)) (-1496 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-3049 (((-592 $) $) 28)) (-3709 (((-1090) (-592 $)) 47)) (-2923 (($ (-592 $)) 51) (($ (-1073)) NIL) (($ (-1090)) 18) (($ (-525)) 8) (($ (-205)) 25) (($ (-797)) NIL) (((-1023) $) 11) (($ (-1023)) 12)) (-2947 (((-1090) (-1090) (-592 $)) 50)) (-4044 (((-797) $) NIL)) (-1575 (($ $) 49)) (-1565 (($ $) 48)) (-4013 (($ $ (-592 $)) 55)) (-2942 (((-108) $) 27)) (-1436 (($) 9 T CONST)) (-1449 (($) 10 T CONST)) (-3899 (((-108) $ $) 59)) (-4047 (($ $ $) 64)) (-4017 (($ $ $) 60)) (** (($ $ (-713)) 63) (($ $ (-525)) 62)) (* (($ $ $) 61)) (-1696 (((-525) $) NIL))) +(((-501) (-13 (-1022 (-1073) (-1090) (-525) (-205) (-797)) (-567 (-1023)) (-10 -8 (-15 -1940 ((-51) $)) (-15 -2923 ($ (-1023))) (-15 -4013 ($ $ (-592 $))) (-15 -2131 ($ $ (-592 (-1090)) (-1090))) (-15 -2506 ($ $ (-592 (-1090)))) (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 0 ($) -3219) (-15 1 ($) -3219) (-15 -1244 ($ $)) (-15 -1592 ((-1073) $)) (-15 -3709 ((-1090) (-592 $))) (-15 -2947 ((-1090) (-1090) (-592 $)))))) (T -501)) +((-1940 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-501)))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501)))) (-2131 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-1090)) (-5 *1 (-501)))) (-2506 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-501)))) (-4017 (*1 *1 *1 *1) (-5 *1 (-501))) (* (*1 *1 *1 *1) (-5 *1 (-501))) (-4047 (*1 *1 *1 *1) (-5 *1 (-501))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501)))) (-1436 (*1 *1) (-5 *1 (-501))) (-1449 (*1 *1) (-5 *1 (-501))) (-1244 (*1 *1 *1) (-5 *1 (-501))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-501)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1090)) (-5 *1 (-501)))) (-2947 (*1 *2 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-501))) (-5 *1 (-501))))) +(-13 (-1022 (-1073) (-1090) (-525) (-205) (-797)) (-567 (-1023)) (-10 -8 (-15 -1940 ((-51) $)) (-15 -2923 ($ (-1023))) (-15 -4013 ($ $ (-592 $))) (-15 -2131 ($ $ (-592 (-1090)) (-1090))) (-15 -2506 ($ $ (-592 (-1090)))) (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 (-1436) ($) -3219) (-15 (-1449) ($) -3219) (-15 -1244 ($ $)) (-15 -1592 ((-1073) $)) (-15 -3709 ((-1090) (-592 $))) (-15 -2947 ((-1090) (-1090) (-592 $))))) +((-2814 ((|#2| |#2|) 17)) (-1876 ((|#2| |#2|) 13)) (-2967 ((|#2| |#2| (-525) (-525)) 20)) (-1366 ((|#2| |#2|) 15))) +(((-502 |#1| |#2|) (-10 -7 (-15 -1876 (|#2| |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -2967 (|#2| |#2| (-525) (-525)))) (-13 (-517) (-138)) (-1163 |#1|)) (T -502)) +((-2967 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2)) (-4 *2 (-1163 *4)))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1163 *3)))) (-1366 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1163 *3)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1163 *3))))) +(-10 -7 (-15 -1876 (|#2| |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -2967 (|#2| |#2| (-525) (-525)))) +((-2330 (((-592 (-273 (-886 |#2|))) (-592 |#2|) (-592 (-1090))) 32)) (-2673 (((-592 |#2|) (-886 |#1|) |#3|) 53) (((-592 |#2|) (-1086 |#1|) |#3|) 52)) (-2353 (((-592 (-592 |#2|)) (-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)) |#3|) 88))) +(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2673 ((-592 |#2|) (-1086 |#1|) |#3|)) (-15 -2673 ((-592 |#2|) (-886 |#1|) |#3|)) (-15 -2353 ((-592 (-592 |#2|)) (-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)) |#3|)) (-15 -2330 ((-592 (-273 (-886 |#2|))) (-592 |#2|) (-592 (-1090))))) (-429) (-341) (-13 (-341) (-787))) (T -503)) +((-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1090))) (-4 *6 (-341)) (-5 *2 (-592 (-273 (-886 *6)))) (-5 *1 (-503 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787))))) (-2353 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341)) (-4 *5 (-13 (-341) (-787))))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787)))))) +(-10 -7 (-15 -2673 ((-592 |#2|) (-1086 |#1|) |#3|)) (-15 -2673 ((-592 |#2|) (-886 |#1|) |#3|)) (-15 -2353 ((-592 (-592 |#2|)) (-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)) |#3|)) (-15 -2330 ((-592 (-273 (-886 |#2|))) (-592 |#2|) (-592 (-1090))))) +((-3934 ((|#2| |#2| |#1|) 17)) (-1337 ((|#2| (-592 |#2|)) 27)) (-3262 ((|#2| (-592 |#2|)) 46))) +(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1337 (|#2| (-592 |#2|))) (-15 -3262 (|#2| (-592 |#2|))) (-15 -3934 (|#2| |#2| |#1|))) (-286) (-1148 |#1|) |#1| (-1 |#1| |#1| (-713))) (T -504)) +((-3934 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-713))) (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1148 *3)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))) (-1337 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713)))))) +(-10 -7 (-15 -1337 (|#2| (-592 |#2|))) (-15 -3262 (|#2| (-592 |#2|))) (-15 -3934 (|#2| |#2| |#1|))) +((-2961 (((-396 (-1086 |#4|)) (-1086 |#4|) (-1 (-396 (-1086 |#3|)) (-1086 |#3|))) 79) (((-396 |#4|) |#4| (-1 (-396 (-1086 |#3|)) (-1086 |#3|))) 169))) +(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2961 ((-396 |#4|) |#4| (-1 (-396 (-1086 |#3|)) (-1086 |#3|)))) (-15 -2961 ((-396 (-1086 |#4|)) (-1086 |#4|) (-1 (-396 (-1086 |#3|)) (-1086 |#3|))))) (-789) (-735) (-13 (-286) (-138)) (-883 |#3| |#2| |#1|)) (T -505)) +((-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-883 *7 *6 *5)) (-5 *2 (-396 (-1086 *8))) (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-883 *7 *6 *5))))) +(-10 -7 (-15 -2961 ((-396 |#4|) |#4| (-1 (-396 (-1086 |#3|)) (-1086 |#3|)))) (-15 -2961 ((-396 (-1086 |#4|)) (-1086 |#4|) (-1 (-396 (-1086 |#3|)) (-1086 |#3|))))) +((-2814 ((|#4| |#4|) 74)) (-1876 ((|#4| |#4|) 70)) (-2967 ((|#4| |#4| (-525) (-525)) 76)) (-1366 ((|#4| |#4|) 72))) +(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1876 (|#4| |#4|)) (-15 -1366 (|#4| |#4|)) (-15 -2814 (|#4| |#4|)) (-15 -2967 (|#4| |#4| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1148 |#1|) (-667 |#1| |#2|) (-1163 |#3|)) (T -506)) +((-2967 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3))) (-4 *5 (-1148 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-1163 *6)))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) (-1366 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5))))) +(-10 -7 (-15 -1876 (|#4| |#4|)) (-15 -1366 (|#4| |#4|)) (-15 -2814 (|#4| |#4|)) (-15 -2967 (|#4| |#4| (-525) (-525)))) +((-2814 ((|#2| |#2|) 27)) (-1876 ((|#2| |#2|) 23)) (-2967 ((|#2| |#2| (-525) (-525)) 29)) (-1366 ((|#2| |#2|) 25))) +(((-507 |#1| |#2|) (-10 -7 (-15 -1876 (|#2| |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -2967 (|#2| |#2| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1163 |#1|)) (T -507)) +((-2967 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1163 *4)))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1163 *3)))) (-1366 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1163 *3)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1163 *3))))) +(-10 -7 (-15 -1876 (|#2| |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -2967 (|#2| |#2| (-525) (-525)))) +((-3323 (((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)) 14) (((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|)) 13) (((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|)) 26))) +(((-508 |#1| |#2|) (-10 -7 (-15 -3323 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -3323 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -3323 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)))) (-976) (-1148 |#1|)) (T -508)) +((-3323 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1148 *4)))) (-3323 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1148 *4)))) (-3323 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-976)) (-5 *2 (-525)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1148 *5))))) +(-10 -7 (-15 -3323 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -3323 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -3323 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)))) +((-3775 (($ $ $) 79)) (-1259 (((-396 $) $) 47)) (-2769 (((-3 (-525) "failed") $) 59)) (-2068 (((-525) $) 37)) (-2132 (((-3 (-385 (-525)) "failed") $) 74)) (-3748 (((-108) $) 24)) (-1675 (((-385 (-525)) $) 72)) (-2069 (((-108) $) 50)) (-2491 (($ $ $ $) 86)) (-2973 (((-108) $) 16)) (-2635 (($ $ $) 57)) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 69)) (-1978 (((-3 $ "failed") $) 64)) (-3309 (($ $) 23)) (-2169 (($ $ $) 84)) (-2039 (($) 60)) (-3444 (($ $) 53)) (-2961 (((-396 $) $) 45)) (-3524 (((-108) $) 14)) (-2824 (((-713) $) 28)) (-1576 (($ $ (-713)) NIL) (($ $) 10)) (-1261 (($ $) 17)) (-2923 (((-525) $) NIL) (((-501) $) 36) (((-826 (-525)) $) 40) (((-357) $) 31) (((-205) $) 33)) (-2502 (((-713)) 8)) (-2301 (((-108) $ $) 20)) (-3738 (($ $ $) 55))) +(((-509 |#1|) (-10 -8 (-15 -2169 (|#1| |#1| |#1|)) (-15 -2491 (|#1| |#1| |#1| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -1261 (|#1| |#1|)) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -2301 ((-108) |#1| |#1|)) (-15 -3524 ((-108) |#1|)) (-15 -2039 (|#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|)) (-15 -2923 ((-205) |#1|)) (-15 -2923 ((-357) |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2923 ((-525) |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -2973 ((-108) |#1|)) (-15 -2824 ((-713) |#1|)) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -2069 ((-108) |#1|)) (-15 -2502 ((-713)))) (-510)) (T -509)) +((-2502 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-509 *3)) (-4 *3 (-510))))) +(-10 -8 (-15 -2169 (|#1| |#1| |#1|)) (-15 -2491 (|#1| |#1| |#1| |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -1261 (|#1| |#1|)) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -2301 ((-108) |#1| |#1|)) (-15 -3524 ((-108) |#1|)) (-15 -2039 (|#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|)) (-15 -2923 ((-205) |#1|)) (-15 -2923 ((-357) |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2923 ((-525) |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -2973 ((-108) |#1|)) (-15 -2824 ((-713) |#1|)) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -2069 ((-108) |#1|)) (-15 -2502 ((-713)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3775 (($ $ $) 85)) (-3004 (((-3 $ "failed") $ $) 19)) (-4065 (($ $ $ $) 73)) (-2701 (($ $) 51)) (-1259 (((-396 $) $) 52)) (-1700 (((-108) $ $) 125)) (-2780 (((-525) $) 114)) (-4162 (($ $ $) 88)) (-1957 (($) 17 T CONST)) (-2769 (((-3 (-525) "failed") $) 106)) (-2068 (((-525) $) 105)) (-2720 (($ $ $) 129)) (-1307 (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 104) (((-632 (-525)) (-632 $)) 103)) (-1645 (((-3 $ "failed") $) 34)) (-2132 (((-3 (-385 (-525)) "failed") $) 82)) (-3748 (((-108) $) 84)) (-1675 (((-385 (-525)) $) 83)) (-1527 (($) 81) (($ $) 80)) (-2699 (($ $ $) 128)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 123)) (-2069 (((-108) $) 53)) (-2491 (($ $ $ $) 71)) (-1514 (($ $ $) 86)) (-2973 (((-108) $) 116)) (-2635 (($ $ $) 97)) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 100)) (-2507 (((-108) $) 31)) (-2057 (((-108) $) 92)) (-1978 (((-3 $ "failed") $) 94)) (-3721 (((-108) $) 115)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 132)) (-3520 (($ $ $ $) 72)) (-1260 (($ $ $) 117)) (-2154 (($ $ $) 118)) (-3309 (($ $) 75)) (-2520 (($ $) 89)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-2169 (($ $ $) 70)) (-2039 (($) 93 T CONST)) (-2640 (($ $) 77)) (-3027 (((-1037) $) 10) (($ $) 79)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-3444 (($ $) 98)) (-2961 (((-396 $) $) 50)) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 130)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 124)) (-3524 (((-108) $) 91)) (-2824 (((-713) $) 126)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 127)) (-1576 (($ $ (-713)) 111) (($ $) 109)) (-1216 (($ $) 76)) (-1261 (($ $) 78)) (-2923 (((-525) $) 108) (((-501) $) 102) (((-826 (-525)) $) 101) (((-357) $) 96) (((-205) $) 95)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 107)) (-2502 (((-713)) 29)) (-2301 (((-108) $ $) 87)) (-3738 (($ $ $) 99)) (-3758 (($) 90)) (-3787 (((-108) $ $) 39)) (-2009 (($ $ $ $) 74)) (-2053 (($ $) 113)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-713)) 112) (($ $) 110)) (-3973 (((-108) $ $) 120)) (-3944 (((-108) $ $) 121)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 119)) (-3928 (((-108) $ $) 122)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-510) (-131)) (T -510)) -((-2116 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3523 (*1 *1) (-4 *1 (-510))) (-2445 (*1 *1 *1) (-4 *1 (-510))) (-3423 (*1 *1 *1 *1) (-4 *1 (-510))) (-3760 (*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-2283 (*1 *1 *1 *1) (-4 *1 (-510))) (-3517 (*1 *1 *1 *1) (-4 *1 (-510))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-2350 (*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-1325 (*1 *1) (-4 *1 (-510))) (-1325 (*1 *1 *1) (-4 *1 (-510))) (-2937 (*1 *1 *1) (-4 *1 (-510))) (-2873 (*1 *1 *1) (-4 *1 (-510))) (-4025 (*1 *1 *1) (-4 *1 (-510))) (-1853 (*1 *1 *1) (-4 *1 (-510))) (-1576 (*1 *1 *1) (-4 *1 (-510))) (-1825 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3329 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3480 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-1493 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3222 (*1 *1 *1 *1) (-4 *1 (-510)))) -(-13 (-1129) (-286) (-761) (-213) (-566 (-525)) (-966 (-525)) (-587 (-525)) (-566 (-501)) (-566 (-825 (-525))) (-819 (-525)) (-134) (-951) (-138) (-1065) (-10 -8 (-15 -2116 ((-108) $)) (-15 -2882 ((-108) $)) (-6 -4249) (-15 -3523 ($)) (-15 -2445 ($ $)) (-15 -3423 ($ $ $)) (-15 -3760 ((-108) $ $)) (-15 -2283 ($ $ $)) (-15 -3517 ($ $ $)) (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $)) (-15 -1325 ($)) (-15 -1325 ($ $)) (-15 -2937 ($ $)) (-15 -2873 ($ $)) (-15 -4025 ($ $)) (-15 -1853 ($ $)) (-15 -1576 ($ $)) (-15 -1825 ($ $ $ $)) (-15 -3329 ($ $ $ $)) (-15 -3480 ($ $ $ $)) (-15 -1493 ($ $ $ $)) (-15 -3222 ($ $ $)) (-6 -4248))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-565 (-796)) . T) ((-134) . T) ((-160) . T) ((-566 (-205)) . T) ((-566 (-357)) . T) ((-566 (-501)) . T) ((-566 (-525)) . T) ((-566 (-825 (-525))) . T) ((-213) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-593 $) . T) ((-587 (-525)) . T) ((-659 $) . T) ((-668) . T) ((-732) . T) ((-733) . T) ((-735) . T) ((-736) . T) ((-761) . T) ((-786) . T) ((-788) . T) ((-819 (-525)) . T) ((-853) . T) ((-951) . T) ((-966 (-525)) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1065) . T) ((-1129) . T)) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-3832 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#2| $ |#1| |#2|) NIL)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 |#2| "failed") |#1| $) NIL)) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) NIL)) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) NIL)) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 ((|#1| $) NIL (|has| |#1| (-788)))) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-1826 ((|#1| $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4251))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2159 (((-591 |#1|) $) NIL)) (-1628 (((-108) |#1| $) NIL)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3761 (((-591 |#1|) $) NIL)) (-1675 (((-108) |#1| $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2872 ((|#2| $) NIL (|has| |#1| (-788)))) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2686 (((-796) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796))) (|has| |#2| (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-511 |#1| |#2| |#3|) (-13 (-1102 |#1| |#2|) (-10 -7 (-6 -4250))) (-1018) (-1018) (-13 (-1102 |#1| |#2|) (-10 -7 (-6 -4250)))) (T -511)) -NIL -(-13 (-1102 |#1| |#2|) (-10 -7 (-6 -4250))) -((-4022 (((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|) (-1 (-1085 |#2|) (-1085 |#2|))) 51))) -(((-512 |#1| |#2|) (-10 -7 (-15 -4022 ((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|) (-1 (-1085 |#2|) (-1085 |#2|))))) (-13 (-788) (-517)) (-13 (-27) (-408 |#1|))) (T -512)) -((-4022 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-564 *3)) (-5 *5 (-1 (-1085 *3) (-1085 *3))) (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-788) (-517))) (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3))))) -(-10 -7 (-15 -4022 ((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|) (-1 (-1085 |#2|) (-1085 |#2|))))) -((-2734 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-3737 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-1670 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 201))) -(((-513 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1670 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2734 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3737 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-788) (-517) (-966 (-525))) (-13 (-27) (-408 |#1|)) (-1147 |#2|) (-1147 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -513)) -((-3737 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-27) (-408 *4))) (-4 *4 (-13 (-788) (-517) (-966 (-525)))) (-4 *7 (-1147 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2)) (-4 *2 (-320 *5 *6 *7)))) (-2734 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1147 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-788) (-517) (-966 (-525)))) (-4 *8 (-1147 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))) (-1670 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1147 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-788) (-517) (-966 (-525)))) (-4 *8 (-1147 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8))))) -(-10 -7 (-15 -1670 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2734 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3737 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2984 (((-108) (-525) (-525)) 10)) (-4134 (((-525) (-525)) 7)) (-2859 (((-525) (-525) (-525)) 8))) -(((-514) (-10 -7 (-15 -4134 ((-525) (-525))) (-15 -2859 ((-525) (-525) (-525))) (-15 -2984 ((-108) (-525) (-525))))) (T -514)) -((-2984 (*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))) (-2859 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))) (-4134 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514))))) -(-10 -7 (-15 -4134 ((-525) (-525))) (-15 -2859 ((-525) (-525) (-525))) (-15 -2984 ((-108) (-525) (-525)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1228 ((|#1| $) 61)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-4087 (($ $) 91)) (-2381 (($ $) 74)) (-3343 ((|#1| $) 62)) (-3332 (((-3 $ "failed") $ $) 19)) (-2551 (($ $) 73)) (-4058 (($ $) 90)) (-2360 (($ $) 75)) (-4109 (($ $) 89)) (-2400 (($ $) 76)) (-2055 (($) 17 T CONST)) (-4174 (((-3 (-525) "failed") $) 69)) (-3341 (((-525) $) 68)) (-1522 (((-3 $ "failed") $) 34)) (-3651 (($ |#1| |#1|) 66)) (-3489 (((-108) $) 60)) (-1417 (($) 101)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 72)) (-2256 (((-108) $) 59)) (-1923 (($ $ $) 107)) (-3475 (($ $ $) 106)) (-2356 (($ $) 98)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-3675 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-385 (-525))) 64)) (-2329 ((|#1| $) 63)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-3210 (((-3 $ "failed") $ $) 42)) (-2288 (($ $) 99)) (-4122 (($ $) 88)) (-2410 (($ $) 77)) (-4098 (($ $) 87)) (-2391 (($ $) 78)) (-4073 (($ $) 86)) (-2370 (($ $) 79)) (-3279 (((-108) $ |#1|) 58)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 70)) (-3425 (((-712)) 29)) (-4163 (($ $) 97)) (-2457 (($ $) 85)) (-1724 (((-108) $ $) 39)) (-4137 (($ $) 96)) (-2432 (($ $) 84)) (-4193 (($ $) 95)) (-2477 (($ $) 83)) (-1234 (($ $) 94)) (-2495 (($ $) 82)) (-4179 (($ $) 93)) (-2469 (($ $) 81)) (-4149 (($ $) 92)) (-2444 (($ $) 80)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-4004 (((-108) $ $) 104)) (-3982 (((-108) $ $) 103)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 105)) (-3971 (((-108) $ $) 102)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ $) 100) (($ $ (-385 (-525))) 71)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-515 |#1|) (-131) (-13 (-382) (-1111))) (T -515)) -((-3675 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111))))) (-3651 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111))))) (-3675 (*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111))))) (-3675 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1111))))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111))))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111))))) (-1228 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111))))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1111))) (-5 *2 (-108)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1111))) (-5 *2 (-108)))) (-3279 (*1 *2 *1 *3) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1111))) (-5 *2 (-108))))) -(-13 (-429) (-788) (-1111) (-932) (-966 (-525)) (-10 -8 (-6 -4173) (-15 -3675 ($ |t#1| |t#1|)) (-15 -3651 ($ |t#1| |t#1|)) (-15 -3675 ($ |t#1|)) (-15 -3675 ($ (-385 (-525)))) (-15 -2329 (|t#1| $)) (-15 -3343 (|t#1| $)) (-15 -1228 (|t#1| $)) (-15 -3489 ((-108) $)) (-15 -2256 ((-108) $)) (-15 -3279 ((-108) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-263) . T) ((-269) . T) ((-429) . T) ((-466) . T) ((-517) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-788) . T) ((-932) . T) ((-966 (-525)) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1111) . T) ((-1114) . T)) -((-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 9)) (-3641 (($ $) 11)) (-3077 (((-108) $) 18)) (-1522 (((-3 $ "failed") $) 16)) (-1724 (((-108) $ $) 20))) -(((-516 |#1|) (-10 -8 (-15 -3077 ((-108) |#1|)) (-15 -1724 ((-108) |#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -2867 ((-2 (|:| -1851 |#1|) (|:| -4237 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1522 ((-3 |#1| "failed") |#1|))) (-517)) (T -516)) -NIL -(-10 -8 (-15 -3077 ((-108) |#1|)) (-15 -1724 ((-108) |#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -2867 ((-2 (|:| -1851 |#1|) (|:| -4237 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1522 ((-3 |#1| "failed") |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3210 (((-3 $ "failed") $ $) 42)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +((-2057 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3758 (*1 *1) (-4 *1 (-510))) (-2520 (*1 *1 *1) (-4 *1 (-510))) (-4162 (*1 *1 *1 *1) (-4 *1 (-510))) (-2301 (*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-1514 (*1 *1 *1 *1) (-4 *1 (-510))) (-3775 (*1 *1 *1 *1) (-4 *1 (-510))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-2132 (*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-1527 (*1 *1) (-4 *1 (-510))) (-1527 (*1 *1 *1) (-4 *1 (-510))) (-3027 (*1 *1 *1) (-4 *1 (-510))) (-1261 (*1 *1 *1) (-4 *1 (-510))) (-2640 (*1 *1 *1) (-4 *1 (-510))) (-1216 (*1 *1 *1) (-4 *1 (-510))) (-3309 (*1 *1 *1) (-4 *1 (-510))) (-2009 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-4065 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3520 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-2491 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-2169 (*1 *1 *1 *1) (-4 *1 (-510)))) +(-13 (-1130) (-286) (-762) (-213) (-567 (-525)) (-967 (-525)) (-588 (-525)) (-567 (-501)) (-567 (-826 (-525))) (-820 (-525)) (-134) (-952) (-138) (-1066) (-10 -8 (-15 -2057 ((-108) $)) (-15 -3524 ((-108) $)) (-6 -4253) (-15 -3758 ($)) (-15 -2520 ($ $)) (-15 -4162 ($ $ $)) (-15 -2301 ((-108) $ $)) (-15 -1514 ($ $ $)) (-15 -3775 ($ $ $)) (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $)) (-15 -1527 ($)) (-15 -1527 ($ $)) (-15 -3027 ($ $)) (-15 -1261 ($ $)) (-15 -2640 ($ $)) (-15 -1216 ($ $)) (-15 -3309 ($ $)) (-15 -2009 ($ $ $ $)) (-15 -4065 ($ $ $ $)) (-15 -3520 ($ $ $ $)) (-15 -2491 ($ $ $ $)) (-15 -2169 ($ $ $)) (-6 -4252))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-134) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-501)) . T) ((-567 (-525)) . T) ((-567 (-826 (-525))) . T) ((-213) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-588 (-525)) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-762) . T) ((-787) . T) ((-789) . T) ((-820 (-525)) . T) ((-854) . T) ((-952) . T) ((-967 (-525)) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) . T) ((-1130) . T)) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2792 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#2| $ |#1| |#2|) NIL)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 |#2| "failed") |#1| $) NIL)) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) NIL)) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) NIL)) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 ((|#1| $) NIL (|has| |#1| (-789)))) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2112 ((|#1| $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-2183 (((-592 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-2379 (((-592 |#1|) $) NIL)) (-2030 (((-108) |#1| $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1683 ((|#2| $) NIL (|has| |#1| (-789)))) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-4044 (((-797) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-511 |#1| |#2| |#3|) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) (-1019) (-1019) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254)))) (T -511)) +NIL +(-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) +((-3319 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))) 51))) +(((-512 |#1| |#2|) (-10 -7 (-15 -3319 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))))) (-13 (-789) (-517)) (-13 (-27) (-408 |#1|))) (T -512)) +((-3319 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517))) (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3))))) +(-10 -7 (-15 -3319 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))))) +((-1618 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-3776 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-1480 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 201))) +(((-513 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1480 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1618 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3776 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-789) (-517) (-967 (-525))) (-13 (-27) (-408 |#1|)) (-1148 |#2|) (-1148 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -513)) +((-3776 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-27) (-408 *4))) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-4 *7 (-1148 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2)) (-4 *2 (-320 *5 *6 *7)))) (-1618 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1148 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-4 *8 (-1148 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1148 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-4 *8 (-1148 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8))))) +(-10 -7 (-15 -1480 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1618 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3776 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3222 (((-108) (-525) (-525)) 10)) (-3224 (((-525) (-525)) 7)) (-2315 (((-525) (-525) (-525)) 8))) +(((-514) (-10 -7 (-15 -3224 ((-525) (-525))) (-15 -2315 ((-525) (-525) (-525))) (-15 -3222 ((-108) (-525) (-525))))) (T -514)) +((-3222 (*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))) (-2315 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))) (-3224 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514))))) +(-10 -7 (-15 -3224 ((-525) (-525))) (-15 -2315 ((-525) (-525) (-525))) (-15 -3222 ((-108) (-525) (-525)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1348 ((|#1| $) 61)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3915 (($ $) 91)) (-3760 (($ $) 74)) (-3207 ((|#1| $) 62)) (-3004 (((-3 $ "failed") $ $) 19)) (-2975 (($ $) 73)) (-3886 (($ $) 90)) (-3737 (($ $) 75)) (-3946 (($ $) 89)) (-3783 (($ $) 76)) (-1957 (($) 17 T CONST)) (-2769 (((-3 (-525) "failed") $) 69)) (-2068 (((-525) $) 68)) (-1645 (((-3 $ "failed") $) 34)) (-2445 (($ |#1| |#1|) 66)) (-2973 (((-108) $) 60)) (-1961 (($) 101)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 72)) (-3721 (((-108) $) 59)) (-1260 (($ $ $) 107)) (-2154 (($ $ $) 106)) (-2412 (($ $) 98)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3057 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-385 (-525))) 64)) (-4134 ((|#1| $) 63)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2675 (((-3 $ "failed") $ $) 42)) (-2840 (($ $) 99)) (-3960 (($ $) 88)) (-3795 (($ $) 77)) (-3930 (($ $) 87)) (-3771 (($ $) 78)) (-3901 (($ $) 86)) (-3749 (($ $) 79)) (-1248 (((-108) $ |#1|) 58)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 70)) (-2502 (((-713)) 29)) (-4004 (($ $) 97)) (-3836 (($ $) 85)) (-3787 (((-108) $ $) 39)) (-3975 (($ $) 96)) (-3808 (($ $) 84)) (-4035 (($ $) 95)) (-3861 (($ $) 83)) (-2608 (($ $) 94)) (-3873 (($ $) 82)) (-4018 (($ $) 93)) (-3848 (($ $) 81)) (-3989 (($ $) 92)) (-3823 (($ $) 80)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3973 (((-108) $ $) 104)) (-3944 (((-108) $ $) 103)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 105)) (-3928 (((-108) $ $) 102)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ $) 100) (($ $ (-385 (-525))) 71)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-515 |#1|) (-131) (-13 (-382) (-1112))) (T -515)) +((-3057 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-2445 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-3057 (*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-3057 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-2973 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108)))) (-1248 (*1 *2 *1 *3) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108))))) +(-13 (-429) (-789) (-1112) (-933) (-967 (-525)) (-10 -8 (-6 -2371) (-15 -3057 ($ |t#1| |t#1|)) (-15 -2445 ($ |t#1| |t#1|)) (-15 -3057 ($ |t#1|)) (-15 -3057 ($ (-385 (-525)))) (-15 -4134 (|t#1| $)) (-15 -3207 (|t#1| $)) (-15 -1348 (|t#1| $)) (-15 -2973 ((-108) $)) (-15 -3721 ((-108) $)) (-15 -1248 ((-108) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-263) . T) ((-269) . T) ((-429) . T) ((-466) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-933) . T) ((-967 (-525)) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) . T) ((-1115) . T)) +((-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 9)) (-2609 (($ $) 11)) (-1220 (((-108) $) 18)) (-1645 (((-3 $ "failed") $) 16)) (-3787 (((-108) $ $) 20))) +(((-516 |#1|) (-10 -8 (-15 -1220 ((-108) |#1|)) (-15 -3787 ((-108) |#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -1893 ((-2 (|:| -3603 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1645 ((-3 |#1| "failed") |#1|))) (-517)) (T -516)) +NIL +(-10 -8 (-15 -1220 ((-108) |#1|)) (-15 -3787 ((-108) |#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -1893 ((-2 (|:| -3603 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1645 ((-3 |#1| "failed") |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2675 (((-3 $ "failed") $ $) 42)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) (((-517) (-131)) (T -517)) -((-3210 (*1 *1 *1 *1) (|partial| -4 *1 (-517))) (-2867 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1851 *1) (|:| -4237 *1) (|:| |associate| *1))) (-4 *1 (-517)))) (-3641 (*1 *1 *1) (-4 *1 (-517))) (-1724 (*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108))))) -(-13 (-160) (-37 $) (-269) (-10 -8 (-15 -3210 ((-3 $ "failed") $ $)) (-15 -2867 ((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $)) (-15 -3641 ($ $)) (-15 -1724 ((-108) $ $)) (-15 -3077 ((-108) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-269) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2676 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1089) (-591 |#2|)) 37)) (-4225 (((-542 |#2|) |#2| (-1089)) 62)) (-3271 (((-3 |#2| "failed") |#2| (-1089)) 154)) (-4222 (((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1089) (-564 |#2|) (-591 (-564 |#2|))) 157)) (-3852 (((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1089) |#2|) 40))) -(((-518 |#1| |#2|) (-10 -7 (-15 -3852 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1089) |#2|)) (-15 -2676 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1089) (-591 |#2|))) (-15 -3271 ((-3 |#2| "failed") |#2| (-1089))) (-15 -4225 ((-542 |#2|) |#2| (-1089))) (-15 -4222 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1089) (-564 |#2|) (-591 (-564 |#2|))))) (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525))) (-13 (-27) (-1111) (-408 |#1|))) (T -518)) -((-4222 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-591 (-564 *3))) (-5 *5 (-564 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *7))) (-4 *7 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) (-5 *1 (-518 *7 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))))) (-3271 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4))))) (-2676 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-591 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *6 *3)))) (-3852 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5)))))) -(-10 -7 (-15 -3852 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1089) |#2|)) (-15 -2676 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1089) (-591 |#2|))) (-15 -3271 ((-3 |#2| "failed") |#2| (-1089))) (-15 -4225 ((-542 |#2|) |#2| (-1089))) (-15 -4222 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1089) (-564 |#2|) (-591 (-564 |#2|))))) -((-3898 (((-396 |#1|) |#1|) 18)) (-2542 (((-396 |#1|) |#1|) 33)) (-3508 (((-3 |#1| "failed") |#1|) 44)) (-2475 (((-396 |#1|) |#1|) 51))) -(((-519 |#1|) (-10 -7 (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -2475 ((-396 |#1|) |#1|)) (-15 -3508 ((-3 |#1| "failed") |#1|))) (-510)) (T -519)) -((-3508 (*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))) (-2475 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-3898 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))) -(-10 -7 (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -2475 ((-396 |#1|) |#1|)) (-15 -3508 ((-3 |#1| "failed") |#1|))) -((-1915 (($) 9)) (-2852 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 35)) (-2159 (((-591 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 32)) (-1520 (($ (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2316 (($ (-591 (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1568 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-2998 (((-591 (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1527 (((-1176)) 12))) -(((-520) (-10 -8 (-15 -1915 ($)) (-15 -1527 ((-1176))) (-15 -2159 ((-591 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -2316 ($ (-591 (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1520 ($ (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2852 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2998 ((-591 (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1568 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -520)) -((-1568 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-2852 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-520)))) (-2316 (*1 *1 *2) (-12 (-5 *2 (-591 (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-520)))) (-1527 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-520)))) (-1915 (*1 *1) (-5 *1 (-520)))) -(-10 -8 (-15 -1915 ($)) (-15 -1527 ((-1176))) (-15 -2159 ((-591 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -2316 ($ (-591 (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1520 ($ (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2852 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2998 ((-591 (-2 (|:| -1265 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1568 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1070 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3756 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) -((-2514 (((-1085 (-385 (-1085 |#2|))) |#2| (-564 |#2|) (-564 |#2|) (-1085 |#2|)) 32)) (-2024 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-564 |#2|) (-564 |#2|) (-591 |#2|) (-564 |#2|) |#2| (-385 (-1085 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-564 |#2|) (-564 |#2|) (-591 |#2|) |#2| (-1085 |#2|)) 110)) (-1893 (((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|) (-564 |#2|) |#2| (-385 (-1085 |#2|))) 80) (((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|) |#2| (-1085 |#2|)) 52)) (-3360 (((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-564 |#2|) (-564 |#2|) |#2| (-564 |#2|) |#2| (-385 (-1085 |#2|))) 87) (((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-564 |#2|) (-564 |#2|) |#2| |#2| (-1085 |#2|)) 109)) (-2176 (((-3 |#2| "failed") |#2| |#2| (-564 |#2|) (-564 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1089)) (-564 |#2|) |#2| (-385 (-1085 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-564 |#2|) (-564 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1089)) |#2| (-1085 |#2|)) 111)) (-3420 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3612 (-591 |#2|))) |#3| |#2| (-564 |#2|) (-564 |#2|) (-564 |#2|) |#2| (-385 (-1085 |#2|))) 128 (|has| |#3| (-601 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3612 (-591 |#2|))) |#3| |#2| (-564 |#2|) (-564 |#2|) |#2| (-1085 |#2|)) 127 (|has| |#3| (-601 |#2|)))) (-1434 ((|#2| (-1085 (-385 (-1085 |#2|))) (-564 |#2|) |#2|) 50)) (-3610 (((-1085 (-385 (-1085 |#2|))) (-1085 |#2|) (-564 |#2|)) 31))) -(((-521 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|) |#2| (-1085 |#2|))) (-15 -1893 ((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|) (-564 |#2|) |#2| (-385 (-1085 |#2|)))) (-15 -3360 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-564 |#2|) (-564 |#2|) |#2| |#2| (-1085 |#2|))) (-15 -3360 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-564 |#2|) (-564 |#2|) |#2| (-564 |#2|) |#2| (-385 (-1085 |#2|)))) (-15 -2024 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-564 |#2|) (-564 |#2|) (-591 |#2|) |#2| (-1085 |#2|))) (-15 -2024 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-564 |#2|) (-564 |#2|) (-591 |#2|) (-564 |#2|) |#2| (-385 (-1085 |#2|)))) (-15 -2176 ((-3 |#2| "failed") |#2| |#2| (-564 |#2|) (-564 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1089)) |#2| (-1085 |#2|))) (-15 -2176 ((-3 |#2| "failed") |#2| |#2| (-564 |#2|) (-564 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1089)) (-564 |#2|) |#2| (-385 (-1085 |#2|)))) (-15 -2514 ((-1085 (-385 (-1085 |#2|))) |#2| (-564 |#2|) (-564 |#2|) (-1085 |#2|))) (-15 -1434 (|#2| (-1085 (-385 (-1085 |#2|))) (-564 |#2|) |#2|)) (-15 -3610 ((-1085 (-385 (-1085 |#2|))) (-1085 |#2|) (-564 |#2|))) (IF (|has| |#3| (-601 |#2|)) (PROGN (-15 -3420 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3612 (-591 |#2|))) |#3| |#2| (-564 |#2|) (-564 |#2|) |#2| (-1085 |#2|))) (-15 -3420 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3612 (-591 |#2|))) |#3| |#2| (-564 |#2|) (-564 |#2|) (-564 |#2|) |#2| (-385 (-1085 |#2|))))) |%noBranch|)) (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525))) (-13 (-408 |#1|) (-27) (-1111)) (-1018)) (T -521)) -((-3420 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-564 *4)) (-5 *6 (-385 (-1085 *4))) (-4 *4 (-13 (-408 *7) (-27) (-1111))) (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1018)))) (-3420 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-564 *4)) (-5 *6 (-1085 *4)) (-4 *4 (-13 (-408 *7) (-27) (-1111))) (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1018)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *4 (-564 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1111))) (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-1085 (-385 (-1085 *6)))) (-5 *1 (-521 *5 *6 *7)) (-5 *3 (-1085 *6)) (-4 *7 (-1018)))) (-1434 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1085 (-385 (-1085 *2)))) (-5 *4 (-564 *2)) (-4 *2 (-13 (-408 *5) (-27) (-1111))) (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1018)))) (-2514 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-564 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1111))) (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-1085 (-385 (-1085 *3)))) (-5 *1 (-521 *6 *3 *7)) (-5 *5 (-1085 *3)) (-4 *7 (-1018)))) (-2176 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-564 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089))) (-5 *5 (-385 (-1085 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1111))) (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1018)))) (-2176 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-564 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089))) (-5 *5 (-1085 *2)) (-4 *2 (-13 (-408 *6) (-27) (-1111))) (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1018)))) (-2024 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-591 *3)) (-5 *6 (-385 (-1085 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1111))) (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1018)))) (-2024 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-591 *3)) (-5 *6 (-1085 *3)) (-4 *3 (-13 (-408 *7) (-27) (-1111))) (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1018)))) (-3360 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-385 (-1085 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1111))) (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1018)))) (-3360 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-1085 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1111))) (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1018)))) (-1893 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-564 *3)) (-5 *5 (-385 (-1085 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1111))) (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1018)))) (-1893 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-564 *3)) (-5 *5 (-1085 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1111))) (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1018))))) -(-10 -7 (-15 -1893 ((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|) |#2| (-1085 |#2|))) (-15 -1893 ((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|) (-564 |#2|) |#2| (-385 (-1085 |#2|)))) (-15 -3360 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-564 |#2|) (-564 |#2|) |#2| |#2| (-1085 |#2|))) (-15 -3360 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-564 |#2|) (-564 |#2|) |#2| (-564 |#2|) |#2| (-385 (-1085 |#2|)))) (-15 -2024 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-564 |#2|) (-564 |#2|) (-591 |#2|) |#2| (-1085 |#2|))) (-15 -2024 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-564 |#2|) (-564 |#2|) (-591 |#2|) (-564 |#2|) |#2| (-385 (-1085 |#2|)))) (-15 -2176 ((-3 |#2| "failed") |#2| |#2| (-564 |#2|) (-564 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1089)) |#2| (-1085 |#2|))) (-15 -2176 ((-3 |#2| "failed") |#2| |#2| (-564 |#2|) (-564 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1089)) (-564 |#2|) |#2| (-385 (-1085 |#2|)))) (-15 -2514 ((-1085 (-385 (-1085 |#2|))) |#2| (-564 |#2|) (-564 |#2|) (-1085 |#2|))) (-15 -1434 (|#2| (-1085 (-385 (-1085 |#2|))) (-564 |#2|) |#2|)) (-15 -3610 ((-1085 (-385 (-1085 |#2|))) (-1085 |#2|) (-564 |#2|))) (IF (|has| |#3| (-601 |#2|)) (PROGN (-15 -3420 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3612 (-591 |#2|))) |#3| |#2| (-564 |#2|) (-564 |#2|) |#2| (-1085 |#2|))) (-15 -3420 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3612 (-591 |#2|))) |#3| |#2| (-564 |#2|) (-564 |#2|) (-564 |#2|) |#2| (-385 (-1085 |#2|))))) |%noBranch|)) -((-3932 (((-525) (-525) (-712)) 66)) (-1902 (((-525) (-525)) 65)) (-3973 (((-525) (-525)) 64)) (-3011 (((-525) (-525)) 69)) (-3571 (((-525) (-525) (-525)) 49)) (-2186 (((-525) (-525) (-525)) 46)) (-2354 (((-385 (-525)) (-525)) 20)) (-3223 (((-525) (-525)) 21)) (-3403 (((-525) (-525)) 58)) (-1458 (((-525) (-525)) 32)) (-3438 (((-591 (-525)) (-525)) 63)) (-2032 (((-525) (-525) (-525) (-525) (-525)) 44)) (-2117 (((-385 (-525)) (-525)) 41))) -(((-522) (-10 -7 (-15 -2117 ((-385 (-525)) (-525))) (-15 -2032 ((-525) (-525) (-525) (-525) (-525))) (-15 -3438 ((-591 (-525)) (-525))) (-15 -1458 ((-525) (-525))) (-15 -3403 ((-525) (-525))) (-15 -3223 ((-525) (-525))) (-15 -2354 ((-385 (-525)) (-525))) (-15 -2186 ((-525) (-525) (-525))) (-15 -3571 ((-525) (-525) (-525))) (-15 -3011 ((-525) (-525))) (-15 -3973 ((-525) (-525))) (-15 -1902 ((-525) (-525))) (-15 -3932 ((-525) (-525) (-712))))) (T -522)) -((-3932 (*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-712)) (-5 *1 (-522)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3571 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2186 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2354 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3403 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3438 (*1 *2 *3) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-2032 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2117 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525))))) -(-10 -7 (-15 -2117 ((-385 (-525)) (-525))) (-15 -2032 ((-525) (-525) (-525) (-525) (-525))) (-15 -3438 ((-591 (-525)) (-525))) (-15 -1458 ((-525) (-525))) (-15 -3403 ((-525) (-525))) (-15 -3223 ((-525) (-525))) (-15 -2354 ((-385 (-525)) (-525))) (-15 -2186 ((-525) (-525) (-525))) (-15 -3571 ((-525) (-525) (-525))) (-15 -3011 ((-525) (-525))) (-15 -3973 ((-525) (-525))) (-15 -1902 ((-525) (-525))) (-15 -3932 ((-525) (-525) (-712)))) -((-3633 (((-2 (|:| |answer| |#4|) (|:| -2108 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3633 ((-2 (|:| |answer| |#4|) (|:| -2108 |#4|)) |#4| (-1 |#2| |#2|)))) (-341) (-1147 |#1|) (-1147 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -523)) -((-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) (-4 *7 (-1147 (-385 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2108 *3))) (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7))))) -(-10 -7 (-15 -3633 ((-2 (|:| |answer| |#4|) (|:| -2108 |#4|)) |#4| (-1 |#2| |#2|)))) -((-3633 (((-2 (|:| |answer| (-385 |#2|)) (|:| -2108 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 18))) -(((-524 |#1| |#2|) (-10 -7 (-15 -3633 ((-2 (|:| |answer| (-385 |#2|)) (|:| -2108 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1147 |#1|)) (T -524)) -((-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| (-385 *6)) (|:| -2108 (-385 *6)) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6))))) -(-10 -7 (-15 -3633 ((-2 (|:| |answer| (-385 |#2|)) (|:| -2108 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 25)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 87)) (-3641 (($ $) 88)) (-3077 (((-108) $) NIL)) (-3517 (($ $ $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-3329 (($ $ $ $) 42)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL)) (-3423 (($ $ $) 81)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL)) (-3341 (((-525) $) NIL)) (-3265 (($ $ $) 80)) (-3925 (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 61) (((-631 (-525)) (-631 $)) 57)) (-1522 (((-3 $ "failed") $) 84)) (-2350 (((-3 (-385 (-525)) "failed") $) NIL)) (-2157 (((-108) $) NIL)) (-3184 (((-385 (-525)) $) NIL)) (-1325 (($) 63) (($ $) 64)) (-3239 (($ $ $) 79)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-1493 (($ $ $ $) NIL)) (-2283 (($ $ $) 54)) (-3489 (((-108) $) NIL)) (-4142 (($ $ $) NIL)) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL)) (-3865 (((-108) $) 26)) (-2116 (((-108) $) 74)) (-2115 (((-3 $ "failed") $) NIL)) (-2256 (((-108) $) 34)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3480 (($ $ $ $) 43)) (-1923 (($ $ $) 76)) (-3475 (($ $ $) 75)) (-1576 (($ $) NIL)) (-2445 (($ $) 40)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) 53)) (-3222 (($ $ $) NIL)) (-3492 (($) NIL T CONST)) (-4025 (($ $) 31)) (-2937 (((-1036) $) NIL) (($ $) 33)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 118)) (-2124 (($ $ $) 85) (($ (-591 $)) NIL)) (-2106 (($ $) NIL)) (-2542 (((-396 $) $) 104)) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL)) (-3210 (((-3 $ "failed") $ $) 83)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2882 (((-108) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 78)) (-2209 (($ $ (-712)) NIL) (($ $) NIL)) (-1853 (($ $) 32)) (-2873 (($ $) 30)) (-1300 (((-525) $) 39) (((-501) $) 51) (((-825 (-525)) $) NIL) (((-357) $) 46) (((-205) $) 48) (((-1072) $) 52)) (-2686 (((-796) $) 37) (($ (-525)) 38) (($ $) NIL) (($ (-525)) 38)) (-3425 (((-712)) NIL)) (-3760 (((-108) $ $) NIL)) (-3808 (($ $ $) NIL)) (-3523 (($) 29)) (-1724 (((-108) $ $) NIL)) (-1825 (($ $ $ $) 41)) (-1460 (($ $) 62)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 27 T CONST)) (-1839 (($) 28 T CONST)) (-3042 (((-1072) $) 20) (((-1072) $ (-108)) 22) (((-1176) (-763) $) 23) (((-1176) (-763) $ (-108)) 24)) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 65)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 66)) (-4047 (($ $) 67) (($ $ $) 69)) (-4036 (($ $ $) 68)) (** (($ $ (-854)) NIL) (($ $ (-712)) 73)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 71) (($ $ $) 70))) -(((-525) (-13 (-510) (-566 (-1072)) (-769) (-10 -8 (-15 -1325 ($ $)) (-6 -4237) (-6 -4242) (-6 -4238) (-6 -4232)))) (T -525)) -((-1325 (*1 *1 *1) (-5 *1 (-525)))) -(-13 (-510) (-566 (-1072)) (-769) (-10 -8 (-15 -1325 ($ $)) (-6 -4237) (-6 -4242) (-6 -4238) (-6 -4232))) -((-2282 (((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964))) (-710) (-987)) 108) (((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964))) (-710)) 110)) (-2452 (((-3 (-964) "failed") (-294 (-357)) (-1011 (-781 (-357))) (-1089)) 172) (((-3 (-964) "failed") (-294 (-357)) (-1011 (-781 (-357))) (-1072)) 171) (((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))) (-357) (-357) (-987)) 176) (((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))) (-357) (-357)) 177) (((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))) (-357)) 178) (((-964) (-294 (-357)) (-591 (-1013 (-781 (-357))))) 179) (((-964) (-294 (-357)) (-1013 (-781 (-357)))) 167) (((-964) (-294 (-357)) (-1013 (-781 (-357))) (-357)) 166) (((-964) (-294 (-357)) (-1013 (-781 (-357))) (-357) (-357)) 162) (((-964) (-710)) 155) (((-964) (-294 (-357)) (-1013 (-781 (-357))) (-357) (-357) (-987)) 161))) -(((-526) (-10 -7 (-15 -2452 ((-964) (-294 (-357)) (-1013 (-781 (-357))) (-357) (-357) (-987))) (-15 -2452 ((-964) (-710))) (-15 -2452 ((-964) (-294 (-357)) (-1013 (-781 (-357))) (-357) (-357))) (-15 -2452 ((-964) (-294 (-357)) (-1013 (-781 (-357))) (-357))) (-15 -2452 ((-964) (-294 (-357)) (-1013 (-781 (-357))))) (-15 -2452 ((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))))) (-15 -2452 ((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))) (-357))) (-15 -2452 ((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))) (-357) (-357))) (-15 -2452 ((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))) (-357) (-357) (-987))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964))) (-710))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964))) (-710) (-987))) (-15 -2452 ((-3 (-964) "failed") (-294 (-357)) (-1011 (-781 (-357))) (-1072))) (-15 -2452 ((-3 (-964) "failed") (-294 (-357)) (-1011 (-781 (-357))) (-1089))))) (T -526)) -((-2452 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1011 (-781 (-357)))) (-5 *5 (-1089)) (-5 *2 (-964)) (-5 *1 (-526)))) (-2452 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1011 (-781 (-357)))) (-5 *5 (-1072)) (-5 *2 (-964)) (-5 *1 (-526)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-710)) (-5 *4 (-987)) (-5 *2 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964)))) (-5 *1 (-526)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964)))) (-5 *1 (-526)))) (-2452 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-1013 (-781 (-357))))) (-5 *5 (-357)) (-5 *6 (-987)) (-5 *2 (-964)) (-5 *1 (-526)))) (-2452 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-1013 (-781 (-357))))) (-5 *5 (-357)) (-5 *2 (-964)) (-5 *1 (-526)))) (-2452 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-1013 (-781 (-357))))) (-5 *5 (-357)) (-5 *2 (-964)) (-5 *1 (-526)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-1013 (-781 (-357))))) (-5 *2 (-964)) (-5 *1 (-526)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-781 (-357)))) (-5 *2 (-964)) (-5 *1 (-526)))) (-2452 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-781 (-357)))) (-5 *5 (-357)) (-5 *2 (-964)) (-5 *1 (-526)))) (-2452 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-781 (-357)))) (-5 *5 (-357)) (-5 *2 (-964)) (-5 *1 (-526)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-964)) (-5 *1 (-526)))) (-2452 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-781 (-357)))) (-5 *5 (-357)) (-5 *6 (-987)) (-5 *2 (-964)) (-5 *1 (-526))))) -(-10 -7 (-15 -2452 ((-964) (-294 (-357)) (-1013 (-781 (-357))) (-357) (-357) (-987))) (-15 -2452 ((-964) (-710))) (-15 -2452 ((-964) (-294 (-357)) (-1013 (-781 (-357))) (-357) (-357))) (-15 -2452 ((-964) (-294 (-357)) (-1013 (-781 (-357))) (-357))) (-15 -2452 ((-964) (-294 (-357)) (-1013 (-781 (-357))))) (-15 -2452 ((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))))) (-15 -2452 ((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))) (-357))) (-15 -2452 ((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))) (-357) (-357))) (-15 -2452 ((-964) (-294 (-357)) (-591 (-1013 (-781 (-357)))) (-357) (-357) (-987))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964))) (-710))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964))) (-710) (-987))) (-15 -2452 ((-3 (-964) "failed") (-294 (-357)) (-1011 (-781 (-357))) (-1072))) (-15 -2452 ((-3 (-964) "failed") (-294 (-357)) (-1011 (-781 (-357))) (-1089)))) -((-1834 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-564 |#2|) (-564 |#2|) (-591 |#2|)) 183)) (-3824 (((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|)) 98)) (-3794 (((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-564 |#2|) (-564 |#2|) |#2|) 179)) (-3688 (((-3 |#2| "failed") |#2| |#2| |#2| (-564 |#2|) (-564 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1089))) 188)) (-1857 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3612 (-591 |#2|))) |#3| |#2| (-564 |#2|) (-564 |#2|) (-1089)) 196 (|has| |#3| (-601 |#2|))))) -(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -3824 ((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|))) (-15 -3794 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-564 |#2|) (-564 |#2|) |#2|)) (-15 -1834 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-564 |#2|) (-564 |#2|) (-591 |#2|))) (-15 -3688 ((-3 |#2| "failed") |#2| |#2| |#2| (-564 |#2|) (-564 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1089)))) (IF (|has| |#3| (-601 |#2|)) (-15 -1857 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3612 (-591 |#2|))) |#3| |#2| (-564 |#2|) (-564 |#2|) (-1089))) |%noBranch|)) (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525))) (-13 (-408 |#1|) (-27) (-1111)) (-1018)) (T -527)) -((-1857 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-564 *4)) (-5 *6 (-1089)) (-4 *4 (-13 (-408 *7) (-27) (-1111))) (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1018)))) (-3688 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-564 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089))) (-4 *2 (-13 (-408 *5) (-27) (-1111))) (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1018)))) (-1834 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-591 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1111))) (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1018)))) (-3794 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-564 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1111))) (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1018)))) (-3824 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-564 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1111))) (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1018))))) -(-10 -7 (-15 -3824 ((-542 |#2|) |#2| (-564 |#2|) (-564 |#2|))) (-15 -3794 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-564 |#2|) (-564 |#2|) |#2|)) (-15 -1834 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-564 |#2|) (-564 |#2|) (-591 |#2|))) (-15 -3688 ((-3 |#2| "failed") |#2| |#2| |#2| (-564 |#2|) (-564 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1089)))) (IF (|has| |#3| (-601 |#2|)) (-15 -1857 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3612 (-591 |#2|))) |#3| |#2| (-564 |#2|) (-564 |#2|) (-1089))) |%noBranch|)) -((-4016 (((-2 (|:| -2760 |#2|) (|:| |nconst| |#2|)) |#2| (-1089)) 64)) (-2223 (((-3 |#2| "failed") |#2| (-1089) (-781 |#2|) (-781 |#2|)) 163 (-12 (|has| |#2| (-1053)) (|has| |#1| (-566 (-825 (-525)))) (|has| |#1| (-819 (-525))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)) 138 (-12 (|has| |#2| (-577)) (|has| |#1| (-566 (-825 (-525)))) (|has| |#1| (-819 (-525)))))) (-2363 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)) 147 (-12 (|has| |#2| (-577)) (|has| |#1| (-566 (-825 (-525)))) (|has| |#1| (-819 (-525))))))) -(((-528 |#1| |#2|) (-10 -7 (-15 -4016 ((-2 (|:| -2760 |#2|) (|:| |nconst| |#2|)) |#2| (-1089))) (IF (|has| |#1| (-566 (-825 (-525)))) (IF (|has| |#1| (-819 (-525))) (PROGN (IF (|has| |#2| (-577)) (PROGN (-15 -2363 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089))) (-15 -2223 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)))) |%noBranch|) (IF (|has| |#2| (-1053)) (-15 -2223 ((-3 |#2| "failed") |#2| (-1089) (-781 |#2|) (-781 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-788) (-966 (-525)) (-429) (-587 (-525))) (-13 (-27) (-1111) (-408 |#1|))) (T -528)) -((-2223 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-781 *2)) (-4 *2 (-1053)) (-4 *2 (-13 (-27) (-1111) (-408 *5))) (-4 *5 (-566 (-825 (-525)))) (-4 *5 (-819 (-525))) (-4 *5 (-13 (-788) (-966 (-525)) (-429) (-587 (-525)))) (-5 *1 (-528 *5 *2)))) (-2223 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-566 (-825 (-525)))) (-4 *5 (-819 (-525))) (-4 *5 (-13 (-788) (-966 (-525)) (-429) (-587 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-577)) (-4 *3 (-13 (-27) (-1111) (-408 *5))))) (-2363 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-566 (-825 (-525)))) (-4 *5 (-819 (-525))) (-4 *5 (-13 (-788) (-966 (-525)) (-429) (-587 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-577)) (-4 *3 (-13 (-27) (-1111) (-408 *5))))) (-4016 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-788) (-966 (-525)) (-429) (-587 (-525)))) (-5 *2 (-2 (|:| -2760 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5)))))) -(-10 -7 (-15 -4016 ((-2 (|:| -2760 |#2|) (|:| |nconst| |#2|)) |#2| (-1089))) (IF (|has| |#1| (-566 (-825 (-525)))) (IF (|has| |#1| (-819 (-525))) (PROGN (IF (|has| |#2| (-577)) (PROGN (-15 -2363 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089))) (-15 -2223 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)))) |%noBranch|) (IF (|has| |#2| (-1053)) (-15 -2223 ((-3 |#2| "failed") |#2| (-1089) (-781 |#2|) (-781 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1374 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-591 (-385 |#2|))) 41)) (-2452 (((-542 (-385 |#2|)) (-385 |#2|)) 28)) (-3616 (((-3 (-385 |#2|) "failed") (-385 |#2|)) 17)) (-1202 (((-3 (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|)) 48))) -(((-529 |#1| |#2|) (-10 -7 (-15 -2452 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -3616 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -1202 ((-3 (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -1374 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-591 (-385 |#2|))))) (-13 (-341) (-138) (-966 (-525))) (-1147 |#1|)) (T -529)) -((-1374 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-591 (-385 *6))) (-5 *3 (-385 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-341) (-138) (-966 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-529 *5 *6)))) (-1202 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-966 (-525)))) (-4 *5 (-1147 *4)) (-5 *2 (-2 (|:| -2428 (-385 *5)) (|:| |coeff| (-385 *5)))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))) (-3616 (*1 *2 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1147 *3)) (-4 *3 (-13 (-341) (-138) (-966 (-525)))) (-5 *1 (-529 *3 *4)))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-966 (-525)))) (-4 *5 (-1147 *4)) (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5))))) -(-10 -7 (-15 -2452 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -3616 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -1202 ((-3 (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -1374 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-591 (-385 |#2|))))) -((-1304 (((-3 (-525) "failed") |#1|) 14)) (-2809 (((-108) |#1|) 13)) (-2158 (((-525) |#1|) 9))) -(((-530 |#1|) (-10 -7 (-15 -2158 ((-525) |#1|)) (-15 -2809 ((-108) |#1|)) (-15 -1304 ((-3 (-525) "failed") |#1|))) (-966 (-525))) (T -530)) -((-1304 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-966 *2)))) (-2809 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-966 (-525))))) (-2158 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-966 *2))))) -(-10 -7 (-15 -2158 ((-525) |#1|)) (-15 -2809 ((-108) |#1|)) (-15 -1304 ((-3 (-525) "failed") |#1|))) -((-3988 (((-3 (-2 (|:| |mainpart| (-385 (-885 |#1|))) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 (-885 |#1|))) (|:| |logand| (-385 (-885 |#1|))))))) "failed") (-385 (-885 |#1|)) (-1089) (-591 (-385 (-885 |#1|)))) 48)) (-2244 (((-542 (-385 (-885 |#1|))) (-385 (-885 |#1|)) (-1089)) 28)) (-4099 (((-3 (-385 (-885 |#1|)) "failed") (-385 (-885 |#1|)) (-1089)) 23)) (-1777 (((-3 (-2 (|:| -2428 (-385 (-885 |#1|))) (|:| |coeff| (-385 (-885 |#1|)))) "failed") (-385 (-885 |#1|)) (-1089) (-385 (-885 |#1|))) 35))) -(((-531 |#1|) (-10 -7 (-15 -2244 ((-542 (-385 (-885 |#1|))) (-385 (-885 |#1|)) (-1089))) (-15 -4099 ((-3 (-385 (-885 |#1|)) "failed") (-385 (-885 |#1|)) (-1089))) (-15 -3988 ((-3 (-2 (|:| |mainpart| (-385 (-885 |#1|))) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 (-885 |#1|))) (|:| |logand| (-385 (-885 |#1|))))))) "failed") (-385 (-885 |#1|)) (-1089) (-591 (-385 (-885 |#1|))))) (-15 -1777 ((-3 (-2 (|:| -2428 (-385 (-885 |#1|))) (|:| |coeff| (-385 (-885 |#1|)))) "failed") (-385 (-885 |#1|)) (-1089) (-385 (-885 |#1|))))) (-13 (-517) (-966 (-525)) (-138))) (T -531)) -((-1777 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-517) (-966 (-525)) (-138))) (-5 *2 (-2 (|:| -2428 (-385 (-885 *5))) (|:| |coeff| (-385 (-885 *5))))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-885 *5))))) (-3988 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-591 (-385 (-885 *6)))) (-5 *3 (-385 (-885 *6))) (-4 *6 (-13 (-517) (-966 (-525)) (-138))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-531 *6)))) (-4099 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-385 (-885 *4))) (-5 *3 (-1089)) (-4 *4 (-13 (-517) (-966 (-525)) (-138))) (-5 *1 (-531 *4)))) (-2244 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-517) (-966 (-525)) (-138))) (-5 *2 (-542 (-385 (-885 *5)))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-885 *5)))))) -(-10 -7 (-15 -2244 ((-542 (-385 (-885 |#1|))) (-385 (-885 |#1|)) (-1089))) (-15 -4099 ((-3 (-385 (-885 |#1|)) "failed") (-385 (-885 |#1|)) (-1089))) (-15 -3988 ((-3 (-2 (|:| |mainpart| (-385 (-885 |#1|))) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 (-885 |#1|))) (|:| |logand| (-385 (-885 |#1|))))))) "failed") (-385 (-885 |#1|)) (-1089) (-591 (-385 (-885 |#1|))))) (-15 -1777 ((-3 (-2 (|:| -2428 (-385 (-885 |#1|))) (|:| |coeff| (-385 (-885 |#1|)))) "failed") (-385 (-885 |#1|)) (-1089) (-385 (-885 |#1|))))) -((-2673 (((-108) $ $) 59)) (-1306 (((-108) $) 36)) (-1228 ((|#1| $) 30)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) 63)) (-4087 (($ $) 123)) (-2381 (($ $) 103)) (-3343 ((|#1| $) 28)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2551 (($ $) NIL)) (-4058 (($ $) 125)) (-2360 (($ $) 99)) (-4109 (($ $) 127)) (-2400 (($ $) 107)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) 78)) (-3341 (((-525) $) 80)) (-1522 (((-3 $ "failed") $) 62)) (-3651 (($ |#1| |#1|) 26)) (-3489 (((-108) $) 33)) (-1417 (($) 89)) (-3865 (((-108) $) 43)) (-3126 (($ $ (-525)) NIL)) (-2256 (((-108) $) 34)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2356 (($ $) 91)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-3675 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-385 (-525))) 77)) (-2329 ((|#1| $) 27)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) 65) (($ (-591 $)) NIL)) (-3210 (((-3 $ "failed") $ $) 64)) (-2288 (($ $) 93)) (-4122 (($ $) 131)) (-2410 (($ $) 105)) (-4098 (($ $) 133)) (-2391 (($ $) 109)) (-4073 (($ $) 129)) (-2370 (($ $) 101)) (-3279 (((-108) $ |#1|) 31)) (-2686 (((-796) $) 85) (($ (-525)) 67) (($ $) NIL) (($ (-525)) 67)) (-3425 (((-712)) 87)) (-4163 (($ $) 145)) (-2457 (($ $) 115)) (-1724 (((-108) $ $) NIL)) (-4137 (($ $) 143)) (-2432 (($ $) 111)) (-4193 (($ $) 141)) (-2477 (($ $) 121)) (-1234 (($ $) 139)) (-2495 (($ $) 119)) (-4179 (($ $) 137)) (-2469 (($ $) 117)) (-4149 (($ $) 135)) (-2444 (($ $) 113)) (-1401 (($ $ (-854)) 55) (($ $ (-712)) NIL)) (-1830 (($) 21 T CONST)) (-1839 (($) 10 T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 37)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 35)) (-4047 (($ $) 41) (($ $ $) 42)) (-4036 (($ $ $) 40)) (** (($ $ (-854)) 54) (($ $ (-712)) NIL) (($ $ $) 95) (($ $ (-385 (-525))) 147)) (* (($ (-854) $) 51) (($ (-712) $) NIL) (($ (-525) $) 50) (($ $ $) 48))) -(((-532 |#1|) (-515 |#1|) (-13 (-382) (-1111))) (T -532)) +((-2675 (*1 *1 *1 *1) (|partial| -4 *1 (-517))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3603 *1) (|:| -4241 *1) (|:| |associate| *1))) (-4 *1 (-517)))) (-2609 (*1 *1 *1) (-4 *1 (-517))) (-3787 (*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))) (-1220 (*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108))))) +(-13 (-160) (-37 $) (-269) (-10 -8 (-15 -2675 ((-3 $ "failed") $ $)) (-15 -1893 ((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $)) (-15 -2609 ($ $)) (-15 -3787 ((-108) $ $)) (-15 -1220 ((-108) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2397 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1090) (-592 |#2|)) 37)) (-3387 (((-542 |#2|) |#2| (-1090)) 62)) (-3639 (((-3 |#2| "failed") |#2| (-1090)) 154)) (-4165 (((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) (-565 |#2|) (-592 (-565 |#2|))) 157)) (-3986 (((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) |#2|) 40))) +(((-518 |#1| |#2|) (-10 -7 (-15 -3986 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) |#2|)) (-15 -2397 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1090) (-592 |#2|))) (-15 -3639 ((-3 |#2| "failed") |#2| (-1090))) (-15 -3387 ((-542 |#2|) |#2| (-1090))) (-15 -4165 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) (-565 |#2|) (-592 (-565 |#2|))))) (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -518)) +((-4165 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1090)) (-5 *6 (-592 (-565 *3))) (-5 *5 (-565 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) (-5 *1 (-518 *7 *3)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-3639 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-2397 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *6 *3)))) (-3986 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5)))))) +(-10 -7 (-15 -3986 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) |#2|)) (-15 -2397 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1090) (-592 |#2|))) (-15 -3639 ((-3 |#2| "failed") |#2| (-1090))) (-15 -3387 ((-542 |#2|) |#2| (-1090))) (-15 -4165 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) (-565 |#2|) (-592 (-565 |#2|))))) +((-1259 (((-396 |#1|) |#1|) 18)) (-2961 (((-396 |#1|) |#1|) 33)) (-1408 (((-3 |#1| "failed") |#1|) 44)) (-3137 (((-396 |#1|) |#1|) 51))) +(((-519 |#1|) (-10 -7 (-15 -2961 ((-396 |#1|) |#1|)) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -3137 ((-396 |#1|) |#1|)) (-15 -1408 ((-3 |#1| "failed") |#1|))) (-510)) (T -519)) +((-1408 (*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))) (-3137 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-1259 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-2961 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))) +(-10 -7 (-15 -2961 ((-396 |#1|) |#1|)) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -3137 ((-396 |#1|) |#1|)) (-15 -1408 ((-3 |#1| "failed") |#1|))) +((-3642 (($) 9)) (-3592 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 35)) (-2183 (((-592 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 32)) (-4157 (($ (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1312 (($ (-592 (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3978 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-4100 (((-592 (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-4039 (((-1177)) 12))) +(((-520) (-10 -8 (-15 -3642 ($)) (-15 -4039 ((-1177))) (-15 -2183 ((-592 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1312 ($ (-592 (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4157 ($ (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -3592 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4100 ((-592 (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3978 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -520)) +((-3978 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-3592 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-520)))) (-1312 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-520)))) (-4039 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-520)))) (-3642 (*1 *1) (-5 *1 (-520)))) +(-10 -8 (-15 -3642 ($)) (-15 -4039 ((-1177))) (-15 -2183 ((-592 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1312 ($ (-592 (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4157 ($ (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -3592 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4100 ((-592 (-2 (|:| -3160 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3978 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) +((-1315 (((-1086 (-385 (-1086 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1086 |#2|)) 32)) (-3279 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1086 |#2|)) 110)) (-1692 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))) 80) (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|)) 52)) (-2184 (((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1086 |#2|))) 87) (((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1086 |#2|)) 109)) (-2130 (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) (-565 |#2|) |#2| (-385 (-1086 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) |#2| (-1086 |#2|)) 111)) (-4223 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2734 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))) 128 (|has| |#3| (-602 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2734 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|)) 127 (|has| |#3| (-602 |#2|)))) (-3110 ((|#2| (-1086 (-385 (-1086 |#2|))) (-565 |#2|) |#2|) 50)) (-3325 (((-1086 (-385 (-1086 |#2|))) (-1086 |#2|) (-565 |#2|)) 31))) +(((-521 |#1| |#2| |#3|) (-10 -7 (-15 -1692 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|))) (-15 -1692 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -2184 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1086 |#2|))) (-15 -2184 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -3279 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1086 |#2|))) (-15 -3279 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -2130 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) |#2| (-1086 |#2|))) (-15 -2130 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -1315 ((-1086 (-385 (-1086 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1086 |#2|))) (-15 -3110 (|#2| (-1086 (-385 (-1086 |#2|))) (-565 |#2|) |#2|)) (-15 -3325 ((-1086 (-385 (-1086 |#2|))) (-1086 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -4223 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2734 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|))) (-15 -4223 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2734 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))))) |%noBranch|)) (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1112)) (-1019)) (T -521)) +((-4223 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1086 *4))) (-4 *4 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019)))) (-4223 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1086 *4)) (-4 *4 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1086 (-385 (-1086 *6)))) (-5 *1 (-521 *5 *6 *7)) (-5 *3 (-1086 *6)) (-4 *7 (-1019)))) (-3110 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1086 (-385 (-1086 *2)))) (-5 *4 (-565 *2)) (-4 *2 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1019)))) (-1315 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1086 (-385 (-1086 *3)))) (-5 *1 (-521 *6 *3 *7)) (-5 *5 (-1086 *3)) (-4 *7 (-1019)))) (-2130 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) (-5 *5 (-385 (-1086 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1019)))) (-2130 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) (-5 *5 (-1086 *2)) (-4 *2 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1019)))) (-3279 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-385 (-1086 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1019)))) (-3279 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1086 *3)) (-4 *3 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1019)))) (-2184 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1086 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))) (-2184 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))) (-1692 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1086 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))) (-1692 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019))))) +(-10 -7 (-15 -1692 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|))) (-15 -1692 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -2184 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1086 |#2|))) (-15 -2184 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -3279 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1086 |#2|))) (-15 -3279 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -2130 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) |#2| (-1086 |#2|))) (-15 -2130 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -1315 ((-1086 (-385 (-1086 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1086 |#2|))) (-15 -3110 (|#2| (-1086 (-385 (-1086 |#2|))) (-565 |#2|) |#2|)) (-15 -3325 ((-1086 (-385 (-1086 |#2|))) (-1086 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -4223 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2734 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|))) (-15 -4223 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2734 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))))) |%noBranch|)) +((-3595 (((-525) (-525) (-713)) 66)) (-2461 (((-525) (-525)) 65)) (-2444 (((-525) (-525)) 64)) (-3062 (((-525) (-525)) 69)) (-3009 (((-525) (-525) (-525)) 49)) (-1214 (((-525) (-525) (-525)) 46)) (-2405 (((-385 (-525)) (-525)) 20)) (-2251 (((-525) (-525)) 21)) (-3606 (((-525) (-525)) 58)) (-2774 (((-525) (-525)) 32)) (-1751 (((-592 (-525)) (-525)) 63)) (-2020 (((-525) (-525) (-525) (-525) (-525)) 44)) (-2127 (((-385 (-525)) (-525)) 41))) +(((-522) (-10 -7 (-15 -2127 ((-385 (-525)) (-525))) (-15 -2020 ((-525) (-525) (-525) (-525) (-525))) (-15 -1751 ((-592 (-525)) (-525))) (-15 -2774 ((-525) (-525))) (-15 -3606 ((-525) (-525))) (-15 -2251 ((-525) (-525))) (-15 -2405 ((-385 (-525)) (-525))) (-15 -1214 ((-525) (-525) (-525))) (-15 -3009 ((-525) (-525) (-525))) (-15 -3062 ((-525) (-525))) (-15 -2444 ((-525) (-525))) (-15 -2461 ((-525) (-525))) (-15 -3595 ((-525) (-525) (-713))))) (T -522)) +((-3595 (*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3009 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-1214 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2405 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3606 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-1751 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-2020 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2127 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525))))) +(-10 -7 (-15 -2127 ((-385 (-525)) (-525))) (-15 -2020 ((-525) (-525) (-525) (-525) (-525))) (-15 -1751 ((-592 (-525)) (-525))) (-15 -2774 ((-525) (-525))) (-15 -3606 ((-525) (-525))) (-15 -2251 ((-525) (-525))) (-15 -2405 ((-385 (-525)) (-525))) (-15 -1214 ((-525) (-525) (-525))) (-15 -3009 ((-525) (-525) (-525))) (-15 -3062 ((-525) (-525))) (-15 -2444 ((-525) (-525))) (-15 -2461 ((-525) (-525))) (-15 -3595 ((-525) (-525) (-713)))) +((-4116 (((-2 (|:| |answer| |#4|) (|:| -2451 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4116 ((-2 (|:| |answer| |#4|) (|:| -2451 |#4|)) |#4| (-1 |#2| |#2|)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -523)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-4 *7 (-1148 (-385 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2451 *3))) (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7))))) +(-10 -7 (-15 -4116 ((-2 (|:| |answer| |#4|) (|:| -2451 |#4|)) |#4| (-1 |#2| |#2|)))) +((-4116 (((-2 (|:| |answer| (-385 |#2|)) (|:| -2451 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 18))) +(((-524 |#1| |#2|) (-10 -7 (-15 -4116 ((-2 (|:| |answer| (-385 |#2|)) (|:| -2451 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1148 |#1|)) (T -524)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| (-385 *6)) (|:| -2451 (-385 *6)) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6))))) +(-10 -7 (-15 -4116 ((-2 (|:| |answer| (-385 |#2|)) (|:| -2451 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 25)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 87)) (-2609 (($ $) 88)) (-1220 (((-108) $) NIL)) (-3775 (($ $ $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-4065 (($ $ $ $) 42)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL)) (-4162 (($ $ $) 81)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL)) (-2068 (((-525) $) NIL)) (-2720 (($ $ $) 80)) (-1307 (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 61) (((-632 (-525)) (-632 $)) 57)) (-1645 (((-3 $ "failed") $) 84)) (-2132 (((-3 (-385 (-525)) "failed") $) NIL)) (-3748 (((-108) $) NIL)) (-1675 (((-385 (-525)) $) NIL)) (-1527 (($) 63) (($ $) 64)) (-2699 (($ $ $) 79)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2491 (($ $ $ $) NIL)) (-1514 (($ $ $) 54)) (-2973 (((-108) $) NIL)) (-2635 (($ $ $) NIL)) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL)) (-2507 (((-108) $) 26)) (-2057 (((-108) $) 74)) (-1978 (((-3 $ "failed") $) NIL)) (-3721 (((-108) $) 34)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3520 (($ $ $ $) 43)) (-1260 (($ $ $) 76)) (-2154 (($ $ $) 75)) (-3309 (($ $) NIL)) (-2520 (($ $) 40)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) 53)) (-2169 (($ $ $) NIL)) (-2039 (($) NIL T CONST)) (-2640 (($ $) 31)) (-3027 (((-1037) $) NIL) (($ $) 33)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 118)) (-2262 (($ $ $) 85) (($ (-592 $)) NIL)) (-3444 (($ $) NIL)) (-2961 (((-396 $) $) 104)) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL)) (-2675 (((-3 $ "failed") $ $) 83)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3524 (((-108) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 78)) (-1576 (($ $ (-713)) NIL) (($ $) NIL)) (-1216 (($ $) 32)) (-1261 (($ $) 30)) (-2923 (((-525) $) 39) (((-501) $) 51) (((-826 (-525)) $) NIL) (((-357) $) 46) (((-205) $) 48) (((-1073) $) 52)) (-4044 (((-797) $) 37) (($ (-525)) 38) (($ $) NIL) (($ (-525)) 38)) (-2502 (((-713)) NIL)) (-2301 (((-108) $ $) NIL)) (-3738 (($ $ $) NIL)) (-3758 (($) 29)) (-3787 (((-108) $ $) NIL)) (-2009 (($ $ $ $) 41)) (-2053 (($ $) 62)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 27 T CONST)) (-1449 (($) 28 T CONST)) (-2453 (((-1073) $) 20) (((-1073) $ (-108)) 22) (((-1177) (-764) $) 23) (((-1177) (-764) $ (-108)) 24)) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 65)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 66)) (-4033 (($ $) 67) (($ $ $) 69)) (-4017 (($ $ $) 68)) (** (($ $ (-855)) NIL) (($ $ (-713)) 73)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 71) (($ $ $) 70))) +(((-525) (-13 (-510) (-567 (-1073)) (-770) (-10 -8 (-15 -1527 ($ $)) (-6 -4241) (-6 -4246) (-6 -4242) (-6 -4236)))) (T -525)) +((-1527 (*1 *1 *1) (-5 *1 (-525)))) +(-13 (-510) (-567 (-1073)) (-770) (-10 -8 (-15 -1527 ($ $)) (-6 -4241) (-6 -4246) (-6 -4242) (-6 -4236))) +((-1393 (((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711) (-988)) 108) (((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711)) 110)) (-2313 (((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1090)) 172) (((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1073)) 171) (((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357) (-988)) 176) (((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357)) 177) (((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357)) 178) (((-965) (-294 (-357)) (-592 (-1014 (-782 (-357))))) 179) (((-965) (-294 (-357)) (-1014 (-782 (-357)))) 167) (((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357)) 166) (((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357)) 162) (((-965) (-711)) 155) (((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357) (-988)) 161))) +(((-526) (-10 -7 (-15 -2313 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357) (-988))) (-15 -2313 ((-965) (-711))) (-15 -2313 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357))) (-15 -2313 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357))) (-15 -2313 ((-965) (-294 (-357)) (-1014 (-782 (-357))))) (-15 -2313 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))))) (-15 -2313 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357))) (-15 -2313 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357))) (-15 -2313 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357) (-988))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711) (-988))) (-15 -2313 ((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1073))) (-15 -2313 ((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1090))))) (T -526)) +((-2313 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1012 (-782 (-357)))) (-5 *5 (-1090)) (-5 *2 (-965)) (-5 *1 (-526)))) (-2313 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1012 (-782 (-357)))) (-5 *5 (-1073)) (-5 *2 (-965)) (-5 *1 (-526)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-711)) (-5 *4 (-988)) (-5 *2 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) (-5 *1 (-526)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) (-5 *1 (-526)))) (-2313 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) (-5 *5 (-357)) (-5 *6 (-988)) (-5 *2 (-965)) (-5 *1 (-526)))) (-2313 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) (-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) (-5 *2 (-965)) (-5 *1 (-526)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) (-5 *2 (-965)) (-5 *1 (-526)))) (-2313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) (-2313 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-965)) (-5 *1 (-526)))) (-2313 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) (-5 *5 (-357)) (-5 *6 (-988)) (-5 *2 (-965)) (-5 *1 (-526))))) +(-10 -7 (-15 -2313 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357) (-988))) (-15 -2313 ((-965) (-711))) (-15 -2313 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357))) (-15 -2313 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357))) (-15 -2313 ((-965) (-294 (-357)) (-1014 (-782 (-357))))) (-15 -2313 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))))) (-15 -2313 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357))) (-15 -2313 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357))) (-15 -2313 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357) (-988))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711) (-988))) (-15 -2313 ((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1073))) (-15 -2313 ((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1090)))) +((-1569 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|)) 183)) (-3152 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|)) 98)) (-1979 (((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|) 179)) (-1977 (((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090))) 188)) (-3679 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2734 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1090)) 196 (|has| |#3| (-602 |#2|))))) +(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -3152 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -1979 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -1569 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -1977 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)))) (IF (|has| |#3| (-602 |#2|)) (-15 -3679 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2734 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1090))) |%noBranch|)) (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1112)) (-1019)) (T -527)) +((-3679 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1090)) (-4 *4 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019)))) (-1977 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) (-4 *2 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1019)))) (-1569 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1019)))) (-1979 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1019)))) (-3152 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1019))))) +(-10 -7 (-15 -3152 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -1979 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -1569 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -1977 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)))) (IF (|has| |#3| (-602 |#2|)) (-15 -3679 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2734 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1090))) |%noBranch|)) +((-1332 (((-2 (|:| -1242 |#2|) (|:| |nconst| |#2|)) |#2| (-1090)) 64)) (-3145 (((-3 |#2| "failed") |#2| (-1090) (-782 |#2|) (-782 |#2|)) 163 (-12 (|has| |#2| (-1054)) (|has| |#1| (-567 (-826 (-525)))) (|has| |#1| (-820 (-525))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)) 138 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-826 (-525)))) (|has| |#1| (-820 (-525)))))) (-3684 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)) 147 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-826 (-525)))) (|has| |#1| (-820 (-525))))))) +(((-528 |#1| |#2|) (-10 -7 (-15 -1332 ((-2 (|:| -1242 |#2|) (|:| |nconst| |#2|)) |#2| (-1090))) (IF (|has| |#1| (-567 (-826 (-525)))) (IF (|has| |#1| (-820 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -3684 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090))) (-15 -3145 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) (IF (|has| |#2| (-1054)) (-15 -3145 ((-3 |#2| "failed") |#2| (-1090) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-789) (-967 (-525)) (-429) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -528)) +((-3145 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-782 *2)) (-4 *2 (-1054)) (-4 *2 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-567 (-826 (-525)))) (-4 *5 (-820 (-525))) (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) (-5 *1 (-528 *5 *2)))) (-3145 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-567 (-826 (-525)))) (-4 *5 (-820 (-525))) (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-3684 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-567 (-826 (-525)))) (-4 *5 (-820 (-525))) (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-1332 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| -1242 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5)))))) +(-10 -7 (-15 -1332 ((-2 (|:| -1242 |#2|) (|:| |nconst| |#2|)) |#2| (-1090))) (IF (|has| |#1| (-567 (-826 (-525)))) (IF (|has| |#1| (-820 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -3684 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090))) (-15 -3145 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) (IF (|has| |#2| (-1054)) (-15 -3145 ((-3 |#2| "failed") |#2| (-1090) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3091 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))) 41)) (-2313 (((-542 (-385 |#2|)) (-385 |#2|)) 28)) (-2096 (((-3 (-385 |#2|) "failed") (-385 |#2|)) 17)) (-2902 (((-3 (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|)) 48))) +(((-529 |#1| |#2|) (-10 -7 (-15 -2313 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -2096 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -2902 ((-3 (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -3091 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))))) (-13 (-341) (-138) (-967 (-525))) (-1148 |#1|)) (T -529)) +((-3091 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-592 (-385 *6))) (-5 *3 (-385 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-529 *5 *6)))) (-2902 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -3081 (-385 *5)) (|:| |coeff| (-385 *5)))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))) (-2096 (*1 *2 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138) (-967 (-525)))) (-5 *1 (-529 *3 *4)))) (-2313 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5))))) +(-10 -7 (-15 -2313 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -2096 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -2902 ((-3 (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -3091 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))))) +((-2760 (((-3 (-525) "failed") |#1|) 14)) (-2714 (((-108) |#1|) 13)) (-2876 (((-525) |#1|) 9))) +(((-530 |#1|) (-10 -7 (-15 -2876 ((-525) |#1|)) (-15 -2714 ((-108) |#1|)) (-15 -2760 ((-3 (-525) "failed") |#1|))) (-967 (-525))) (T -530)) +((-2760 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-967 *2)))) (-2714 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-967 (-525))))) (-2876 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-967 *2))))) +(-10 -7 (-15 -2876 ((-525) |#1|)) (-15 -2714 ((-108) |#1|)) (-15 -2760 ((-3 (-525) "failed") |#1|))) +((-1839 (((-3 (-2 (|:| |mainpart| (-385 (-886 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-886 |#1|))) (|:| |logand| (-385 (-886 |#1|))))))) "failed") (-385 (-886 |#1|)) (-1090) (-592 (-385 (-886 |#1|)))) 48)) (-3071 (((-542 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-1090)) 28)) (-3083 (((-3 (-385 (-886 |#1|)) "failed") (-385 (-886 |#1|)) (-1090)) 23)) (-3469 (((-3 (-2 (|:| -3081 (-385 (-886 |#1|))) (|:| |coeff| (-385 (-886 |#1|)))) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|))) 35))) +(((-531 |#1|) (-10 -7 (-15 -3071 ((-542 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -3083 ((-3 (-385 (-886 |#1|)) "failed") (-385 (-886 |#1|)) (-1090))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-385 (-886 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-886 |#1|))) (|:| |logand| (-385 (-886 |#1|))))))) "failed") (-385 (-886 |#1|)) (-1090) (-592 (-385 (-886 |#1|))))) (-15 -3469 ((-3 (-2 (|:| -3081 (-385 (-886 |#1|))) (|:| |coeff| (-385 (-886 |#1|)))) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|))))) (-13 (-517) (-967 (-525)) (-138))) (T -531)) +((-3469 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-967 (-525)) (-138))) (-5 *2 (-2 (|:| -3081 (-385 (-886 *5))) (|:| |coeff| (-385 (-886 *5))))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-886 *5))))) (-1839 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 (-385 (-886 *6)))) (-5 *3 (-385 (-886 *6))) (-4 *6 (-13 (-517) (-967 (-525)) (-138))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-531 *6)))) (-3083 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-967 (-525)) (-138))) (-5 *1 (-531 *4)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-967 (-525)) (-138))) (-5 *2 (-542 (-385 (-886 *5)))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-886 *5)))))) +(-10 -7 (-15 -3071 ((-542 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -3083 ((-3 (-385 (-886 |#1|)) "failed") (-385 (-886 |#1|)) (-1090))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-385 (-886 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-886 |#1|))) (|:| |logand| (-385 (-886 |#1|))))))) "failed") (-385 (-886 |#1|)) (-1090) (-592 (-385 (-886 |#1|))))) (-15 -3469 ((-3 (-2 (|:| -3081 (-385 (-886 |#1|))) (|:| |coeff| (-385 (-886 |#1|)))) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|))))) +((-4028 (((-108) $ $) 59)) (-2464 (((-108) $) 36)) (-1348 ((|#1| $) 30)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) 63)) (-3915 (($ $) 123)) (-3760 (($ $) 103)) (-3207 ((|#1| $) 28)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2975 (($ $) NIL)) (-3886 (($ $) 125)) (-3737 (($ $) 99)) (-3946 (($ $) 127)) (-3783 (($ $) 107)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) 78)) (-2068 (((-525) $) 80)) (-1645 (((-3 $ "failed") $) 62)) (-2445 (($ |#1| |#1|) 26)) (-2973 (((-108) $) 33)) (-1961 (($) 89)) (-2507 (((-108) $) 43)) (-2581 (($ $ (-525)) NIL)) (-3721 (((-108) $) 34)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2412 (($ $) 91)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3057 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-385 (-525))) 77)) (-4134 ((|#1| $) 27)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) 65) (($ (-592 $)) NIL)) (-2675 (((-3 $ "failed") $ $) 64)) (-2840 (($ $) 93)) (-3960 (($ $) 131)) (-3795 (($ $) 105)) (-3930 (($ $) 133)) (-3771 (($ $) 109)) (-3901 (($ $) 129)) (-3749 (($ $) 101)) (-1248 (((-108) $ |#1|) 31)) (-4044 (((-797) $) 85) (($ (-525)) 67) (($ $) NIL) (($ (-525)) 67)) (-2502 (((-713)) 87)) (-4004 (($ $) 145)) (-3836 (($ $) 115)) (-3787 (((-108) $ $) NIL)) (-3975 (($ $) 143)) (-3808 (($ $) 111)) (-4035 (($ $) 141)) (-3861 (($ $) 121)) (-2608 (($ $) 139)) (-3873 (($ $) 119)) (-4018 (($ $) 137)) (-3848 (($ $) 117)) (-3989 (($ $) 135)) (-3823 (($ $) 113)) (-1594 (($ $ (-855)) 55) (($ $ (-713)) NIL)) (-1436 (($) 21 T CONST)) (-1449 (($) 10 T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 37)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 35)) (-4033 (($ $) 41) (($ $ $) 42)) (-4017 (($ $ $) 40)) (** (($ $ (-855)) 54) (($ $ (-713)) NIL) (($ $ $) 95) (($ $ (-385 (-525))) 147)) (* (($ (-855) $) 51) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 48))) +(((-532 |#1|) (-515 |#1|) (-13 (-382) (-1112))) (T -532)) NIL (-515 |#1|) -((-3008 (((-3 (-591 (-1085 (-525))) "failed") (-591 (-1085 (-525))) (-1085 (-525))) 24))) -(((-533) (-10 -7 (-15 -3008 ((-3 (-591 (-1085 (-525))) "failed") (-591 (-1085 (-525))) (-1085 (-525)))))) (T -533)) -((-3008 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-591 (-1085 (-525)))) (-5 *3 (-1085 (-525))) (-5 *1 (-533))))) -(-10 -7 (-15 -3008 ((-3 (-591 (-1085 (-525))) "failed") (-591 (-1085 (-525))) (-1085 (-525))))) -((-1290 (((-591 (-564 |#2|)) (-591 (-564 |#2|)) (-1089)) 19)) (-2770 (((-591 (-564 |#2|)) (-591 |#2|) (-1089)) 23)) (-2141 (((-591 (-564 |#2|)) (-591 (-564 |#2|)) (-591 (-564 |#2|))) 11)) (-3314 ((|#2| |#2| (-1089)) 54 (|has| |#1| (-517)))) (-2212 ((|#2| |#2| (-1089)) 78 (-12 (|has| |#2| (-263)) (|has| |#1| (-429))))) (-1206 (((-564 |#2|) (-564 |#2|) (-591 (-564 |#2|)) (-1089)) 25)) (-3078 (((-564 |#2|) (-591 (-564 |#2|))) 24)) (-1693 (((-542 |#2|) |#2| (-1089) (-1 (-542 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089))) 103 (-12 (|has| |#2| (-263)) (|has| |#2| (-577)) (|has| |#2| (-966 (-1089))) (|has| |#1| (-566 (-825 (-525)))) (|has| |#1| (-429)) (|has| |#1| (-819 (-525))))))) -(((-534 |#1| |#2|) (-10 -7 (-15 -1290 ((-591 (-564 |#2|)) (-591 (-564 |#2|)) (-1089))) (-15 -3078 ((-564 |#2|) (-591 (-564 |#2|)))) (-15 -1206 ((-564 |#2|) (-564 |#2|) (-591 (-564 |#2|)) (-1089))) (-15 -2141 ((-591 (-564 |#2|)) (-591 (-564 |#2|)) (-591 (-564 |#2|)))) (-15 -2770 ((-591 (-564 |#2|)) (-591 |#2|) (-1089))) (IF (|has| |#1| (-517)) (-15 -3314 (|#2| |#2| (-1089))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -2212 (|#2| |#2| (-1089))) (IF (|has| |#1| (-566 (-825 (-525)))) (IF (|has| |#1| (-819 (-525))) (IF (|has| |#2| (-577)) (IF (|has| |#2| (-966 (-1089))) (-15 -1693 ((-542 |#2|) |#2| (-1089) (-1 (-542 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-788) (-408 |#1|)) (T -534)) -((-1693 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-542 *3) *3 (-1089))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1089))) (-4 *3 (-263)) (-4 *3 (-577)) (-4 *3 (-966 *4)) (-4 *3 (-408 *7)) (-5 *4 (-1089)) (-4 *7 (-566 (-825 (-525)))) (-4 *7 (-429)) (-4 *7 (-819 (-525))) (-4 *7 (-788)) (-5 *2 (-542 *3)) (-5 *1 (-534 *7 *3)))) (-2212 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-429)) (-4 *4 (-788)) (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))) (-3314 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-517)) (-4 *4 (-788)) (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6)) (-5 *4 (-1089)) (-4 *6 (-408 *5)) (-4 *5 (-788)) (-5 *2 (-591 (-564 *6))) (-5 *1 (-534 *5 *6)))) (-2141 (*1 *2 *2 *2) (-12 (-5 *2 (-591 (-564 *4))) (-4 *4 (-408 *3)) (-4 *3 (-788)) (-5 *1 (-534 *3 *4)))) (-1206 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-591 (-564 *6))) (-5 *4 (-1089)) (-5 *2 (-564 *6)) (-4 *6 (-408 *5)) (-4 *5 (-788)) (-5 *1 (-534 *5 *6)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-591 (-564 *5))) (-4 *4 (-788)) (-5 *2 (-564 *5)) (-5 *1 (-534 *4 *5)) (-4 *5 (-408 *4)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *2 (-591 (-564 *5))) (-5 *3 (-1089)) (-4 *5 (-408 *4)) (-4 *4 (-788)) (-5 *1 (-534 *4 *5))))) -(-10 -7 (-15 -1290 ((-591 (-564 |#2|)) (-591 (-564 |#2|)) (-1089))) (-15 -3078 ((-564 |#2|) (-591 (-564 |#2|)))) (-15 -1206 ((-564 |#2|) (-564 |#2|) (-591 (-564 |#2|)) (-1089))) (-15 -2141 ((-591 (-564 |#2|)) (-591 (-564 |#2|)) (-591 (-564 |#2|)))) (-15 -2770 ((-591 (-564 |#2|)) (-591 |#2|) (-1089))) (IF (|has| |#1| (-517)) (-15 -3314 (|#2| |#2| (-1089))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -2212 (|#2| |#2| (-1089))) (IF (|has| |#1| (-566 (-825 (-525)))) (IF (|has| |#1| (-819 (-525))) (IF (|has| |#2| (-577)) (IF (|has| |#2| (-966 (-1089))) (-15 -1693 ((-542 |#2|) |#2| (-1089) (-1 (-542 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3177 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-591 |#1|) "failed") (-525) |#1| |#1|)) 172)) (-3689 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-591 (-385 |#2|))) 148)) (-2932 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-591 (-385 |#2|))) 145)) (-3726 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2239 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3552 (((-3 (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|)) 175)) (-3964 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|)) 178)) (-3916 (((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 84)) (-1549 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2837 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-591 (-385 |#2|))) 152)) (-2510 (((-3 (-572 |#1| |#2|) "failed") (-572 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 137)) (-1546 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 162)) (-3246 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|)) 183))) -(((-535 |#1| |#2|) (-10 -7 (-15 -2239 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1546 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -3177 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-591 |#1|) "failed") (-525) |#1| |#1|))) (-15 -3964 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -3246 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -3689 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-591 (-385 |#2|)))) (-15 -2837 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-591 (-385 |#2|)))) (-15 -3552 ((-3 (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -2932 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-591 (-385 |#2|)))) (-15 -3726 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2510 ((-3 (-572 |#1| |#2|) "failed") (-572 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -3916 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1549 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-341) (-1147 |#1|)) (T -535)) -((-1549 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-535 *5 *3)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-2510 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-572 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3192 *4) (|:| |sol?| (-108))) (-525) *4)) (-4 *4 (-341)) (-4 *5 (-1147 *4)) (-5 *1 (-535 *4 *5)))) (-3726 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2428 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1147 *4)))) (-2932 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-591 (-385 *7))) (-4 *7 (-1147 *6)) (-5 *3 (-385 *7)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-535 *6 *7)))) (-3552 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2428 (-385 *6)) (|:| |coeff| (-385 *6)))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-2837 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3192 *7) (|:| |sol?| (-108))) (-525) *7)) (-5 *6 (-591 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1147 *7)) (-5 *3 (-385 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)))) (-3689 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2428 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-591 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1147 *7)) (-5 *3 (-385 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)))) (-3246 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3192 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1147 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -2428 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-3964 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2428 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1147 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -2428 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-3177 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-591 *6) "failed") (-525) *6 *6)) (-4 *6 (-341)) (-4 *7 (-1147 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-1546 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3192 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1147 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-2239 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2428 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1147 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) -(-10 -7 (-15 -2239 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1546 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -3177 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-591 |#1|) "failed") (-525) |#1| |#1|))) (-15 -3964 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -3246 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -3689 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-591 (-385 |#2|)))) (-15 -2837 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-591 (-385 |#2|)))) (-15 -3552 ((-3 (-2 (|:| -2428 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -2932 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-591 (-385 |#2|)))) (-15 -3726 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2510 ((-3 (-572 |#1| |#2|) "failed") (-572 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3192 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -3916 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1549 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-4158 (((-3 |#2| "failed") |#2| (-1089) (-1089)) 10))) -(((-536 |#1| |#2|) (-10 -7 (-15 -4158 ((-3 |#2| "failed") |#2| (-1089) (-1089)))) (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525))) (-13 (-1111) (-891) (-1053) (-29 |#1|))) (T -536)) -((-4158 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *1 (-536 *4 *2)) (-4 *2 (-13 (-1111) (-891) (-1053) (-29 *4)))))) -(-10 -7 (-15 -4158 ((-3 |#2| "failed") |#2| (-1089) (-1089)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2551 (($ $ (-525)) 66)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-1387 (($ (-1085 (-525)) (-525)) 72)) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) 58)) (-2409 (($ $) 34)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1676 (((-712) $) 15)) (-3865 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1233 (((-525)) 29)) (-1701 (((-525) $) 32)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1618 (($ $ (-525)) 21)) (-3210 (((-3 $ "failed") $ $) 59)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) 16)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 61)) (-3439 (((-1070 (-525)) $) 18)) (-1664 (($ $) 23)) (-2686 (((-796) $) 87) (($ (-525)) 52) (($ $) NIL)) (-3425 (((-712)) 14)) (-1724 (((-108) $ $) NIL)) (-4173 (((-525) $ (-525)) 36)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 35 T CONST)) (-1839 (($) 19 T CONST)) (-3944 (((-108) $ $) 39)) (-4047 (($ $) 51) (($ $ $) 37)) (-4036 (($ $ $) 50)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 54) (($ $ $) 55))) -(((-537 |#1| |#2|) (-802 |#1|) (-525) (-108)) (T -537)) -NIL -(-802 |#1|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 21)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 (($ $ (-854)) NIL (|has| $ (-346))) (($ $) NIL)) (-2666 (((-1099 (-854) (-712)) (-525)) 47)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) 75)) (-3341 (($ $) 74)) (-1554 (($ (-1171 $)) 73)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) 32)) (-1325 (($) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) 49)) (-2096 (((-108) $) NIL)) (-3477 (($ $) NIL) (($ $ (-712)) NIL)) (-2393 (((-108) $) NIL)) (-1676 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-3865 (((-108) $) NIL)) (-2805 (($) 37 (|has| $ (-346)))) (-3108 (((-108) $) NIL (|has| $ (-346)))) (-1525 (($ $ (-854)) NIL (|has| $ (-346))) (($ $) NIL)) (-2115 (((-3 $ "failed") $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 $) $ (-854)) NIL (|has| $ (-346))) (((-1085 $) $) 83)) (-1970 (((-854) $) 55)) (-3004 (((-1085 $) $) NIL (|has| $ (-346)))) (-2224 (((-3 (-1085 $) "failed") $ $) NIL (|has| $ (-346))) (((-1085 $) $) NIL (|has| $ (-346)))) (-2594 (($ $ (-1085 $)) NIL (|has| $ (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL T CONST)) (-3229 (($ (-854)) 48)) (-1326 (((-108) $) 67)) (-2937 (((-1036) $) NIL)) (-3965 (($) 19 (|has| $ (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) 42)) (-2542 (((-396 $) $) NIL)) (-3383 (((-854)) 66) (((-774 (-854))) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-3 (-712) "failed") $ $) NIL) (((-712) $) NIL)) (-3840 (((-128)) NIL)) (-2209 (($ $ (-712)) NIL) (($ $) NIL)) (-2743 (((-854) $) 65) (((-774 (-854)) $) NIL)) (-1341 (((-1085 $)) 82)) (-3560 (($) 54)) (-2200 (($) 38 (|has| $ (-346)))) (-1671 (((-631 $) (-1171 $)) NIL) (((-1171 $) $) 71)) (-1300 (((-525) $) 28)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) 30) (($ $) NIL) (($ (-385 (-525))) NIL)) (-3751 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3425 (((-712)) 39)) (-3612 (((-1171 $) (-854)) 77) (((-1171 $)) 76)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 22 T CONST)) (-1839 (($) 18 T CONST)) (-3861 (($ $ (-712)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 26)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 61) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) -(((-538 |#1|) (-13 (-327) (-307 $) (-566 (-525))) (-854)) (T -538)) -NIL -(-13 (-327) (-307 $) (-566 (-525))) -((-2844 (((-1176) (-1072)) 10))) -(((-539) (-10 -7 (-15 -2844 ((-1176) (-1072))))) (T -539)) -((-2844 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-539))))) -(-10 -7 (-15 -2844 ((-1176) (-1072)))) -((-1645 (((-542 |#2|) (-542 |#2|)) 40)) (-2431 (((-591 |#2|) (-542 |#2|)) 42)) (-2164 ((|#2| (-542 |#2|)) 48))) -(((-540 |#1| |#2|) (-10 -7 (-15 -1645 ((-542 |#2|) (-542 |#2|))) (-15 -2431 ((-591 |#2|) (-542 |#2|))) (-15 -2164 (|#2| (-542 |#2|)))) (-13 (-429) (-966 (-525)) (-788) (-587 (-525))) (-13 (-29 |#1|) (-1111))) (T -540)) -((-2164 (*1 *2 *3) (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1111))) (-5 *1 (-540 *4 *2)) (-4 *4 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1111))) (-4 *4 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) (-5 *2 (-591 *5)) (-5 *1 (-540 *4 *5)))) (-1645 (*1 *2 *2) (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1111))) (-4 *3 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) (-5 *1 (-540 *3 *4))))) -(-10 -7 (-15 -1645 ((-542 |#2|) (-542 |#2|))) (-15 -2431 ((-591 |#2|) (-542 |#2|))) (-15 -2164 (|#2| (-542 |#2|)))) -((-1257 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|)) 30))) -(((-541 |#1| |#2|) (-10 -7 (-15 -1257 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -1257 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1257 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-341) (-341)) (T -541)) -((-1257 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-541 *5 *6)))) (-1257 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2)))) (-1257 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2428 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| -2428 *6) (|:| |coeff| *6))) (-5 *1 (-541 *5 *6)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6))))) -(-10 -7 (-15 -1257 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -1257 ((-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2428 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1257 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) 69)) (-3341 ((|#1| $) NIL)) (-2428 ((|#1| $) 26)) (-3201 (((-591 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2383 (($ |#1| (-591 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) (-591 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2108 (((-591 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) $) 27)) (-2621 (((-1072) $) NIL)) (-2168 (($ |#1| |#1|) 33) (($ |#1| (-1089)) 44 (|has| |#1| (-966 (-1089))))) (-2937 (((-1036) $) NIL)) (-2914 (((-108) $) 30)) (-2209 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1089)) 82 (|has| |#1| (-833 (-1089))))) (-2686 (((-796) $) 96) (($ |#1|) 25)) (-1830 (($) 16 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) 15) (($ $ $) NIL)) (-4036 (($ $ $) 78)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 14) (($ (-385 (-525)) $) 36) (($ $ (-385 (-525))) NIL))) -(((-542 |#1|) (-13 (-659 (-385 (-525))) (-966 |#1|) (-10 -8 (-15 -2383 ($ |#1| (-591 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) (-591 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2428 (|#1| $)) (-15 -2108 ((-591 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) $)) (-15 -3201 ((-591 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2914 ((-108) $)) (-15 -2168 ($ |#1| |#1|)) (-15 -2209 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-833 (-1089))) (-15 -2209 (|#1| $ (-1089))) |%noBranch|) (IF (|has| |#1| (-966 (-1089))) (-15 -2168 ($ |#1| (-1089))) |%noBranch|))) (-341)) (T -542)) -((-2383 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-591 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 *2)) (|:| |logand| (-1085 *2))))) (-5 *4 (-591 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-341)) (-5 *1 (-542 *2)))) (-2428 (*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 *3)) (|:| |logand| (-1085 *3))))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-2168 (*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-2209 (*1 *2 *1 *3) (-12 (-4 *2 (-341)) (-4 *2 (-833 *3)) (-5 *1 (-542 *2)) (-5 *3 (-1089)))) (-2168 (*1 *1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *1 (-542 *2)) (-4 *2 (-966 *3)) (-4 *2 (-341))))) -(-13 (-659 (-385 (-525))) (-966 |#1|) (-10 -8 (-15 -2383 ($ |#1| (-591 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) (-591 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2428 (|#1| $)) (-15 -2108 ((-591 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) $)) (-15 -3201 ((-591 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2914 ((-108) $)) (-15 -2168 ($ |#1| |#1|)) (-15 -2209 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-833 (-1089))) (-15 -2209 (|#1| $ (-1089))) |%noBranch|) (IF (|has| |#1| (-966 (-1089))) (-15 -2168 ($ |#1| (-1089))) |%noBranch|))) -((-3363 (((-108) |#1|) 16)) (-3831 (((-3 |#1| "failed") |#1|) 14)) (-3305 (((-2 (|:| -3523 |#1|) (|:| -3987 (-712))) |#1|) 31) (((-3 |#1| "failed") |#1| (-712)) 18)) (-3203 (((-108) |#1| (-712)) 19)) (-3670 ((|#1| |#1|) 32)) (-3864 ((|#1| |#1| (-712)) 34))) -(((-543 |#1|) (-10 -7 (-15 -3203 ((-108) |#1| (-712))) (-15 -3305 ((-3 |#1| "failed") |#1| (-712))) (-15 -3305 ((-2 (|:| -3523 |#1|) (|:| -3987 (-712))) |#1|)) (-15 -3864 (|#1| |#1| (-712))) (-15 -3363 ((-108) |#1|)) (-15 -3831 ((-3 |#1| "failed") |#1|)) (-15 -3670 (|#1| |#1|))) (-510)) (T -543)) -((-3670 (*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3831 (*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3363 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-3864 (*1 *2 *2 *3) (-12 (-5 *3 (-712)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3305 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3523 *3) (|:| -3987 (-712)))) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-3305 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-712)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *4 (-712)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510))))) -(-10 -7 (-15 -3203 ((-108) |#1| (-712))) (-15 -3305 ((-3 |#1| "failed") |#1| (-712))) (-15 -3305 ((-2 (|:| -3523 |#1|) (|:| -3987 (-712))) |#1|)) (-15 -3864 (|#1| |#1| (-712))) (-15 -3363 ((-108) |#1|)) (-15 -3831 ((-3 |#1| "failed") |#1|)) (-15 -3670 (|#1| |#1|))) -((-2084 (((-1085 |#1|) (-854)) 27))) -(((-544 |#1|) (-10 -7 (-15 -2084 ((-1085 |#1|) (-854)))) (-327)) (T -544)) -((-2084 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-544 *4)) (-4 *4 (-327))))) -(-10 -7 (-15 -2084 ((-1085 |#1|) (-854)))) -((-1645 (((-542 (-385 (-885 |#1|))) (-542 (-385 (-885 |#1|)))) 27)) (-2452 (((-3 (-294 |#1|) (-591 (-294 |#1|))) (-385 (-885 |#1|)) (-1089)) 33 (|has| |#1| (-138)))) (-2431 (((-591 (-294 |#1|)) (-542 (-385 (-885 |#1|)))) 19)) (-3937 (((-294 |#1|) (-385 (-885 |#1|)) (-1089)) 31 (|has| |#1| (-138)))) (-2164 (((-294 |#1|) (-542 (-385 (-885 |#1|)))) 21))) -(((-545 |#1|) (-10 -7 (-15 -1645 ((-542 (-385 (-885 |#1|))) (-542 (-385 (-885 |#1|))))) (-15 -2431 ((-591 (-294 |#1|)) (-542 (-385 (-885 |#1|))))) (-15 -2164 ((-294 |#1|) (-542 (-385 (-885 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -2452 ((-3 (-294 |#1|) (-591 (-294 |#1|))) (-385 (-885 |#1|)) (-1089))) (-15 -3937 ((-294 |#1|) (-385 (-885 |#1|)) (-1089)))) |%noBranch|)) (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) (T -545)) -((-3937 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) (-5 *2 (-3 (-294 *5) (-591 (-294 *5)))) (-5 *1 (-545 *5)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-885 *4)))) (-4 *4 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-885 *4)))) (-4 *4 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) (-5 *2 (-591 (-294 *4))) (-5 *1 (-545 *4)))) (-1645 (*1 *2 *2) (-12 (-5 *2 (-542 (-385 (-885 *3)))) (-4 *3 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) (-5 *1 (-545 *3))))) -(-10 -7 (-15 -1645 ((-542 (-385 (-885 |#1|))) (-542 (-385 (-885 |#1|))))) (-15 -2431 ((-591 (-294 |#1|)) (-542 (-385 (-885 |#1|))))) (-15 -2164 ((-294 |#1|) (-542 (-385 (-885 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -2452 ((-3 (-294 |#1|) (-591 (-294 |#1|))) (-385 (-885 |#1|)) (-1089))) (-15 -3937 ((-294 |#1|) (-385 (-885 |#1|)) (-1089)))) |%noBranch|)) -((-3356 (((-591 (-631 (-525))) (-591 (-525)) (-591 (-838 (-525)))) 46) (((-591 (-631 (-525))) (-591 (-525))) 47) (((-631 (-525)) (-591 (-525)) (-838 (-525))) 42)) (-4195 (((-712) (-591 (-525))) 40))) -(((-546) (-10 -7 (-15 -4195 ((-712) (-591 (-525)))) (-15 -3356 ((-631 (-525)) (-591 (-525)) (-838 (-525)))) (-15 -3356 ((-591 (-631 (-525))) (-591 (-525)))) (-15 -3356 ((-591 (-631 (-525))) (-591 (-525)) (-591 (-838 (-525))))))) (T -546)) -((-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-525))) (-5 *4 (-591 (-838 (-525)))) (-5 *2 (-591 (-631 (-525)))) (-5 *1 (-546)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-591 (-631 (-525)))) (-5 *1 (-546)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-525))) (-5 *4 (-838 (-525))) (-5 *2 (-631 (-525))) (-5 *1 (-546)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-712)) (-5 *1 (-546))))) -(-10 -7 (-15 -4195 ((-712) (-591 (-525)))) (-15 -3356 ((-631 (-525)) (-591 (-525)) (-838 (-525)))) (-15 -3356 ((-591 (-631 (-525))) (-591 (-525)))) (-15 -3356 ((-591 (-631 (-525))) (-591 (-525)) (-591 (-838 (-525)))))) -((-3181 (((-591 |#5|) |#5| (-108)) 73)) (-4089 (((-108) |#5| (-591 |#5|)) 30))) -(((-547 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3181 ((-591 |#5|) |#5| (-108))) (-15 -4089 ((-108) |#5| (-591 |#5|)))) (-13 (-286) (-138)) (-734) (-788) (-989 |#1| |#2| |#3|) (-1027 |#1| |#2| |#3| |#4|)) (T -547)) -((-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-1027 *5 *6 *7 *8)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-547 *5 *6 *7 *8 *3)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-591 *3)) (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1027 *5 *6 *7 *8))))) -(-10 -7 (-15 -3181 ((-591 |#5|) |#5| (-108))) (-15 -4089 ((-108) |#5| (-591 |#5|)))) -((-2673 (((-108) $ $) NIL (|has| (-135) (-1018)))) (-2779 (($ $) 34)) (-1462 (($ $) NIL)) (-2150 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-2619 (((-108) $ $) 51)) (-2598 (((-108) $ $ (-525)) 46)) (-1645 (((-591 $) $ (-135)) 60) (((-591 $) $ (-132)) 61)) (-3110 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-788)))) (-2613 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| (-135) (-788))))) (-1282 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 (((-135) $ (-525) (-135)) 45 (|has| $ (-6 -4251))) (((-135) $ (-1138 (-525)) (-135)) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-2519 (($ $ (-135)) 64) (($ $ (-132)) 65)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-1862 (($ $ (-1138 (-525)) $) 44)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-2537 (($ (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4250))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4250)))) (-4205 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4251)))) (-4121 (((-135) $ (-525)) NIL)) (-2639 (((-108) $ $) 72)) (-1734 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1018))) (((-525) (-135) $ (-525)) 48 (|has| (-135) (-1018))) (((-525) $ $ (-525)) 47) (((-525) (-132) $ (-525)) 50)) (-2916 (((-591 (-135)) $) NIL (|has| $ (-6 -4250)))) (-1316 (($ (-712) (-135)) 9)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) 28 (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| (-135) (-788)))) (-3459 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-788)))) (-4207 (((-591 (-135)) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-1826 (((-525) $) 42 (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| (-135) (-788)))) (-3039 (((-108) $ $ (-135)) 73)) (-2147 (((-712) $ $ (-135)) 70)) (-4192 (($ (-1 (-135) (-135)) $) 33 (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-2869 (($ $) 37)) (-3779 (($ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2528 (($ $ (-135)) 62) (($ $ (-132)) 63)) (-2621 (((-1072) $) 38 (|has| (-135) (-1018)))) (-2059 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) 23)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-525) $) 69) (((-1036) $) NIL (|has| (-135) (-1018)))) (-2872 (((-135) $) NIL (|has| (-525) (-788)))) (-2714 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-1858 (($ $ (-135)) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-591 (-135)) (-591 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-2998 (((-591 (-135)) $) NIL)) (-2077 (((-108) $) 12)) (-3164 (($) 10)) (-1881 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) 52) (($ $ (-1138 (-525))) 21) (($ $ $) NIL)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-2960 (((-712) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250))) (((-712) (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-2992 (($ $ $ (-525)) 66 (|has| $ (-6 -4251)))) (-2873 (($ $) 17)) (-1300 (((-501) $) NIL (|has| (-135) (-566 (-501))))) (-2695 (($ (-591 (-135))) NIL)) (-1624 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) 16) (($ (-591 $)) 67)) (-2686 (($ (-135)) NIL) (((-796) $) 27 (|has| (-135) (-565 (-796))))) (-1475 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| (-135) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-135) (-788)))) (-3944 (((-108) $ $) 14 (|has| (-135) (-1018)))) (-3994 (((-108) $ $) NIL (|has| (-135) (-788)))) (-3971 (((-108) $ $) 15 (|has| (-135) (-788)))) (-2028 (((-712) $) 13 (|has| $ (-6 -4250))))) -(((-548 |#1|) (-13 (-1058) (-10 -8 (-15 -2937 ((-525) $)))) (-525)) (T -548)) -((-2937 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 *2)))) -(-13 (-1058) (-10 -8 (-15 -2937 ((-525) $)))) -((-3173 (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1013 |#4|)) 32))) -(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3173 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1013 |#4|))) (-15 -3173 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|))) (-734) (-788) (-517) (-882 |#3| |#1| |#2|)) (T -549)) -((-3173 (*1 *2 *3 *4) (-12 (-4 *5 (-734)) (-4 *4 (-788)) (-4 *6 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-882 *6 *5 *4)))) (-3173 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1013 *3)) (-4 *3 (-882 *7 *6 *4)) (-4 *6 (-734)) (-4 *4 (-788)) (-4 *7 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *6 *4 *7 *3))))) -(-10 -7 (-15 -3173 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1013 |#4|))) (-15 -3173 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 63)) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3328 (($ $ (-525)) 54) (($ $ (-525) (-525)) 55)) (-3581 (((-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 60)) (-3903 (($ $) 100)) (-3332 (((-3 $ "failed") $ $) NIL)) (-4023 (((-796) (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-955 (-781 (-525))) (-1089) |#1| (-385 (-525))) 215)) (-1895 (($ (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 34)) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1795 (((-108) $) NIL)) (-1676 (((-525) $) 58) (((-525) $ (-525)) 59)) (-3865 (((-108) $) NIL)) (-1698 (($ $ (-854)) 76)) (-3619 (($ (-1 |#1| (-525)) $) 73)) (-3802 (((-108) $) 25)) (-1422 (($ |#1| (-525)) 22) (($ $ (-1003) (-525)) NIL) (($ $ (-591 (-1003)) (-591 (-525))) NIL)) (-1257 (($ (-1 |#1| |#1|) $) 67)) (-2881 (($ (-955 (-781 (-525))) (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 13)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2452 (($ $) 112 (|has| |#1| (-37 (-385 (-525)))))) (-2484 (((-3 $ "failed") $ $ (-108)) 99)) (-1752 (($ $ $) 108)) (-2937 (((-1036) $) NIL)) (-2368 (((-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 15)) (-3572 (((-955 (-781 (-525))) $) 14)) (-1618 (($ $ (-525)) 45)) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1980 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-1881 ((|#1| $ (-525)) 57) (($ $ $) NIL (|has| (-525) (-1030)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-2743 (((-525) $) NIL)) (-1664 (($ $) 46)) (-2686 (((-796) $) NIL) (($ (-525)) 28) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 27 (|has| |#1| (-160)))) (-1263 ((|#1| $ (-525)) 56)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) 37)) (-1708 ((|#1| $) NIL)) (-3816 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-3380 (($ $) 156 (|has| |#1| (-37 (-385 (-525)))))) (-4060 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-3345 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-2255 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-1530 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-1836 (($ $ (-385 (-525))) 146 (|has| |#1| (-37 (-385 (-525)))))) (-1604 (($ $ |#1|) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2501 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-1468 (($ $) 148 (|has| |#1| (-37 (-385 (-525)))))) (-1577 (($ $) 183 (|has| |#1| (-37 (-385 (-525)))))) (-2483 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-2520 (($ $) 181 (|has| |#1| (-37 (-385 (-525)))))) (-3752 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-3382 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-3657 (($ $) 154 (|has| |#1| (-37 (-385 (-525)))))) (-2581 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-2437 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-1794 (($ $) 185 (|has| |#1| (-37 (-385 (-525)))))) (-2438 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-1262 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-2712 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-3418 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-3557 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-3514 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-2215 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-2875 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-1903 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4173 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 29 T CONST)) (-1839 (($) 38 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3944 (((-108) $ $) 65)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) 84) (($ $ $) 64)) (-4036 (($ $ $) 81)) (** (($ $ (-854)) NIL) (($ $ (-712)) 103)) (* (($ (-854) $) 89) (($ (-712) $) 87) (($ (-525) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-550 |#1|) (-13 (-1149 |#1| (-525)) (-10 -8 (-15 -2881 ($ (-955 (-781 (-525))) (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -3572 ((-955 (-781 (-525))) $)) (-15 -2368 ((-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -1895 ($ (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -3802 ((-108) $)) (-15 -3619 ($ (-1 |#1| (-525)) $)) (-15 -2484 ((-3 $ "failed") $ $ (-108))) (-15 -3903 ($ $)) (-15 -1752 ($ $ $)) (-15 -4023 ((-796) (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-955 (-781 (-525))) (-1089) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $)) (-15 -1604 ($ $ |#1|)) (-15 -1836 ($ $ (-385 (-525)))) (-15 -1468 ($ $)) (-15 -2501 ($ $)) (-15 -3345 ($ $)) (-15 -3657 ($ $)) (-15 -3380 ($ $)) (-15 -3752 ($ $)) (-15 -1530 ($ $)) (-15 -2483 ($ $)) (-15 -2438 ($ $)) (-15 -1903 ($ $)) (-15 -2437 ($ $)) (-15 -2215 ($ $)) (-15 -2712 ($ $)) (-15 -3557 ($ $)) (-15 -4060 ($ $)) (-15 -3382 ($ $)) (-15 -3816 ($ $)) (-15 -2520 ($ $)) (-15 -2255 ($ $)) (-15 -1577 ($ $)) (-15 -1794 ($ $)) (-15 -2875 ($ $)) (-15 -2581 ($ $)) (-15 -3514 ($ $)) (-15 -1262 ($ $)) (-15 -3418 ($ $))) |%noBranch|))) (-975)) (T -550)) -((-3802 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-975)))) (-2881 (*1 *1 *2 *3) (-12 (-5 *2 (-955 (-781 (-525)))) (-5 *3 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-975)) (-5 *1 (-550 *4)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-955 (-781 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-975)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-5 *1 (-550 *3)) (-4 *3 (-975)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-975)) (-5 *1 (-550 *3)))) (-3619 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-975)) (-5 *1 (-550 *3)))) (-2484 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-975)))) (-3903 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-975)))) (-1752 (*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-975)))) (-4023 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *6)))) (-5 *4 (-955 (-781 (-525)))) (-5 *5 (-1089)) (-5 *7 (-385 (-525))) (-4 *6 (-975)) (-5 *2 (-796)) (-5 *1 (-550 *6)))) (-2452 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-1836 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 *2)) (-4 *3 (-975)))) (-1468 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2501 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-3345 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-3657 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-3380 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-3752 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-1530 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2438 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-1903 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2437 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2215 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-3557 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-4060 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-3382 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-3816 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2520 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-1577 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-1794 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2875 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-3514 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-1262 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) (-3418 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(-13 (-1149 |#1| (-525)) (-10 -8 (-15 -2881 ($ (-955 (-781 (-525))) (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -3572 ((-955 (-781 (-525))) $)) (-15 -2368 ((-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -1895 ($ (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -3802 ((-108) $)) (-15 -3619 ($ (-1 |#1| (-525)) $)) (-15 -2484 ((-3 $ "failed") $ $ (-108))) (-15 -3903 ($ $)) (-15 -1752 ($ $ $)) (-15 -4023 ((-796) (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-955 (-781 (-525))) (-1089) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $)) (-15 -1604 ($ $ |#1|)) (-15 -1836 ($ $ (-385 (-525)))) (-15 -1468 ($ $)) (-15 -2501 ($ $)) (-15 -3345 ($ $)) (-15 -3657 ($ $)) (-15 -3380 ($ $)) (-15 -3752 ($ $)) (-15 -1530 ($ $)) (-15 -2483 ($ $)) (-15 -2438 ($ $)) (-15 -1903 ($ $)) (-15 -2437 ($ $)) (-15 -2215 ($ $)) (-15 -2712 ($ $)) (-15 -3557 ($ $)) (-15 -4060 ($ $)) (-15 -3382 ($ $)) (-15 -3816 ($ $)) (-15 -2520 ($ $)) (-15 -2255 ($ $)) (-15 -1577 ($ $)) (-15 -1794 ($ $)) (-15 -2875 ($ $)) (-15 -2581 ($ $)) (-15 -3514 ($ $)) (-15 -1262 ($ $)) (-15 -3418 ($ $))) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1895 (($ (-1070 |#1|)) 9)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) 42)) (-1795 (((-108) $) 52)) (-1676 (((-712) $) 55) (((-712) $ (-712)) 54)) (-3865 (((-108) $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3210 (((-3 $ "failed") $ $) 44 (|has| |#1| (-517)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517)))) (-3109 (((-1070 |#1|) $) 23)) (-3425 (((-712)) 51)) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 10 T CONST)) (-1839 (($) 14 T CONST)) (-3944 (((-108) $ $) 22)) (-4047 (($ $) 30) (($ $ $) 16)) (-4036 (($ $ $) 25)) (** (($ $ (-854)) NIL) (($ $ (-712)) 49)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-525)) 36))) -(((-551 |#1|) (-13 (-975) (-10 -8 (-15 -3109 ((-1070 |#1|) $)) (-15 -1895 ($ (-1070 |#1|))) (-15 -1795 ((-108) $)) (-15 -1676 ((-712) $)) (-15 -1676 ((-712) $ (-712))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|))) (-975)) (T -551)) -((-3109 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-551 *3)) (-4 *3 (-975)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-551 *3)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-975)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-551 *3)) (-4 *3 (-975)))) (-1676 (*1 *2 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-551 *3)) (-4 *3 (-975)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-975)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-975)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-975))))) -(-13 (-975) (-10 -8 (-15 -3109 ((-1070 |#1|) $)) (-15 -1895 ($ (-1070 |#1|))) (-15 -1795 ((-108) $)) (-15 -1676 ((-712) $)) (-15 -1676 ((-712) $ (-712))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|))) -((-1257 (((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)) 15))) -(((-552 |#1| |#2|) (-10 -7 (-15 -1257 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)))) (-1125) (-1125)) (T -552)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6))))) -(-10 -7 (-15 -1257 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)))) -((-1257 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1070 |#2|)) 20) (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-555 |#2|)) 19) (((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|)) 18))) -(((-553 |#1| |#2| |#3|) (-10 -7 (-15 -1257 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -1257 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-555 |#2|))) (-15 -1257 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1070 |#2|)))) (-1125) (-1125) (-1125)) (T -553)) -((-1257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-1070 *8)) (-5 *1 (-553 *6 *7 *8)))) (-1257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-1070 *8)) (-5 *1 (-553 *6 *7 *8)))) (-1257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-555 *8)) (-5 *1 (-553 *6 *7 *8))))) -(-10 -7 (-15 -1257 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -1257 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-555 |#2|))) (-15 -1257 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1070 |#2|)))) -((-1749 ((|#3| |#3| (-591 (-564 |#3|)) (-591 (-1089))) 55)) (-3947 (((-157 |#2|) |#3|) 117)) (-3330 ((|#3| (-157 |#2|)) 44)) (-3658 ((|#2| |#3|) 19)) (-2849 ((|#3| |#2|) 33))) -(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -3330 (|#3| (-157 |#2|))) (-15 -3658 (|#2| |#3|)) (-15 -2849 (|#3| |#2|)) (-15 -3947 ((-157 |#2|) |#3|)) (-15 -1749 (|#3| |#3| (-591 (-564 |#3|)) (-591 (-1089))))) (-13 (-517) (-788)) (-13 (-408 |#1|) (-932) (-1111)) (-13 (-408 (-157 |#1|)) (-932) (-1111))) (T -554)) -((-1749 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-591 (-564 *2))) (-5 *4 (-591 (-1089))) (-4 *2 (-13 (-408 (-157 *5)) (-932) (-1111))) (-4 *5 (-13 (-517) (-788))) (-5 *1 (-554 *5 *6 *2)) (-4 *6 (-13 (-408 *5) (-932) (-1111))))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-788))) (-5 *2 (-157 *5)) (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-932) (-1111))) (-4 *3 (-13 (-408 (-157 *4)) (-932) (-1111))))) (-2849 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-788))) (-4 *2 (-13 (-408 (-157 *4)) (-932) (-1111))) (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-932) (-1111))))) (-3658 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-788))) (-4 *2 (-13 (-408 *4) (-932) (-1111))) (-5 *1 (-554 *4 *2 *3)) (-4 *3 (-13 (-408 (-157 *4)) (-932) (-1111))))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-932) (-1111))) (-4 *4 (-13 (-517) (-788))) (-4 *2 (-13 (-408 (-157 *4)) (-932) (-1111))) (-5 *1 (-554 *4 *5 *2))))) -(-10 -7 (-15 -3330 (|#3| (-157 |#2|))) (-15 -3658 (|#2| |#3|)) (-15 -2849 (|#3| |#2|)) (-15 -3947 ((-157 |#2|) |#3|)) (-15 -1749 (|#3| |#3| (-591 (-564 |#3|)) (-591 (-1089))))) -((-2467 (($ (-1 (-108) |#1|) $) 17)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2399 (($ (-1 |#1| |#1|) |#1|) 9)) (-2442 (($ (-1 (-108) |#1|) $) 13)) (-2455 (($ (-1 (-108) |#1|) $) 15)) (-2695 (((-1070 |#1|) $) 18)) (-2686 (((-796) $) NIL))) -(((-555 |#1|) (-13 (-565 (-796)) (-10 -8 (-15 -1257 ($ (-1 |#1| |#1|) $)) (-15 -2442 ($ (-1 (-108) |#1|) $)) (-15 -2455 ($ (-1 (-108) |#1|) $)) (-15 -2467 ($ (-1 (-108) |#1|) $)) (-15 -2399 ($ (-1 |#1| |#1|) |#1|)) (-15 -2695 ((-1070 |#1|) $)))) (-1125)) (T -555)) -((-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) (-2442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) (-2455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) (-2467 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) (-2399 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1125))))) -(-13 (-565 (-796)) (-10 -8 (-15 -1257 ($ (-1 |#1| |#1|) $)) (-15 -2442 ($ (-1 (-108) |#1|) $)) (-15 -2455 ($ (-1 (-108) |#1|) $)) (-15 -2467 ($ (-1 (-108) |#1|) $)) (-15 -2399 ($ (-1 |#1| |#1|) |#1|)) (-15 -2695 ((-1070 |#1|) $)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3559 (($ (-712)) NIL (|has| |#1| (-23)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-1734 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018)))) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-2533 (((-631 |#1|) $ $) NIL (|has| |#1| (-975)))) (-1316 (($ (-712) |#1|) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2380 ((|#1| $) NIL (-12 (|has| |#1| (-932)) (|has| |#1| (-975))))) (-3295 (((-108) $ (-712)) NIL)) (-2445 ((|#1| $) NIL (-12 (|has| |#1| (-932)) (|has| |#1| (-975))))) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2872 ((|#1| $) NIL (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-3183 ((|#1| $ $) NIL (|has| |#1| (-975)))) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-1804 (($ $ $) NIL (|has| |#1| (-975)))) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) NIL)) (-1624 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-591 $)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4047 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4036 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-668))) (($ $ |#1|) NIL (|has| |#1| (-668)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-556 |#1| |#2|) (-1169 |#1|) (-1125) (-525)) (T -556)) -NIL -(-1169 |#1|) -((-3832 (((-1176) $ |#2| |#2|) 36)) (-4152 ((|#2| $) 23)) (-1826 ((|#2| $) 21)) (-4192 (($ (-1 |#3| |#3|) $) 32)) (-1257 (($ (-1 |#3| |#3|) $) 30)) (-2872 ((|#3| $) 26)) (-1858 (($ $ |#3|) 33)) (-3384 (((-108) |#3| $) 17)) (-2998 (((-591 |#3|) $) 15)) (-1881 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-557 |#1| |#2| |#3|) (-10 -8 (-15 -3832 ((-1176) |#1| |#2| |#2|)) (-15 -1858 (|#1| |#1| |#3|)) (-15 -2872 (|#3| |#1|)) (-15 -4152 (|#2| |#1|)) (-15 -1826 (|#2| |#1|)) (-15 -3384 ((-108) |#3| |#1|)) (-15 -2998 ((-591 |#3|) |#1|)) (-15 -1881 (|#3| |#1| |#2|)) (-15 -1881 (|#3| |#1| |#2| |#3|)) (-15 -4192 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1257 (|#1| (-1 |#3| |#3|) |#1|))) (-558 |#2| |#3|) (-1018) (-1125)) (T -557)) -NIL -(-10 -8 (-15 -3832 ((-1176) |#1| |#2| |#2|)) (-15 -1858 (|#1| |#1| |#3|)) (-15 -2872 (|#3| |#1|)) (-15 -4152 (|#2| |#1|)) (-15 -1826 (|#2| |#1|)) (-15 -3384 ((-108) |#3| |#1|)) (-15 -2998 ((-591 |#3|) |#1|)) (-15 -1881 (|#3| |#1| |#2|)) (-15 -1881 (|#3| |#1| |#2| |#3|)) (-15 -4192 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1257 (|#1| (-1 |#3| |#3|) |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#2| (-1018)))) (-3832 (((-1176) $ |#1| |#1|) 40 (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) 8)) (-2847 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4251)))) (-2055 (($) 7 T CONST)) (-4205 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) 51)) (-2916 (((-591 |#2|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4152 ((|#1| $) 43 (|has| |#1| (-788)))) (-4207 (((-591 |#2|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250))))) (-1826 ((|#1| $) 44 (|has| |#1| (-788)))) (-4192 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#2| |#2|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#2| (-1018)))) (-3761 (((-591 |#1|) $) 46)) (-1675 (((-108) |#1| $) 47)) (-2937 (((-1036) $) 21 (|has| |#2| (-1018)))) (-2872 ((|#2| $) 42 (|has| |#1| (-788)))) (-1858 (($ $ |#2|) 41 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2960 (((-712) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4250))) (((-712) |#2| $) 28 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#2| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#2| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-558 |#1| |#2|) (-131) (-1018) (-1125)) (T -558)) -((-2998 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1125)) (-5 *2 (-591 *4)))) (-1675 (*1 *2 *3 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1125)) (-5 *2 (-108)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1125)) (-5 *2 (-591 *3)))) (-3384 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-1125)) (-4 *3 (-1018)) (-5 *2 (-108)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1018)) (-4 *2 (-788)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1018)) (-4 *2 (-788)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1018)) (-4 *3 (-788)) (-4 *2 (-1125)))) (-1858 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1125)))) (-3832 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1125)) (-5 *2 (-1176))))) -(-13 (-464 |t#2|) (-267 |t#1| |t#2|) (-10 -8 (-15 -2998 ((-591 |t#2|) $)) (-15 -1675 ((-108) |t#1| $)) (-15 -3761 ((-591 |t#1|) $)) (IF (|has| |t#2| (-1018)) (IF (|has| $ (-6 -4250)) (-15 -3384 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-788)) (PROGN (-15 -1826 (|t#1| $)) (-15 -4152 (|t#1| $)) (-15 -2872 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4251)) (PROGN (-15 -1858 ($ $ |t#2|)) (-15 -3832 ((-1176) $ |t#1| |t#1|))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#2| (-1018)) ((-565 (-796)) -3150 (|has| |#2| (-1018)) (|has| |#2| (-565 (-796)))) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-1018) |has| |#2| (-1018)) ((-1125) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1851 (((-3 $ "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2010 (((-1171 (-631 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1171 (-631 |#1|)) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3483 (((-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-2055 (($) NIL T CONST)) (-4007 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-4088 (((-3 $ "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2004 (((-631 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3681 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2465 (((-631 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) $ (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-2397 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-4182 (((-1085 (-885 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2681 (($ $ (-854)) NIL)) (-3549 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1865 (((-1085 |#1|) $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1321 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3985 (((-1085 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1532 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1554 (($ (-1171 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1171 |#1|) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-1522 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2193 (((-854)) NIL (|has| |#2| (-345 |#1|)))) (-3595 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1447 (($ $ (-854)) NIL)) (-3999 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3319 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1219 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1779 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2727 (((-3 $ "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1529 (((-631 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-2671 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2000 (((-631 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) $ (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3917 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2679 (((-1085 (-885 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2832 (($ $ (-854)) NIL)) (-1984 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4130 (((-1085 |#1|) $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2336 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3019 (((-1085 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1312 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2621 (((-1072) $) NIL)) (-3440 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3615 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1821 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2937 (((-1036) $) NIL)) (-1492 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1881 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-1671 (((-631 |#1|) (-1171 $)) NIL (|has| |#2| (-395 |#1|))) (((-1171 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) (-1171 $) (-1171 $)) NIL (|has| |#2| (-345 |#1|))) (((-1171 |#1|) $ (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-1300 (($ (-1171 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1171 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-3277 (((-591 (-885 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-591 (-885 |#1|)) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-4027 (($ $ $) NIL)) (-2003 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2686 (((-796) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3612 (((-1171 $)) NIL (|has| |#2| (-395 |#1|)))) (-3674 (((-591 (-1171 |#1|))) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1894 (($ $ $ $) NIL)) (-2535 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2814 (($ (-631 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-1971 (($ $ $) NIL)) (-3887 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1394 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2659 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1830 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) 24)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-559 |#1| |#2|) (-13 (-686 |#1|) (-565 |#2|) (-10 -8 (-15 -2686 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-686 |#1|)) (T -559)) -((-2686 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-559 *3 *2)) (-4 *2 (-686 *3))))) -(-13 (-686 |#1|) (-565 |#2|) (-10 -8 (-15 -2686 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-3806 (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) 33)) (-1308 (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL) (($) NIL)) (-3832 (((-1176) $ (-1072) (-1072)) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-1072) |#1|) 43)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 |#1| "failed") (-1072) $) 46)) (-2055 (($) NIL T CONST)) (-2375 (($ $ (-1072)) 24)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018))))) (-3844 (((-3 |#1| "failed") (-1072) $) 47) (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250))) (($ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL (|has| $ (-6 -4250)))) (-2537 (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250))) (($ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018))))) (-3618 (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018))))) (-1608 (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) 32)) (-4205 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-1072)) NIL)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250))) (((-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-2379 (($ $) 48)) (-1472 (($ (-366)) 22) (($ (-366) (-1072)) 21)) (-3419 (((-366) $) 34)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-1072) $) NIL (|has| (-1072) (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250))) (((-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (((-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018))))) (-1826 (((-1072) $) NIL (|has| (-1072) (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251))) (($ (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2159 (((-591 (-1072)) $) 39)) (-1628 (((-108) (-1072) $) NIL)) (-4052 (((-1072) $) 35)) (-3949 (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL)) (-1520 (($ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL)) (-3761 (((-591 (-1072)) $) NIL)) (-1675 (((-108) (-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 ((|#1| $) NIL (|has| (-1072) (-788)))) (-2714 (((-3 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) "failed") (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (($ $ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (($ $ (-591 (-273 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) 37)) (-1881 ((|#1| $ (-1072) |#1|) NIL) ((|#1| $ (-1072)) 42)) (-3583 (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL) (($) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (((-712) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (((-712) (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL)) (-2686 (((-796) $) 20)) (-3236 (($ $) 25)) (-2453 (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 19)) (-2028 (((-712) $) 41 (|has| $ (-6 -4250))))) -(((-560 |#1|) (-13 (-342 (-366) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) (-1102 (-1072) |#1|) (-10 -8 (-6 -4250) (-15 -2379 ($ $)))) (-1018)) (T -560)) -((-2379 (*1 *1 *1) (-12 (-5 *1 (-560 *2)) (-4 *2 (-1018))))) -(-13 (-342 (-366) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) (-1102 (-1072) |#1|) (-10 -8 (-6 -4250) (-15 -2379 ($ $)))) -((-3956 (((-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) $) 15)) (-2159 (((-591 |#2|) $) 19)) (-1628 (((-108) |#2| $) 12))) -(((-561 |#1| |#2| |#3|) (-10 -8 (-15 -2159 ((-591 |#2|) |#1|)) (-15 -1628 ((-108) |#2| |#1|)) (-15 -3956 ((-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|))) (-562 |#2| |#3|) (-1018) (-1018)) (T -561)) -NIL -(-10 -8 (-15 -2159 ((-591 |#2|) |#1|)) (-15 -1628 ((-108) |#2| |#1|)) (-15 -3956 ((-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|))) -((-2673 (((-108) $ $) 19 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 45 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 55 (|has| $ (-6 -4250)))) (-2429 (((-3 |#2| "failed") |#1| $) 61)) (-2055 (($) 7 T CONST)) (-2908 (($ $) 58 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 47 (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 46 (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) 62)) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 54 (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 56 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 53 (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 52 (|has| $ (-6 -4250)))) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2159 (((-591 |#1|) $) 63)) (-1628 (((-108) |#1| $) 64)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 39)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 40)) (-2937 (((-1036) $) 21 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 51)) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 41)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) 26 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 25 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 24 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 23 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-3583 (($) 49) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 48)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 31 (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 59 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 50)) (-2686 (((-796) $) 18 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796))))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 42)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-562 |#1| |#2|) (-131) (-1018) (-1018)) (T -562)) -((-1628 (*1 *2 *3 *1) (-12 (-4 *1 (-562 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-5 *2 (-108)))) (-2159 (*1 *2 *1) (-12 (-4 *1 (-562 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-5 *2 (-591 *3)))) (-3844 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-562 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018)))) (-2429 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-562 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018))))) -(-13 (-209 (-2 (|:| -1265 |t#1|) (|:| -1568 |t#2|))) (-10 -8 (-15 -1628 ((-108) |t#1| $)) (-15 -2159 ((-591 |t#1|) $)) (-15 -3844 ((-3 |t#2| "failed") |t#1| $)) (-15 -2429 ((-3 |t#2| "failed") |t#1| $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T) ((-97) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) ((-565 (-796)) -3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796)))) ((-142 #0#) . T) ((-566 (-501)) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-288 #0#) -12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) ((-464 #0#) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) ((-1018) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) ((-1125) . T)) -((-1688 (((-564 |#2|) |#1|) 15)) (-2919 (((-3 |#1| "failed") (-564 |#2|)) 19))) -(((-563 |#1| |#2|) (-10 -7 (-15 -1688 ((-564 |#2|) |#1|)) (-15 -2919 ((-3 |#1| "failed") (-564 |#2|)))) (-788) (-788)) (T -563)) -((-2919 (*1 *2 *3) (|partial| -12 (-5 *3 (-564 *4)) (-4 *4 (-788)) (-4 *2 (-788)) (-5 *1 (-563 *2 *4)))) (-1688 (*1 *2 *3) (-12 (-5 *2 (-564 *4)) (-5 *1 (-563 *3 *4)) (-4 *3 (-788)) (-4 *4 (-788))))) -(-10 -7 (-15 -1688 ((-564 |#2|) |#1|)) (-15 -2919 ((-3 |#1| "failed") (-564 |#2|)))) -((-2673 (((-108) $ $) NIL)) (-3911 (((-3 (-1089) "failed") $) 37)) (-3072 (((-1176) $ (-712)) 26)) (-1734 (((-712) $) 25)) (-3259 (((-110) $) 12)) (-3419 (((-1089) $) 20)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2899 (($ (-110) (-591 |#1|) (-712)) 30) (($ (-1089)) 31)) (-3029 (((-108) $ (-110)) 18) (((-108) $ (-1089)) 16)) (-3457 (((-712) $) 22)) (-2937 (((-1036) $) NIL)) (-1300 (((-825 (-525)) $) 77 (|has| |#1| (-566 (-825 (-525))))) (((-825 (-357)) $) 84 (|has| |#1| (-566 (-825 (-357))))) (((-501) $) 69 (|has| |#1| (-566 (-501))))) (-2686 (((-796) $) 55)) (-3358 (((-591 |#1|) $) 24)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 41)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 42))) -(((-564 |#1|) (-13 (-127) (-817 |#1|) (-10 -8 (-15 -3419 ((-1089) $)) (-15 -3259 ((-110) $)) (-15 -3358 ((-591 |#1|) $)) (-15 -3457 ((-712) $)) (-15 -2899 ($ (-110) (-591 |#1|) (-712))) (-15 -2899 ($ (-1089))) (-15 -3911 ((-3 (-1089) "failed") $)) (-15 -3029 ((-108) $ (-110))) (-15 -3029 ((-108) $ (-1089))) (IF (|has| |#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|))) (-788)) (T -564)) -((-3419 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) (-2899 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-591 *5)) (-5 *4 (-712)) (-4 *5 (-788)) (-5 *1 (-564 *5)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) (-3911 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) (-3029 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-564 *4)) (-4 *4 (-788)))) (-3029 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-108)) (-5 *1 (-564 *4)) (-4 *4 (-788))))) -(-13 (-127) (-817 |#1|) (-10 -8 (-15 -3419 ((-1089) $)) (-15 -3259 ((-110) $)) (-15 -3358 ((-591 |#1|) $)) (-15 -3457 ((-712) $)) (-15 -2899 ($ (-110) (-591 |#1|) (-712))) (-15 -2899 ($ (-1089))) (-15 -3911 ((-3 (-1089) "failed") $)) (-15 -3029 ((-108) $ (-110))) (-15 -3029 ((-108) $ (-1089))) (IF (|has| |#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|))) -((-2686 ((|#1| $) 6))) -(((-565 |#1|) (-131) (-1125)) (T -565)) -((-2686 (*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-1125))))) -(-13 (-10 -8 (-15 -2686 (|t#1| $)))) -((-1300 ((|#1| $) 6))) -(((-566 |#1|) (-131) (-1125)) (T -566)) -((-1300 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1125))))) -(-13 (-10 -8 (-15 -1300 (|t#1| $)))) -((-3366 (((-3 (-1085 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)) 15) (((-3 (-1085 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 16))) -(((-567 |#1| |#2|) (-10 -7 (-15 -3366 ((-3 (-1085 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -3366 ((-3 (-1085 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)))) (-13 (-138) (-27) (-966 (-525)) (-966 (-385 (-525)))) (-1147 |#1|)) (T -567)) -((-3366 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-138) (-27) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-1085 (-385 *6))) (-5 *1 (-567 *5 *6)) (-5 *3 (-385 *6)))) (-3366 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-138) (-27) (-966 (-525)) (-966 (-385 (-525))))) (-4 *5 (-1147 *4)) (-5 *2 (-1085 (-385 *5))) (-5 *1 (-567 *4 *5)) (-5 *3 (-385 *5))))) -(-10 -7 (-15 -3366 ((-3 (-1085 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -3366 ((-3 (-1085 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)))) -((-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#2|) 10))) -(((-568 |#1| |#2|) (-10 -8 (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) (-569 |#2|) (-975)) (T -568)) -NIL -(-10 -8 (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 36)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#1| $) 37))) -(((-569 |#1|) (-131) (-975)) (T -569)) -((-2686 (*1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-975))))) -(-13 (-975) (-593 |t#1|) (-10 -8 (-15 -2686 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-668) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-4188 (((-525) $) NIL (|has| |#1| (-786)))) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-3489 (((-108) $) NIL (|has| |#1| (-786)))) (-3865 (((-108) $) NIL)) (-1384 ((|#1| $) 13)) (-2256 (((-108) $) NIL (|has| |#1| (-786)))) (-1923 (($ $ $) NIL (|has| |#1| (-786)))) (-3475 (($ $ $) NIL (|has| |#1| (-786)))) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1396 ((|#3| $) 15)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL)) (-3425 (((-712)) 20)) (-1460 (($ $) NIL (|has| |#1| (-786)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) 12 T CONST)) (-4004 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-786)))) (-4059 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-570 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (-15 -4059 ($ $ |#3|)) (-15 -4059 ($ |#1| |#3|)) (-15 -1384 (|#1| $)) (-15 -1396 (|#3| $)))) (-37 |#2|) (-160) (|SubsetCategory| (-668) |#2|)) (T -570)) -((-4059 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-570 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-668) *4)))) (-4059 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-570 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-668) *4)))) (-1384 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-570 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-668) *3)))) (-1396 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-668) *4)) (-5 *1 (-570 *3 *4 *2)) (-4 *3 (-37 *4))))) -(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (-15 -4059 ($ $ |#3|)) (-15 -4059 ($ |#1| |#3|)) (-15 -1384 (|#1| $)) (-15 -1396 (|#3| $)))) -((-4146 ((|#2| |#2| (-1089) (-1089)) 18))) -(((-571 |#1| |#2|) (-10 -7 (-15 -4146 (|#2| |#2| (-1089) (-1089)))) (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525))) (-13 (-1111) (-891) (-29 |#1|))) (T -571)) -((-4146 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) (-5 *1 (-571 *4 *2)) (-4 *2 (-13 (-1111) (-891) (-29 *4)))))) -(-10 -7 (-15 -4146 (|#2| |#2| (-1089) (-1089)))) -((-2673 (((-108) $ $) 56)) (-1306 (((-108) $) 52)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3116 ((|#1| $) 49)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3374 (((-2 (|:| -3125 $) (|:| -3484 (-385 |#2|))) (-385 |#2|)) 97 (|has| |#1| (-341)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) 24)) (-1522 (((-3 $ "failed") $) 75)) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-1676 (((-525) $) 19)) (-3865 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3802 (((-108) $) 36)) (-1422 (($ |#1| (-525)) 21)) (-1556 ((|#1| $) 51)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) 87 (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3210 (((-3 $ "failed") $ $) 79)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3048 (((-712) $) 99 (|has| |#1| (-341)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 98 (|has| |#1| (-341)))) (-2209 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-712)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2743 (((-525) $) 34)) (-1300 (((-385 |#2|) $) 42)) (-2686 (((-796) $) 62) (($ (-525)) 32) (($ $) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-966 (-385 (-525))))) (($ |#1|) 31) (($ |#2|) 22)) (-1263 ((|#1| $ (-525)) 63)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 9 T CONST)) (-1839 (($) 12 T CONST)) (-1796 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-712)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3944 (((-108) $ $) 17)) (-4047 (($ $) 46) (($ $ $) NIL)) (-4036 (($ $ $) 76)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 26) (($ $ $) 44))) -(((-572 |#1| |#2|) (-13 (-211 |#2|) (-517) (-566 (-385 |#2|)) (-389 |#1|) (-966 |#2|) (-10 -8 (-15 -3802 ((-108) $)) (-15 -2743 ((-525) $)) (-15 -1676 ((-525) $)) (-15 -1575 ($ $)) (-15 -1556 (|#1| $)) (-15 -3116 (|#1| $)) (-15 -1263 (|#1| $ (-525))) (-15 -1422 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -3374 ((-2 (|:| -3125 $) (|:| -3484 (-385 |#2|))) (-385 |#2|)))) |%noBranch|))) (-517) (-1147 |#1|)) (T -572)) -((-3802 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-572 *3 *4)) (-4 *4 (-1147 *3)))) (-2743 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-572 *3 *4)) (-4 *4 (-1147 *3)))) (-1676 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-572 *3 *4)) (-4 *4 (-1147 *3)))) (-1575 (*1 *1 *1) (-12 (-4 *2 (-517)) (-5 *1 (-572 *2 *3)) (-4 *3 (-1147 *2)))) (-1556 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-572 *2 *3)) (-4 *3 (-1147 *2)))) (-3116 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-572 *2 *3)) (-4 *3 (-1147 *2)))) (-1263 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-572 *2 *4)) (-4 *4 (-1147 *2)))) (-1422 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-572 *2 *4)) (-4 *4 (-1147 *2)))) (-3374 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1147 *4)) (-5 *2 (-2 (|:| -3125 (-572 *4 *5)) (|:| -3484 (-385 *5)))) (-5 *1 (-572 *4 *5)) (-5 *3 (-385 *5))))) -(-13 (-211 |#2|) (-517) (-566 (-385 |#2|)) (-389 |#1|) (-966 |#2|) (-10 -8 (-15 -3802 ((-108) $)) (-15 -2743 ((-525) $)) (-15 -1676 ((-525) $)) (-15 -1575 ($ $)) (-15 -1556 (|#1| $)) (-15 -3116 (|#1| $)) (-15 -1263 (|#1| $ (-525))) (-15 -1422 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -3374 ((-2 (|:| -3125 $) (|:| -3484 (-385 |#2|))) (-385 |#2|)))) |%noBranch|))) -((-3227 (((-591 |#6|) (-591 |#4|) (-108)) 47)) (-3527 ((|#6| |#6|) 40))) -(((-573 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3527 (|#6| |#6|)) (-15 -3227 ((-591 |#6|) (-591 |#4|) (-108)))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|) (-994 |#1| |#2| |#3| |#4|) (-1027 |#1| |#2| |#3| |#4|)) (T -573)) -((-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 *10)) (-5 *1 (-573 *5 *6 *7 *8 *9 *10)) (-4 *9 (-994 *5 *6 *7 *8)) (-4 *10 (-1027 *5 *6 *7 *8)))) (-3527 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *1 (-573 *3 *4 *5 *6 *7 *2)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *2 (-1027 *3 *4 *5 *6))))) -(-10 -7 (-15 -3527 (|#6| |#6|)) (-15 -3227 ((-591 |#6|) (-591 |#4|) (-108)))) -((-2367 (((-108) |#3| (-712) (-591 |#3|)) 23)) (-2817 (((-3 (-2 (|:| |polfac| (-591 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-591 (-1085 |#3|)))) "failed") |#3| (-591 (-1085 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1908 (-591 (-2 (|:| |irr| |#4|) (|:| -3630 (-525)))))) (-591 |#3|) (-591 |#1|) (-591 |#3|)) 55))) -(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-108) |#3| (-712) (-591 |#3|))) (-15 -2817 ((-3 (-2 (|:| |polfac| (-591 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-591 (-1085 |#3|)))) "failed") |#3| (-591 (-1085 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1908 (-591 (-2 (|:| |irr| |#4|) (|:| -3630 (-525)))))) (-591 |#3|) (-591 |#1|) (-591 |#3|)))) (-788) (-734) (-286) (-882 |#3| |#2| |#1|)) (T -574)) -((-2817 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1908 (-591 (-2 (|:| |irr| *10) (|:| -3630 (-525))))))) (-5 *6 (-591 *3)) (-5 *7 (-591 *8)) (-4 *8 (-788)) (-4 *3 (-286)) (-4 *10 (-882 *3 *9 *8)) (-4 *9 (-734)) (-5 *2 (-2 (|:| |polfac| (-591 *10)) (|:| |correct| *3) (|:| |corrfact| (-591 (-1085 *3))))) (-5 *1 (-574 *8 *9 *3 *10)) (-5 *4 (-591 (-1085 *3))))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-712)) (-5 *5 (-591 *3)) (-4 *3 (-286)) (-4 *6 (-788)) (-4 *7 (-734)) (-5 *2 (-108)) (-5 *1 (-574 *6 *7 *3 *8)) (-4 *8 (-882 *3 *7 *6))))) -(-10 -7 (-15 -2367 ((-108) |#3| (-712) (-591 |#3|))) (-15 -2817 ((-3 (-2 (|:| |polfac| (-591 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-591 (-1085 |#3|)))) "failed") |#3| (-591 (-1085 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1908 (-591 (-2 (|:| |irr| |#4|) (|:| -3630 (-525)))))) (-591 |#3|) (-591 |#1|) (-591 |#3|)))) -((-2673 (((-108) $ $) NIL)) (-2758 (((-591 |#1|) $) NIL)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-1398 (($ $) 67)) (-2356 (((-609 |#1| |#2|) $) 52)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 70)) (-1328 (((-591 (-273 |#2|)) $ $) 33)) (-2937 (((-1036) $) NIL)) (-2288 (($ (-609 |#1| |#2|)) 48)) (-3369 (($ $ $) NIL)) (-4027 (($ $ $) NIL)) (-2686 (((-796) $) 58) (((-1184 |#1| |#2|) $) NIL) (((-1189 |#1| |#2|) $) 66)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1839 (($) 53 T CONST)) (-1808 (((-591 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $) 31)) (-1214 (((-591 (-609 |#1| |#2|)) (-591 |#1|)) 65)) (-1994 (((-591 (-2 (|:| |k| (-826 |#1|)) (|:| |c| |#2|))) $) 37)) (-3944 (((-108) $ $) 54)) (-4059 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 44))) -(((-575 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -2288 ($ (-609 |#1| |#2|))) (-15 -2356 ((-609 |#1| |#2|) $)) (-15 -1994 ((-591 (-2 (|:| |k| (-826 |#1|)) (|:| |c| |#2|))) $)) (-15 -2686 ((-1184 |#1| |#2|) $)) (-15 -2686 ((-1189 |#1| |#2|) $)) (-15 -1398 ($ $)) (-15 -2758 ((-591 |#1|) $)) (-15 -1214 ((-591 (-609 |#1| |#2|)) (-591 |#1|))) (-15 -1808 ((-591 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $)) (-15 -1328 ((-591 (-273 |#2|)) $ $)))) (-788) (-13 (-160) (-659 (-385 (-525)))) (-854)) (T -575)) -((-2288 (*1 *1 *2) (-12 (-5 *2 (-609 *3 *4)) (-4 *3 (-788)) (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-5 *1 (-575 *3 *4 *5)) (-14 *5 (-854)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-609 *3 *4)) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |k| (-826 *3)) (|:| |c| *4)))) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1189 *3 *4)) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) (-1398 (*1 *1 *1) (-12 (-5 *1 (-575 *2 *3 *4)) (-4 *2 (-788)) (-4 *3 (-13 (-160) (-659 (-385 (-525))))) (-14 *4 (-854)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-591 *4)) (-4 *4 (-788)) (-5 *2 (-591 (-609 *4 *5))) (-5 *1 (-575 *4 *5 *6)) (-4 *5 (-13 (-160) (-659 (-385 (-525))))) (-14 *6 (-854)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |k| (-616 *3)) (|:| |c| *4)))) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) (-1328 (*1 *2 *1 *1) (-12 (-5 *2 (-591 (-273 *4))) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854))))) -(-13 (-450) (-10 -8 (-15 -2288 ($ (-609 |#1| |#2|))) (-15 -2356 ((-609 |#1| |#2|) $)) (-15 -1994 ((-591 (-2 (|:| |k| (-826 |#1|)) (|:| |c| |#2|))) $)) (-15 -2686 ((-1184 |#1| |#2|) $)) (-15 -2686 ((-1189 |#1| |#2|) $)) (-15 -1398 ($ $)) (-15 -2758 ((-591 |#1|) $)) (-15 -1214 ((-591 (-609 |#1| |#2|)) (-591 |#1|))) (-15 -1808 ((-591 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $)) (-15 -1328 ((-591 (-273 |#2|)) $ $)))) -((-3227 (((-591 (-1060 |#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|)))) (-591 (-721 |#1| (-798 |#2|))) (-108)) 72) (((-591 (-972 |#1| |#2|)) (-591 (-721 |#1| (-798 |#2|))) (-108)) 58)) (-1480 (((-108) (-591 (-721 |#1| (-798 |#2|)))) 23)) (-4186 (((-591 (-1060 |#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|)))) (-591 (-721 |#1| (-798 |#2|))) (-108)) 71)) (-1874 (((-591 (-972 |#1| |#2|)) (-591 (-721 |#1| (-798 |#2|))) (-108)) 57)) (-2155 (((-591 (-721 |#1| (-798 |#2|))) (-591 (-721 |#1| (-798 |#2|)))) 27)) (-1418 (((-3 (-591 (-721 |#1| (-798 |#2|))) "failed") (-591 (-721 |#1| (-798 |#2|)))) 26))) -(((-576 |#1| |#2|) (-10 -7 (-15 -1480 ((-108) (-591 (-721 |#1| (-798 |#2|))))) (-15 -1418 ((-3 (-591 (-721 |#1| (-798 |#2|))) "failed") (-591 (-721 |#1| (-798 |#2|))))) (-15 -2155 ((-591 (-721 |#1| (-798 |#2|))) (-591 (-721 |#1| (-798 |#2|))))) (-15 -1874 ((-591 (-972 |#1| |#2|)) (-591 (-721 |#1| (-798 |#2|))) (-108))) (-15 -4186 ((-591 (-1060 |#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|)))) (-591 (-721 |#1| (-798 |#2|))) (-108))) (-15 -3227 ((-591 (-972 |#1| |#2|)) (-591 (-721 |#1| (-798 |#2|))) (-108))) (-15 -3227 ((-591 (-1060 |#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|)))) (-591 (-721 |#1| (-798 |#2|))) (-108)))) (-429) (-591 (-1089))) (T -576)) -((-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-591 (-1089))) (-5 *2 (-591 (-1060 *5 (-497 (-798 *6)) (-798 *6) (-721 *5 (-798 *6))))) (-5 *1 (-576 *5 *6)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-591 (-1089))) (-5 *2 (-591 (-972 *5 *6))) (-5 *1 (-576 *5 *6)))) (-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-591 (-1089))) (-5 *2 (-591 (-1060 *5 (-497 (-798 *6)) (-798 *6) (-721 *5 (-798 *6))))) (-5 *1 (-576 *5 *6)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-591 (-1089))) (-5 *2 (-591 (-972 *5 *6))) (-5 *1 (-576 *5 *6)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-591 (-721 *3 (-798 *4)))) (-4 *3 (-429)) (-14 *4 (-591 (-1089))) (-5 *1 (-576 *3 *4)))) (-1418 (*1 *2 *2) (|partial| -12 (-5 *2 (-591 (-721 *3 (-798 *4)))) (-4 *3 (-429)) (-14 *4 (-591 (-1089))) (-5 *1 (-576 *3 *4)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-591 (-721 *4 (-798 *5)))) (-4 *4 (-429)) (-14 *5 (-591 (-1089))) (-5 *2 (-108)) (-5 *1 (-576 *4 *5))))) -(-10 -7 (-15 -1480 ((-108) (-591 (-721 |#1| (-798 |#2|))))) (-15 -1418 ((-3 (-591 (-721 |#1| (-798 |#2|))) "failed") (-591 (-721 |#1| (-798 |#2|))))) (-15 -2155 ((-591 (-721 |#1| (-798 |#2|))) (-591 (-721 |#1| (-798 |#2|))))) (-15 -1874 ((-591 (-972 |#1| |#2|)) (-591 (-721 |#1| (-798 |#2|))) (-108))) (-15 -4186 ((-591 (-1060 |#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|)))) (-591 (-721 |#1| (-798 |#2|))) (-108))) (-15 -3227 ((-591 (-972 |#1| |#2|)) (-591 (-721 |#1| (-798 |#2|))) (-108))) (-15 -3227 ((-591 (-1060 |#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|)))) (-591 (-721 |#1| (-798 |#2|))) (-108)))) -((-4087 (($ $) 38)) (-2381 (($ $) 21)) (-4058 (($ $) 37)) (-2360 (($ $) 22)) (-4109 (($ $) 36)) (-2400 (($ $) 23)) (-1417 (($) 48)) (-2356 (($ $) 45)) (-2860 (($ $) 17)) (-2168 (($ $ (-1011 $)) 7) (($ $ (-1089)) 6)) (-2288 (($ $) 46)) (-2310 (($ $) 15)) (-2347 (($ $) 16)) (-4122 (($ $) 35)) (-2410 (($ $) 24)) (-4098 (($ $) 34)) (-2391 (($ $) 25)) (-4073 (($ $) 33)) (-2370 (($ $) 26)) (-4163 (($ $) 44)) (-2457 (($ $) 32)) (-4137 (($ $) 43)) (-2432 (($ $) 31)) (-4193 (($ $) 42)) (-2477 (($ $) 30)) (-1234 (($ $) 41)) (-2495 (($ $) 29)) (-4179 (($ $) 40)) (-2469 (($ $) 28)) (-4149 (($ $) 39)) (-2444 (($ $) 27)) (-3795 (($ $) 19)) (-1229 (($ $) 20)) (-1351 (($ $) 18)) (** (($ $ $) 47))) -(((-577) (-131)) (T -577)) -((-1229 (*1 *1 *1) (-4 *1 (-577))) (-3795 (*1 *1 *1) (-4 *1 (-577))) (-1351 (*1 *1 *1) (-4 *1 (-577))) (-2860 (*1 *1 *1) (-4 *1 (-577))) (-2347 (*1 *1 *1) (-4 *1 (-577))) (-2310 (*1 *1 *1) (-4 *1 (-577)))) -(-13 (-891) (-1111) (-10 -8 (-15 -1229 ($ $)) (-15 -3795 ($ $)) (-15 -1351 ($ $)) (-15 -2860 ($ $)) (-15 -2347 ($ $)) (-15 -2310 ($ $)))) -(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-891) . T) ((-1111) . T) ((-1114) . T)) -((-3259 (((-110) (-110)) 83)) (-2860 ((|#2| |#2|) 30)) (-2168 ((|#2| |#2| (-1011 |#2|)) 79) ((|#2| |#2| (-1089)) 52)) (-2310 ((|#2| |#2|) 29)) (-2347 ((|#2| |#2|) 31)) (-2754 (((-108) (-110)) 34)) (-3795 ((|#2| |#2|) 26)) (-1229 ((|#2| |#2|) 28)) (-1351 ((|#2| |#2|) 27))) -(((-578 |#1| |#2|) (-10 -7 (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -1229 (|#2| |#2|)) (-15 -3795 (|#2| |#2|)) (-15 -1351 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -2168 (|#2| |#2| (-1089))) (-15 -2168 (|#2| |#2| (-1011 |#2|)))) (-13 (-788) (-517)) (-13 (-408 |#1|) (-932) (-1111))) (T -578)) -((-2168 (*1 *2 *2 *3) (-12 (-5 *3 (-1011 *2)) (-4 *2 (-13 (-408 *4) (-932) (-1111))) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-578 *4 *2)))) (-2168 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-408 *4) (-932) (-1111))))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) (-4 *2 (-13 (-408 *3) (-932) (-1111))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) (-4 *2 (-13 (-408 *3) (-932) (-1111))))) (-2860 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) (-4 *2 (-13 (-408 *3) (-932) (-1111))))) (-1351 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) (-4 *2 (-13 (-408 *3) (-932) (-1111))))) (-3795 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) (-4 *2 (-13 (-408 *3) (-932) (-1111))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) (-4 *2 (-13 (-408 *3) (-932) (-1111))))) (-3259 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *4)) (-4 *4 (-13 (-408 *3) (-932) (-1111))))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) (-5 *1 (-578 *4 *5)) (-4 *5 (-13 (-408 *4) (-932) (-1111)))))) -(-10 -7 (-15 -2754 ((-108) (-110))) (-15 -3259 ((-110) (-110))) (-15 -1229 (|#2| |#2|)) (-15 -3795 (|#2| |#2|)) (-15 -1351 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -2168 (|#2| |#2| (-1089))) (-15 -2168 (|#2| |#2| (-1011 |#2|)))) -((-2853 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 53)) (-3632 (((-591 (-227 |#1| |#2|)) (-591 (-457 |#1| |#2|))) 68)) (-2573 (((-457 |#1| |#2|) (-591 (-457 |#1| |#2|)) (-798 |#1|)) 70) (((-457 |#1| |#2|) (-591 (-457 |#1| |#2|)) (-591 (-457 |#1| |#2|)) (-798 |#1|)) 69)) (-3692 (((-2 (|:| |gblist| (-591 (-227 |#1| |#2|))) (|:| |gvlist| (-591 (-525)))) (-591 (-457 |#1| |#2|))) 108)) (-3141 (((-591 (-457 |#1| |#2|)) (-798 |#1|) (-591 (-457 |#1| |#2|)) (-591 (-457 |#1| |#2|))) 83)) (-3529 (((-2 (|:| |glbase| (-591 (-227 |#1| |#2|))) (|:| |glval| (-591 (-525)))) (-591 (-227 |#1| |#2|))) 118)) (-1661 (((-1171 |#2|) (-457 |#1| |#2|) (-591 (-457 |#1| |#2|))) 58)) (-2341 (((-591 (-457 |#1| |#2|)) (-591 (-457 |#1| |#2|))) 41)) (-1963 (((-227 |#1| |#2|) (-227 |#1| |#2|) (-591 (-227 |#1| |#2|))) 50)) (-3978 (((-227 |#1| |#2|) (-591 |#2|) (-227 |#1| |#2|) (-591 (-227 |#1| |#2|))) 91))) -(((-579 |#1| |#2|) (-10 -7 (-15 -3692 ((-2 (|:| |gblist| (-591 (-227 |#1| |#2|))) (|:| |gvlist| (-591 (-525)))) (-591 (-457 |#1| |#2|)))) (-15 -3529 ((-2 (|:| |glbase| (-591 (-227 |#1| |#2|))) (|:| |glval| (-591 (-525)))) (-591 (-227 |#1| |#2|)))) (-15 -3632 ((-591 (-227 |#1| |#2|)) (-591 (-457 |#1| |#2|)))) (-15 -2573 ((-457 |#1| |#2|) (-591 (-457 |#1| |#2|)) (-591 (-457 |#1| |#2|)) (-798 |#1|))) (-15 -2573 ((-457 |#1| |#2|) (-591 (-457 |#1| |#2|)) (-798 |#1|))) (-15 -2341 ((-591 (-457 |#1| |#2|)) (-591 (-457 |#1| |#2|)))) (-15 -1661 ((-1171 |#2|) (-457 |#1| |#2|) (-591 (-457 |#1| |#2|)))) (-15 -3978 ((-227 |#1| |#2|) (-591 |#2|) (-227 |#1| |#2|) (-591 (-227 |#1| |#2|)))) (-15 -3141 ((-591 (-457 |#1| |#2|)) (-798 |#1|) (-591 (-457 |#1| |#2|)) (-591 (-457 |#1| |#2|)))) (-15 -1963 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-591 (-227 |#1| |#2|)))) (-15 -2853 ((-457 |#1| |#2|) (-227 |#1| |#2|)))) (-591 (-1089)) (-429)) (T -579)) -((-2853 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *2 (-457 *4 *5)) (-5 *1 (-579 *4 *5)))) (-1963 (*1 *2 *2 *3) (-12 (-5 *3 (-591 (-227 *4 *5))) (-5 *2 (-227 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *1 (-579 *4 *5)))) (-3141 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-591 (-457 *4 *5))) (-5 *3 (-798 *4)) (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *1 (-579 *4 *5)))) (-3978 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-591 *6)) (-5 *4 (-591 (-227 *5 *6))) (-4 *6 (-429)) (-5 *2 (-227 *5 *6)) (-14 *5 (-591 (-1089))) (-5 *1 (-579 *5 *6)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-457 *5 *6))) (-5 *3 (-457 *5 *6)) (-14 *5 (-591 (-1089))) (-4 *6 (-429)) (-5 *2 (-1171 *6)) (-5 *1 (-579 *5 *6)))) (-2341 (*1 *2 *2) (-12 (-5 *2 (-591 (-457 *3 *4))) (-14 *3 (-591 (-1089))) (-4 *4 (-429)) (-5 *1 (-579 *3 *4)))) (-2573 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-457 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-591 (-1089))) (-5 *2 (-457 *5 *6)) (-5 *1 (-579 *5 *6)) (-4 *6 (-429)))) (-2573 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-591 (-457 *5 *6))) (-5 *4 (-798 *5)) (-14 *5 (-591 (-1089))) (-5 *2 (-457 *5 *6)) (-5 *1 (-579 *5 *6)) (-4 *6 (-429)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-591 (-457 *4 *5))) (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *2 (-591 (-227 *4 *5))) (-5 *1 (-579 *4 *5)))) (-3529 (*1 *2 *3) (-12 (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |glbase| (-591 (-227 *4 *5))) (|:| |glval| (-591 (-525))))) (-5 *1 (-579 *4 *5)) (-5 *3 (-591 (-227 *4 *5))))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-591 (-457 *4 *5))) (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |gblist| (-591 (-227 *4 *5))) (|:| |gvlist| (-591 (-525))))) (-5 *1 (-579 *4 *5))))) -(-10 -7 (-15 -3692 ((-2 (|:| |gblist| (-591 (-227 |#1| |#2|))) (|:| |gvlist| (-591 (-525)))) (-591 (-457 |#1| |#2|)))) (-15 -3529 ((-2 (|:| |glbase| (-591 (-227 |#1| |#2|))) (|:| |glval| (-591 (-525)))) (-591 (-227 |#1| |#2|)))) (-15 -3632 ((-591 (-227 |#1| |#2|)) (-591 (-457 |#1| |#2|)))) (-15 -2573 ((-457 |#1| |#2|) (-591 (-457 |#1| |#2|)) (-591 (-457 |#1| |#2|)) (-798 |#1|))) (-15 -2573 ((-457 |#1| |#2|) (-591 (-457 |#1| |#2|)) (-798 |#1|))) (-15 -2341 ((-591 (-457 |#1| |#2|)) (-591 (-457 |#1| |#2|)))) (-15 -1661 ((-1171 |#2|) (-457 |#1| |#2|) (-591 (-457 |#1| |#2|)))) (-15 -3978 ((-227 |#1| |#2|) (-591 |#2|) (-227 |#1| |#2|) (-591 (-227 |#1| |#2|)))) (-15 -3141 ((-591 (-457 |#1| |#2|)) (-798 |#1|) (-591 (-457 |#1| |#2|)) (-591 (-457 |#1| |#2|)))) (-15 -1963 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-591 (-227 |#1| |#2|)))) (-15 -2853 ((-457 |#1| |#2|) (-227 |#1| |#2|)))) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) NIL)) (-3832 (((-1176) $ (-1072) (-1072)) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 (((-51) $ (-1072) (-51)) 16) (((-51) $ (-1089) (-51)) 17)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 (-51) "failed") (-1072) $) NIL)) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018))))) (-3844 (($ (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-3 (-51) "failed") (-1072) $) NIL)) (-2537 (($ (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $ (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018)))) (((-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $ (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-4205 (((-51) $ (-1072) (-51)) NIL (|has| $ (-6 -4251)))) (-4121 (((-51) $ (-1072)) NIL)) (-2916 (((-591 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-591 (-51)) $) NIL (|has| $ (-6 -4250)))) (-2379 (($ $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-1072) $) NIL (|has| (-1072) (-788)))) (-4207 (((-591 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-591 (-51)) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-51) (-1018))))) (-1826 (((-1072) $) NIL (|has| (-1072) (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4251))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1337 (($ (-366)) 9)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018))))) (-2159 (((-591 (-1072)) $) NIL)) (-1628 (((-108) (-1072) $) NIL)) (-3949 (((-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) $) NIL)) (-1520 (($ (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) $) NIL)) (-3761 (((-591 (-1072)) $) NIL)) (-1675 (((-108) (-1072) $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018))))) (-2872 (((-51) $) NIL (|has| (-1072) (-788)))) (-2714 (((-3 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) "failed") (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL)) (-1858 (($ $ (-51)) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018)))) (($ $ (-273 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018)))) (($ $ (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018)))) (($ $ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018)))) (($ $ (-591 (-51)) (-591 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018)))) (($ $ (-591 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-51) (-1018))))) (-2998 (((-591 (-51)) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 (((-51) $ (-1072)) 14) (((-51) $ (-1072) (-51)) NIL) (((-51) $ (-1089)) 15)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018)))) (((-712) (-51) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-51) (-1018)))) (((-712) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) NIL)) (-2686 (((-796) $) NIL (-3150 (|has| (-51) (-565 (-796))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 (-51))) (-1018))))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-580) (-13 (-1102 (-1072) (-51)) (-10 -8 (-15 -1337 ($ (-366))) (-15 -2379 ($ $)) (-15 -1881 ((-51) $ (-1089))) (-15 -2847 ((-51) $ (-1089) (-51)))))) (T -580)) -((-1337 (*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-580)))) (-2379 (*1 *1 *1) (-5 *1 (-580))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-51)) (-5 *1 (-580)))) (-2847 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-580))))) -(-13 (-1102 (-1072) (-51)) (-10 -8 (-15 -1337 ($ (-366))) (-15 -2379 ($ $)) (-15 -1881 ((-51) $ (-1089))) (-15 -2847 ((-51) $ (-1089) (-51))))) -((-4059 (($ $ |#2|) 10))) -(((-581 |#1| |#2|) (-10 -8 (-15 -4059 (|#1| |#1| |#2|))) (-582 |#2|) (-160)) (T -581)) -NIL -(-10 -8 (-15 -4059 (|#1| |#1| |#2|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2695 (($ $ $) 29)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 28 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-582 |#1|) (-131) (-160)) (T -582)) -((-2695 (*1 *1 *1 *1) (-12 (-4 *1 (-582 *2)) (-4 *2 (-160)))) (-4059 (*1 *1 *1 *2) (-12 (-4 *1 (-582 *2)) (-4 *2 (-160)) (-4 *2 (-341))))) -(-13 (-659 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2695 ($ $ $)) (IF (|has| |t#1| (-341)) (-15 -4059 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-659 |#1|) . T) ((-981 |#1|) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1851 (((-3 $ "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2010 (((-1171 (-631 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1171 (-631 |#1|)) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3483 (((-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-2055 (($) NIL T CONST)) (-4007 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-4088 (((-3 $ "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2004 (((-631 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3681 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2465 (((-631 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) $ (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-2397 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-4182 (((-1085 (-885 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2681 (($ $ (-854)) NIL)) (-3549 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1865 (((-1085 |#1|) $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1321 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3985 (((-1085 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1532 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1554 (($ (-1171 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1171 |#1|) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-1522 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2193 (((-854)) NIL (|has| |#2| (-345 |#1|)))) (-3595 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1447 (($ $ (-854)) NIL)) (-3999 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3319 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1219 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1779 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2727 (((-3 $ "failed")) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1529 (((-631 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-2671 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2000 (((-631 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) $ (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3917 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2679 (((-1085 (-885 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2832 (($ $ (-854)) NIL)) (-1984 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4130 (((-1085 |#1|) $) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2336 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-3019 (((-1085 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1312 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2621 (((-1072) $) NIL)) (-3440 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3615 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1821 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2937 (((-1036) $) NIL)) (-1492 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1881 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-1671 (((-631 |#1|) (-1171 $)) NIL (|has| |#2| (-395 |#1|))) (((-1171 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-631 |#1|) (-1171 $) (-1171 $)) NIL (|has| |#2| (-345 |#1|))) (((-1171 |#1|) $ (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-1300 (($ (-1171 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1171 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-3277 (((-591 (-885 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-591 (-885 |#1|)) (-1171 $)) NIL (|has| |#2| (-345 |#1|)))) (-4027 (($ $ $) NIL)) (-2003 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2686 (((-796) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3612 (((-1171 $)) NIL (|has| |#2| (-395 |#1|)))) (-3674 (((-591 (-1171 |#1|))) NIL (-3150 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1894 (($ $ $ $) NIL)) (-2535 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2814 (($ (-631 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-1971 (($ $ $) NIL)) (-3887 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1394 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2659 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1830 (($) 15 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) 17)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-583 |#1| |#2|) (-13 (-686 |#1|) (-565 |#2|) (-10 -8 (-15 -2686 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-686 |#1|)) (T -583)) -((-2686 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-583 *3 *2)) (-4 *2 (-686 *3))))) -(-13 (-686 |#1|) (-565 |#2|) (-10 -8 (-15 -2686 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) -((-2586 (((-3 (-781 |#2|) "failed") |#2| (-273 |#2|) (-1072)) 82) (((-3 (-781 |#2|) (-2 (|:| |leftHandLimit| (-3 (-781 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-781 |#2|) "failed"))) "failed") |#2| (-273 (-781 |#2|))) 104)) (-2073 (((-3 (-774 |#2|) "failed") |#2| (-273 (-774 |#2|))) 109))) -(((-584 |#1| |#2|) (-10 -7 (-15 -2586 ((-3 (-781 |#2|) (-2 (|:| |leftHandLimit| (-3 (-781 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-781 |#2|) "failed"))) "failed") |#2| (-273 (-781 |#2|)))) (-15 -2073 ((-3 (-774 |#2|) "failed") |#2| (-273 (-774 |#2|)))) (-15 -2586 ((-3 (-781 |#2|) "failed") |#2| (-273 |#2|) (-1072)))) (-13 (-429) (-788) (-966 (-525)) (-587 (-525))) (-13 (-27) (-1111) (-408 |#1|))) (T -584)) -((-2586 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1072)) (-4 *3 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-781 *3)) (-5 *1 (-584 *6 *3)))) (-2073 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-273 (-774 *3))) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-774 *3)) (-5 *1 (-584 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))))) (-2586 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-781 *3))) (-4 *3 (-13 (-27) (-1111) (-408 *5))) (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-3 (-781 *3) (-2 (|:| |leftHandLimit| (-3 (-781 *3) "failed")) (|:| |rightHandLimit| (-3 (-781 *3) "failed"))) "failed")) (-5 *1 (-584 *5 *3))))) -(-10 -7 (-15 -2586 ((-3 (-781 |#2|) (-2 (|:| |leftHandLimit| (-3 (-781 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-781 |#2|) "failed"))) "failed") |#2| (-273 (-781 |#2|)))) (-15 -2073 ((-3 (-774 |#2|) "failed") |#2| (-273 (-774 |#2|)))) (-15 -2586 ((-3 (-781 |#2|) "failed") |#2| (-273 |#2|) (-1072)))) -((-2586 (((-3 (-781 (-385 (-885 |#1|))) "failed") (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|))) (-1072)) 80) (((-3 (-781 (-385 (-885 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed"))) "failed") (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|)))) 20) (((-3 (-781 (-385 (-885 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed"))) "failed") (-385 (-885 |#1|)) (-273 (-781 (-885 |#1|)))) 35)) (-2073 (((-774 (-385 (-885 |#1|))) (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|)))) 23) (((-774 (-385 (-885 |#1|))) (-385 (-885 |#1|)) (-273 (-774 (-885 |#1|)))) 43))) -(((-585 |#1|) (-10 -7 (-15 -2586 ((-3 (-781 (-385 (-885 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed"))) "failed") (-385 (-885 |#1|)) (-273 (-781 (-885 |#1|))))) (-15 -2586 ((-3 (-781 (-385 (-885 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed"))) "failed") (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|))))) (-15 -2073 ((-774 (-385 (-885 |#1|))) (-385 (-885 |#1|)) (-273 (-774 (-885 |#1|))))) (-15 -2073 ((-774 (-385 (-885 |#1|))) (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|))))) (-15 -2586 ((-3 (-781 (-385 (-885 |#1|))) "failed") (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|))) (-1072)))) (-429)) (T -585)) -((-2586 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 (-385 (-885 *6)))) (-5 *5 (-1072)) (-5 *3 (-385 (-885 *6))) (-4 *6 (-429)) (-5 *2 (-781 *3)) (-5 *1 (-585 *6)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-885 *5)))) (-5 *3 (-385 (-885 *5))) (-4 *5 (-429)) (-5 *2 (-774 *3)) (-5 *1 (-585 *5)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-774 (-885 *5)))) (-4 *5 (-429)) (-5 *2 (-774 (-385 (-885 *5)))) (-5 *1 (-585 *5)) (-5 *3 (-385 (-885 *5))))) (-2586 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-885 *5)))) (-5 *3 (-385 (-885 *5))) (-4 *5 (-429)) (-5 *2 (-3 (-781 *3) (-2 (|:| |leftHandLimit| (-3 (-781 *3) "failed")) (|:| |rightHandLimit| (-3 (-781 *3) "failed"))) "failed")) (-5 *1 (-585 *5)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-781 (-885 *5)))) (-4 *5 (-429)) (-5 *2 (-3 (-781 (-385 (-885 *5))) (-2 (|:| |leftHandLimit| (-3 (-781 (-385 (-885 *5))) "failed")) (|:| |rightHandLimit| (-3 (-781 (-385 (-885 *5))) "failed"))) "failed")) (-5 *1 (-585 *5)) (-5 *3 (-385 (-885 *5)))))) -(-10 -7 (-15 -2586 ((-3 (-781 (-385 (-885 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed"))) "failed") (-385 (-885 |#1|)) (-273 (-781 (-885 |#1|))))) (-15 -2586 ((-3 (-781 (-385 (-885 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-781 (-385 (-885 |#1|))) "failed"))) "failed") (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|))))) (-15 -2073 ((-774 (-385 (-885 |#1|))) (-385 (-885 |#1|)) (-273 (-774 (-885 |#1|))))) (-15 -2073 ((-774 (-385 (-885 |#1|))) (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|))))) (-15 -2586 ((-3 (-781 (-385 (-885 |#1|))) "failed") (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|))) (-1072)))) -((-3213 (((-3 (-1171 (-385 |#1|)) "failed") (-1171 |#2|) |#2|) 57 (-3389 (|has| |#1| (-341)))) (((-3 (-1171 |#1|) "failed") (-1171 |#2|) |#2|) 42 (|has| |#1| (-341)))) (-2563 (((-108) (-1171 |#2|)) 30)) (-3554 (((-3 (-1171 |#1|) "failed") (-1171 |#2|)) 33))) -(((-586 |#1| |#2|) (-10 -7 (-15 -2563 ((-108) (-1171 |#2|))) (-15 -3554 ((-3 (-1171 |#1|) "failed") (-1171 |#2|))) (IF (|has| |#1| (-341)) (-15 -3213 ((-3 (-1171 |#1|) "failed") (-1171 |#2|) |#2|)) (-15 -3213 ((-3 (-1171 (-385 |#1|)) "failed") (-1171 |#2|) |#2|)))) (-517) (-587 |#1|)) (T -586)) -((-3213 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1171 *4)) (-4 *4 (-587 *5)) (-3389 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1171 (-385 *5))) (-5 *1 (-586 *5 *4)))) (-3213 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1171 *4)) (-4 *4 (-587 *5)) (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-1171 *5)) (-5 *1 (-586 *5 *4)))) (-3554 (*1 *2 *3) (|partial| -12 (-5 *3 (-1171 *5)) (-4 *5 (-587 *4)) (-4 *4 (-517)) (-5 *2 (-1171 *4)) (-5 *1 (-586 *4 *5)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-587 *4)) (-4 *4 (-517)) (-5 *2 (-108)) (-5 *1 (-586 *4 *5))))) -(-10 -7 (-15 -2563 ((-108) (-1171 |#2|))) (-15 -3554 ((-3 (-1171 |#1|) "failed") (-1171 |#2|))) (IF (|has| |#1| (-341)) (-15 -3213 ((-3 (-1171 |#1|) "failed") (-1171 |#2|) |#2|)) (-15 -3213 ((-3 (-1171 (-385 |#1|)) "failed") (-1171 |#2|) |#2|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-3925 (((-631 |#1|) (-631 $)) 36) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 35)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-587 |#1|) (-131) (-975)) (T -587)) -((-3925 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-587 *4)) (-4 *4 (-975)) (-5 *2 (-631 *4)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *1)) (-5 *4 (-1171 *1)) (-4 *1 (-587 *5)) (-4 *5 (-975)) (-5 *2 (-2 (|:| -2928 (-631 *5)) (|:| |vec| (-1171 *5))))))) -(-13 (-975) (-10 -8 (-15 -3925 ((-631 |t#1|) (-631 $))) (-15 -3925 ((-2 (|:| -2928 (-631 |t#1|)) (|:| |vec| (-1171 |t#1|))) (-631 $) (-1171 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-668) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2147 ((|#2| (-591 |#1|) (-591 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-591 |#1|) (-591 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-591 |#1|) (-591 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-591 |#1|) (-591 |#2|) |#2|) 17) ((|#2| (-591 |#1|) (-591 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-591 |#1|) (-591 |#2|)) 12))) -(((-588 |#1| |#2|) (-10 -7 (-15 -2147 ((-1 |#2| |#1|) (-591 |#1|) (-591 |#2|))) (-15 -2147 (|#2| (-591 |#1|) (-591 |#2|) |#1|)) (-15 -2147 ((-1 |#2| |#1|) (-591 |#1|) (-591 |#2|) |#2|)) (-15 -2147 (|#2| (-591 |#1|) (-591 |#2|) |#1| |#2|)) (-15 -2147 ((-1 |#2| |#1|) (-591 |#1|) (-591 |#2|) (-1 |#2| |#1|))) (-15 -2147 (|#2| (-591 |#1|) (-591 |#2|) |#1| (-1 |#2| |#1|)))) (-1018) (-1125)) (T -588)) -((-2147 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1018)) (-4 *2 (-1125)) (-5 *1 (-588 *5 *2)))) (-2147 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-591 *5)) (-5 *4 (-591 *6)) (-4 *5 (-1018)) (-4 *6 (-1125)) (-5 *1 (-588 *5 *6)))) (-2147 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 *2)) (-4 *5 (-1018)) (-4 *2 (-1125)) (-5 *1 (-588 *5 *2)))) (-2147 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *6)) (-5 *4 (-591 *5)) (-4 *6 (-1018)) (-4 *5 (-1125)) (-5 *2 (-1 *5 *6)) (-5 *1 (-588 *6 *5)))) (-2147 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 *2)) (-4 *5 (-1018)) (-4 *2 (-1125)) (-5 *1 (-588 *5 *2)))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 *6)) (-4 *5 (-1018)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-588 *5 *6))))) -(-10 -7 (-15 -2147 ((-1 |#2| |#1|) (-591 |#1|) (-591 |#2|))) (-15 -2147 (|#2| (-591 |#1|) (-591 |#2|) |#1|)) (-15 -2147 ((-1 |#2| |#1|) (-591 |#1|) (-591 |#2|) |#2|)) (-15 -2147 (|#2| (-591 |#1|) (-591 |#2|) |#1| |#2|)) (-15 -2147 ((-1 |#2| |#1|) (-591 |#1|) (-591 |#2|) (-1 |#2| |#1|))) (-15 -2147 (|#2| (-591 |#1|) (-591 |#2|) |#1| (-1 |#2| |#1|)))) -((-1350 (((-591 |#2|) (-1 |#2| |#1| |#2|) (-591 |#1|) |#2|) 16)) (-3618 ((|#2| (-1 |#2| |#1| |#2|) (-591 |#1|) |#2|) 18)) (-1257 (((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|)) 13))) -(((-589 |#1| |#2|) (-10 -7 (-15 -1350 ((-591 |#2|) (-1 |#2| |#1| |#2|) (-591 |#1|) |#2|)) (-15 -3618 (|#2| (-1 |#2| |#1| |#2|) (-591 |#1|) |#2|)) (-15 -1257 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|)))) (-1125) (-1125)) (T -589)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-591 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-591 *6)) (-5 *1 (-589 *5 *6)))) (-3618 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-591 *5)) (-4 *5 (-1125)) (-4 *2 (-1125)) (-5 *1 (-589 *5 *2)))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-591 *6)) (-4 *6 (-1125)) (-4 *5 (-1125)) (-5 *2 (-591 *5)) (-5 *1 (-589 *6 *5))))) -(-10 -7 (-15 -1350 ((-591 |#2|) (-1 |#2| |#1| |#2|) (-591 |#1|) |#2|)) (-15 -3618 (|#2| (-1 |#2| |#1| |#2|) (-591 |#1|) |#2|)) (-15 -1257 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|)))) -((-1257 (((-591 |#3|) (-1 |#3| |#1| |#2|) (-591 |#1|) (-591 |#2|)) 13))) -(((-590 |#1| |#2| |#3|) (-10 -7 (-15 -1257 ((-591 |#3|) (-1 |#3| |#1| |#2|) (-591 |#1|) (-591 |#2|)))) (-1125) (-1125) (-1125)) (T -590)) -((-1257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-591 *6)) (-5 *5 (-591 *7)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-591 *8)) (-5 *1 (-590 *6 *7 *8))))) -(-10 -7 (-15 -1257 ((-591 |#3|) (-1 |#3| |#1| |#2|) (-591 |#1|) (-591 |#2|)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) NIL)) (-2434 ((|#1| $) NIL)) (-3856 (($ $) NIL)) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-2983 (($ $ (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) $) NIL (|has| |#1| (-788))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2613 (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1282 (($ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-3912 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-3191 (($ $ $) NIL (|has| $ (-6 -4251)))) (-2568 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-2756 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4251))) (($ $ "rest" $) NIL (|has| $ (-6 -4251))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-2806 (($ $ $) 32 (|has| |#1| (-1018)))) (-2795 (($ $ $) 34 (|has| |#1| (-1018)))) (-2785 (($ $ $) 37 (|has| |#1| (-1018)))) (-1288 (($ (-1 (-108) |#1|) $) NIL)) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2424 ((|#1| $) NIL)) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2884 (($ $) NIL) (($ $ (-712)) NIL)) (-3945 (($ $) NIL (|has| |#1| (-1018)))) (-2908 (($ $) 31 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3844 (($ |#1| $) NIL (|has| |#1| (-1018))) (($ (-1 (-108) |#1|) $) NIL)) (-2537 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-4139 (((-108) $) NIL)) (-1734 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018))) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) (-1 (-108) |#1|) $) NIL)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-1813 (((-108) $) 9)) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-4131 (($) 7)) (-1316 (($ (-712) |#1|) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3597 (($ $ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3459 (($ $ $) NIL (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2750 (($ |#1|) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2065 (((-591 |#1|) $) NIL)) (-2878 (((-108) $) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2555 ((|#1| $) NIL) (($ $ (-712)) NIL)) (-1520 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2059 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2872 ((|#1| $) NIL) (($ $ (-712)) NIL)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-1622 (((-108) $) NIL)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1138 (-525))) NIL) ((|#1| $ (-525)) 36) ((|#1| $ (-525) |#1|) NIL)) (-2194 (((-525) $ $) NIL)) (-1227 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-3226 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-4133 (((-108) $) NIL)) (-2349 (($ $) NIL)) (-3494 (($ $) NIL (|has| $ (-6 -4251)))) (-1248 (((-712) $) NIL)) (-3249 (($ $) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) 45 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) NIL)) (-2737 (($ |#1| $) 10)) (-3729 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1624 (($ $ $) 30) (($ |#1| $) NIL) (($ (-591 $)) NIL) (($ $ |#1|) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2258 (($ $ $) 11)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3042 (((-1072) $) 26 (|has| |#1| (-769))) (((-1072) $ (-108)) 27 (|has| |#1| (-769))) (((-1176) (-763) $) 28 (|has| |#1| (-769))) (((-1176) (-763) $ (-108)) 29 (|has| |#1| (-769)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-591 |#1|) (-13 (-611 |#1|) (-10 -8 (-15 -4131 ($)) (-15 -1813 ((-108) $)) (-15 -2737 ($ |#1| $)) (-15 -2258 ($ $ $)) (IF (|has| |#1| (-1018)) (PROGN (-15 -2806 ($ $ $)) (-15 -2795 ($ $ $)) (-15 -2785 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|))) (-1125)) (T -591)) -((-4131 (*1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1125)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-591 *3)) (-4 *3 (-1125)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1125)))) (-2258 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1125)))) (-2806 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1018)) (-4 *2 (-1125)))) (-2795 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1018)) (-4 *2 (-1125)))) (-2785 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1018)) (-4 *2 (-1125))))) -(-13 (-611 |#1|) (-10 -8 (-15 -4131 ($)) (-15 -1813 ((-108) $)) (-15 -2737 ($ |#1| $)) (-15 -2258 ($ $ $)) (IF (|has| |#1| (-1018)) (PROGN (-15 -2806 ($ $ $)) (-15 -2795 ($ $ $)) (-15 -2785 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2891 (($ |#1| |#1| $) 43)) (-3727 (((-108) $ (-712)) NIL)) (-1288 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3945 (($ $) 45)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3844 (($ |#1| $) 52 (|has| $ (-6 -4250))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4250)))) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-2916 (((-591 |#1|) $) 9 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 37)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-3949 ((|#1| $) 46)) (-1520 (($ |#1| $) 26) (($ |#1| $ (-712)) 42)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4166 ((|#1| $) 48)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 21)) (-3164 (($) 25)) (-3335 (((-108) $) 50)) (-2592 (((-591 (-2 (|:| -1568 |#1|) (|:| -2960 (-712)))) $) 59)) (-3583 (($) 23) (($ (-591 |#1|)) 18)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) 56 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) 19)) (-1300 (((-501) $) 34 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) NIL)) (-2686 (((-796) $) 14 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) 22)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 61 (|has| |#1| (-1018)))) (-2028 (((-712) $) 16 (|has| $ (-6 -4250))))) -(((-592 |#1|) (-13 (-636 |#1|) (-10 -8 (-6 -4250) (-15 -3335 ((-108) $)) (-15 -2891 ($ |#1| |#1| $)))) (-1018)) (T -592)) -((-3335 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1018)))) (-2891 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1018))))) -(-13 (-636 |#1|) (-10 -8 (-6 -4250) (-15 -3335 ((-108) $)) (-15 -2891 ($ |#1| |#1| $)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ |#1| $) 23))) -(((-593 |#1|) (-131) (-982)) (T -593)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-982))))) +((-2746 (((-3 (-592 (-1086 (-525))) "failed") (-592 (-1086 (-525))) (-1086 (-525))) 24))) +(((-533) (-10 -7 (-15 -2746 ((-3 (-592 (-1086 (-525))) "failed") (-592 (-1086 (-525))) (-1086 (-525)))))) (T -533)) +((-2746 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 (-525)))) (-5 *3 (-1086 (-525))) (-5 *1 (-533))))) +(-10 -7 (-15 -2746 ((-3 (-592 (-1086 (-525))) "failed") (-592 (-1086 (-525))) (-1086 (-525))))) +((-2810 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1090)) 19)) (-2783 (((-592 (-565 |#2|)) (-592 |#2|) (-1090)) 23)) (-2272 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|))) 11)) (-3072 ((|#2| |#2| (-1090)) 54 (|has| |#1| (-517)))) (-1799 ((|#2| |#2| (-1090)) 78 (-12 (|has| |#2| (-263)) (|has| |#1| (-429))))) (-2312 (((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1090)) 25)) (-2739 (((-565 |#2|) (-592 (-565 |#2|))) 24)) (-3297 (((-542 |#2|) |#2| (-1090) (-1 (-542 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090))) 103 (-12 (|has| |#2| (-263)) (|has| |#2| (-578)) (|has| |#2| (-967 (-1090))) (|has| |#1| (-567 (-826 (-525)))) (|has| |#1| (-429)) (|has| |#1| (-820 (-525))))))) +(((-534 |#1| |#2|) (-10 -7 (-15 -2810 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1090))) (-15 -2739 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -2312 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1090))) (-15 -2272 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -2783 ((-592 (-565 |#2|)) (-592 |#2|) (-1090))) (IF (|has| |#1| (-517)) (-15 -3072 (|#2| |#2| (-1090))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -1799 (|#2| |#2| (-1090))) (IF (|has| |#1| (-567 (-826 (-525)))) (IF (|has| |#1| (-820 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-967 (-1090))) (-15 -3297 ((-542 |#2|) |#2| (-1090) (-1 (-542 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-789) (-408 |#1|)) (T -534)) +((-3297 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-542 *3) *3 (-1090))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1090))) (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-967 *4)) (-4 *3 (-408 *7)) (-5 *4 (-1090)) (-4 *7 (-567 (-826 (-525)))) (-4 *7 (-429)) (-4 *7 (-820 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3)) (-5 *1 (-534 *7 *3)))) (-1799 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-429)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))) (-3072 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-517)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-1090)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6)))) (-2272 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789)) (-5 *1 (-534 *3 *4)))) (-2312 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-565 *6))) (-5 *4 (-1090)) (-5 *2 (-565 *6)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-592 (-565 *5))) (-4 *4 (-789)) (-5 *2 (-565 *5)) (-5 *1 (-534 *4 *5)) (-4 *5 (-408 *4)))) (-2810 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1090)) (-4 *5 (-408 *4)) (-4 *4 (-789)) (-5 *1 (-534 *4 *5))))) +(-10 -7 (-15 -2810 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1090))) (-15 -2739 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -2312 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1090))) (-15 -2272 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -2783 ((-592 (-565 |#2|)) (-592 |#2|) (-1090))) (IF (|has| |#1| (-517)) (-15 -3072 (|#2| |#2| (-1090))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -1799 (|#2| |#2| (-1090))) (IF (|has| |#1| (-567 (-826 (-525)))) (IF (|has| |#1| (-820 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-967 (-1090))) (-15 -3297 ((-542 |#2|) |#2| (-1090) (-1 (-542 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2189 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|)) 172)) (-2090 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|))) 148)) (-2674 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|))) 145)) (-1270 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2470 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3914 (((-3 (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|)) 175)) (-3118 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|)) 178)) (-1619 (((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 84)) (-2258 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-1572 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|))) 152)) (-2303 (((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 137)) (-2124 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 162)) (-2731 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|)) 183))) +(((-535 |#1| |#2|) (-10 -7 (-15 -2470 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2124 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -2189 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -3118 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -2731 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -2090 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -1572 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -3914 ((-3 (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -2674 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -1270 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2303 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -1619 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2258 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-341) (-1148 |#1|)) (T -535)) +((-2258 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-535 *5 *3)))) (-1619 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-2303 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-573 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3356 *4) (|:| |sol?| (-108))) (-525) *4)) (-4 *4 (-341)) (-4 *5 (-1148 *4)) (-5 *1 (-535 *4 *5)))) (-1270 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3081 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1148 *4)))) (-2674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7))) (-4 *7 (-1148 *6)) (-5 *3 (-385 *7)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-535 *6 *7)))) (-3914 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3081 (-385 *6)) (|:| |coeff| (-385 *6)))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-1572 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3356 *7) (|:| |sol?| (-108))) (-525) *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1148 *7)) (-5 *3 (-385 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)))) (-2090 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3081 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1148 *7)) (-5 *3 (-385 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)))) (-2731 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3356 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -3081 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-3118 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3081 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -3081 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-2189 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-2124 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3356 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-2470 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3081 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) +(-10 -7 (-15 -2470 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2124 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -2189 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -3118 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -2731 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -2090 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -1572 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -3914 ((-3 (-2 (|:| -3081 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -2674 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -1270 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2303 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3356 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -1619 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2258 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-1604 (((-3 |#2| "failed") |#2| (-1090) (-1090)) 10))) +(((-536 |#1| |#2|) (-10 -7 (-15 -1604 ((-3 |#2| "failed") |#2| (-1090) (-1090)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-892) (-1054) (-29 |#1|))) (T -536)) +((-1604 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *1 (-536 *4 *2)) (-4 *2 (-13 (-1112) (-892) (-1054) (-29 *4)))))) +(-10 -7 (-15 -1604 ((-3 |#2| "failed") |#2| (-1090) (-1090)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2975 (($ $ (-525)) 66)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-4121 (($ (-1086 (-525)) (-525)) 72)) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) 58)) (-3785 (($ $) 34)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2158 (((-713) $) 15)) (-2507 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1690 (((-525)) 29)) (-1933 (((-525) $) 32)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1539 (($ $ (-525)) 21)) (-2675 (((-3 $ "failed") $ $) 59)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) 16)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 61)) (-3943 (((-1071 (-525)) $) 18)) (-2789 (($ $) 23)) (-4044 (((-797) $) 87) (($ (-525)) 52) (($ $) NIL)) (-2502 (((-713)) 14)) (-3787 (((-108) $ $) NIL)) (-2371 (((-525) $ (-525)) 36)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 35 T CONST)) (-1449 (($) 19 T CONST)) (-3899 (((-108) $ $) 39)) (-4033 (($ $) 51) (($ $ $) 37)) (-4017 (($ $ $) 50)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 54) (($ $ $) 55))) +(((-537 |#1| |#2|) (-803 |#1|) (-525) (-108)) (T -537)) +NIL +(-803 |#1|) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 21)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 (($ $ (-855)) NIL (|has| $ (-346))) (($ $) NIL)) (-1207 (((-1100 (-855) (-713)) (-525)) 47)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 $ "failed") $) 75)) (-2068 (($ $) 74)) (-1689 (($ (-1172 $)) 73)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) 32)) (-1527 (($) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) 49)) (-3703 (((-108) $) NIL)) (-3351 (($ $) NIL) (($ $ (-713)) NIL)) (-2069 (((-108) $) NIL)) (-2158 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2507 (((-108) $) NIL)) (-2431 (($) 37 (|has| $ (-346)))) (-1872 (((-108) $) NIL (|has| $ (-346)))) (-2281 (($ $ (-855)) NIL (|has| $ (-346))) (($ $) NIL)) (-1978 (((-3 $ "failed") $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 $) $ (-855)) NIL (|has| $ (-346))) (((-1086 $) $) 83)) (-2111 (((-855) $) 55)) (-1311 (((-1086 $) $) NIL (|has| $ (-346)))) (-3819 (((-3 (-1086 $) "failed") $ $) NIL (|has| $ (-346))) (((-1086 $) $) NIL (|has| $ (-346)))) (-3851 (($ $ (-1086 $)) NIL (|has| $ (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL T CONST)) (-3381 (($ (-855)) 48)) (-1769 (((-108) $) 67)) (-3027 (((-1037) $) NIL)) (-3258 (($) 19 (|has| $ (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) 42)) (-2961 (((-396 $) $) NIL)) (-1927 (((-855)) 66) (((-775 (-855))) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-2374 (((-128)) NIL)) (-1576 (($ $ (-713)) NIL) (($ $) NIL)) (-1486 (((-855) $) 65) (((-775 (-855)) $) NIL)) (-2775 (((-1086 $)) 82)) (-3405 (($) 54)) (-2041 (($) 38 (|has| $ (-346)))) (-1625 (((-632 $) (-1172 $)) NIL) (((-1172 $) $) 71)) (-2923 (((-525) $) 28)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) 30) (($ $) NIL) (($ (-385 (-525))) NIL)) (-1279 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2502 (((-713)) 39)) (-2734 (((-1172 $) (-855)) 77) (((-1172 $)) 76)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 22 T CONST)) (-1449 (($) 18 T CONST)) (-3459 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 26)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 61) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) +(((-538 |#1|) (-13 (-327) (-307 $) (-567 (-525))) (-855)) (T -538)) +NIL +(-13 (-327) (-307 $) (-567 (-525))) +((-3164 (((-1177) (-1073)) 10))) +(((-539) (-10 -7 (-15 -3164 ((-1177) (-1073))))) (T -539)) +((-3164 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-539))))) +(-10 -7 (-15 -3164 ((-1177) (-1073)))) +((-3114 (((-542 |#2|) (-542 |#2|)) 40)) (-1203 (((-592 |#2|) (-542 |#2|)) 42)) (-1265 ((|#2| (-542 |#2|)) 48))) +(((-540 |#1| |#2|) (-10 -7 (-15 -3114 ((-542 |#2|) (-542 |#2|))) (-15 -1203 ((-592 |#2|) (-542 |#2|))) (-15 -1265 (|#2| (-542 |#2|)))) (-13 (-429) (-967 (-525)) (-789) (-588 (-525))) (-13 (-29 |#1|) (-1112))) (T -540)) +((-1265 (*1 *2 *3) (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1112))) (-5 *1 (-540 *4 *2)) (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))))) (-1203 (*1 *2 *3) (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1112))) (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 *5)) (-5 *1 (-540 *4 *5)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1112))) (-4 *3 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *1 (-540 *3 *4))))) +(-10 -7 (-15 -3114 ((-542 |#2|) (-542 |#2|))) (-15 -1203 ((-592 |#2|) (-542 |#2|))) (-15 -1265 (|#2| (-542 |#2|)))) +((-2868 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|)) 30))) +(((-541 |#1| |#2|) (-10 -7 (-15 -2868 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -2868 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2868 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2868 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-341) (-341)) (T -541)) +((-2868 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-541 *5 *6)))) (-2868 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2)))) (-2868 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3081 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| -3081 *6) (|:| |coeff| *6))) (-5 *1 (-541 *5 *6)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6))))) +(-10 -7 (-15 -2868 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -2868 ((-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3081 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2868 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2868 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) 69)) (-2068 ((|#1| $) NIL)) (-3081 ((|#1| $) 26)) (-3577 (((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2499 (($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2451 (((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $) 27)) (-1707 (((-1073) $) NIL)) (-3450 (($ |#1| |#1|) 33) (($ |#1| (-1090)) 44 (|has| |#1| (-967 (-1090))))) (-3027 (((-1037) $) NIL)) (-1871 (((-108) $) 30)) (-1576 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1090)) 82 (|has| |#1| (-834 (-1090))))) (-4044 (((-797) $) 96) (($ |#1|) 25)) (-1436 (($) 16 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) 15) (($ $ $) NIL)) (-4017 (($ $ $) 78)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 14) (($ (-385 (-525)) $) 36) (($ $ (-385 (-525))) NIL))) +(((-542 |#1|) (-13 (-660 (-385 (-525))) (-967 |#1|) (-10 -8 (-15 -2499 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3081 (|#1| $)) (-15 -2451 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $)) (-15 -3577 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1871 ((-108) $)) (-15 -3450 ($ |#1| |#1|)) (-15 -1576 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-834 (-1090))) (-15 -1576 (|#1| $ (-1090))) |%noBranch|) (IF (|has| |#1| (-967 (-1090))) (-15 -3450 ($ |#1| (-1090))) |%noBranch|))) (-341)) (T -542)) +((-2499 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 *2)) (|:| |logand| (-1086 *2))))) (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-341)) (-5 *1 (-542 *2)))) (-3081 (*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-2451 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 *3)) (|:| |logand| (-1086 *3))))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-3450 (*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-1576 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-1576 (*1 *2 *1 *3) (-12 (-4 *2 (-341)) (-4 *2 (-834 *3)) (-5 *1 (-542 *2)) (-5 *3 (-1090)))) (-3450 (*1 *1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *1 (-542 *2)) (-4 *2 (-967 *3)) (-4 *2 (-341))))) +(-13 (-660 (-385 (-525))) (-967 |#1|) (-10 -8 (-15 -2499 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3081 (|#1| $)) (-15 -2451 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $)) (-15 -3577 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1871 ((-108) $)) (-15 -3450 ($ |#1| |#1|)) (-15 -1576 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-834 (-1090))) (-15 -1576 (|#1| $ (-1090))) |%noBranch|) (IF (|has| |#1| (-967 (-1090))) (-15 -3450 ($ |#1| (-1090))) |%noBranch|))) +((-2735 (((-108) |#1|) 16)) (-2684 (((-3 |#1| "failed") |#1|) 14)) (-3143 (((-2 (|:| -3758 |#1|) (|:| -1737 (-713))) |#1|) 31) (((-3 |#1| "failed") |#1| (-713)) 18)) (-3610 (((-108) |#1| (-713)) 19)) (-3865 ((|#1| |#1|) 32)) (-2447 ((|#1| |#1| (-713)) 34))) +(((-543 |#1|) (-10 -7 (-15 -3610 ((-108) |#1| (-713))) (-15 -3143 ((-3 |#1| "failed") |#1| (-713))) (-15 -3143 ((-2 (|:| -3758 |#1|) (|:| -1737 (-713))) |#1|)) (-15 -2447 (|#1| |#1| (-713))) (-15 -2735 ((-108) |#1|)) (-15 -2684 ((-3 |#1| "failed") |#1|)) (-15 -3865 (|#1| |#1|))) (-510)) (T -543)) +((-3865 (*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-2684 (*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-2735 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-2447 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| -1737 (-713)))) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-3143 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510))))) +(-10 -7 (-15 -3610 ((-108) |#1| (-713))) (-15 -3143 ((-3 |#1| "failed") |#1| (-713))) (-15 -3143 ((-2 (|:| -3758 |#1|) (|:| -1737 (-713))) |#1|)) (-15 -2447 (|#1| |#1| (-713))) (-15 -2735 ((-108) |#1|)) (-15 -2684 ((-3 |#1| "failed") |#1|)) (-15 -3865 (|#1| |#1|))) +((-2023 (((-1086 |#1|) (-855)) 27))) +(((-544 |#1|) (-10 -7 (-15 -2023 ((-1086 |#1|) (-855)))) (-327)) (T -544)) +((-2023 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-544 *4)) (-4 *4 (-327))))) +(-10 -7 (-15 -2023 ((-1086 |#1|) (-855)))) +((-3114 (((-542 (-385 (-886 |#1|))) (-542 (-385 (-886 |#1|)))) 27)) (-2313 (((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-886 |#1|)) (-1090)) 33 (|has| |#1| (-138)))) (-1203 (((-592 (-294 |#1|)) (-542 (-385 (-886 |#1|)))) 19)) (-1447 (((-294 |#1|) (-385 (-886 |#1|)) (-1090)) 31 (|has| |#1| (-138)))) (-1265 (((-294 |#1|) (-542 (-385 (-886 |#1|)))) 21))) +(((-545 |#1|) (-10 -7 (-15 -3114 ((-542 (-385 (-886 |#1|))) (-542 (-385 (-886 |#1|))))) (-15 -1203 ((-592 (-294 |#1|)) (-542 (-385 (-886 |#1|))))) (-15 -1265 ((-294 |#1|) (-542 (-385 (-886 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -2313 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -1447 ((-294 |#1|) (-385 (-886 |#1|)) (-1090)))) |%noBranch|)) (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (T -545)) +((-1447 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5)))) (-1265 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-886 *4)))) (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))) (-1203 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-886 *4)))) (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 (-294 *4))) (-5 *1 (-545 *4)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-542 (-385 (-886 *3)))) (-4 *3 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *1 (-545 *3))))) +(-10 -7 (-15 -3114 ((-542 (-385 (-886 |#1|))) (-542 (-385 (-886 |#1|))))) (-15 -1203 ((-592 (-294 |#1|)) (-542 (-385 (-886 |#1|))))) (-15 -1265 ((-294 |#1|) (-542 (-385 (-886 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -2313 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -1447 ((-294 |#1|) (-385 (-886 |#1|)) (-1090)))) |%noBranch|)) +((-2423 (((-592 (-632 (-525))) (-592 (-525)) (-592 (-839 (-525)))) 46) (((-592 (-632 (-525))) (-592 (-525))) 47) (((-632 (-525)) (-592 (-525)) (-839 (-525))) 42)) (-2028 (((-713) (-592 (-525))) 40))) +(((-546) (-10 -7 (-15 -2028 ((-713) (-592 (-525)))) (-15 -2423 ((-632 (-525)) (-592 (-525)) (-839 (-525)))) (-15 -2423 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -2423 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-839 (-525))))))) (T -546)) +((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-839 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-839 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-546)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546))))) +(-10 -7 (-15 -2028 ((-713) (-592 (-525)))) (-15 -2423 ((-632 (-525)) (-592 (-525)) (-839 (-525)))) (-15 -2423 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -2423 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-839 (-525)))))) +((-2439 (((-592 |#5|) |#5| (-108)) 73)) (-3604 (((-108) |#5| (-592 |#5|)) 30))) +(((-547 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2439 ((-592 |#5|) |#5| (-108))) (-15 -3604 ((-108) |#5| (-592 |#5|)))) (-13 (-286) (-138)) (-735) (-789) (-990 |#1| |#2| |#3|) (-1028 |#1| |#2| |#3| |#4|)) (T -547)) +((-3604 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1028 *5 *6 *7 *8)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-547 *5 *6 *7 *8 *3)))) (-2439 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-592 *3)) (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1028 *5 *6 *7 *8))))) +(-10 -7 (-15 -2439 ((-592 |#5|) |#5| (-108))) (-15 -3604 ((-108) |#5| (-592 |#5|)))) +((-4028 (((-108) $ $) NIL (|has| (-135) (-1019)))) (-2291 (($ $) 34)) (-3635 (($ $) NIL)) (-2441 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3203 (((-108) $ $) 51)) (-3172 (((-108) $ $ (-525)) 46)) (-3114 (((-592 $) $ (-135)) 60) (((-592 $) $ (-132)) 61)) (-3746 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-1943 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-789))))) (-1473 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 (((-135) $ (-525) (-135)) 45 (|has| $ (-6 -4255))) (((-135) $ (-1139 (-525)) (-135)) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-2604 (($ $ (-135)) 64) (($ $ (-132)) 65)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-2195 (($ $ (-1139 (-525)) $) 44)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-2591 (($ (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2549 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4255)))) (-2488 (((-135) $ (-525)) NIL)) (-3235 (((-108) $ $) 72)) (-1930 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1019))) (((-525) (-135) $ (-525)) 48 (|has| (-135) (-1019))) (((-525) $ $ (-525)) 47) (((-525) (-132) $ (-525)) 50)) (-3781 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-3248 (($ (-713) (-135)) 9)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) 28 (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| (-135) (-789)))) (-1440 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-2679 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-2112 (((-525) $) 42 (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| (-135) (-789)))) (-2033 (((-108) $ $ (-135)) 73)) (-3894 (((-713) $ $ (-135)) 70)) (-2540 (($ (-1 (-135) (-135)) $) 33 (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-3850 (($ $) 37)) (-3265 (($ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-2617 (($ $ (-135)) 62) (($ $ (-132)) 63)) (-1707 (((-1073) $) 38 (|has| (-135) (-1019)))) (-2234 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) 23)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-525) $) 69) (((-1037) $) NIL (|has| (-135) (-1019)))) (-1683 (((-135) $) NIL (|has| (-525) (-789)))) (-3611 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-1614 (($ $ (-135)) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-4100 (((-592 (-135)) $) NIL)) (-3086 (((-108) $) 12)) (-3266 (($) 10)) (-1496 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) 52) (($ $ (-1139 (-525))) 21) (($ $ $) NIL)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3053 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-4038 (($ $ $ (-525)) 66 (|has| $ (-6 -4255)))) (-1261 (($ $) 17)) (-2923 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-4059 (($ (-592 (-135))) NIL)) (-1810 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) 16) (($ (-592 $)) 67)) (-4044 (($ (-135)) NIL) (((-797) $) 27 (|has| (-135) (-566 (-797))))) (-2443 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3899 (((-108) $ $) 14 (|has| (-135) (-1019)))) (-3959 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3928 (((-108) $ $) 15 (|has| (-135) (-789)))) (-1696 (((-713) $) 13 (|has| $ (-6 -4254))))) +(((-548 |#1|) (-13 (-1059) (-10 -8 (-15 -3027 ((-525) $)))) (-525)) (T -548)) +((-3027 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 *2)))) +(-13 (-1059) (-10 -8 (-15 -3027 ((-525) $)))) +((-4138 (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1014 |#4|)) 32))) +(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4138 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1014 |#4|))) (-15 -4138 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|))) (-735) (-789) (-517) (-883 |#3| |#1| |#2|)) (T -549)) +((-4138 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-883 *6 *5 *4)))) (-4138 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1014 *3)) (-4 *3 (-883 *7 *6 *4)) (-4 *6 (-735)) (-4 *4 (-789)) (-4 *7 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *6 *4 *7 *3))))) +(-10 -7 (-15 -4138 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1014 |#4|))) (-15 -4138 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 63)) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3948 (($ $ (-525)) 54) (($ $ (-525) (-525)) 55)) (-3423 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 60)) (-3620 (($ $) 100)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2982 (((-797) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-956 (-782 (-525))) (-1090) |#1| (-385 (-525))) 215)) (-4231 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 34)) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3951 (((-108) $) NIL)) (-2158 (((-525) $) 58) (((-525) $ (-525)) 59)) (-2507 (((-108) $) NIL)) (-2633 (($ $ (-855)) 76)) (-2277 (($ (-1 |#1| (-525)) $) 73)) (-1432 (((-108) $) 25)) (-3097 (($ |#1| (-525)) 22) (($ $ (-1004) (-525)) NIL) (($ $ (-592 (-1004)) (-592 (-525))) NIL)) (-2868 (($ (-1 |#1| |#1|) $) 67)) (-3452 (($ (-956 (-782 (-525))) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 13)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-2313 (($ $) 112 (|has| |#1| (-37 (-385 (-525)))))) (-2557 (((-3 $ "failed") $ $ (-108)) 99)) (-2908 (($ $ $) 108)) (-3027 (((-1037) $) NIL)) (-4145 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 15)) (-1956 (((-956 (-782 (-525))) $) 14)) (-1539 (($ $ (-525)) 45)) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2168 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-1496 ((|#1| $ (-525)) 57) (($ $ $) NIL (|has| (-525) (-1031)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-1486 (((-525) $) NIL)) (-2789 (($ $) 46)) (-4044 (((-797) $) NIL) (($ (-525)) 28) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 27 (|has| |#1| (-160)))) (-2100 ((|#1| $ (-525)) 56)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) 37)) (-3448 ((|#1| $) NIL)) (-1835 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-2651 (($ $) 156 (|has| |#1| (-37 (-385 (-525)))))) (-2694 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-1346 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-3643 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-2671 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-1781 (($ $ (-385 (-525))) 146 (|has| |#1| (-37 (-385 (-525)))))) (-4224 (($ $ |#1|) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3616 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-1223 (($ $) 148 (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $) 183 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-3743 (($ $) 181 (|has| |#1| (-37 (-385 (-525)))))) (-1388 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-2839 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-3204 (($ $) 154 (|has| |#1| (-37 (-385 (-525)))))) (-3120 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-2390 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-3801 (($ $) 185 (|has| |#1| (-37 (-385 (-525)))))) (-2500 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-1381 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-3500 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-4052 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-3231 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-3617 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-3809 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-4221 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-1240 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2371 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 29 T CONST)) (-1449 (($) 38 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3899 (((-108) $ $) 65)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) 84) (($ $ $) 64)) (-4017 (($ $ $) 81)) (** (($ $ (-855)) NIL) (($ $ (-713)) 103)) (* (($ (-855) $) 89) (($ (-713) $) 87) (($ (-525) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-550 |#1|) (-13 (-1150 |#1| (-525)) (-10 -8 (-15 -3452 ($ (-956 (-782 (-525))) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1956 ((-956 (-782 (-525))) $)) (-15 -4145 ((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -4231 ($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1432 ((-108) $)) (-15 -2277 ($ (-1 |#1| (-525)) $)) (-15 -2557 ((-3 $ "failed") $ $ (-108))) (-15 -3620 ($ $)) (-15 -2908 ($ $ $)) (-15 -2982 ((-797) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-956 (-782 (-525))) (-1090) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $)) (-15 -4224 ($ $ |#1|)) (-15 -1781 ($ $ (-385 (-525)))) (-15 -1223 ($ $)) (-15 -3616 ($ $)) (-15 -1346 ($ $)) (-15 -3204 ($ $)) (-15 -2651 ($ $)) (-15 -1388 ($ $)) (-15 -2671 ($ $)) (-15 -2477 ($ $)) (-15 -2500 ($ $)) (-15 -1240 ($ $)) (-15 -2390 ($ $)) (-15 -3809 ($ $)) (-15 -3500 ($ $)) (-15 -3231 ($ $)) (-15 -2694 ($ $)) (-15 -2839 ($ $)) (-15 -1835 ($ $)) (-15 -3743 ($ $)) (-15 -3643 ($ $)) (-15 -1698 ($ $)) (-15 -3801 ($ $)) (-15 -4221 ($ $)) (-15 -3120 ($ $)) (-15 -3617 ($ $)) (-15 -1381 ($ $)) (-15 -4052 ($ $))) |%noBranch|))) (-976)) (T -550)) +((-1432 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-976)))) (-3452 (*1 *1 *2 *3) (-12 (-5 *2 (-956 (-782 (-525)))) (-5 *3 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-976)) (-5 *1 (-550 *4)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-956 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-976)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-5 *1 (-550 *3)) (-4 *3 (-976)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-976)) (-5 *1 (-550 *3)))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-976)) (-5 *1 (-550 *3)))) (-2557 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-976)))) (-3620 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-976)))) (-2908 (*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-976)))) (-2982 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *6)))) (-5 *4 (-956 (-782 (-525)))) (-5 *5 (-1090)) (-5 *7 (-385 (-525))) (-4 *6 (-976)) (-5 *2 (-797)) (-5 *1 (-550 *6)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-4224 (*1 *1 *1 *2) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1781 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 *2)) (-4 *3 (-976)))) (-1223 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3616 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1346 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3204 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2651 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1388 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2671 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2477 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1240 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2390 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3500 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3231 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2694 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2839 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1835 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3743 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3643 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1698 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-4221 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3120 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3617 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1381 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-4052 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(-13 (-1150 |#1| (-525)) (-10 -8 (-15 -3452 ($ (-956 (-782 (-525))) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1956 ((-956 (-782 (-525))) $)) (-15 -4145 ((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -4231 ($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1432 ((-108) $)) (-15 -2277 ($ (-1 |#1| (-525)) $)) (-15 -2557 ((-3 $ "failed") $ $ (-108))) (-15 -3620 ($ $)) (-15 -2908 ($ $ $)) (-15 -2982 ((-797) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-956 (-782 (-525))) (-1090) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $)) (-15 -4224 ($ $ |#1|)) (-15 -1781 ($ $ (-385 (-525)))) (-15 -1223 ($ $)) (-15 -3616 ($ $)) (-15 -1346 ($ $)) (-15 -3204 ($ $)) (-15 -2651 ($ $)) (-15 -1388 ($ $)) (-15 -2671 ($ $)) (-15 -2477 ($ $)) (-15 -2500 ($ $)) (-15 -1240 ($ $)) (-15 -2390 ($ $)) (-15 -3809 ($ $)) (-15 -3500 ($ $)) (-15 -3231 ($ $)) (-15 -2694 ($ $)) (-15 -2839 ($ $)) (-15 -1835 ($ $)) (-15 -3743 ($ $)) (-15 -3643 ($ $)) (-15 -1698 ($ $)) (-15 -3801 ($ $)) (-15 -4221 ($ $)) (-15 -3120 ($ $)) (-15 -3617 ($ $)) (-15 -1381 ($ $)) (-15 -4052 ($ $))) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-4231 (($ (-1071 |#1|)) 9)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) 42)) (-3951 (((-108) $) 52)) (-2158 (((-713) $) 55) (((-713) $ (-713)) 54)) (-2507 (((-108) $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2675 (((-3 $ "failed") $ $) 44 (|has| |#1| (-517)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517)))) (-3681 (((-1071 |#1|) $) 23)) (-2502 (((-713)) 51)) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 10 T CONST)) (-1449 (($) 14 T CONST)) (-3899 (((-108) $ $) 22)) (-4033 (($ $) 30) (($ $ $) 16)) (-4017 (($ $ $) 25)) (** (($ $ (-855)) NIL) (($ $ (-713)) 49)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-525)) 36))) +(((-551 |#1|) (-13 (-976) (-10 -8 (-15 -3681 ((-1071 |#1|) $)) (-15 -4231 ($ (-1071 |#1|))) (-15 -3951 ((-108) $)) (-15 -2158 ((-713) $)) (-15 -2158 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|))) (-976)) (T -551)) +((-3681 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-551 *3)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) (-2158 (*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-976)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-976)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-976))))) +(-13 (-976) (-10 -8 (-15 -3681 ((-1071 |#1|) $)) (-15 -4231 ($ (-1071 |#1|))) (-15 -3951 ((-108) $)) (-15 -2158 ((-713) $)) (-15 -2158 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|))) +((-2868 (((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)) 15))) +(((-552 |#1| |#2|) (-10 -7 (-15 -2868 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)))) (-1126) (-1126)) (T -552)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6))))) +(-10 -7 (-15 -2868 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)))) +((-2868 (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1071 |#2|)) 20) (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-555 |#2|)) 19) (((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|)) 18))) +(((-553 |#1| |#2| |#3|) (-10 -7 (-15 -2868 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -2868 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-555 |#2|))) (-15 -2868 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1071 |#2|)))) (-1126) (-1126) (-1126)) (T -553)) +((-2868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1071 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8)) (-5 *1 (-553 *6 *7 *8)))) (-2868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8)) (-5 *1 (-553 *6 *7 *8)))) (-2868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-555 *8)) (-5 *1 (-553 *6 *7 *8))))) +(-10 -7 (-15 -2868 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -2868 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-555 |#2|))) (-15 -2868 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1071 |#2|)))) +((-2568 ((|#3| |#3| (-592 (-565 |#3|)) (-592 (-1090))) 55)) (-3179 (((-157 |#2|) |#3|) 117)) (-4190 ((|#3| (-157 |#2|)) 44)) (-2389 ((|#2| |#3|) 19)) (-3627 ((|#3| |#2|) 33))) +(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -4190 (|#3| (-157 |#2|))) (-15 -2389 (|#2| |#3|)) (-15 -3627 (|#3| |#2|)) (-15 -3179 ((-157 |#2|) |#3|)) (-15 -2568 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1090))))) (-13 (-517) (-789)) (-13 (-408 |#1|) (-933) (-1112)) (-13 (-408 (-157 |#1|)) (-933) (-1112))) (T -554)) +((-2568 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1090))) (-4 *2 (-13 (-408 (-157 *5)) (-933) (-1112))) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2)) (-4 *6 (-13 (-408 *5) (-933) (-1112))))) (-3179 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5)) (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-933) (-1112))) (-4 *3 (-13 (-408 (-157 *4)) (-933) (-1112))))) (-3627 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-933) (-1112))) (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-933) (-1112))))) (-2389 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 *4) (-933) (-1112))) (-5 *1 (-554 *4 *2 *3)) (-4 *3 (-13 (-408 (-157 *4)) (-933) (-1112))))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-933) (-1112))) (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-933) (-1112))) (-5 *1 (-554 *4 *5 *2))))) +(-10 -7 (-15 -4190 (|#3| (-157 |#2|))) (-15 -2389 (|#2| |#3|)) (-15 -3627 (|#3| |#2|)) (-15 -3179 ((-157 |#2|) |#3|)) (-15 -2568 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1090))))) +((-1249 (($ (-1 (-108) |#1|) $) 17)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-4187 (($ (-1 |#1| |#1|) |#1|) 9)) (-1217 (($ (-1 (-108) |#1|) $) 13)) (-1232 (($ (-1 (-108) |#1|) $) 15)) (-4059 (((-1071 |#1|) $) 18)) (-4044 (((-797) $) NIL))) +(((-555 |#1|) (-13 (-566 (-797)) (-10 -8 (-15 -2868 ($ (-1 |#1| |#1|) $)) (-15 -1217 ($ (-1 (-108) |#1|) $)) (-15 -1232 ($ (-1 (-108) |#1|) $)) (-15 -1249 ($ (-1 (-108) |#1|) $)) (-15 -4187 ($ (-1 |#1| |#1|) |#1|)) (-15 -4059 ((-1071 |#1|) $)))) (-1126)) (T -555)) +((-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-1217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-1232 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-1249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-4187 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1126))))) +(-13 (-566 (-797)) (-10 -8 (-15 -2868 ($ (-1 |#1| |#1|) $)) (-15 -1217 ($ (-1 (-108) |#1|) $)) (-15 -1232 ($ (-1 (-108) |#1|) $)) (-15 -1249 ($ (-1 (-108) |#1|) $)) (-15 -4187 ($ (-1 |#1| |#1|) |#1|)) (-15 -4059 ((-1071 |#1|) $)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2957 (($ (-713)) NIL (|has| |#1| (-23)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-1930 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1336 (((-632 |#1|) $ $) NIL (|has| |#1| (-976)))) (-3248 (($ (-713) |#1|) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3597 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-2350 (((-108) $ (-713)) NIL)) (-2520 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1683 ((|#1| $) NIL (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-1580 ((|#1| $ $) NIL (|has| |#1| (-976)))) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2331 (($ $ $) NIL (|has| |#1| (-976)))) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) NIL)) (-1810 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4033 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4017 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-556 |#1| |#2|) (-1170 |#1|) (-1126) (-525)) (T -556)) +NIL +(-1170 |#1|) +((-2792 (((-1177) $ |#2| |#2|) 36)) (-2179 ((|#2| $) 23)) (-2112 ((|#2| $) 21)) (-2540 (($ (-1 |#3| |#3|) $) 32)) (-2868 (($ (-1 |#3| |#3|) $) 30)) (-1683 ((|#3| $) 26)) (-1614 (($ $ |#3|) 33)) (-2024 (((-108) |#3| $) 17)) (-4100 (((-592 |#3|) $) 15)) (-1496 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-557 |#1| |#2| |#3|) (-10 -8 (-15 -2792 ((-1177) |#1| |#2| |#2|)) (-15 -1614 (|#1| |#1| |#3|)) (-15 -1683 (|#3| |#1|)) (-15 -2179 (|#2| |#1|)) (-15 -2112 (|#2| |#1|)) (-15 -2024 ((-108) |#3| |#1|)) (-15 -4100 ((-592 |#3|) |#1|)) (-15 -1496 (|#3| |#1| |#2|)) (-15 -1496 (|#3| |#1| |#2| |#3|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2868 (|#1| (-1 |#3| |#3|) |#1|))) (-558 |#2| |#3|) (-1019) (-1126)) (T -557)) +NIL +(-10 -8 (-15 -2792 ((-1177) |#1| |#2| |#2|)) (-15 -1614 (|#1| |#1| |#3|)) (-15 -1683 (|#3| |#1|)) (-15 -2179 (|#2| |#1|)) (-15 -2112 (|#2| |#1|)) (-15 -2024 ((-108) |#3| |#1|)) (-15 -4100 ((-592 |#3|) |#1|)) (-15 -1496 (|#3| |#1| |#2|)) (-15 -1496 (|#3| |#1| |#2| |#3|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2868 (|#1| (-1 |#3| |#3|) |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#2| (-1019)))) (-2792 (((-1177) $ |#1| |#1|) 40 (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) 8)) (-1230 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4255)))) (-1957 (($) 7 T CONST)) (-2549 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) 51)) (-3781 (((-592 |#2|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2179 ((|#1| $) 43 (|has| |#1| (-789)))) (-2679 (((-592 |#2|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-2112 ((|#1| $) 44 (|has| |#1| (-789)))) (-2540 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#2| |#2|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#2| (-1019)))) (-2379 (((-592 |#1|) $) 46)) (-2030 (((-108) |#1| $) 47)) (-3027 (((-1037) $) 21 (|has| |#2| (-1019)))) (-1683 ((|#2| $) 42 (|has| |#1| (-789)))) (-1614 (($ $ |#2|) 41 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3053 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4254))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#2| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#2| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-558 |#1| |#2|) (-131) (-1019) (-1126)) (T -558)) +((-4100 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) (-5 *2 (-592 *4)))) (-2030 (*1 *2 *3 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) (-5 *2 (-108)))) (-2379 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) (-5 *2 (-592 *3)))) (-2024 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1019)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1126)) (-4 *2 (-1019)) (-4 *2 (-789)))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1126)) (-4 *2 (-1019)) (-4 *2 (-789)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1019)) (-4 *3 (-789)) (-4 *2 (-1126)))) (-1614 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) (-2792 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) (-5 *2 (-1177))))) +(-13 (-464 |t#2|) (-267 |t#1| |t#2|) (-10 -8 (-15 -4100 ((-592 |t#2|) $)) (-15 -2030 ((-108) |t#1| $)) (-15 -2379 ((-592 |t#1|) $)) (IF (|has| |t#2| (-1019)) (IF (|has| $ (-6 -4254)) (-15 -2024 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -2112 (|t#1| $)) (-15 -2179 (|t#1| $)) (-15 -1683 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4255)) (PROGN (-15 -1614 ($ $ |t#2|)) (-15 -2792 ((-1177) $ |t#1| |t#1|))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#2| (-1019)) ((-566 (-797)) -3215 (|has| |#2| (-1019)) (|has| |#2| (-566 (-797)))) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-1019) |has| |#2| (-1019)) ((-1126) . T)) +((-4044 (((-797) $) 19) (((-125) $) 14) (($ (-125)) 13))) +(((-559) (-13 (-566 (-797)) (-566 (-125)) (-10 -8 (-15 -4044 ($ (-125)))))) (T -559)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-125)) (-5 *1 (-559))))) +(-13 (-566 (-797)) (-566 (-125)) (-10 -8 (-15 -4044 ($ (-125))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3603 (((-3 $ "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1545 (((-1172 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1172 (-632 |#1|)) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2489 (((-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1957 (($) NIL T CONST)) (-1922 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3537 (((-3 $ "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1953 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-3497 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-3663 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2256 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3558 (((-1086 (-886 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-1469 (($ $ (-855)) NIL)) (-3655 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1911 (((-1086 |#1|) $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1452 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1492 (((-1086 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-2790 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1689 (($ (-1172 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1172 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1645 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3439 (((-855)) NIL (|has| |#2| (-345 |#1|)))) (-2404 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1404 (($ $ (-855)) NIL)) (-1552 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2383 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3076 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3609 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2167 (((-3 $ "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1301 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-4139 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2562 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1709 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1376 (((-1086 (-886 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2148 (($ $ (-855)) NIL)) (-1855 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4067 (((-1086 |#1|) $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-4087 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1488 (((-1086 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-2085 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1707 (((-1073) $) NIL)) (-4062 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1985 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2744 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3027 (((-1037) $) NIL)) (-3587 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1496 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-1625 (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-395 |#1|))) (((-1172 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $) (-1172 $)) NIL (|has| |#2| (-345 |#1|))) (((-1172 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2923 (($ (-1172 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1172 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-4125 (((-592 (-886 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-886 |#1|)) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1573 (($ $ $) NIL)) (-2880 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4044 (((-797) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2734 (((-1172 $)) NIL (|has| |#2| (-395 |#1|)))) (-4194 (((-592 (-1172 |#1|))) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1762 (($ $ $ $) NIL)) (-2986 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1627 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-2407 (($ $ $) NIL)) (-2046 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3367 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3026 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1436 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) 24)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-560 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -4044 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -560)) +((-4044 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-560 *3 *2)) (-4 *2 (-687 *3))))) +(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -4044 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-1817 (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) 33)) (-1450 (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL) (($) NIL)) (-2792 (((-1177) $ (-1073) (-1073)) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-1073) |#1|) 43)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 |#1| "failed") (-1073) $) 46)) (-1957 (($) NIL T CONST)) (-3343 (($ $ (-1073)) 24)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019))))) (-1640 (((-3 |#1| "failed") (-1073) $) 47) (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254))) (($ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL (|has| $ (-6 -4254)))) (-2591 (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254))) (($ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019))))) (-3336 (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019))))) (-2872 (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) 32)) (-2549 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-1073)) NIL)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-3528 (($ $) 48)) (-3864 (($ (-366)) 22) (($ (-366) (-1073)) 21)) (-3515 (((-366) $) 34)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-1073) $) NIL (|has| (-1073) (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (((-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019))))) (-2112 (((-1073) $) NIL (|has| (-1073) (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2183 (((-592 (-1073)) $) 39)) (-2781 (((-108) (-1073) $) NIL)) (-3036 (((-1073) $) 35)) (-2434 (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL)) (-4157 (($ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL)) (-2379 (((-592 (-1073)) $) NIL)) (-2030 (((-108) (-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 ((|#1| $) NIL (|has| (-1073) (-789)))) (-3611 (((-3 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) "failed") (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (($ $ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (($ $ (-592 (-273 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) 37)) (-1496 ((|#1| $ (-1073) |#1|) NIL) ((|#1| $ (-1073)) 42)) (-3607 (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL) (($) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (((-713) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (((-713) (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL)) (-4044 (((-797) $) 20)) (-3069 (($ $) 25)) (-1326 (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 19)) (-1696 (((-713) $) 41 (|has| $ (-6 -4254))))) +(((-561 |#1|) (-13 (-342 (-366) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) (-1103 (-1073) |#1|) (-10 -8 (-6 -4254) (-15 -3528 ($ $)))) (-1019)) (T -561)) +((-3528 (*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1019))))) +(-13 (-342 (-366) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) (-1103 (-1073) |#1|) (-10 -8 (-6 -4254) (-15 -3528 ($ $)))) +((-1883 (((-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) $) 15)) (-2183 (((-592 |#2|) $) 19)) (-2781 (((-108) |#2| $) 12))) +(((-562 |#1| |#2| |#3|) (-10 -8 (-15 -2183 ((-592 |#2|) |#1|)) (-15 -2781 ((-108) |#2| |#1|)) (-15 -1883 ((-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|))) (-563 |#2| |#3|) (-1019) (-1019)) (T -562)) +NIL +(-10 -8 (-15 -2183 ((-592 |#2|) |#1|)) (-15 -2781 ((-108) |#2| |#1|)) (-15 -1883 ((-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|))) +((-4028 (((-108) $ $) 19 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 45 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 55 (|has| $ (-6 -4254)))) (-2504 (((-3 |#2| "failed") |#1| $) 61)) (-1957 (($) 7 T CONST)) (-1716 (($ $) 58 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 46 (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 62)) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 54 (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 56 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 53 (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 52 (|has| $ (-6 -4254)))) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-2183 (((-592 |#1|) $) 63)) (-2781 (((-108) |#1| $) 64)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 39)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 40)) (-3027 (((-1037) $) 21 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 51)) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 41)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) 26 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 25 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 24 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 23 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3607 (($) 49) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 48)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 31 (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 59 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 50)) (-4044 (((-797) $) 18 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797))))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 42)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-563 |#1| |#2|) (-131) (-1019) (-1019)) (T -563)) +((-2781 (*1 *2 *3 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-5 *2 (-108)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-5 *2 (-592 *3)))) (-1640 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-2504 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019))))) +(-13 (-209 (-2 (|:| -3160 |t#1|) (|:| -3978 |t#2|))) (-10 -8 (-15 -2781 ((-108) |t#1| $)) (-15 -2183 ((-592 |t#1|) $)) (-15 -1640 ((-3 |t#2| "failed") |t#1| $)) (-15 -2504 ((-3 |t#2| "failed") |t#1| $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T) ((-97) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) ((-566 (-797)) -3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-288 #0#) -12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) ((-464 #0#) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) ((-1019) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) ((-1126) . T)) +((-3988 (((-565 |#2|) |#1|) 15)) (-3935 (((-3 |#1| "failed") (-565 |#2|)) 19))) +(((-564 |#1| |#2|) (-10 -7 (-15 -3988 ((-565 |#2|) |#1|)) (-15 -3935 ((-3 |#1| "failed") (-565 |#2|)))) (-789) (-789)) (T -564)) +((-3935 (*1 *2 *3) (|partial| -12 (-5 *3 (-565 *4)) (-4 *4 (-789)) (-4 *2 (-789)) (-5 *1 (-564 *2 *4)))) (-3988 (*1 *2 *3) (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789)) (-4 *4 (-789))))) +(-10 -7 (-15 -3988 ((-565 |#2|) |#1|)) (-15 -3935 ((-3 |#1| "failed") (-565 |#2|)))) +((-4028 (((-108) $ $) NIL)) (-2245 (((-3 (-1090) "failed") $) 37)) (-2815 (((-1177) $ (-713)) 26)) (-1930 (((-713) $) 25)) (-1885 (((-110) $) 12)) (-3515 (((-1090) $) 20)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-1996 (($ (-110) (-592 |#1|) (-713)) 30) (($ (-1090)) 31)) (-4084 (((-108) $ (-110)) 18) (((-108) $ (-1090)) 16)) (-2138 (((-713) $) 22)) (-3027 (((-1037) $) NIL)) (-2923 (((-826 (-525)) $) 77 (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) 84 (|has| |#1| (-567 (-826 (-357))))) (((-501) $) 69 (|has| |#1| (-567 (-501))))) (-4044 (((-797) $) 55)) (-3103 (((-592 |#1|) $) 24)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 41)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 42))) +(((-565 |#1|) (-13 (-127) (-818 |#1|) (-10 -8 (-15 -3515 ((-1090) $)) (-15 -1885 ((-110) $)) (-15 -3103 ((-592 |#1|) $)) (-15 -2138 ((-713) $)) (-15 -1996 ($ (-110) (-592 |#1|) (-713))) (-15 -1996 ($ (-1090))) (-15 -2245 ((-3 (-1090) "failed") $)) (-15 -4084 ((-108) $ (-110))) (-15 -4084 ((-108) $ (-1090))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-789)) (T -565)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-1996 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789)) (-5 *1 (-565 *5)))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2245 (*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789))))) +(-13 (-127) (-818 |#1|) (-10 -8 (-15 -3515 ((-1090) $)) (-15 -1885 ((-110) $)) (-15 -3103 ((-592 |#1|) $)) (-15 -2138 ((-713) $)) (-15 -1996 ($ (-110) (-592 |#1|) (-713))) (-15 -1996 ($ (-1090))) (-15 -2245 ((-3 (-1090) "failed") $)) (-15 -4084 ((-108) $ (-110))) (-15 -4084 ((-108) $ (-1090))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) +((-4044 ((|#1| $) 6))) +(((-566 |#1|) (-131) (-1126)) (T -566)) +((-4044 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1126))))) +(-13 (-10 -8 (-15 -4044 (|t#1| $)))) +((-2923 ((|#1| $) 6))) +(((-567 |#1|) (-131) (-1126)) (T -567)) +((-2923 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-1126))))) +(-13 (-10 -8 (-15 -2923 (|t#1| $)))) +((-3814 (((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)) 15) (((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 16))) +(((-568 |#1| |#2|) (-10 -7 (-15 -3814 ((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -3814 ((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)))) (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|)) (T -568)) +((-3814 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-1086 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6)))) (-3814 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-1086 (-385 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-385 *5))))) +(-10 -7 (-15 -3814 ((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -3814 ((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)))) +((-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) 10))) +(((-569 |#1| |#2|) (-10 -8 (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) (-570 |#2|) (-976)) (T -569)) +NIL +(-10 -8 (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 36)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +(((-570 |#1|) (-131) (-976)) (T -570)) +((-4044 (*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-976))))) +(-13 (-976) (-594 |t#1|) (-10 -8 (-15 -4044 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2780 (((-525) $) NIL (|has| |#1| (-787)))) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2973 (((-108) $) NIL (|has| |#1| (-787)))) (-2507 (((-108) $) NIL)) (-1936 ((|#1| $) 13)) (-3721 (((-108) $) NIL (|has| |#1| (-787)))) (-1260 (($ $ $) NIL (|has| |#1| (-787)))) (-2154 (($ $ $) NIL (|has| |#1| (-787)))) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1945 ((|#3| $) 15)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL)) (-2502 (((-713)) 20)) (-2053 (($ $) NIL (|has| |#1| (-787)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) 12 T CONST)) (-3973 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4047 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-571 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4047 ($ $ |#3|)) (-15 -4047 ($ |#1| |#3|)) (-15 -1936 (|#1| $)) (-15 -1945 (|#3| $)))) (-37 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -571)) +((-4047 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-4047 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-571 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-1936 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-1945 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4))))) +(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4047 ($ $ |#3|)) (-15 -4047 ($ |#1| |#3|)) (-15 -1936 (|#1| $)) (-15 -1945 (|#3| $)))) +((-1958 ((|#2| |#2| (-1090) (-1090)) 18))) +(((-572 |#1| |#2|) (-10 -7 (-15 -1958 (|#2| |#2| (-1090) (-1090)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-892) (-29 |#1|))) (T -572)) +((-1958 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1112) (-892) (-29 *4)))))) +(-10 -7 (-15 -1958 (|#2| |#2| (-1090) (-1090)))) +((-4028 (((-108) $ $) 56)) (-2464 (((-108) $) 52)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3146 ((|#1| $) 49)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3302 (((-2 (|:| -2486 $) (|:| -2571 (-385 |#2|))) (-385 |#2|)) 97 (|has| |#1| (-341)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) 24)) (-1645 (((-3 $ "failed") $) 75)) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2158 (((-525) $) 19)) (-2507 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1432 (((-108) $) 36)) (-3097 (($ |#1| (-525)) 21)) (-3286 ((|#1| $) 51)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) 87 (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-2675 (((-3 $ "failed") $ $) 79)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2824 (((-713) $) 99 (|has| |#1| (-341)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 98 (|has| |#1| (-341)))) (-1576 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-1486 (((-525) $) 34)) (-2923 (((-385 |#2|) $) 42)) (-4044 (((-797) $) 62) (($ (-525)) 32) (($ $) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 31) (($ |#2|) 22)) (-2100 ((|#1| $ (-525)) 63)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 9 T CONST)) (-1449 (($) 12 T CONST)) (-1990 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3899 (((-108) $ $) 17)) (-4033 (($ $) 46) (($ $ $) NIL)) (-4017 (($ $ $) 76)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 26) (($ $ $) 44))) +(((-573 |#1| |#2|) (-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-967 |#2|) (-10 -8 (-15 -1432 ((-108) $)) (-15 -1486 ((-525) $)) (-15 -2158 ((-525) $)) (-15 -3306 ($ $)) (-15 -3286 (|#1| $)) (-15 -3146 (|#1| $)) (-15 -2100 (|#1| $ (-525))) (-15 -3097 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -3302 ((-2 (|:| -2486 $) (|:| -2571 (-385 |#2|))) (-385 |#2|)))) |%noBranch|))) (-517) (-1148 |#1|)) (T -573)) +((-1432 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1148 *3)))) (-1486 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1148 *3)))) (-2158 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1148 *3)))) (-3306 (*1 *1 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2)))) (-3286 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2)))) (-3146 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2)))) (-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1148 *2)))) (-3097 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1148 *2)))) (-3302 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -2486 (-573 *4 *5)) (|:| -2571 (-385 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-385 *5))))) +(-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-967 |#2|) (-10 -8 (-15 -1432 ((-108) $)) (-15 -1486 ((-525) $)) (-15 -2158 ((-525) $)) (-15 -3306 ($ $)) (-15 -3286 (|#1| $)) (-15 -3146 (|#1| $)) (-15 -2100 (|#1| $ (-525))) (-15 -3097 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -3302 ((-2 (|:| -2486 $) (|:| -2571 (-385 |#2|))) (-385 |#2|)))) |%noBranch|))) +((-2713 (((-592 |#6|) (-592 |#4|) (-108)) 47)) (-2399 ((|#6| |#6|) 40))) +(((-574 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2399 (|#6| |#6|)) (-15 -2713 ((-592 |#6|) (-592 |#4|) (-108)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|) (-1028 |#1| |#2| |#3| |#4|)) (T -574)) +((-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10)) (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *10 (-1028 *5 *6 *7 *8)))) (-2399 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-574 *3 *4 *5 *6 *7 *2)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *2 (-1028 *3 *4 *5 *6))))) +(-10 -7 (-15 -2399 (|#6| |#6|)) (-15 -2713 ((-592 |#6|) (-592 |#4|) (-108)))) +((-4043 (((-108) |#3| (-713) (-592 |#3|)) 23)) (-2109 (((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1086 |#3|)))) "failed") |#3| (-592 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2826 (-592 (-2 (|:| |irr| |#4|) (|:| -3862 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)) 55))) +(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4043 ((-108) |#3| (-713) (-592 |#3|))) (-15 -2109 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1086 |#3|)))) "failed") |#3| (-592 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2826 (-592 (-2 (|:| |irr| |#4|) (|:| -3862 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)))) (-789) (-735) (-286) (-883 |#3| |#2| |#1|)) (T -575)) +((-2109 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2826 (-592 (-2 (|:| |irr| *10) (|:| -3862 (-525))))))) (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286)) (-4 *10 (-883 *3 *9 *8)) (-4 *9 (-735)) (-5 *2 (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3) (|:| |corrfact| (-592 (-1086 *3))))) (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1086 *3))))) (-4043 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789)) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8)) (-4 *8 (-883 *3 *7 *6))))) +(-10 -7 (-15 -4043 ((-108) |#3| (-713) (-592 |#3|))) (-15 -2109 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1086 |#3|)))) "failed") |#3| (-592 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2826 (-592 (-2 (|:| |irr| |#4|) (|:| -3862 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)))) +((-4028 (((-108) $ $) NIL)) (-1562 (((-592 |#1|) $) NIL)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-2414 (($ $) 67)) (-2412 (((-610 |#1| |#2|) $) 52)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 70)) (-3695 (((-592 (-273 |#2|)) $ $) 33)) (-3027 (((-1037) $) NIL)) (-2840 (($ (-610 |#1| |#2|)) 48)) (-4025 (($ $ $) NIL)) (-1573 (($ $ $) NIL)) (-4044 (((-797) $) 58) (((-1185 |#1| |#2|) $) NIL) (((-1190 |#1| |#2|) $) 66)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1449 (($) 53 T CONST)) (-2991 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) 31)) (-3715 (((-592 (-610 |#1| |#2|)) (-592 |#1|)) 65)) (-3365 (((-592 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $) 37)) (-3899 (((-108) $ $) 54)) (-4047 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 44))) +(((-576 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -2840 ($ (-610 |#1| |#2|))) (-15 -2412 ((-610 |#1| |#2|) $)) (-15 -3365 ((-592 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $)) (-15 -4044 ((-1185 |#1| |#2|) $)) (-15 -4044 ((-1190 |#1| |#2|) $)) (-15 -2414 ($ $)) (-15 -1562 ((-592 |#1|) $)) (-15 -3715 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -2991 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -3695 ((-592 (-273 |#2|)) $ $)))) (-789) (-13 (-160) (-660 (-385 (-525)))) (-855)) (T -576)) +((-2840 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5)) (-14 *5 (-855)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-827 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-2414 (*1 *1 *1) (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-855)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5))) (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525))))) (-14 *6 (-855)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-3695 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855))))) +(-13 (-450) (-10 -8 (-15 -2840 ($ (-610 |#1| |#2|))) (-15 -2412 ((-610 |#1| |#2|) $)) (-15 -3365 ((-592 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $)) (-15 -4044 ((-1185 |#1| |#2|) $)) (-15 -4044 ((-1190 |#1| |#2|) $)) (-15 -2414 ($ $)) (-15 -1562 ((-592 |#1|) $)) (-15 -3715 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -2991 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -3695 ((-592 (-273 |#2|)) $ $)))) +((-2713 (((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108)) 72) (((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108)) 58)) (-1611 (((-108) (-592 (-722 |#1| (-799 |#2|)))) 23)) (-2570 (((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108)) 71)) (-4080 (((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108)) 57)) (-1820 (((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|)))) 27)) (-2580 (((-3 (-592 (-722 |#1| (-799 |#2|))) "failed") (-592 (-722 |#1| (-799 |#2|)))) 26))) +(((-577 |#1| |#2|) (-10 -7 (-15 -1611 ((-108) (-592 (-722 |#1| (-799 |#2|))))) (-15 -2580 ((-3 (-592 (-722 |#1| (-799 |#2|))) "failed") (-592 (-722 |#1| (-799 |#2|))))) (-15 -1820 ((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))))) (-15 -4080 ((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2570 ((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2713 ((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2713 ((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108)))) (-429) (-592 (-1090))) (T -577)) +((-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-1061 *5 (-497 (-799 *6)) (-799 *6) (-722 *5 (-799 *6))))) (-5 *1 (-577 *5 *6)))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-577 *5 *6)))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-1061 *5 (-497 (-799 *6)) (-799 *6) (-722 *5 (-799 *6))))) (-5 *1 (-577 *5 *6)))) (-4080 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-577 *5 *6)))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-592 (-722 *3 (-799 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1090))) (-5 *1 (-577 *3 *4)))) (-2580 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-722 *3 (-799 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1090))) (-5 *1 (-577 *3 *4)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-592 (-722 *4 (-799 *5)))) (-4 *4 (-429)) (-14 *5 (-592 (-1090))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5))))) +(-10 -7 (-15 -1611 ((-108) (-592 (-722 |#1| (-799 |#2|))))) (-15 -2580 ((-3 (-592 (-722 |#1| (-799 |#2|))) "failed") (-592 (-722 |#1| (-799 |#2|))))) (-15 -1820 ((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))))) (-15 -4080 ((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2570 ((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2713 ((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2713 ((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108)))) +((-3915 (($ $) 38)) (-3760 (($ $) 21)) (-3886 (($ $) 37)) (-3737 (($ $) 22)) (-3946 (($ $) 36)) (-3783 (($ $) 23)) (-1961 (($) 48)) (-2412 (($ $) 45)) (-1672 (($ $) 17)) (-3450 (($ $ (-1012 $)) 7) (($ $ (-1090)) 6)) (-2840 (($ $) 46)) (-3698 (($ $) 15)) (-3724 (($ $) 16)) (-3960 (($ $) 35)) (-3795 (($ $) 24)) (-3930 (($ $) 34)) (-3771 (($ $) 25)) (-3901 (($ $) 33)) (-3749 (($ $) 26)) (-4004 (($ $) 44)) (-3836 (($ $) 32)) (-3975 (($ $) 43)) (-3808 (($ $) 31)) (-4035 (($ $) 42)) (-3861 (($ $) 30)) (-2608 (($ $) 41)) (-3873 (($ $) 29)) (-4018 (($ $) 40)) (-3848 (($ $) 28)) (-3989 (($ $) 39)) (-3823 (($ $) 27)) (-2044 (($ $) 19)) (-2110 (($ $) 20)) (-2300 (($ $) 18)) (** (($ $ $) 47))) +(((-578) (-131)) (T -578)) +((-2110 (*1 *1 *1) (-4 *1 (-578))) (-2044 (*1 *1 *1) (-4 *1 (-578))) (-2300 (*1 *1 *1) (-4 *1 (-578))) (-1672 (*1 *1 *1) (-4 *1 (-578))) (-3724 (*1 *1 *1) (-4 *1 (-578))) (-3698 (*1 *1 *1) (-4 *1 (-578)))) +(-13 (-892) (-1112) (-10 -8 (-15 -2110 ($ $)) (-15 -2044 ($ $)) (-15 -2300 ($ $)) (-15 -1672 ($ $)) (-15 -3724 ($ $)) (-15 -3698 ($ $)))) +(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-892) . T) ((-1112) . T) ((-1115) . T)) +((-1885 (((-110) (-110)) 83)) (-1672 ((|#2| |#2|) 30)) (-3450 ((|#2| |#2| (-1012 |#2|)) 79) ((|#2| |#2| (-1090)) 52)) (-3698 ((|#2| |#2|) 29)) (-3724 ((|#2| |#2|) 31)) (-3712 (((-108) (-110)) 34)) (-2044 ((|#2| |#2|) 26)) (-2110 ((|#2| |#2|) 28)) (-2300 ((|#2| |#2|) 27))) +(((-579 |#1| |#2|) (-10 -7 (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -2110 (|#2| |#2|)) (-15 -2044 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -1672 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3724 (|#2| |#2|)) (-15 -3450 (|#2| |#2| (-1090))) (-15 -3450 (|#2| |#2| (-1012 |#2|)))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-933) (-1112))) (T -579)) +((-3450 (*1 *2 *2 *3) (-12 (-5 *3 (-1012 *2)) (-4 *2 (-13 (-408 *4) (-933) (-1112))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)) (-4 *2 (-13 (-408 *4) (-933) (-1112))))) (-3724 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-1672 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-2044 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4)) (-4 *4 (-13 (-408 *3) (-933) (-1112))))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-933) (-1112)))))) +(-10 -7 (-15 -3712 ((-108) (-110))) (-15 -1885 ((-110) (-110))) (-15 -2110 (|#2| |#2|)) (-15 -2044 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -1672 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3724 (|#2| |#2|)) (-15 -3450 (|#2| |#2| (-1090))) (-15 -3450 (|#2| |#2| (-1012 |#2|)))) +((-2764 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 53)) (-4005 (((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 68)) (-1382 (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-799 |#1|)) 70) (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-799 |#1|)) 69)) (-2198 (((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|))) 108)) (-1368 (((-592 (-457 |#1| |#2|)) (-799 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 83)) (-2611 (((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|))) 118)) (-3601 (((-1172 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|))) 58)) (-2599 (((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 41)) (-1225 (((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 50)) (-1909 (((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 91))) +(((-580 |#1| |#2|) (-10 -7 (-15 -2198 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -2611 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -4005 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1382 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-799 |#1|))) (-15 -1382 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-799 |#1|))) (-15 -2599 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -3601 ((-1172 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -1909 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -1368 ((-592 (-457 |#1| |#2|)) (-799 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1225 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2764 ((-457 |#1| |#2|) (-227 |#1| |#2|)))) (-592 (-1090)) (-429)) (T -580)) +((-2764 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5)))) (-1225 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-227 *4 *5))) (-5 *2 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-1368 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-799 *4)) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-1909 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-227 *5 *6))) (-4 *6 (-429)) (-5 *2 (-227 *5 *6)) (-14 *5 (-592 (-1090))) (-5 *1 (-580 *5 *6)))) (-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-457 *5 *6))) (-5 *3 (-457 *5 *6)) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-1172 *6)) (-5 *1 (-580 *5 *6)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1090))) (-4 *4 (-429)) (-5 *1 (-580 *3 *4)))) (-1382 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-799 *5)) (-14 *5 (-592 (-1090))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)) (-4 *6 (-429)))) (-1382 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-799 *5)) (-14 *5 (-592 (-1090))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)) (-4 *6 (-429)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5)))) (-2611 (*1 *2 *3) (-12 (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525))))) (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5))))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |gblist| (-592 (-227 *4 *5))) (|:| |gvlist| (-592 (-525))))) (-5 *1 (-580 *4 *5))))) +(-10 -7 (-15 -2198 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -2611 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -4005 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1382 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-799 |#1|))) (-15 -1382 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-799 |#1|))) (-15 -2599 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -3601 ((-1172 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -1909 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -1368 ((-592 (-457 |#1| |#2|)) (-799 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1225 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2764 ((-457 |#1| |#2|) (-227 |#1| |#2|)))) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) NIL)) (-2792 (((-1177) $ (-1073) (-1073)) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 (((-51) $ (-1073) (-51)) 16) (((-51) $ (-1090) (-51)) 17)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 (-51) "failed") (-1073) $) NIL)) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019))))) (-1640 (($ (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-3 (-51) "failed") (-1073) $) NIL)) (-2591 (($ (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $ (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019)))) (((-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $ (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-2549 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -4255)))) (-2488 (((-51) $ (-1073)) NIL)) (-3781 (((-592 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-3528 (($ $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-1073) $) NIL (|has| (-1073) (-789)))) (-2679 (((-592 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-2112 (((-1073) $) NIL (|has| (-1073) (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3745 (($ (-366)) 9)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019))))) (-2183 (((-592 (-1073)) $) NIL)) (-2781 (((-108) (-1073) $) NIL)) (-2434 (((-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) $) NIL)) (-4157 (($ (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) $) NIL)) (-2379 (((-592 (-1073)) $) NIL)) (-2030 (((-108) (-1073) $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019))))) (-1683 (((-51) $) NIL (|has| (-1073) (-789)))) (-3611 (((-3 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) "failed") (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL)) (-1614 (($ $ (-51)) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019)))) (($ $ (-273 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019)))) (($ $ (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019)))) (($ $ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-4100 (((-592 (-51)) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 (((-51) $ (-1073)) 14) (((-51) $ (-1073) (-51)) NIL) (((-51) $ (-1090)) 15)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) NIL)) (-4044 (((-797) $) NIL (-3215 (|has| (-51) (-566 (-797))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 (-51))) (-1019))))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-581) (-13 (-1103 (-1073) (-51)) (-10 -8 (-15 -3745 ($ (-366))) (-15 -3528 ($ $)) (-15 -1496 ((-51) $ (-1090))) (-15 -1230 ((-51) $ (-1090) (-51)))))) (T -581)) +((-3745 (*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581)))) (-3528 (*1 *1 *1) (-5 *1 (-581))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-51)) (-5 *1 (-581)))) (-1230 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-581))))) +(-13 (-1103 (-1073) (-51)) (-10 -8 (-15 -3745 ($ (-366))) (-15 -3528 ($ $)) (-15 -1496 ((-51) $ (-1090))) (-15 -1230 ((-51) $ (-1090) (-51))))) +((-4047 (($ $ |#2|) 10))) +(((-582 |#1| |#2|) (-10 -8 (-15 -4047 (|#1| |#1| |#2|))) (-583 |#2|) (-160)) (T -582)) +NIL +(-10 -8 (-15 -4047 (|#1| |#1| |#2|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4059 (($ $ $) 29)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 28 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-583 |#1|) (-131) (-160)) (T -583)) +((-4059 (*1 *1 *1 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)) (-4 *2 (-341))))) +(-13 (-660 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4059 ($ $ $)) (IF (|has| |t#1| (-341)) (-15 -4047 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-982 |#1|) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3603 (((-3 $ "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1545 (((-1172 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1172 (-632 |#1|)) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2489 (((-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1957 (($) NIL T CONST)) (-1922 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3537 (((-3 $ "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1953 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-3497 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-3663 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2256 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3558 (((-1086 (-886 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-1469 (($ $ (-855)) NIL)) (-3655 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1911 (((-1086 |#1|) $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1452 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1492 (((-1086 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-2790 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1689 (($ (-1172 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1172 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1645 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3439 (((-855)) NIL (|has| |#2| (-345 |#1|)))) (-2404 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1404 (($ $ (-855)) NIL)) (-1552 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2383 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3076 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3609 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2167 (((-3 $ "failed")) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1301 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-4139 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2562 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1709 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1376 (((-1086 (-886 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2148 (($ $ (-855)) NIL)) (-1855 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4067 (((-1086 |#1|) $) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-4087 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1488 (((-1086 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-2085 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1707 (((-1073) $) NIL)) (-4062 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1985 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2744 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3027 (((-1037) $) NIL)) (-3587 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1496 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-1625 (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-395 |#1|))) (((-1172 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $) (-1172 $)) NIL (|has| |#2| (-345 |#1|))) (((-1172 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2923 (($ (-1172 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1172 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-4125 (((-592 (-886 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-886 |#1|)) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1573 (($ $ $) NIL)) (-2880 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4044 (((-797) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2734 (((-1172 $)) NIL (|has| |#2| (-395 |#1|)))) (-4194 (((-592 (-1172 |#1|))) NIL (-3215 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1762 (($ $ $ $) NIL)) (-2986 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1627 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-2407 (($ $ $) NIL)) (-2046 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3367 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3026 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1436 (($) 15 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) 17)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-584 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -4044 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -584)) +((-4044 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-584 *3 *2)) (-4 *2 (-687 *3))))) +(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -4044 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) +((-3189 (((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1073)) 82) (((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|))) 104)) (-2951 (((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|))) 109))) +(((-585 |#1| |#2|) (-10 -7 (-15 -3189 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -2951 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -3189 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1073)))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -585)) +((-3189 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1073)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3)))) (-2951 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-273 (-775 *3))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-3189 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (-782 *3) (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) "failed")) (-5 *1 (-585 *5 *3))))) +(-10 -7 (-15 -3189 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -2951 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -3189 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1073)))) +((-3189 (((-3 (-782 (-385 (-886 |#1|))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))) (-1073)) 80) (((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|)))) 20) (((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-782 (-886 |#1|)))) 35)) (-2951 (((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|)))) 23) (((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-775 (-886 |#1|)))) 43))) +(((-586 |#1|) (-10 -7 (-15 -3189 ((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-782 (-886 |#1|))))) (-15 -3189 ((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -2951 ((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-775 (-886 |#1|))))) (-15 -2951 ((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -3189 ((-3 (-782 (-385 (-886 |#1|))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))) (-1073)))) (-429)) (T -586)) +((-3189 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 (-385 (-886 *6)))) (-5 *5 (-1073)) (-5 *3 (-385 (-886 *6))) (-4 *6 (-429)) (-5 *2 (-782 *3)) (-5 *1 (-586 *6)))) (-2951 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-886 *5)))) (-5 *3 (-385 (-886 *5))) (-4 *5 (-429)) (-5 *2 (-775 *3)) (-5 *1 (-586 *5)))) (-2951 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-775 (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-775 (-385 (-886 *5)))) (-5 *1 (-586 *5)) (-5 *3 (-385 (-886 *5))))) (-3189 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-886 *5)))) (-5 *3 (-385 (-886 *5))) (-4 *5 (-429)) (-5 *2 (-3 (-782 *3) (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) "failed")) (-5 *1 (-586 *5)))) (-3189 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-3 (-782 (-385 (-886 *5))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 *5))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 *5))) "failed"))) "failed")) (-5 *1 (-586 *5)) (-5 *3 (-385 (-886 *5)))))) +(-10 -7 (-15 -3189 ((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-782 (-886 |#1|))))) (-15 -3189 ((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -2951 ((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-775 (-886 |#1|))))) (-15 -2951 ((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -3189 ((-3 (-782 (-385 (-886 |#1|))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))) (-1073)))) +((-2861 (((-3 (-1172 (-385 |#1|)) "failed") (-1172 |#2|) |#2|) 57 (-2823 (|has| |#1| (-341)))) (((-3 (-1172 |#1|) "failed") (-1172 |#2|) |#2|) 42 (|has| |#1| (-341)))) (-2624 (((-108) (-1172 |#2|)) 30)) (-4140 (((-3 (-1172 |#1|) "failed") (-1172 |#2|)) 33))) +(((-587 |#1| |#2|) (-10 -7 (-15 -2624 ((-108) (-1172 |#2|))) (-15 -4140 ((-3 (-1172 |#1|) "failed") (-1172 |#2|))) (IF (|has| |#1| (-341)) (-15 -2861 ((-3 (-1172 |#1|) "failed") (-1172 |#2|) |#2|)) (-15 -2861 ((-3 (-1172 (-385 |#1|)) "failed") (-1172 |#2|) |#2|)))) (-517) (-588 |#1|)) (T -587)) +((-2861 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 *5)) (-2823 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1172 (-385 *5))) (-5 *1 (-587 *5 *4)))) (-2861 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-1172 *5)) (-5 *1 (-587 *5 *4)))) (-4140 (*1 *2 *3) (|partial| -12 (-5 *3 (-1172 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-1172 *4)) (-5 *1 (-587 *4 *5)))) (-2624 (*1 *2 *3) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-108)) (-5 *1 (-587 *4 *5))))) +(-10 -7 (-15 -2624 ((-108) (-1172 |#2|))) (-15 -4140 ((-3 (-1172 |#1|) "failed") (-1172 |#2|))) (IF (|has| |#1| (-341)) (-15 -2861 ((-3 (-1172 |#1|) "failed") (-1172 |#2|) |#2|)) (-15 -2861 ((-3 (-1172 (-385 |#1|)) "failed") (-1172 |#2|) |#2|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1307 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 35)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-588 |#1|) (-131) (-976)) (T -588)) +((-1307 (*1 *2 *3) (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-976)) (-5 *2 (-632 *4)))) (-1307 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *1)) (-5 *4 (-1172 *1)) (-4 *1 (-588 *5)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -3471 (-632 *5)) (|:| |vec| (-1172 *5))))))) +(-13 (-976) (-10 -8 (-15 -1307 ((-632 |t#1|) (-632 $))) (-15 -1307 ((-2 (|:| -3471 (-632 |t#1|)) (|:| |vec| (-1172 |t#1|))) (-632 $) (-1172 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-3894 ((|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|) 17) ((|#2| (-592 |#1|) (-592 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|)) 12))) +(((-589 |#1| |#2|) (-10 -7 (-15 -3894 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -3894 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -3894 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -3894 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -3894 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -3894 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)))) (-1019) (-1126)) (T -589)) +((-3894 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1019)) (-4 *2 (-1126)) (-5 *1 (-589 *5 *2)))) (-3894 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *1 (-589 *5 *6)))) (-3894 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1019)) (-4 *2 (-1126)) (-5 *1 (-589 *5 *2)))) (-3894 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1019)) (-4 *5 (-1126)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5)))) (-3894 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1019)) (-4 *2 (-1126)) (-5 *1 (-589 *5 *2)))) (-3894 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6))))) +(-10 -7 (-15 -3894 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -3894 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -3894 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -3894 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -3894 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -3894 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)))) +((-2225 (((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 16)) (-3336 ((|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 18)) (-2868 (((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)) 13))) +(((-590 |#1| |#2|) (-10 -7 (-15 -2225 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -3336 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -2868 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)))) (-1126) (-1126)) (T -590)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6)))) (-3336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-590 *5 *2)))) (-2225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5))))) +(-10 -7 (-15 -2225 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -3336 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -2868 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)))) +((-2868 (((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)) 13))) +(((-591 |#1| |#2| |#3|) (-10 -7 (-15 -2868 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)))) (-1126) (-1126) (-1126)) (T -591)) +((-2868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-592 *6)) (-5 *5 (-592 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-592 *8)) (-5 *1 (-591 *6 *7 *8))))) +(-10 -7 (-15 -2868 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) NIL)) (-1212 ((|#1| $) NIL)) (-3134 (($ $) NIL)) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-2974 (($ $ (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1943 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1473 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-2325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-4050 (($ $ $) NIL (|has| $ (-6 -4255)))) (-3079 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-3995 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "rest" $) NIL (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1615 (($ $ $) 32 (|has| |#1| (-1019)))) (-1600 (($ $ $) 34 (|has| |#1| (-1019)))) (-1587 (($ $ $) 37 (|has| |#1| (-1019)))) (-2696 (($ (-1 (-108) |#1|) $) NIL)) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4227 ((|#1| $) NIL)) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1693 (($ $) NIL) (($ $ (-713)) NIL)) (-2987 (($ $) NIL (|has| |#1| (-1019)))) (-1716 (($ $) 31 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1640 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) NIL)) (-2591 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-2426 (((-108) $) NIL)) (-1930 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019))) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) (-1 (-108) |#1|) $) NIL)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1409 (((-108) $) 9)) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2341 (($) 7)) (-3248 (($ (-713) |#1|) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1636 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1440 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1553 (($ |#1|) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-2401 (((-592 |#1|) $) NIL)) (-3260 (((-108) $) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2618 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-4157 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2234 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1683 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3050 (((-108) $) NIL)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1139 (-525))) NIL) ((|#1| $ (-525)) 36) ((|#1| $ (-525) |#1|) NIL)) (-3612 (((-525) $ $) NIL)) (-2835 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-2697 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-3105 (((-108) $) NIL)) (-2079 (($ $) NIL)) (-2129 (($ $) NIL (|has| $ (-6 -4255)))) (-3185 (((-713) $) NIL)) (-2008 (($ $) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) 45 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) NIL)) (-2842 (($ |#1| $) 10)) (-2455 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1810 (($ $ $) 30) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1856 (($ $ $) 11)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2453 (((-1073) $) 26 (|has| |#1| (-770))) (((-1073) $ (-108)) 27 (|has| |#1| (-770))) (((-1177) (-764) $) 28 (|has| |#1| (-770))) (((-1177) (-764) $ (-108)) 29 (|has| |#1| (-770)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-592 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -2341 ($)) (-15 -1409 ((-108) $)) (-15 -2842 ($ |#1| $)) (-15 -1856 ($ $ $)) (IF (|has| |#1| (-1019)) (PROGN (-15 -1615 ($ $ $)) (-15 -1600 ($ $ $)) (-15 -1587 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) (-1126)) (T -592)) +((-2341 (*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126)))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1126)))) (-2842 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126)))) (-1856 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126)))) (-1615 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)))) (-1600 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)))) (-1587 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126))))) +(-13 (-612 |#1|) (-10 -8 (-15 -2341 ($)) (-15 -1409 ((-108) $)) (-15 -2842 ($ |#1| $)) (-15 -1856 ($ $ $)) (IF (|has| |#1| (-1019)) (PROGN (-15 -1615 ($ $ $)) (-15 -1600 ($ $ $)) (-15 -1587 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1704 (($ |#1| |#1| $) 43)) (-2583 (((-108) $ (-713)) NIL)) (-2696 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-2987 (($ $) 45)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1640 (($ |#1| $) 52 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-3781 (((-592 |#1|) $) 9 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 37)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2434 ((|#1| $) 46)) (-4157 (($ |#1| $) 26) (($ |#1| $ (-713)) 42)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3672 ((|#1| $) 48)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 21)) (-3266 (($) 25)) (-3940 (((-108) $) 50)) (-3676 (((-592 (-2 (|:| -3978 |#1|) (|:| -3053 (-713)))) $) 59)) (-3607 (($) 23) (($ (-592 |#1|)) 18)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) 56 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) 19)) (-2923 (((-501) $) 34 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) NIL)) (-4044 (((-797) $) 14 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) 22)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 61 (|has| |#1| (-1019)))) (-1696 (((-713) $) 16 (|has| $ (-6 -4254))))) +(((-593 |#1|) (-13 (-637 |#1|) (-10 -8 (-6 -4254) (-15 -3940 ((-108) $)) (-15 -1704 ($ |#1| |#1| $)))) (-1019)) (T -593)) +((-3940 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1019)))) (-1704 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1019))))) +(-13 (-637 |#1|) (-10 -8 (-6 -4254) (-15 -3940 ((-108) $)) (-15 -1704 ($ |#1| |#1| $)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23))) +(((-594 |#1|) (-131) (-983)) (T -594)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-983))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-2834 (((-712) $) 15)) (-2461 (($ $ |#1|) 56)) (-3405 (($ $) 32)) (-2747 (($ $) 31)) (-4174 (((-3 |#1| "failed") $) 48)) (-3341 ((|#1| $) NIL)) (-2905 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3654 (((-796) $ (-1 (-796) (-796) (-796)) (-1 (-796) (-796) (-796)) (-525)) 46)) (-2178 ((|#1| $ (-525)) 30)) (-3782 ((|#2| $ (-525)) 29)) (-2637 (($ (-1 |#1| |#1|) $) 34)) (-2025 (($ (-1 |#2| |#2|) $) 38)) (-2977 (($) 10)) (-4201 (($ |#1| |#2|) 22)) (-3416 (($ (-591 (-2 (|:| |gen| |#1|) (|:| -2288 |#2|)))) 23)) (-3646 (((-591 (-2 (|:| |gen| |#1|) (|:| -2288 |#2|))) $) 13)) (-3149 (($ |#1| $) 57)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2893 (((-108) $ $) 60)) (-2686 (((-796) $) 19) (($ |#1|) 16)) (-3944 (((-108) $ $) 25))) -(((-594 |#1| |#2| |#3|) (-13 (-1018) (-966 |#1|) (-10 -8 (-15 -3654 ((-796) $ (-1 (-796) (-796) (-796)) (-1 (-796) (-796) (-796)) (-525))) (-15 -3646 ((-591 (-2 (|:| |gen| |#1|) (|:| -2288 |#2|))) $)) (-15 -4201 ($ |#1| |#2|)) (-15 -3416 ($ (-591 (-2 (|:| |gen| |#1|) (|:| -2288 |#2|))))) (-15 -3782 (|#2| $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -2747 ($ $)) (-15 -3405 ($ $)) (-15 -2834 ((-712) $)) (-15 -2977 ($)) (-15 -2461 ($ $ |#1|)) (-15 -3149 ($ |#1| $)) (-15 -2905 ($ |#1| |#2| $)) (-15 -2905 ($ $ $)) (-15 -2893 ((-108) $ $)) (-15 -2025 ($ (-1 |#2| |#2|) $)) (-15 -2637 ($ (-1 |#1| |#1|) $)))) (-1018) (-23) |#2|) (T -594)) -((-3654 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-796) (-796) (-796))) (-5 *4 (-525)) (-5 *2 (-796)) (-5 *1 (-594 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-23)) (-14 *7 *6))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 *4)))) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-23)) (-14 *5 *4))) (-4201 (*1 *1 *2 *3) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) (-14 *4 *3))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 *4)))) (-4 *3 (-1018)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-594 *3 *4 *5)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-594 *4 *2 *5)) (-4 *4 (-1018)) (-14 *5 *2))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-1018)) (-5 *1 (-594 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2747 (*1 *1 *1) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) (-14 *4 *3))) (-3405 (*1 *1 *1) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) (-14 *4 *3))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-23)) (-14 *5 *4))) (-2977 (*1 *1) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) (-14 *4 *3))) (-2461 (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) (-14 *4 *3))) (-3149 (*1 *1 *2 *1) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) (-14 *4 *3))) (-2905 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) (-14 *4 *3))) (-2905 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) (-14 *4 *3))) (-2893 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-23)) (-14 *5 *4))) (-2025 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-1018)))) (-2637 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-594 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1018) (-966 |#1|) (-10 -8 (-15 -3654 ((-796) $ (-1 (-796) (-796) (-796)) (-1 (-796) (-796) (-796)) (-525))) (-15 -3646 ((-591 (-2 (|:| |gen| |#1|) (|:| -2288 |#2|))) $)) (-15 -4201 ($ |#1| |#2|)) (-15 -3416 ($ (-591 (-2 (|:| |gen| |#1|) (|:| -2288 |#2|))))) (-15 -3782 (|#2| $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -2747 ($ $)) (-15 -3405 ($ $)) (-15 -2834 ((-712) $)) (-15 -2977 ($)) (-15 -2461 ($ $ |#1|)) (-15 -3149 ($ |#1| $)) (-15 -2905 ($ |#1| |#2| $)) (-15 -2905 ($ $ $)) (-15 -2893 ((-108) $ $)) (-15 -2025 ($ (-1 |#2| |#2|) $)) (-15 -2637 ($ (-1 |#1| |#1|) $)))) -((-1826 (((-525) $) 24)) (-2059 (($ |#2| $ (-525)) 22) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) 12)) (-1675 (((-108) (-525) $) 15)) (-1624 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-591 $)) NIL))) -(((-595 |#1| |#2|) (-10 -8 (-15 -2059 (|#1| |#1| |#1| (-525))) (-15 -2059 (|#1| |#2| |#1| (-525))) (-15 -1624 (|#1| (-591 |#1|))) (-15 -1624 (|#1| |#1| |#1|)) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#2|)) (-15 -1826 ((-525) |#1|)) (-15 -3761 ((-591 (-525)) |#1|)) (-15 -1675 ((-108) (-525) |#1|))) (-596 |#2|) (-1125)) (T -595)) -NIL -(-10 -8 (-15 -2059 (|#1| |#1| |#1| (-525))) (-15 -2059 (|#1| |#2| |#1| (-525))) (-15 -1624 (|#1| (-591 |#1|))) (-15 -1624 (|#1| |#1| |#1|)) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#2|)) (-15 -1826 ((-525) |#1|)) (-15 -3761 ((-591 (-525)) |#1|)) (-15 -1675 ((-108) (-525) |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3832 (((-1176) $ (-525) (-525)) 40 (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) 8)) (-2847 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 58 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-2908 (($ $) 78 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#1| $) 77 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 51)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-1316 (($ (-712) |#1|) 69)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 43 (|has| (-525) (-788)))) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 44 (|has| (-525) (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3761 (((-591 (-525)) $) 46)) (-1675 (((-108) (-525) $) 47)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2872 ((|#1| $) 42 (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1858 (($ $ |#1|) 41 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1138 (-525))) 63)) (-3226 (($ $ (-525)) 62) (($ $ (-1138 (-525))) 61)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 79 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 70)) (-1624 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-591 $)) 65)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-596 |#1|) (-131) (-1125)) (T -596)) -((-1316 (*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) (-1624 (*1 *1 *1 *2) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1125)))) (-1624 (*1 *1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1125)))) (-1624 (*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1125)))) (-1624 (*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) (-1257 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-1138 (-525))) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-1138 (-525))) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) (-2059 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-596 *2)) (-4 *2 (-1125)))) (-2059 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) (-2847 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1138 (-525))) (|has| *1 (-6 -4251)) (-4 *1 (-596 *2)) (-4 *2 (-1125))))) -(-13 (-558 (-525) |t#1|) (-142 |t#1|) (-10 -8 (-15 -1316 ($ (-712) |t#1|)) (-15 -1624 ($ $ |t#1|)) (-15 -1624 ($ |t#1| $)) (-15 -1624 ($ $ $)) (-15 -1624 ($ (-591 $))) (-15 -1257 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1881 ($ $ (-1138 (-525)))) (-15 -3226 ($ $ (-525))) (-15 -3226 ($ $ (-1138 (-525)))) (-15 -2059 ($ |t#1| $ (-525))) (-15 -2059 ($ $ $ (-525))) (IF (|has| $ (-6 -4251)) (-15 -2847 (|t#1| $ (-1138 (-525)) |t#1|)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-2751 (((-3 |#2| "failed") |#3| |#2| (-1089) |#2| (-591 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) "failed") |#3| |#2| (-1089)) 44))) -(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -2751 ((-3 (-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) "failed") |#3| |#2| (-1089))) (-15 -2751 ((-3 |#2| "failed") |#3| |#2| (-1089) |#2| (-591 |#2|)))) (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138)) (-13 (-29 |#1|) (-1111) (-891)) (-601 |#2|)) (T -597)) -((-2751 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-591 *2)) (-4 *2 (-13 (-29 *6) (-1111) (-891))) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *1 (-597 *6 *2 *3)) (-4 *3 (-601 *2)))) (-2751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1089)) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1111) (-891))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3612 (-591 *4)))) (-5 *1 (-597 *6 *4 *3)) (-4 *3 (-601 *4))))) -(-10 -7 (-15 -2751 ((-3 (-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) "failed") |#3| |#2| (-1089))) (-15 -2751 ((-3 |#2| "failed") |#3| |#2| (-1089) |#2| (-591 |#2|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3522 (($ $) NIL (|has| |#1| (-341)))) (-3460 (($ $ $) NIL (|has| |#1| (-341)))) (-1868 (($ $ (-712)) NIL (|has| |#1| (-341)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1253 (($ $ $) NIL (|has| |#1| (-341)))) (-2049 (($ $ $) NIL (|has| |#1| (-341)))) (-1537 (($ $ $) NIL (|has| |#1| (-341)))) (-4032 (($ $ $) NIL (|has| |#1| (-341)))) (-1318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3991 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3370 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#1| (-429)))) (-3865 (((-108) $) NIL)) (-1422 (($ |#1| (-712)) NIL)) (-1743 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-517)))) (-3485 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-517)))) (-3629 (((-712) $) NIL)) (-3327 (($ $ $) NIL (|has| |#1| (-341)))) (-3359 (($ $ $) NIL (|has| |#1| (-341)))) (-2561 (($ $ $) NIL (|has| |#1| (-341)))) (-2748 (($ $ $) NIL (|has| |#1| (-341)))) (-2953 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3893 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2963 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1881 ((|#1| $ |#1|) NIL)) (-3161 (($ $ $) NIL (|has| |#1| (-341)))) (-2743 (((-712) $) NIL)) (-2827 ((|#1| $) NIL (|has| |#1| (-429)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-966 (-385 (-525))))) (($ |#1|) NIL)) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-712)) NIL)) (-3425 (((-712)) NIL)) (-2814 ((|#1| $ |#1| |#1|) NIL)) (-1818 (($ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($) NIL)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-598 |#1|) (-601 |#1|) (-213)) (T -598)) -NIL -(-601 |#1|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3522 (($ $) NIL (|has| |#1| (-341)))) (-3460 (($ $ $) NIL (|has| |#1| (-341)))) (-1868 (($ $ (-712)) NIL (|has| |#1| (-341)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1253 (($ $ $) NIL (|has| |#1| (-341)))) (-2049 (($ $ $) NIL (|has| |#1| (-341)))) (-1537 (($ $ $) NIL (|has| |#1| (-341)))) (-4032 (($ $ $) NIL (|has| |#1| (-341)))) (-1318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3991 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3370 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#1| (-429)))) (-3865 (((-108) $) NIL)) (-1422 (($ |#1| (-712)) NIL)) (-1743 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-517)))) (-3485 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-517)))) (-3629 (((-712) $) NIL)) (-3327 (($ $ $) NIL (|has| |#1| (-341)))) (-3359 (($ $ $) NIL (|has| |#1| (-341)))) (-2561 (($ $ $) NIL (|has| |#1| (-341)))) (-2748 (($ $ $) NIL (|has| |#1| (-341)))) (-2953 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3893 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2963 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1881 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3161 (($ $ $) NIL (|has| |#1| (-341)))) (-2743 (((-712) $) NIL)) (-2827 ((|#1| $) NIL (|has| |#1| (-429)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-966 (-385 (-525))))) (($ |#1|) NIL)) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-712)) NIL)) (-3425 (((-712)) NIL)) (-2814 ((|#1| $ |#1| |#1|) NIL)) (-1818 (($ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($) NIL)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-599 |#1| |#2|) (-13 (-601 |#1|) (-265 |#2| |#2|)) (-213) (-13 (-593 |#1|) (-10 -8 (-15 -2209 ($ $))))) (T -599)) -NIL -(-13 (-601 |#1|) (-265 |#2| |#2|)) -((-3522 (($ $) 26)) (-1818 (($ $) 24)) (-1796 (($) 12))) -(((-600 |#1| |#2|) (-10 -8 (-15 -3522 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1796 (|#1|))) (-601 |#2|) (-975)) (T -600)) -NIL -(-10 -8 (-15 -3522 (|#1| |#1|)) (-15 -1818 (|#1| |#1|)) (-15 -1796 (|#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3522 (($ $) 82 (|has| |#1| (-341)))) (-3460 (($ $ $) 84 (|has| |#1| (-341)))) (-1868 (($ $ (-712)) 83 (|has| |#1| (-341)))) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1253 (($ $ $) 45 (|has| |#1| (-341)))) (-2049 (($ $ $) 46 (|has| |#1| (-341)))) (-1537 (($ $ $) 48 (|has| |#1| (-341)))) (-4032 (($ $ $) 43 (|has| |#1| (-341)))) (-1318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 42 (|has| |#1| (-341)))) (-3991 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-3370 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 47 (|has| |#1| (-341)))) (-4174 (((-3 (-525) "failed") $) 74 (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-3341 (((-525) $) 75 (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 68)) (-1575 (($ $) 64)) (-1522 (((-3 $ "failed") $) 34)) (-3153 (($ $) 55 (|has| |#1| (-429)))) (-3865 (((-108) $) 31)) (-1422 (($ |#1| (-712)) 62)) (-1743 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57 (|has| |#1| (-517)))) (-3485 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 58 (|has| |#1| (-517)))) (-3629 (((-712) $) 66)) (-3327 (($ $ $) 52 (|has| |#1| (-341)))) (-3359 (($ $ $) 53 (|has| |#1| (-341)))) (-2561 (($ $ $) 41 (|has| |#1| (-341)))) (-2748 (($ $ $) 50 (|has| |#1| (-341)))) (-2953 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 49 (|has| |#1| (-341)))) (-3893 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-2963 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 54 (|has| |#1| (-341)))) (-1556 ((|#1| $) 65)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3210 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-1881 ((|#1| $ |#1|) 87)) (-3161 (($ $ $) 81 (|has| |#1| (-341)))) (-2743 (((-712) $) 67)) (-2827 ((|#1| $) 56 (|has| |#1| (-429)))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-966 (-385 (-525))))) (($ |#1|) 70)) (-3109 (((-591 |#1|) $) 61)) (-1263 ((|#1| $ (-712)) 63)) (-3425 (((-712)) 29)) (-2814 ((|#1| $ |#1| |#1|) 60)) (-1818 (($ $) 85)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($) 86)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) -(((-601 |#1|) (-131) (-975)) (T -601)) -((-1796 (*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)))) (-1818 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)))) (-3460 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-1868 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-601 *3)) (-4 *3 (-975)) (-4 *3 (-341)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-3161 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(-13 (-790 |t#1|) (-265 |t#1| |t#1|) (-10 -8 (-15 -1796 ($)) (-15 -1818 ($ $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -3460 ($ $ $)) (-15 -1868 ($ $ (-712))) (-15 -3522 ($ $)) (-15 -3161 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-265 |#1| |#1|) . T) ((-389 |#1|) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-659 |#1|) |has| |#1| (-160)) ((-668) . T) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-981 |#1|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-790 |#1|) . T)) -((-2405 (((-591 (-598 (-385 |#2|))) (-598 (-385 |#2|))) 74 (|has| |#1| (-27)))) (-2542 (((-591 (-598 (-385 |#2|))) (-598 (-385 |#2|))) 73 (|has| |#1| (-27))) (((-591 (-598 (-385 |#2|))) (-598 (-385 |#2|)) (-1 (-591 |#1|) |#2|)) 17))) -(((-602 |#1| |#2|) (-10 -7 (-15 -2542 ((-591 (-598 (-385 |#2|))) (-598 (-385 |#2|)) (-1 (-591 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2542 ((-591 (-598 (-385 |#2|))) (-598 (-385 |#2|)))) (-15 -2405 ((-591 (-598 (-385 |#2|))) (-598 (-385 |#2|))))) |%noBranch|)) (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525)))) (-1147 |#1|)) (T -602)) -((-2405 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-4 *5 (-1147 *4)) (-5 *2 (-591 (-598 (-385 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-385 *5))))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-4 *5 (-1147 *4)) (-5 *2 (-591 (-598 (-385 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-385 *5))))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-591 *5) *6)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) (-5 *2 (-591 (-598 (-385 *6)))) (-5 *1 (-602 *5 *6)) (-5 *3 (-598 (-385 *6)))))) -(-10 -7 (-15 -2542 ((-591 (-598 (-385 |#2|))) (-598 (-385 |#2|)) (-1 (-591 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2542 ((-591 (-598 (-385 |#2|))) (-598 (-385 |#2|)))) (-15 -2405 ((-591 (-598 (-385 |#2|))) (-598 (-385 |#2|))))) |%noBranch|)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3522 (($ $) NIL (|has| |#1| (-341)))) (-3460 (($ $ $) 28 (|has| |#1| (-341)))) (-1868 (($ $ (-712)) 31 (|has| |#1| (-341)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1253 (($ $ $) NIL (|has| |#1| (-341)))) (-2049 (($ $ $) NIL (|has| |#1| (-341)))) (-1537 (($ $ $) NIL (|has| |#1| (-341)))) (-4032 (($ $ $) NIL (|has| |#1| (-341)))) (-1318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3991 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3370 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#1| (-429)))) (-3865 (((-108) $) NIL)) (-1422 (($ |#1| (-712)) NIL)) (-1743 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-517)))) (-3485 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-517)))) (-3629 (((-712) $) NIL)) (-3327 (($ $ $) NIL (|has| |#1| (-341)))) (-3359 (($ $ $) NIL (|has| |#1| (-341)))) (-2561 (($ $ $) NIL (|has| |#1| (-341)))) (-2748 (($ $ $) NIL (|has| |#1| (-341)))) (-2953 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3893 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2963 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1881 ((|#1| $ |#1|) 24)) (-3161 (($ $ $) 33 (|has| |#1| (-341)))) (-2743 (((-712) $) NIL)) (-2827 ((|#1| $) NIL (|has| |#1| (-429)))) (-2686 (((-796) $) 20) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-966 (-385 (-525))))) (($ |#1|) NIL)) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-712)) NIL)) (-3425 (((-712)) NIL)) (-2814 ((|#1| $ |#1| |#1|) 23)) (-1818 (($ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 21 T CONST)) (-1839 (($) 8 T CONST)) (-1796 (($) NIL)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-603 |#1| |#2|) (-601 |#1|) (-975) (-1 |#1| |#1|)) (T -603)) -NIL -(-601 |#1|) -((-3460 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1868 ((|#2| |#2| (-712) (-1 |#1| |#1|)) 40)) (-3161 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-604 |#1| |#2|) (-10 -7 (-15 -3460 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1868 (|#2| |#2| (-712) (-1 |#1| |#1|))) (-15 -3161 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-341) (-601 |#1|)) (T -604)) -((-3161 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-604 *4 *2)) (-4 *2 (-601 *4)))) (-1868 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-712)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-604 *5 *2)) (-4 *2 (-601 *5)))) (-3460 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-604 *4 *2)) (-4 *2 (-601 *4))))) -(-10 -7 (-15 -3460 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1868 (|#2| |#2| (-712) (-1 |#1| |#1|))) (-15 -3161 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3691 (($ $ $) 9))) -(((-605 |#1|) (-10 -8 (-15 -3691 (|#1| |#1| |#1|))) (-606)) (T -605)) -NIL -(-10 -8 (-15 -3691 (|#1| |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1426 (($ $) 10)) (-3691 (($ $ $) 8)) (-3944 (((-108) $ $) 6)) (-3677 (($ $ $) 9))) -(((-606) (-131)) (T -606)) -((-1426 (*1 *1 *1) (-4 *1 (-606))) (-3677 (*1 *1 *1 *1) (-4 *1 (-606))) (-3691 (*1 *1 *1 *1) (-4 *1 (-606)))) -(-13 (-97) (-10 -8 (-15 -1426 ($ $)) (-15 -3677 ($ $ $)) (-15 -3691 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-1651 (((-713) $) 15)) (-1652 (($ $ |#1|) 56)) (-1626 (($ $) 32)) (-3263 (($ $) 31)) (-2769 (((-3 |#1| "failed") $) 48)) (-2068 ((|#1| $) NIL)) (-1712 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-2926 (((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-525)) 46)) (-2339 ((|#1| $ (-525)) 30)) (-3446 ((|#2| $ (-525)) 29)) (-4146 (($ (-1 |#1| |#1|) $) 34)) (-1273 (($ (-1 |#2| |#2|) $) 38)) (-4106 (($) 10)) (-2368 (($ |#1| |#2|) 22)) (-2259 (($ (-592 (-2 (|:| |gen| |#1|) (|:| -2840 |#2|)))) 23)) (-3163 (((-592 (-2 (|:| |gen| |#1|) (|:| -2840 |#2|))) $) 13)) (-2001 (($ |#1| $) 57)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1428 (((-108) $ $) 60)) (-4044 (((-797) $) 19) (($ |#1|) 16)) (-3899 (((-108) $ $) 25))) +(((-595 |#1| |#2| |#3|) (-13 (-1019) (-967 |#1|) (-10 -8 (-15 -2926 ((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-525))) (-15 -3163 ((-592 (-2 (|:| |gen| |#1|) (|:| -2840 |#2|))) $)) (-15 -2368 ($ |#1| |#2|)) (-15 -2259 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -2840 |#2|))))) (-15 -3446 (|#2| $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -3263 ($ $)) (-15 -1626 ($ $)) (-15 -1651 ((-713) $)) (-15 -4106 ($)) (-15 -1652 ($ $ |#1|)) (-15 -2001 ($ |#1| $)) (-15 -1712 ($ |#1| |#2| $)) (-15 -1712 ($ $ $)) (-15 -1428 ((-108) $ $)) (-15 -1273 ($ (-1 |#2| |#2|) $)) (-15 -4146 ($ (-1 |#1| |#1|) $)))) (-1019) (-23) |#2|) (T -595)) +((-2926 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-797) (-797) (-797))) (-5 *4 (-525)) (-5 *2 (-797)) (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1019)) (-4 *6 (-23)) (-14 *7 *6))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 *4)))) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4))) (-2368 (*1 *1 *2 *3) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-2259 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 *4)))) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5)) (-4 *4 (-1019)) (-14 *5 *2))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-1019)) (-5 *1 (-595 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3263 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-1626 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4))) (-4106 (*1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-1652 (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-2001 (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-1712 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-1712 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-1428 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4))) (-1273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)))) (-4146 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-595 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1019) (-967 |#1|) (-10 -8 (-15 -2926 ((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-525))) (-15 -3163 ((-592 (-2 (|:| |gen| |#1|) (|:| -2840 |#2|))) $)) (-15 -2368 ($ |#1| |#2|)) (-15 -2259 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -2840 |#2|))))) (-15 -3446 (|#2| $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -3263 ($ $)) (-15 -1626 ($ $)) (-15 -1651 ((-713) $)) (-15 -4106 ($)) (-15 -1652 ($ $ |#1|)) (-15 -2001 ($ |#1| $)) (-15 -1712 ($ |#1| |#2| $)) (-15 -1712 ($ $ $)) (-15 -1428 ((-108) $ $)) (-15 -1273 ($ (-1 |#2| |#2|) $)) (-15 -4146 ($ (-1 |#1| |#1|) $)))) +((-2112 (((-525) $) 24)) (-2234 (($ |#2| $ (-525)) 22) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) 12)) (-2030 (((-108) (-525) $) 15)) (-1810 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-592 $)) NIL))) +(((-596 |#1| |#2|) (-10 -8 (-15 -2234 (|#1| |#1| |#1| (-525))) (-15 -2234 (|#1| |#2| |#1| (-525))) (-15 -1810 (|#1| (-592 |#1|))) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 -2112 ((-525) |#1|)) (-15 -2379 ((-592 (-525)) |#1|)) (-15 -2030 ((-108) (-525) |#1|))) (-597 |#2|) (-1126)) (T -596)) +NIL +(-10 -8 (-15 -2234 (|#1| |#1| |#1| (-525))) (-15 -2234 (|#1| |#2| |#1| (-525))) (-15 -1810 (|#1| (-592 |#1|))) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 -2112 ((-525) |#1|)) (-15 -2379 ((-592 (-525)) |#1|)) (-15 -2030 ((-108) (-525) |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2792 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) 8)) (-1230 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-1716 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 51)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3248 (($ (-713) |#1|) 69)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 43 (|has| (-525) (-789)))) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 44 (|has| (-525) (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2379 (((-592 (-525)) $) 46)) (-2030 (((-108) (-525) $) 47)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1683 ((|#1| $) 42 (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1614 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-2697 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 70)) (-1810 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-597 |#1|) (-131) (-1126)) (T -597)) +((-3248 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-1810 (*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126)))) (-1810 (*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126)))) (-1810 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126)))) (-1810 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-2868 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-2697 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-2697 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-2234 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1126)))) (-2234 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-1230 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1139 (-525))) (|has| *1 (-6 -4255)) (-4 *1 (-597 *2)) (-4 *2 (-1126))))) +(-13 (-558 (-525) |t#1|) (-142 |t#1|) (-10 -8 (-15 -3248 ($ (-713) |t#1|)) (-15 -1810 ($ $ |t#1|)) (-15 -1810 ($ |t#1| $)) (-15 -1810 ($ $ $)) (-15 -1810 ($ (-592 $))) (-15 -2868 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1496 ($ $ (-1139 (-525)))) (-15 -2697 ($ $ (-525))) (-15 -2697 ($ $ (-1139 (-525)))) (-15 -2234 ($ |t#1| $ (-525))) (-15 -2234 ($ $ $ (-525))) (IF (|has| $ (-6 -4255)) (-15 -1230 (|t#1| $ (-1139 (-525)) |t#1|)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-1932 (((-3 |#2| "failed") |#3| |#2| (-1090) |#2| (-592 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) "failed") |#3| |#2| (-1090)) 44))) +(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -1932 ((-3 (-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) "failed") |#3| |#2| (-1090))) (-15 -1932 ((-3 |#2| "failed") |#3| |#2| (-1090) |#2| (-592 |#2|)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892)) (-602 |#2|)) (T -598)) +((-1932 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-598 *6 *2 *3)) (-4 *3 (-602 *2)))) (-1932 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1090)) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1112) (-892))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2734 (-592 *4)))) (-5 *1 (-598 *6 *4 *3)) (-4 *3 (-602 *4))))) +(-10 -7 (-15 -1932 ((-3 (-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) "failed") |#3| |#2| (-1090))) (-15 -1932 ((-3 |#2| "failed") |#3| |#2| (-1090) |#2| (-592 |#2|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3191 (($ $) NIL (|has| |#1| (-341)))) (-1498 (($ $ $) NIL (|has| |#1| (-341)))) (-1266 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2457 (($ $ $) NIL (|has| |#1| (-341)))) (-1383 (($ $ $) NIL (|has| |#1| (-341)))) (-3374 (($ $ $) NIL (|has| |#1| (-341)))) (-4180 (($ $ $) NIL (|has| |#1| (-341)))) (-2279 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-3860 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4147 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-429)))) (-2507 (((-108) $) NIL)) (-3097 (($ |#1| (-713)) NIL)) (-2370 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-517)))) (-2664 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-517)))) (-3762 (((-713) $) NIL)) (-3826 (($ $ $) NIL (|has| |#1| (-341)))) (-3506 (($ $ $) NIL (|has| |#1| (-341)))) (-3355 (($ $ $) NIL (|has| |#1| (-341)))) (-2979 (($ $ $) NIL (|has| |#1| (-341)))) (-3872 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1734 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3774 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1496 ((|#1| $ |#1|) NIL)) (-3968 (($ $ $) NIL (|has| |#1| (-341)))) (-1486 (((-713) $) NIL)) (-2758 ((|#1| $) NIL (|has| |#1| (-429)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) NIL)) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-713)) NIL)) (-2502 (((-713)) NIL)) (-1627 ((|#1| $ |#1| |#1|) NIL)) (-3092 (($ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($) NIL)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-599 |#1|) (-602 |#1|) (-213)) (T -599)) +NIL +(-602 |#1|) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3191 (($ $) NIL (|has| |#1| (-341)))) (-1498 (($ $ $) NIL (|has| |#1| (-341)))) (-1266 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2457 (($ $ $) NIL (|has| |#1| (-341)))) (-1383 (($ $ $) NIL (|has| |#1| (-341)))) (-3374 (($ $ $) NIL (|has| |#1| (-341)))) (-4180 (($ $ $) NIL (|has| |#1| (-341)))) (-2279 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-3860 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4147 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-429)))) (-2507 (((-108) $) NIL)) (-3097 (($ |#1| (-713)) NIL)) (-2370 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-517)))) (-2664 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-517)))) (-3762 (((-713) $) NIL)) (-3826 (($ $ $) NIL (|has| |#1| (-341)))) (-3506 (($ $ $) NIL (|has| |#1| (-341)))) (-3355 (($ $ $) NIL (|has| |#1| (-341)))) (-2979 (($ $ $) NIL (|has| |#1| (-341)))) (-3872 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1734 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3774 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1496 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3968 (($ $ $) NIL (|has| |#1| (-341)))) (-1486 (((-713) $) NIL)) (-2758 ((|#1| $) NIL (|has| |#1| (-429)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) NIL)) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-713)) NIL)) (-2502 (((-713)) NIL)) (-1627 ((|#1| $ |#1| |#1|) NIL)) (-3092 (($ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($) NIL)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-600 |#1| |#2|) (-13 (-602 |#1|) (-265 |#2| |#2|)) (-213) (-13 (-594 |#1|) (-10 -8 (-15 -1576 ($ $))))) (T -600)) +NIL +(-13 (-602 |#1|) (-265 |#2| |#2|)) +((-3191 (($ $) 26)) (-3092 (($ $) 24)) (-1990 (($) 12))) +(((-601 |#1| |#2|) (-10 -8 (-15 -3191 (|#1| |#1|)) (-15 -3092 (|#1| |#1|)) (-15 -1990 (|#1|))) (-602 |#2|) (-976)) (T -601)) +NIL +(-10 -8 (-15 -3191 (|#1| |#1|)) (-15 -3092 (|#1| |#1|)) (-15 -1990 (|#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3191 (($ $) 82 (|has| |#1| (-341)))) (-1498 (($ $ $) 84 (|has| |#1| (-341)))) (-1266 (($ $ (-713)) 83 (|has| |#1| (-341)))) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-2457 (($ $ $) 45 (|has| |#1| (-341)))) (-1383 (($ $ $) 46 (|has| |#1| (-341)))) (-3374 (($ $ $) 48 (|has| |#1| (-341)))) (-4180 (($ $ $) 43 (|has| |#1| (-341)))) (-2279 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 42 (|has| |#1| (-341)))) (-3860 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-4147 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 47 (|has| |#1| (-341)))) (-2769 (((-3 (-525) "failed") $) 74 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-2068 (((-525) $) 75 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 68)) (-3306 (($ $) 64)) (-1645 (((-3 $ "failed") $) 34)) (-2319 (($ $) 55 (|has| |#1| (-429)))) (-2507 (((-108) $) 31)) (-3097 (($ |#1| (-713)) 62)) (-2370 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57 (|has| |#1| (-517)))) (-2664 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 58 (|has| |#1| (-517)))) (-3762 (((-713) $) 66)) (-3826 (($ $ $) 52 (|has| |#1| (-341)))) (-3506 (($ $ $) 53 (|has| |#1| (-341)))) (-3355 (($ $ $) 41 (|has| |#1| (-341)))) (-2979 (($ $ $) 50 (|has| |#1| (-341)))) (-3872 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 49 (|has| |#1| (-341)))) (-1734 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-3774 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 54 (|has| |#1| (-341)))) (-3286 ((|#1| $) 65)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2675 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-1496 ((|#1| $ |#1|) 87)) (-3968 (($ $ $) 81 (|has| |#1| (-341)))) (-1486 (((-713) $) 67)) (-2758 ((|#1| $) 56 (|has| |#1| (-429)))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 70)) (-3681 (((-592 |#1|) $) 61)) (-2100 ((|#1| $ (-713)) 63)) (-2502 (((-713)) 29)) (-1627 ((|#1| $ |#1| |#1|) 60)) (-3092 (($ $) 85)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($) 86)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(((-602 |#1|) (-131) (-976)) (T -602)) +((-1990 (*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)))) (-1498 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-1266 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-976)) (-4 *3 (-341)))) (-3191 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-3968 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(-13 (-791 |t#1|) (-265 |t#1| |t#1|) (-10 -8 (-15 -1990 ($)) (-15 -3092 ($ $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -1498 ($ $ $)) (-15 -1266 ($ $ (-713))) (-15 -3191 ($ $)) (-15 -3968 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-265 |#1| |#1|) . T) ((-389 |#1|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-791 |#1|) . T)) +((-1654 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 74 (|has| |#1| (-27)))) (-2961 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 73 (|has| |#1| (-27))) (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 17))) +(((-603 |#1| |#2|) (-10 -7 (-15 -2961 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2961 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -1654 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|)) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|)) (T -603)) +((-1654 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-599 (-385 *6)))) (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6)))))) +(-10 -7 (-15 -2961 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2961 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -1654 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3191 (($ $) NIL (|has| |#1| (-341)))) (-1498 (($ $ $) 28 (|has| |#1| (-341)))) (-1266 (($ $ (-713)) 31 (|has| |#1| (-341)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2457 (($ $ $) NIL (|has| |#1| (-341)))) (-1383 (($ $ $) NIL (|has| |#1| (-341)))) (-3374 (($ $ $) NIL (|has| |#1| (-341)))) (-4180 (($ $ $) NIL (|has| |#1| (-341)))) (-2279 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-3860 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4147 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-429)))) (-2507 (((-108) $) NIL)) (-3097 (($ |#1| (-713)) NIL)) (-2370 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-517)))) (-2664 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-517)))) (-3762 (((-713) $) NIL)) (-3826 (($ $ $) NIL (|has| |#1| (-341)))) (-3506 (($ $ $) NIL (|has| |#1| (-341)))) (-3355 (($ $ $) NIL (|has| |#1| (-341)))) (-2979 (($ $ $) NIL (|has| |#1| (-341)))) (-3872 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1734 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3774 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1496 ((|#1| $ |#1|) 24)) (-3968 (($ $ $) 33 (|has| |#1| (-341)))) (-1486 (((-713) $) NIL)) (-2758 ((|#1| $) NIL (|has| |#1| (-429)))) (-4044 (((-797) $) 20) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) NIL)) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-713)) NIL)) (-2502 (((-713)) NIL)) (-1627 ((|#1| $ |#1| |#1|) 23)) (-3092 (($ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 21 T CONST)) (-1449 (($) 8 T CONST)) (-1990 (($) NIL)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-604 |#1| |#2|) (-602 |#1|) (-976) (-1 |#1| |#1|)) (T -604)) +NIL +(-602 |#1|) +((-1498 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1266 ((|#2| |#2| (-713) (-1 |#1| |#1|)) 40)) (-3968 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-605 |#1| |#2|) (-10 -7 (-15 -1498 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1266 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -3968 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -605)) +((-3968 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4)))) (-1266 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5)))) (-1498 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4))))) +(-10 -7 (-15 -1498 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1266 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -3968 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2337 (($ $ $) 9))) +(((-606 |#1|) (-10 -8 (-15 -2337 (|#1| |#1| |#1|))) (-607)) (T -606)) +NIL +(-10 -8 (-15 -2337 (|#1| |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-3803 (($ $) 10)) (-2337 (($ $ $) 8)) (-3899 (((-108) $ $) 6)) (-2327 (($ $ $) 9))) +(((-607) (-131)) (T -607)) +((-3803 (*1 *1 *1) (-4 *1 (-607))) (-2327 (*1 *1 *1 *1) (-4 *1 (-607))) (-2337 (*1 *1 *1 *1) (-4 *1 (-607)))) +(-13 (-97) (-10 -8 (-15 -3803 ($ $)) (-15 -2327 ($ $ $)) (-15 -2337 ($ $ $)))) (((-97) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 15)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1384 ((|#1| $) 21)) (-1923 (($ $ $) NIL (|has| |#1| (-732)))) (-3475 (($ $ $) NIL (|has| |#1| (-732)))) (-2621 (((-1072) $) 46)) (-2937 (((-1036) $) NIL)) (-1396 ((|#3| $) 22)) (-2686 (((-796) $) 42)) (-1830 (($) 10 T CONST)) (-4004 (((-108) $ $) NIL (|has| |#1| (-732)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-732)))) (-3944 (((-108) $ $) 20)) (-3994 (((-108) $ $) NIL (|has| |#1| (-732)))) (-3971 (((-108) $ $) 24 (|has| |#1| (-732)))) (-4059 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4047 (($ $) 17) (($ $ $) NIL)) (-4036 (($ $ $) 27)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-607 |#1| |#2| |#3|) (-13 (-659 |#2|) (-10 -8 (IF (|has| |#1| (-732)) (-6 (-732)) |%noBranch|) (-15 -4059 ($ $ |#3|)) (-15 -4059 ($ |#1| |#3|)) (-15 -1384 (|#1| $)) (-15 -1396 (|#3| $)))) (-659 |#2|) (-160) (|SubsetCategory| (-668) |#2|)) (T -607)) -((-4059 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-607 *3 *4 *2)) (-4 *3 (-659 *4)) (-4 *2 (|SubsetCategory| (-668) *4)))) (-4059 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-607 *2 *4 *3)) (-4 *2 (-659 *4)) (-4 *3 (|SubsetCategory| (-668) *4)))) (-1384 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-659 *3)) (-5 *1 (-607 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-668) *3)))) (-1396 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-668) *4)) (-5 *1 (-607 *3 *4 *2)) (-4 *3 (-659 *4))))) -(-13 (-659 |#2|) (-10 -8 (IF (|has| |#1| (-732)) (-6 (-732)) |%noBranch|) (-15 -4059 ($ $ |#3|)) (-15 -4059 ($ |#1| |#3|)) (-15 -1384 (|#1| $)) (-15 -1396 (|#3| $)))) -((-4126 (((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|)) 33))) -(((-608 |#1|) (-10 -7 (-15 -4126 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|)))) (-842)) (T -608)) -((-4126 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-591 (-1085 *4))) (-5 *3 (-1085 *4)) (-4 *4 (-842)) (-5 *1 (-608 *4))))) -(-10 -7 (-15 -4126 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2758 (((-591 |#1|) $) 82)) (-3746 (($ $ (-712)) 90)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1719 (((-1193 |#1| |#2|) (-1193 |#1| |#2|) $) 48)) (-4174 (((-3 (-616 |#1|) "failed") $) NIL)) (-3341 (((-616 |#1|) $) NIL)) (-1575 (($ $) 89)) (-3667 (((-712) $) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-2990 (($ (-616 |#1|) |#2|) 68)) (-1398 (($ $) 86)) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-3740 (((-1193 |#1| |#2|) (-1193 |#1| |#2|) $) 47)) (-1609 (((-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1548 (((-616 |#1|) $) NIL)) (-1556 ((|#2| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1980 (($ $ |#1| $) 30) (($ $ (-591 |#1|) (-591 $)) 32)) (-2743 (((-712) $) 88)) (-2695 (($ $ $) 20) (($ (-616 |#1|) (-616 |#1|)) 77) (($ (-616 |#1|) $) 75) (($ $ (-616 |#1|)) 76)) (-2686 (((-796) $) NIL) (($ |#1|) 74) (((-1184 |#1| |#2|) $) 58) (((-1193 |#1| |#2|) $) 41) (($ (-616 |#1|)) 25)) (-3109 (((-591 |#2|) $) NIL)) (-1263 ((|#2| $ (-616 |#1|)) NIL)) (-2976 ((|#2| (-1193 |#1| |#2|) $) 43)) (-1830 (($) 23 T CONST)) (-1994 (((-591 (-2 (|:| |k| (-616 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3006 (((-3 $ "failed") (-1184 |#1| |#2|)) 60)) (-2663 (($ (-616 |#1|)) 14)) (-3944 (((-108) $ $) 44)) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $) 66) (($ $ $) NIL)) (-4036 (($ $ $) 29)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-616 |#1|)) NIL))) -(((-609 |#1| |#2|) (-13 (-352 |#1| |#2|) (-360 |#2| (-616 |#1|)) (-10 -8 (-15 -3006 ((-3 $ "failed") (-1184 |#1| |#2|))) (-15 -2695 ($ (-616 |#1|) (-616 |#1|))) (-15 -2695 ($ (-616 |#1|) $)) (-15 -2695 ($ $ (-616 |#1|))))) (-788) (-160)) (T -609)) -((-3006 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) (-5 *1 (-609 *3 *4)))) (-2695 (*1 *1 *2 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-788)) (-5 *1 (-609 *3 *4)) (-4 *4 (-160)))) (-2695 (*1 *1 *2 *1) (-12 (-5 *2 (-616 *3)) (-4 *3 (-788)) (-5 *1 (-609 *3 *4)) (-4 *4 (-160)))) (-2695 (*1 *1 *1 *2) (-12 (-5 *2 (-616 *3)) (-4 *3 (-788)) (-5 *1 (-609 *3 *4)) (-4 *4 (-160))))) -(-13 (-352 |#1| |#2|) (-360 |#2| (-616 |#1|)) (-10 -8 (-15 -3006 ((-3 $ "failed") (-1184 |#1| |#2|))) (-15 -2695 ($ (-616 |#1|) (-616 |#1|))) (-15 -2695 ($ (-616 |#1|) $)) (-15 -2695 ($ $ (-616 |#1|))))) -((-3110 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-2613 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 12)) (-1288 (($ (-1 (-108) |#2|) $) 28)) (-3405 (($ $) 56)) (-3945 (($ $) 64)) (-3844 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-3618 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1734 (((-525) |#2| $ (-525)) 61) (((-525) |#2| $) NIL) (((-525) (-1 (-108) |#2|) $) 47)) (-1316 (($ (-712) |#2|) 54)) (-3597 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-3459 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-1257 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2750 (($ |#2|) 15)) (-1520 (($ $ $ (-525)) 36) (($ |#2| $ (-525)) 34)) (-2714 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-1227 (($ $ (-1138 (-525))) 44) (($ $ (-525)) 38)) (-2992 (($ $ $ (-525)) 60)) (-2873 (($ $) 58)) (-3971 (((-108) $ $) 66))) -(((-610 |#1| |#2|) (-10 -8 (-15 -2750 (|#1| |#2|)) (-15 -1227 (|#1| |#1| (-525))) (-15 -1227 (|#1| |#1| (-1138 (-525)))) (-15 -3844 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1520 (|#1| |#2| |#1| (-525))) (-15 -1520 (|#1| |#1| |#1| (-525))) (-15 -3597 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1288 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3844 (|#1| |#2| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3597 (|#1| |#1| |#1|)) (-15 -3459 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3110 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1734 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -1734 ((-525) |#2| |#1|)) (-15 -1734 ((-525) |#2| |#1| (-525))) (-15 -3459 (|#1| |#1| |#1|)) (-15 -3110 ((-108) |#1|)) (-15 -2992 (|#1| |#1| |#1| (-525))) (-15 -3405 (|#1| |#1|)) (-15 -2613 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2613 (|#1| |#1|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2714 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1316 (|#1| (-712) |#2|)) (-15 -1257 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2873 (|#1| |#1|))) (-611 |#2|) (-1125)) (T -610)) -NIL -(-10 -8 (-15 -2750 (|#1| |#2|)) (-15 -1227 (|#1| |#1| (-525))) (-15 -1227 (|#1| |#1| (-1138 (-525)))) (-15 -3844 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1520 (|#1| |#2| |#1| (-525))) (-15 -1520 (|#1| |#1| |#1| (-525))) (-15 -3597 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1288 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3844 (|#1| |#2| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3597 (|#1| |#1| |#1|)) (-15 -3459 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3110 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1734 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -1734 ((-525) |#2| |#1|)) (-15 -1734 ((-525) |#2| |#1| (-525))) (-15 -3459 (|#1| |#1| |#1|)) (-15 -3110 ((-108) |#1|)) (-15 -2992 (|#1| |#1| |#1| (-525))) (-15 -3405 (|#1| |#1|)) (-15 -2613 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2613 (|#1| |#1|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3618 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2714 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1316 (|#1| (-712) |#2|)) (-15 -1257 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2873 (|#1| |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-2940 ((|#1| $) 48)) (-2434 ((|#1| $) 65)) (-3856 (($ $) 67)) (-3832 (((-1176) $ (-525) (-525)) 97 (|has| $ (-6 -4251)))) (-2983 (($ $ (-525)) 52 (|has| $ (-6 -4251)))) (-3110 (((-108) $) 142 (|has| |#1| (-788))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-2613 (($ $) 146 (-12 (|has| |#1| (-788)) (|has| $ (-6 -4251)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4251)))) (-1282 (($ $) 141 (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-3727 (((-108) $ (-712)) 8)) (-3912 ((|#1| $ |#1|) 39 (|has| $ (-6 -4251)))) (-3191 (($ $ $) 56 (|has| $ (-6 -4251)))) (-2568 ((|#1| $ |#1|) 54 (|has| $ (-6 -4251)))) (-2756 ((|#1| $ |#1|) 58 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4251))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4251))) (($ $ "rest" $) 55 (|has| $ (-6 -4251))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 117 (|has| $ (-6 -4251))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 41 (|has| $ (-6 -4251)))) (-1288 (($ (-1 (-108) |#1|) $) 129)) (-2467 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4250)))) (-2424 ((|#1| $) 66)) (-2055 (($) 7 T CONST)) (-3405 (($ $) 144 (|has| $ (-6 -4251)))) (-2747 (($ $) 134)) (-2884 (($ $) 73) (($ $ (-712)) 71)) (-3945 (($ $) 131 (|has| |#1| (-1018)))) (-2908 (($ $) 99 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ |#1| $) 130 (|has| |#1| (-1018))) (($ (-1 (-108) |#1|) $) 125)) (-2537 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4250))) (($ |#1| $) 100 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4205 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 87)) (-4139 (((-108) $) 83)) (-1734 (((-525) |#1| $ (-525)) 139 (|has| |#1| (-1018))) (((-525) |#1| $) 138 (|has| |#1| (-1018))) (((-525) (-1 (-108) |#1|) $) 137)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 50)) (-3219 (((-108) $ $) 42 (|has| |#1| (-1018)))) (-1316 (($ (-712) |#1|) 108)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 95 (|has| (-525) (-788)))) (-1923 (($ $ $) 147 (|has| |#1| (-788)))) (-3597 (($ $ $) 132 (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-3459 (($ $ $) 140 (|has| |#1| (-788))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 94 (|has| (-525) (-788)))) (-3475 (($ $ $) 148 (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2750 (($ |#1|) 122)) (-3295 (((-108) $ (-712)) 10)) (-2065 (((-591 |#1|) $) 45)) (-2878 (((-108) $) 49)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2555 ((|#1| $) 70) (($ $ (-712)) 68)) (-1520 (($ $ $ (-525)) 127) (($ |#1| $ (-525)) 126)) (-2059 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-3761 (((-591 (-525)) $) 92)) (-1675 (((-108) (-525) $) 91)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2872 ((|#1| $) 76) (($ $ (-712)) 74)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1858 (($ $ |#1|) 96 (|has| $ (-6 -4251)))) (-1622 (((-108) $) 84)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) 90)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1138 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-2194 (((-525) $ $) 44)) (-1227 (($ $ (-1138 (-525))) 124) (($ $ (-525)) 123)) (-3226 (($ $ (-1138 (-525))) 114) (($ $ (-525)) 113)) (-4133 (((-108) $) 46)) (-2349 (($ $) 62)) (-3494 (($ $) 59 (|has| $ (-6 -4251)))) (-1248 (((-712) $) 63)) (-3249 (($ $) 64)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2992 (($ $ $ (-525)) 143 (|has| $ (-6 -4251)))) (-2873 (($ $) 13)) (-1300 (((-501) $) 98 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 107)) (-3729 (($ $ $) 61) (($ $ |#1|) 60)) (-1624 (($ $ $) 78) (($ |#1| $) 77) (($ (-591 $)) 110) (($ $ |#1|) 109)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) 51)) (-3592 (((-108) $ $) 43 (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) 150 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 151 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-3994 (((-108) $ $) 149 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 152 (|has| |#1| (-788)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-611 |#1|) (-131) (-1125)) (T -611)) -((-2750 (*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1125))))) -(-13 (-1063 |t#1|) (-351 |t#1|) (-261 |t#1|) (-10 -8 (-15 -2750 ($ |t#1|)))) -(((-33) . T) ((-97) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-261 |#1|) . T) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-596 |#1|) . T) ((-788) |has| |#1| (-788)) ((-940 |#1|) . T) ((-1018) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-1063 |#1|) . T) ((-1125) . T) ((-1159 |#1|) . T)) -((-2751 (((-591 (-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|))))) (-591 (-591 |#1|)) (-591 (-1171 |#1|))) 22) (((-591 (-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|))))) (-631 |#1|) (-591 (-1171 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|)))) (-591 (-591 |#1|)) (-1171 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|)))) (-631 |#1|) (-1171 |#1|)) 14)) (-2193 (((-712) (-631 |#1|) (-1171 |#1|)) 30)) (-2285 (((-3 (-1171 |#1|) "failed") (-631 |#1|) (-1171 |#1|)) 24)) (-1335 (((-108) (-631 |#1|) (-1171 |#1|)) 27))) -(((-612 |#1|) (-10 -7 (-15 -2751 ((-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|)))) (-631 |#1|) (-1171 |#1|))) (-15 -2751 ((-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|)))) (-591 (-591 |#1|)) (-1171 |#1|))) (-15 -2751 ((-591 (-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|))))) (-631 |#1|) (-591 (-1171 |#1|)))) (-15 -2751 ((-591 (-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|))))) (-591 (-591 |#1|)) (-591 (-1171 |#1|)))) (-15 -2285 ((-3 (-1171 |#1|) "failed") (-631 |#1|) (-1171 |#1|))) (-15 -1335 ((-108) (-631 |#1|) (-1171 |#1|))) (-15 -2193 ((-712) (-631 |#1|) (-1171 |#1|)))) (-341)) (T -612)) -((-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-341)) (-5 *2 (-712)) (-5 *1 (-612 *5)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-341)) (-5 *2 (-108)) (-5 *1 (-612 *5)))) (-2285 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1171 *4)) (-5 *3 (-631 *4)) (-4 *4 (-341)) (-5 *1 (-612 *4)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-591 *5))) (-4 *5 (-341)) (-5 *2 (-591 (-2 (|:| |particular| (-3 (-1171 *5) "failed")) (|:| -3612 (-591 (-1171 *5)))))) (-5 *1 (-612 *5)) (-5 *4 (-591 (-1171 *5))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-341)) (-5 *2 (-591 (-2 (|:| |particular| (-3 (-1171 *5) "failed")) (|:| -3612 (-591 (-1171 *5)))))) (-5 *1 (-612 *5)) (-5 *4 (-591 (-1171 *5))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-591 *5))) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1171 *5) "failed")) (|:| -3612 (-591 (-1171 *5))))) (-5 *1 (-612 *5)) (-5 *4 (-1171 *5)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1171 *5) "failed")) (|:| -3612 (-591 (-1171 *5))))) (-5 *1 (-612 *5)) (-5 *4 (-1171 *5))))) -(-10 -7 (-15 -2751 ((-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|)))) (-631 |#1|) (-1171 |#1|))) (-15 -2751 ((-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|)))) (-591 (-591 |#1|)) (-1171 |#1|))) (-15 -2751 ((-591 (-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|))))) (-631 |#1|) (-591 (-1171 |#1|)))) (-15 -2751 ((-591 (-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|))))) (-591 (-591 |#1|)) (-591 (-1171 |#1|)))) (-15 -2285 ((-3 (-1171 |#1|) "failed") (-631 |#1|) (-1171 |#1|))) (-15 -1335 ((-108) (-631 |#1|) (-1171 |#1|))) (-15 -2193 ((-712) (-631 |#1|) (-1171 |#1|)))) -((-2751 (((-591 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3612 (-591 |#3|)))) |#4| (-591 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3612 (-591 |#3|))) |#4| |#3|) 45)) (-2193 (((-712) |#4| |#3|) 17)) (-2285 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1335 (((-108) |#4| |#3|) 13))) -(((-613 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3612 (-591 |#3|))) |#4| |#3|)) (-15 -2751 ((-591 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3612 (-591 |#3|)))) |#4| (-591 |#3|))) (-15 -2285 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1335 ((-108) |#4| |#3|)) (-15 -2193 ((-712) |#4| |#3|))) (-341) (-13 (-351 |#1|) (-10 -7 (-6 -4251))) (-13 (-351 |#1|) (-10 -7 (-6 -4251))) (-629 |#1| |#2| |#3|)) (T -613)) -((-2193 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-5 *2 (-712)) (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-1335 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-5 *2 (-108)) (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-2285 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-341)) (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4251)))) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4251)))) (-5 *1 (-613 *4 *5 *2 *3)) (-4 *3 (-629 *4 *5 *2)))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-5 *2 (-591 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3612 (-591 *7))))) (-5 *1 (-613 *5 *6 *7 *3)) (-5 *4 (-591 *7)) (-4 *3 (-629 *5 *6 *7)))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4))))) -(-10 -7 (-15 -2751 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3612 (-591 |#3|))) |#4| |#3|)) (-15 -2751 ((-591 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3612 (-591 |#3|)))) |#4| (-591 |#3|))) (-15 -2285 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1335 ((-108) |#4| |#3|)) (-15 -2193 ((-712) |#4| |#3|))) -((-1657 (((-2 (|:| |particular| (-3 (-1171 (-385 |#4|)) "failed")) (|:| -3612 (-591 (-1171 (-385 |#4|))))) (-591 |#4|) (-591 |#3|)) 45))) -(((-614 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1657 ((-2 (|:| |particular| (-3 (-1171 (-385 |#4|)) "failed")) (|:| -3612 (-591 (-1171 (-385 |#4|))))) (-591 |#4|) (-591 |#3|)))) (-517) (-734) (-788) (-882 |#1| |#2| |#3|)) (T -614)) -((-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *7)) (-4 *7 (-788)) (-4 *8 (-882 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-5 *2 (-2 (|:| |particular| (-3 (-1171 (-385 *8)) "failed")) (|:| -3612 (-591 (-1171 (-385 *8)))))) (-5 *1 (-614 *5 *6 *7 *8))))) -(-10 -7 (-15 -1657 ((-2 (|:| |particular| (-3 (-1171 (-385 |#4|)) "failed")) (|:| -3612 (-591 (-1171 (-385 |#4|))))) (-591 |#4|) (-591 |#3|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1851 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-1481 ((|#2| $) NIL)) (-1711 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2010 (((-1171 (-631 |#2|))) NIL) (((-1171 (-631 |#2|)) (-1171 $)) NIL)) (-1478 (((-108) $) NIL)) (-3483 (((-1171 $)) 37)) (-3727 (((-108) $ (-712)) NIL)) (-1416 (($ |#2|) NIL)) (-2055 (($) NIL T CONST)) (-1352 (($ $) NIL (|has| |#2| (-286)))) (-2578 (((-220 |#1| |#2|) $ (-525)) NIL)) (-4007 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL (|has| |#2| (-517)))) (-4088 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-2004 (((-631 |#2|)) NIL) (((-631 |#2|) (-1171 $)) NIL)) (-3681 ((|#2| $) NIL)) (-2465 (((-631 |#2|) $) NIL) (((-631 |#2|) $ (-1171 $)) NIL)) (-2397 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-4182 (((-1085 (-885 |#2|))) NIL (|has| |#2| (-341)))) (-2681 (($ $ (-854)) NIL)) (-3549 ((|#2| $) NIL)) (-1865 (((-1085 |#2|) $) NIL (|has| |#2| (-517)))) (-1321 ((|#2|) NIL) ((|#2| (-1171 $)) NIL)) (-3985 (((-1085 |#2|) $) NIL)) (-1532 (((-108)) NIL)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#2| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#2| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-966 (-385 (-525))))) ((|#2| $) NIL)) (-1554 (($ (-1171 |#2|)) NIL) (($ (-1171 |#2|) (-1171 $)) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL) (((-631 |#2|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2193 (((-712) $) NIL (|has| |#2| (-517))) (((-854)) 38)) (-4121 ((|#2| $ (-525) (-525)) NIL)) (-3595 (((-108)) NIL)) (-1447 (($ $ (-854)) NIL)) (-2916 (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3865 (((-108) $) NIL)) (-1613 (((-712) $) NIL (|has| |#2| (-517)))) (-2523 (((-591 (-220 |#1| |#2|)) $) NIL (|has| |#2| (-517)))) (-4127 (((-712) $) NIL)) (-3999 (((-108)) NIL)) (-4140 (((-712) $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-1806 ((|#2| $) NIL (|has| |#2| (-6 (-4252 "*"))))) (-3142 (((-525) $) NIL)) (-3660 (((-525) $) NIL)) (-4207 (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-3882 (((-525) $) NIL)) (-2494 (((-525) $) NIL)) (-1572 (($ (-591 (-591 |#2|))) NIL)) (-4192 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3093 (((-591 (-591 |#2|)) $) NIL)) (-3319 (((-108)) NIL)) (-1219 (((-108)) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-1779 (((-3 (-2 (|:| |particular| $) (|:| -3612 (-591 $))) "failed")) NIL (|has| |#2| (-517)))) (-2727 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-1529 (((-631 |#2|)) NIL) (((-631 |#2|) (-1171 $)) NIL)) (-2671 ((|#2| $) NIL)) (-2000 (((-631 |#2|) $) NIL) (((-631 |#2|) $ (-1171 $)) NIL)) (-3917 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-2679 (((-1085 (-885 |#2|))) NIL (|has| |#2| (-341)))) (-2832 (($ $ (-854)) NIL)) (-1984 ((|#2| $) NIL)) (-4130 (((-1085 |#2|) $) NIL (|has| |#2| (-517)))) (-2336 ((|#2|) NIL) ((|#2| (-1171 $)) NIL)) (-3019 (((-1085 |#2|) $) NIL)) (-1312 (((-108)) NIL)) (-2621 (((-1072) $) NIL)) (-3440 (((-108)) NIL)) (-3615 (((-108)) NIL)) (-1821 (((-108)) NIL)) (-2902 (((-3 $ "failed") $) NIL (|has| |#2| (-341)))) (-2937 (((-1036) $) NIL)) (-1492 (((-108)) NIL)) (-3210 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3465 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) 22) ((|#2| $ (-525)) NIL)) (-2209 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-712)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2102 ((|#2| $) NIL)) (-1968 (($ (-591 |#2|)) NIL)) (-2348 (((-108) $) NIL)) (-3030 (((-220 |#1| |#2|) $) NIL)) (-4145 ((|#2| $) NIL (|has| |#2| (-6 (-4252 "*"))))) (-2960 (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2873 (($ $) NIL)) (-1671 (((-631 |#2|) (-1171 $)) NIL) (((-1171 |#2|) $) NIL) (((-631 |#2|) (-1171 $) (-1171 $)) NIL) (((-1171 |#2|) $ (-1171 $)) 25)) (-1300 (($ (-1171 |#2|)) NIL) (((-1171 |#2|) $) NIL)) (-3277 (((-591 (-885 |#2|))) NIL) (((-591 (-885 |#2|)) (-1171 $)) NIL)) (-4027 (($ $ $) NIL)) (-2003 (((-108)) NIL)) (-1256 (((-220 |#1| |#2|) $ (-525)) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-966 (-385 (-525))))) (($ |#2|) NIL) (((-631 |#2|) $) NIL)) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) 36)) (-3674 (((-591 (-1171 |#2|))) NIL (|has| |#2| (-517)))) (-1894 (($ $ $ $) NIL)) (-2535 (((-108)) NIL)) (-2814 (($ (-631 |#2|) $) NIL)) (-1475 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1986 (((-108) $) NIL)) (-1971 (($ $ $) NIL)) (-3887 (((-108)) NIL)) (-1394 (((-108)) NIL)) (-2659 (((-108)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-712)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) NIL) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-615 |#1| |#2|) (-13 (-1039 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-565 (-631 |#2|)) (-395 |#2|)) (-854) (-160)) (T -615)) -NIL -(-13 (-1039 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-565 (-631 |#2|)) (-395 |#2|)) -((-2673 (((-108) $ $) NIL)) (-2758 (((-591 |#1|) $) NIL)) (-3192 (($ $) 52)) (-3417 (((-108) $) NIL)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2335 (((-3 $ "failed") (-760 |#1|)) 23)) (-4172 (((-108) (-760 |#1|)) 15)) (-3021 (($ (-760 |#1|)) 24)) (-4066 (((-108) $ $) 30)) (-2445 (((-854) $) 37)) (-3178 (($ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2542 (((-591 $) (-760 |#1|)) 17)) (-2686 (((-796) $) 43) (($ |#1|) 34) (((-760 |#1|) $) 39) (((-620 |#1|) $) 44)) (-4031 (((-57 (-591 $)) (-591 |#1|) (-854)) 57)) (-3955 (((-591 $) (-591 |#1|) (-854)) 60)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 53)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 38))) -(((-616 |#1|) (-13 (-788) (-966 |#1|) (-10 -8 (-15 -3417 ((-108) $)) (-15 -3178 ($ $)) (-15 -3192 ($ $)) (-15 -2445 ((-854) $)) (-15 -4066 ((-108) $ $)) (-15 -2686 ((-760 |#1|) $)) (-15 -2686 ((-620 |#1|) $)) (-15 -2542 ((-591 $) (-760 |#1|))) (-15 -4172 ((-108) (-760 |#1|))) (-15 -3021 ($ (-760 |#1|))) (-15 -2335 ((-3 $ "failed") (-760 |#1|))) (-15 -2758 ((-591 |#1|) $)) (-15 -4031 ((-57 (-591 $)) (-591 |#1|) (-854))) (-15 -3955 ((-591 $) (-591 |#1|) (-854))))) (-788)) (T -616)) -((-3417 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) (-3178 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-788)))) (-3192 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-788)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-854)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) (-4066 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-760 *3)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-760 *4)) (-4 *4 (-788)) (-5 *2 (-591 (-616 *4))) (-5 *1 (-616 *4)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-760 *4)) (-4 *4 (-788)) (-5 *2 (-108)) (-5 *1 (-616 *4)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-760 *3)) (-4 *3 (-788)) (-5 *1 (-616 *3)))) (-2335 (*1 *1 *2) (|partial| -12 (-5 *2 (-760 *3)) (-4 *3 (-788)) (-5 *1 (-616 *3)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *5)) (-5 *4 (-854)) (-4 *5 (-788)) (-5 *2 (-57 (-591 (-616 *5)))) (-5 *1 (-616 *5)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *5)) (-5 *4 (-854)) (-4 *5 (-788)) (-5 *2 (-591 (-616 *5))) (-5 *1 (-616 *5))))) -(-13 (-788) (-966 |#1|) (-10 -8 (-15 -3417 ((-108) $)) (-15 -3178 ($ $)) (-15 -3192 ($ $)) (-15 -2445 ((-854) $)) (-15 -4066 ((-108) $ $)) (-15 -2686 ((-760 |#1|) $)) (-15 -2686 ((-620 |#1|) $)) (-15 -2542 ((-591 $) (-760 |#1|))) (-15 -4172 ((-108) (-760 |#1|))) (-15 -3021 ($ (-760 |#1|))) (-15 -2335 ((-3 $ "failed") (-760 |#1|))) (-15 -2758 ((-591 |#1|) $)) (-15 -4031 ((-57 (-591 $)) (-591 |#1|) (-854))) (-15 -3955 ((-591 $) (-591 |#1|) (-854))))) -((-2940 ((|#2| $) 76)) (-3856 (($ $) 96)) (-3727 (((-108) $ (-712)) 26)) (-2884 (($ $) 85) (($ $ (-712)) 88)) (-4139 (((-108) $) 97)) (-2275 (((-591 $) $) 72)) (-3219 (((-108) $ $) 71)) (-3491 (((-108) $ (-712)) 24)) (-4152 (((-525) $) 46)) (-1826 (((-525) $) 45)) (-3295 (((-108) $ (-712)) 22)) (-2878 (((-108) $) 74)) (-2555 ((|#2| $) 89) (($ $ (-712)) 92)) (-2059 (($ $ $ (-525)) 62) (($ |#2| $ (-525)) 61)) (-3761 (((-591 (-525)) $) 44)) (-1675 (((-108) (-525) $) 42)) (-2872 ((|#2| $) NIL) (($ $ (-712)) 84)) (-1618 (($ $ (-525)) 100)) (-1622 (((-108) $) 99)) (-3465 (((-108) (-1 (-108) |#2|) $) 32)) (-2998 (((-591 |#2|) $) 33)) (-1881 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1138 (-525))) 58) ((|#2| $ (-525)) 40) ((|#2| $ (-525) |#2|) 41)) (-2194 (((-525) $ $) 70)) (-3226 (($ $ (-1138 (-525))) 57) (($ $ (-525)) 51)) (-4133 (((-108) $) 66)) (-2349 (($ $) 81)) (-1248 (((-712) $) 80)) (-3249 (($ $) 79)) (-2695 (($ (-591 |#2|)) 37)) (-1664 (($ $) 101)) (-1567 (((-591 $) $) 69)) (-3592 (((-108) $ $) 68)) (-1475 (((-108) (-1 (-108) |#2|) $) 31)) (-3944 (((-108) $ $) 18)) (-2028 (((-712) $) 29))) -(((-617 |#1| |#2|) (-10 -8 (-15 -1664 (|#1| |#1|)) (-15 -1618 (|#1| |#1| (-525))) (-15 -4139 ((-108) |#1|)) (-15 -1622 ((-108) |#1|)) (-15 -1881 (|#2| |#1| (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525))) (-15 -2998 ((-591 |#2|) |#1|)) (-15 -1675 ((-108) (-525) |#1|)) (-15 -3761 ((-591 (-525)) |#1|)) (-15 -1826 ((-525) |#1|)) (-15 -4152 ((-525) |#1|)) (-15 -2695 (|#1| (-591 |#2|))) (-15 -1881 (|#1| |#1| (-1138 (-525)))) (-15 -3226 (|#1| |#1| (-525))) (-15 -3226 (|#1| |#1| (-1138 (-525)))) (-15 -2059 (|#1| |#2| |#1| (-525))) (-15 -2059 (|#1| |#1| |#1| (-525))) (-15 -2349 (|#1| |#1|)) (-15 -1248 ((-712) |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -2555 (|#1| |#1| (-712))) (-15 -1881 (|#2| |#1| "last")) (-15 -2555 (|#2| |#1|)) (-15 -2884 (|#1| |#1| (-712))) (-15 -1881 (|#1| |#1| "rest")) (-15 -2884 (|#1| |#1|)) (-15 -2872 (|#1| |#1| (-712))) (-15 -1881 (|#2| |#1| "first")) (-15 -2872 (|#2| |#1|)) (-15 -3219 ((-108) |#1| |#1|)) (-15 -3592 ((-108) |#1| |#1|)) (-15 -2194 ((-525) |#1| |#1|)) (-15 -4133 ((-108) |#1|)) (-15 -1881 (|#2| |#1| "value")) (-15 -2940 (|#2| |#1|)) (-15 -2878 ((-108) |#1|)) (-15 -2275 ((-591 |#1|) |#1|)) (-15 -1567 ((-591 |#1|) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2028 ((-712) |#1|)) (-15 -3727 ((-108) |#1| (-712))) (-15 -3491 ((-108) |#1| (-712))) (-15 -3295 ((-108) |#1| (-712)))) (-618 |#2|) (-1125)) (T -617)) -NIL -(-10 -8 (-15 -1664 (|#1| |#1|)) (-15 -1618 (|#1| |#1| (-525))) (-15 -4139 ((-108) |#1|)) (-15 -1622 ((-108) |#1|)) (-15 -1881 (|#2| |#1| (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525))) (-15 -2998 ((-591 |#2|) |#1|)) (-15 -1675 ((-108) (-525) |#1|)) (-15 -3761 ((-591 (-525)) |#1|)) (-15 -1826 ((-525) |#1|)) (-15 -4152 ((-525) |#1|)) (-15 -2695 (|#1| (-591 |#2|))) (-15 -1881 (|#1| |#1| (-1138 (-525)))) (-15 -3226 (|#1| |#1| (-525))) (-15 -3226 (|#1| |#1| (-1138 (-525)))) (-15 -2059 (|#1| |#2| |#1| (-525))) (-15 -2059 (|#1| |#1| |#1| (-525))) (-15 -2349 (|#1| |#1|)) (-15 -1248 ((-712) |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -2555 (|#1| |#1| (-712))) (-15 -1881 (|#2| |#1| "last")) (-15 -2555 (|#2| |#1|)) (-15 -2884 (|#1| |#1| (-712))) (-15 -1881 (|#1| |#1| "rest")) (-15 -2884 (|#1| |#1|)) (-15 -2872 (|#1| |#1| (-712))) (-15 -1881 (|#2| |#1| "first")) (-15 -2872 (|#2| |#1|)) (-15 -3219 ((-108) |#1| |#1|)) (-15 -3592 ((-108) |#1| |#1|)) (-15 -2194 ((-525) |#1| |#1|)) (-15 -4133 ((-108) |#1|)) (-15 -1881 (|#2| |#1| "value")) (-15 -2940 (|#2| |#1|)) (-15 -2878 ((-108) |#1|)) (-15 -2275 ((-591 |#1|) |#1|)) (-15 -1567 ((-591 |#1|) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -3465 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2028 ((-712) |#1|)) (-15 -3727 ((-108) |#1| (-712))) (-15 -3491 ((-108) |#1| (-712))) (-15 -3295 ((-108) |#1| (-712)))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-2940 ((|#1| $) 48)) (-2434 ((|#1| $) 65)) (-3856 (($ $) 67)) (-3832 (((-1176) $ (-525) (-525)) 97 (|has| $ (-6 -4251)))) (-2983 (($ $ (-525)) 52 (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) 8)) (-3912 ((|#1| $ |#1|) 39 (|has| $ (-6 -4251)))) (-3191 (($ $ $) 56 (|has| $ (-6 -4251)))) (-2568 ((|#1| $ |#1|) 54 (|has| $ (-6 -4251)))) (-2756 ((|#1| $ |#1|) 58 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4251))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4251))) (($ $ "rest" $) 55 (|has| $ (-6 -4251))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 117 (|has| $ (-6 -4251))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 41 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) 102)) (-2424 ((|#1| $) 66)) (-2055 (($) 7 T CONST)) (-3051 (($ $) 124)) (-2884 (($ $) 73) (($ $ (-712)) 71)) (-2908 (($ $) 99 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#1| $) 100 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 103)) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4205 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 87)) (-4139 (((-108) $) 83)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-1689 (((-712) $) 123)) (-2275 (((-591 $) $) 50)) (-3219 (((-108) $ $) 42 (|has| |#1| (-1018)))) (-1316 (($ (-712) |#1|) 108)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 95 (|has| (-525) (-788)))) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 94 (|has| (-525) (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3295 (((-108) $ (-712)) 10)) (-2065 (((-591 |#1|) $) 45)) (-2878 (((-108) $) 49)) (-1385 (($ $) 126)) (-4011 (((-108) $) 127)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2555 ((|#1| $) 70) (($ $ (-712)) 68)) (-2059 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-3761 (((-591 (-525)) $) 92)) (-1675 (((-108) (-525) $) 91)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-3297 ((|#1| $) 125)) (-2872 ((|#1| $) 76) (($ $ (-712)) 74)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1858 (($ $ |#1|) 96 (|has| $ (-6 -4251)))) (-1618 (($ $ (-525)) 122)) (-1622 (((-108) $) 84)) (-2182 (((-108) $) 128)) (-2720 (((-108) $) 129)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) 90)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1138 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-2194 (((-525) $ $) 44)) (-3226 (($ $ (-1138 (-525))) 114) (($ $ (-525)) 113)) (-4133 (((-108) $) 46)) (-2349 (($ $) 62)) (-3494 (($ $) 59 (|has| $ (-6 -4251)))) (-1248 (((-712) $) 63)) (-3249 (($ $) 64)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 98 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 107)) (-3729 (($ $ $) 61 (|has| $ (-6 -4251))) (($ $ |#1|) 60 (|has| $ (-6 -4251)))) (-1624 (($ $ $) 78) (($ |#1| $) 77) (($ (-591 $)) 110) (($ $ |#1|) 109)) (-1664 (($ $) 121)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) 51)) (-3592 (((-108) $ $) 43 (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-618 |#1|) (-131) (-1125)) (T -618)) -((-2537 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1125)))) (-2467 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1125)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1125)) (-5 *2 (-108)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1125)) (-5 *2 (-108)))) (-4011 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1125)) (-5 *2 (-108)))) (-1385 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1125)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1125)))) (-3051 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1125)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1125)) (-5 *2 (-712)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-618 *3)) (-4 *3 (-1125)))) (-1664 (*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1125))))) -(-13 (-1063 |t#1|) (-10 -8 (-15 -2537 ($ (-1 (-108) |t#1|) $)) (-15 -2467 ($ (-1 (-108) |t#1|) $)) (-15 -2720 ((-108) $)) (-15 -2182 ((-108) $)) (-15 -4011 ((-108) $)) (-15 -1385 ($ $)) (-15 -3297 (|t#1| $)) (-15 -3051 ($ $)) (-15 -1689 ((-712) $)) (-15 -1618 ($ $ (-525))) (-15 -1664 ($ $)))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-596 |#1|) . T) ((-940 |#1|) . T) ((-1018) |has| |#1| (-1018)) ((-1063 |#1|) . T) ((-1125) . T) ((-1159 |#1|) . T)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1801 (($ (-712) (-712) (-712)) 34 (|has| |#1| (-975)))) (-3727 (((-108) $ (-712)) NIL)) (-2278 ((|#1| $ (-712) (-712) (-712) |#1|) 29)) (-2055 (($) NIL T CONST)) (-2905 (($ $ $) 38 (|has| |#1| (-975)))) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3088 (((-1171 (-712)) $) 11)) (-2265 (($ (-1089) $ $) 24)) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2798 (($ (-712)) 36 (|has| |#1| (-975)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-712) (-712) (-712)) 27)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-2695 (($ (-591 (-591 (-591 |#1|)))) 45)) (-2686 (($ (-890 (-890 (-890 |#1|)))) 17) (((-890 (-890 (-890 |#1|))) $) 14) (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-619 |#1|) (-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-975)) (PROGN (-15 -1801 ($ (-712) (-712) (-712))) (-15 -2798 ($ (-712))) (-15 -2905 ($ $ $))) |%noBranch|) (-15 -2695 ($ (-591 (-591 (-591 |#1|))))) (-15 -1881 (|#1| $ (-712) (-712) (-712))) (-15 -2278 (|#1| $ (-712) (-712) (-712) |#1|)) (-15 -2686 ($ (-890 (-890 (-890 |#1|))))) (-15 -2686 ((-890 (-890 (-890 |#1|))) $)) (-15 -2265 ($ (-1089) $ $)) (-15 -3088 ((-1171 (-712)) $)))) (-1018)) (T -619)) -((-1801 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-712)) (-5 *1 (-619 *3)) (-4 *3 (-975)) (-4 *3 (-1018)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-619 *3)) (-4 *3 (-975)) (-4 *3 (-1018)))) (-2905 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-975)) (-4 *2 (-1018)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 (-591 *3)))) (-4 *3 (-1018)) (-5 *1 (-619 *3)))) (-1881 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-712)) (-5 *1 (-619 *2)) (-4 *2 (-1018)))) (-2278 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-619 *2)) (-4 *2 (-1018)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-890 (-890 (-890 *3)))) (-4 *3 (-1018)) (-5 *1 (-619 *3)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-890 (-890 (-890 *3)))) (-5 *1 (-619 *3)) (-4 *3 (-1018)))) (-2265 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-619 *3)) (-4 *3 (-1018)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-1171 (-712))) (-5 *1 (-619 *3)) (-4 *3 (-1018))))) -(-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-975)) (PROGN (-15 -1801 ($ (-712) (-712) (-712))) (-15 -2798 ($ (-712))) (-15 -2905 ($ $ $))) |%noBranch|) (-15 -2695 ($ (-591 (-591 (-591 |#1|))))) (-15 -1881 (|#1| $ (-712) (-712) (-712))) (-15 -2278 (|#1| $ (-712) (-712) (-712) |#1|)) (-15 -2686 ($ (-890 (-890 (-890 |#1|))))) (-15 -2686 ((-890 (-890 (-890 |#1|))) $)) (-15 -2265 ($ (-1089) $ $)) (-15 -3088 ((-1171 (-712)) $)))) -((-2673 (((-108) $ $) NIL)) (-2758 (((-591 |#1|) $) 14)) (-3192 (($ $) 18)) (-3417 (((-108) $) 19)) (-4174 (((-3 |#1| "failed") $) 22)) (-3341 ((|#1| $) 20)) (-2884 (($ $) 36)) (-1398 (($ $) 24)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-4066 (((-108) $ $) 42)) (-2445 (((-854) $) 38)) (-3178 (($ $) 17)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 ((|#1| $) 35)) (-2686 (((-796) $) 31) (($ |#1|) 23) (((-760 |#1|) $) 27)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 12)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 40)) (* (($ $ $) 34))) -(((-620 |#1|) (-13 (-788) (-966 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2686 ((-760 |#1|) $)) (-15 -2872 (|#1| $)) (-15 -3178 ($ $)) (-15 -2445 ((-854) $)) (-15 -4066 ((-108) $ $)) (-15 -1398 ($ $)) (-15 -2884 ($ $)) (-15 -3417 ((-108) $)) (-15 -3192 ($ $)) (-15 -2758 ((-591 |#1|) $)))) (-788)) (T -620)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-760 *3)) (-5 *1 (-620 *3)) (-4 *3 (-788)))) (-2872 (*1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) (-3178 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-854)) (-5 *1 (-620 *3)) (-4 *3 (-788)))) (-4066 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-620 *3)) (-4 *3 (-788)))) (-1398 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) (-2884 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-620 *3)) (-4 *3 (-788)))) (-3192 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-620 *3)) (-4 *3 (-788))))) -(-13 (-788) (-966 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2686 ((-760 |#1|) $)) (-15 -2872 (|#1| $)) (-15 -3178 ($ $)) (-15 -2445 ((-854) $)) (-15 -4066 ((-108) $ $)) (-15 -1398 ($ $)) (-15 -2884 ($ $)) (-15 -3417 ((-108) $)) (-15 -3192 ($ $)) (-15 -2758 ((-591 |#1|) $)))) -((-1875 ((|#1| (-1 |#1| (-712) |#1|) (-712) |#1|) 11)) (-2218 ((|#1| (-1 |#1| |#1|) (-712) |#1|) 9))) -(((-621 |#1|) (-10 -7 (-15 -2218 (|#1| (-1 |#1| |#1|) (-712) |#1|)) (-15 -1875 (|#1| (-1 |#1| (-712) |#1|) (-712) |#1|))) (-1018)) (T -621)) -((-1875 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-712) *2)) (-5 *4 (-712)) (-4 *2 (-1018)) (-5 *1 (-621 *2)))) (-2218 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-712)) (-4 *2 (-1018)) (-5 *1 (-621 *2))))) -(-10 -7 (-15 -2218 (|#1| (-1 |#1| |#1|) (-712) |#1|)) (-15 -1875 (|#1| (-1 |#1| (-712) |#1|) (-712) |#1|))) -((-2097 ((|#2| |#1| |#2|) 9)) (-2085 ((|#1| |#1| |#2|) 8))) -(((-622 |#1| |#2|) (-10 -7 (-15 -2085 (|#1| |#1| |#2|)) (-15 -2097 (|#2| |#1| |#2|))) (-1018) (-1018)) (T -622)) -((-2097 (*1 *2 *3 *2) (-12 (-5 *1 (-622 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018)))) (-2085 (*1 *2 *2 *3) (-12 (-5 *1 (-622 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018))))) -(-10 -7 (-15 -2085 (|#1| |#1| |#2|)) (-15 -2097 (|#2| |#1| |#2|))) -((-3252 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-623 |#1| |#2| |#3|) (-10 -7 (-15 -3252 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1018) (-1018) (-1018)) (T -623)) -((-3252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018)) (-5 *1 (-623 *5 *6 *2))))) -(-10 -7 (-15 -3252 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-1875 (((-1 |#1| (-712) |#1|) (-1 |#1| (-712) |#1|)) 23)) (-1629 (((-1 |#1|) |#1|) 8)) (-1291 ((|#1| |#1|) 16)) (-2890 (((-591 |#1|) (-1 (-591 |#1|) (-591 |#1|)) (-525)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2686 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-712)) 20))) -(((-624 |#1|) (-10 -7 (-15 -1629 ((-1 |#1|) |#1|)) (-15 -2686 ((-1 |#1|) |#1|)) (-15 -2890 (|#1| (-1 |#1| |#1|))) (-15 -2890 ((-591 |#1|) (-1 (-591 |#1|) (-591 |#1|)) (-525))) (-15 -1291 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-712))) (-15 -1875 ((-1 |#1| (-712) |#1|) (-1 |#1| (-712) |#1|)))) (-1018)) (T -624)) -((-1875 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-712) *3)) (-4 *3 (-1018)) (-5 *1 (-624 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-712)) (-4 *4 (-1018)) (-5 *1 (-624 *4)))) (-1291 (*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1018)))) (-2890 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-591 *5) (-591 *5))) (-5 *4 (-525)) (-5 *2 (-591 *5)) (-5 *1 (-624 *5)) (-4 *5 (-1018)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1018)))) (-2686 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1018)))) (-1629 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1018))))) -(-10 -7 (-15 -1629 ((-1 |#1|) |#1|)) (-15 -2686 ((-1 |#1|) |#1|)) (-15 -2890 (|#1| (-1 |#1| |#1|))) (-15 -2890 ((-591 |#1|) (-1 (-591 |#1|) (-591 |#1|)) (-525))) (-15 -1291 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-712))) (-15 -1875 ((-1 |#1| (-712) |#1|) (-1 |#1| (-712) |#1|)))) -((-1938 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2915 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2277 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2760 (((-1 |#2| |#1|) |#2|) 11))) -(((-625 |#1| |#2|) (-10 -7 (-15 -2760 ((-1 |#2| |#1|) |#2|)) (-15 -2915 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2277 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1938 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1018) (-1018)) (T -625)) -((-1938 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1018)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) (-4 *4 (-1018)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-5 *2 (-1 *5)) (-5 *1 (-625 *4 *5)))) (-2760 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1018)) (-4 *3 (-1018))))) -(-10 -7 (-15 -2760 ((-1 |#2| |#1|) |#2|)) (-15 -2915 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2277 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1938 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2715 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1395 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3204 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3765 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2022 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -1395 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3204 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3765 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2022 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2715 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1018) (-1018) (-1018)) (T -626)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1018)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1018)) (-4 *6 (-1018)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1018)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))) (-1395 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1018)) (-4 *4 (-1018)) (-4 *6 (-1018)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6))))) -(-10 -7 (-15 -1395 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3204 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3765 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2022 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2715 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-3618 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1257 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-627 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1257 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1257 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3618 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-975) (-351 |#1|) (-351 |#1|) (-629 |#1| |#2| |#3|) (-975) (-351 |#5|) (-351 |#5|) (-629 |#5| |#6| |#7|)) (T -627)) -((-3618 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-975)) (-4 *2 (-975)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2)) (-4 *9 (-351 *2)) (-5 *1 (-627 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-629 *5 *6 *7)) (-4 *10 (-629 *2 *8 *9)))) (-1257 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-975)) (-4 *8 (-975)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-629 *8 *9 *10)) (-5 *1 (-627 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-975)) (-4 *8 (-975)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-629 *8 *9 *10)) (-5 *1 (-627 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8))))) -(-10 -7 (-15 -1257 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1257 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3618 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3559 (($ (-712) (-712)) 33)) (-3130 (($ $ $) 56)) (-1616 (($ |#3|) 52) (($ $) 53)) (-1711 (((-108) $) 28)) (-2287 (($ $ (-525) (-525)) 58)) (-3519 (($ $ (-525) (-525)) 59)) (-2688 (($ $ (-525) (-525) (-525) (-525)) 63)) (-4094 (($ $) 54)) (-1478 (((-108) $) 14)) (-2995 (($ $ (-525) (-525) $) 64)) (-2847 ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-591 (-525)) (-591 (-525)) $) 62)) (-1416 (($ (-712) |#2|) 39)) (-1572 (($ (-591 (-591 |#2|))) 37)) (-3093 (((-591 (-591 |#2|)) $) 57)) (-3862 (($ $ $) 55)) (-3210 (((-3 $ "failed") $ |#2|) 91)) (-1881 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-591 (-525)) (-591 (-525))) 61)) (-1968 (($ (-591 |#2|)) 40) (($ (-591 $)) 42)) (-2348 (((-108) $) 24)) (-2686 (($ |#4|) 47) (((-796) $) NIL)) (-1986 (((-108) $) 30)) (-4059 (($ $ |#2|) 93)) (-4047 (($ $ $) 68) (($ $) 71)) (-4036 (($ $ $) 66)) (** (($ $ (-712)) 80) (($ $ (-525)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-525) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-628 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2686 ((-796) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4059 (|#1| |#1| |#2|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-712))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2995 (|#1| |#1| (-525) (-525) |#1|)) (-15 -2688 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -3519 (|#1| |#1| (-525) (-525))) (-15 -2287 (|#1| |#1| (-525) (-525))) (-15 -2847 (|#1| |#1| (-591 (-525)) (-591 (-525)) |#1|)) (-15 -1881 (|#1| |#1| (-591 (-525)) (-591 (-525)))) (-15 -3093 ((-591 (-591 |#2|)) |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#3|)) (-15 -2686 (|#1| |#4|)) (-15 -1968 (|#1| (-591 |#1|))) (-15 -1968 (|#1| (-591 |#2|))) (-15 -1416 (|#1| (-712) |#2|)) (-15 -1572 (|#1| (-591 (-591 |#2|)))) (-15 -3559 (|#1| (-712) (-712))) (-15 -1986 ((-108) |#1|)) (-15 -1711 ((-108) |#1|)) (-15 -2348 ((-108) |#1|)) (-15 -1478 ((-108) |#1|)) (-15 -2847 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525) (-525)))) (-629 |#2| |#3| |#4|) (-975) (-351 |#2|) (-351 |#2|)) (T -628)) -NIL -(-10 -8 (-15 -2686 ((-796) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4059 (|#1| |#1| |#2|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-712))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2995 (|#1| |#1| (-525) (-525) |#1|)) (-15 -2688 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -3519 (|#1| |#1| (-525) (-525))) (-15 -2287 (|#1| |#1| (-525) (-525))) (-15 -2847 (|#1| |#1| (-591 (-525)) (-591 (-525)) |#1|)) (-15 -1881 (|#1| |#1| (-591 (-525)) (-591 (-525)))) (-15 -3093 ((-591 (-591 |#2|)) |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -4094 (|#1| |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1616 (|#1| |#3|)) (-15 -2686 (|#1| |#4|)) (-15 -1968 (|#1| (-591 |#1|))) (-15 -1968 (|#1| (-591 |#2|))) (-15 -1416 (|#1| (-712) |#2|)) (-15 -1572 (|#1| (-591 (-591 |#2|)))) (-15 -3559 (|#1| (-712) (-712))) (-15 -1986 ((-108) |#1|)) (-15 -1711 ((-108) |#1|)) (-15 -2348 ((-108) |#1|)) (-15 -1478 ((-108) |#1|)) (-15 -2847 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525) (-525)))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3559 (($ (-712) (-712)) 97)) (-3130 (($ $ $) 87)) (-1616 (($ |#2|) 91) (($ $) 90)) (-1711 (((-108) $) 99)) (-2287 (($ $ (-525) (-525)) 83)) (-3519 (($ $ (-525) (-525)) 82)) (-2688 (($ $ (-525) (-525) (-525) (-525)) 81)) (-4094 (($ $) 89)) (-1478 (((-108) $) 101)) (-3727 (((-108) $ (-712)) 8)) (-2995 (($ $ (-525) (-525) $) 80)) (-2847 ((|#1| $ (-525) (-525) |#1|) 44) (($ $ (-591 (-525)) (-591 (-525)) $) 84)) (-1557 (($ $ (-525) |#2|) 42)) (-3031 (($ $ (-525) |#3|) 41)) (-1416 (($ (-712) |#1|) 95)) (-2055 (($) 7 T CONST)) (-1352 (($ $) 67 (|has| |#1| (-286)))) (-2578 ((|#2| $ (-525)) 46)) (-2193 (((-712) $) 66 (|has| |#1| (-517)))) (-4205 ((|#1| $ (-525) (-525) |#1|) 43)) (-4121 ((|#1| $ (-525) (-525)) 48)) (-2916 (((-591 |#1|) $) 30)) (-1613 (((-712) $) 65 (|has| |#1| (-517)))) (-2523 (((-591 |#3|) $) 64 (|has| |#1| (-517)))) (-4127 (((-712) $) 51)) (-1316 (($ (-712) (-712) |#1|) 57)) (-4140 (((-712) $) 50)) (-3491 (((-108) $ (-712)) 9)) (-1806 ((|#1| $) 62 (|has| |#1| (-6 (-4252 "*"))))) (-3142 (((-525) $) 55)) (-3660 (((-525) $) 53)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3882 (((-525) $) 54)) (-2494 (((-525) $) 52)) (-1572 (($ (-591 (-591 |#1|))) 96)) (-4192 (($ (-1 |#1| |#1|) $) 34)) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3093 (((-591 (-591 |#1|)) $) 86)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2902 (((-3 $ "failed") $) 61 (|has| |#1| (-341)))) (-3862 (($ $ $) 88)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-1858 (($ $ |#1|) 56)) (-3210 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-517)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47) (($ $ (-591 (-525)) (-591 (-525))) 85)) (-1968 (($ (-591 |#1|)) 94) (($ (-591 $)) 93)) (-2348 (((-108) $) 100)) (-4145 ((|#1| $) 63 (|has| |#1| (-6 (-4252 "*"))))) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1256 ((|#3| $ (-525)) 45)) (-2686 (($ |#3|) 92) (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-1986 (((-108) $) 98)) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-4059 (($ $ |#1|) 68 (|has| |#1| (-341)))) (-4047 (($ $ $) 78) (($ $) 77)) (-4036 (($ $ $) 79)) (** (($ $ (-712)) 70) (($ $ (-525)) 60 (|has| |#1| (-341)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-525) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-629 |#1| |#2| |#3|) (-131) (-975) (-351 |t#1|) (-351 |t#1|)) (T -629)) -((-1478 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-2348 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-3559 (*1 *1 *2 *2) (-12 (-5 *2 (-712)) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1416 (*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2686 (*1 *1 *2) (-12 (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *2)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (-1616 (*1 *1 *2) (-12 (-4 *3 (-975)) (-4 *1 (-629 *3 *2 *4)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (-1616 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4094 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3862 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3130 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-591 (-591 *3))))) (-1881 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-591 (-525))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2847 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-591 (-525))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2287 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3519 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2688 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2995 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4047 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-629 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-629 *3 *2 *4)) (-4 *3 (-975)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3210 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517)))) (-4059 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (-1352 (*1 *1 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-286)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-712)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-712)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-591 *5)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4252 "*"))) (-4 *2 (-975)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4252 "*"))) (-4 *2 (-975)))) (-2902 (*1 *1 *1) (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341))))) -(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4251) (-6 -4250) (-15 -1478 ((-108) $)) (-15 -2348 ((-108) $)) (-15 -1711 ((-108) $)) (-15 -1986 ((-108) $)) (-15 -3559 ($ (-712) (-712))) (-15 -1572 ($ (-591 (-591 |t#1|)))) (-15 -1416 ($ (-712) |t#1|)) (-15 -1968 ($ (-591 |t#1|))) (-15 -1968 ($ (-591 $))) (-15 -2686 ($ |t#3|)) (-15 -1616 ($ |t#2|)) (-15 -1616 ($ $)) (-15 -4094 ($ $)) (-15 -3862 ($ $ $)) (-15 -3130 ($ $ $)) (-15 -3093 ((-591 (-591 |t#1|)) $)) (-15 -1881 ($ $ (-591 (-525)) (-591 (-525)))) (-15 -2847 ($ $ (-591 (-525)) (-591 (-525)) $)) (-15 -2287 ($ $ (-525) (-525))) (-15 -3519 ($ $ (-525) (-525))) (-15 -2688 ($ $ (-525) (-525) (-525) (-525))) (-15 -2995 ($ $ (-525) (-525) $)) (-15 -4036 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -4047 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-525) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-712))) (IF (|has| |t#1| (-517)) (-15 -3210 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -4059 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-286)) (-15 -1352 ($ $)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -2193 ((-712) $)) (-15 -1613 ((-712) $)) (-15 -2523 ((-591 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4252 "*"))) (PROGN (-15 -4145 (|t#1| $)) (-15 -1806 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -2902 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-55 |#1| |#2| |#3|) . T) ((-1125) . T)) -((-1352 ((|#4| |#4|) 70 (|has| |#1| (-286)))) (-2193 (((-712) |#4|) 72 (|has| |#1| (-517)))) (-1613 (((-712) |#4|) 74 (|has| |#1| (-517)))) (-2523 (((-591 |#3|) |#4|) 81 (|has| |#1| (-517)))) (-1476 (((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|) 101 (|has| |#1| (-286)))) (-1806 ((|#1| |#4|) 35)) (-1746 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-517)))) (-2902 (((-3 |#4| "failed") |#4|) 78 (|has| |#1| (-341)))) (-1293 ((|#4| |#4|) 57 (|has| |#1| (-517)))) (-3151 ((|#4| |#4| |#1| (-525) (-525)) 43)) (-3046 ((|#4| |#4| (-525) (-525)) 38)) (-2985 ((|#4| |#4| |#1| (-525) (-525)) 48)) (-4145 ((|#1| |#4|) 76)) (-1818 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 60 (|has| |#1| (-517))))) -(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4145 (|#1| |#4|)) (-15 -1806 (|#1| |#4|)) (-15 -3046 (|#4| |#4| (-525) (-525))) (-15 -3151 (|#4| |#4| |#1| (-525) (-525))) (-15 -2985 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -2193 ((-712) |#4|)) (-15 -1613 ((-712) |#4|)) (-15 -2523 ((-591 |#3|) |#4|)) (-15 -1293 (|#4| |#4|)) (-15 -1746 ((-3 |#4| "failed") |#4|)) (-15 -1818 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -1352 (|#4| |#4|)) (-15 -1476 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -2902 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-160) (-351 |#1|) (-351 |#1|) (-629 |#1| |#2| |#3|)) (T -630)) -((-2902 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-1476 (*1 *2 *3 *3) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-630 *3 *4 *5 *6)) (-4 *6 (-629 *3 *4 *5)))) (-1352 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-1818 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-1746 (*1 *2 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-1293 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2523 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-591 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-1613 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-712)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2193 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-712)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2985 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6)))) (-3151 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-629 *3 *5 *6)))) (-3046 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-629 *4 *5 *6)))) (-1806 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) (-4145 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5))))) -(-10 -7 (-15 -4145 (|#1| |#4|)) (-15 -1806 (|#1| |#4|)) (-15 -3046 (|#4| |#4| (-525) (-525))) (-15 -3151 (|#4| |#4| |#1| (-525) (-525))) (-15 -2985 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -2193 ((-712) |#4|)) (-15 -1613 ((-712) |#4|)) (-15 -2523 ((-591 |#3|) |#4|)) (-15 -1293 (|#4| |#4|)) (-15 -1746 ((-3 |#4| "failed") |#4|)) (-15 -1818 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -1352 (|#4| |#4|)) (-15 -1476 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -2902 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3559 (($ (-712) (-712)) 46)) (-3130 (($ $ $) NIL)) (-1616 (($ (-1171 |#1|)) NIL) (($ $) NIL)) (-1711 (((-108) $) NIL)) (-2287 (($ $ (-525) (-525)) 12)) (-3519 (($ $ (-525) (-525)) NIL)) (-2688 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-4094 (($ $) NIL)) (-1478 (((-108) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2995 (($ $ (-525) (-525) $) NIL)) (-2847 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-591 (-525)) (-591 (-525)) $) NIL)) (-1557 (($ $ (-525) (-1171 |#1|)) NIL)) (-3031 (($ $ (-525) (-1171 |#1|)) NIL)) (-1416 (($ (-712) |#1|) 22)) (-2055 (($) NIL T CONST)) (-1352 (($ $) 31 (|has| |#1| (-286)))) (-2578 (((-1171 |#1|) $ (-525)) NIL)) (-2193 (((-712) $) 33 (|has| |#1| (-517)))) (-4205 ((|#1| $ (-525) (-525) |#1|) 50)) (-4121 ((|#1| $ (-525) (-525)) NIL)) (-2916 (((-591 |#1|) $) NIL)) (-1613 (((-712) $) 35 (|has| |#1| (-517)))) (-2523 (((-591 (-1171 |#1|)) $) 38 (|has| |#1| (-517)))) (-4127 (((-712) $) 20)) (-1316 (($ (-712) (-712) |#1|) 16)) (-4140 (((-712) $) 21)) (-3491 (((-108) $ (-712)) NIL)) (-1806 ((|#1| $) 29 (|has| |#1| (-6 (-4252 "*"))))) (-3142 (((-525) $) 9)) (-3660 (((-525) $) 10)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3882 (((-525) $) 11)) (-2494 (((-525) $) 47)) (-1572 (($ (-591 (-591 |#1|))) NIL)) (-4192 (($ (-1 |#1| |#1|) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3093 (((-591 (-591 |#1|)) $) 59)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2902 (((-3 $ "failed") $) 42 (|has| |#1| (-341)))) (-3862 (($ $ $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-1858 (($ $ |#1|) NIL)) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-591 (-525)) (-591 (-525))) NIL)) (-1968 (($ (-591 |#1|)) NIL) (($ (-591 $)) NIL) (($ (-1171 |#1|)) 51)) (-2348 (((-108) $) NIL)) (-4145 ((|#1| $) 27 (|has| |#1| (-6 (-4252 "*"))))) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-1300 (((-501) $) 63 (|has| |#1| (-566 (-501))))) (-1256 (((-1171 |#1|) $ (-525)) NIL)) (-2686 (($ (-1171 |#1|)) NIL) (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1986 (((-108) $) NIL)) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $ $) NIL) (($ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-712)) 23) (($ $ (-525)) 45 (|has| |#1| (-341)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1171 |#1|) $ (-1171 |#1|)) NIL) (((-1171 |#1|) (-1171 |#1|) $) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-631 |#1|) (-13 (-629 |#1| (-1171 |#1|) (-1171 |#1|)) (-10 -8 (-15 -1968 ($ (-1171 |#1|))) (IF (|has| |#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -2902 ((-3 $ "failed") $)) |%noBranch|))) (-975)) (T -631)) -((-2902 (*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-341)) (-4 *2 (-975)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-975)) (-5 *1 (-631 *3))))) -(-13 (-629 |#1| (-1171 |#1|) (-1171 |#1|)) (-10 -8 (-15 -1968 ($ (-1171 |#1|))) (IF (|has| |#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -2902 ((-3 $ "failed") $)) |%noBranch|))) -((-3663 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 25)) (-2337 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 21)) (-2934 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-712)) 26)) (-2570 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 14)) (-2755 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 18) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 16)) (-2389 (((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|)) 20)) (-4230 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 12)) (** (((-631 |#1|) (-631 |#1|) (-712)) 30))) -(((-632 |#1|) (-10 -7 (-15 -4230 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2570 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2755 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2755 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2389 ((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|))) (-15 -2337 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -3663 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2934 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-712))) (-15 ** ((-631 |#1|) (-631 |#1|) (-712)))) (-975)) (T -632)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-712)) (-4 *4 (-975)) (-5 *1 (-632 *4)))) (-2934 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-712)) (-4 *4 (-975)) (-5 *1 (-632 *4)))) (-3663 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3)))) (-2337 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3)))) (-2389 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3)))) (-2755 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3)))) (-2755 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3)))) (-2570 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3)))) (-4230 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3))))) -(-10 -7 (-15 -4230 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2570 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2755 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2755 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2389 ((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|))) (-15 -2337 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -3663 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2934 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-712))) (-15 ** ((-631 |#1|) (-631 |#1|) (-712)))) -((-3336 ((|#2| |#2| |#4|) 25)) (-3044 (((-631 |#2|) |#3| |#4|) 31)) (-2225 (((-631 |#2|) |#2| |#4|) 30)) (-1855 (((-1171 |#2|) |#2| |#4|) 16)) (-3280 ((|#2| |#3| |#4|) 24)) (-4124 (((-631 |#2|) |#3| |#4| (-712) (-712)) 38)) (-3683 (((-631 |#2|) |#2| |#4| (-712)) 37))) -(((-633 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1855 ((-1171 |#2|) |#2| |#4|)) (-15 -3280 (|#2| |#3| |#4|)) (-15 -3336 (|#2| |#2| |#4|)) (-15 -2225 ((-631 |#2|) |#2| |#4|)) (-15 -3683 ((-631 |#2|) |#2| |#4| (-712))) (-15 -3044 ((-631 |#2|) |#3| |#4|)) (-15 -4124 ((-631 |#2|) |#3| |#4| (-712) (-712)))) (-1018) (-833 |#1|) (-351 |#2|) (-13 (-351 |#1|) (-10 -7 (-6 -4250)))) (T -633)) -((-4124 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-712)) (-4 *6 (-1018)) (-4 *7 (-833 *6)) (-5 *2 (-631 *7)) (-5 *1 (-633 *6 *7 *3 *4)) (-4 *3 (-351 *7)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4250)))))) (-3044 (*1 *2 *3 *4) (-12 (-4 *5 (-1018)) (-4 *6 (-833 *5)) (-5 *2 (-631 *6)) (-5 *1 (-633 *5 *6 *3 *4)) (-4 *3 (-351 *6)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4250)))))) (-3683 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-712)) (-4 *6 (-1018)) (-4 *3 (-833 *6)) (-5 *2 (-631 *3)) (-5 *1 (-633 *6 *3 *7 *4)) (-4 *7 (-351 *3)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4250)))))) (-2225 (*1 *2 *3 *4) (-12 (-4 *5 (-1018)) (-4 *3 (-833 *5)) (-5 *2 (-631 *3)) (-5 *1 (-633 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4250)))))) (-3336 (*1 *2 *2 *3) (-12 (-4 *4 (-1018)) (-4 *2 (-833 *4)) (-5 *1 (-633 *4 *2 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4250)))))) (-3280 (*1 *2 *3 *4) (-12 (-4 *5 (-1018)) (-4 *2 (-833 *5)) (-5 *1 (-633 *5 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4250)))))) (-1855 (*1 *2 *3 *4) (-12 (-4 *5 (-1018)) (-4 *3 (-833 *5)) (-5 *2 (-1171 *3)) (-5 *1 (-633 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4250))))))) -(-10 -7 (-15 -1855 ((-1171 |#2|) |#2| |#4|)) (-15 -3280 (|#2| |#3| |#4|)) (-15 -3336 (|#2| |#2| |#4|)) (-15 -2225 ((-631 |#2|) |#2| |#4|)) (-15 -3683 ((-631 |#2|) |#2| |#4| (-712))) (-15 -3044 ((-631 |#2|) |#3| |#4|)) (-15 -4124 ((-631 |#2|) |#3| |#4| (-712) (-712)))) -((-1221 (((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)) 20)) (-3993 ((|#1| (-631 |#2|)) 9)) (-3717 (((-631 |#1|) (-631 |#2|)) 18))) -(((-634 |#1| |#2|) (-10 -7 (-15 -3993 (|#1| (-631 |#2|))) (-15 -3717 ((-631 |#1|) (-631 |#2|))) (-15 -1221 ((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)))) (-517) (-923 |#1|)) (T -634)) -((-1221 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-923 *4)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-923 *4)) (-4 *4 (-517)) (-5 *2 (-631 *4)) (-5 *1 (-634 *4 *5)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-923 *2)) (-4 *2 (-517)) (-5 *1 (-634 *2 *4))))) -(-10 -7 (-15 -3993 (|#1| (-631 |#2|))) (-15 -3717 ((-631 |#1|) (-631 |#2|))) (-15 -1221 ((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-1712 (((-631 (-640))) NIL) (((-631 (-640)) (-1171 $)) NIL)) (-1481 (((-640) $) NIL)) (-4087 (($ $) NIL (|has| (-640) (-1111)))) (-2381 (($ $) NIL (|has| (-640) (-1111)))) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| (-640) (-327)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-640) (-286)) (|has| (-640) (-842))))) (-1720 (($ $) NIL (-3150 (-12 (|has| (-640) (-286)) (|has| (-640) (-842))) (|has| (-640) (-341))))) (-3898 (((-396 $) $) NIL (-3150 (-12 (|has| (-640) (-286)) (|has| (-640) (-842))) (|has| (-640) (-341))))) (-2551 (($ $) NIL (-12 (|has| (-640) (-932)) (|has| (-640) (-1111))))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-640) (-286)) (|has| (-640) (-842))))) (-1965 (((-108) $ $) NIL (|has| (-640) (-286)))) (-2834 (((-712)) NIL (|has| (-640) (-346)))) (-4058 (($ $) NIL (|has| (-640) (-1111)))) (-2360 (($ $) NIL (|has| (-640) (-1111)))) (-4109 (($ $) NIL (|has| (-640) (-1111)))) (-2400 (($ $) NIL (|has| (-640) (-1111)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-640) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-640) (-966 (-385 (-525)))))) (-3341 (((-525) $) NIL) (((-640) $) NIL) (((-385 (-525)) $) NIL (|has| (-640) (-966 (-385 (-525)))))) (-1554 (($ (-1171 (-640))) NIL) (($ (-1171 (-640)) (-1171 $)) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-640) (-327)))) (-3265 (($ $ $) NIL (|has| (-640) (-286)))) (-4054 (((-631 (-640)) $) NIL) (((-631 (-640)) $ (-1171 $)) NIL)) (-3925 (((-631 (-640)) (-631 $)) NIL) (((-2 (|:| -2928 (-631 (-640))) (|:| |vec| (-1171 (-640)))) (-631 $) (-1171 $)) NIL) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-640) (-587 (-525)))) (((-631 (-525)) (-631 $)) NIL (|has| (-640) (-587 (-525))))) (-3618 (((-3 $ "failed") (-385 (-1085 (-640)))) NIL (|has| (-640) (-341))) (($ (-1085 (-640))) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2560 (((-640) $) 29)) (-2350 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-640) (-510)))) (-2157 (((-108) $) NIL (|has| (-640) (-510)))) (-3184 (((-385 (-525)) $) NIL (|has| (-640) (-510)))) (-2193 (((-854)) NIL)) (-1325 (($) NIL (|has| (-640) (-346)))) (-3239 (($ $ $) NIL (|has| (-640) (-286)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| (-640) (-286)))) (-1268 (($) NIL (|has| (-640) (-327)))) (-2096 (((-108) $) NIL (|has| (-640) (-327)))) (-3477 (($ $) NIL (|has| (-640) (-327))) (($ $ (-712)) NIL (|has| (-640) (-327)))) (-2393 (((-108) $) NIL (-3150 (-12 (|has| (-640) (-286)) (|has| (-640) (-842))) (|has| (-640) (-341))))) (-1863 (((-2 (|:| |r| (-640)) (|:| |phi| (-640))) $) NIL (-12 (|has| (-640) (-984)) (|has| (-640) (-1111))))) (-1417 (($) NIL (|has| (-640) (-1111)))) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| (-640) (-819 (-357)))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| (-640) (-819 (-525))))) (-1676 (((-774 (-854)) $) NIL (|has| (-640) (-327))) (((-854) $) NIL (|has| (-640) (-327)))) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL (-12 (|has| (-640) (-932)) (|has| (-640) (-1111))))) (-1525 (((-640) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| (-640) (-327)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| (-640) (-286)))) (-3205 (((-1085 (-640)) $) NIL (|has| (-640) (-341)))) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1257 (($ (-1 (-640) (-640)) $) NIL)) (-1970 (((-854) $) NIL (|has| (-640) (-346)))) (-2356 (($ $) NIL (|has| (-640) (-1111)))) (-3610 (((-1085 (-640)) $) NIL)) (-2081 (($ (-591 $)) NIL (|has| (-640) (-286))) (($ $ $) NIL (|has| (-640) (-286)))) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| (-640) (-341)))) (-3492 (($) NIL (|has| (-640) (-327)) CONST)) (-3229 (($ (-854)) NIL (|has| (-640) (-346)))) (-3526 (($) NIL)) (-2571 (((-640) $) 31)) (-2937 (((-1036) $) NIL)) (-3965 (($) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| (-640) (-286)))) (-2124 (($ (-591 $)) NIL (|has| (-640) (-286))) (($ $ $) NIL (|has| (-640) (-286)))) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| (-640) (-327)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-640) (-286)) (|has| (-640) (-842))))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-640) (-286)) (|has| (-640) (-842))))) (-2542 (((-396 $) $) NIL (-3150 (-12 (|has| (-640) (-286)) (|has| (-640) (-842))) (|has| (-640) (-341))))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-640) (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| (-640) (-286)))) (-3210 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-640)) NIL (|has| (-640) (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| (-640) (-286)))) (-2288 (($ $) NIL (|has| (-640) (-1111)))) (-1980 (($ $ (-1089) (-640)) NIL (|has| (-640) (-486 (-1089) (-640)))) (($ $ (-591 (-1089)) (-591 (-640))) NIL (|has| (-640) (-486 (-1089) (-640)))) (($ $ (-591 (-273 (-640)))) NIL (|has| (-640) (-288 (-640)))) (($ $ (-273 (-640))) NIL (|has| (-640) (-288 (-640)))) (($ $ (-640) (-640)) NIL (|has| (-640) (-288 (-640)))) (($ $ (-591 (-640)) (-591 (-640))) NIL (|has| (-640) (-288 (-640))))) (-3048 (((-712) $) NIL (|has| (-640) (-286)))) (-1881 (($ $ (-640)) NIL (|has| (-640) (-265 (-640) (-640))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| (-640) (-286)))) (-2858 (((-640)) NIL) (((-640) (-1171 $)) NIL)) (-2652 (((-3 (-712) "failed") $ $) NIL (|has| (-640) (-327))) (((-712) $) NIL (|has| (-640) (-327)))) (-2209 (($ $ (-1 (-640) (-640))) NIL) (($ $ (-1 (-640) (-640)) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-640) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-640) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-640) (-833 (-1089)))) (($ $ (-1089)) NIL (|has| (-640) (-833 (-1089)))) (($ $ (-712)) NIL (|has| (-640) (-213))) (($ $) NIL (|has| (-640) (-213)))) (-3206 (((-631 (-640)) (-1171 $) (-1 (-640) (-640))) NIL (|has| (-640) (-341)))) (-1341 (((-1085 (-640))) NIL)) (-4122 (($ $) NIL (|has| (-640) (-1111)))) (-2410 (($ $) NIL (|has| (-640) (-1111)))) (-3560 (($) NIL (|has| (-640) (-327)))) (-4098 (($ $) NIL (|has| (-640) (-1111)))) (-2391 (($ $) NIL (|has| (-640) (-1111)))) (-4073 (($ $) NIL (|has| (-640) (-1111)))) (-2370 (($ $) NIL (|has| (-640) (-1111)))) (-1671 (((-631 (-640)) (-1171 $)) NIL) (((-1171 (-640)) $) NIL) (((-631 (-640)) (-1171 $) (-1171 $)) NIL) (((-1171 (-640)) $ (-1171 $)) NIL)) (-1300 (((-501) $) NIL (|has| (-640) (-566 (-501)))) (((-157 (-205)) $) NIL (|has| (-640) (-951))) (((-157 (-357)) $) NIL (|has| (-640) (-951))) (((-825 (-357)) $) NIL (|has| (-640) (-566 (-825 (-357))))) (((-825 (-525)) $) NIL (|has| (-640) (-566 (-825 (-525))))) (($ (-1085 (-640))) NIL) (((-1085 (-640)) $) NIL) (($ (-1171 (-640))) NIL) (((-1171 (-640)) $) NIL)) (-3369 (($ $) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-3150 (-12 (|has| (-640) (-286)) (|has| $ (-136)) (|has| (-640) (-842))) (|has| (-640) (-327))))) (-4185 (($ (-640) (-640)) 12)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-640)) NIL) (($ (-157 (-357))) 13) (($ (-157 (-525))) 19) (($ (-157 (-640))) 28) (($ (-157 (-642))) 25) (((-157 (-357)) $) 33) (($ (-385 (-525))) NIL (-3150 (|has| (-640) (-966 (-385 (-525)))) (|has| (-640) (-341))))) (-3751 (($ $) NIL (|has| (-640) (-327))) (((-3 $ "failed") $) NIL (-3150 (-12 (|has| (-640) (-286)) (|has| $ (-136)) (|has| (-640) (-842))) (|has| (-640) (-136))))) (-2173 (((-1085 (-640)) $) NIL)) (-3425 (((-712)) NIL)) (-3612 (((-1171 $)) NIL)) (-4163 (($ $) NIL (|has| (-640) (-1111)))) (-2457 (($ $) NIL (|has| (-640) (-1111)))) (-1724 (((-108) $ $) NIL)) (-4137 (($ $) NIL (|has| (-640) (-1111)))) (-2432 (($ $) NIL (|has| (-640) (-1111)))) (-4193 (($ $) NIL (|has| (-640) (-1111)))) (-2477 (($ $) NIL (|has| (-640) (-1111)))) (-3358 (((-640) $) NIL (|has| (-640) (-1111)))) (-1234 (($ $) NIL (|has| (-640) (-1111)))) (-2495 (($ $) NIL (|has| (-640) (-1111)))) (-4179 (($ $) NIL (|has| (-640) (-1111)))) (-2469 (($ $) NIL (|has| (-640) (-1111)))) (-4149 (($ $) NIL (|has| (-640) (-1111)))) (-2444 (($ $) NIL (|has| (-640) (-1111)))) (-1460 (($ $) NIL (|has| (-640) (-984)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| (-640) (-341)))) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-1 (-640) (-640))) NIL) (($ $ (-1 (-640) (-640)) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-640) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-640) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-640) (-833 (-1089)))) (($ $ (-1089)) NIL (|has| (-640) (-833 (-1089)))) (($ $ (-712)) NIL (|has| (-640) (-213))) (($ $) NIL (|has| (-640) (-213)))) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL (|has| (-640) (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ $) NIL (|has| (-640) (-1111))) (($ $ (-385 (-525))) NIL (-12 (|has| (-640) (-932)) (|has| (-640) (-1111)))) (($ $ (-525)) NIL (|has| (-640) (-341)))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-640) $) NIL) (($ $ (-640)) NIL) (($ (-385 (-525)) $) NIL (|has| (-640) (-341))) (($ $ (-385 (-525))) NIL (|has| (-640) (-341))))) -(((-635) (-13 (-365) (-154 (-640)) (-10 -8 (-15 -2686 ($ (-157 (-357)))) (-15 -2686 ($ (-157 (-525)))) (-15 -2686 ($ (-157 (-640)))) (-15 -2686 ($ (-157 (-642)))) (-15 -2686 ((-157 (-357)) $))))) (T -635)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-635)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-635)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-157 (-640))) (-5 *1 (-635)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-157 (-642))) (-5 *1 (-635)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-635))))) -(-13 (-365) (-154 (-640)) (-10 -8 (-15 -2686 ($ (-157 (-357)))) (-15 -2686 ($ (-157 (-525)))) (-15 -2686 ($ (-157 (-640)))) (-15 -2686 ($ (-157 (-642)))) (-15 -2686 ((-157 (-357)) $)))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-1288 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-3945 (($ $) 62)) (-2908 (($ $) 58 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ |#1| $) 47 (|has| $ (-6 -4250))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4250)))) (-2537 (($ |#1| $) 57 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4250)))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40) (($ |#1| $ (-712)) 63)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2592 (((-591 (-2 (|:| -1568 |#1|) (|:| -2960 (-712)))) $) 61)) (-3583 (($) 49) (($ (-591 |#1|)) 48)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 59 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 50)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) 42)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-636 |#1|) (-131) (-1018)) (T -636)) -((-1520 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *1 (-636 *2)) (-4 *2 (-1018)))) (-3945 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1018)))) (-2592 (*1 *2 *1) (-12 (-4 *1 (-636 *3)) (-4 *3 (-1018)) (-5 *2 (-591 (-2 (|:| -1568 *3) (|:| -2960 (-712)))))))) -(-13 (-215 |t#1|) (-10 -8 (-15 -1520 ($ |t#1| $ (-712))) (-15 -3945 ($ $)) (-15 -2592 ((-591 (-2 (|:| -1568 |t#1|) (|:| -2960 (-712)))) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-3441 (((-591 |#1|) (-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))) (-525)) 47)) (-2154 ((|#1| |#1| (-525)) 46)) (-2124 ((|#1| |#1| |#1| (-525)) 36)) (-2542 (((-591 |#1|) |#1| (-525)) 39)) (-4136 ((|#1| |#1| (-525) |#1| (-525)) 32)) (-2196 (((-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))) |#1| (-525)) 45))) -(((-637 |#1|) (-10 -7 (-15 -2124 (|#1| |#1| |#1| (-525))) (-15 -2154 (|#1| |#1| (-525))) (-15 -2542 ((-591 |#1|) |#1| (-525))) (-15 -2196 ((-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))) |#1| (-525))) (-15 -3441 ((-591 |#1|) (-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))) (-525))) (-15 -4136 (|#1| |#1| (-525) |#1| (-525)))) (-1147 (-525))) (T -637)) -((-4136 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-637 *2)) (-4 *2 (-1147 *3)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-2 (|:| -2542 *5) (|:| -2743 (-525))))) (-5 *4 (-525)) (-4 *5 (-1147 *4)) (-5 *2 (-591 *5)) (-5 *1 (-637 *5)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-591 (-2 (|:| -2542 *3) (|:| -2743 *4)))) (-5 *1 (-637 *3)) (-4 *3 (-1147 *4)))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-591 *3)) (-5 *1 (-637 *3)) (-4 *3 (-1147 *4)))) (-2154 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-637 *2)) (-4 *2 (-1147 *3)))) (-2124 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-637 *2)) (-4 *2 (-1147 *3))))) -(-10 -7 (-15 -2124 (|#1| |#1| |#1| (-525))) (-15 -2154 (|#1| |#1| (-525))) (-15 -2542 ((-591 |#1|) |#1| (-525))) (-15 -2196 ((-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))) |#1| (-525))) (-15 -3441 ((-591 |#1|) (-591 (-2 (|:| -2542 |#1|) (|:| -2743 (-525)))) (-525))) (-15 -4136 (|#1| |#1| (-525) |#1| (-525)))) -((-2199 (((-1 (-876 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 17)) (-3473 (((-1049 (-205)) (-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-591 (-242))) 40) (((-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-591 (-242))) 42) (((-1049 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1013 (-205)) (-1013 (-205)) (-591 (-242))) 44)) (-1646 (((-1049 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-591 (-242))) NIL)) (-3028 (((-1049 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1013 (-205)) (-1013 (-205)) (-591 (-242))) 45))) -(((-638) (-10 -7 (-15 -3473 ((-1049 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1013 (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -3473 ((-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -3473 ((-1049 (-205)) (-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -3028 ((-1049 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1013 (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -1646 ((-1049 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -2199 ((-1 (-876 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -638)) -((-2199 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1 (-205) (-205) (-205) (-205))) (-5 *2 (-1 (-876 (-205)) (-205) (-205))) (-5 *1 (-638)))) (-1646 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1013 (-205))) (-5 *6 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-638)))) (-3028 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1013 (-205))) (-5 *6 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-638)))) (-3473 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1049 (-205))) (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-205))) (-5 *5 (-591 (-242))) (-5 *1 (-638)))) (-3473 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-205))) (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-638)))) (-3473 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1013 (-205))) (-5 *6 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-638))))) -(-10 -7 (-15 -3473 ((-1049 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1013 (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -3473 ((-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -3473 ((-1049 (-205)) (-1049 (-205)) (-1 (-876 (-205)) (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -3028 ((-1049 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1013 (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -1646 ((-1049 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1013 (-205)) (-591 (-242)))) (-15 -2199 ((-1 (-876 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))))) -((-2542 (((-396 (-1085 |#4|)) (-1085 |#4|)) 73) (((-396 |#4|) |#4|) 222))) -(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2542 ((-396 |#4|) |#4|)) (-15 -2542 ((-396 (-1085 |#4|)) (-1085 |#4|)))) (-788) (-734) (-327) (-882 |#3| |#2| |#1|)) (T -639)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-327)) (-4 *7 (-882 *6 *5 *4)) (-5 *2 (-396 (-1085 *7))) (-5 *1 (-639 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-639 *4 *5 *6 *3)) (-4 *3 (-882 *6 *5 *4))))) -(-10 -7 (-15 -2542 ((-396 |#4|) |#4|)) (-15 -2542 ((-396 (-1085 |#4|)) (-1085 |#4|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 84)) (-2314 (((-525) $) 30)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3328 (($ $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-2551 (($ $) NIL)) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL)) (-2055 (($) NIL T CONST)) (-3032 (($ $) NIL)) (-4174 (((-3 (-525) "failed") $) 73) (((-3 (-385 (-525)) "failed") $) 26) (((-3 (-357) "failed") $) 70)) (-3341 (((-525) $) 75) (((-385 (-525)) $) 67) (((-357) $) 68)) (-3265 (($ $ $) 96)) (-1522 (((-3 $ "failed") $) 87)) (-3239 (($ $ $) 95)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-2008 (((-854)) 77) (((-854) (-854)) 76)) (-3489 (((-108) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL)) (-1676 (((-525) $) NIL)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL)) (-1525 (($ $) NIL)) (-2256 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2820 (((-525) (-525)) 81) (((-525)) 82)) (-1923 (($ $ $) NIL) (($) NIL (-12 (-3389 (|has| $ (-6 -4233))) (-3389 (|has| $ (-6 -4241)))))) (-2430 (((-525) (-525)) 79) (((-525)) 80)) (-3475 (($ $ $) NIL) (($) NIL (-12 (-3389 (|has| $ (-6 -4233))) (-3389 (|has| $ (-6 -4241)))))) (-1630 (((-525) $) 16)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 91)) (-3474 (((-854) (-525)) NIL (|has| $ (-6 -4241)))) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL)) (-2767 (($ $) NIL)) (-2925 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-854)) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) 92)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3987 (((-525) $) 22)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 94)) (-3439 (((-854)) NIL) (((-854) (-854)) NIL (|has| $ (-6 -4241)))) (-2599 (((-854) (-525)) NIL (|has| $ (-6 -4241)))) (-1300 (((-357) $) NIL) (((-205) $) NIL) (((-825 (-357)) $) NIL)) (-2686 (((-796) $) 52) (($ (-525)) 63) (($ $) NIL) (($ (-385 (-525))) 66) (($ (-525)) 63) (($ (-385 (-525))) 66) (($ (-357)) 60) (((-357) $) 50) (($ (-642)) 55)) (-3425 (((-712)) 103)) (-1681 (($ (-525) (-525) (-854)) 44)) (-1584 (($ $) NIL)) (-2901 (((-854)) NIL) (((-854) (-854)) NIL (|has| $ (-6 -4241)))) (-3523 (((-854)) 35) (((-854) (-854)) 78)) (-1724 (((-108) $ $) NIL)) (-1460 (($ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 32 T CONST)) (-1839 (($) 17 T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 83)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 101)) (-4059 (($ $ $) 65)) (-4047 (($ $) 99) (($ $ $) 100)) (-4036 (($ $ $) 98)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 90)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 97) (($ $ $) 88) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) -(((-640) (-13 (-382) (-365) (-341) (-966 (-357)) (-966 (-385 (-525))) (-138) (-10 -8 (-15 -2008 ((-854) (-854))) (-15 -2008 ((-854))) (-15 -3523 ((-854) (-854))) (-15 -3523 ((-854))) (-15 -2430 ((-525) (-525))) (-15 -2430 ((-525))) (-15 -2820 ((-525) (-525))) (-15 -2820 ((-525))) (-15 -2686 ((-357) $)) (-15 -2686 ($ (-642))) (-15 -1630 ((-525) $)) (-15 -3987 ((-525) $)) (-15 -1681 ($ (-525) (-525) (-854)))))) (T -640)) -((-3523 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-640)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-640)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-640)))) (-2008 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-640)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-640)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-640)))) (-2430 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-640)))) (-2430 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-640)))) (-2820 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-640)))) (-2820 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-640)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-640)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-642)) (-5 *1 (-640)))) (-1681 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-854)) (-5 *1 (-640))))) -(-13 (-382) (-365) (-341) (-966 (-357)) (-966 (-385 (-525))) (-138) (-10 -8 (-15 -2008 ((-854) (-854))) (-15 -2008 ((-854))) (-15 -3523 ((-854) (-854))) (-15 -3523 ((-854))) (-15 -2430 ((-525) (-525))) (-15 -2430 ((-525))) (-15 -2820 ((-525) (-525))) (-15 -2820 ((-525))) (-15 -2686 ((-357) $)) (-15 -2686 ($ (-642))) (-15 -1630 ((-525) $)) (-15 -3987 ((-525) $)) (-15 -1681 ($ (-525) (-525) (-854))))) -((-2219 (((-631 |#1|) (-631 |#1|) |#1| |#1|) 65)) (-1352 (((-631 |#1|) (-631 |#1|) |#1|) 48)) (-3450 (((-631 |#1|) (-631 |#1|) |#1|) 66)) (-1365 (((-631 |#1|) (-631 |#1|)) 49)) (-1476 (((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|) 64))) -(((-641 |#1|) (-10 -7 (-15 -1365 ((-631 |#1|) (-631 |#1|))) (-15 -1352 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -3450 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2219 ((-631 |#1|) (-631 |#1|) |#1| |#1|)) (-15 -1476 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|))) (-286)) (T -641)) -((-1476 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-641 *3)) (-4 *3 (-286)))) (-2219 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-286)) (-5 *1 (-641 *3)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-286)) (-5 *1 (-641 *3)))) (-1352 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-286)) (-5 *1 (-641 *3)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-286)) (-5 *1 (-641 *3))))) -(-10 -7 (-15 -1365 ((-631 |#1|) (-631 |#1|))) (-15 -1352 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -3450 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2219 ((-631 |#1|) (-631 |#1|) |#1| |#1|)) (-15 -1476 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3517 (($ $ $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-3329 (($ $ $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL)) (-3423 (($ $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) 27)) (-3341 (((-525) $) 25)) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2350 (((-3 (-385 (-525)) "failed") $) NIL)) (-2157 (((-108) $) NIL)) (-3184 (((-385 (-525)) $) NIL)) (-1325 (($ $) NIL) (($) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-1493 (($ $ $ $) NIL)) (-2283 (($ $ $) NIL)) (-3489 (((-108) $) NIL)) (-4142 (($ $ $) NIL)) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL)) (-3865 (((-108) $) NIL)) (-2116 (((-108) $) NIL)) (-2115 (((-3 $ "failed") $) NIL)) (-2256 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3480 (($ $ $ $) NIL)) (-1923 (($ $ $) NIL)) (-4041 (((-854) (-854)) 10) (((-854)) 9)) (-3475 (($ $ $) NIL)) (-1576 (($ $) NIL)) (-2445 (($ $) NIL)) (-2081 (($ (-591 $)) NIL) (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-3222 (($ $ $) NIL)) (-3492 (($) NIL T CONST)) (-4025 (($ $) NIL)) (-2937 (((-1036) $) NIL) (($ $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ (-591 $)) NIL) (($ $ $) NIL)) (-2106 (($ $) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2882 (((-108) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) NIL) (($ $ (-712)) NIL)) (-1853 (($ $) NIL)) (-2873 (($ $) NIL)) (-1300 (((-205) $) NIL) (((-357) $) NIL) (((-825 (-525)) $) NIL) (((-501) $) NIL) (((-525) $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) 24) (($ $) NIL) (($ (-525)) 24) (((-294 $) (-294 (-525))) 18)) (-3425 (((-712)) NIL)) (-3760 (((-108) $ $) NIL)) (-3808 (($ $ $) NIL)) (-3523 (($) NIL)) (-1724 (((-108) $ $) NIL)) (-1825 (($ $ $ $) NIL)) (-1460 (($ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $) NIL) (($ $ (-712)) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL))) -(((-642) (-13 (-365) (-510) (-10 -8 (-15 -4041 ((-854) (-854))) (-15 -4041 ((-854))) (-15 -2686 ((-294 $) (-294 (-525))))))) (T -642)) -((-4041 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-642)))) (-4041 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-642)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-642))) (-5 *1 (-642))))) -(-13 (-365) (-510) (-10 -8 (-15 -4041 ((-854) (-854))) (-15 -4041 ((-854))) (-15 -2686 ((-294 $) (-294 (-525)))))) -((-2948 (((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)) 19)) (-2390 (((-1 |#4| |#2| |#3|) (-1089)) 12))) -(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2390 ((-1 |#4| |#2| |#3|) (-1089))) (-15 -2948 ((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)))) (-566 (-501)) (-1125) (-1125) (-1125)) (T -643)) -((-2948 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-643 *3 *5 *6 *7)) (-4 *3 (-566 (-501))) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-643 *4 *5 *6 *7)) (-4 *4 (-566 (-501))) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125))))) -(-10 -7 (-15 -2390 ((-1 |#4| |#2| |#3|) (-1089))) (-15 -2948 ((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)))) -((-2673 (((-108) $ $) NIL)) (-3072 (((-1176) $ (-712)) 14)) (-1734 (((-712) $) 12)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 25)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 24))) -(((-644 |#1|) (-13 (-127) (-565 |#1|) (-10 -8 (-15 -2686 ($ |#1|)))) (-1018)) (T -644)) -((-2686 (*1 *1 *2) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1018))))) -(-13 (-127) (-565 |#1|) (-10 -8 (-15 -2686 ($ |#1|)))) -((-1211 (((-1 (-205) (-205) (-205)) |#1| (-1089) (-1089)) 34) (((-1 (-205) (-205)) |#1| (-1089)) 39))) -(((-645 |#1|) (-10 -7 (-15 -1211 ((-1 (-205) (-205)) |#1| (-1089))) (-15 -1211 ((-1 (-205) (-205) (-205)) |#1| (-1089) (-1089)))) (-566 (-501))) (T -645)) -((-1211 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-645 *3)) (-4 *3 (-566 (-501))))) (-1211 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-645 *3)) (-4 *3 (-566 (-501)))))) -(-10 -7 (-15 -1211 ((-1 (-205) (-205)) |#1| (-1089))) (-15 -1211 ((-1 (-205) (-205) (-205)) |#1| (-1089) (-1089)))) -((-1954 (((-1089) |#1| (-1089) (-591 (-1089))) 9) (((-1089) |#1| (-1089) (-1089) (-1089)) 12) (((-1089) |#1| (-1089) (-1089)) 11) (((-1089) |#1| (-1089)) 10))) -(((-646 |#1|) (-10 -7 (-15 -1954 ((-1089) |#1| (-1089))) (-15 -1954 ((-1089) |#1| (-1089) (-1089))) (-15 -1954 ((-1089) |#1| (-1089) (-1089) (-1089))) (-15 -1954 ((-1089) |#1| (-1089) (-591 (-1089))))) (-566 (-501))) (T -646)) -((-1954 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-591 (-1089))) (-5 *2 (-1089)) (-5 *1 (-646 *3)) (-4 *3 (-566 (-501))))) (-1954 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-646 *3)) (-4 *3 (-566 (-501))))) (-1954 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-646 *3)) (-4 *3 (-566 (-501))))) (-1954 (*1 *2 *3 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-646 *3)) (-4 *3 (-566 (-501)))))) -(-10 -7 (-15 -1954 ((-1089) |#1| (-1089))) (-15 -1954 ((-1089) |#1| (-1089) (-1089))) (-15 -1954 ((-1089) |#1| (-1089) (-1089) (-1089))) (-15 -1954 ((-1089) |#1| (-1089) (-591 (-1089))))) -((-2521 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-647 |#1| |#2|) (-10 -7 (-15 -2521 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1125) (-1125)) (T -647)) -((-2521 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-647 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125))))) -(-10 -7 (-15 -2521 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3938 (((-1 |#3| |#2|) (-1089)) 11)) (-2948 (((-1 |#3| |#2|) |#1| (-1089)) 21))) -(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -3938 ((-1 |#3| |#2|) (-1089))) (-15 -2948 ((-1 |#3| |#2|) |#1| (-1089)))) (-566 (-501)) (-1125) (-1125)) (T -648)) -((-2948 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *3 *5 *6)) (-4 *3 (-566 (-501))) (-4 *5 (-1125)) (-4 *6 (-1125)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *4 *5 *6)) (-4 *4 (-566 (-501))) (-4 *5 (-1125)) (-4 *6 (-1125))))) -(-10 -7 (-15 -3938 ((-1 |#3| |#2|) (-1089))) (-15 -2948 ((-1 |#3| |#2|) |#1| (-1089)))) -((-3807 (((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-591 |#2|) (-591 (-1085 |#4|)) (-591 |#3|) (-591 |#4|) (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| |#4|)))) (-591 (-712)) (-1171 (-591 (-1085 |#3|))) |#3|) 62)) (-1203 (((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-591 |#2|) (-591 (-1085 |#3|)) (-591 |#3|) (-591 |#4|) (-591 (-712)) |#3|) 75)) (-2095 (((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-591 |#2|) (-591 |#3|) (-591 (-712)) (-591 (-1085 |#4|)) (-1171 (-591 (-1085 |#3|))) |#3|) 34))) -(((-649 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2095 ((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-591 |#2|) (-591 |#3|) (-591 (-712)) (-591 (-1085 |#4|)) (-1171 (-591 (-1085 |#3|))) |#3|)) (-15 -1203 ((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-591 |#2|) (-591 (-1085 |#3|)) (-591 |#3|) (-591 |#4|) (-591 (-712)) |#3|)) (-15 -3807 ((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-591 |#2|) (-591 (-1085 |#4|)) (-591 |#3|) (-591 |#4|) (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| |#4|)))) (-591 (-712)) (-1171 (-591 (-1085 |#3|))) |#3|))) (-734) (-788) (-286) (-882 |#3| |#1| |#2|)) (T -649)) -((-3807 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-591 (-1085 *13))) (-5 *3 (-1085 *13)) (-5 *4 (-591 *12)) (-5 *5 (-591 *10)) (-5 *6 (-591 *13)) (-5 *7 (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| *13))))) (-5 *8 (-591 (-712))) (-5 *9 (-1171 (-591 (-1085 *10)))) (-4 *12 (-788)) (-4 *10 (-286)) (-4 *13 (-882 *10 *11 *12)) (-4 *11 (-734)) (-5 *1 (-649 *11 *12 *10 *13)))) (-1203 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-591 *11)) (-5 *5 (-591 (-1085 *9))) (-5 *6 (-591 *9)) (-5 *7 (-591 *12)) (-5 *8 (-591 (-712))) (-4 *11 (-788)) (-4 *9 (-286)) (-4 *12 (-882 *9 *10 *11)) (-4 *10 (-734)) (-5 *2 (-591 (-1085 *12))) (-5 *1 (-649 *10 *11 *9 *12)) (-5 *3 (-1085 *12)))) (-2095 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-591 (-1085 *11))) (-5 *3 (-1085 *11)) (-5 *4 (-591 *10)) (-5 *5 (-591 *8)) (-5 *6 (-591 (-712))) (-5 *7 (-1171 (-591 (-1085 *8)))) (-4 *10 (-788)) (-4 *8 (-286)) (-4 *11 (-882 *8 *9 *10)) (-4 *9 (-734)) (-5 *1 (-649 *9 *10 *8 *11))))) -(-10 -7 (-15 -2095 ((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-591 |#2|) (-591 |#3|) (-591 (-712)) (-591 (-1085 |#4|)) (-1171 (-591 (-1085 |#3|))) |#3|)) (-15 -1203 ((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-591 |#2|) (-591 (-1085 |#3|)) (-591 |#3|) (-591 |#4|) (-591 (-712)) |#3|)) (-15 -3807 ((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-591 |#2|) (-591 (-1085 |#4|)) (-591 |#3|) (-591 |#4|) (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| |#4|)))) (-591 (-712)) (-1171 (-591 (-1085 |#3|))) |#3|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1575 (($ $) 41)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-1422 (($ |#1| (-712)) 39)) (-3629 (((-712) $) 43)) (-1556 ((|#1| $) 42)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2743 (((-712) $) 44)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 38 (|has| |#1| (-160)))) (-1263 ((|#1| $ (-712)) 40)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-650 |#1|) (-131) (-975)) (T -650)) -((-2743 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-975)))) (-1575 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-975)))) (-1263 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *1 (-650 *2)) (-4 *2 (-975)))) (-1422 (*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-650 *2)) (-4 *2 (-975))))) -(-13 (-975) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2743 ((-712) $)) (-15 -3629 ((-712) $)) (-15 -1556 (|t#1| $)) (-15 -1575 ($ $)) (-15 -1263 (|t#1| $ (-712))) (-15 -1422 ($ |t#1| (-712))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-659 |#1|) |has| |#1| (-160)) ((-668) . T) ((-981 |#1|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1257 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-651 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1257 (|#6| (-1 |#4| |#1|) |#3|))) (-517) (-1147 |#1|) (-1147 (-385 |#2|)) (-517) (-1147 |#4|) (-1147 (-385 |#5|))) (T -651)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517)) (-4 *6 (-1147 *5)) (-4 *2 (-1147 (-385 *8))) (-5 *1 (-651 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1147 (-385 *6))) (-4 *8 (-1147 *7))))) -(-10 -7 (-15 -1257 (|#6| (-1 |#4| |#1|) |#3|))) -((-2673 (((-108) $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-4039 (((-1072) (-796)) 31)) (-1285 (((-1176) (-1072)) 28)) (-1883 (((-1072) (-796)) 24)) (-2029 (((-1072) (-796)) 25)) (-2686 (((-796) $) NIL) (((-1072) (-796)) 23)) (-3944 (((-108) $ $) NIL))) -(((-652) (-13 (-1018) (-10 -7 (-15 -2686 ((-1072) (-796))) (-15 -1883 ((-1072) (-796))) (-15 -2029 ((-1072) (-796))) (-15 -4039 ((-1072) (-796))) (-15 -1285 ((-1176) (-1072)))))) (T -652)) -((-2686 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1072)) (-5 *1 (-652)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1072)) (-5 *1 (-652)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1072)) (-5 *1 (-652)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1072)) (-5 *1 (-652)))) (-1285 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-652))))) -(-13 (-1018) (-10 -7 (-15 -2686 ((-1072) (-796))) (-15 -1883 ((-1072) (-796))) (-15 -2029 ((-1072) (-796))) (-15 -4039 ((-1072) (-796))) (-15 -1285 ((-1176) (-1072))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-3265 (($ $ $) NIL)) (-3618 (($ |#1| |#2|) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3865 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1233 ((|#2| $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1545 (((-3 $ "failed") $ $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) ((|#1| $) NIL)) (-3425 (((-712)) NIL)) (-1724 (((-108) $ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) -(((-653 |#1| |#2| |#3| |#4| |#5|) (-13 (-341) (-10 -8 (-15 -1233 (|#2| $)) (-15 -2686 (|#1| $)) (-15 -3618 ($ |#1| |#2|)) (-15 -1545 ((-3 $ "failed") $ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -653)) -((-1233 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2686 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3618 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1545 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-341) (-10 -8 (-15 -1233 (|#2| $)) (-15 -2686 (|#1| $)) (-15 -3618 ($ |#1| |#2|)) (-15 -1545 ((-3 $ "failed") $ $)))) -((-2673 (((-108) $ $) 78)) (-1306 (((-108) $) 30)) (-4135 (((-1171 |#1|) $ (-712)) NIL)) (-1444 (((-591 (-1003)) $) NIL)) (-3290 (($ (-1085 |#1|)) NIL)) (-2514 (((-1085 $) $ (-1003)) NIL) (((-1085 |#1|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-1003))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2584 (($ $ $) NIL (|has| |#1| (-517)))) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1720 (($ $) NIL (|has| |#1| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2834 (((-712)) 47 (|has| |#1| (-346)))) (-4069 (($ $ (-712)) NIL)) (-3997 (($ $ (-712)) NIL)) (-3087 ((|#2| |#2|) 44)) (-3374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-1003) "failed") $) NIL)) (-3341 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-1003) $) NIL)) (-1788 (($ $ $ (-1003)) NIL (|has| |#1| (-160))) ((|#1| $ $) NIL (|has| |#1| (-160)))) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) 34)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-3618 (($ |#2|) 42)) (-1522 (((-3 $ "failed") $) 86)) (-1325 (($) 51 (|has| |#1| (-346)))) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1666 (($ $ $) NIL)) (-3225 (($ $ $) NIL (|has| |#1| (-517)))) (-1627 (((-2 (|:| -2976 |#1|) (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-517)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-3153 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1003)) NIL (|has| |#1| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#1| (-842)))) (-3630 (((-890 $)) 80)) (-2615 (($ $ |#1| (-712) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-1003) (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-1003) (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-1676 (((-712) $ $) NIL (|has| |#1| (-517)))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-1065)))) (-1434 (($ (-1085 |#1|) (-1003)) NIL) (($ (-1085 $) (-1003)) NIL)) (-1698 (($ $ (-712)) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-712)) 77) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-1003)) NIL) (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-1233 ((|#2|) 45)) (-3629 (((-712) $) NIL) (((-712) $ (-1003)) NIL) (((-591 (-712)) $ (-591 (-1003))) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2508 (($ (-1 (-712) (-712)) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2496 (((-1085 |#1|) $) NIL)) (-3027 (((-3 (-1003) "failed") $) NIL)) (-1970 (((-854) $) NIL (|has| |#1| (-346)))) (-3610 ((|#2| $) 41)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) 28)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2621 (((-1072) $) NIL)) (-1400 (((-2 (|:| -2746 $) (|:| -2449 $)) $ (-712)) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-1003)) (|:| -3987 (-712))) "failed") $) NIL)) (-2452 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3492 (($) NIL (|has| |#1| (-1065)) CONST)) (-3229 (($ (-854)) NIL (|has| |#1| (-346)))) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#1| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2955 (($ $) 79 (|has| |#1| (-327)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-842)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-1003) |#1|) NIL) (($ $ (-591 (-1003)) (-591 |#1|)) NIL) (($ $ (-1003) $) NIL) (($ $ (-591 (-1003)) (-591 $)) NIL)) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-1725 (((-3 $ "failed") $ (-712)) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 87 (|has| |#1| (-341)))) (-2858 (($ $ (-1003)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-2209 (($ $ (-1003)) NIL) (($ $ (-591 (-1003))) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL) (($ $ (-712)) NIL) (($ $) NIL) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2743 (((-712) $) 32) (((-712) $ (-1003)) NIL) (((-591 (-712)) $ (-591 (-1003))) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-1003) (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-1003) (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-1003) (-566 (-501))) (|has| |#1| (-566 (-501)))))) (-2827 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1003)) NIL (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2033 (((-890 $)) 36)) (-2037 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-2686 (((-796) $) 61) (($ (-525)) NIL) (($ |#1|) 58) (($ (-1003)) NIL) (($ |#2|) 68) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-712)) 63) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#1| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 20 T CONST)) (-2377 (((-1171 |#1|) $) 75)) (-1431 (($ (-1171 |#1|)) 50)) (-1839 (($) 8 T CONST)) (-1796 (($ $ (-1003)) NIL) (($ $ (-591 (-1003))) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL) (($ $ (-712)) NIL) (($ $) NIL) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3234 (((-1171 |#1|) $) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) 69)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) 72) (($ $ $) NIL)) (-4036 (($ $ $) 33)) (** (($ $ (-854)) NIL) (($ $ (-712)) 81)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 57) (($ $ $) 74) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-654 |#1| |#2|) (-13 (-1147 |#1|) (-10 -8 (-15 -3087 (|#2| |#2|)) (-15 -1233 (|#2|)) (-15 -3618 ($ |#2|)) (-15 -3610 (|#2| $)) (-15 -2686 ($ |#2|)) (-15 -2377 ((-1171 |#1|) $)) (-15 -1431 ($ (-1171 |#1|))) (-15 -3234 ((-1171 |#1|) $)) (-15 -3630 ((-890 $))) (-15 -2033 ((-890 $))) (IF (|has| |#1| (-327)) (-15 -2955 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|))) (-975) (-1147 |#1|)) (T -654)) -((-3087 (*1 *2 *2) (-12 (-4 *3 (-975)) (-5 *1 (-654 *3 *2)) (-4 *2 (-1147 *3)))) (-1233 (*1 *2) (-12 (-4 *2 (-1147 *3)) (-5 *1 (-654 *3 *2)) (-4 *3 (-975)))) (-3618 (*1 *1 *2) (-12 (-4 *3 (-975)) (-5 *1 (-654 *3 *2)) (-4 *2 (-1147 *3)))) (-3610 (*1 *2 *1) (-12 (-4 *2 (-1147 *3)) (-5 *1 (-654 *3 *2)) (-4 *3 (-975)))) (-2686 (*1 *1 *2) (-12 (-4 *3 (-975)) (-5 *1 (-654 *3 *2)) (-4 *2 (-1147 *3)))) (-2377 (*1 *2 *1) (-12 (-4 *3 (-975)) (-5 *2 (-1171 *3)) (-5 *1 (-654 *3 *4)) (-4 *4 (-1147 *3)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-975)) (-5 *1 (-654 *3 *4)) (-4 *4 (-1147 *3)))) (-3234 (*1 *2 *1) (-12 (-4 *3 (-975)) (-5 *2 (-1171 *3)) (-5 *1 (-654 *3 *4)) (-4 *4 (-1147 *3)))) (-3630 (*1 *2) (-12 (-4 *3 (-975)) (-5 *2 (-890 (-654 *3 *4))) (-5 *1 (-654 *3 *4)) (-4 *4 (-1147 *3)))) (-2033 (*1 *2) (-12 (-4 *3 (-975)) (-5 *2 (-890 (-654 *3 *4))) (-5 *1 (-654 *3 *4)) (-4 *4 (-1147 *3)))) (-2955 (*1 *1 *1) (-12 (-4 *2 (-327)) (-4 *2 (-975)) (-5 *1 (-654 *2 *3)) (-4 *3 (-1147 *2))))) -(-13 (-1147 |#1|) (-10 -8 (-15 -3087 (|#2| |#2|)) (-15 -1233 (|#2|)) (-15 -3618 ($ |#2|)) (-15 -3610 (|#2| $)) (-15 -2686 ($ |#2|)) (-15 -2377 ((-1171 |#1|) $)) (-15 -1431 ($ (-1171 |#1|))) (-15 -3234 ((-1171 |#1|) $)) (-15 -3630 ((-890 $))) (-15 -2033 ((-890 $))) (IF (|has| |#1| (-327)) (-15 -2955 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-3229 ((|#1| $) 13)) (-2937 (((-1036) $) NIL)) (-3987 ((|#2| $) 12)) (-2695 (($ |#1| |#2|) 16)) (-2686 (((-796) $) NIL) (($ (-2 (|:| -3229 |#1|) (|:| -3987 |#2|))) 15) (((-2 (|:| -3229 |#1|) (|:| -3987 |#2|)) $) 14)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 11))) -(((-655 |#1| |#2| |#3|) (-13 (-788) (-10 -8 (-15 -3987 (|#2| $)) (-15 -3229 (|#1| $)) (-15 -2686 ($ (-2 (|:| -3229 |#1|) (|:| -3987 |#2|)))) (-15 -2686 ((-2 (|:| -3229 |#1|) (|:| -3987 |#2|)) $)) (-15 -2695 ($ |#1| |#2|)))) (-788) (-1018) (-1 (-108) (-2 (|:| -3229 |#1|) (|:| -3987 |#2|)) (-2 (|:| -3229 |#1|) (|:| -3987 |#2|)))) (T -655)) -((-3987 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-655 *3 *2 *4)) (-4 *3 (-788)) (-14 *4 (-1 (-108) (-2 (|:| -3229 *3) (|:| -3987 *2)) (-2 (|:| -3229 *3) (|:| -3987 *2)))))) (-3229 (*1 *2 *1) (-12 (-4 *2 (-788)) (-5 *1 (-655 *2 *3 *4)) (-4 *3 (-1018)) (-14 *4 (-1 (-108) (-2 (|:| -3229 *2) (|:| -3987 *3)) (-2 (|:| -3229 *2) (|:| -3987 *3)))))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3229 *3) (|:| -3987 *4))) (-4 *3 (-788)) (-4 *4 (-1018)) (-5 *1 (-655 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3229 *3) (|:| -3987 *4))) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-788)) (-4 *4 (-1018)) (-14 *5 (-1 (-108) *2 *2)))) (-2695 (*1 *1 *2 *3) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-788)) (-4 *3 (-1018)) (-14 *4 (-1 (-108) (-2 (|:| -3229 *2) (|:| -3987 *3)) (-2 (|:| -3229 *2) (|:| -3987 *3))))))) -(-13 (-788) (-10 -8 (-15 -3987 (|#2| $)) (-15 -3229 (|#1| $)) (-15 -2686 ($ (-2 (|:| -3229 |#1|) (|:| -3987 |#2|)))) (-15 -2686 ((-2 (|:| -3229 |#1|) (|:| -3987 |#2|)) $)) (-15 -2695 ($ |#1| |#2|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 59)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-3341 ((|#1| $) NIL) (((-110) $) 39)) (-1522 (((-3 $ "failed") $) 90)) (-2372 ((|#2| (-110) |#2|) 82)) (-3865 (((-108) $) NIL)) (-3281 (($ |#1| (-339 (-110))) 14)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2067 (($ $ (-1 |#2| |#2|)) 58)) (-2149 (($ $ (-1 |#2| |#2|)) 44)) (-1881 ((|#2| $ |#2|) 33)) (-1631 ((|#1| |#1|) 100 (|has| |#1| (-160)))) (-2686 (((-796) $) 66) (($ (-525)) 18) (($ |#1|) 17) (($ (-110)) 23)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) 37)) (-1818 (($ $) 99 (|has| |#1| (-160))) (($ $ $) 103 (|has| |#1| (-160)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 21 T CONST)) (-1839 (($) 9 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) 48) (($ $ $) NIL)) (-4036 (($ $ $) 73)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) 57)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-160))) (($ $ |#1|) 97 (|has| |#1| (-160))))) -(((-656 |#1| |#2|) (-13 (-975) (-966 |#1|) (-966 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1818 ($ $)) (-15 -1818 ($ $ $)) (-15 -1631 (|#1| |#1|))) |%noBranch|) (-15 -2149 ($ $ (-1 |#2| |#2|))) (-15 -2067 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -2372 (|#2| (-110) |#2|)) (-15 -3281 ($ |#1| (-339 (-110)))))) (-975) (-593 |#1|)) (T -656)) -((-1818 (*1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-975)) (-5 *1 (-656 *2 *3)) (-4 *3 (-593 *2)))) (-1818 (*1 *1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-975)) (-5 *1 (-656 *2 *3)) (-4 *3 (-593 *2)))) (-1631 (*1 *2 *2) (-12 (-4 *2 (-160)) (-4 *2 (-975)) (-5 *1 (-656 *2 *3)) (-4 *3 (-593 *2)))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-593 *3)) (-4 *3 (-975)) (-5 *1 (-656 *3 *4)))) (-2067 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-593 *3)) (-4 *3 (-975)) (-5 *1 (-656 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-975)) (-5 *1 (-656 *4 *5)) (-4 *5 (-593 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *3 (-975)) (-5 *1 (-656 *3 *4)) (-4 *4 (-593 *3)))) (-2372 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-975)) (-5 *1 (-656 *4 *2)) (-4 *2 (-593 *4)))) (-3281 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-4 *2 (-975)) (-5 *1 (-656 *2 *4)) (-4 *4 (-593 *2))))) -(-13 (-975) (-966 |#1|) (-966 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1818 ($ $)) (-15 -1818 ($ $ $)) (-15 -1631 (|#1| |#1|))) |%noBranch|) (-15 -2149 ($ $ (-1 |#2| |#2|))) (-15 -2067 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -2372 (|#2| (-110) |#2|)) (-15 -3281 ($ |#1| (-339 (-110)))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 33)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-3618 (($ |#1| |#2|) 25)) (-1522 (((-3 $ "failed") $) 48)) (-3865 (((-108) $) 35)) (-1233 ((|#2| $) 12)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 49)) (-2937 (((-1036) $) NIL)) (-1545 (((-3 $ "failed") $ $) 47)) (-2686 (((-796) $) 24) (($ (-525)) 19) ((|#1| $) 13)) (-3425 (((-712)) 28)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 16 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 38)) (-4047 (($ $) 43) (($ $ $) 37)) (-4036 (($ $ $) 40)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 21) (($ $ $) 20))) -(((-657 |#1| |#2| |#3| |#4| |#5|) (-13 (-975) (-10 -8 (-15 -1233 (|#2| $)) (-15 -2686 (|#1| $)) (-15 -3618 ($ |#1| |#2|)) (-15 -1545 ((-3 $ "failed") $ $)) (-15 -1522 ((-3 $ "failed") $)) (-15 -1523 ($ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -657)) -((-1522 (*1 *1 *1) (|partial| -12 (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1233 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-657 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2686 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3618 (*1 *1 *2 *3) (-12 (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1545 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1523 (*1 *1 *1) (-12 (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-975) (-10 -8 (-15 -1233 (|#2| $)) (-15 -2686 (|#1| $)) (-15 -3618 ($ |#1| |#2|)) (-15 -1545 ((-3 $ "failed") $ $)) (-15 -1522 ((-3 $ "failed") $)) (-15 -1523 ($ $)))) -((* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-658 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) (-659 |#2|) (-160)) (T -658)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-659 |#1|) (-131) (-160)) (T -659)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 15)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-1936 ((|#1| $) 21)) (-1260 (($ $ $) NIL (|has| |#1| (-733)))) (-2154 (($ $ $) NIL (|has| |#1| (-733)))) (-1707 (((-1073) $) 46)) (-3027 (((-1037) $) NIL)) (-1945 ((|#3| $) 22)) (-4044 (((-797) $) 42)) (-1436 (($) 10 T CONST)) (-3973 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3899 (((-108) $ $) 20)) (-3959 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3928 (((-108) $ $) 24 (|has| |#1| (-733)))) (-4047 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4033 (($ $) 17) (($ $ $) NIL)) (-4017 (($ $ $) 27)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-608 |#1| |#2| |#3|) (-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -4047 ($ $ |#3|)) (-15 -4047 ($ |#1| |#3|)) (-15 -1936 (|#1| $)) (-15 -1945 (|#3| $)))) (-660 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -608)) +((-4047 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-4047 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-608 *2 *4 *3)) (-4 *2 (-660 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-1936 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-1945 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4))))) +(-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -4047 ($ $ |#3|)) (-15 -4047 ($ |#1| |#3|)) (-15 -1936 (|#1| $)) (-15 -1945 (|#3| $)))) +((-1231 (((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|)) 33))) +(((-609 |#1|) (-10 -7 (-15 -1231 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|)))) (-843)) (T -609)) +((-1231 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-843)) (-5 *1 (-609 *4))))) +(-10 -7 (-15 -1231 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1562 (((-592 |#1|) $) 82)) (-1285 (($ $ (-713)) 90)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2554 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 48)) (-2769 (((-3 (-617 |#1|) "failed") $) NIL)) (-2068 (((-617 |#1|) $) NIL)) (-3306 (($ $) 89)) (-3682 (((-713) $) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-1784 (($ (-617 |#1|) |#2|) 68)) (-2414 (($ $) 86)) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-1257 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 47)) (-3060 (((-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3277 (((-617 |#1|) $) NIL)) (-3286 ((|#2| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2168 (($ $ |#1| $) 30) (($ $ (-592 |#1|) (-592 $)) 32)) (-1486 (((-713) $) 88)) (-4059 (($ $ $) 20) (($ (-617 |#1|) (-617 |#1|)) 77) (($ (-617 |#1|) $) 75) (($ $ (-617 |#1|)) 76)) (-4044 (((-797) $) NIL) (($ |#1|) 74) (((-1185 |#1| |#2|) $) 58) (((-1194 |#1| |#2|) $) 41) (($ (-617 |#1|)) 25)) (-3681 (((-592 |#2|) $) NIL)) (-2100 ((|#2| $ (-617 |#1|)) NIL)) (-2059 ((|#2| (-1194 |#1| |#2|) $) 43)) (-1436 (($) 23 T CONST)) (-3365 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1460 (((-3 $ "failed") (-1185 |#1| |#2|)) 60)) (-3765 (($ (-617 |#1|)) 14)) (-3899 (((-108) $ $) 44)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $) 66) (($ $ $) NIL)) (-4017 (($ $ $) 29)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-617 |#1|)) NIL))) +(((-610 |#1| |#2|) (-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -1460 ((-3 $ "failed") (-1185 |#1| |#2|))) (-15 -4059 ($ (-617 |#1|) (-617 |#1|))) (-15 -4059 ($ (-617 |#1|) $)) (-15 -4059 ($ $ (-617 |#1|))))) (-789) (-160)) (T -610)) +((-1460 (*1 *1 *2) (|partial| -12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-610 *3 *4)))) (-4059 (*1 *1 *2 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-4059 (*1 *1 *2 *1) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-4059 (*1 *1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160))))) +(-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -1460 ((-3 $ "failed") (-1185 |#1| |#2|))) (-15 -4059 ($ (-617 |#1|) (-617 |#1|))) (-15 -4059 ($ (-617 |#1|) $)) (-15 -4059 ($ $ (-617 |#1|))))) +((-3746 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-1943 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 12)) (-2696 (($ (-1 (-108) |#2|) $) 28)) (-1626 (($ $) 56)) (-2987 (($ $) 64)) (-1640 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-3336 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1930 (((-525) |#2| $ (-525)) 61) (((-525) |#2| $) NIL) (((-525) (-1 (-108) |#2|) $) 47)) (-3248 (($ (-713) |#2|) 54)) (-1636 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-1440 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-2868 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1553 (($ |#2|) 15)) (-4157 (($ $ $ (-525)) 36) (($ |#2| $ (-525)) 34)) (-3611 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-2835 (($ $ (-1139 (-525))) 44) (($ $ (-525)) 38)) (-4038 (($ $ $ (-525)) 60)) (-1261 (($ $) 58)) (-3928 (((-108) $ $) 66))) +(((-611 |#1| |#2|) (-10 -8 (-15 -1553 (|#1| |#2|)) (-15 -2835 (|#1| |#1| (-525))) (-15 -2835 (|#1| |#1| (-1139 (-525)))) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4157 (|#1| |#2| |#1| (-525))) (-15 -4157 (|#1| |#1| |#1| (-525))) (-15 -1636 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2696 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1640 (|#1| |#2| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -1636 (|#1| |#1| |#1|)) (-15 -1440 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3746 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1930 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -1930 ((-525) |#2| |#1|)) (-15 -1930 ((-525) |#2| |#1| (-525))) (-15 -1440 (|#1| |#1| |#1|)) (-15 -3746 ((-108) |#1|)) (-15 -4038 (|#1| |#1| |#1| (-525))) (-15 -1626 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3611 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3248 (|#1| (-713) |#2|)) (-15 -2868 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1261 (|#1| |#1|))) (-612 |#2|) (-1126)) (T -611)) +NIL +(-10 -8 (-15 -1553 (|#1| |#2|)) (-15 -2835 (|#1| |#1| (-525))) (-15 -2835 (|#1| |#1| (-1139 (-525)))) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4157 (|#1| |#2| |#1| (-525))) (-15 -4157 (|#1| |#1| |#1| (-525))) (-15 -1636 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2696 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1640 (|#1| |#2| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -1636 (|#1| |#1| |#1|)) (-15 -1440 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3746 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1930 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -1930 ((-525) |#2| |#1|)) (-15 -1930 ((-525) |#2| |#1| (-525))) (-15 -1440 (|#1| |#1| |#1|)) (-15 -3746 ((-108) |#1|)) (-15 -4038 (|#1| |#1| |#1| (-525))) (-15 -1626 (|#1| |#1|)) (-15 -1943 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3336 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3611 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3248 (|#1| (-713) |#2|)) (-15 -2868 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1261 (|#1| |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3067 ((|#1| $) 48)) (-1212 ((|#1| $) 65)) (-3134 (($ $) 67)) (-2792 (((-1177) $ (-525) (-525)) 97 (|has| $ (-6 -4255)))) (-2974 (($ $ (-525)) 52 (|has| $ (-6 -4255)))) (-3746 (((-108) $) 142 (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-1943 (($ $) 146 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4255)))) (-1473 (($ $) 141 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-2583 (((-108) $ (-713)) 8)) (-2325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-4050 (($ $ $) 56 (|has| $ (-6 -4255)))) (-3079 ((|#1| $ |#1|) 54 (|has| $ (-6 -4255)))) (-3995 ((|#1| $ |#1|) 58 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4255))) (($ $ "rest" $) 55 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 117 (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-2696 (($ (-1 (-108) |#1|) $) 129)) (-1249 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4254)))) (-4227 ((|#1| $) 66)) (-1957 (($) 7 T CONST)) (-1626 (($ $) 144 (|has| $ (-6 -4255)))) (-3263 (($ $) 134)) (-1693 (($ $) 73) (($ $ (-713)) 71)) (-2987 (($ $) 131 (|has| |#1| (-1019)))) (-1716 (($ $) 99 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ |#1| $) 130 (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) 125)) (-2591 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4254))) (($ |#1| $) 100 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2549 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 87)) (-2426 (((-108) $) 83)) (-1930 (((-525) |#1| $ (-525)) 139 (|has| |#1| (-1019))) (((-525) |#1| $) 138 (|has| |#1| (-1019))) (((-525) (-1 (-108) |#1|) $) 137)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 50)) (-2983 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-3248 (($ (-713) |#1|) 108)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 95 (|has| (-525) (-789)))) (-1260 (($ $ $) 147 (|has| |#1| (-789)))) (-1636 (($ $ $) 132 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-1440 (($ $ $) 140 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 94 (|has| (-525) (-789)))) (-2154 (($ $ $) 148 (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1553 (($ |#1|) 122)) (-2350 (((-108) $ (-713)) 10)) (-2401 (((-592 |#1|) $) 45)) (-3260 (((-108) $) 49)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2618 ((|#1| $) 70) (($ $ (-713)) 68)) (-4157 (($ $ $ (-525)) 127) (($ |#1| $ (-525)) 126)) (-2234 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-2379 (((-592 (-525)) $) 92)) (-2030 (((-108) (-525) $) 91)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1683 ((|#1| $) 76) (($ $ (-713)) 74)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1614 (($ $ |#1|) 96 (|has| $ (-6 -4255)))) (-3050 (((-108) $) 84)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) 90)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1139 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-3612 (((-525) $ $) 44)) (-2835 (($ $ (-1139 (-525))) 124) (($ $ (-525)) 123)) (-2697 (($ $ (-1139 (-525))) 114) (($ $ (-525)) 113)) (-3105 (((-108) $) 46)) (-2079 (($ $) 62)) (-2129 (($ $) 59 (|has| $ (-6 -4255)))) (-3185 (((-713) $) 63)) (-2008 (($ $) 64)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-4038 (($ $ $ (-525)) 143 (|has| $ (-6 -4255)))) (-1261 (($ $) 13)) (-2923 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 107)) (-2455 (($ $ $) 61) (($ $ |#1|) 60)) (-1810 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) 51)) (-2086 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) 150 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 151 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-3959 (((-108) $ $) 149 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 152 (|has| |#1| (-789)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-612 |#1|) (-131) (-1126)) (T -612)) +((-1553 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1126))))) +(-13 (-1064 |t#1|) (-351 |t#1|) (-261 |t#1|) (-10 -8 (-15 -1553 ($ |t#1|)))) +(((-33) . T) ((-97) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-261 |#1|) . T) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-941 |#1|) . T) ((-1019) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1064 |#1|) . T) ((-1126) . T) ((-1160 |#1|) . T)) +((-1932 (((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|))))) (-592 (-592 |#1|)) (-592 (-1172 |#1|))) 22) (((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|))))) (-632 |#1|) (-592 (-1172 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|)))) (-592 (-592 |#1|)) (-1172 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|)) 14)) (-3439 (((-713) (-632 |#1|) (-1172 |#1|)) 30)) (-3023 (((-3 (-1172 |#1|) "failed") (-632 |#1|) (-1172 |#1|)) 24)) (-3154 (((-108) (-632 |#1|) (-1172 |#1|)) 27))) +(((-613 |#1|) (-10 -7 (-15 -1932 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|))) (-15 -1932 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|)))) (-592 (-592 |#1|)) (-1172 |#1|))) (-15 -1932 ((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|))))) (-632 |#1|) (-592 (-1172 |#1|)))) (-15 -1932 ((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|))))) (-592 (-592 |#1|)) (-592 (-1172 |#1|)))) (-15 -3023 ((-3 (-1172 |#1|) "failed") (-632 |#1|) (-1172 |#1|))) (-15 -3154 ((-108) (-632 |#1|) (-1172 |#1|))) (-15 -3439 ((-713) (-632 |#1|) (-1172 |#1|)))) (-341)) (T -613)) +((-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-613 *5)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-341)) (-5 *2 (-108)) (-5 *1 (-613 *5)))) (-3023 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1172 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *1 (-613 *4)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1172 *5) "failed")) (|:| -2734 (-592 (-1172 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1172 *5))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1172 *5) "failed")) (|:| -2734 (-592 (-1172 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1172 *5))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1172 *5) "failed")) (|:| -2734 (-592 (-1172 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1172 *5)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1172 *5) "failed")) (|:| -2734 (-592 (-1172 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1172 *5))))) +(-10 -7 (-15 -1932 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|))) (-15 -1932 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|)))) (-592 (-592 |#1|)) (-1172 |#1|))) (-15 -1932 ((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|))))) (-632 |#1|) (-592 (-1172 |#1|)))) (-15 -1932 ((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|))))) (-592 (-592 |#1|)) (-592 (-1172 |#1|)))) (-15 -3023 ((-3 (-1172 |#1|) "failed") (-632 |#1|) (-1172 |#1|))) (-15 -3154 ((-108) (-632 |#1|) (-1172 |#1|))) (-15 -3439 ((-713) (-632 |#1|) (-1172 |#1|)))) +((-1932 (((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2734 (-592 |#3|)))) |#4| (-592 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2734 (-592 |#3|))) |#4| |#3|) 45)) (-3439 (((-713) |#4| |#3|) 17)) (-3023 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3154 (((-108) |#4| |#3|) 13))) +(((-614 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1932 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2734 (-592 |#3|))) |#4| |#3|)) (-15 -1932 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2734 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -3023 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3154 ((-108) |#4| |#3|)) (-15 -3439 ((-713) |#4| |#3|))) (-341) (-13 (-351 |#1|) (-10 -7 (-6 -4255))) (-13 (-351 |#1|) (-10 -7 (-6 -4255))) (-630 |#1| |#2| |#3|)) (T -614)) +((-3439 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-713)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-3154 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-108)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-3023 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-341)) (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4255)))) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))) (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2)))) (-1932 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-592 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2734 (-592 *7))))) (-5 *1 (-614 *5 *6 *7 *3)) (-5 *4 (-592 *7)) (-4 *3 (-630 *5 *6 *7)))) (-1932 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))) +(-10 -7 (-15 -1932 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2734 (-592 |#3|))) |#4| |#3|)) (-15 -1932 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2734 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -3023 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3154 ((-108) |#4| |#3|)) (-15 -3439 ((-713) |#4| |#3|))) +((-3170 (((-2 (|:| |particular| (-3 (-1172 (-385 |#4|)) "failed")) (|:| -2734 (-592 (-1172 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)) 45))) +(((-615 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3170 ((-2 (|:| |particular| (-3 (-1172 (-385 |#4|)) "failed")) (|:| -2734 (-592 (-1172 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)))) (-517) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -615)) +((-3170 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |particular| (-3 (-1172 (-385 *8)) "failed")) (|:| -2734 (-592 (-1172 (-385 *8)))))) (-5 *1 (-615 *5 *6 *7 *8))))) +(-10 -7 (-15 -3170 ((-2 (|:| |particular| (-3 (-1172 (-385 |#4|)) "failed")) (|:| -2734 (-592 (-1172 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3603 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-3942 ((|#2| $) NIL)) (-3714 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1545 (((-1172 (-632 |#2|))) NIL) (((-1172 (-632 |#2|)) (-1172 $)) NIL)) (-2882 (((-108) $) NIL)) (-2489 (((-1172 $)) 37)) (-2583 (((-108) $ (-713)) NIL)) (-2448 (($ |#2|) NIL)) (-1957 (($) NIL T CONST)) (-2384 (($ $) NIL (|has| |#2| (-286)))) (-2914 (((-220 |#1| |#2|) $ (-525)) NIL)) (-1922 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-3537 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-1953 (((-632 |#2|)) NIL) (((-632 |#2|) (-1172 $)) NIL)) (-3497 ((|#2| $) NIL)) (-3663 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1172 $)) NIL)) (-2256 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-3558 (((-1086 (-886 |#2|))) NIL (|has| |#2| (-341)))) (-1469 (($ $ (-855)) NIL)) (-3655 ((|#2| $) NIL)) (-1911 (((-1086 |#2|) $) NIL (|has| |#2| (-517)))) (-1452 ((|#2|) NIL) ((|#2| (-1172 $)) NIL)) (-1492 (((-1086 |#2|) $) NIL)) (-2790 (((-108)) NIL)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) ((|#2| $) NIL)) (-1689 (($ (-1172 |#2|)) NIL) (($ (-1172 |#2|) (-1172 $)) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3439 (((-713) $) NIL (|has| |#2| (-517))) (((-855)) 38)) (-2488 ((|#2| $ (-525) (-525)) NIL)) (-2404 (((-108)) NIL)) (-1404 (($ $ (-855)) NIL)) (-3781 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2507 (((-108) $) NIL)) (-2372 (((-713) $) NIL (|has| |#2| (-517)))) (-4151 (((-592 (-220 |#1| |#2|)) $) NIL (|has| |#2| (-517)))) (-1431 (((-713) $) NIL)) (-1552 (((-108)) NIL)) (-1444 (((-713) $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-1302 ((|#2| $) NIL (|has| |#2| (-6 (-4256 "*"))))) (-3533 (((-525) $) NIL)) (-3054 (((-525) $) NIL)) (-2679 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2487 (((-525) $) NIL)) (-4220 (((-525) $) NIL)) (-1521 (($ (-592 (-592 |#2|))) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2972 (((-592 (-592 |#2|)) $) NIL)) (-2383 (((-108)) NIL)) (-3076 (((-108)) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-3609 (((-3 (-2 (|:| |particular| $) (|:| -2734 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-2167 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-1301 (((-632 |#2|)) NIL) (((-632 |#2|) (-1172 $)) NIL)) (-4139 ((|#2| $) NIL)) (-2562 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1172 $)) NIL)) (-1709 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-1376 (((-1086 (-886 |#2|))) NIL (|has| |#2| (-341)))) (-2148 (($ $ (-855)) NIL)) (-1855 ((|#2| $) NIL)) (-4067 (((-1086 |#2|) $) NIL (|has| |#2| (-517)))) (-4087 ((|#2|) NIL) ((|#2| (-1172 $)) NIL)) (-1488 (((-1086 |#2|) $) NIL)) (-2085 (((-108)) NIL)) (-1707 (((-1073) $) NIL)) (-4062 (((-108)) NIL)) (-1985 (((-108)) NIL)) (-2744 (((-108)) NIL)) (-3194 (((-3 $ "failed") $) NIL (|has| |#2| (-341)))) (-3027 (((-1037) $) NIL)) (-3587 (((-108)) NIL)) (-2675 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3669 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) 22) ((|#2| $ (-525)) NIL)) (-1576 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-1255 ((|#2| $) NIL)) (-4154 (($ (-592 |#2|)) NIL)) (-2804 (((-108) $) NIL)) (-4181 (((-220 |#1| |#2|) $) NIL)) (-2958 ((|#2| $) NIL (|has| |#2| (-6 (-4256 "*"))))) (-3053 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1261 (($ $) NIL)) (-1625 (((-632 |#2|) (-1172 $)) NIL) (((-1172 |#2|) $) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) NIL) (((-1172 |#2|) $ (-1172 $)) 25)) (-2923 (($ (-1172 |#2|)) NIL) (((-1172 |#2|) $) NIL)) (-4125 (((-592 (-886 |#2|))) NIL) (((-592 (-886 |#2|)) (-1172 $)) NIL)) (-1573 (($ $ $) NIL)) (-2880 (((-108)) NIL)) (-2738 (((-220 |#1| |#2|) $ (-525)) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-967 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) NIL)) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) 36)) (-4194 (((-592 (-1172 |#2|))) NIL (|has| |#2| (-517)))) (-1762 (($ $ $ $) NIL)) (-2986 (((-108)) NIL)) (-1627 (($ (-632 |#2|) $) NIL)) (-2443 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3773 (((-108) $) NIL)) (-2407 (($ $ $) NIL)) (-2046 (((-108)) NIL)) (-3367 (((-108)) NIL)) (-3026 (((-108)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) NIL) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-616 |#1| |#2|) (-13 (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-395 |#2|)) (-855) (-160)) (T -616)) +NIL +(-13 (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-395 |#2|)) +((-4028 (((-108) $ $) NIL)) (-1562 (((-592 |#1|) $) NIL)) (-3356 (($ $) 52)) (-2634 (((-108) $) NIL)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-3913 (((-3 $ "failed") (-761 |#1|)) 23)) (-1286 (((-108) (-761 |#1|)) 15)) (-1701 (($ (-761 |#1|)) 24)) (-1890 (((-108) $ $) 30)) (-2520 (((-855) $) 37)) (-3347 (($ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2961 (((-592 $) (-761 |#1|)) 17)) (-4044 (((-797) $) 43) (($ |#1|) 34) (((-761 |#1|) $) 39) (((-621 |#1|) $) 44)) (-4053 (((-57 (-592 $)) (-592 |#1|) (-855)) 57)) (-2556 (((-592 $) (-592 |#1|) (-855)) 60)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 53)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 38))) +(((-617 |#1|) (-13 (-789) (-967 |#1|) (-10 -8 (-15 -2634 ((-108) $)) (-15 -3347 ($ $)) (-15 -3356 ($ $)) (-15 -2520 ((-855) $)) (-15 -1890 ((-108) $ $)) (-15 -4044 ((-761 |#1|) $)) (-15 -4044 ((-621 |#1|) $)) (-15 -2961 ((-592 $) (-761 |#1|))) (-15 -1286 ((-108) (-761 |#1|))) (-15 -1701 ($ (-761 |#1|))) (-15 -3913 ((-3 $ "failed") (-761 |#1|))) (-15 -1562 ((-592 |#1|) $)) (-15 -4053 ((-57 (-592 $)) (-592 |#1|) (-855))) (-15 -2556 ((-592 $) (-592 |#1|) (-855))))) (-789)) (T -617)) +((-2634 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-3347 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-3356 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-1890 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4))) (-5 *1 (-617 *4)))) (-1286 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108)) (-5 *1 (-617 *4)))) (-1701 (*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-3913 (*1 *1 *2) (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-855)) (-4 *5 (-789)) (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5)))) (-2556 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-855)) (-4 *5 (-789)) (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5))))) +(-13 (-789) (-967 |#1|) (-10 -8 (-15 -2634 ((-108) $)) (-15 -3347 ($ $)) (-15 -3356 ($ $)) (-15 -2520 ((-855) $)) (-15 -1890 ((-108) $ $)) (-15 -4044 ((-761 |#1|) $)) (-15 -4044 ((-621 |#1|) $)) (-15 -2961 ((-592 $) (-761 |#1|))) (-15 -1286 ((-108) (-761 |#1|))) (-15 -1701 ($ (-761 |#1|))) (-15 -3913 ((-3 $ "failed") (-761 |#1|))) (-15 -1562 ((-592 |#1|) $)) (-15 -4053 ((-57 (-592 $)) (-592 |#1|) (-855))) (-15 -2556 ((-592 $) (-592 |#1|) (-855))))) +((-3067 ((|#2| $) 76)) (-3134 (($ $) 96)) (-2583 (((-108) $ (-713)) 26)) (-1693 (($ $) 85) (($ $ (-713)) 88)) (-2426 (((-108) $) 97)) (-2850 (((-592 $) $) 72)) (-2983 (((-108) $ $) 71)) (-2010 (((-108) $ (-713)) 24)) (-2179 (((-525) $) 46)) (-2112 (((-525) $) 45)) (-2350 (((-108) $ (-713)) 22)) (-3260 (((-108) $) 74)) (-2618 ((|#2| $) 89) (($ $ (-713)) 92)) (-2234 (($ $ $ (-525)) 62) (($ |#2| $ (-525)) 61)) (-2379 (((-592 (-525)) $) 44)) (-2030 (((-108) (-525) $) 42)) (-1683 ((|#2| $) NIL) (($ $ (-713)) 84)) (-1539 (($ $ (-525)) 100)) (-3050 (((-108) $) 99)) (-3669 (((-108) (-1 (-108) |#2|) $) 32)) (-4100 (((-592 |#2|) $) 33)) (-1496 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1139 (-525))) 58) ((|#2| $ (-525)) 40) ((|#2| $ (-525) |#2|) 41)) (-3612 (((-525) $ $) 70)) (-2697 (($ $ (-1139 (-525))) 57) (($ $ (-525)) 51)) (-3105 (((-108) $) 66)) (-2079 (($ $) 81)) (-3185 (((-713) $) 80)) (-2008 (($ $) 79)) (-4059 (($ (-592 |#2|)) 37)) (-2789 (($ $) 101)) (-2180 (((-592 $) $) 69)) (-2086 (((-108) $ $) 68)) (-2443 (((-108) (-1 (-108) |#2|) $) 31)) (-3899 (((-108) $ $) 18)) (-1696 (((-713) $) 29))) +(((-618 |#1| |#2|) (-10 -8 (-15 -2789 (|#1| |#1|)) (-15 -1539 (|#1| |#1| (-525))) (-15 -2426 ((-108) |#1|)) (-15 -3050 ((-108) |#1|)) (-15 -1496 (|#2| |#1| (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525))) (-15 -4100 ((-592 |#2|) |#1|)) (-15 -2030 ((-108) (-525) |#1|)) (-15 -2379 ((-592 (-525)) |#1|)) (-15 -2112 ((-525) |#1|)) (-15 -2179 ((-525) |#1|)) (-15 -4059 (|#1| (-592 |#2|))) (-15 -1496 (|#1| |#1| (-1139 (-525)))) (-15 -2697 (|#1| |#1| (-525))) (-15 -2697 (|#1| |#1| (-1139 (-525)))) (-15 -2234 (|#1| |#2| |#1| (-525))) (-15 -2234 (|#1| |#1| |#1| (-525))) (-15 -2079 (|#1| |#1|)) (-15 -3185 ((-713) |#1|)) (-15 -2008 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -2618 (|#1| |#1| (-713))) (-15 -1496 (|#2| |#1| "last")) (-15 -2618 (|#2| |#1|)) (-15 -1693 (|#1| |#1| (-713))) (-15 -1496 (|#1| |#1| "rest")) (-15 -1693 (|#1| |#1|)) (-15 -1683 (|#1| |#1| (-713))) (-15 -1496 (|#2| |#1| "first")) (-15 -1683 (|#2| |#1|)) (-15 -2983 ((-108) |#1| |#1|)) (-15 -2086 ((-108) |#1| |#1|)) (-15 -3612 ((-525) |#1| |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -1496 (|#2| |#1| "value")) (-15 -3067 (|#2| |#1|)) (-15 -3260 ((-108) |#1|)) (-15 -2850 ((-592 |#1|) |#1|)) (-15 -2180 ((-592 |#1|) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1696 ((-713) |#1|)) (-15 -2583 ((-108) |#1| (-713))) (-15 -2010 ((-108) |#1| (-713))) (-15 -2350 ((-108) |#1| (-713)))) (-619 |#2|) (-1126)) (T -618)) +NIL +(-10 -8 (-15 -2789 (|#1| |#1|)) (-15 -1539 (|#1| |#1| (-525))) (-15 -2426 ((-108) |#1|)) (-15 -3050 ((-108) |#1|)) (-15 -1496 (|#2| |#1| (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525))) (-15 -4100 ((-592 |#2|) |#1|)) (-15 -2030 ((-108) (-525) |#1|)) (-15 -2379 ((-592 (-525)) |#1|)) (-15 -2112 ((-525) |#1|)) (-15 -2179 ((-525) |#1|)) (-15 -4059 (|#1| (-592 |#2|))) (-15 -1496 (|#1| |#1| (-1139 (-525)))) (-15 -2697 (|#1| |#1| (-525))) (-15 -2697 (|#1| |#1| (-1139 (-525)))) (-15 -2234 (|#1| |#2| |#1| (-525))) (-15 -2234 (|#1| |#1| |#1| (-525))) (-15 -2079 (|#1| |#1|)) (-15 -3185 ((-713) |#1|)) (-15 -2008 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -2618 (|#1| |#1| (-713))) (-15 -1496 (|#2| |#1| "last")) (-15 -2618 (|#2| |#1|)) (-15 -1693 (|#1| |#1| (-713))) (-15 -1496 (|#1| |#1| "rest")) (-15 -1693 (|#1| |#1|)) (-15 -1683 (|#1| |#1| (-713))) (-15 -1496 (|#2| |#1| "first")) (-15 -1683 (|#2| |#1|)) (-15 -2983 ((-108) |#1| |#1|)) (-15 -2086 ((-108) |#1| |#1|)) (-15 -3612 ((-525) |#1| |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -1496 (|#2| |#1| "value")) (-15 -3067 (|#2| |#1|)) (-15 -3260 ((-108) |#1|)) (-15 -2850 ((-592 |#1|) |#1|)) (-15 -2180 ((-592 |#1|) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -3669 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1696 ((-713) |#1|)) (-15 -2583 ((-108) |#1| (-713))) (-15 -2010 ((-108) |#1| (-713))) (-15 -2350 ((-108) |#1| (-713)))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3067 ((|#1| $) 48)) (-1212 ((|#1| $) 65)) (-3134 (($ $) 67)) (-2792 (((-1177) $ (-525) (-525)) 97 (|has| $ (-6 -4255)))) (-2974 (($ $ (-525)) 52 (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) 8)) (-2325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-4050 (($ $ $) 56 (|has| $ (-6 -4255)))) (-3079 ((|#1| $ |#1|) 54 (|has| $ (-6 -4255)))) (-3995 ((|#1| $ |#1|) 58 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4255))) (($ $ "rest" $) 55 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 117 (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) 102)) (-4227 ((|#1| $) 66)) (-1957 (($) 7 T CONST)) (-1959 (($ $) 124)) (-1693 (($ $) 73) (($ $ (-713)) 71)) (-1716 (($ $) 99 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#1| $) 100 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 103)) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2549 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 87)) (-2426 (((-108) $) 83)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4141 (((-713) $) 123)) (-2850 (((-592 $) $) 50)) (-2983 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-3248 (($ (-713) |#1|) 108)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 95 (|has| (-525) (-789)))) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 94 (|has| (-525) (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2350 (((-108) $ (-713)) 10)) (-2401 (((-592 |#1|) $) 45)) (-3260 (((-108) $) 49)) (-3891 (($ $) 126)) (-1699 (((-108) $) 127)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2618 ((|#1| $) 70) (($ $ (-713)) 68)) (-2234 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-2379 (((-592 (-525)) $) 92)) (-2030 (((-108) (-525) $) 91)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1540 ((|#1| $) 125)) (-1683 ((|#1| $) 76) (($ $ (-713)) 74)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1614 (($ $ |#1|) 96 (|has| $ (-6 -4255)))) (-1539 (($ $ (-525)) 122)) (-3050 (((-108) $) 84)) (-1814 (((-108) $) 128)) (-2794 (((-108) $) 129)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) 90)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1139 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-3612 (((-525) $ $) 44)) (-2697 (($ $ (-1139 (-525))) 114) (($ $ (-525)) 113)) (-3105 (((-108) $) 46)) (-2079 (($ $) 62)) (-2129 (($ $) 59 (|has| $ (-6 -4255)))) (-3185 (((-713) $) 63)) (-2008 (($ $) 64)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 107)) (-2455 (($ $ $) 61 (|has| $ (-6 -4255))) (($ $ |#1|) 60 (|has| $ (-6 -4255)))) (-1810 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-2789 (($ $) 121)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) 51)) (-2086 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-619 |#1|) (-131) (-1126)) (T -619)) +((-2591 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1126)))) (-1249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1126)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-3891 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))) (-1959 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1126)))) (-2789 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126))))) +(-13 (-1064 |t#1|) (-10 -8 (-15 -2591 ($ (-1 (-108) |t#1|) $)) (-15 -1249 ($ (-1 (-108) |t#1|) $)) (-15 -2794 ((-108) $)) (-15 -1814 ((-108) $)) (-15 -1699 ((-108) $)) (-15 -3891 ($ $)) (-15 -1540 (|t#1| $)) (-15 -1959 ($ $)) (-15 -4141 ((-713) $)) (-15 -1539 ($ $ (-525))) (-15 -2789 ($ $)))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1064 |#1|) . T) ((-1126) . T) ((-1160 |#1|) . T)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4046 (($ (-713) (-713) (-713)) 34 (|has| |#1| (-976)))) (-2583 (((-108) $ (-713)) NIL)) (-2042 ((|#1| $ (-713) (-713) (-713) |#1|) 29)) (-1957 (($) NIL T CONST)) (-1712 (($ $ $) 38 (|has| |#1| (-976)))) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2413 (((-1172 (-713)) $) 11)) (-3208 (($ (-1090) $ $) 24)) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3098 (($ (-713)) 36 (|has| |#1| (-976)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-713) (-713) (-713)) 27)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-4059 (($ (-592 (-592 (-592 |#1|)))) 45)) (-4044 (($ (-891 (-891 (-891 |#1|)))) 17) (((-891 (-891 (-891 |#1|))) $) 14) (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-620 |#1|) (-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-976)) (PROGN (-15 -4046 ($ (-713) (-713) (-713))) (-15 -3098 ($ (-713))) (-15 -1712 ($ $ $))) |%noBranch|) (-15 -4059 ($ (-592 (-592 (-592 |#1|))))) (-15 -1496 (|#1| $ (-713) (-713) (-713))) (-15 -2042 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -4044 ($ (-891 (-891 (-891 |#1|))))) (-15 -4044 ((-891 (-891 (-891 |#1|))) $)) (-15 -3208 ($ (-1090) $ $)) (-15 -2413 ((-1172 (-713)) $)))) (-1019)) (T -620)) +((-4046 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-976)) (-4 *3 (-1019)))) (-3098 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-976)) (-4 *3 (-1019)))) (-1712 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-976)) (-4 *2 (-1019)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1019)) (-5 *1 (-620 *3)))) (-1496 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1019)))) (-2042 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1019)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-891 (-891 (-891 *3)))) (-4 *3 (-1019)) (-5 *1 (-620 *3)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-891 (-891 (-891 *3)))) (-5 *1 (-620 *3)) (-4 *3 (-1019)))) (-3208 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-620 *3)) (-4 *3 (-1019)))) (-2413 (*1 *2 *1) (-12 (-5 *2 (-1172 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1019))))) +(-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-976)) (PROGN (-15 -4046 ($ (-713) (-713) (-713))) (-15 -3098 ($ (-713))) (-15 -1712 ($ $ $))) |%noBranch|) (-15 -4059 ($ (-592 (-592 (-592 |#1|))))) (-15 -1496 (|#1| $ (-713) (-713) (-713))) (-15 -2042 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -4044 ($ (-891 (-891 (-891 |#1|))))) (-15 -4044 ((-891 (-891 (-891 |#1|))) $)) (-15 -3208 ($ (-1090) $ $)) (-15 -2413 ((-1172 (-713)) $)))) +((-4028 (((-108) $ $) NIL)) (-1562 (((-592 |#1|) $) 14)) (-3356 (($ $) 18)) (-2634 (((-108) $) 19)) (-2769 (((-3 |#1| "failed") $) 22)) (-2068 ((|#1| $) 20)) (-1693 (($ $) 36)) (-2414 (($ $) 24)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1890 (((-108) $ $) 42)) (-2520 (((-855) $) 38)) (-3347 (($ $) 17)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 ((|#1| $) 35)) (-4044 (((-797) $) 31) (($ |#1|) 23) (((-761 |#1|) $) 27)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 12)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 40)) (* (($ $ $) 34))) +(((-621 |#1|) (-13 (-789) (-967 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4044 ((-761 |#1|) $)) (-15 -1683 (|#1| $)) (-15 -3347 ($ $)) (-15 -2520 ((-855) $)) (-15 -1890 ((-108) $ $)) (-15 -2414 ($ $)) (-15 -1693 ($ $)) (-15 -2634 ((-108) $)) (-15 -3356 ($ $)) (-15 -1562 ((-592 |#1|) $)))) (-789)) (T -621)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-1683 (*1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-3347 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-1890 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-2414 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-3356 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789))))) +(-13 (-789) (-967 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4044 ((-761 |#1|) $)) (-15 -1683 (|#1| $)) (-15 -3347 ($ $)) (-15 -2520 ((-855) $)) (-15 -1890 ((-108) $ $)) (-15 -2414 ($ $)) (-15 -1693 ($ $)) (-15 -2634 ((-108) $)) (-15 -3356 ($ $)) (-15 -1562 ((-592 |#1|) $)))) +((-1209 ((|#1| (-1 |#1| (-713) |#1|) (-713) |#1|) 11)) (-3956 ((|#1| (-1 |#1| |#1|) (-713) |#1|) 9))) +(((-622 |#1|) (-10 -7 (-15 -3956 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -1209 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|))) (-1019)) (T -622)) +((-1209 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1019)) (-5 *1 (-622 *2)))) (-3956 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1019)) (-5 *1 (-622 *2))))) +(-10 -7 (-15 -3956 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -1209 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|))) +((-3856 ((|#2| |#1| |#2|) 9)) (-3843 ((|#1| |#1| |#2|) 8))) +(((-623 |#1| |#2|) (-10 -7 (-15 -3843 (|#1| |#1| |#2|)) (-15 -3856 (|#2| |#1| |#2|))) (-1019) (-1019)) (T -623)) +((-3856 (*1 *2 *3 *2) (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-3843 (*1 *2 *2 *3) (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))) +(-10 -7 (-15 -3843 (|#1| |#1| |#2|)) (-15 -3856 (|#2| |#1| |#2|))) +((-4054 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -4054 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1019) (-1019) (-1019)) (T -624)) +((-4054 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)) (-5 *1 (-624 *5 *6 *2))))) +(-10 -7 (-15 -4054 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-1209 (((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)) 23)) (-2890 (((-1 |#1|) |#1|) 8)) (-1421 ((|#1| |#1|) 16)) (-1356 (((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4044 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-713)) 20))) +(((-625 |#1|) (-10 -7 (-15 -2890 ((-1 |#1|) |#1|)) (-15 -4044 ((-1 |#1|) |#1|)) (-15 -1356 (|#1| (-1 |#1| |#1|))) (-15 -1356 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -1421 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -1209 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)))) (-1019)) (T -625)) +((-1209 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1019)) (-5 *1 (-625 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1019)) (-5 *1 (-625 *4)))) (-1421 (*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1019)))) (-1356 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525)) (-5 *2 (-592 *5)) (-5 *1 (-625 *5)) (-4 *5 (-1019)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1019)))) (-4044 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1019)))) (-2890 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1019))))) +(-10 -7 (-15 -2890 ((-1 |#1|) |#1|)) (-15 -4044 ((-1 |#1|) |#1|)) (-15 -1356 (|#1| (-1 |#1| |#1|))) (-15 -1356 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -1421 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -1209 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)))) +((-1500 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3660 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3219 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1242 (((-1 |#2| |#1|) |#2|) 11))) +(((-626 |#1| |#2|) (-10 -7 (-15 -1242 ((-1 |#2| |#1|) |#2|)) (-15 -3660 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3219 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1500 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1019) (-1019)) (T -626)) +((-1500 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1019)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) (-4 *4 (-1019)))) (-3660 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1019)) (-4 *3 (-1019))))) +(-10 -7 (-15 -1242 ((-1 |#2| |#1|) |#2|)) (-15 -3660 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3219 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1500 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2474 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3445 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3692 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1647 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4201 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-627 |#1| |#2| |#3|) (-10 -7 (-15 -3445 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3692 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1647 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4201 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2474 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1019) (-1019) (-1019)) (T -627)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1019)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1019)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))) (-3445 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1019)) (-4 *4 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6))))) +(-10 -7 (-15 -3445 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3692 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1647 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4201 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2474 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3336 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2868 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2868 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2868 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3336 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-976) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-976) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -628)) +((-3336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-976)) (-4 *2 (-976)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2)) (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9)))) (-2868 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-976)) (-4 *8 (-976)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-976)) (-4 *8 (-976)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8))))) +(-10 -7 (-15 -2868 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2868 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3336 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2957 (($ (-713) (-713)) 33)) (-2933 (($ $ $) 56)) (-1342 (($ |#3|) 52) (($ $) 53)) (-3714 (((-108) $) 28)) (-1860 (($ $ (-525) (-525)) 58)) (-4024 (($ $ (-525) (-525)) 59)) (-3257 (($ $ (-525) (-525) (-525) (-525)) 63)) (-2755 (($ $) 54)) (-2882 (((-108) $) 14)) (-1736 (($ $ (-525) (-525) $) 64)) (-1230 ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) 62)) (-2448 (($ (-713) |#2|) 39)) (-1521 (($ (-592 (-592 |#2|))) 37)) (-2972 (((-592 (-592 |#2|)) $) 57)) (-3512 (($ $ $) 55)) (-2675 (((-3 $ "failed") $ |#2|) 91)) (-1496 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525))) 61)) (-4154 (($ (-592 |#2|)) 40) (($ (-592 $)) 42)) (-2804 (((-108) $) 24)) (-4044 (($ |#4|) 47) (((-797) $) NIL)) (-3773 (((-108) $) 30)) (-4047 (($ $ |#2|) 93)) (-4033 (($ $ $) 68) (($ $) 71)) (-4017 (($ $ $) 66)) (** (($ $ (-713)) 80) (($ $ (-525)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-525) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-629 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4044 ((-797) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4047 (|#1| |#1| |#2|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -1736 (|#1| |#1| (-525) (-525) |#1|)) (-15 -3257 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -4024 (|#1| |#1| (-525) (-525))) (-15 -1860 (|#1| |#1| (-525) (-525))) (-15 -1230 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -1496 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -2972 ((-592 (-592 |#2|)) |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2755 (|#1| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -1342 (|#1| |#3|)) (-15 -4044 (|#1| |#4|)) (-15 -4154 (|#1| (-592 |#1|))) (-15 -4154 (|#1| (-592 |#2|))) (-15 -2448 (|#1| (-713) |#2|)) (-15 -1521 (|#1| (-592 (-592 |#2|)))) (-15 -2957 (|#1| (-713) (-713))) (-15 -3773 ((-108) |#1|)) (-15 -3714 ((-108) |#1|)) (-15 -2804 ((-108) |#1|)) (-15 -2882 ((-108) |#1|)) (-15 -1230 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525) (-525)))) (-630 |#2| |#3| |#4|) (-976) (-351 |#2|) (-351 |#2|)) (T -629)) +NIL +(-10 -8 (-15 -4044 ((-797) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4047 (|#1| |#1| |#2|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -1736 (|#1| |#1| (-525) (-525) |#1|)) (-15 -3257 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -4024 (|#1| |#1| (-525) (-525))) (-15 -1860 (|#1| |#1| (-525) (-525))) (-15 -1230 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -1496 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -2972 ((-592 (-592 |#2|)) |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2755 (|#1| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -1342 (|#1| |#3|)) (-15 -4044 (|#1| |#4|)) (-15 -4154 (|#1| (-592 |#1|))) (-15 -4154 (|#1| (-592 |#2|))) (-15 -2448 (|#1| (-713) |#2|)) (-15 -1521 (|#1| (-592 (-592 |#2|)))) (-15 -2957 (|#1| (-713) (-713))) (-15 -3773 ((-108) |#1|)) (-15 -3714 ((-108) |#1|)) (-15 -2804 ((-108) |#1|)) (-15 -2882 ((-108) |#1|)) (-15 -1230 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525) (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525) (-525)))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2957 (($ (-713) (-713)) 97)) (-2933 (($ $ $) 87)) (-1342 (($ |#2|) 91) (($ $) 90)) (-3714 (((-108) $) 99)) (-1860 (($ $ (-525) (-525)) 83)) (-4024 (($ $ (-525) (-525)) 82)) (-3257 (($ $ (-525) (-525) (-525) (-525)) 81)) (-2755 (($ $) 89)) (-2882 (((-108) $) 101)) (-2583 (((-108) $ (-713)) 8)) (-1736 (($ $ (-525) (-525) $) 80)) (-1230 ((|#1| $ (-525) (-525) |#1|) 44) (($ $ (-592 (-525)) (-592 (-525)) $) 84)) (-1760 (($ $ (-525) |#2|) 42)) (-4228 (($ $ (-525) |#3|) 41)) (-2448 (($ (-713) |#1|) 95)) (-1957 (($) 7 T CONST)) (-2384 (($ $) 67 (|has| |#1| (-286)))) (-2914 ((|#2| $ (-525)) 46)) (-3439 (((-713) $) 66 (|has| |#1| (-517)))) (-2549 ((|#1| $ (-525) (-525) |#1|) 43)) (-2488 ((|#1| $ (-525) (-525)) 48)) (-3781 (((-592 |#1|) $) 30)) (-2372 (((-713) $) 65 (|has| |#1| (-517)))) (-4151 (((-592 |#3|) $) 64 (|has| |#1| (-517)))) (-1431 (((-713) $) 51)) (-3248 (($ (-713) (-713) |#1|) 57)) (-1444 (((-713) $) 50)) (-2010 (((-108) $ (-713)) 9)) (-1302 ((|#1| $) 62 (|has| |#1| (-6 (-4256 "*"))))) (-3533 (((-525) $) 55)) (-3054 (((-525) $) 53)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2487 (((-525) $) 54)) (-4220 (((-525) $) 52)) (-1521 (($ (-592 (-592 |#1|))) 96)) (-2540 (($ (-1 |#1| |#1|) $) 34)) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2972 (((-592 (-592 |#1|)) $) 86)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3194 (((-3 $ "failed") $) 61 (|has| |#1| (-341)))) (-3512 (($ $ $) 88)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1614 (($ $ |#1|) 56)) (-2675 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-517)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47) (($ $ (-592 (-525)) (-592 (-525))) 85)) (-4154 (($ (-592 |#1|)) 94) (($ (-592 $)) 93)) (-2804 (((-108) $) 100)) (-2958 ((|#1| $) 63 (|has| |#1| (-6 (-4256 "*"))))) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2738 ((|#3| $ (-525)) 45)) (-4044 (($ |#3|) 92) (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3773 (((-108) $) 98)) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4047 (($ $ |#1|) 68 (|has| |#1| (-341)))) (-4033 (($ $ $) 78) (($ $) 77)) (-4017 (($ $ $) 79)) (** (($ $ (-713)) 70) (($ $ (-525)) 60 (|has| |#1| (-341)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-525) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-630 |#1| |#2| |#3|) (-131) (-976) (-351 |t#1|) (-351 |t#1|)) (T -630)) +((-2882 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-2957 (*1 *1 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2448 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4044 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (-1342 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (-1342 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2755 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2933 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2972 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3))))) (-1496 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1230 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1860 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4024 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3257 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1736 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4017 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4033 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-630 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-630 *3 *2 *4)) (-4 *3 (-976)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2675 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-286)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) (-3194 (*1 *1 *1) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341))))) +(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -2882 ((-108) $)) (-15 -2804 ((-108) $)) (-15 -3714 ((-108) $)) (-15 -3773 ((-108) $)) (-15 -2957 ($ (-713) (-713))) (-15 -1521 ($ (-592 (-592 |t#1|)))) (-15 -2448 ($ (-713) |t#1|)) (-15 -4154 ($ (-592 |t#1|))) (-15 -4154 ($ (-592 $))) (-15 -4044 ($ |t#3|)) (-15 -1342 ($ |t#2|)) (-15 -1342 ($ $)) (-15 -2755 ($ $)) (-15 -3512 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -2972 ((-592 (-592 |t#1|)) $)) (-15 -1496 ($ $ (-592 (-525)) (-592 (-525)))) (-15 -1230 ($ $ (-592 (-525)) (-592 (-525)) $)) (-15 -1860 ($ $ (-525) (-525))) (-15 -4024 ($ $ (-525) (-525))) (-15 -3257 ($ $ (-525) (-525) (-525) (-525))) (-15 -1736 ($ $ (-525) (-525) $)) (-15 -4017 ($ $ $)) (-15 -4033 ($ $ $)) (-15 -4033 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-525) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-713))) (IF (|has| |t#1| (-517)) (-15 -2675 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -4047 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-286)) (-15 -2384 ($ $)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -3439 ((-713) $)) (-15 -2372 ((-713) $)) (-15 -4151 ((-592 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4256 "*"))) (PROGN (-15 -2958 (|t#1| $)) (-15 -1302 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -3194 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-55 |#1| |#2| |#3|) . T) ((-1126) . T)) +((-2384 ((|#4| |#4|) 70 (|has| |#1| (-286)))) (-3439 (((-713) |#4|) 72 (|has| |#1| (-517)))) (-2372 (((-713) |#4|) 74 (|has| |#1| (-517)))) (-4151 (((-592 |#3|) |#4|) 81 (|has| |#1| (-517)))) (-2698 (((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|) 101 (|has| |#1| (-286)))) (-1302 ((|#1| |#4|) 35)) (-2137 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-517)))) (-3194 (((-3 |#4| "failed") |#4|) 78 (|has| |#1| (-341)))) (-1986 ((|#4| |#4|) 57 (|has| |#1| (-517)))) (-2102 ((|#4| |#4| |#1| (-525) (-525)) 43)) (-2687 ((|#4| |#4| (-525) (-525)) 38)) (-3348 ((|#4| |#4| |#1| (-525) (-525)) 48)) (-2958 ((|#1| |#4|) 76)) (-3092 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 60 (|has| |#1| (-517))))) +(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2958 (|#1| |#4|)) (-15 -1302 (|#1| |#4|)) (-15 -2687 (|#4| |#4| (-525) (-525))) (-15 -2102 (|#4| |#4| |#1| (-525) (-525))) (-15 -3348 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -3439 ((-713) |#4|)) (-15 -2372 ((-713) |#4|)) (-15 -4151 ((-592 |#3|) |#4|)) (-15 -1986 (|#4| |#4|)) (-15 -2137 ((-3 |#4| "failed") |#4|)) (-15 -3092 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -2384 (|#4| |#4|)) (-15 -2698 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -3194 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-160) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -631)) +((-3194 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2698 (*1 *2 *3 *3) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-630 *3 *4 *5)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2137 (*1 *2 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-4151 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2372 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3439 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3348 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-2102 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-2687 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-630 *4 *5 *6)))) (-1302 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-2958 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))) +(-10 -7 (-15 -2958 (|#1| |#4|)) (-15 -1302 (|#1| |#4|)) (-15 -2687 (|#4| |#4| (-525) (-525))) (-15 -2102 (|#4| |#4| |#1| (-525) (-525))) (-15 -3348 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -3439 ((-713) |#4|)) (-15 -2372 ((-713) |#4|)) (-15 -4151 ((-592 |#3|) |#4|)) (-15 -1986 (|#4| |#4|)) (-15 -2137 ((-3 |#4| "failed") |#4|)) (-15 -3092 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -2384 (|#4| |#4|)) (-15 -2698 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -3194 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2957 (($ (-713) (-713)) 46)) (-2933 (($ $ $) NIL)) (-1342 (($ (-1172 |#1|)) NIL) (($ $) NIL)) (-3714 (((-108) $) NIL)) (-1860 (($ $ (-525) (-525)) 12)) (-4024 (($ $ (-525) (-525)) NIL)) (-3257 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-2755 (($ $) NIL)) (-2882 (((-108) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1736 (($ $ (-525) (-525) $) NIL)) (-1230 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-1760 (($ $ (-525) (-1172 |#1|)) NIL)) (-4228 (($ $ (-525) (-1172 |#1|)) NIL)) (-2448 (($ (-713) |#1|) 22)) (-1957 (($) NIL T CONST)) (-2384 (($ $) 31 (|has| |#1| (-286)))) (-2914 (((-1172 |#1|) $ (-525)) NIL)) (-3439 (((-713) $) 33 (|has| |#1| (-517)))) (-2549 ((|#1| $ (-525) (-525) |#1|) 50)) (-2488 ((|#1| $ (-525) (-525)) NIL)) (-3781 (((-592 |#1|) $) NIL)) (-2372 (((-713) $) 35 (|has| |#1| (-517)))) (-4151 (((-592 (-1172 |#1|)) $) 38 (|has| |#1| (-517)))) (-1431 (((-713) $) 20)) (-3248 (($ (-713) (-713) |#1|) 16)) (-1444 (((-713) $) 21)) (-2010 (((-108) $ (-713)) NIL)) (-1302 ((|#1| $) 29 (|has| |#1| (-6 (-4256 "*"))))) (-3533 (((-525) $) 9)) (-3054 (((-525) $) 10)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2487 (((-525) $) 11)) (-4220 (((-525) $) 47)) (-1521 (($ (-592 (-592 |#1|))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2972 (((-592 (-592 |#1|)) $) 59)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3194 (((-3 $ "failed") $) 42 (|has| |#1| (-341)))) (-3512 (($ $ $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1614 (($ $ |#1|) NIL)) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-4154 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL) (($ (-1172 |#1|)) 51)) (-2804 (((-108) $) NIL)) (-2958 ((|#1| $) 27 (|has| |#1| (-6 (-4256 "*"))))) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-2923 (((-501) $) 63 (|has| |#1| (-567 (-501))))) (-2738 (((-1172 |#1|) $ (-525)) NIL)) (-4044 (($ (-1172 |#1|)) NIL) (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3773 (((-108) $) NIL)) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $ $) NIL) (($ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-713)) 23) (($ $ (-525)) 45 (|has| |#1| (-341)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1172 |#1|) $ (-1172 |#1|)) NIL) (((-1172 |#1|) (-1172 |#1|) $) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-632 |#1|) (-13 (-630 |#1| (-1172 |#1|) (-1172 |#1|)) (-10 -8 (-15 -4154 ($ (-1172 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -3194 ((-3 $ "failed") $)) |%noBranch|))) (-976)) (T -632)) +((-3194 (*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-976)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-976)) (-5 *1 (-632 *3))))) +(-13 (-630 |#1| (-1172 |#1|) (-1172 |#1|)) (-10 -8 (-15 -4154 ($ (-1172 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -3194 ((-3 $ "failed") $)) |%noBranch|))) +((-2227 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 25)) (-4202 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 21)) (-2871 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713)) 26)) (-1387 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 14)) (-3830 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 18) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 16)) (-2953 (((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|)) 20)) (-2563 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 12)) (** (((-632 |#1|) (-632 |#1|) (-713)) 30))) +(((-633 |#1|) (-10 -7 (-15 -2563 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1387 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3830 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3830 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2953 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -4202 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -2227 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2871 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713)))) (-976)) (T -633)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-976)) (-5 *1 (-633 *4)))) (-2871 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-976)) (-5 *1 (-633 *4)))) (-2227 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-4202 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-2953 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-3830 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-3830 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-1387 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-2563 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3))))) +(-10 -7 (-15 -2563 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1387 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3830 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3830 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2953 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -4202 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -2227 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2871 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713)))) +((-2560 ((|#2| |#2| |#4|) 25)) (-2602 (((-632 |#2|) |#3| |#4|) 31)) (-3957 (((-632 |#2|) |#2| |#4|) 30)) (-1723 (((-1172 |#2|) |#2| |#4|) 16)) (-3111 ((|#2| |#3| |#4|) 24)) (-1895 (((-632 |#2|) |#3| |#4| (-713) (-713)) 38)) (-2471 (((-632 |#2|) |#2| |#4| (-713)) 37))) +(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1723 ((-1172 |#2|) |#2| |#4|)) (-15 -3111 (|#2| |#3| |#4|)) (-15 -2560 (|#2| |#2| |#4|)) (-15 -3957 ((-632 |#2|) |#2| |#4|)) (-15 -2471 ((-632 |#2|) |#2| |#4| (-713))) (-15 -2602 ((-632 |#2|) |#3| |#4|)) (-15 -1895 ((-632 |#2|) |#3| |#4| (-713) (-713)))) (-1019) (-834 |#1|) (-351 |#2|) (-13 (-351 |#1|) (-10 -7 (-6 -4254)))) (T -634)) +((-1895 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1019)) (-4 *7 (-834 *6)) (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4254)))))) (-2602 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *6 (-834 *5)) (-5 *2 (-632 *6)) (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))) (-2471 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1019)) (-4 *3 (-834 *6)) (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4254)))))) (-3957 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *3 (-834 *5)) (-5 *2 (-632 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))) (-2560 (*1 *2 *2 *3) (-12 (-4 *4 (-1019)) (-4 *2 (-834 *4)) (-5 *1 (-634 *4 *2 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4254)))))) (-3111 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *2 (-834 *5)) (-5 *1 (-634 *5 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))) (-1723 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *3 (-834 *5)) (-5 *2 (-1172 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254))))))) +(-10 -7 (-15 -1723 ((-1172 |#2|) |#2| |#4|)) (-15 -3111 (|#2| |#3| |#4|)) (-15 -2560 (|#2| |#2| |#4|)) (-15 -3957 ((-632 |#2|) |#2| |#4|)) (-15 -2471 ((-632 |#2|) |#2| |#4| (-713))) (-15 -2602 ((-632 |#2|) |#3| |#4|)) (-15 -1895 ((-632 |#2|) |#3| |#4| (-713) (-713)))) +((-3338 (((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)) 20)) (-4172 ((|#1| (-632 |#2|)) 9)) (-1904 (((-632 |#1|) (-632 |#2|)) 18))) +(((-635 |#1| |#2|) (-10 -7 (-15 -4172 (|#1| (-632 |#2|))) (-15 -1904 ((-632 |#1|) (-632 |#2|))) (-15 -3338 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)))) (-517) (-924 |#1|)) (T -635)) +((-3338 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-924 *4)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-924 *4)) (-4 *4 (-517)) (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-635 *2 *4))))) +(-10 -7 (-15 -4172 (|#1| (-632 |#2|))) (-15 -1904 ((-632 |#1|) (-632 |#2|))) (-15 -3338 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3852 (((-632 (-641))) NIL) (((-632 (-641)) (-1172 $)) NIL)) (-3942 (((-641) $) NIL)) (-3915 (($ $) NIL (|has| (-641) (-1112)))) (-3760 (($ $) NIL (|has| (-641) (-1112)))) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-641) (-327)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-843))))) (-2701 (($ $) NIL (-3215 (-12 (|has| (-641) (-286)) (|has| (-641) (-843))) (|has| (-641) (-341))))) (-1259 (((-396 $) $) NIL (-3215 (-12 (|has| (-641) (-286)) (|has| (-641) (-843))) (|has| (-641) (-341))))) (-2975 (($ $) NIL (-12 (|has| (-641) (-933)) (|has| (-641) (-1112))))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-843))))) (-1700 (((-108) $ $) NIL (|has| (-641) (-286)))) (-1651 (((-713)) NIL (|has| (-641) (-346)))) (-3886 (($ $) NIL (|has| (-641) (-1112)))) (-3737 (($ $) NIL (|has| (-641) (-1112)))) (-3946 (($ $) NIL (|has| (-641) (-1112)))) (-3783 (($ $) NIL (|has| (-641) (-1112)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-641) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-967 (-385 (-525)))))) (-2068 (((-525) $) NIL) (((-641) $) NIL) (((-385 (-525)) $) NIL (|has| (-641) (-967 (-385 (-525)))))) (-1689 (($ (-1172 (-641))) NIL) (($ (-1172 (-641)) (-1172 $)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-641) (-327)))) (-2720 (($ $ $) NIL (|has| (-641) (-286)))) (-3198 (((-632 (-641)) $) NIL) (((-632 (-641)) $ (-1172 $)) NIL)) (-1307 (((-632 (-641)) (-632 $)) NIL) (((-2 (|:| -3471 (-632 (-641))) (|:| |vec| (-1172 (-641)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-641) (-588 (-525)))) (((-632 (-525)) (-632 $)) NIL (|has| (-641) (-588 (-525))))) (-3336 (((-3 $ "failed") (-385 (-1086 (-641)))) NIL (|has| (-641) (-341))) (($ (-1086 (-641))) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2992 (((-641) $) 29)) (-2132 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-510)))) (-3748 (((-108) $) NIL (|has| (-641) (-510)))) (-1675 (((-385 (-525)) $) NIL (|has| (-641) (-510)))) (-3439 (((-855)) NIL)) (-1527 (($) NIL (|has| (-641) (-346)))) (-2699 (($ $ $) NIL (|has| (-641) (-286)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| (-641) (-286)))) (-2376 (($) NIL (|has| (-641) (-327)))) (-3703 (((-108) $) NIL (|has| (-641) (-327)))) (-3351 (($ $) NIL (|has| (-641) (-327))) (($ $ (-713)) NIL (|has| (-641) (-327)))) (-2069 (((-108) $) NIL (-3215 (-12 (|has| (-641) (-286)) (|has| (-641) (-843))) (|has| (-641) (-341))))) (-1374 (((-2 (|:| |r| (-641)) (|:| |phi| (-641))) $) NIL (-12 (|has| (-641) (-985)) (|has| (-641) (-1112))))) (-1961 (($) NIL (|has| (-641) (-1112)))) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-641) (-820 (-357)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-641) (-820 (-525))))) (-2158 (((-775 (-855)) $) NIL (|has| (-641) (-327))) (((-855) $) NIL (|has| (-641) (-327)))) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL (-12 (|has| (-641) (-933)) (|has| (-641) (-1112))))) (-2281 (((-641) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| (-641) (-327)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-3800 (((-1086 (-641)) $) NIL (|has| (-641) (-341)))) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2868 (($ (-1 (-641) (-641)) $) NIL)) (-2111 (((-855) $) NIL (|has| (-641) (-346)))) (-2412 (($ $) NIL (|has| (-641) (-1112)))) (-3325 (((-1086 (-641)) $) NIL)) (-2226 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| (-641) (-341)))) (-2039 (($) NIL (|has| (-641) (-327)) CONST)) (-3381 (($ (-855)) NIL (|has| (-641) (-346)))) (-3488 (($) NIL)) (-3005 (((-641) $) 31)) (-3027 (((-1037) $) NIL)) (-3258 (($) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-641) (-286)))) (-2262 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| (-641) (-327)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-843))))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-843))))) (-2961 (((-396 $) $) NIL (-3215 (-12 (|has| (-641) (-286)) (|has| (-641) (-843))) (|has| (-641) (-341))))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-641) (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| (-641) (-286)))) (-2675 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-641)) NIL (|has| (-641) (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-2840 (($ $) NIL (|has| (-641) (-1112)))) (-2168 (($ $ (-1090) (-641)) NIL (|has| (-641) (-486 (-1090) (-641)))) (($ $ (-592 (-1090)) (-592 (-641))) NIL (|has| (-641) (-486 (-1090) (-641)))) (($ $ (-592 (-273 (-641)))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-273 (-641))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-641) (-641)) NIL (|has| (-641) (-288 (-641)))) (($ $ (-592 (-641)) (-592 (-641))) NIL (|has| (-641) (-288 (-641))))) (-2824 (((-713) $) NIL (|has| (-641) (-286)))) (-1496 (($ $ (-641)) NIL (|has| (-641) (-265 (-641) (-641))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| (-641) (-286)))) (-2257 (((-641)) NIL) (((-641) (-1172 $)) NIL)) (-2729 (((-3 (-713) "failed") $ $) NIL (|has| (-641) (-327))) (((-713) $) NIL (|has| (-641) (-327)))) (-1576 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-1090)) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-1410 (((-632 (-641)) (-1172 $) (-1 (-641) (-641))) NIL (|has| (-641) (-341)))) (-2775 (((-1086 (-641))) NIL)) (-3960 (($ $) NIL (|has| (-641) (-1112)))) (-3795 (($ $) NIL (|has| (-641) (-1112)))) (-3405 (($) NIL (|has| (-641) (-327)))) (-3930 (($ $) NIL (|has| (-641) (-1112)))) (-3771 (($ $) NIL (|has| (-641) (-1112)))) (-3901 (($ $) NIL (|has| (-641) (-1112)))) (-3749 (($ $) NIL (|has| (-641) (-1112)))) (-1625 (((-632 (-641)) (-1172 $)) NIL) (((-1172 (-641)) $) NIL) (((-632 (-641)) (-1172 $) (-1172 $)) NIL) (((-1172 (-641)) $ (-1172 $)) NIL)) (-2923 (((-501) $) NIL (|has| (-641) (-567 (-501)))) (((-157 (-205)) $) NIL (|has| (-641) (-952))) (((-157 (-357)) $) NIL (|has| (-641) (-952))) (((-826 (-357)) $) NIL (|has| (-641) (-567 (-826 (-357))))) (((-826 (-525)) $) NIL (|has| (-641) (-567 (-826 (-525))))) (($ (-1086 (-641))) NIL) (((-1086 (-641)) $) NIL) (($ (-1172 (-641))) NIL) (((-1172 (-641)) $) NIL)) (-4025 (($ $) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-3215 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-843))) (|has| (-641) (-327))))) (-2381 (($ (-641) (-641)) 12)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-641)) NIL) (($ (-157 (-357))) 13) (($ (-157 (-525))) 19) (($ (-157 (-641))) 28) (($ (-157 (-643))) 25) (((-157 (-357)) $) 33) (($ (-385 (-525))) NIL (-3215 (|has| (-641) (-967 (-385 (-525)))) (|has| (-641) (-341))))) (-1279 (($ $) NIL (|has| (-641) (-327))) (((-3 $ "failed") $) NIL (-3215 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-843))) (|has| (-641) (-136))))) (-2867 (((-1086 (-641)) $) NIL)) (-2502 (((-713)) NIL)) (-2734 (((-1172 $)) NIL)) (-4004 (($ $) NIL (|has| (-641) (-1112)))) (-3836 (($ $) NIL (|has| (-641) (-1112)))) (-3787 (((-108) $ $) NIL)) (-3975 (($ $) NIL (|has| (-641) (-1112)))) (-3808 (($ $) NIL (|has| (-641) (-1112)))) (-4035 (($ $) NIL (|has| (-641) (-1112)))) (-3861 (($ $) NIL (|has| (-641) (-1112)))) (-3103 (((-641) $) NIL (|has| (-641) (-1112)))) (-2608 (($ $) NIL (|has| (-641) (-1112)))) (-3873 (($ $) NIL (|has| (-641) (-1112)))) (-4018 (($ $) NIL (|has| (-641) (-1112)))) (-3848 (($ $) NIL (|has| (-641) (-1112)))) (-3989 (($ $) NIL (|has| (-641) (-1112)))) (-3823 (($ $) NIL (|has| (-641) (-1112)))) (-2053 (($ $) NIL (|has| (-641) (-985)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-641) (-341)))) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-1090)) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL (|has| (-641) (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| (-641) (-1112))) (($ $ (-385 (-525))) NIL (-12 (|has| (-641) (-933)) (|has| (-641) (-1112)))) (($ $ (-525)) NIL (|has| (-641) (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-641) $) NIL) (($ $ (-641)) NIL) (($ (-385 (-525)) $) NIL (|has| (-641) (-341))) (($ $ (-385 (-525))) NIL (|has| (-641) (-341))))) +(((-636) (-13 (-365) (-154 (-641)) (-10 -8 (-15 -4044 ($ (-157 (-357)))) (-15 -4044 ($ (-157 (-525)))) (-15 -4044 ($ (-157 (-641)))) (-15 -4044 ($ (-157 (-643)))) (-15 -4044 ((-157 (-357)) $))))) (T -636)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-636)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-157 (-641))) (-5 *1 (-636)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-157 (-643))) (-5 *1 (-636)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636))))) +(-13 (-365) (-154 (-641)) (-10 -8 (-15 -4044 ($ (-157 (-357)))) (-15 -4044 ($ (-157 (-525)))) (-15 -4044 ($ (-157 (-641)))) (-15 -4044 ($ (-157 (-643)))) (-15 -4044 ((-157 (-357)) $)))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-2696 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-2987 (($ $) 62)) (-1716 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2591 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3676 (((-592 (-2 (|:| -3978 |#1|) (|:| -3053 (-713)))) $) 61)) (-3607 (($) 49) (($ (-592 |#1|)) 48)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 50)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) 42)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-637 |#1|) (-131) (-1019)) (T -637)) +((-4157 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1019)))) (-2987 (*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1019)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-637 *3)) (-4 *3 (-1019)) (-5 *2 (-592 (-2 (|:| -3978 *3) (|:| -3053 (-713)))))))) +(-13 (-215 |t#1|) (-10 -8 (-15 -4157 ($ |t#1| $ (-713))) (-15 -2987 ($ $)) (-15 -3676 ((-592 (-2 (|:| -3978 |t#1|) (|:| -3053 (-713)))) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-4218 (((-592 |#1|) (-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))) (-525)) 47)) (-2788 ((|#1| |#1| (-525)) 46)) (-2262 ((|#1| |#1| |#1| (-525)) 36)) (-2961 (((-592 |#1|) |#1| (-525)) 39)) (-3425 ((|#1| |#1| (-525) |#1| (-525)) 32)) (-2652 (((-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))) |#1| (-525)) 45))) +(((-638 |#1|) (-10 -7 (-15 -2262 (|#1| |#1| |#1| (-525))) (-15 -2788 (|#1| |#1| (-525))) (-15 -2961 ((-592 |#1|) |#1| (-525))) (-15 -2652 ((-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))) |#1| (-525))) (-15 -4218 ((-592 |#1|) (-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))) (-525))) (-15 -3425 (|#1| |#1| (-525) |#1| (-525)))) (-1148 (-525))) (T -638)) +((-3425 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 *3)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| -2961 *5) (|:| -1486 (-525))))) (-5 *4 (-525)) (-4 *5 (-1148 *4)) (-5 *2 (-592 *5)) (-5 *1 (-638 *5)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-592 (-2 (|:| -2961 *3) (|:| -1486 *4)))) (-5 *1 (-638 *3)) (-4 *3 (-1148 *4)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3)) (-4 *3 (-1148 *4)))) (-2788 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 *3)))) (-2262 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 *3))))) +(-10 -7 (-15 -2262 (|#1| |#1| |#1| (-525))) (-15 -2788 (|#1| |#1| (-525))) (-15 -2961 ((-592 |#1|) |#1| (-525))) (-15 -2652 ((-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))) |#1| (-525))) (-15 -4218 ((-592 |#1|) (-592 (-2 (|:| -2961 |#1|) (|:| -1486 (-525)))) (-525))) (-15 -3425 (|#1| |#1| (-525) |#1| (-525)))) +((-3084 (((-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 17)) (-3130 (((-1050 (-205)) (-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242))) 40) (((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242))) 42) (((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242))) 44)) (-1659 (((-1050 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-592 (-242))) NIL)) (-3924 (((-1050 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242))) 45))) +(((-639) (-10 -7 (-15 -3130 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -3130 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -3130 ((-1050 (-205)) (-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -3924 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -1659 ((-1050 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -3084 ((-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -639)) +((-3084 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1 (-205) (-205) (-205) (-205))) (-5 *2 (-1 (-877 (-205)) (-205) (-205))) (-5 *1 (-639)))) (-1659 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639)))) (-3924 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639)))) (-3130 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639)))) (-3130 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-205))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639)))) (-3130 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639))))) +(-10 -7 (-15 -3130 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -3130 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -3130 ((-1050 (-205)) (-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -3924 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -1659 ((-1050 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -3084 ((-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))))) +((-2961 (((-396 (-1086 |#4|)) (-1086 |#4|)) 73) (((-396 |#4|) |#4|) 222))) +(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2961 ((-396 |#4|) |#4|)) (-15 -2961 ((-396 (-1086 |#4|)) (-1086 |#4|)))) (-789) (-735) (-327) (-883 |#3| |#2| |#1|)) (T -640)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4))))) +(-10 -7 (-15 -2961 ((-396 |#4|) |#4|)) (-15 -2961 ((-396 (-1086 |#4|)) (-1086 |#4|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 84)) (-4094 (((-525) $) 30)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3948 (($ $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2975 (($ $) NIL)) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL)) (-1957 (($) NIL T CONST)) (-1325 (($ $) NIL)) (-2769 (((-3 (-525) "failed") $) 73) (((-3 (-385 (-525)) "failed") $) 26) (((-3 (-357) "failed") $) 70)) (-2068 (((-525) $) 75) (((-385 (-525)) $) 67) (((-357) $) 68)) (-2720 (($ $ $) 96)) (-1645 (((-3 $ "failed") $) 87)) (-2699 (($ $ $) 95)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2229 (((-855)) 77) (((-855) (-855)) 76)) (-2973 (((-108) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL)) (-2158 (((-525) $) NIL)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL)) (-2281 (($ $) NIL)) (-3721 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3288 (((-525) (-525)) 81) (((-525)) 82)) (-1260 (($ $ $) NIL) (($) NIL (-12 (-2823 (|has| $ (-6 -4237))) (-2823 (|has| $ (-6 -4245)))))) (-3209 (((-525) (-525)) 79) (((-525)) 80)) (-2154 (($ $ $) NIL) (($) NIL (-12 (-2823 (|has| $ (-6 -4237))) (-2823 (|has| $ (-6 -4245)))))) (-2243 (((-525) $) 16)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 91)) (-3196 (((-855) (-525)) NIL (|has| $ (-6 -4245)))) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL)) (-2473 (($ $) NIL)) (-3024 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-855)) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) 92)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1737 (((-525) $) 22)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 94)) (-3943 (((-855)) NIL) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-3043 (((-855) (-525)) NIL (|has| $ (-6 -4245)))) (-2923 (((-357) $) NIL) (((-205) $) NIL) (((-826 (-357)) $) NIL)) (-4044 (((-797) $) 52) (($ (-525)) 63) (($ $) NIL) (($ (-385 (-525))) 66) (($ (-525)) 63) (($ (-385 (-525))) 66) (($ (-357)) 60) (((-357) $) 50) (($ (-643)) 55)) (-2502 (((-713)) 103)) (-1532 (($ (-525) (-525) (-855)) 44)) (-1448 (($ $) NIL)) (-3082 (((-855)) NIL) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-3758 (((-855)) 35) (((-855) (-855)) 78)) (-3787 (((-108) $ $) NIL)) (-2053 (($ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 32 T CONST)) (-1449 (($) 17 T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 83)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 101)) (-4047 (($ $ $) 65)) (-4033 (($ $) 99) (($ $ $) 100)) (-4017 (($ $ $) 98)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 90)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 97) (($ $ $) 88) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) +(((-641) (-13 (-382) (-365) (-341) (-967 (-357)) (-967 (-385 (-525))) (-138) (-10 -8 (-15 -2229 ((-855) (-855))) (-15 -2229 ((-855))) (-15 -3758 ((-855) (-855))) (-15 -3758 ((-855))) (-15 -3209 ((-525) (-525))) (-15 -3209 ((-525))) (-15 -3288 ((-525) (-525))) (-15 -3288 ((-525))) (-15 -4044 ((-357) $)) (-15 -4044 ($ (-643))) (-15 -2243 ((-525) $)) (-15 -1737 ((-525) $)) (-15 -1532 ($ (-525) (-525) (-855)))))) (T -641)) +((-3758 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2229 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) (-3209 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-3209 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-3288 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-3288 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-641)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-643)) (-5 *1 (-641)))) (-1532 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-855)) (-5 *1 (-641))))) +(-13 (-382) (-365) (-341) (-967 (-357)) (-967 (-385 (-525))) (-138) (-10 -8 (-15 -2229 ((-855) (-855))) (-15 -2229 ((-855))) (-15 -3758 ((-855) (-855))) (-15 -3758 ((-855))) (-15 -3209 ((-525) (-525))) (-15 -3209 ((-525))) (-15 -3288 ((-525) (-525))) (-15 -3288 ((-525))) (-15 -4044 ((-357) $)) (-15 -4044 ($ (-643))) (-15 -2243 ((-525) $)) (-15 -1737 ((-525) $)) (-15 -1532 ($ (-525) (-525) (-855))))) +((-4077 (((-632 |#1|) (-632 |#1|) |#1| |#1|) 65)) (-2384 (((-632 |#1|) (-632 |#1|) |#1|) 48)) (-2725 (((-632 |#1|) (-632 |#1|) |#1|) 66)) (-1824 (((-632 |#1|) (-632 |#1|)) 49)) (-2698 (((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|) 64))) +(((-642 |#1|) (-10 -7 (-15 -1824 ((-632 |#1|) (-632 |#1|))) (-15 -2384 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2725 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -4077 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -2698 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|))) (-286)) (T -642)) +((-2698 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-642 *3)) (-4 *3 (-286)))) (-4077 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-2725 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-2384 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3))))) +(-10 -7 (-15 -1824 ((-632 |#1|) (-632 |#1|))) (-15 -2384 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2725 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -4077 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -2698 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3775 (($ $ $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-4065 (($ $ $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL)) (-4162 (($ $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) 27)) (-2068 (((-525) $) 25)) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2132 (((-3 (-385 (-525)) "failed") $) NIL)) (-3748 (((-108) $) NIL)) (-1675 (((-385 (-525)) $) NIL)) (-1527 (($ $) NIL) (($) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2491 (($ $ $ $) NIL)) (-1514 (($ $ $) NIL)) (-2973 (((-108) $) NIL)) (-2635 (($ $ $) NIL)) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL)) (-2507 (((-108) $) NIL)) (-2057 (((-108) $) NIL)) (-1978 (((-3 $ "failed") $) NIL)) (-3721 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3520 (($ $ $ $) NIL)) (-1260 (($ $ $) NIL)) (-2352 (((-855) (-855)) 10) (((-855)) 9)) (-2154 (($ $ $) NIL)) (-3309 (($ $) NIL)) (-2520 (($ $) NIL)) (-2226 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-2169 (($ $ $) NIL)) (-2039 (($) NIL T CONST)) (-2640 (($ $) NIL)) (-3027 (((-1037) $) NIL) (($ $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3444 (($ $) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3524 (((-108) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) NIL) (($ $ (-713)) NIL)) (-1216 (($ $) NIL)) (-1261 (($ $) NIL)) (-2923 (((-205) $) NIL) (((-357) $) NIL) (((-826 (-525)) $) NIL) (((-501) $) NIL) (((-525) $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) 24) (($ $) NIL) (($ (-525)) 24) (((-294 $) (-294 (-525))) 18)) (-2502 (((-713)) NIL)) (-2301 (((-108) $ $) NIL)) (-3738 (($ $ $) NIL)) (-3758 (($) NIL)) (-3787 (((-108) $ $) NIL)) (-2009 (($ $ $ $) NIL)) (-2053 (($ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $) NIL) (($ $ (-713)) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL))) +(((-643) (-13 (-365) (-510) (-10 -8 (-15 -2352 ((-855) (-855))) (-15 -2352 ((-855))) (-15 -4044 ((-294 $) (-294 (-525))))))) (T -643)) +((-2352 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-643)))) (-2352 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-643)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-643))) (-5 *1 (-643))))) +(-13 (-365) (-510) (-10 -8 (-15 -2352 ((-855) (-855))) (-15 -2352 ((-855))) (-15 -4044 ((-294 $) (-294 (-525)))))) +((-1729 (((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)) 19)) (-3061 (((-1 |#4| |#2| |#3|) (-1090)) 12))) +(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3061 ((-1 |#4| |#2| |#3|) (-1090))) (-15 -1729 ((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)))) (-567 (-501)) (-1126) (-1126) (-1126)) (T -644)) +((-1729 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7)) (-4 *3 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)) (-4 *7 (-1126)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7)) (-4 *4 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)) (-4 *7 (-1126))))) +(-10 -7 (-15 -3061 ((-1 |#4| |#2| |#3|) (-1090))) (-15 -1729 ((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)))) +((-4028 (((-108) $ $) NIL)) (-2815 (((-1177) $ (-713)) 14)) (-1930 (((-713) $) 12)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 25)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 24))) +(((-645 |#1|) (-13 (-127) (-566 |#1|) (-10 -8 (-15 -4044 ($ |#1|)))) (-1019)) (T -645)) +((-4044 (*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1019))))) +(-13 (-127) (-566 |#1|) (-10 -8 (-15 -4044 ($ |#1|)))) +((-1788 (((-1 (-205) (-205) (-205)) |#1| (-1090) (-1090)) 34) (((-1 (-205) (-205)) |#1| (-1090)) 39))) +(((-646 |#1|) (-10 -7 (-15 -1788 ((-1 (-205) (-205)) |#1| (-1090))) (-15 -1788 ((-1 (-205) (-205) (-205)) |#1| (-1090) (-1090)))) (-567 (-501))) (T -646)) +((-1788 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501)))))) +(-10 -7 (-15 -1788 ((-1 (-205) (-205)) |#1| (-1090))) (-15 -1788 ((-1 (-205) (-205) (-205)) |#1| (-1090) (-1090)))) +((-2131 (((-1090) |#1| (-1090) (-592 (-1090))) 9) (((-1090) |#1| (-1090) (-1090) (-1090)) 12) (((-1090) |#1| (-1090) (-1090)) 11) (((-1090) |#1| (-1090)) 10))) +(((-647 |#1|) (-10 -7 (-15 -2131 ((-1090) |#1| (-1090))) (-15 -2131 ((-1090) |#1| (-1090) (-1090))) (-15 -2131 ((-1090) |#1| (-1090) (-1090) (-1090))) (-15 -2131 ((-1090) |#1| (-1090) (-592 (-1090))))) (-567 (-501))) (T -647)) +((-2131 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-592 (-1090))) (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2131 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2131 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2131 (*1 *2 *3 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))) +(-10 -7 (-15 -2131 ((-1090) |#1| (-1090))) (-15 -2131 ((-1090) |#1| (-1090) (-1090))) (-15 -2131 ((-1090) |#1| (-1090) (-1090) (-1090))) (-15 -2131 ((-1090) |#1| (-1090) (-592 (-1090))))) +((-1318 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-648 |#1| |#2|) (-10 -7 (-15 -1318 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1126) (-1126)) (T -648)) +((-1318 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-648 *3 *4)) (-4 *3 (-1126)) (-4 *4 (-1126))))) +(-10 -7 (-15 -1318 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-1372 (((-1 |#3| |#2|) (-1090)) 11)) (-1729 (((-1 |#3| |#2|) |#1| (-1090)) 21))) +(((-649 |#1| |#2| |#3|) (-10 -7 (-15 -1372 ((-1 |#3| |#2|) (-1090))) (-15 -1729 ((-1 |#3| |#2|) |#1| (-1090)))) (-567 (-501)) (-1126) (-1126)) (T -649)) +((-1729 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6)) (-4 *3 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6)) (-4 *4 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126))))) +(-10 -7 (-15 -1372 ((-1 |#3| |#2|) (-1090))) (-15 -1729 ((-1 |#3| |#2|) |#1| (-1090)))) +((-1902 (((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1172 (-592 (-1086 |#3|))) |#3|) 62)) (-1997 (((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|) 75)) (-3624 (((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1086 |#4|)) (-1172 (-592 (-1086 |#3|))) |#3|) 34))) +(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3624 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1086 |#4|)) (-1172 (-592 (-1086 |#3|))) |#3|)) (-15 -1997 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -1902 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1172 (-592 (-1086 |#3|))) |#3|))) (-735) (-789) (-286) (-883 |#3| |#1| |#2|)) (T -650)) +((-1902 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-592 (-1086 *13))) (-5 *3 (-1086 *13)) (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13)) (-5 *7 (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| *13))))) (-5 *8 (-592 (-713))) (-5 *9 (-1172 (-592 (-1086 *10)))) (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-883 *10 *11 *12)) (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13)))) (-1997 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1086 *9))) (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713))) (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-883 *9 *10 *11)) (-4 *10 (-735)) (-5 *2 (-592 (-1086 *12))) (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))) (-3624 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-592 (-1086 *11))) (-5 *3 (-1086 *11)) (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713))) (-5 *7 (-1172 (-592 (-1086 *8)))) (-4 *10 (-789)) (-4 *8 (-286)) (-4 *11 (-883 *8 *9 *10)) (-4 *9 (-735)) (-5 *1 (-650 *9 *10 *8 *11))))) +(-10 -7 (-15 -3624 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1086 |#4|)) (-1172 (-592 (-1086 |#3|))) |#3|)) (-15 -1997 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -1902 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1172 (-592 (-1086 |#3|))) |#3|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-3306 (($ $) 41)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-3097 (($ |#1| (-713)) 39)) (-3762 (((-713) $) 43)) (-3286 ((|#1| $) 42)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1486 (((-713) $) 44)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 38 (|has| |#1| (-160)))) (-2100 ((|#1| $ (-713)) 40)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-651 |#1|) (-131) (-976)) (T -651)) +((-1486 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-976)))) (-3306 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-976)))) (-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-976)))) (-3097 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-976))))) +(-13 (-976) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -1486 ((-713) $)) (-15 -3762 ((-713) $)) (-15 -3286 (|t#1| $)) (-15 -3306 ($ $)) (-15 -2100 (|t#1| $ (-713))) (-15 -3097 ($ |t#1| (-713))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2868 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-652 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2868 (|#6| (-1 |#4| |#1|) |#3|))) (-517) (-1148 |#1|) (-1148 (-385 |#2|)) (-517) (-1148 |#4|) (-1148 (-385 |#5|))) (T -652)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517)) (-4 *6 (-1148 *5)) (-4 *2 (-1148 (-385 *8))) (-5 *1 (-652 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1148 (-385 *6))) (-4 *8 (-1148 *7))))) +(-10 -7 (-15 -2868 (|#6| (-1 |#4| |#1|) |#3|))) +((-4028 (((-108) $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4234 (((-1073) (-797)) 31)) (-3686 (((-1177) (-1073)) 28)) (-3366 (((-1073) (-797)) 24)) (-2897 (((-1073) (-797)) 25)) (-4044 (((-797) $) NIL) (((-1073) (-797)) 23)) (-3899 (((-108) $ $) NIL))) +(((-653) (-13 (-1019) (-10 -7 (-15 -4044 ((-1073) (-797))) (-15 -3366 ((-1073) (-797))) (-15 -2897 ((-1073) (-797))) (-15 -4234 ((-1073) (-797))) (-15 -3686 ((-1177) (-1073)))))) (T -653)) +((-4044 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))) (-3686 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-653))))) +(-13 (-1019) (-10 -7 (-15 -4044 ((-1073) (-797))) (-15 -3366 ((-1073) (-797))) (-15 -2897 ((-1073) (-797))) (-15 -4234 ((-1073) (-797))) (-15 -3686 ((-1177) (-1073))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-2720 (($ $ $) NIL)) (-3336 (($ |#1| |#2|) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2507 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1690 ((|#2| $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2070 (((-3 $ "failed") $ $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) ((|#1| $) NIL)) (-2502 (((-713)) NIL)) (-3787 (((-108) $ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) +(((-654 |#1| |#2| |#3| |#4| |#5|) (-13 (-341) (-10 -8 (-15 -1690 (|#2| $)) (-15 -4044 (|#1| $)) (-15 -3336 ($ |#1| |#2|)) (-15 -2070 ((-3 $ "failed") $ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -654)) +((-1690 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4044 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3336 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2070 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-341) (-10 -8 (-15 -1690 (|#2| $)) (-15 -4044 (|#1| $)) (-15 -3336 ($ |#1| |#2|)) (-15 -2070 ((-3 $ "failed") $ $)))) +((-4028 (((-108) $ $) 78)) (-2464 (((-108) $) 30)) (-3350 (((-1172 |#1|) $ (-713)) NIL)) (-3122 (((-592 (-1004)) $) NIL)) (-2878 (($ (-1086 |#1|)) NIL)) (-1315 (((-1086 $) $ (-1004)) NIL) (((-1086 |#1|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-1004))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2481 (($ $ $) NIL (|has| |#1| (-517)))) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2701 (($ $) NIL (|has| |#1| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1651 (((-713)) 47 (|has| |#1| (-346)))) (-3778 (($ $ (-713)) NIL)) (-3564 (($ $ (-713)) NIL)) (-3527 ((|#2| |#2|) 44)) (-3302 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1004) "failed") $) NIL)) (-2068 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1004) $) NIL)) (-3048 (($ $ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $ $) NIL (|has| |#1| (-160)))) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) 34)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3336 (($ |#2|) 42)) (-1645 (((-3 $ "failed") $) 86)) (-1527 (($) 51 (|has| |#1| (-346)))) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-1974 (($ $ $) NIL)) (-2932 (($ $ $) NIL (|has| |#1| (-517)))) (-2683 (((-2 (|:| -2059 |#1|) (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-517)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2319 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#1| (-843)))) (-3862 (((-891 $)) 80)) (-2187 (($ $ |#1| (-713) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2158 (((-713) $ $) NIL (|has| |#1| (-517)))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-1066)))) (-3110 (($ (-1086 |#1|) (-1004)) NIL) (($ (-1086 $) (-1004)) NIL)) (-2633 (($ $ (-713)) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-713)) 77) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-1004)) NIL) (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1690 ((|#2|) 45)) (-3762 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2078 (($ (-1 (-713) (-713)) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-1298 (((-1086 |#1|) $) NIL)) (-3869 (((-3 (-1004) "failed") $) NIL)) (-2111 (((-855) $) NIL (|has| |#1| (-346)))) (-3325 ((|#2| $) 41)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) 28)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1707 (((-1073) $) NIL)) (-2628 (((-2 (|:| -2877 $) (|:| -2097 $)) $ (-713)) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-1004)) (|:| -1737 (-713))) "failed") $) NIL)) (-2313 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2039 (($) NIL (|has| |#1| (-1066)) CONST)) (-3381 (($ (-855)) NIL (|has| |#1| (-346)))) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#1| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-4153 (($ $) 79 (|has| |#1| (-327)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#1|) NIL) (($ $ (-592 (-1004)) (-592 |#1|)) NIL) (($ $ (-1004) $) NIL) (($ $ (-592 (-1004)) (-592 $)) NIL)) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-3907 (((-3 $ "failed") $ (-713)) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 87 (|has| |#1| (-341)))) (-2257 (($ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-1576 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1486 (((-713) $) 32) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2758 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-2155 (((-891 $)) 36)) (-2173 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-4044 (((-797) $) 61) (($ (-525)) NIL) (($ |#1|) 58) (($ (-1004)) NIL) (($ |#2|) 68) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-713)) 63) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 20 T CONST)) (-3411 (((-1172 |#1|) $) 75)) (-1866 (($ (-1172 |#1|)) 50)) (-1449 (($) 8 T CONST)) (-1990 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4107 (((-1172 |#1|) $) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) 69)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) 72) (($ $ $) NIL)) (-4017 (($ $ $) 33)) (** (($ $ (-855)) NIL) (($ $ (-713)) 81)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 57) (($ $ $) 74) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-655 |#1| |#2|) (-13 (-1148 |#1|) (-10 -8 (-15 -3527 (|#2| |#2|)) (-15 -1690 (|#2|)) (-15 -3336 ($ |#2|)) (-15 -3325 (|#2| $)) (-15 -4044 ($ |#2|)) (-15 -3411 ((-1172 |#1|) $)) (-15 -1866 ($ (-1172 |#1|))) (-15 -4107 ((-1172 |#1|) $)) (-15 -3862 ((-891 $))) (-15 -2155 ((-891 $))) (IF (|has| |#1| (-327)) (-15 -4153 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|))) (-976) (-1148 |#1|)) (T -655)) +((-3527 (*1 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3)))) (-1690 (*1 *2) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-976)))) (-3336 (*1 *1 *2) (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3)))) (-3325 (*1 *2 *1) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-976)))) (-4044 (*1 *1 *2) (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3)))) (-3411 (*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-1172 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-976)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-4107 (*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-1172 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-3862 (*1 *2) (-12 (-4 *3 (-976)) (-5 *2 (-891 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-2155 (*1 *2) (-12 (-4 *3 (-976)) (-5 *2 (-891 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-4153 (*1 *1 *1) (-12 (-4 *2 (-327)) (-4 *2 (-976)) (-5 *1 (-655 *2 *3)) (-4 *3 (-1148 *2))))) +(-13 (-1148 |#1|) (-10 -8 (-15 -3527 (|#2| |#2|)) (-15 -1690 (|#2|)) (-15 -3336 ($ |#2|)) (-15 -3325 (|#2| $)) (-15 -4044 ($ |#2|)) (-15 -3411 ((-1172 |#1|) $)) (-15 -1866 ($ (-1172 |#1|))) (-15 -4107 ((-1172 |#1|) $)) (-15 -3862 ((-891 $))) (-15 -2155 ((-891 $))) (IF (|has| |#1| (-327)) (-15 -4153 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3381 ((|#1| $) 13)) (-3027 (((-1037) $) NIL)) (-1737 ((|#2| $) 12)) (-4059 (($ |#1| |#2|) 16)) (-4044 (((-797) $) NIL) (($ (-2 (|:| -3381 |#1|) (|:| -1737 |#2|))) 15) (((-2 (|:| -3381 |#1|) (|:| -1737 |#2|)) $) 14)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 11))) +(((-656 |#1| |#2| |#3|) (-13 (-789) (-10 -8 (-15 -1737 (|#2| $)) (-15 -3381 (|#1| $)) (-15 -4044 ($ (-2 (|:| -3381 |#1|) (|:| -1737 |#2|)))) (-15 -4044 ((-2 (|:| -3381 |#1|) (|:| -1737 |#2|)) $)) (-15 -4059 ($ |#1| |#2|)))) (-789) (-1019) (-1 (-108) (-2 (|:| -3381 |#1|) (|:| -1737 |#2|)) (-2 (|:| -3381 |#1|) (|:| -1737 |#2|)))) (T -656)) +((-1737 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789)) (-14 *4 (-1 (-108) (-2 (|:| -3381 *3) (|:| -1737 *2)) (-2 (|:| -3381 *3) (|:| -1737 *2)))))) (-3381 (*1 *2 *1) (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1019)) (-14 *4 (-1 (-108) (-2 (|:| -3381 *2) (|:| -1737 *3)) (-2 (|:| -3381 *2) (|:| -1737 *3)))))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3381 *3) (|:| -1737 *4))) (-4 *3 (-789)) (-4 *4 (-1019)) (-5 *1 (-656 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3381 *3) (|:| -1737 *4))) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1019)) (-14 *5 (-1 (-108) *2 *2)))) (-4059 (*1 *1 *2 *3) (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1019)) (-14 *4 (-1 (-108) (-2 (|:| -3381 *2) (|:| -1737 *3)) (-2 (|:| -3381 *2) (|:| -1737 *3))))))) +(-13 (-789) (-10 -8 (-15 -1737 (|#2| $)) (-15 -3381 (|#1| $)) (-15 -4044 ($ (-2 (|:| -3381 |#1|) (|:| -1737 |#2|)))) (-15 -4044 ((-2 (|:| -3381 |#1|) (|:| -1737 |#2|)) $)) (-15 -4059 ($ |#1| |#2|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 59)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-2068 ((|#1| $) NIL) (((-110) $) 39)) (-1645 (((-3 $ "failed") $) 90)) (-3144 ((|#2| (-110) |#2|) 82)) (-2507 (((-108) $) NIL)) (-3259 (($ |#1| (-339 (-110))) 14)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3192 (($ $ (-1 |#2| |#2|)) 58)) (-3575 (($ $ (-1 |#2| |#2|)) 44)) (-1496 ((|#2| $ |#2|) 33)) (-3055 ((|#1| |#1|) 100 (|has| |#1| (-160)))) (-4044 (((-797) $) 66) (($ (-525)) 18) (($ |#1|) 17) (($ (-110)) 23)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) 37)) (-3092 (($ $) 99 (|has| |#1| (-160))) (($ $ $) 103 (|has| |#1| (-160)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 21 T CONST)) (-1449 (($) 9 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) 48) (($ $ $) NIL)) (-4017 (($ $ $) 73)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) 57)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-160))) (($ $ |#1|) 97 (|has| |#1| (-160))))) +(((-657 |#1| |#2|) (-13 (-976) (-967 |#1|) (-967 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -3092 ($ $)) (-15 -3092 ($ $ $)) (-15 -3055 (|#1| |#1|))) |%noBranch|) (-15 -3575 ($ $ (-1 |#2| |#2|))) (-15 -3192 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3144 (|#2| (-110) |#2|)) (-15 -3259 ($ |#1| (-339 (-110)))))) (-976) (-594 |#1|)) (T -657)) +((-3092 (*1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-3092 (*1 *1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-3055 (*1 *2 *2) (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-3575 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-976)) (-5 *1 (-657 *3 *4)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-976)) (-5 *1 (-657 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-976)) (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *3 (-976)) (-5 *1 (-657 *3 *4)) (-4 *4 (-594 *3)))) (-3144 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-976)) (-5 *1 (-657 *4 *2)) (-4 *2 (-594 *4)))) (-3259 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-4 *2 (-976)) (-5 *1 (-657 *2 *4)) (-4 *4 (-594 *2))))) +(-13 (-976) (-967 |#1|) (-967 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -3092 ($ $)) (-15 -3092 ($ $ $)) (-15 -3055 (|#1| |#1|))) |%noBranch|) (-15 -3575 ($ $ (-1 |#2| |#2|))) (-15 -3192 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3144 (|#2| (-110) |#2|)) (-15 -3259 ($ |#1| (-339 (-110)))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 33)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-3336 (($ |#1| |#2|) 25)) (-1645 (((-3 $ "failed") $) 48)) (-2507 (((-108) $) 35)) (-1690 ((|#2| $) 12)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 49)) (-3027 (((-1037) $) NIL)) (-2070 (((-3 $ "failed") $ $) 47)) (-4044 (((-797) $) 24) (($ (-525)) 19) ((|#1| $) 13)) (-2502 (((-713)) 28)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 16 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 38)) (-4033 (($ $) 43) (($ $ $) 37)) (-4017 (($ $ $) 40)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 21) (($ $ $) 20))) +(((-658 |#1| |#2| |#3| |#4| |#5|) (-13 (-976) (-10 -8 (-15 -1690 (|#2| $)) (-15 -4044 (|#1| $)) (-15 -3336 ($ |#1| |#2|)) (-15 -2070 ((-3 $ "failed") $ $)) (-15 -1645 ((-3 $ "failed") $)) (-15 -3243 ($ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -658)) +((-1645 (*1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1690 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4044 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3336 (*1 *1 *2 *3) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2070 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3243 (*1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-976) (-10 -8 (-15 -1690 (|#2| $)) (-15 -4044 (|#1| $)) (-15 -3336 ($ |#1| |#2|)) (-15 -2070 ((-3 $ "failed") $ $)) (-15 -1645 ((-3 $ "failed") $)) (-15 -3243 ($ $)))) +((* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-659 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-660 |#2|) (-160)) (T -659)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-660 |#1|) (-131) (-160)) (T -660)) NIL (-13 (-107 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-981 |#1|) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-3423 (($ |#1|) 17) (($ $ |#1|) 20)) (-1735 (($ |#1|) 18) (($ $ |#1|) 21)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3865 (((-108) $) NIL)) (-3708 (($ |#1| |#1| |#1| |#1|) 8)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 16)) (-2937 (((-1036) $) NIL)) (-1980 ((|#1| $ |#1|) 24) (((-774 |#1|) $ (-774 |#1|)) 32)) (-3369 (($ $ $) NIL)) (-4027 (($ $ $) NIL)) (-2686 (((-796) $) 39)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1839 (($) 9 T CONST)) (-3944 (((-108) $ $) 44)) (-4059 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 14))) -(((-660 |#1|) (-13 (-450) (-10 -8 (-15 -3708 ($ |#1| |#1| |#1| |#1|)) (-15 -3423 ($ |#1|)) (-15 -1735 ($ |#1|)) (-15 -1522 ($)) (-15 -3423 ($ $ |#1|)) (-15 -1735 ($ $ |#1|)) (-15 -1522 ($ $)) (-15 -1980 (|#1| $ |#1|)) (-15 -1980 ((-774 |#1|) $ (-774 |#1|))))) (-341)) (T -660)) -((-3708 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) (-3423 (*1 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) (-1735 (*1 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) (-1522 (*1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) (-3423 (*1 *1 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) (-1522 (*1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) (-1980 (*1 *2 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) (-1980 (*1 *2 *1 *2) (-12 (-5 *2 (-774 *3)) (-4 *3 (-341)) (-5 *1 (-660 *3))))) -(-13 (-450) (-10 -8 (-15 -3708 ($ |#1| |#1| |#1| |#1|)) (-15 -3423 ($ |#1|)) (-15 -1735 ($ |#1|)) (-15 -1522 ($)) (-15 -3423 ($ $ |#1|)) (-15 -1735 ($ $ |#1|)) (-15 -1522 ($ $)) (-15 -1980 (|#1| $ |#1|)) (-15 -1980 ((-774 |#1|) $ (-774 |#1|))))) -((-2681 (($ $ (-854)) 12)) (-2832 (($ $ (-854)) 13)) (** (($ $ (-854)) 10))) -(((-661 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-854))) (-15 -2832 (|#1| |#1| (-854))) (-15 -2681 (|#1| |#1| (-854)))) (-662)) (T -661)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-854))) (-15 -2832 (|#1| |#1| (-854))) (-15 -2681 (|#1| |#1| (-854)))) -((-2673 (((-108) $ $) 7)) (-2681 (($ $ (-854)) 15)) (-2832 (($ $ (-854)) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 6)) (** (($ $ (-854)) 13)) (* (($ $ $) 16))) -(((-662) (-131)) (T -662)) -((* (*1 *1 *1 *1) (-4 *1 (-662))) (-2681 (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-854)))) (-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-854)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-854))))) -(-13 (-1018) (-10 -8 (-15 * ($ $ $)) (-15 -2681 ($ $ (-854))) (-15 -2832 ($ $ (-854))) (-15 ** ($ $ (-854))))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2681 (($ $ (-854)) NIL) (($ $ (-712)) 17)) (-3865 (((-108) $) 10)) (-2832 (($ $ (-854)) NIL) (($ $ (-712)) 18)) (** (($ $ (-854)) NIL) (($ $ (-712)) 15))) -(((-663 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-712))) (-15 -2832 (|#1| |#1| (-712))) (-15 -2681 (|#1| |#1| (-712))) (-15 -3865 ((-108) |#1|)) (-15 ** (|#1| |#1| (-854))) (-15 -2832 (|#1| |#1| (-854))) (-15 -2681 (|#1| |#1| (-854)))) (-664)) (T -663)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-712))) (-15 -2832 (|#1| |#1| (-712))) (-15 -2681 (|#1| |#1| (-712))) (-15 -3865 ((-108) |#1|)) (-15 ** (|#1| |#1| (-854))) (-15 -2832 (|#1| |#1| (-854))) (-15 -2681 (|#1| |#1| (-854)))) -((-2673 (((-108) $ $) 7)) (-2397 (((-3 $ "failed") $) 17)) (-2681 (($ $ (-854)) 15) (($ $ (-712)) 22)) (-1522 (((-3 $ "failed") $) 19)) (-3865 (((-108) $) 23)) (-3917 (((-3 $ "failed") $) 18)) (-2832 (($ $ (-854)) 14) (($ $ (-712)) 21)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1839 (($) 24 T CONST)) (-3944 (((-108) $ $) 6)) (** (($ $ (-854)) 13) (($ $ (-712)) 20)) (* (($ $ $) 16))) -(((-664) (-131)) (T -664)) -((-1839 (*1 *1) (-4 *1 (-664))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-108)))) (-2681 (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-712)))) (-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-712)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-712)))) (-1522 (*1 *1 *1) (|partial| -4 *1 (-664))) (-3917 (*1 *1 *1) (|partial| -4 *1 (-664))) (-2397 (*1 *1 *1) (|partial| -4 *1 (-664)))) -(-13 (-662) (-10 -8 (-15 (-1839) ($) -2277) (-15 -3865 ((-108) $)) (-15 -2681 ($ $ (-712))) (-15 -2832 ($ $ (-712))) (-15 ** ($ $ (-712))) (-15 -1522 ((-3 $ "failed") $)) (-15 -3917 ((-3 $ "failed") $)) (-15 -2397 ((-3 $ "failed") $)))) -(((-97) . T) ((-565 (-796)) . T) ((-662) . T) ((-1018) . T)) -((-2834 (((-712)) 35)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3341 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 22)) (-3618 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) 45)) (-1522 (((-3 $ "failed") $) 65)) (-1325 (($) 39)) (-1525 ((|#2| $) 20)) (-3965 (($) 17)) (-2209 (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) NIL) (($ $ (-712)) NIL) (($ $) NIL)) (-3206 (((-631 |#2|) (-1171 $) (-1 |#2| |#2|)) 60)) (-1300 (((-1171 |#2|) $) NIL) (($ (-1171 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2173 ((|#3| $) 32)) (-3612 (((-1171 $)) 29))) -(((-665 |#1| |#2| |#3|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -1325 (|#1|)) (-15 -2834 ((-712))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -3206 ((-631 |#2|) (-1171 |#1|) (-1 |#2| |#2|))) (-15 -3618 ((-3 |#1| "failed") (-385 |#3|))) (-15 -1300 (|#1| |#3|)) (-15 -3618 (|#1| |#3|)) (-15 -3965 (|#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -1300 (|#3| |#1|)) (-15 -1300 (|#1| (-1171 |#2|))) (-15 -1300 ((-1171 |#2|) |#1|)) (-15 -3612 ((-1171 |#1|))) (-15 -2173 (|#3| |#1|)) (-15 -1525 (|#2| |#1|)) (-15 -1522 ((-3 |#1| "failed") |#1|))) (-666 |#2| |#3|) (-160) (-1147 |#2|)) (T -665)) -((-2834 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1147 *4)) (-5 *2 (-712)) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-666 *4 *5))))) -(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -1325 (|#1|)) (-15 -2834 ((-712))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -3206 ((-631 |#2|) (-1171 |#1|) (-1 |#2| |#2|))) (-15 -3618 ((-3 |#1| "failed") (-385 |#3|))) (-15 -1300 (|#1| |#3|)) (-15 -3618 (|#1| |#3|)) (-15 -3965 (|#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -1300 (|#3| |#1|)) (-15 -1300 (|#1| (-1171 |#2|))) (-15 -1300 ((-1171 |#2|) |#1|)) (-15 -3612 ((-1171 |#1|))) (-15 -2173 (|#3| |#1|)) (-15 -1525 (|#2| |#1|)) (-15 -1522 ((-3 |#1| "failed") |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 93 (|has| |#1| (-341)))) (-3641 (($ $) 94 (|has| |#1| (-341)))) (-3077 (((-108) $) 96 (|has| |#1| (-341)))) (-1712 (((-631 |#1|) (-1171 $)) 46) (((-631 |#1|)) 61)) (-1481 ((|#1| $) 52)) (-2666 (((-1099 (-854) (-712)) (-525)) 147 (|has| |#1| (-327)))) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 113 (|has| |#1| (-341)))) (-3898 (((-396 $) $) 114 (|has| |#1| (-341)))) (-1965 (((-108) $ $) 104 (|has| |#1| (-341)))) (-2834 (((-712)) 87 (|has| |#1| (-346)))) (-2055 (($) 17 T CONST)) (-4174 (((-3 (-525) "failed") $) 169 (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-3341 (((-525) $) 170 (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 165)) (-1554 (($ (-1171 |#1|) (-1171 $)) 48) (($ (-1171 |#1|)) 64)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-3265 (($ $ $) 108 (|has| |#1| (-341)))) (-4054 (((-631 |#1|) $ (-1171 $)) 53) (((-631 |#1|) $) 59)) (-3925 (((-631 (-525)) (-631 $)) 164 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 163 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 162) (((-631 |#1|) (-631 $)) 161)) (-3618 (($ |#2|) 158) (((-3 $ "failed") (-385 |#2|)) 155 (|has| |#1| (-341)))) (-1522 (((-3 $ "failed") $) 34)) (-2193 (((-854)) 54)) (-1325 (($) 90 (|has| |#1| (-346)))) (-3239 (($ $ $) 107 (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 102 (|has| |#1| (-341)))) (-1268 (($) 149 (|has| |#1| (-327)))) (-2096 (((-108) $) 150 (|has| |#1| (-327)))) (-3477 (($ $ (-712)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-2393 (((-108) $) 115 (|has| |#1| (-341)))) (-1676 (((-854) $) 152 (|has| |#1| (-327))) (((-774 (-854)) $) 138 (|has| |#1| (-327)))) (-3865 (((-108) $) 31)) (-1525 ((|#1| $) 51)) (-2115 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 111 (|has| |#1| (-341)))) (-3205 ((|#2| $) 44 (|has| |#1| (-341)))) (-1970 (((-854) $) 89 (|has| |#1| (-346)))) (-3610 ((|#2| $) 156)) (-2081 (($ (-591 $)) 100 (|has| |#1| (-341))) (($ $ $) 99 (|has| |#1| (-341)))) (-2621 (((-1072) $) 9)) (-1523 (($ $) 116 (|has| |#1| (-341)))) (-3492 (($) 143 (|has| |#1| (-327)) CONST)) (-3229 (($ (-854)) 88 (|has| |#1| (-346)))) (-2937 (((-1036) $) 10)) (-3965 (($) 160)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 101 (|has| |#1| (-341)))) (-2124 (($ (-591 $)) 98 (|has| |#1| (-341))) (($ $ $) 97 (|has| |#1| (-341)))) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) 146 (|has| |#1| (-327)))) (-2542 (((-396 $) $) 112 (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 109 (|has| |#1| (-341)))) (-3210 (((-3 $ "failed") $ $) 92 (|has| |#1| (-341)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 103 (|has| |#1| (-341)))) (-3048 (((-712) $) 105 (|has| |#1| (-341)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 106 (|has| |#1| (-341)))) (-2858 ((|#1| (-1171 $)) 47) ((|#1|) 60)) (-2652 (((-712) $) 151 (|has| |#1| (-327))) (((-3 (-712) "failed") $ $) 139 (|has| |#1| (-327)))) (-2209 (($ $) 137 (-3150 (-3543 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-712)) 135 (-3150 (-3543 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1089)) 133 (-3543 (|has| |#1| (-833 (-1089))) (|has| |#1| (-341)))) (($ $ (-591 (-1089))) 132 (-3543 (|has| |#1| (-833 (-1089))) (|has| |#1| (-341)))) (($ $ (-1089) (-712)) 131 (-3543 (|has| |#1| (-833 (-1089))) (|has| |#1| (-341)))) (($ $ (-591 (-1089)) (-591 (-712))) 130 (-3543 (|has| |#1| (-833 (-1089))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-712)) 123 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-341)))) (-3206 (((-631 |#1|) (-1171 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-1341 ((|#2|) 159)) (-3560 (($) 148 (|has| |#1| (-327)))) (-1671 (((-1171 |#1|) $ (-1171 $)) 50) (((-631 |#1|) (-1171 $) (-1171 $)) 49) (((-1171 |#1|) $) 66) (((-631 |#1|) (-1171 $)) 65)) (-1300 (((-1171 |#1|) $) 63) (($ (-1171 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 145 (|has| |#1| (-327)))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-341))) (($ (-385 (-525))) 86 (-3150 (|has| |#1| (-341)) (|has| |#1| (-966 (-385 (-525))))))) (-3751 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-2173 ((|#2| $) 45)) (-3425 (((-712)) 29)) (-3612 (((-1171 $)) 67)) (-1724 (((-108) $ $) 95 (|has| |#1| (-341)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $) 136 (-3150 (-3543 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-712)) 134 (-3150 (-3543 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1089)) 129 (-3543 (|has| |#1| (-833 (-1089))) (|has| |#1| (-341)))) (($ $ (-591 (-1089))) 128 (-3543 (|has| |#1| (-833 (-1089))) (|has| |#1| (-341)))) (($ $ (-1089) (-712)) 127 (-3543 (|has| |#1| (-833 (-1089))) (|has| |#1| (-341)))) (($ $ (-591 (-1089)) (-591 (-712))) 126 (-3543 (|has| |#1| (-833 (-1089))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-712)) 125 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-341)))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ $) 121 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341))))) -(((-666 |#1| |#2|) (-131) (-160) (-1147 |t#1|)) (T -666)) -((-3965 (*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-666 *2 *3)) (-4 *3 (-1147 *2)))) (-1341 (*1 *2) (-12 (-4 *1 (-666 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1147 *3)))) (-3618 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-666 *3 *2)) (-4 *2 (-1147 *3)))) (-1300 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-666 *3 *2)) (-4 *2 (-1147 *3)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1147 *3)))) (-3618 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1147 *3)) (-4 *3 (-341)) (-4 *3 (-160)) (-4 *1 (-666 *3 *4)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-4 *1 (-666 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1147 *5)) (-5 *2 (-631 *5))))) -(-13 (-387 |t#1| |t#2|) (-160) (-566 |t#2|) (-389 |t#1|) (-355 |t#1|) (-10 -8 (-15 -3965 ($)) (-15 -1341 (|t#2|)) (-15 -3618 ($ |t#2|)) (-15 -1300 ($ |t#2|)) (-15 -3610 (|t#2| $)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-341)) (-6 (-211 |t#1|)) (-15 -3618 ((-3 $ "failed") (-385 |t#2|))) (-15 -3206 ((-631 |t#1|) (-1171 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-327)) (-6 (-327)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-97) . T) ((-107 #0# #0#) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3150 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) . T) ((-566 |#2|) . T) ((-211 |#1|) |has| |#1| (-341)) ((-213) -3150 (|has| |#1| (-327)) (-12 (|has| |#1| (-213)) (|has| |#1| (-341)))) ((-223) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-269) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-286) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-341) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3150 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| |#2|) . T) ((-387 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-517) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-593 #0#) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-593 |#1|) . T) ((-593 $) . T) ((-587 (-525)) |has| |#1| (-587 (-525))) ((-587 |#1|) . T) ((-659 #0#) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-659 |#1|) . T) ((-659 $) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-668) . T) ((-833 (-1089)) -12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089)))) ((-853) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-981 #0#) -3150 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-981 |#1|) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1065) |has| |#1| (-327)) ((-1129) -3150 (|has| |#1| (-327)) (|has| |#1| (-341)))) -((-2055 (($) 14)) (-1522 (((-3 $ "failed") $) 16)) (-3865 (((-108) $) 13)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) 9)) (** (($ $ (-854)) NIL) (($ $ (-712)) 20))) -(((-667 |#1|) (-10 -8 (-15 -1522 ((-3 |#1| "failed") |#1|)) (-15 -1401 (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-712))) (-15 -3865 ((-108) |#1|)) (-15 -2055 (|#1|)) (-15 -1401 (|#1| |#1| (-854))) (-15 ** (|#1| |#1| (-854)))) (-668)) (T -667)) -NIL -(-10 -8 (-15 -1522 ((-3 |#1| "failed") |#1|)) (-15 -1401 (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-712))) (-15 -3865 ((-108) |#1|)) (-15 -2055 (|#1|)) (-15 -1401 (|#1| |#1| (-854))) (-15 ** (|#1| |#1| (-854)))) -((-2673 (((-108) $ $) 7)) (-2055 (($) 20 T CONST)) (-1522 (((-3 $ "failed") $) 16)) (-3865 (((-108) $) 19)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1401 (($ $ (-854)) 13) (($ $ (-712)) 17)) (-1839 (($) 21 T CONST)) (-3944 (((-108) $ $) 6)) (** (($ $ (-854)) 14) (($ $ (-712)) 18)) (* (($ $ $) 15))) -(((-668) (-131)) (T -668)) -((-1839 (*1 *1) (-4 *1 (-668))) (-2055 (*1 *1) (-4 *1 (-668))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-668)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-668)) (-5 *2 (-712)))) (-1401 (*1 *1 *1 *2) (-12 (-4 *1 (-668)) (-5 *2 (-712)))) (-1522 (*1 *1 *1) (|partial| -4 *1 (-668)))) -(-13 (-1030) (-10 -8 (-15 (-1839) ($) -2277) (-15 -2055 ($) -2277) (-15 -3865 ((-108) $)) (-15 ** ($ $ (-712))) (-15 -1401 ($ $ (-712))) (-15 -1522 ((-3 $ "failed") $)))) -(((-97) . T) ((-565 (-796)) . T) ((-1030) . T) ((-1018) . T)) -((-2466 (((-2 (|:| -3749 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1645 (((-2 (|:| -3749 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4000 ((|#2| (-385 |#2|) (-1 |#2| |#2|)) 13)) (-3601 (((-2 (|:| |poly| |#2|) (|:| -3749 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)) 47))) -(((-669 |#1| |#2|) (-10 -7 (-15 -1645 ((-2 (|:| -3749 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2466 ((-2 (|:| -3749 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4000 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -3601 ((-2 (|:| |poly| |#2|) (|:| -3749 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1147 |#1|)) (T -669)) -((-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3749 (-385 *6)) (|:| |special| (-385 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-385 *6)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1147 *5)) (-5 *1 (-669 *5 *2)) (-4 *5 (-341)))) (-2466 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3749 (-396 *3)) (|:| |special| (-396 *3)))) (-5 *1 (-669 *5 *3)))) (-1645 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3749 *3) (|:| |special| *3))) (-5 *1 (-669 *5 *3))))) -(-10 -7 (-15 -1645 ((-2 (|:| -3749 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2466 ((-2 (|:| -3749 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4000 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -3601 ((-2 (|:| |poly| |#2|) (|:| -3749 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)))) -((-1638 ((|#7| (-591 |#5|) |#6|) NIL)) (-1257 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-670 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1257 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1638 (|#7| (-591 |#5|) |#6|))) (-788) (-734) (-734) (-975) (-975) (-882 |#4| |#2| |#1|) (-882 |#5| |#3| |#1|)) (T -670)) -((-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *9)) (-4 *9 (-975)) (-4 *5 (-788)) (-4 *6 (-734)) (-4 *8 (-975)) (-4 *2 (-882 *9 *7 *5)) (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-734)) (-4 *4 (-882 *8 *6 *5)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-975)) (-4 *9 (-975)) (-4 *5 (-788)) (-4 *6 (-734)) (-4 *2 (-882 *9 *7 *5)) (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-734)) (-4 *4 (-882 *8 *6 *5))))) -(-10 -7 (-15 -1257 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1638 (|#7| (-591 |#5|) |#6|))) -((-1257 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-671 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1257 (|#7| (-1 |#2| |#1|) |#6|))) (-788) (-788) (-734) (-734) (-975) (-882 |#5| |#3| |#1|) (-882 |#5| |#4| |#2|)) (T -671)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-788)) (-4 *6 (-788)) (-4 *7 (-734)) (-4 *9 (-975)) (-4 *2 (-882 *9 *8 *6)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-734)) (-4 *4 (-882 *9 *7 *5))))) -(-10 -7 (-15 -1257 (|#7| (-1 |#2| |#1|) |#6|))) -((-2542 (((-396 |#4|) |#4|) 41))) -(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2542 ((-396 |#4|) |#4|))) (-734) (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089))))) (-286) (-882 (-885 |#3|) |#1| |#2|)) (T -672)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089)))))) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-882 (-885 *6) *4 *5))))) -(-10 -7 (-15 -2542 ((-396 |#4|) |#4|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-798 |#1|)) $) NIL)) (-2514 (((-1085 $) $ (-798 |#1|)) NIL) (((-1085 |#2|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3641 (($ $) NIL (|has| |#2| (-517)))) (-3077 (((-108) $) NIL (|has| |#2| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-798 |#1|))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-1720 (($ $) NIL (|has| |#2| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-966 (-525)))) (((-3 (-798 |#1|) "failed") $) NIL)) (-3341 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-966 (-525)))) (((-798 |#1|) $) NIL)) (-1788 (($ $ $ (-798 |#1|)) NIL (|has| |#2| (-160)))) (-1575 (($ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL) (((-631 |#2|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#2| (-429))) (($ $ (-798 |#1|)) NIL (|has| |#2| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#2| (-842)))) (-2615 (($ $ |#2| (-497 (-798 |#1|)) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-798 |#1|) (-819 (-357))) (|has| |#2| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-798 |#1|) (-819 (-525))) (|has| |#2| (-819 (-525)))))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-1434 (($ (-1085 |#2|) (-798 |#1|)) NIL) (($ (-1085 $) (-798 |#1|)) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#2| (-497 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-798 |#1|)) NIL)) (-3629 (((-497 (-798 |#1|)) $) NIL) (((-712) $ (-798 |#1|)) NIL) (((-591 (-712)) $ (-591 (-798 |#1|))) NIL)) (-1923 (($ $ $) NIL (|has| |#2| (-788)))) (-3475 (($ $ $) NIL (|has| |#2| (-788)))) (-2508 (($ (-1 (-497 (-798 |#1|)) (-497 (-798 |#1|))) $) NIL)) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-3027 (((-3 (-798 |#1|) "failed") $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#2| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2621 (((-1072) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-798 |#1|)) (|:| -3987 (-712))) "failed") $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#2| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#2| (-842)))) (-3210 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-798 |#1|) |#2|) NIL) (($ $ (-591 (-798 |#1|)) (-591 |#2|)) NIL) (($ $ (-798 |#1|) $) NIL) (($ $ (-591 (-798 |#1|)) (-591 $)) NIL)) (-2858 (($ $ (-798 |#1|)) NIL (|has| |#2| (-160)))) (-2209 (($ $ (-798 |#1|)) NIL) (($ $ (-591 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-2743 (((-497 (-798 |#1|)) $) NIL) (((-712) $ (-798 |#1|)) NIL) (((-591 (-712)) $ (-591 (-798 |#1|))) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-798 |#1|) (-566 (-825 (-357)))) (|has| |#2| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-798 |#1|) (-566 (-825 (-525)))) (|has| |#2| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-798 |#1|) (-566 (-501))) (|has| |#2| (-566 (-501)))))) (-2827 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-798 |#1|)) NIL (|has| |#2| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-798 |#1|)) NIL) (($ $) NIL (|has| |#2| (-517))) (($ (-385 (-525))) NIL (-3150 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-966 (-385 (-525))))))) (-3109 (((-591 |#2|) $) NIL)) (-1263 ((|#2| $ (-497 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#2| (-842))) (|has| |#2| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#2| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-798 |#1|)) NIL) (($ $ (-591 (-798 |#1|))) NIL) (($ $ (-798 |#1|) (-712)) NIL) (($ $ (-591 (-798 |#1|)) (-591 (-712))) NIL)) (-4004 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#2| (-788)))) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-673 |#1| |#2|) (-882 |#2| (-497 (-798 |#1|)) (-798 |#1|)) (-591 (-1089)) (-975)) (T -673)) -NIL -(-882 |#2| (-497 (-798 |#1|)) (-798 |#1|)) -((-4034 (((-2 (|:| -3343 (-885 |#3|)) (|:| -2329 (-885 |#3|))) |#4|) 14)) (-1375 ((|#4| |#4| |#2|) 33)) (-1639 ((|#4| (-385 (-885 |#3|)) |#2|) 64)) (-1905 ((|#4| (-1085 (-885 |#3|)) |#2|) 77)) (-3001 ((|#4| (-1085 |#4|) |#2|) 51)) (-3171 ((|#4| |#4| |#2|) 54)) (-2542 (((-396 |#4|) |#4|) 40))) -(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4034 ((-2 (|:| -3343 (-885 |#3|)) (|:| -2329 (-885 |#3|))) |#4|)) (-15 -3171 (|#4| |#4| |#2|)) (-15 -3001 (|#4| (-1085 |#4|) |#2|)) (-15 -1375 (|#4| |#4| |#2|)) (-15 -1905 (|#4| (-1085 (-885 |#3|)) |#2|)) (-15 -1639 (|#4| (-385 (-885 |#3|)) |#2|)) (-15 -2542 ((-396 |#4|) |#4|))) (-734) (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)))) (-517) (-882 (-385 (-885 |#3|)) |#1| |#2|)) (T -674)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) (-4 *6 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-882 (-385 (-885 *6)) *4 *5)))) (-1639 (*1 *2 *3 *4) (-12 (-4 *6 (-517)) (-4 *2 (-882 *3 *5 *4)) (-5 *1 (-674 *5 *4 *6 *2)) (-5 *3 (-385 (-885 *6))) (-4 *5 (-734)) (-4 *4 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))))) (-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 (-885 *6))) (-4 *6 (-517)) (-4 *2 (-882 (-385 (-885 *6)) *5 *4)) (-5 *1 (-674 *5 *4 *6 *2)) (-4 *5 (-734)) (-4 *4 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))))) (-1375 (*1 *2 *2 *3) (-12 (-4 *4 (-734)) (-4 *3 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) (-4 *5 (-517)) (-5 *1 (-674 *4 *3 *5 *2)) (-4 *2 (-882 (-385 (-885 *5)) *4 *3)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-882 (-385 (-885 *6)) *5 *4)) (-5 *1 (-674 *5 *4 *6 *2)) (-4 *5 (-734)) (-4 *4 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) (-4 *6 (-517)))) (-3171 (*1 *2 *2 *3) (-12 (-4 *4 (-734)) (-4 *3 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) (-4 *5 (-517)) (-5 *1 (-674 *4 *3 *5 *2)) (-4 *2 (-882 (-385 (-885 *5)) *4 *3)))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) (-4 *6 (-517)) (-5 *2 (-2 (|:| -3343 (-885 *6)) (|:| -2329 (-885 *6)))) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-882 (-385 (-885 *6)) *4 *5))))) -(-10 -7 (-15 -4034 ((-2 (|:| -3343 (-885 |#3|)) (|:| -2329 (-885 |#3|))) |#4|)) (-15 -3171 (|#4| |#4| |#2|)) (-15 -3001 (|#4| (-1085 |#4|) |#2|)) (-15 -1375 (|#4| |#4| |#2|)) (-15 -1905 (|#4| (-1085 (-885 |#3|)) |#2|)) (-15 -1639 (|#4| (-385 (-885 |#3|)) |#2|)) (-15 -2542 ((-396 |#4|) |#4|))) -((-2542 (((-396 |#4|) |#4|) 52))) -(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2542 ((-396 |#4|) |#4|))) (-734) (-788) (-13 (-286) (-138)) (-882 (-385 |#3|) |#1| |#2|)) (T -675)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-882 (-385 *6) *4 *5))))) -(-10 -7 (-15 -2542 ((-396 |#4|) |#4|))) -((-1257 (((-677 |#2| |#3|) (-1 |#2| |#1|) (-677 |#1| |#3|)) 18))) -(((-676 |#1| |#2| |#3|) (-10 -7 (-15 -1257 ((-677 |#2| |#3|) (-1 |#2| |#1|) (-677 |#1| |#3|)))) (-975) (-975) (-668)) (T -676)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-677 *5 *7)) (-4 *5 (-975)) (-4 *6 (-975)) (-4 *7 (-668)) (-5 *2 (-677 *6 *7)) (-5 *1 (-676 *5 *6 *7))))) -(-10 -7 (-15 -1257 ((-677 |#2| |#3|) (-1 |#2| |#1|) (-677 |#1| |#3|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 28)) (-3581 (((-591 (-2 (|:| -2976 |#1|) (|:| -2990 |#2|))) $) 29)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2834 (((-712)) 20 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3341 ((|#2| $) NIL) ((|#1| $) NIL)) (-1575 (($ $) 79 (|has| |#2| (-788)))) (-1522 (((-3 $ "failed") $) 65)) (-1325 (($) 35 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) 55)) (-2987 (((-591 $) $) 39)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| |#2|) 16)) (-1257 (($ (-1 |#1| |#1|) $) 54)) (-1970 (((-854) $) 32 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-1548 ((|#2| $) 78 (|has| |#2| (-788)))) (-1556 ((|#1| $) 77 (|has| |#2| (-788)))) (-2621 (((-1072) $) NIL)) (-3229 (($ (-854)) 27 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 76) (($ (-525)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-591 (-2 (|:| -2976 |#1|) (|:| -2990 |#2|)))) 11)) (-3109 (((-591 |#1|) $) 41)) (-1263 ((|#1| $ |#2|) 88)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 12 T CONST)) (-1839 (($) 33 T CONST)) (-3944 (((-108) $ $) 80)) (-4047 (($ $) 47) (($ $ $) NIL)) (-4036 (($ $ $) 26)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))))) -(((-677 |#1| |#2|) (-13 (-975) (-966 |#2|) (-966 |#1|) (-10 -8 (-15 -1422 ($ |#1| |#2|)) (-15 -1263 (|#1| $ |#2|)) (-15 -2686 ($ (-591 (-2 (|:| -2976 |#1|) (|:| -2990 |#2|))))) (-15 -3581 ((-591 (-2 (|:| -2976 |#1|) (|:| -2990 |#2|))) $)) (-15 -1257 ($ (-1 |#1| |#1|) $)) (-15 -3802 ((-108) $)) (-15 -3109 ((-591 |#1|) $)) (-15 -2987 ((-591 $) $)) (-15 -3667 ((-712) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-788)) (PROGN (-15 -1548 (|#2| $)) (-15 -1556 (|#1| $)) (-15 -1575 ($ $))) |%noBranch|))) (-975) (-668)) (T -677)) -((-1422 (*1 *1 *2 *3) (-12 (-5 *1 (-677 *2 *3)) (-4 *2 (-975)) (-4 *3 (-668)))) (-1263 (*1 *2 *1 *3) (-12 (-4 *2 (-975)) (-5 *1 (-677 *2 *3)) (-4 *3 (-668)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-2 (|:| -2976 *3) (|:| -2990 *4)))) (-4 *3 (-975)) (-4 *4 (-668)) (-5 *1 (-677 *3 *4)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| -2976 *3) (|:| -2990 *4)))) (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) (-4 *4 (-668)))) (-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-677 *3 *4)) (-4 *4 (-668)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) (-4 *4 (-668)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) (-4 *4 (-668)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-591 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) (-4 *4 (-668)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) (-4 *4 (-668)))) (-1548 (*1 *2 *1) (-12 (-4 *2 (-668)) (-4 *2 (-788)) (-5 *1 (-677 *3 *2)) (-4 *3 (-975)))) (-1556 (*1 *2 *1) (-12 (-4 *2 (-975)) (-5 *1 (-677 *2 *3)) (-4 *3 (-788)) (-4 *3 (-668)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-677 *2 *3)) (-4 *3 (-788)) (-4 *2 (-975)) (-4 *3 (-668))))) -(-13 (-975) (-966 |#2|) (-966 |#1|) (-10 -8 (-15 -1422 ($ |#1| |#2|)) (-15 -1263 (|#1| $ |#2|)) (-15 -2686 ($ (-591 (-2 (|:| -2976 |#1|) (|:| -2990 |#2|))))) (-15 -3581 ((-591 (-2 (|:| -2976 |#1|) (|:| -2990 |#2|))) $)) (-15 -1257 ($ (-1 |#1| |#1|) $)) (-15 -3802 ((-108) $)) (-15 -3109 ((-591 |#1|) $)) (-15 -2987 ((-591 $) $)) (-15 -3667 ((-712) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-788)) (PROGN (-15 -1548 (|#2| $)) (-15 -1556 (|#1| $)) (-15 -1575 ($ $))) |%noBranch|))) -((-2673 (((-108) $ $) 19)) (-2141 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3772 (($ $ $) 72)) (-3218 (((-108) $ $) 73)) (-3727 (((-108) $ (-712)) 8)) (-1373 (($ (-591 |#1|)) 68) (($) 67)) (-1288 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-3945 (($ $) 62)) (-2908 (($ $) 58 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ |#1| $) 47 (|has| $ (-6 -4250))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4250)))) (-2537 (($ |#1| $) 57 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4250)))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22)) (-2318 (($ $ $) 69)) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40) (($ |#1| $ (-712)) 63)) (-2937 (((-1036) $) 21)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2592 (((-591 (-2 (|:| -1568 |#1|) (|:| -2960 (-712)))) $) 61)) (-1614 (($ $ |#1|) 71) (($ $ $) 70)) (-3583 (($) 49) (($ (-591 |#1|)) 48)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 59 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 50)) (-2686 (((-796) $) 18)) (-2892 (($ (-591 |#1|)) 66) (($) 65)) (-2453 (($ (-591 |#1|)) 42)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20)) (-3971 (((-108) $ $) 64)) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-678 |#1|) (-131) (-1018)) (T -678)) -NIL -(-13 (-636 |t#1|) (-1016 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-565 (-796)) . T) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-636 |#1|) . T) ((-1016 |#1|) . T) ((-1018) . T) ((-1125) . T)) -((-2673 (((-108) $ $) NIL)) (-2141 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3772 (($ $ $) 79)) (-3218 (((-108) $ $) 83)) (-3727 (((-108) $ (-712)) NIL)) (-1373 (($ (-591 |#1|)) 24) (($) 16)) (-1288 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3945 (($ $) 71)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3844 (($ |#1| $) 61 (|has| $ (-6 -4250))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4250))) (($ |#1| $ (-525)) 62) (($ (-1 (-108) |#1|) $ (-525)) 65)) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (($ |#1| $ (-525)) 67) (($ (-1 (-108) |#1|) $ (-525)) 68)) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-2916 (((-591 |#1|) $) 32 (|has| $ (-6 -4250)))) (-2868 (($) 14) (($ |#1|) 26) (($ (-591 |#1|)) 21)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) 38)) (-3956 (((-108) |#1| $) 58 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 75)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2318 (($ $ $) 77)) (-3949 ((|#1| $) 55)) (-1520 (($ |#1| $) 56) (($ |#1| $ (-712)) 72)) (-2937 (((-1036) $) NIL)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4166 ((|#1| $) 54)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 50)) (-3164 (($) 13)) (-2592 (((-591 (-2 (|:| -1568 |#1|) (|:| -2960 (-712)))) $) 48)) (-1614 (($ $ |#1|) NIL) (($ $ $) 78)) (-3583 (($) 15) (($ (-591 |#1|)) 23)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) 60 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) 66)) (-1300 (((-501) $) 36 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 20)) (-2686 (((-796) $) 44)) (-2892 (($ (-591 |#1|)) 25) (($) 17)) (-2453 (($ (-591 |#1|)) 22)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 81)) (-3971 (((-108) $ $) 82)) (-2028 (((-712) $) 59 (|has| $ (-6 -4250))))) -(((-679 |#1|) (-13 (-678 |#1|) (-10 -8 (-6 -4250) (-6 -4251) (-15 -2868 ($)) (-15 -2868 ($ |#1|)) (-15 -2868 ($ (-591 |#1|))) (-15 -4207 ((-591 |#1|) $)) (-15 -2537 ($ |#1| $ (-525))) (-15 -2537 ($ (-1 (-108) |#1|) $ (-525))) (-15 -3844 ($ |#1| $ (-525))) (-15 -3844 ($ (-1 (-108) |#1|) $ (-525))))) (-1018)) (T -679)) -((-2868 (*1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1018)))) (-2868 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1018)))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-679 *3)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-679 *3)) (-4 *3 (-1018)))) (-2537 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-679 *2)) (-4 *2 (-1018)))) (-2537 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1018)) (-5 *1 (-679 *4)))) (-3844 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-679 *2)) (-4 *2 (-1018)))) (-3844 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1018)) (-5 *1 (-679 *4))))) -(-13 (-678 |#1|) (-10 -8 (-6 -4250) (-6 -4251) (-15 -2868 ($)) (-15 -2868 ($ |#1|)) (-15 -2868 ($ (-591 |#1|))) (-15 -4207 ((-591 |#1|) $)) (-15 -2537 ($ |#1| $ (-525))) (-15 -2537 ($ (-1 (-108) |#1|) $ (-525))) (-15 -3844 ($ |#1| $ (-525))) (-15 -3844 ($ (-1 (-108) |#1|) $ (-525))))) -((-3564 (((-1176) (-1072)) 8))) -(((-680) (-10 -7 (-15 -3564 ((-1176) (-1072))))) (T -680)) -((-3564 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-680))))) -(-10 -7 (-15 -3564 ((-1176) (-1072)))) -((-1960 (((-591 |#1|) (-591 |#1|) (-591 |#1|)) 10))) -(((-681 |#1|) (-10 -7 (-15 -1960 ((-591 |#1|) (-591 |#1|) (-591 |#1|)))) (-788)) (T -681)) -((-1960 (*1 *2 *2 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-681 *3))))) -(-10 -7 (-15 -1960 ((-591 |#1|) (-591 |#1|) (-591 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1444 (((-591 |#2|) $) 136)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 129 (|has| |#1| (-517)))) (-3641 (($ $) 128 (|has| |#1| (-517)))) (-3077 (((-108) $) 126 (|has| |#1| (-517)))) (-4087 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 68 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) 19)) (-2551 (($ $) 67 (|has| |#1| (-37 (-385 (-525)))))) (-4058 (($ $) 84 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 69 (|has| |#1| (-37 (-385 (-525)))))) (-4109 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 70 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) 17 T CONST)) (-1575 (($ $) 120)) (-1522 (((-3 $ "failed") $) 34)) (-3298 (((-885 |#1|) $ (-712)) 98) (((-885 |#1|) $ (-712) (-712)) 97)) (-1795 (((-108) $) 137)) (-1417 (($) 95 (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-712) $ |#2|) 100) (((-712) $ |#2| (-712)) 99)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 66 (|has| |#1| (-37 (-385 (-525)))))) (-3802 (((-108) $) 118)) (-1422 (($ $ (-591 |#2|) (-591 (-497 |#2|))) 135) (($ $ |#2| (-497 |#2|)) 134) (($ |#1| (-497 |#2|)) 119) (($ $ |#2| (-712)) 102) (($ $ (-591 |#2|) (-591 (-712))) 101)) (-1257 (($ (-1 |#1| |#1|) $) 117)) (-2356 (($ $) 92 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) 115)) (-1556 ((|#1| $) 114)) (-2621 (((-1072) $) 9)) (-2452 (($ $ |#2|) 96 (|has| |#1| (-37 (-385 (-525)))))) (-2937 (((-1036) $) 10)) (-1618 (($ $ (-712)) 103)) (-3210 (((-3 $ "failed") $ $) 130 (|has| |#1| (-517)))) (-2288 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (($ $ |#2| $) 111) (($ $ (-591 |#2|) (-591 $)) 110) (($ $ (-591 (-273 $))) 109) (($ $ (-273 $)) 108) (($ $ $ $) 107) (($ $ (-591 $) (-591 $)) 106)) (-2209 (($ $ |#2|) 42) (($ $ (-591 |#2|)) 41) (($ $ |#2| (-712)) 40) (($ $ (-591 |#2|) (-591 (-712))) 39)) (-2743 (((-497 |#2|) $) 116)) (-4122 (($ $) 82 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 71 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 80 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) 138)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 133 (|has| |#1| (-160))) (($ $) 131 (|has| |#1| (-517))) (($ (-385 (-525))) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1263 ((|#1| $ (-497 |#2|)) 121) (($ $ |#2| (-712)) 105) (($ $ (-591 |#2|) (-591 (-712))) 104)) (-3751 (((-3 $ "failed") $) 132 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-4163 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) 127 (|has| |#1| (-517)))) (-4137 (($ $) 90 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 78 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 77 (|has| |#1| (-37 (-385 (-525)))))) (-1234 (($ $) 88 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 76 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 75 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 86 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 74 (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ |#2|) 38) (($ $ (-591 |#2|)) 37) (($ $ |#2| (-712)) 36) (($ $ (-591 |#2|) (-591 (-712))) 35)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 122 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ $) 94 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 65 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 125 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 124 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 113) (($ $ |#1|) 112))) -(((-682 |#1| |#2|) (-131) (-975) (-788)) (T -682)) -((-1263 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-682 *4 *2)) (-4 *4 (-975)) (-4 *2 (-788)))) (-1263 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 *5)) (-5 *3 (-591 (-712))) (-4 *1 (-682 *4 *5)) (-4 *4 (-975)) (-4 *5 (-788)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-682 *3 *4)) (-4 *3 (-975)) (-4 *4 (-788)))) (-1422 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-682 *4 *2)) (-4 *4 (-975)) (-4 *2 (-788)))) (-1422 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 *5)) (-5 *3 (-591 (-712))) (-4 *1 (-682 *4 *5)) (-4 *4 (-975)) (-4 *5 (-788)))) (-1676 (*1 *2 *1 *3) (-12 (-4 *1 (-682 *4 *3)) (-4 *4 (-975)) (-4 *3 (-788)) (-5 *2 (-712)))) (-1676 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-712)) (-4 *1 (-682 *4 *3)) (-4 *4 (-975)) (-4 *3 (-788)))) (-3298 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *1 (-682 *4 *5)) (-4 *4 (-975)) (-4 *5 (-788)) (-5 *2 (-885 *4)))) (-3298 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-712)) (-4 *1 (-682 *4 *5)) (-4 *4 (-975)) (-4 *5 (-788)) (-5 *2 (-885 *4)))) (-2452 (*1 *1 *1 *2) (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-975)) (-4 *2 (-788)) (-4 *3 (-37 (-385 (-525))))))) -(-13 (-833 |t#2|) (-904 |t#1| (-497 |t#2|) |t#2|) (-486 |t#2| $) (-288 $) (-10 -8 (-15 -1263 ($ $ |t#2| (-712))) (-15 -1263 ($ $ (-591 |t#2|) (-591 (-712)))) (-15 -1618 ($ $ (-712))) (-15 -1422 ($ $ |t#2| (-712))) (-15 -1422 ($ $ (-591 |t#2|) (-591 (-712)))) (-15 -1676 ((-712) $ |t#2|)) (-15 -1676 ((-712) $ |t#2| (-712))) (-15 -3298 ((-885 |t#1|) $ (-712))) (-15 -3298 ((-885 |t#1|) $ (-712) (-712))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $ |t#2|)) (-6 (-932)) (-6 (-1111))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-497 |#2|)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-269) |has| |#1| (-517)) ((-288 $) . T) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 |#2| $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-593 #1#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #1#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) |has| |#1| (-517)) ((-668) . T) ((-833 |#2|) . T) ((-904 |#1| #0# |#2|) . T) ((-932) |has| |#1| (-37 (-385 (-525)))) ((-981 #1#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1111) |has| |#1| (-37 (-385 (-525)))) ((-1114) |has| |#1| (-37 (-385 (-525))))) -((-2542 (((-396 (-1085 |#4|)) (-1085 |#4|)) 30) (((-396 |#4|) |#4|) 26))) -(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2542 ((-396 |#4|) |#4|)) (-15 -2542 ((-396 (-1085 |#4|)) (-1085 |#4|)))) (-788) (-734) (-13 (-286) (-138)) (-882 |#3| |#2| |#1|)) (T -683)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-882 *6 *5 *4)) (-5 *2 (-396 (-1085 *7))) (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-882 *6 *5 *4))))) -(-10 -7 (-15 -2542 ((-396 |#4|) |#4|)) (-15 -2542 ((-396 (-1085 |#4|)) (-1085 |#4|)))) -((-3711 (((-396 |#4|) |#4| |#2|) 118)) (-3700 (((-396 |#4|) |#4|) NIL)) (-3898 (((-396 (-1085 |#4|)) (-1085 |#4|)) 109) (((-396 |#4|) |#4|) 40)) (-2815 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-591 (-2 (|:| -2542 (-1085 |#4|)) (|:| -3987 (-525)))))) (-1085 |#4|) (-591 |#2|) (-591 (-591 |#3|))) 68)) (-1811 (((-1085 |#3|) (-1085 |#3|) (-525)) 136)) (-2567 (((-591 (-712)) (-1085 |#4|) (-591 |#2|) (-712)) 60)) (-3610 (((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-1085 |#3|) (-1085 |#3|) |#4| (-591 |#2|) (-591 (-712)) (-591 |#3|)) 64)) (-1597 (((-2 (|:| |upol| (-1085 |#3|)) (|:| |Lval| (-591 |#3|)) (|:| |Lfact| (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525))))) (|:| |ctpol| |#3|)) (-1085 |#4|) (-591 |#2|) (-591 (-591 |#3|))) 25)) (-2545 (((-2 (|:| -2217 (-1085 |#4|)) (|:| |polval| (-1085 |#3|))) (-1085 |#4|) (-1085 |#3|) (-525)) 56)) (-1636 (((-525) (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525))))) 133)) (-2105 ((|#4| (-525) (-396 |#4|)) 57)) (-2412 (((-108) (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525)))) (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525))))) NIL))) -(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3898 ((-396 |#4|) |#4|)) (-15 -3898 ((-396 (-1085 |#4|)) (-1085 |#4|))) (-15 -3700 ((-396 |#4|) |#4|)) (-15 -1636 ((-525) (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525)))))) (-15 -3711 ((-396 |#4|) |#4| |#2|)) (-15 -2545 ((-2 (|:| -2217 (-1085 |#4|)) (|:| |polval| (-1085 |#3|))) (-1085 |#4|) (-1085 |#3|) (-525))) (-15 -2815 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-591 (-2 (|:| -2542 (-1085 |#4|)) (|:| -3987 (-525)))))) (-1085 |#4|) (-591 |#2|) (-591 (-591 |#3|)))) (-15 -1597 ((-2 (|:| |upol| (-1085 |#3|)) (|:| |Lval| (-591 |#3|)) (|:| |Lfact| (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525))))) (|:| |ctpol| |#3|)) (-1085 |#4|) (-591 |#2|) (-591 (-591 |#3|)))) (-15 -2105 (|#4| (-525) (-396 |#4|))) (-15 -2412 ((-108) (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525)))) (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525)))))) (-15 -3610 ((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-1085 |#3|) (-1085 |#3|) |#4| (-591 |#2|) (-591 (-712)) (-591 |#3|))) (-15 -2567 ((-591 (-712)) (-1085 |#4|) (-591 |#2|) (-712))) (-15 -1811 ((-1085 |#3|) (-1085 |#3|) (-525)))) (-734) (-788) (-286) (-882 |#3| |#1| |#2|)) (T -684)) -((-1811 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-684 *4 *5 *6 *7)) (-4 *7 (-882 *6 *4 *5)))) (-2567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-591 *7)) (-4 *7 (-788)) (-4 *9 (-882 *8 *6 *7)) (-4 *6 (-734)) (-4 *8 (-286)) (-5 *2 (-591 (-712))) (-5 *1 (-684 *6 *7 *8 *9)) (-5 *5 (-712)))) (-3610 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1085 *11)) (-5 *6 (-591 *10)) (-5 *7 (-591 (-712))) (-5 *8 (-591 *11)) (-4 *10 (-788)) (-4 *11 (-286)) (-4 *9 (-734)) (-4 *5 (-882 *11 *9 *10)) (-5 *2 (-591 (-1085 *5))) (-5 *1 (-684 *9 *10 *11 *5)) (-5 *3 (-1085 *5)))) (-2412 (*1 *2 *3 *3) (-12 (-5 *3 (-591 (-2 (|:| -2542 (-1085 *6)) (|:| -3987 (-525))))) (-4 *6 (-286)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) (-5 *1 (-684 *4 *5 *6 *7)) (-4 *7 (-882 *6 *4 *5)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-882 *7 *5 *6)) (-5 *1 (-684 *5 *6 *7 *2)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-286)))) (-1597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-591 *7)) (-5 *5 (-591 (-591 *8))) (-4 *7 (-788)) (-4 *8 (-286)) (-4 *9 (-882 *8 *6 *7)) (-4 *6 (-734)) (-5 *2 (-2 (|:| |upol| (-1085 *8)) (|:| |Lval| (-591 *8)) (|:| |Lfact| (-591 (-2 (|:| -2542 (-1085 *8)) (|:| -3987 (-525))))) (|:| |ctpol| *8))) (-5 *1 (-684 *6 *7 *8 *9)))) (-2815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-591 *7)) (-5 *5 (-591 (-591 *8))) (-4 *7 (-788)) (-4 *8 (-286)) (-4 *6 (-734)) (-4 *9 (-882 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-591 (-2 (|:| -2542 (-1085 *9)) (|:| -3987 (-525))))))) (-5 *1 (-684 *6 *7 *8 *9)) (-5 *3 (-1085 *9)))) (-2545 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-525)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-286)) (-4 *9 (-882 *8 *6 *7)) (-5 *2 (-2 (|:| -2217 (-1085 *9)) (|:| |polval| (-1085 *8)))) (-5 *1 (-684 *6 *7 *8 *9)) (-5 *3 (-1085 *9)) (-5 *4 (-1085 *8)))) (-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-734)) (-4 *4 (-788)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-684 *5 *4 *6 *3)) (-4 *3 (-882 *6 *5 *4)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| -2542 (-1085 *6)) (|:| -3987 (-525))))) (-4 *6 (-286)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-525)) (-5 *1 (-684 *4 *5 *6 *7)) (-4 *7 (-882 *6 *4 *5)))) (-3700 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-882 *6 *4 *5)))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)) (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-396 (-1085 *7))) (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-882 *6 *4 *5))))) -(-10 -7 (-15 -3898 ((-396 |#4|) |#4|)) (-15 -3898 ((-396 (-1085 |#4|)) (-1085 |#4|))) (-15 -3700 ((-396 |#4|) |#4|)) (-15 -1636 ((-525) (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525)))))) (-15 -3711 ((-396 |#4|) |#4| |#2|)) (-15 -2545 ((-2 (|:| -2217 (-1085 |#4|)) (|:| |polval| (-1085 |#3|))) (-1085 |#4|) (-1085 |#3|) (-525))) (-15 -2815 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-591 (-2 (|:| -2542 (-1085 |#4|)) (|:| -3987 (-525)))))) (-1085 |#4|) (-591 |#2|) (-591 (-591 |#3|)))) (-15 -1597 ((-2 (|:| |upol| (-1085 |#3|)) (|:| |Lval| (-591 |#3|)) (|:| |Lfact| (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525))))) (|:| |ctpol| |#3|)) (-1085 |#4|) (-591 |#2|) (-591 (-591 |#3|)))) (-15 -2105 (|#4| (-525) (-396 |#4|))) (-15 -2412 ((-108) (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525)))) (-591 (-2 (|:| -2542 (-1085 |#3|)) (|:| -3987 (-525)))))) (-15 -3610 ((-3 (-591 (-1085 |#4|)) "failed") (-1085 |#4|) (-1085 |#3|) (-1085 |#3|) |#4| (-591 |#2|) (-591 (-712)) (-591 |#3|))) (-15 -2567 ((-591 (-712)) (-1085 |#4|) (-591 |#2|) (-712))) (-15 -1811 ((-1085 |#3|) (-1085 |#3|) (-525)))) -((-1447 (($ $ (-854)) 12))) -(((-685 |#1| |#2|) (-10 -8 (-15 -1447 (|#1| |#1| (-854)))) (-686 |#2|) (-160)) (T -685)) -NIL -(-10 -8 (-15 -1447 (|#1| |#1| (-854)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2681 (($ $ (-854)) 28)) (-1447 (($ $ (-854)) 33)) (-2832 (($ $ (-854)) 29)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-4027 (($ $ $) 25)) (-2686 (((-796) $) 11)) (-1894 (($ $ $ $) 26)) (-1971 (($ $ $) 24)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 30)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-686 |#1|) (-131) (-160)) (T -686)) -((-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-854)) (-4 *1 (-686 *3)) (-4 *3 (-160))))) -(-13 (-703) (-659 |t#1|) (-10 -8 (-15 -1447 ($ $ (-854))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-659 |#1|) . T) ((-662) . T) ((-703) . T) ((-981 |#1|) . T) ((-1018) . T)) -((-4002 (((-964) (-631 (-205)) (-525) (-108) (-525)) 25)) (-3059 (((-964) (-631 (-205)) (-525) (-108) (-525)) 24))) -(((-687) (-10 -7 (-15 -3059 ((-964) (-631 (-205)) (-525) (-108) (-525))) (-15 -4002 ((-964) (-631 (-205)) (-525) (-108) (-525))))) (T -687)) -((-4002 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-964)) (-5 *1 (-687)))) (-3059 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-964)) (-5 *1 (-687))))) -(-10 -7 (-15 -3059 ((-964) (-631 (-205)) (-525) (-108) (-525))) (-15 -4002 ((-964) (-631 (-205)) (-525) (-108) (-525)))) -((-3596 (((-964) (-525) (-525) (-525) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) 43)) (-3634 (((-964) (-525) (-525) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) 39)) (-1302 (((-964) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) 32))) -(((-688) (-10 -7 (-15 -1302 ((-964) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -3634 ((-964) (-525) (-525) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -3596 ((-964) (-525) (-525) (-525) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))) (T -688)) -((-3596 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-964)) (-5 *1 (-688)))) (-3634 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-964)) (-5 *1 (-688)))) (-1302 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *2 (-964)) (-5 *1 (-688))))) -(-10 -7 (-15 -1302 ((-964) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -3634 ((-964) (-525) (-525) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -3596 ((-964) (-525) (-525) (-525) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))))) -((-2771 (((-964) (-525) (-525) (-631 (-205)) (-525)) 34)) (-2973 (((-964) (-525) (-525) (-631 (-205)) (-525)) 33)) (-4017 (((-964) (-525) (-631 (-205)) (-525)) 32)) (-1271 (((-964) (-525) (-631 (-205)) (-525)) 31)) (-2093 (((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525)) 30)) (-2728 (((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525)) 29)) (-3490 (((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-525)) 28)) (-3989 (((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-525)) 27)) (-3156 (((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525)) 24)) (-1802 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-525)) 23)) (-3288 (((-964) (-525) (-631 (-205)) (-525)) 22)) (-2387 (((-964) (-525) (-631 (-205)) (-525)) 21))) -(((-689) (-10 -7 (-15 -2387 ((-964) (-525) (-631 (-205)) (-525))) (-15 -3288 ((-964) (-525) (-631 (-205)) (-525))) (-15 -1802 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3156 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3989 ((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3490 ((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2728 ((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2093 ((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -1271 ((-964) (-525) (-631 (-205)) (-525))) (-15 -4017 ((-964) (-525) (-631 (-205)) (-525))) (-15 -2973 ((-964) (-525) (-525) (-631 (-205)) (-525))) (-15 -2771 ((-964) (-525) (-525) (-631 (-205)) (-525))))) (T -689)) -((-2771 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-2973 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-4017 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-1271 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-2093 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1072)) (-5 *5 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-2728 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1072)) (-5 *5 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-3490 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1072)) (-5 *5 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-3989 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1072)) (-5 *5 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-3156 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-1802 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-3288 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689)))) (-2387 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-689))))) -(-10 -7 (-15 -2387 ((-964) (-525) (-631 (-205)) (-525))) (-15 -3288 ((-964) (-525) (-631 (-205)) (-525))) (-15 -1802 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3156 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3989 ((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3490 ((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2728 ((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2093 ((-964) (-525) (-525) (-1072) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -1271 ((-964) (-525) (-631 (-205)) (-525))) (-15 -4017 ((-964) (-525) (-631 (-205)) (-525))) (-15 -2973 ((-964) (-525) (-525) (-631 (-205)) (-525))) (-15 -2771 ((-964) (-525) (-525) (-631 (-205)) (-525)))) -((-3697 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-525) (-205) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 52)) (-3242 (((-964) (-631 (-205)) (-631 (-205)) (-525) (-525)) 51)) (-1837 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3445 (((-964) (-205) (-205) (-525) (-525) (-525) (-525)) 46)) (-1259 (((-964) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 45)) (-3834 (((-964) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 44)) (-1570 (((-964) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 43)) (-1452 (((-964) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 42)) (-2119 (((-964) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) 38)) (-2626 (((-964) (-205) (-205) (-525) (-631 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) 37)) (-3644 (((-964) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) 33)) (-1569 (((-964) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) 32))) -(((-690) (-10 -7 (-15 -1569 ((-964) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -3644 ((-964) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -2626 ((-964) (-205) (-205) (-525) (-631 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -2119 ((-964) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -1452 ((-964) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1570 ((-964) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3834 ((-964) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1259 ((-964) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3445 ((-964) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -1837 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -3242 ((-964) (-631 (-205)) (-631 (-205)) (-525) (-525))) (-15 -3697 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525) (-205) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))) (T -690)) -((-3697 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-964)) (-5 *1 (-690)))) (-3242 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-690)))) (-1837 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-964)) (-5 *1 (-690)))) (-3445 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-690)))) (-1259 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-964)) (-5 *1 (-690)))) (-3834 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-964)) (-5 *1 (-690)))) (-1570 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-964)) (-5 *1 (-690)))) (-1452 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-964)) (-5 *1 (-690)))) (-2119 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *2 (-964)) (-5 *1 (-690)))) (-2626 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-690)))) (-3644 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *2 (-964)) (-5 *1 (-690)))) (-1569 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *2 (-964)) (-5 *1 (-690))))) -(-10 -7 (-15 -1569 ((-964) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -3644 ((-964) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -2626 ((-964) (-205) (-205) (-525) (-631 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -2119 ((-964) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730))))) (-15 -1452 ((-964) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1570 ((-964) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3834 ((-964) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1259 ((-964) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3445 ((-964) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -1837 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -3242 ((-964) (-631 (-205)) (-631 (-205)) (-525) (-525))) (-15 -3697 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525) (-205) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))))) -((-1673 (((-964) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2177 (((-964) (-631 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366)) 69) (((-964) (-631 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3467 (((-964) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) 57)) (-1538 (((-964) (-631 (-205)) (-631 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 50)) (-1606 (((-964) (-205) (-525) (-525) (-1072) (-525) (-205) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1578 (((-964) (-205) (-525) (-525) (-205) (-1072) (-205) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 45)) (-3603 (((-964) (-205) (-525) (-525) (-205) (-205) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 42)) (-3291 (((-964) (-205) (-525) (-525) (-525) (-205) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 38))) -(((-691) (-10 -7 (-15 -3291 ((-964) (-205) (-525) (-525) (-525) (-205) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3603 ((-964) (-205) (-525) (-525) (-205) (-205) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -1578 ((-964) (-205) (-525) (-525) (-205) (-1072) (-205) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1606 ((-964) (-205) (-525) (-525) (-1072) (-525) (-205) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1538 ((-964) (-631 (-205)) (-631 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3467 ((-964) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -2177 ((-964) (-631 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -2177 ((-964) (-631 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -1673 ((-964) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -691)) -((-1673 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-691)))) (-2177 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-366)) (-5 *2 (-964)) (-5 *1 (-691)))) (-2177 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-964)) (-5 *1 (-691)))) (-3467 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-691)))) (-1538 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-964)) (-5 *1 (-691)))) (-1606 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-525)) (-5 *5 (-1072)) (-5 *6 (-631 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-691)))) (-1578 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-525)) (-5 *5 (-1072)) (-5 *6 (-631 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-691)))) (-3603 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-691)))) (-3291 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-691))))) -(-10 -7 (-15 -3291 ((-964) (-205) (-525) (-525) (-525) (-205) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3603 ((-964) (-205) (-525) (-525) (-205) (-205) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -1578 ((-964) (-205) (-525) (-525) (-205) (-1072) (-205) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1606 ((-964) (-205) (-525) (-525) (-1072) (-525) (-205) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1538 ((-964) (-631 (-205)) (-631 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3467 ((-964) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -2177 ((-964) (-631 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -2177 ((-964) (-631 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -1673 ((-964) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))))) -((-2472 (((-964) (-205) (-205) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-205) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-205) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-619 (-205)) (-525)) 45)) (-3292 (((-964) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1072) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) 41)) (-2344 (((-964) (-525) (-525) (-525) (-525) (-205) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525)) 23))) -(((-692) (-10 -7 (-15 -2344 ((-964) (-525) (-525) (-525) (-525) (-205) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3292 ((-964) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1072) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -2472 ((-964) (-205) (-205) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-205) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-205) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-619 (-205)) (-525))))) (T -692)) -((-2472 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-619 (-205))) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-692)))) (-3292 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1072)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-964)) (-5 *1 (-692)))) (-2344 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-692))))) -(-10 -7 (-15 -2344 ((-964) (-525) (-525) (-525) (-525) (-205) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3292 ((-964) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1072) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -2472 ((-964) (-205) (-205) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-205) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-205) (-525) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-619 (-205)) (-525)))) -((-3570 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-631 (-205)) (-205) (-205) (-525)) 35)) (-1495 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-205) (-205) (-525)) 34)) (-3874 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-631 (-205)) (-205) (-205) (-525)) 33)) (-3067 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525)) 29)) (-1780 (((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525)) 28)) (-4147 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-205) (-525)) 27)) (-2236 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-525)) 24)) (-3147 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-525)) 23)) (-3395 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-525)) 22)) (-2974 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-525) (-525) (-525)) 21))) -(((-693) (-10 -7 (-15 -2974 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525) (-525) (-525))) (-15 -3395 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3147 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-525))) (-15 -2236 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-525))) (-15 -4147 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-205) (-525))) (-15 -1780 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3067 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3874 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-631 (-205)) (-205) (-205) (-525))) (-15 -1495 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -3570 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-631 (-205)) (-205) (-205) (-525))))) (T -693)) -((-3570 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *2 (-964)) (-5 *1 (-693)))) (-1495 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *2 (-964)) (-5 *1 (-693)))) (-3874 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *6 (-205)) (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-693)))) (-3067 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-693)))) (-1780 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-693)))) (-4147 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *2 (-964)) (-5 *1 (-693)))) (-2236 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-693)))) (-3147 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-693)))) (-3395 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-693)))) (-2974 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-693))))) -(-10 -7 (-15 -2974 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525) (-525) (-525))) (-15 -3395 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3147 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-525))) (-15 -2236 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-525))) (-15 -4147 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-205) (-525))) (-15 -1780 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3067 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3874 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-631 (-205)) (-205) (-205) (-525))) (-15 -1495 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -3570 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-631 (-205)) (-205) (-205) (-525)))) -((-1215 (((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-525) (-525) (-525)) 45)) (-2220 (((-964) (-525) (-525) (-525) (-205) (-631 (-205)) (-631 (-205)) (-525)) 44)) (-3209 (((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-525)) 43)) (-1386 (((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525)) 42)) (-1323 (((-964) (-1072) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-525)) 41)) (-2450 (((-964) (-1072) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-525)) 40)) (-2281 (((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-525) (-525) (-525) (-205) (-631 (-205)) (-525)) 39)) (-2843 (((-964) (-1072) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-525))) 38)) (-1383 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-525)) 35)) (-2942 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525)) 34)) (-3647 (((-964) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525)) 33)) (-3397 (((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525)) 32)) (-1358 (((-964) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-205) (-525)) 31)) (-3082 (((-964) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-205) (-525) (-525) (-525)) 30)) (-1909 (((-964) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-525) (-525) (-525)) 29)) (-2813 (((-964) (-525) (-525) (-525) (-205) (-205) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-525) (-631 (-525)) (-525) (-525) (-525)) 28)) (-2842 (((-964) (-525) (-631 (-205)) (-205) (-525)) 24)) (-2470 (((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525)) 21))) -(((-694) (-10 -7 (-15 -2470 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2842 ((-964) (-525) (-631 (-205)) (-205) (-525))) (-15 -2813 ((-964) (-525) (-525) (-525) (-205) (-205) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-525) (-631 (-525)) (-525) (-525) (-525))) (-15 -1909 ((-964) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3082 ((-964) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -1358 ((-964) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-205) (-525))) (-15 -3397 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3647 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525))) (-15 -2942 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525))) (-15 -1383 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2843 ((-964) (-1072) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-525)))) (-15 -2281 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-525) (-525) (-525) (-205) (-631 (-205)) (-525))) (-15 -2450 ((-964) (-1072) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-525))) (-15 -1323 ((-964) (-1072) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -1386 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3209 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-525))) (-15 -2220 ((-964) (-525) (-525) (-525) (-205) (-631 (-205)) (-631 (-205)) (-525))) (-15 -1215 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-525) (-525) (-525))))) (T -694)) -((-1215 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-694)))) (-2220 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-694)))) (-3209 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-694)))) (-1386 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-694)))) (-1323 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-205)) (-5 *2 (-964)) (-5 *1 (-694)))) (-2450 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1072)) (-5 *5 (-631 (-205))) (-5 *6 (-205)) (-5 *7 (-631 (-525))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-694)))) (-2281 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *6 (-205)) (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-694)))) (-2843 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1072)) (-5 *5 (-631 (-205))) (-5 *6 (-205)) (-5 *7 (-631 (-525))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-694)))) (-1383 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-694)))) (-2942 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *2 (-964)) (-5 *1 (-694)))) (-3647 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *2 (-964)) (-5 *1 (-694)))) (-3397 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-694)))) (-1358 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-694)))) (-3082 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-694)))) (-1909 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-694)))) (-2813 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-631 (-205))) (-5 *6 (-631 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-694)))) (-2842 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) (-5 *2 (-964)) (-5 *1 (-694)))) (-2470 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-694))))) -(-10 -7 (-15 -2470 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2842 ((-964) (-525) (-631 (-205)) (-205) (-525))) (-15 -2813 ((-964) (-525) (-525) (-525) (-205) (-205) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-525) (-631 (-525)) (-525) (-525) (-525))) (-15 -1909 ((-964) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3082 ((-964) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -1358 ((-964) (-525) (-205) (-205) (-631 (-205)) (-525) (-525) (-205) (-525))) (-15 -3397 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3647 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525))) (-15 -2942 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525))) (-15 -1383 ((-964) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2843 ((-964) (-1072) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-525)))) (-15 -2281 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-525) (-525) (-525) (-205) (-631 (-205)) (-525))) (-15 -2450 ((-964) (-1072) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-525))) (-15 -1323 ((-964) (-1072) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -1386 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3209 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-525))) (-15 -2220 ((-964) (-525) (-525) (-525) (-205) (-631 (-205)) (-631 (-205)) (-525))) (-15 -1215 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525) (-631 (-205)) (-631 (-205)) (-525) (-525) (-525)))) -((-2787 (((-964) (-525) (-525) (-525) (-205) (-631 (-205)) (-525) (-631 (-205)) (-525)) 63)) (-2564 (((-964) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-631 (-525)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2407 (((-964) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-108) (-108) (-108) (-525) (-525) (-631 (-205)) (-631 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) 58)) (-3567 (((-964) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-108) (-525) (-525) (-631 (-205)) (-525)) 51)) (-1483 (((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2667 (((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1251 (((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2647 (((-964) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 38))) -(((-695) (-10 -7 (-15 -2647 ((-964) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -1251 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -2667 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -1483 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -3567 ((-964) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-108) (-525) (-525) (-631 (-205)) (-525))) (-15 -2407 ((-964) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-108) (-108) (-108) (-525) (-525) (-631 (-205)) (-631 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -2564 ((-964) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-631 (-525)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2787 ((-964) (-525) (-525) (-525) (-205) (-631 (-205)) (-525) (-631 (-205)) (-525))))) (T -695)) -((-2787 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-695)))) (-2564 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-631 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-631 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-695)))) (-2407 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-631 (-205))) (-5 *6 (-108)) (-5 *7 (-631 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-695)))) (-3567 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-108)) (-5 *2 (-964)) (-5 *1 (-695)))) (-1483 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-964)) (-5 *1 (-695)))) (-2667 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-964)) (-5 *1 (-695)))) (-1251 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-964)) (-5 *1 (-695)))) (-2647 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-631 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-695))))) -(-10 -7 (-15 -2647 ((-964) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -1251 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -2667 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -1483 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -3567 ((-964) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-108) (-525) (-525) (-631 (-205)) (-525))) (-15 -2407 ((-964) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-108) (-108) (-108) (-525) (-525) (-631 (-205)) (-631 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -2564 ((-964) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-631 (-525)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2787 ((-964) (-525) (-525) (-525) (-205) (-631 (-205)) (-525) (-631 (-205)) (-525)))) -((-1494 (((-964) (-1072) (-525) (-525) (-525) (-525) (-631 (-157 (-205))) (-631 (-157 (-205))) (-525)) 47)) (-3274 (((-964) (-1072) (-1072) (-525) (-525) (-631 (-157 (-205))) (-525) (-631 (-157 (-205))) (-525) (-525) (-631 (-157 (-205))) (-525)) 46)) (-3614 (((-964) (-525) (-525) (-525) (-631 (-157 (-205))) (-525)) 45)) (-1457 (((-964) (-1072) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525)) 40)) (-3652 (((-964) (-1072) (-1072) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-525) (-525) (-631 (-205)) (-525)) 39)) (-4119 (((-964) (-525) (-525) (-525) (-631 (-205)) (-525)) 36)) (-3780 (((-964) (-525) (-631 (-205)) (-525) (-631 (-525)) (-525)) 35)) (-1944 (((-964) (-525) (-525) (-525) (-525) (-591 (-108)) (-631 (-205)) (-631 (-525)) (-631 (-525)) (-205) (-205) (-525)) 34)) (-2418 (((-964) (-525) (-525) (-525) (-631 (-525)) (-631 (-525)) (-631 (-525)) (-631 (-525)) (-108) (-205) (-108) (-631 (-525)) (-631 (-205)) (-525)) 33)) (-1755 (((-964) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-591 (-108)) (-631 (-205)) (-631 (-525)) (-631 (-525)) (-525)) 32))) -(((-696) (-10 -7 (-15 -1755 ((-964) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-591 (-108)) (-631 (-205)) (-631 (-525)) (-631 (-525)) (-525))) (-15 -2418 ((-964) (-525) (-525) (-525) (-631 (-525)) (-631 (-525)) (-631 (-525)) (-631 (-525)) (-108) (-205) (-108) (-631 (-525)) (-631 (-205)) (-525))) (-15 -1944 ((-964) (-525) (-525) (-525) (-525) (-591 (-108)) (-631 (-205)) (-631 (-525)) (-631 (-525)) (-205) (-205) (-525))) (-15 -3780 ((-964) (-525) (-631 (-205)) (-525) (-631 (-525)) (-525))) (-15 -4119 ((-964) (-525) (-525) (-525) (-631 (-205)) (-525))) (-15 -3652 ((-964) (-1072) (-1072) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-525) (-525) (-631 (-205)) (-525))) (-15 -1457 ((-964) (-1072) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3614 ((-964) (-525) (-525) (-525) (-631 (-157 (-205))) (-525))) (-15 -3274 ((-964) (-1072) (-1072) (-525) (-525) (-631 (-157 (-205))) (-525) (-631 (-157 (-205))) (-525) (-525) (-631 (-157 (-205))) (-525))) (-15 -1494 ((-964) (-1072) (-525) (-525) (-525) (-525) (-631 (-157 (-205))) (-631 (-157 (-205))) (-525))))) (T -696)) -((-1494 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-157 (-205)))) (-5 *2 (-964)) (-5 *1 (-696)))) (-3274 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-157 (-205)))) (-5 *2 (-964)) (-5 *1 (-696)))) (-3614 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-157 (-205)))) (-5 *2 (-964)) (-5 *1 (-696)))) (-1457 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-696)))) (-3652 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-696)))) (-4119 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-696)))) (-3780 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-696)))) (-1944 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-591 (-108))) (-5 *5 (-631 (-205))) (-5 *6 (-631 (-525))) (-5 *7 (-205)) (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-696)))) (-2418 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-631 (-525))) (-5 *5 (-108)) (-5 *7 (-631 (-205))) (-5 *3 (-525)) (-5 *6 (-205)) (-5 *2 (-964)) (-5 *1 (-696)))) (-1755 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-591 (-108))) (-5 *7 (-631 (-205))) (-5 *8 (-631 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *2 (-964)) (-5 *1 (-696))))) -(-10 -7 (-15 -1755 ((-964) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-591 (-108)) (-631 (-205)) (-631 (-525)) (-631 (-525)) (-525))) (-15 -2418 ((-964) (-525) (-525) (-525) (-631 (-525)) (-631 (-525)) (-631 (-525)) (-631 (-525)) (-108) (-205) (-108) (-631 (-525)) (-631 (-205)) (-525))) (-15 -1944 ((-964) (-525) (-525) (-525) (-525) (-591 (-108)) (-631 (-205)) (-631 (-525)) (-631 (-525)) (-205) (-205) (-525))) (-15 -3780 ((-964) (-525) (-631 (-205)) (-525) (-631 (-525)) (-525))) (-15 -4119 ((-964) (-525) (-525) (-525) (-631 (-205)) (-525))) (-15 -3652 ((-964) (-1072) (-1072) (-525) (-525) (-631 (-205)) (-525) (-631 (-205)) (-525) (-525) (-631 (-205)) (-525))) (-15 -1457 ((-964) (-1072) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3614 ((-964) (-525) (-525) (-525) (-631 (-157 (-205))) (-525))) (-15 -3274 ((-964) (-1072) (-1072) (-525) (-525) (-631 (-157 (-205))) (-525) (-631 (-157 (-205))) (-525) (-525) (-631 (-157 (-205))) (-525))) (-15 -1494 ((-964) (-1072) (-525) (-525) (-525) (-525) (-631 (-157 (-205))) (-631 (-157 (-205))) (-525)))) -((-1589 (((-964) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-631 (-157 (-205))) (-631 (-157 (-205))) (-525)) 65)) (-2031 (((-964) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-631 (-205)) (-631 (-205)) (-525)) 60)) (-2796 (((-964) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366)) 56) (((-964) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) 55)) (-1463 (((-964) (-525) (-525) (-525) (-205) (-108) (-525) (-631 (-205)) (-631 (-205)) (-525)) 37)) (-3848 (((-964) (-525) (-525) (-205) (-205) (-525) (-525) (-631 (-205)) (-525)) 33)) (-2677 (((-964) (-631 (-205)) (-525) (-631 (-205)) (-525) (-525) (-525) (-525) (-525)) 30)) (-3602 (((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525)) 29)) (-3562 (((-964) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525)) 28)) (-2480 (((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525)) 27)) (-2997 (((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-525)) 26)) (-4040 (((-964) (-525) (-525) (-631 (-205)) (-525)) 25)) (-3841 (((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525)) 24)) (-4187 (((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525)) 23)) (-3684 (((-964) (-631 (-205)) (-525) (-525) (-525) (-525)) 22)) (-1552 (((-964) (-525) (-525) (-631 (-205)) (-525)) 21))) -(((-697) (-10 -7 (-15 -1552 ((-964) (-525) (-525) (-631 (-205)) (-525))) (-15 -3684 ((-964) (-631 (-205)) (-525) (-525) (-525) (-525))) (-15 -4187 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3841 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -4040 ((-964) (-525) (-525) (-631 (-205)) (-525))) (-15 -2997 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-525))) (-15 -2480 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3562 ((-964) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3602 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2677 ((-964) (-631 (-205)) (-525) (-631 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3848 ((-964) (-525) (-525) (-205) (-205) (-525) (-525) (-631 (-205)) (-525))) (-15 -1463 ((-964) (-525) (-525) (-525) (-205) (-108) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2796 ((-964) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -2796 ((-964) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -2031 ((-964) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -1589 ((-964) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-631 (-157 (-205))) (-631 (-157 (-205))) (-525))))) (T -697)) -((-1589 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-631 (-157 (-205)))) (-5 *2 (-964)) (-5 *1 (-697)))) (-2031 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-697)))) (-2796 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366)) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-697)))) (-2796 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-697)))) (-1463 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-631 (-205))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-697)))) (-3848 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-697)))) (-2677 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-697)))) (-3602 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-697)))) (-3562 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-697)))) (-2480 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-697)))) (-2997 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-697)))) (-4040 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-697)))) (-3841 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-697)))) (-4187 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-697)))) (-3684 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-697)))) (-1552 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-697))))) -(-10 -7 (-15 -1552 ((-964) (-525) (-525) (-631 (-205)) (-525))) (-15 -3684 ((-964) (-631 (-205)) (-525) (-525) (-525) (-525))) (-15 -4187 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3841 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -4040 ((-964) (-525) (-525) (-631 (-205)) (-525))) (-15 -2997 ((-964) (-525) (-525) (-525) (-525) (-631 (-205)) (-525))) (-15 -2480 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3562 ((-964) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3602 ((-964) (-525) (-525) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2677 ((-964) (-631 (-205)) (-525) (-631 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3848 ((-964) (-525) (-525) (-205) (-205) (-525) (-525) (-631 (-205)) (-525))) (-15 -1463 ((-964) (-525) (-525) (-525) (-205) (-108) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -2796 ((-964) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -2796 ((-964) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -2031 ((-964) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -1589 ((-964) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-631 (-157 (-205))) (-631 (-157 (-205))) (-525)))) -((-3180 (((-964) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) 61)) (-3921 (((-964) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-525)) (-525) (-631 (-205)) (-525) (-525) (-525) (-525)) 57)) (-3357 (((-964) (-525) (-631 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) 56)) (-3849 (((-964) (-525) (-525) (-631 (-205)) (-525) (-631 (-525)) (-525) (-631 (-525)) (-631 (-205)) (-631 (-525)) (-631 (-525)) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-525)) 37)) (-3918 (((-964) (-525) (-525) (-525) (-205) (-525) (-631 (-205)) (-631 (-205)) (-525)) 36)) (-2213 (((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525)) 33)) (-2034 (((-964) (-525) (-631 (-205)) (-525) (-631 (-525)) (-631 (-525)) (-525) (-631 (-525)) (-631 (-205))) 32)) (-3316 (((-964) (-631 (-205)) (-525) (-631 (-205)) (-525) (-525) (-525)) 28)) (-2587 (((-964) (-525) (-631 (-205)) (-525) (-631 (-205)) (-525)) 27)) (-1663 (((-964) (-525) (-631 (-205)) (-525) (-631 (-205)) (-525)) 26)) (-4104 (((-964) (-525) (-631 (-157 (-205))) (-525) (-525) (-525) (-525) (-631 (-157 (-205))) (-525)) 22))) -(((-698) (-10 -7 (-15 -4104 ((-964) (-525) (-631 (-157 (-205))) (-525) (-525) (-525) (-525) (-631 (-157 (-205))) (-525))) (-15 -1663 ((-964) (-525) (-631 (-205)) (-525) (-631 (-205)) (-525))) (-15 -2587 ((-964) (-525) (-631 (-205)) (-525) (-631 (-205)) (-525))) (-15 -3316 ((-964) (-631 (-205)) (-525) (-631 (-205)) (-525) (-525) (-525))) (-15 -2034 ((-964) (-525) (-631 (-205)) (-525) (-631 (-525)) (-631 (-525)) (-525) (-631 (-525)) (-631 (-205)))) (-15 -2213 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3918 ((-964) (-525) (-525) (-525) (-205) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3849 ((-964) (-525) (-525) (-631 (-205)) (-525) (-631 (-525)) (-525) (-631 (-525)) (-631 (-205)) (-631 (-525)) (-631 (-525)) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-525))) (-15 -3357 ((-964) (-525) (-631 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -3921 ((-964) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-525)) (-525) (-631 (-205)) (-525) (-525) (-525) (-525))) (-15 -3180 ((-964) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))) (T -698)) -((-3180 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-698)))) (-3921 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-698)))) (-3357 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-964)) (-5 *1 (-698)))) (-3849 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-698)))) (-3918 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-698)))) (-2213 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-698)))) (-2034 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-698)))) (-3316 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-698)))) (-2587 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-698)))) (-1663 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-698)))) (-4104 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-157 (-205)))) (-5 *2 (-964)) (-5 *1 (-698))))) -(-10 -7 (-15 -4104 ((-964) (-525) (-631 (-157 (-205))) (-525) (-525) (-525) (-525) (-631 (-157 (-205))) (-525))) (-15 -1663 ((-964) (-525) (-631 (-205)) (-525) (-631 (-205)) (-525))) (-15 -2587 ((-964) (-525) (-631 (-205)) (-525) (-631 (-205)) (-525))) (-15 -3316 ((-964) (-631 (-205)) (-525) (-631 (-205)) (-525) (-525) (-525))) (-15 -2034 ((-964) (-525) (-631 (-205)) (-525) (-631 (-525)) (-631 (-525)) (-525) (-631 (-525)) (-631 (-205)))) (-15 -2213 ((-964) (-525) (-525) (-631 (-205)) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3918 ((-964) (-525) (-525) (-525) (-205) (-525) (-631 (-205)) (-631 (-205)) (-525))) (-15 -3849 ((-964) (-525) (-525) (-631 (-205)) (-525) (-631 (-525)) (-525) (-631 (-525)) (-631 (-205)) (-631 (-525)) (-631 (-525)) (-631 (-205)) (-631 (-205)) (-631 (-525)) (-525))) (-15 -3357 ((-964) (-525) (-631 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -3921 ((-964) (-525) (-631 (-205)) (-525) (-631 (-205)) (-631 (-525)) (-525) (-631 (-205)) (-525) (-525) (-525) (-525))) (-15 -3180 ((-964) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-631 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))))) -((-3575 (((-964) (-1072) (-525) (-525) (-631 (-205)) (-525) (-525) (-631 (-205))) 29)) (-3152 (((-964) (-1072) (-525) (-525) (-631 (-205))) 28)) (-2854 (((-964) (-1072) (-525) (-525) (-631 (-205)) (-525) (-631 (-525)) (-525) (-631 (-205))) 27)) (-3361 (((-964) (-525) (-525) (-525) (-631 (-205))) 21))) -(((-699) (-10 -7 (-15 -3361 ((-964) (-525) (-525) (-525) (-631 (-205)))) (-15 -2854 ((-964) (-1072) (-525) (-525) (-631 (-205)) (-525) (-631 (-525)) (-525) (-631 (-205)))) (-15 -3152 ((-964) (-1072) (-525) (-525) (-631 (-205)))) (-15 -3575 ((-964) (-1072) (-525) (-525) (-631 (-205)) (-525) (-525) (-631 (-205)))))) (T -699)) -((-3575 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-699)))) (-3152 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-699)))) (-2854 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1072)) (-5 *5 (-631 (-205))) (-5 *6 (-631 (-525))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-699)))) (-3361 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) (-5 *1 (-699))))) -(-10 -7 (-15 -3361 ((-964) (-525) (-525) (-525) (-631 (-205)))) (-15 -2854 ((-964) (-1072) (-525) (-525) (-631 (-205)) (-525) (-631 (-525)) (-525) (-631 (-205)))) (-15 -3152 ((-964) (-1072) (-525) (-525) (-631 (-205)))) (-15 -3575 ((-964) (-1072) (-525) (-525) (-631 (-205)) (-525) (-525) (-631 (-205))))) -((-1732 (((-964) (-205) (-205) (-205) (-205) (-525)) 62)) (-2590 (((-964) (-205) (-205) (-205) (-525)) 61)) (-3833 (((-964) (-205) (-205) (-205) (-525)) 60)) (-1324 (((-964) (-205) (-205) (-525)) 59)) (-3839 (((-964) (-205) (-525)) 58)) (-1294 (((-964) (-205) (-525)) 57)) (-1243 (((-964) (-205) (-525)) 56)) (-1773 (((-964) (-205) (-525)) 55)) (-3687 (((-964) (-205) (-525)) 54)) (-2525 (((-964) (-205) (-525)) 53)) (-1886 (((-964) (-205) (-157 (-205)) (-525) (-1072) (-525)) 52)) (-1869 (((-964) (-205) (-157 (-205)) (-525) (-1072) (-525)) 51)) (-2582 (((-964) (-205) (-525)) 50)) (-3377 (((-964) (-205) (-525)) 49)) (-1647 (((-964) (-205) (-525)) 48)) (-1605 (((-964) (-205) (-525)) 47)) (-1230 (((-964) (-525) (-205) (-157 (-205)) (-525) (-1072) (-525)) 46)) (-1835 (((-964) (-1072) (-157 (-205)) (-1072) (-525)) 45)) (-3896 (((-964) (-1072) (-157 (-205)) (-1072) (-525)) 44)) (-2317 (((-964) (-205) (-157 (-205)) (-525) (-1072) (-525)) 43)) (-3202 (((-964) (-205) (-157 (-205)) (-525) (-1072) (-525)) 42)) (-2986 (((-964) (-205) (-525)) 39)) (-3926 (((-964) (-205) (-525)) 38)) (-1378 (((-964) (-205) (-525)) 37)) (-3334 (((-964) (-205) (-525)) 36)) (-3891 (((-964) (-205) (-525)) 35)) (-1697 (((-964) (-205) (-525)) 34)) (-1738 (((-964) (-205) (-525)) 33)) (-3501 (((-964) (-205) (-525)) 32)) (-1620 (((-964) (-205) (-525)) 31)) (-2929 (((-964) (-205) (-525)) 30)) (-3979 (((-964) (-205) (-205) (-205) (-525)) 29)) (-3248 (((-964) (-205) (-525)) 28)) (-2857 (((-964) (-205) (-525)) 27)) (-1225 (((-964) (-205) (-525)) 26)) (-3643 (((-964) (-205) (-525)) 25)) (-2897 (((-964) (-205) (-525)) 24)) (-1360 (((-964) (-157 (-205)) (-525)) 21))) -(((-700) (-10 -7 (-15 -1360 ((-964) (-157 (-205)) (-525))) (-15 -2897 ((-964) (-205) (-525))) (-15 -3643 ((-964) (-205) (-525))) (-15 -1225 ((-964) (-205) (-525))) (-15 -2857 ((-964) (-205) (-525))) (-15 -3248 ((-964) (-205) (-525))) (-15 -3979 ((-964) (-205) (-205) (-205) (-525))) (-15 -2929 ((-964) (-205) (-525))) (-15 -1620 ((-964) (-205) (-525))) (-15 -3501 ((-964) (-205) (-525))) (-15 -1738 ((-964) (-205) (-525))) (-15 -1697 ((-964) (-205) (-525))) (-15 -3891 ((-964) (-205) (-525))) (-15 -3334 ((-964) (-205) (-525))) (-15 -1378 ((-964) (-205) (-525))) (-15 -3926 ((-964) (-205) (-525))) (-15 -2986 ((-964) (-205) (-525))) (-15 -3202 ((-964) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -2317 ((-964) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -3896 ((-964) (-1072) (-157 (-205)) (-1072) (-525))) (-15 -1835 ((-964) (-1072) (-157 (-205)) (-1072) (-525))) (-15 -1230 ((-964) (-525) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -1605 ((-964) (-205) (-525))) (-15 -1647 ((-964) (-205) (-525))) (-15 -3377 ((-964) (-205) (-525))) (-15 -2582 ((-964) (-205) (-525))) (-15 -1869 ((-964) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -1886 ((-964) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -2525 ((-964) (-205) (-525))) (-15 -3687 ((-964) (-205) (-525))) (-15 -1773 ((-964) (-205) (-525))) (-15 -1243 ((-964) (-205) (-525))) (-15 -1294 ((-964) (-205) (-525))) (-15 -3839 ((-964) (-205) (-525))) (-15 -1324 ((-964) (-205) (-205) (-525))) (-15 -3833 ((-964) (-205) (-205) (-205) (-525))) (-15 -2590 ((-964) (-205) (-205) (-205) (-525))) (-15 -1732 ((-964) (-205) (-205) (-205) (-205) (-525))))) (T -700)) -((-1732 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-2590 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3833 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1324 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1294 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1886 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1072)) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1869 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1072)) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-700)))) (-2582 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3377 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1230 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-525)) (-5 *5 (-157 (-205))) (-5 *6 (-1072)) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1835 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1072)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3896 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1072)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-2317 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1072)) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3202 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1072)) (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-700)))) (-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3926 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1378 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1738 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3979 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3248 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1225 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700)))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(-10 -7 (-15 -1360 ((-964) (-157 (-205)) (-525))) (-15 -2897 ((-964) (-205) (-525))) (-15 -3643 ((-964) (-205) (-525))) (-15 -1225 ((-964) (-205) (-525))) (-15 -2857 ((-964) (-205) (-525))) (-15 -3248 ((-964) (-205) (-525))) (-15 -3979 ((-964) (-205) (-205) (-205) (-525))) (-15 -2929 ((-964) (-205) (-525))) (-15 -1620 ((-964) (-205) (-525))) (-15 -3501 ((-964) (-205) (-525))) (-15 -1738 ((-964) (-205) (-525))) (-15 -1697 ((-964) (-205) (-525))) (-15 -3891 ((-964) (-205) (-525))) (-15 -3334 ((-964) (-205) (-525))) (-15 -1378 ((-964) (-205) (-525))) (-15 -3926 ((-964) (-205) (-525))) (-15 -2986 ((-964) (-205) (-525))) (-15 -3202 ((-964) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -2317 ((-964) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -3896 ((-964) (-1072) (-157 (-205)) (-1072) (-525))) (-15 -1835 ((-964) (-1072) (-157 (-205)) (-1072) (-525))) (-15 -1230 ((-964) (-525) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -1605 ((-964) (-205) (-525))) (-15 -1647 ((-964) (-205) (-525))) (-15 -3377 ((-964) (-205) (-525))) (-15 -2582 ((-964) (-205) (-525))) (-15 -1869 ((-964) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -1886 ((-964) (-205) (-157 (-205)) (-525) (-1072) (-525))) (-15 -2525 ((-964) (-205) (-525))) (-15 -3687 ((-964) (-205) (-525))) (-15 -1773 ((-964) (-205) (-525))) (-15 -1243 ((-964) (-205) (-525))) (-15 -1294 ((-964) (-205) (-525))) (-15 -3839 ((-964) (-205) (-525))) (-15 -1324 ((-964) (-205) (-205) (-525))) (-15 -3833 ((-964) (-205) (-205) (-205) (-525))) (-15 -2590 ((-964) (-205) (-205) (-205) (-525))) (-15 -1732 ((-964) (-205) (-205) (-205) (-205) (-525)))) -((-2415 (((-1176)) 18)) (-4014 (((-1072)) 22)) (-1757 (((-1072)) 21)) (-2109 (((-1022) (-1089) (-631 (-525))) 37) (((-1022) (-1089) (-631 (-205))) 32)) (-3117 (((-108)) 16)) (-1916 (((-1072) (-1072)) 25))) -(((-701) (-10 -7 (-15 -1757 ((-1072))) (-15 -4014 ((-1072))) (-15 -1916 ((-1072) (-1072))) (-15 -2109 ((-1022) (-1089) (-631 (-205)))) (-15 -2109 ((-1022) (-1089) (-631 (-525)))) (-15 -3117 ((-108))) (-15 -2415 ((-1176))))) (T -701)) -((-2415 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-701)))) (-3117 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-701)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-631 (-525))) (-5 *2 (-1022)) (-5 *1 (-701)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-631 (-205))) (-5 *2 (-1022)) (-5 *1 (-701)))) (-1916 (*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-701)))) (-4014 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-701)))) (-1757 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-701))))) -(-10 -7 (-15 -1757 ((-1072))) (-15 -4014 ((-1072))) (-15 -1916 ((-1072) (-1072))) (-15 -2109 ((-1022) (-1089) (-631 (-205)))) (-15 -2109 ((-1022) (-1089) (-631 (-525)))) (-15 -3117 ((-108))) (-15 -2415 ((-1176)))) -((-4027 (($ $ $) 10)) (-1894 (($ $ $ $) 9)) (-1971 (($ $ $) 12))) -(((-702 |#1|) (-10 -8 (-15 -1971 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -1894 (|#1| |#1| |#1| |#1|))) (-703)) (T -702)) -NIL -(-10 -8 (-15 -1971 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -1894 (|#1| |#1| |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2681 (($ $ (-854)) 28)) (-2832 (($ $ (-854)) 29)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-4027 (($ $ $) 25)) (-2686 (((-796) $) 11)) (-1894 (($ $ $ $) 26)) (-1971 (($ $ $) 24)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 30)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 27))) -(((-703) (-131)) (T -703)) -((-1894 (*1 *1 *1 *1 *1) (-4 *1 (-703))) (-4027 (*1 *1 *1 *1) (-4 *1 (-703))) (-1971 (*1 *1 *1 *1) (-4 *1 (-703)))) -(-13 (-21) (-662) (-10 -8 (-15 -1894 ($ $ $ $)) (-15 -4027 ($ $ $)) (-15 -1971 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-662) . T) ((-1018) . T)) -((-2686 (((-796) $) NIL) (($ (-525)) 10))) -(((-704 |#1|) (-10 -8 (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) (-705)) (T -704)) -NIL -(-10 -8 (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2397 (((-3 $ "failed") $) 40)) (-2681 (($ $ (-854)) 28) (($ $ (-712)) 35)) (-1522 (((-3 $ "failed") $) 38)) (-3865 (((-108) $) 34)) (-3917 (((-3 $ "failed") $) 39)) (-2832 (($ $ (-854)) 29) (($ $ (-712)) 36)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-4027 (($ $ $) 25)) (-2686 (((-796) $) 11) (($ (-525)) 31)) (-3425 (((-712)) 32)) (-1894 (($ $ $ $) 26)) (-1971 (($ $ $) 24)) (-1830 (($) 18 T CONST)) (-1839 (($) 33 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 30) (($ $ (-712)) 37)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 27))) -(((-705) (-131)) (T -705)) -((-3425 (*1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-712)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-705))))) -(-13 (-703) (-664) (-10 -8 (-15 -3425 ((-712))) (-15 -2686 ($ (-525))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-662) . T) ((-664) . T) ((-703) . T) ((-1018) . T)) -((-1854 (((-591 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 (-157 |#1|)))))) (-631 (-157 (-385 (-525)))) |#1|) 33)) (-2871 (((-591 (-157 |#1|)) (-631 (-157 (-385 (-525)))) |#1|) 23)) (-2173 (((-885 (-157 (-385 (-525)))) (-631 (-157 (-385 (-525)))) (-1089)) 20) (((-885 (-157 (-385 (-525)))) (-631 (-157 (-385 (-525))))) 19))) -(((-706 |#1|) (-10 -7 (-15 -2173 ((-885 (-157 (-385 (-525)))) (-631 (-157 (-385 (-525)))))) (-15 -2173 ((-885 (-157 (-385 (-525)))) (-631 (-157 (-385 (-525)))) (-1089))) (-15 -2871 ((-591 (-157 |#1|)) (-631 (-157 (-385 (-525)))) |#1|)) (-15 -1854 ((-591 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 (-157 |#1|)))))) (-631 (-157 (-385 (-525)))) |#1|))) (-13 (-341) (-786))) (T -706)) -((-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-157 (-385 (-525))))) (-5 *2 (-591 (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 (-157 *4))))))) (-5 *1 (-706 *4)) (-4 *4 (-13 (-341) (-786))))) (-2871 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-157 (-385 (-525))))) (-5 *2 (-591 (-157 *4))) (-5 *1 (-706 *4)) (-4 *4 (-13 (-341) (-786))))) (-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-157 (-385 (-525))))) (-5 *4 (-1089)) (-5 *2 (-885 (-157 (-385 (-525))))) (-5 *1 (-706 *5)) (-4 *5 (-13 (-341) (-786))))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-631 (-157 (-385 (-525))))) (-5 *2 (-885 (-157 (-385 (-525))))) (-5 *1 (-706 *4)) (-4 *4 (-13 (-341) (-786)))))) -(-10 -7 (-15 -2173 ((-885 (-157 (-385 (-525)))) (-631 (-157 (-385 (-525)))))) (-15 -2173 ((-885 (-157 (-385 (-525)))) (-631 (-157 (-385 (-525)))) (-1089))) (-15 -2871 ((-591 (-157 |#1|)) (-631 (-157 (-385 (-525)))) |#1|)) (-15 -1854 ((-591 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 (-157 |#1|)))))) (-631 (-157 (-385 (-525)))) |#1|))) -((-1217 (((-161 (-525)) |#1|) 25))) -(((-707 |#1|) (-10 -7 (-15 -1217 ((-161 (-525)) |#1|))) (-382)) (T -707)) -((-1217 (*1 *2 *3) (-12 (-5 *2 (-161 (-525))) (-5 *1 (-707 *3)) (-4 *3 (-382))))) -(-10 -7 (-15 -1217 ((-161 (-525)) |#1|))) -((-3327 ((|#1| |#1| |#1|) 24)) (-3359 ((|#1| |#1| |#1|) 23)) (-2561 ((|#1| |#1| |#1|) 32)) (-2748 ((|#1| |#1| |#1|) 28)) (-3893 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2963 (((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|) 22))) -(((-708 |#1| |#2|) (-10 -7 (-15 -2963 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1|)) (-15 -3893 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|))) (-650 |#2|) (-341)) (T -708)) -((-2561 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) (-2748 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) (-3893 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) (-3327 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) (-3359 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) (-2963 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-708 *3 *4)) (-4 *3 (-650 *4))))) -(-10 -7 (-15 -2963 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1|)) (-15 -3893 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|))) -((-3662 (((-2 (|:| -3612 (-631 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-631 (-525)))) (-525)) 59)) (-2773 (((-2 (|:| -3612 (-631 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-631 (-525))))) 57)) (-2858 (((-525)) 70))) -(((-709 |#1| |#2|) (-10 -7 (-15 -2858 ((-525))) (-15 -2773 ((-2 (|:| -3612 (-631 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-631 (-525)))))) (-15 -3662 ((-2 (|:| -3612 (-631 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-631 (-525)))) (-525)))) (-1147 (-525)) (-387 (-525) |#1|)) (T -709)) -((-3662 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1147 *3)) (-5 *2 (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-709 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2773 (*1 *2) (-12 (-4 *3 (-1147 (-525))) (-5 *2 (-2 (|:| -3612 (-631 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-631 (-525))))) (-5 *1 (-709 *3 *4)) (-4 *4 (-387 (-525) *3)))) (-2858 (*1 *2) (-12 (-4 *3 (-1147 *2)) (-5 *2 (-525)) (-5 *1 (-709 *3 *4)) (-4 *4 (-387 *2 *3))))) -(-10 -7 (-15 -2858 ((-525))) (-15 -2773 ((-2 (|:| -3612 (-631 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-631 (-525)))))) (-15 -3662 ((-2 (|:| -3612 (-631 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-631 (-525)))) (-525)))) -((-2673 (((-108) $ $) NIL)) (-3341 (((-3 (|:| |nia| (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $) 21)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 20) (($ (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) 18)) (-3944 (((-108) $ $) NIL))) -(((-710) (-13 (-1018) (-10 -8 (-15 -2686 ($ (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2686 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2686 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -2686 ((-796) $)) (-15 -3341 ((-3 (|:| |nia| (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))) (T -710)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-710)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-710)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-710)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-710)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-710))))) -(-13 (-1018) (-10 -8 (-15 -2686 ($ (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2686 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2686 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -2686 ((-796) $)) (-15 -3341 ((-3 (|:| |nia| (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $)))) -((-2910 (((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|))) 18) (((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|)) (-591 (-1089))) 17)) (-2751 (((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|))) 20) (((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|)) (-591 (-1089))) 19))) -(((-711 |#1|) (-10 -7 (-15 -2910 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|)) (-591 (-1089)))) (-15 -2910 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|)))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|)) (-591 (-1089)))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|))))) (-517)) (T -711)) -((-2751 (*1 *2 *3) (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *4)))))) (-5 *1 (-711 *4)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-591 (-1089))) (-4 *5 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *5)))))) (-5 *1 (-711 *5)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *4)))))) (-5 *1 (-711 *4)))) (-2910 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-591 (-1089))) (-4 *5 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *5)))))) (-5 *1 (-711 *5))))) -(-10 -7 (-15 -2910 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|)) (-591 (-1089)))) (-15 -2910 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|)))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|)) (-591 (-1089)))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-885 |#1|))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3343 (($ $ $) 8)) (-3332 (((-3 $ "failed") $ $) 11)) (-3423 (($ $ (-525)) 9)) (-2055 (($) NIL T CONST)) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($ $) NIL)) (-3239 (($ $ $) NIL)) (-3865 (((-108) $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2124 (($ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2686 (((-796) $) NIL)) (-1401 (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (* (($ (-712) $) NIL) (($ (-854) $) NIL) (($ $ $) NIL))) -(((-712) (-13 (-734) (-668) (-10 -8 (-15 -3239 ($ $ $)) (-15 -3265 ($ $ $)) (-15 -2124 ($ $ $)) (-15 -3576 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -3210 ((-3 $ "failed") $ $)) (-15 -3423 ($ $ (-525))) (-15 -1325 ($ $)) (-6 (-4252 "*"))))) (T -712)) -((-3239 (*1 *1 *1 *1) (-5 *1 (-712))) (-3265 (*1 *1 *1 *1) (-5 *1 (-712))) (-2124 (*1 *1 *1 *1) (-5 *1 (-712))) (-3576 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2746 (-712)) (|:| -2449 (-712)))) (-5 *1 (-712)))) (-3210 (*1 *1 *1 *1) (|partial| -5 *1 (-712))) (-3423 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-712)))) (-1325 (*1 *1 *1) (-5 *1 (-712)))) -(-13 (-734) (-668) (-10 -8 (-15 -3239 ($ $ $)) (-15 -3265 ($ $ $)) (-15 -2124 ($ $ $)) (-15 -3576 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -3210 ((-3 $ "failed") $ $)) (-15 -3423 ($ $ (-525))) (-15 -1325 ($ $)) (-6 (-4252 "*")))) -((-2751 (((-3 |#2| "failed") |#2| |#2| (-110) (-1089)) 35))) -(((-713 |#1| |#2|) (-10 -7 (-15 -2751 ((-3 |#2| "failed") |#2| |#2| (-110) (-1089)))) (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138)) (-13 (-29 |#1|) (-1111) (-891))) (T -713)) -((-2751 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1089)) (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *1 (-713 *5 *2)) (-4 *2 (-13 (-29 *5) (-1111) (-891)))))) -(-10 -7 (-15 -2751 ((-3 |#2| "failed") |#2| |#2| (-110) (-1089)))) -((-2686 (((-715) |#1|) 8))) -(((-714 |#1|) (-10 -7 (-15 -2686 ((-715) |#1|))) (-1125)) (T -714)) -((-2686 (*1 *2 *3) (-12 (-5 *2 (-715)) (-5 *1 (-714 *3)) (-4 *3 (-1125))))) -(-10 -7 (-15 -2686 ((-715) |#1|))) -((-2673 (((-108) $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 7)) (-3944 (((-108) $ $) 9))) -(((-715) (-1018)) (T -715)) -NIL -(-1018) -((-1525 ((|#2| |#4|) 35))) -(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1525 (|#2| |#4|))) (-429) (-1147 |#1|) (-666 |#1| |#2|) (-1147 |#3|)) (T -716)) -((-1525 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-666 *4 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-716 *4 *2 *5 *3)) (-4 *3 (-1147 *5))))) -(-10 -7 (-15 -1525 (|#2| |#4|))) -((-1522 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1264 (((-1176) (-1072) (-1072) |#4| |#5|) 33)) (-2401 ((|#4| |#4| |#5|) 73)) (-1297 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#5|) 77)) (-1573 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|) 16))) -(((-717 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1522 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2401 (|#4| |#4| |#5|)) (-15 -1297 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -1264 ((-1176) (-1072) (-1072) |#4| |#5|)) (-15 -1573 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|) (-994 |#1| |#2| |#3| |#4|)) (T -717)) -((-1573 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) (-5 *1 (-717 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-1264 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1072)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *4 (-989 *6 *7 *8)) (-5 *2 (-1176)) (-5 *1 (-717 *6 *7 *8 *4 *5)) (-4 *5 (-994 *6 *7 *8 *4)))) (-1297 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-717 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-2401 (*1 *2 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *2 (-989 *4 *5 *6)) (-5 *1 (-717 *4 *5 *6 *2 *3)) (-4 *3 (-994 *4 *5 *6 *2)))) (-1522 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-717 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(-10 -7 (-15 -1522 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2401 (|#4| |#4| |#5|)) (-15 -1297 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -1264 ((-1176) (-1072) (-1072) |#4| |#5|)) (-15 -1573 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|))) -((-4174 (((-3 (-1085 (-1085 |#1|)) "failed") |#4|) 43)) (-4077 (((-591 |#4|) |#4|) 15)) (-3861 ((|#4| |#4|) 11))) -(((-718 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4077 ((-591 |#4|) |#4|)) (-15 -4174 ((-3 (-1085 (-1085 |#1|)) "failed") |#4|)) (-15 -3861 (|#4| |#4|))) (-327) (-307 |#1|) (-1147 |#2|) (-1147 |#3|) (-854)) (T -718)) -((-3861 (*1 *2 *2) (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1147 *4)) (-5 *1 (-718 *3 *4 *5 *2 *6)) (-4 *2 (-1147 *5)) (-14 *6 (-854)))) (-4174 (*1 *2 *3) (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1147 *5)) (-5 *2 (-1085 (-1085 *4))) (-5 *1 (-718 *4 *5 *6 *3 *7)) (-4 *3 (-1147 *6)) (-14 *7 (-854)))) (-4077 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1147 *5)) (-5 *2 (-591 *3)) (-5 *1 (-718 *4 *5 *6 *3 *7)) (-4 *3 (-1147 *6)) (-14 *7 (-854))))) -(-10 -7 (-15 -4077 ((-591 |#4|) |#4|)) (-15 -4174 ((-3 (-1085 (-1085 |#1|)) "failed") |#4|)) (-15 -3861 (|#4| |#4|))) -((-2408 (((-2 (|:| |deter| (-591 (-1085 |#5|))) (|:| |dterm| (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-591 |#1|)) (|:| |nlead| (-591 |#5|))) (-1085 |#5|) (-591 |#1|) (-591 |#5|)) 54)) (-3771 (((-591 (-712)) |#1|) 13))) -(((-719 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2408 ((-2 (|:| |deter| (-591 (-1085 |#5|))) (|:| |dterm| (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-591 |#1|)) (|:| |nlead| (-591 |#5|))) (-1085 |#5|) (-591 |#1|) (-591 |#5|))) (-15 -3771 ((-591 (-712)) |#1|))) (-1147 |#4|) (-734) (-788) (-286) (-882 |#4| |#2| |#3|)) (T -719)) -((-3771 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)) (-5 *2 (-591 (-712))) (-5 *1 (-719 *3 *4 *5 *6 *7)) (-4 *3 (-1147 *6)) (-4 *7 (-882 *6 *4 *5)))) (-2408 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1147 *9)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *9 (-286)) (-4 *10 (-882 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-591 (-1085 *10))) (|:| |dterm| (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| *10))))) (|:| |nfacts| (-591 *6)) (|:| |nlead| (-591 *10)))) (-5 *1 (-719 *6 *7 *8 *9 *10)) (-5 *3 (-1085 *10)) (-5 *4 (-591 *6)) (-5 *5 (-591 *10))))) -(-10 -7 (-15 -2408 ((-2 (|:| |deter| (-591 (-1085 |#5|))) (|:| |dterm| (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-591 |#1|)) (|:| |nlead| (-591 |#5|))) (-1085 |#5|) (-591 |#1|) (-591 |#5|))) (-15 -3771 ((-591 (-712)) |#1|))) -((-2943 (((-591 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 |#1|))))) (-631 (-385 (-525))) |#1|) 31)) (-1484 (((-591 |#1|) (-631 (-385 (-525))) |#1|) 21)) (-2173 (((-885 (-385 (-525))) (-631 (-385 (-525))) (-1089)) 18) (((-885 (-385 (-525))) (-631 (-385 (-525)))) 17))) -(((-720 |#1|) (-10 -7 (-15 -2173 ((-885 (-385 (-525))) (-631 (-385 (-525))))) (-15 -2173 ((-885 (-385 (-525))) (-631 (-385 (-525))) (-1089))) (-15 -1484 ((-591 |#1|) (-631 (-385 (-525))) |#1|)) (-15 -2943 ((-591 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 |#1|))))) (-631 (-385 (-525))) |#1|))) (-13 (-341) (-786))) (T -720)) -((-2943 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-385 (-525)))) (-5 *2 (-591 (-2 (|:| |outval| *4) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 *4)))))) (-5 *1 (-720 *4)) (-4 *4 (-13 (-341) (-786))))) (-1484 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-385 (-525)))) (-5 *2 (-591 *4)) (-5 *1 (-720 *4)) (-4 *4 (-13 (-341) (-786))))) (-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-385 (-525)))) (-5 *4 (-1089)) (-5 *2 (-885 (-385 (-525)))) (-5 *1 (-720 *5)) (-4 *5 (-13 (-341) (-786))))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-631 (-385 (-525)))) (-5 *2 (-885 (-385 (-525)))) (-5 *1 (-720 *4)) (-4 *4 (-13 (-341) (-786)))))) -(-10 -7 (-15 -2173 ((-885 (-385 (-525))) (-631 (-385 (-525))))) (-15 -2173 ((-885 (-385 (-525))) (-631 (-385 (-525))) (-1089))) (-15 -1484 ((-591 |#1|) (-631 (-385 (-525))) |#1|)) (-15 -2943 ((-591 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-591 (-631 |#1|))))) (-631 (-385 (-525))) |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 34)) (-1444 (((-591 |#2|) $) NIL)) (-2514 (((-1085 $) $ |#2|) NIL) (((-1085 |#1|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 |#2|)) NIL)) (-3856 (($ $) 28)) (-1843 (((-108) $ $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2584 (($ $ $) 93 (|has| |#1| (-517)))) (-3842 (((-591 $) $ $) 106 (|has| |#1| (-517)))) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1720 (($ $) NIL (|has| |#1| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-885 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-566 (-1089))))) (((-3 $ "failed") (-885 (-525))) NIL (-3150 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-566 (-1089))) (-3389 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-566 (-1089)))))) (((-3 $ "failed") (-885 |#1|)) NIL (-3150 (-12 (|has| |#2| (-566 (-1089))) (-3389 (|has| |#1| (-37 (-385 (-525))))) (-3389 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-566 (-1089))) (-3389 (|has| |#1| (-37 (-385 (-525))))) (-3389 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-566 (-1089))) (-3389 (|has| |#1| (-923 (-525))))))) (((-3 (-1041 |#1| |#2|) "failed") $) 18)) (-3341 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) ((|#2| $) NIL) (($ (-885 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-566 (-1089))))) (($ (-885 (-525))) NIL (-3150 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-566 (-1089))) (-3389 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-566 (-1089)))))) (($ (-885 |#1|)) NIL (-3150 (-12 (|has| |#2| (-566 (-1089))) (-3389 (|has| |#1| (-37 (-385 (-525))))) (-3389 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-566 (-1089))) (-3389 (|has| |#1| (-37 (-385 (-525))))) (-3389 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-566 (-1089))) (-3389 (|has| |#1| (-923 (-525))))))) (((-1041 |#1| |#2|) $) NIL)) (-1788 (($ $ $ |#2|) NIL (|has| |#1| (-160))) (($ $ $) 104 (|has| |#1| (-517)))) (-1575 (($ $) NIL) (($ $ |#2|) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-3797 (((-108) $ $) NIL) (((-108) $ (-591 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3731 (((-108) $) NIL)) (-1627 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 70)) (-3286 (($ $) 119 (|has| |#1| (-429)))) (-3153 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#1| (-842)))) (-2585 (($ $) NIL (|has| |#1| (-517)))) (-3002 (($ $) NIL (|has| |#1| (-517)))) (-2717 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1778 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2615 (($ $ |#1| (-497 |#2|) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| |#1| (-819 (-357))) (|has| |#2| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| |#1| (-819 (-525))) (|has| |#2| (-819 (-525)))))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-2040 (((-108) $ $) NIL) (((-108) $ (-591 $)) NIL)) (-1348 (($ $ $ $ $) 90 (|has| |#1| (-517)))) (-3998 ((|#2| $) 19)) (-1434 (($ (-1085 |#1|) |#2|) NIL) (($ (-1085 $) |#2|) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-712)) 36) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-1941 (($ $ $) 60)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ |#2|) NIL)) (-4160 (((-108) $) NIL)) (-3629 (((-497 |#2|) $) NIL) (((-712) $ |#2|) NIL) (((-591 (-712)) $ (-591 |#2|)) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-4037 (((-712) $) 20)) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2508 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3027 (((-3 |#2| "failed") $) NIL)) (-2740 (($ $) NIL (|has| |#1| (-429)))) (-2468 (($ $) NIL (|has| |#1| (-429)))) (-3723 (((-591 $) $) NIL)) (-3350 (($ $) 37)) (-1585 (($ $) NIL (|has| |#1| (-429)))) (-3247 (((-591 $) $) 41)) (-3672 (($ $) 39)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3804 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2362 (-712))) $ $) 82)) (-1641 (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $) 67) (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $ |#2|) NIL)) (-3899 (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2449 $)) $ $) NIL) (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2449 $)) $ $ |#2|) NIL)) (-3393 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1861 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2621 (((-1072) $) NIL)) (-2456 (($ $ $) 108 (|has| |#1| (-517)))) (-1722 (((-591 $) $) 30)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| |#2|) (|:| -3987 (-712))) "failed") $) NIL)) (-1307 (((-108) $ $) NIL) (((-108) $ (-591 $)) NIL)) (-3022 (($ $ $) NIL)) (-3492 (($ $) 21)) (-3300 (((-108) $ $) NIL)) (-3255 (((-108) $ $) NIL) (((-108) $ (-591 $)) NIL)) (-2246 (($ $ $) NIL)) (-1455 (($ $) 23)) (-2937 (((-1036) $) NIL)) (-3071 (((-2 (|:| -2124 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-517)))) (-1715 (((-2 (|:| -2124 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-517)))) (-1531 (((-108) $) 52)) (-1540 ((|#1| $) 55)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-429)))) (-2124 ((|#1| |#1| $) 116 (|has| |#1| (-429))) (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-842)))) (-2497 (((-2 (|:| -2124 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-517)))) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-517)))) (-4056 (($ $ |#1|) 112 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2558 (($ $ |#1|) 111 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-591 |#2|) (-591 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-591 |#2|) (-591 $)) NIL)) (-2858 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-2209 (($ $ |#2|) NIL) (($ $ (-591 |#2|)) NIL) (($ $ |#2| (-712)) NIL) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-2743 (((-497 |#2|) $) NIL) (((-712) $ |#2|) 43) (((-591 (-712)) $ (-591 |#2|)) NIL)) (-3906 (($ $) NIL)) (-1958 (($ $) 33)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| |#1| (-566 (-825 (-357)))) (|has| |#2| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| |#1| (-566 (-825 (-525)))) (|has| |#2| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-566 (-501))) (|has| |#2| (-566 (-501))))) (($ (-885 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-566 (-1089))))) (($ (-885 (-525))) NIL (-3150 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-566 (-1089))) (-3389 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-566 (-1089)))))) (($ (-885 |#1|)) NIL (|has| |#2| (-566 (-1089)))) (((-1072) $) NIL (-12 (|has| |#1| (-966 (-525))) (|has| |#2| (-566 (-1089))))) (((-885 |#1|) $) NIL (|has| |#2| (-566 (-1089))))) (-2827 ((|#1| $) 115 (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-885 |#1|) $) NIL (|has| |#2| (-566 (-1089)))) (((-1041 |#1| |#2|) $) 15) (($ (-1041 |#1| |#2|)) 16) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-712)) 44) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#1| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 13 T CONST)) (-2970 (((-3 (-108) "failed") $ $) NIL)) (-1839 (($) 35 T CONST)) (-4035 (($ $ $ $ (-712)) 88 (|has| |#1| (-517)))) (-3243 (($ $ $ (-712)) 87 (|has| |#1| (-517)))) (-1796 (($ $ |#2|) NIL) (($ $ (-591 |#2|)) NIL) (($ $ |#2| (-712)) NIL) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) 54)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) 64)) (-4036 (($ $ $) 74)) (** (($ $ (-854)) NIL) (($ $ (-712)) 61)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 59) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-721 |#1| |#2|) (-13 (-989 |#1| (-497 |#2|) |#2|) (-565 (-1041 |#1| |#2|)) (-966 (-1041 |#1| |#2|))) (-975) (-788)) (T -721)) -NIL -(-13 (-989 |#1| (-497 |#2|) |#2|) (-565 (-1041 |#1| |#2|)) (-966 (-1041 |#1| |#2|))) -((-1257 (((-723 |#2|) (-1 |#2| |#1|) (-723 |#1|)) 13))) -(((-722 |#1| |#2|) (-10 -7 (-15 -1257 ((-723 |#2|) (-1 |#2| |#1|) (-723 |#1|)))) (-975) (-975)) (T -722)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-723 *5)) (-4 *5 (-975)) (-4 *6 (-975)) (-5 *2 (-723 *6)) (-5 *1 (-722 *5 *6))))) -(-10 -7 (-15 -1257 ((-723 |#2|) (-1 |#2| |#1|) (-723 |#1|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 12)) (-4135 (((-1171 |#1|) $ (-712)) NIL)) (-1444 (((-591 (-1003)) $) NIL)) (-3290 (($ (-1085 |#1|)) NIL)) (-2514 (((-1085 $) $ (-1003)) NIL) (((-1085 |#1|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-1003))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-3876 (((-591 $) $ $) 39 (|has| |#1| (-517)))) (-2584 (($ $ $) 35 (|has| |#1| (-517)))) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1720 (($ $) NIL (|has| |#1| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4069 (($ $ (-712)) NIL)) (-3997 (($ $ (-712)) NIL)) (-3374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-1003) "failed") $) NIL) (((-3 (-1085 |#1|) "failed") $) 10)) (-3341 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-1003) $) NIL) (((-1085 |#1|) $) NIL)) (-1788 (($ $ $ (-1003)) NIL (|has| |#1| (-160))) ((|#1| $ $) 43 (|has| |#1| (-160)))) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1666 (($ $ $) NIL)) (-3225 (($ $ $) 71 (|has| |#1| (-517)))) (-1627 (((-2 (|:| -2976 |#1|) (|:| -2746 $) (|:| -2449 $)) $ $) 70 (|has| |#1| (-517)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-3153 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1003)) NIL (|has| |#1| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#1| (-842)))) (-2615 (($ $ |#1| (-712) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-1003) (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-1003) (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-1676 (((-712) $ $) NIL (|has| |#1| (-517)))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-1065)))) (-1434 (($ (-1085 |#1|) (-1003)) NIL) (($ (-1085 $) (-1003)) NIL)) (-1698 (($ $ (-712)) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-712)) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-1941 (($ $ $) 20)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-1003)) NIL) (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-3629 (((-712) $) NIL) (((-712) $ (-1003)) NIL) (((-591 (-712)) $ (-591 (-1003))) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2508 (($ (-1 (-712) (-712)) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2496 (((-1085 |#1|) $) NIL)) (-3027 (((-3 (-1003) "failed") $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3804 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2362 (-712))) $ $) 26)) (-2323 (($ $ $) 29)) (-3215 (($ $ $) 32)) (-1641 (((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $) 31)) (-2621 (((-1072) $) NIL)) (-2456 (($ $ $) 41 (|has| |#1| (-517)))) (-1400 (((-2 (|:| -2746 $) (|:| -2449 $)) $ (-712)) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-1003)) (|:| -3987 (-712))) "failed") $) NIL)) (-2452 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3492 (($) NIL (|has| |#1| (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-3071 (((-2 (|:| -2124 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-517)))) (-1715 (((-2 (|:| -2124 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-517)))) (-3133 (((-2 (|:| -1788 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-517)))) (-2016 (((-2 (|:| -1788 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-517)))) (-1531 (((-108) $) 13)) (-1540 ((|#1| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3381 (($ $ (-712) |#1| $) 19)) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-842)))) (-2497 (((-2 (|:| -2124 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-517)))) (-2227 (((-2 (|:| -1788 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-517)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-1003) |#1|) NIL) (($ $ (-591 (-1003)) (-591 |#1|)) NIL) (($ $ (-1003) $) NIL) (($ $ (-591 (-1003)) (-591 $)) NIL)) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-1725 (((-3 $ "failed") $ (-712)) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2858 (($ $ (-1003)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-2209 (($ $ (-1003)) NIL) (($ $ (-591 (-1003))) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL) (($ $ (-712)) NIL) (($ $) NIL) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2743 (((-712) $) NIL) (((-712) $ (-1003)) NIL) (((-591 (-712)) $ (-591 (-1003))) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-1003) (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-1003) (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-1003) (-566 (-501))) (|has| |#1| (-566 (-501)))))) (-2827 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1003)) NIL (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2037 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1003)) NIL) (((-1085 |#1|) $) 7) (($ (-1085 |#1|)) 8) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-712)) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#1| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 21 T CONST)) (-1839 (($) 24 T CONST)) (-1796 (($ $ (-1003)) NIL) (($ $ (-591 (-1003))) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL) (($ $ (-712)) NIL) (($ $) NIL) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) 28) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-723 |#1|) (-13 (-1147 |#1|) (-565 (-1085 |#1|)) (-966 (-1085 |#1|)) (-10 -8 (-15 -3381 ($ $ (-712) |#1| $)) (-15 -1941 ($ $ $)) (-15 -3804 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2362 (-712))) $ $)) (-15 -2323 ($ $ $)) (-15 -1641 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -3215 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -3876 ((-591 $) $ $)) (-15 -2456 ($ $ $)) (-15 -2497 ((-2 (|:| -2124 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1715 ((-2 (|:| -2124 $) (|:| |coef1| $)) $ $)) (-15 -3071 ((-2 (|:| -2124 $) (|:| |coef2| $)) $ $)) (-15 -2227 ((-2 (|:| -1788 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2016 ((-2 (|:| -1788 |#1|) (|:| |coef1| $)) $ $)) (-15 -3133 ((-2 (|:| -1788 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-975)) (T -723)) -((-3381 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-712)) (-5 *1 (-723 *3)) (-4 *3 (-975)))) (-1941 (*1 *1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-975)))) (-3804 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-723 *3)) (|:| |polden| *3) (|:| -2362 (-712)))) (-5 *1 (-723 *3)) (-4 *3 (-975)))) (-2323 (*1 *1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-975)))) (-1641 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2976 *3) (|:| |gap| (-712)) (|:| -2746 (-723 *3)) (|:| -2449 (-723 *3)))) (-5 *1 (-723 *3)) (-4 *3 (-975)))) (-3215 (*1 *1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-975)))) (-3876 (*1 *2 *1 *1) (-12 (-5 *2 (-591 (-723 *3))) (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975)))) (-2456 (*1 *1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-517)) (-4 *2 (-975)))) (-2497 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2124 (-723 *3)) (|:| |coef1| (-723 *3)) (|:| |coef2| (-723 *3)))) (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975)))) (-1715 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2124 (-723 *3)) (|:| |coef1| (-723 *3)))) (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975)))) (-3071 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2124 (-723 *3)) (|:| |coef2| (-723 *3)))) (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975)))) (-2227 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1788 *3) (|:| |coef1| (-723 *3)) (|:| |coef2| (-723 *3)))) (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975)))) (-2016 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1788 *3) (|:| |coef1| (-723 *3)))) (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975)))) (-3133 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1788 *3) (|:| |coef2| (-723 *3)))) (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975))))) -(-13 (-1147 |#1|) (-565 (-1085 |#1|)) (-966 (-1085 |#1|)) (-10 -8 (-15 -3381 ($ $ (-712) |#1| $)) (-15 -1941 ($ $ $)) (-15 -3804 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2362 (-712))) $ $)) (-15 -2323 ($ $ $)) (-15 -1641 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -3215 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -3876 ((-591 $) $ $)) (-15 -2456 ($ $ $)) (-15 -2497 ((-2 (|:| -2124 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1715 ((-2 (|:| -2124 $) (|:| |coef1| $)) $ $)) (-15 -3071 ((-2 (|:| -2124 $) (|:| |coef2| $)) $ $)) (-15 -2227 ((-2 (|:| -1788 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2016 ((-2 (|:| -1788 |#1|) (|:| |coef1| $)) $ $)) (-15 -3133 ((-2 (|:| -1788 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4042 ((|#1| (-712) |#1|) 32 (|has| |#1| (-37 (-385 (-525)))))) (-3762 ((|#1| (-712) |#1|) 22)) (-4100 ((|#1| (-712) |#1|) 34 (|has| |#1| (-37 (-385 (-525))))))) -(((-724 |#1|) (-10 -7 (-15 -3762 (|#1| (-712) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -4100 (|#1| (-712) |#1|)) (-15 -4042 (|#1| (-712) |#1|))) |%noBranch|)) (-160)) (T -724)) -((-4042 (*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-724 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-4100 (*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-724 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-3762 (*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-724 *2)) (-4 *2 (-160))))) -(-10 -7 (-15 -3762 (|#1| (-712) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -4100 (|#1| (-712) |#1|)) (-15 -4042 (|#1| (-712) |#1|))) |%noBranch|)) -((-2673 (((-108) $ $) 7)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |#4|)))) (-591 |#4|)) 85)) (-3227 (((-591 $) (-591 |#4|)) 86) (((-591 $) (-591 |#4|) (-108)) 111)) (-1444 (((-591 |#3|) $) 33)) (-3713 (((-108) $) 26)) (-1996 (((-108) $) 17 (|has| |#1| (-517)))) (-3750 (((-108) |#4| $) 101) (((-108) $) 97)) (-4123 ((|#4| |#4| $) 92)) (-1720 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| $) 126)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) 27)) (-3727 (((-108) $ (-712)) 44)) (-2467 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4250))) (((-3 |#4| "failed") $ |#3|) 79)) (-2055 (($) 45 T CONST)) (-3435 (((-108) $) 22 (|has| |#1| (-517)))) (-2342 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2605 (((-108) $ $) 23 (|has| |#1| (-517)))) (-2167 (((-108) $) 25 (|has| |#1| (-517)))) (-2699 (((-591 |#4|) (-591 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1533 (((-591 |#4|) (-591 |#4|) $) 18 (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) 19 (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) 36)) (-3341 (($ (-591 |#4|)) 35)) (-2884 (((-3 $ "failed") $) 82)) (-2302 ((|#4| |#4| $) 89)) (-2908 (($ $) 68 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#4| $) 67 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3797 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2490 ((|#4| |#4| $) 87)) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4250))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2082 (((-2 (|:| -1269 (-591 |#4|)) (|:| -1472 (-591 |#4|))) $) 105)) (-1987 (((-108) |#4| $) 136)) (-1949 (((-108) |#4| $) 133)) (-3256 (((-108) |#4| $) 137) (((-108) $) 134)) (-2916 (((-591 |#4|) $) 52 (|has| $ (-6 -4250)))) (-2040 (((-108) |#4| $) 104) (((-108) $) 103)) (-3998 ((|#3| $) 34)) (-3491 (((-108) $ (-712)) 43)) (-4207 (((-591 |#4|) $) 53 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 47)) (-3520 (((-591 |#3|) $) 32)) (-1574 (((-108) |#3| $) 31)) (-3295 (((-108) $ (-712)) 42)) (-2621 (((-1072) $) 9)) (-2001 (((-3 |#4| (-591 $)) |#4| |#4| $) 128)) (-2456 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| |#4| $) 127)) (-2555 (((-3 |#4| "failed") $) 83)) (-3783 (((-591 $) |#4| $) 129)) (-1929 (((-3 (-108) (-591 $)) |#4| $) 132)) (-3433 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2318 (((-591 $) |#4| $) 125) (((-591 $) (-591 |#4|) $) 124) (((-591 $) (-591 |#4|) (-591 $)) 123) (((-591 $) |#4| (-591 $)) 122)) (-1832 (($ |#4| $) 117) (($ (-591 |#4|) $) 116)) (-3664 (((-591 |#4|) $) 107)) (-1307 (((-108) |#4| $) 99) (((-108) $) 95)) (-3022 ((|#4| |#4| $) 90)) (-3300 (((-108) $ $) 110)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-3255 (((-108) |#4| $) 100) (((-108) $) 96)) (-2246 ((|#4| |#4| $) 91)) (-2937 (((-1036) $) 10)) (-2872 (((-3 |#4| "failed") $) 84)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1591 (((-3 $ "failed") $ |#4|) 78)) (-1618 (($ $ |#4|) 77) (((-591 $) |#4| $) 115) (((-591 $) |#4| (-591 $)) 114) (((-591 $) (-591 |#4|) $) 113) (((-591 $) (-591 |#4|) (-591 $)) 112)) (-3465 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) 38)) (-2077 (((-108) $) 41)) (-3164 (($) 40)) (-2743 (((-712) $) 106)) (-2960 (((-712) |#4| $) 54 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4250)))) (-2873 (($ $) 39)) (-1300 (((-501) $) 69 (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) 60)) (-3786 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-1656 (($ $) 88)) (-1918 (($ $ |#3|) 29)) (-2686 (((-796) $) 11) (((-591 |#4|) $) 37)) (-3311 (((-712) $) 76 (|has| |#3| (-346)))) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3747 (((-108) $ (-1 (-108) |#4| (-591 |#4|))) 98)) (-3996 (((-591 $) |#4| $) 121) (((-591 $) |#4| (-591 $)) 120) (((-591 $) (-591 |#4|) $) 119) (((-591 $) (-591 |#4|) (-591 $)) 118)) (-1475 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4250)))) (-1669 (((-591 |#3|) $) 81)) (-3744 (((-108) |#4| $) 135)) (-2588 (((-108) |#3| $) 80)) (-3944 (((-108) $ $) 6)) (-2028 (((-712) $) 46 (|has| $ (-6 -4250))))) -(((-725 |#1| |#2| |#3| |#4|) (-131) (-429) (-734) (-788) (-989 |t#1| |t#2| |t#3|)) (T -725)) -NIL -(-13 (-994 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-565 (-591 |#4|)) . T) ((-565 (-796)) . T) ((-142 |#4|) . T) ((-566 (-501)) |has| |#4| (-566 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-907 |#1| |#2| |#3| |#4|) . T) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1018) . T) ((-1119 |#1| |#2| |#3| |#4|) . T) ((-1125) . T)) -((-2927 (((-3 (-357) "failed") (-294 |#1|) (-854)) 60 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-3 (-357) "failed") (-294 |#1|)) 52 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-3 (-357) "failed") (-385 (-885 |#1|)) (-854)) 39 (|has| |#1| (-517))) (((-3 (-357) "failed") (-385 (-885 |#1|))) 35 (|has| |#1| (-517))) (((-3 (-357) "failed") (-885 |#1|) (-854)) 30 (|has| |#1| (-975))) (((-3 (-357) "failed") (-885 |#1|)) 24 (|has| |#1| (-975)))) (-2935 (((-357) (-294 |#1|) (-854)) 92 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-357) (-294 |#1|)) 87 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-357) (-385 (-885 |#1|)) (-854)) 84 (|has| |#1| (-517))) (((-357) (-385 (-885 |#1|))) 81 (|has| |#1| (-517))) (((-357) (-885 |#1|) (-854)) 80 (|has| |#1| (-975))) (((-357) (-885 |#1|)) 77 (|has| |#1| (-975))) (((-357) |#1| (-854)) 73) (((-357) |#1|) 22)) (-1769 (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-854)) 68 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|))) 58 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-3 (-157 (-357)) "failed") (-294 |#1|) (-854)) 61 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-3 (-157 (-357)) "failed") (-294 |#1|)) 59 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-3 (-157 (-357)) "failed") (-385 (-885 (-157 |#1|))) (-854)) 44 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-885 (-157 |#1|)))) 43 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-885 |#1|)) (-854)) 38 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-885 |#1|))) 37 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-885 |#1|) (-854)) 28 (|has| |#1| (-975))) (((-3 (-157 (-357)) "failed") (-885 |#1|)) 26 (|has| |#1| (-975))) (((-3 (-157 (-357)) "failed") (-885 (-157 |#1|)) (-854)) 18 (|has| |#1| (-160))) (((-3 (-157 (-357)) "failed") (-885 (-157 |#1|))) 15 (|has| |#1| (-160)))) (-2487 (((-157 (-357)) (-294 (-157 |#1|)) (-854)) 95 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-157 (-357)) (-294 (-157 |#1|))) 94 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-157 (-357)) (-294 |#1|) (-854)) 93 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-157 (-357)) (-294 |#1|)) 91 (-12 (|has| |#1| (-517)) (|has| |#1| (-788)))) (((-157 (-357)) (-385 (-885 (-157 |#1|))) (-854)) 86 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-885 (-157 |#1|)))) 85 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-885 |#1|)) (-854)) 83 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-885 |#1|))) 82 (|has| |#1| (-517))) (((-157 (-357)) (-885 |#1|) (-854)) 79 (|has| |#1| (-975))) (((-157 (-357)) (-885 |#1|)) 78 (|has| |#1| (-975))) (((-157 (-357)) (-885 (-157 |#1|)) (-854)) 75 (|has| |#1| (-160))) (((-157 (-357)) (-885 (-157 |#1|))) 74 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|) (-854)) 17 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|)) 13 (|has| |#1| (-160))) (((-157 (-357)) |#1| (-854)) 27) (((-157 (-357)) |#1|) 25))) -(((-726 |#1|) (-10 -7 (-15 -2935 ((-357) |#1|)) (-15 -2935 ((-357) |#1| (-854))) (-15 -2487 ((-157 (-357)) |#1|)) (-15 -2487 ((-157 (-357)) |#1| (-854))) (IF (|has| |#1| (-160)) (PROGN (-15 -2487 ((-157 (-357)) (-157 |#1|))) (-15 -2487 ((-157 (-357)) (-157 |#1|) (-854))) (-15 -2487 ((-157 (-357)) (-885 (-157 |#1|)))) (-15 -2487 ((-157 (-357)) (-885 (-157 |#1|)) (-854)))) |%noBranch|) (IF (|has| |#1| (-975)) (PROGN (-15 -2935 ((-357) (-885 |#1|))) (-15 -2935 ((-357) (-885 |#1|) (-854))) (-15 -2487 ((-157 (-357)) (-885 |#1|))) (-15 -2487 ((-157 (-357)) (-885 |#1|) (-854)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -2935 ((-357) (-385 (-885 |#1|)))) (-15 -2935 ((-357) (-385 (-885 |#1|)) (-854))) (-15 -2487 ((-157 (-357)) (-385 (-885 |#1|)))) (-15 -2487 ((-157 (-357)) (-385 (-885 |#1|)) (-854))) (-15 -2487 ((-157 (-357)) (-385 (-885 (-157 |#1|))))) (-15 -2487 ((-157 (-357)) (-385 (-885 (-157 |#1|))) (-854))) (IF (|has| |#1| (-788)) (PROGN (-15 -2935 ((-357) (-294 |#1|))) (-15 -2935 ((-357) (-294 |#1|) (-854))) (-15 -2487 ((-157 (-357)) (-294 |#1|))) (-15 -2487 ((-157 (-357)) (-294 |#1|) (-854))) (-15 -2487 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -2487 ((-157 (-357)) (-294 (-157 |#1|)) (-854)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -1769 ((-3 (-157 (-357)) "failed") (-885 (-157 |#1|)))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-885 (-157 |#1|)) (-854)))) |%noBranch|) (IF (|has| |#1| (-975)) (PROGN (-15 -2927 ((-3 (-357) "failed") (-885 |#1|))) (-15 -2927 ((-3 (-357) "failed") (-885 |#1|) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-885 |#1|))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-885 |#1|) (-854)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -2927 ((-3 (-357) "failed") (-385 (-885 |#1|)))) (-15 -2927 ((-3 (-357) "failed") (-385 (-885 |#1|)) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-385 (-885 |#1|)))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-385 (-885 |#1|)) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-385 (-885 (-157 |#1|))))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-385 (-885 (-157 |#1|))) (-854))) (IF (|has| |#1| (-788)) (PROGN (-15 -2927 ((-3 (-357) "failed") (-294 |#1|))) (-15 -2927 ((-3 (-357) "failed") (-294 |#1|) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-854)))) |%noBranch|)) |%noBranch|)) (-566 (-357))) (T -726)) -((-1769 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-788)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-1769 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-788)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-1769 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-788)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-1769 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-788)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2927 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-788)) (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) (-2927 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-788)) (-4 *4 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *4)))) (-1769 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-885 (-157 *5)))) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-1769 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-885 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-1769 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-1769 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2927 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) (-2927 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) (-4 *4 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *4)))) (-1769 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-885 *5)) (-5 *4 (-854)) (-4 *5 (-975)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-1769 (*1 *2 *3) (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-975)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2927 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-885 *5)) (-5 *4 (-854)) (-4 *5 (-975)) (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) (-2927 (*1 *2 *3) (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-975)) (-4 *4 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *4)))) (-1769 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-885 (-157 *5))) (-5 *4 (-854)) (-4 *5 (-160)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-1769 (*1 *2 *3) (|partial| -12 (-5 *3 (-885 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-788)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-788)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-788)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-788)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-788)) (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-788)) (-4 *4 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *4)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 (-157 *5)))) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-385 (-885 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) (-4 *4 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *4)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-854)) (-4 *5 (-975)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-885 *4)) (-4 *4 (-975)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-854)) (-4 *5 (-975)) (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-885 *4)) (-4 *4 (-975)) (-4 *4 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *4)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-157 *5))) (-5 *4 (-854)) (-4 *5 (-160)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-885 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-157 *5)) (-5 *4 (-854)) (-4 *5 (-160)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *4 (-854)) (-5 *2 (-157 (-357))) (-5 *1 (-726 *3)) (-4 *3 (-566 (-357))))) (-2487 (*1 *2 *3) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-726 *3)) (-4 *3 (-566 (-357))))) (-2935 (*1 *2 *3 *4) (-12 (-5 *4 (-854)) (-5 *2 (-357)) (-5 *1 (-726 *3)) (-4 *3 (-566 *2)))) (-2935 (*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-726 *3)) (-4 *3 (-566 *2))))) -(-10 -7 (-15 -2935 ((-357) |#1|)) (-15 -2935 ((-357) |#1| (-854))) (-15 -2487 ((-157 (-357)) |#1|)) (-15 -2487 ((-157 (-357)) |#1| (-854))) (IF (|has| |#1| (-160)) (PROGN (-15 -2487 ((-157 (-357)) (-157 |#1|))) (-15 -2487 ((-157 (-357)) (-157 |#1|) (-854))) (-15 -2487 ((-157 (-357)) (-885 (-157 |#1|)))) (-15 -2487 ((-157 (-357)) (-885 (-157 |#1|)) (-854)))) |%noBranch|) (IF (|has| |#1| (-975)) (PROGN (-15 -2935 ((-357) (-885 |#1|))) (-15 -2935 ((-357) (-885 |#1|) (-854))) (-15 -2487 ((-157 (-357)) (-885 |#1|))) (-15 -2487 ((-157 (-357)) (-885 |#1|) (-854)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -2935 ((-357) (-385 (-885 |#1|)))) (-15 -2935 ((-357) (-385 (-885 |#1|)) (-854))) (-15 -2487 ((-157 (-357)) (-385 (-885 |#1|)))) (-15 -2487 ((-157 (-357)) (-385 (-885 |#1|)) (-854))) (-15 -2487 ((-157 (-357)) (-385 (-885 (-157 |#1|))))) (-15 -2487 ((-157 (-357)) (-385 (-885 (-157 |#1|))) (-854))) (IF (|has| |#1| (-788)) (PROGN (-15 -2935 ((-357) (-294 |#1|))) (-15 -2935 ((-357) (-294 |#1|) (-854))) (-15 -2487 ((-157 (-357)) (-294 |#1|))) (-15 -2487 ((-157 (-357)) (-294 |#1|) (-854))) (-15 -2487 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -2487 ((-157 (-357)) (-294 (-157 |#1|)) (-854)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -1769 ((-3 (-157 (-357)) "failed") (-885 (-157 |#1|)))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-885 (-157 |#1|)) (-854)))) |%noBranch|) (IF (|has| |#1| (-975)) (PROGN (-15 -2927 ((-3 (-357) "failed") (-885 |#1|))) (-15 -2927 ((-3 (-357) "failed") (-885 |#1|) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-885 |#1|))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-885 |#1|) (-854)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -2927 ((-3 (-357) "failed") (-385 (-885 |#1|)))) (-15 -2927 ((-3 (-357) "failed") (-385 (-885 |#1|)) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-385 (-885 |#1|)))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-385 (-885 |#1|)) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-385 (-885 (-157 |#1|))))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-385 (-885 (-157 |#1|))) (-854))) (IF (|has| |#1| (-788)) (PROGN (-15 -2927 ((-3 (-357) "failed") (-294 |#1|))) (-15 -2927 ((-3 (-357) "failed") (-294 |#1|) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-854))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -1769 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-854)))) |%noBranch|)) |%noBranch|)) -((-1988 (((-854) (-1072)) 65)) (-3922 (((-3 (-357) "failed") (-1072)) 33)) (-3385 (((-357) (-1072)) 31)) (-2838 (((-854) (-1072)) 54)) (-1347 (((-1072) (-854)) 55)) (-3540 (((-1072) (-854)) 53))) -(((-727) (-10 -7 (-15 -3540 ((-1072) (-854))) (-15 -2838 ((-854) (-1072))) (-15 -1347 ((-1072) (-854))) (-15 -1988 ((-854) (-1072))) (-15 -3385 ((-357) (-1072))) (-15 -3922 ((-3 (-357) "failed") (-1072))))) (T -727)) -((-3922 (*1 *2 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-727)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-727)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-854)) (-5 *1 (-727)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1072)) (-5 *1 (-727)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-854)) (-5 *1 (-727)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1072)) (-5 *1 (-727))))) -(-10 -7 (-15 -3540 ((-1072) (-854))) (-15 -2838 ((-854) (-1072))) (-15 -1347 ((-1072) (-854))) (-15 -1988 ((-854) (-1072))) (-15 -3385 ((-357) (-1072))) (-15 -3922 ((-3 (-357) "failed") (-1072)))) -((-2673 (((-108) $ $) 7)) (-1648 (((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 15) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964)) 13)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 6))) -(((-728) (-131)) (T -728)) -((-2282 (*1 *2 *3 *4) (-12 (-4 *1 (-728)) (-5 *3 (-987)) (-5 *4 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964)))))) (-1648 (*1 *2 *3 *2) (-12 (-4 *1 (-728)) (-5 *2 (-964)) (-5 *3 (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-2282 (*1 *2 *3 *4) (-12 (-4 *1 (-728)) (-5 *3 (-987)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964)))))) (-1648 (*1 *2 *3 *2) (-12 (-4 *1 (-728)) (-5 *2 (-964)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) -(-13 (-1018) (-10 -7 (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1648 ((-964) (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) (|:| |extra| (-964))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1648 ((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-964))))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2180 (((-1176) (-1171 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357))) (-357) (-1171 (-357)) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357))) 44) (((-1176) (-1171 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357))) (-357) (-1171 (-357)) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357))) 43)) (-2130 (((-1176) (-1171 (-357)) (-525) (-357) (-357) (-525) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357))) 50)) (-1809 (((-1176) (-1171 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357))) 41)) (-2790 (((-1176) (-1171 (-357)) (-525) (-357) (-357) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357))) 52) (((-1176) (-1171 (-357)) (-525) (-357) (-357) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357))) 51))) -(((-729) (-10 -7 (-15 -2790 ((-1176) (-1171 (-357)) (-525) (-357) (-357) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)))) (-15 -2790 ((-1176) (-1171 (-357)) (-525) (-357) (-357) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)))) (-15 -1809 ((-1176) (-1171 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)))) (-15 -2180 ((-1176) (-1171 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357))) (-357) (-1171 (-357)) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)))) (-15 -2180 ((-1176) (-1171 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357))) (-357) (-1171 (-357)) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)))) (-15 -2130 ((-1176) (-1171 (-357)) (-525) (-357) (-357) (-525) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)))))) (T -729)) -((-2130 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) (-5 *1 (-729)))) (-2180 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-525)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357)))) (-5 *7 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) (-5 *1 (-729)))) (-2180 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-525)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357)))) (-5 *7 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) (-5 *1 (-729)))) (-1809 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) (-5 *1 (-729)))) (-2790 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) (-5 *1 (-729)))) (-2790 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) (-5 *1 (-729))))) -(-10 -7 (-15 -2790 ((-1176) (-1171 (-357)) (-525) (-357) (-357) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)))) (-15 -2790 ((-1176) (-1171 (-357)) (-525) (-357) (-357) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)))) (-15 -1809 ((-1176) (-1171 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)))) (-15 -2180 ((-1176) (-1171 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357))) (-357) (-1171 (-357)) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)))) (-15 -2180 ((-1176) (-1171 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357))) (-357) (-1171 (-357)) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)) (-1171 (-357)))) (-15 -2130 ((-1176) (-1171 (-357)) (-525) (-357) (-357) (-525) (-1 (-1176) (-1171 (-357)) (-1171 (-357)) (-357))))) -((-1519 (((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 53)) (-1403 (((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 31)) (-2635 (((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 52)) (-2411 (((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 29)) (-2267 (((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 51)) (-3545 (((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 19)) (-3446 (((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 32)) (-3013 (((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 30)) (-2060 (((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 28))) -(((-730) (-10 -7 (-15 -2060 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3013 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3446 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3545 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2411 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1403 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2267 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2635 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1519 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))) (T -730)) -((-1519 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-730)) (-5 *5 (-525)))) (-2635 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-730)) (-5 *5 (-525)))) (-2267 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-730)) (-5 *5 (-525)))) (-1403 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-730)) (-5 *5 (-525)))) (-2411 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-730)) (-5 *5 (-525)))) (-3545 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-730)) (-5 *5 (-525)))) (-3446 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-730)) (-5 *5 (-525)))) (-3013 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-730)) (-5 *5 (-525)))) (-2060 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-730)) (-5 *5 (-525))))) -(-10 -7 (-15 -2060 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3013 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3446 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3545 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2411 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1403 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2267 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2635 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1519 ((-2 (|:| -2940 (-357)) (|:| -2757 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)))) -((-3269 (((-1121 |#1|) |#1| (-205) (-525)) 46))) -(((-731 |#1|) (-10 -7 (-15 -3269 ((-1121 |#1|) |#1| (-205) (-525)))) (-905)) (T -731)) -((-3269 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1121 *3)) (-5 *1 (-731 *3)) (-4 *3 (-905))))) -(-10 -7 (-15 -3269 ((-1121 |#1|) |#1| (-205) (-525)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 24)) (-3332 (((-3 $ "failed") $ $) 26)) (-2055 (($) 23 T CONST)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 22 T CONST)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18)) (-4047 (($ $ $) 28) (($ $) 27)) (-4036 (($ $ $) 20)) (* (($ (-712) $) 25) (($ (-854) $) 21) (($ (-525) $) 29))) -(((-732) (-131)) (T -732)) -NIL -(-13 (-736) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-733) . T) ((-735) . T) ((-736) . T) ((-788) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 24)) (-2055 (($) 23 T CONST)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 22 T CONST)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18)) (-4036 (($ $ $) 20)) (* (($ (-712) $) 25) (($ (-854) $) 21))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-982 |#1|) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-4162 (($ |#1|) 17) (($ $ |#1|) 20)) (-2409 (($ |#1|) 18) (($ $ |#1|) 21)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2507 (((-108) $) NIL)) (-1511 (($ |#1| |#1| |#1| |#1|) 8)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 16)) (-3027 (((-1037) $) NIL)) (-2168 ((|#1| $ |#1|) 24) (((-775 |#1|) $ (-775 |#1|)) 32)) (-4025 (($ $ $) NIL)) (-1573 (($ $ $) NIL)) (-4044 (((-797) $) 39)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1449 (($) 9 T CONST)) (-3899 (((-108) $ $) 44)) (-4047 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 14))) +(((-661 |#1|) (-13 (-450) (-10 -8 (-15 -1511 ($ |#1| |#1| |#1| |#1|)) (-15 -4162 ($ |#1|)) (-15 -2409 ($ |#1|)) (-15 -1645 ($)) (-15 -4162 ($ $ |#1|)) (-15 -2409 ($ $ |#1|)) (-15 -1645 ($ $)) (-15 -2168 (|#1| $ |#1|)) (-15 -2168 ((-775 |#1|) $ (-775 |#1|))))) (-341)) (T -661)) +((-1511 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-4162 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2409 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-1645 (*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2409 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-1645 (*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2168 (*1 *2 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2168 (*1 *2 *1 *2) (-12 (-5 *2 (-775 *3)) (-4 *3 (-341)) (-5 *1 (-661 *3))))) +(-13 (-450) (-10 -8 (-15 -1511 ($ |#1| |#1| |#1| |#1|)) (-15 -4162 ($ |#1|)) (-15 -2409 ($ |#1|)) (-15 -1645 ($)) (-15 -4162 ($ $ |#1|)) (-15 -2409 ($ $ |#1|)) (-15 -1645 ($ $)) (-15 -2168 (|#1| $ |#1|)) (-15 -2168 ((-775 |#1|) $ (-775 |#1|))))) +((-1469 (($ $ (-855)) 12)) (-2148 (($ $ (-855)) 13)) (** (($ $ (-855)) 10))) +(((-662 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-855))) (-15 -2148 (|#1| |#1| (-855))) (-15 -1469 (|#1| |#1| (-855)))) (-663)) (T -662)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-855))) (-15 -2148 (|#1| |#1| (-855))) (-15 -1469 (|#1| |#1| (-855)))) +((-4028 (((-108) $ $) 7)) (-1469 (($ $ (-855)) 15)) (-2148 (($ $ (-855)) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 6)) (** (($ $ (-855)) 13)) (* (($ $ $) 16))) +(((-663) (-131)) (T -663)) +((* (*1 *1 *1 *1) (-4 *1 (-663))) (-1469 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855)))) (-2148 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855))))) +(-13 (-1019) (-10 -8 (-15 * ($ $ $)) (-15 -1469 ($ $ (-855))) (-15 -2148 ($ $ (-855))) (-15 ** ($ $ (-855))))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-1469 (($ $ (-855)) NIL) (($ $ (-713)) 17)) (-2507 (((-108) $) 10)) (-2148 (($ $ (-855)) NIL) (($ $ (-713)) 18)) (** (($ $ (-855)) NIL) (($ $ (-713)) 15))) +(((-664 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -2148 (|#1| |#1| (-713))) (-15 -1469 (|#1| |#1| (-713))) (-15 -2507 ((-108) |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 -2148 (|#1| |#1| (-855))) (-15 -1469 (|#1| |#1| (-855)))) (-665)) (T -664)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -2148 (|#1| |#1| (-713))) (-15 -1469 (|#1| |#1| (-713))) (-15 -2507 ((-108) |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 -2148 (|#1| |#1| (-855))) (-15 -1469 (|#1| |#1| (-855)))) +((-4028 (((-108) $ $) 7)) (-2256 (((-3 $ "failed") $) 17)) (-1469 (($ $ (-855)) 15) (($ $ (-713)) 22)) (-1645 (((-3 $ "failed") $) 19)) (-2507 (((-108) $) 23)) (-1709 (((-3 $ "failed") $) 18)) (-2148 (($ $ (-855)) 14) (($ $ (-713)) 21)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1449 (($) 24 T CONST)) (-3899 (((-108) $ $) 6)) (** (($ $ (-855)) 13) (($ $ (-713)) 20)) (* (($ $ $) 16))) +(((-665) (-131)) (T -665)) +((-1449 (*1 *1) (-4 *1 (-665))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108)))) (-1469 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-2148 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-1645 (*1 *1 *1) (|partial| -4 *1 (-665))) (-1709 (*1 *1 *1) (|partial| -4 *1 (-665))) (-2256 (*1 *1 *1) (|partial| -4 *1 (-665)))) +(-13 (-663) (-10 -8 (-15 (-1449) ($) -3219) (-15 -2507 ((-108) $)) (-15 -1469 ($ $ (-713))) (-15 -2148 ($ $ (-713))) (-15 ** ($ $ (-713))) (-15 -1645 ((-3 $ "failed") $)) (-15 -1709 ((-3 $ "failed") $)) (-15 -2256 ((-3 $ "failed") $)))) +(((-97) . T) ((-566 (-797)) . T) ((-663) . T) ((-1019) . T)) +((-1651 (((-713)) 35)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2068 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 22)) (-3336 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) 45)) (-1645 (((-3 $ "failed") $) 65)) (-1527 (($) 39)) (-2281 ((|#2| $) 20)) (-3258 (($) 17)) (-1576 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-1410 (((-632 |#2|) (-1172 $) (-1 |#2| |#2|)) 60)) (-2923 (((-1172 |#2|) $) NIL) (($ (-1172 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2867 ((|#3| $) 32)) (-2734 (((-1172 $)) 29))) +(((-666 |#1| |#2| |#3|) (-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1527 (|#1|)) (-15 -1651 ((-713))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1410 ((-632 |#2|) (-1172 |#1|) (-1 |#2| |#2|))) (-15 -3336 ((-3 |#1| "failed") (-385 |#3|))) (-15 -2923 (|#1| |#3|)) (-15 -3336 (|#1| |#3|)) (-15 -3258 (|#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2923 (|#3| |#1|)) (-15 -2923 (|#1| (-1172 |#2|))) (-15 -2923 ((-1172 |#2|) |#1|)) (-15 -2734 ((-1172 |#1|))) (-15 -2867 (|#3| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -1645 ((-3 |#1| "failed") |#1|))) (-667 |#2| |#3|) (-160) (-1148 |#2|)) (T -666)) +((-1651 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-713)) (-5 *1 (-666 *3 *4 *5)) (-4 *3 (-667 *4 *5))))) +(-10 -8 (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1527 (|#1|)) (-15 -1651 ((-713))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1410 ((-632 |#2|) (-1172 |#1|) (-1 |#2| |#2|))) (-15 -3336 ((-3 |#1| "failed") (-385 |#3|))) (-15 -2923 (|#1| |#3|)) (-15 -3336 (|#1| |#3|)) (-15 -3258 (|#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2923 (|#3| |#1|)) (-15 -2923 (|#1| (-1172 |#2|))) (-15 -2923 ((-1172 |#2|) |#1|)) (-15 -2734 ((-1172 |#1|))) (-15 -2867 (|#3| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -1645 ((-3 |#1| "failed") |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 93 (|has| |#1| (-341)))) (-2609 (($ $) 94 (|has| |#1| (-341)))) (-1220 (((-108) $) 96 (|has| |#1| (-341)))) (-3852 (((-632 |#1|) (-1172 $)) 46) (((-632 |#1|)) 61)) (-3942 ((|#1| $) 52)) (-1207 (((-1100 (-855) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 113 (|has| |#1| (-341)))) (-1259 (((-396 $) $) 114 (|has| |#1| (-341)))) (-1700 (((-108) $ $) 104 (|has| |#1| (-341)))) (-1651 (((-713)) 87 (|has| |#1| (-346)))) (-1957 (($) 17 T CONST)) (-2769 (((-3 (-525) "failed") $) 169 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-2068 (((-525) $) 170 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 165)) (-1689 (($ (-1172 |#1|) (-1172 $)) 48) (($ (-1172 |#1|)) 64)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-2720 (($ $ $) 108 (|has| |#1| (-341)))) (-3198 (((-632 |#1|) $ (-1172 $)) 53) (((-632 |#1|) $) 59)) (-1307 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-3336 (($ |#2|) 158) (((-3 $ "failed") (-385 |#2|)) 155 (|has| |#1| (-341)))) (-1645 (((-3 $ "failed") $) 34)) (-3439 (((-855)) 54)) (-1527 (($) 90 (|has| |#1| (-346)))) (-2699 (($ $ $) 107 (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 102 (|has| |#1| (-341)))) (-2376 (($) 149 (|has| |#1| (-327)))) (-3703 (((-108) $) 150 (|has| |#1| (-327)))) (-3351 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-2069 (((-108) $) 115 (|has| |#1| (-341)))) (-2158 (((-855) $) 152 (|has| |#1| (-327))) (((-775 (-855)) $) 138 (|has| |#1| (-327)))) (-2507 (((-108) $) 31)) (-2281 ((|#1| $) 51)) (-1978 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-341)))) (-3800 ((|#2| $) 44 (|has| |#1| (-341)))) (-2111 (((-855) $) 89 (|has| |#1| (-346)))) (-3325 ((|#2| $) 156)) (-2226 (($ (-592 $)) 100 (|has| |#1| (-341))) (($ $ $) 99 (|has| |#1| (-341)))) (-1707 (((-1073) $) 9)) (-3243 (($ $) 116 (|has| |#1| (-341)))) (-2039 (($) 143 (|has| |#1| (-327)) CONST)) (-3381 (($ (-855)) 88 (|has| |#1| (-346)))) (-3027 (((-1037) $) 10)) (-3258 (($) 160)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 101 (|has| |#1| (-341)))) (-2262 (($ (-592 $)) 98 (|has| |#1| (-341))) (($ $ $) 97 (|has| |#1| (-341)))) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) 146 (|has| |#1| (-327)))) (-2961 (((-396 $) $) 112 (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 109 (|has| |#1| (-341)))) (-2675 (((-3 $ "failed") $ $) 92 (|has| |#1| (-341)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-341)))) (-2824 (((-713) $) 105 (|has| |#1| (-341)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 106 (|has| |#1| (-341)))) (-2257 ((|#1| (-1172 $)) 47) ((|#1|) 60)) (-2729 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-1576 (($ $) 137 (-3215 (-2385 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 135 (-3215 (-2385 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1090)) 133 (-2385 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-592 (-1090))) 132 (-2385 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-1090) (-713)) 131 (-2385 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 (-713))) 130 (-2385 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 123 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-341)))) (-1410 (((-632 |#1|) (-1172 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-2775 ((|#2|) 159)) (-3405 (($) 148 (|has| |#1| (-327)))) (-1625 (((-1172 |#1|) $ (-1172 $)) 50) (((-632 |#1|) (-1172 $) (-1172 $)) 49) (((-1172 |#1|) $) 66) (((-632 |#1|) (-1172 $)) 65)) (-2923 (((-1172 |#1|) $) 63) (($ (-1172 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 145 (|has| |#1| (-327)))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-341))) (($ (-385 (-525))) 86 (-3215 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525))))))) (-1279 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-2867 ((|#2| $) 45)) (-2502 (((-713)) 29)) (-2734 (((-1172 $)) 67)) (-3787 (((-108) $ $) 95 (|has| |#1| (-341)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $) 136 (-3215 (-2385 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 134 (-3215 (-2385 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1090)) 129 (-2385 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-592 (-1090))) 128 (-2385 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-1090) (-713)) 127 (-2385 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 (-713))) 126 (-2385 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 125 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-341)))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ $) 121 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341))))) +(((-667 |#1| |#2|) (-131) (-160) (-1148 |t#1|)) (T -667)) +((-3258 (*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1148 *2)))) (-2775 (*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3)))) (-3336 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1148 *3)))) (-2923 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1148 *3)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3)))) (-3336 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-341)) (-4 *3 (-160)) (-4 *1 (-667 *3 *4)))) (-1410 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1148 *5)) (-5 *2 (-632 *5))))) +(-13 (-387 |t#1| |t#2|) (-160) (-567 |t#2|) (-389 |t#1|) (-355 |t#1|) (-10 -8 (-15 -3258 ($)) (-15 -2775 (|t#2|)) (-15 -3336 ($ |t#2|)) (-15 -2923 ($ |t#2|)) (-15 -3325 (|t#2| $)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-341)) (-6 (-211 |t#1|)) (-15 -3336 ((-3 $ "failed") (-385 |t#2|))) (-15 -1410 ((-632 |t#1|) (-1172 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-327)) (-6 (-327)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-97) . T) ((-107 #0# #0#) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3215 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 |#2|) . T) ((-211 |#1|) |has| |#1| (-341)) ((-213) -3215 (|has| |#1| (-327)) (-12 (|has| |#1| (-213)) (|has| |#1| (-341)))) ((-223) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-269) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-286) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-341) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3215 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| |#2|) . T) ((-387 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-517) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 #0#) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090)))) ((-854) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 #0#) -3215 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-327)) ((-1130) -3215 (|has| |#1| (-327)) (|has| |#1| (-341)))) +((-1957 (($) 14)) (-1645 (((-3 $ "failed") $) 16)) (-2507 (((-108) $) 13)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) 9)) (** (($ $ (-855)) NIL) (($ $ (-713)) 20))) +(((-668 |#1|) (-10 -8 (-15 -1645 ((-3 |#1| "failed") |#1|)) (-15 -1594 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -2507 ((-108) |#1|)) (-15 -1957 (|#1|)) (-15 -1594 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855)))) (-669)) (T -668)) +NIL +(-10 -8 (-15 -1645 ((-3 |#1| "failed") |#1|)) (-15 -1594 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -2507 ((-108) |#1|)) (-15 -1957 (|#1|)) (-15 -1594 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855)))) +((-4028 (((-108) $ $) 7)) (-1957 (($) 20 T CONST)) (-1645 (((-3 $ "failed") $) 16)) (-2507 (((-108) $) 19)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1594 (($ $ (-855)) 13) (($ $ (-713)) 17)) (-1449 (($) 21 T CONST)) (-3899 (((-108) $ $) 6)) (** (($ $ (-855)) 14) (($ $ (-713)) 18)) (* (($ $ $) 15))) +(((-669) (-131)) (T -669)) +((-1449 (*1 *1) (-4 *1 (-669))) (-1957 (*1 *1) (-4 *1 (-669))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-1594 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-1645 (*1 *1 *1) (|partial| -4 *1 (-669)))) +(-13 (-1031) (-10 -8 (-15 (-1449) ($) -3219) (-15 -1957 ($) -3219) (-15 -2507 ((-108) $)) (-15 ** ($ $ (-713))) (-15 -1594 ($ $ (-713))) (-15 -1645 ((-3 $ "failed") $)))) +(((-97) . T) ((-566 (-797)) . T) ((-1031) . T) ((-1019) . T)) +((-3716 (((-2 (|:| -2357 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3114 (((-2 (|:| -2357 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1650 ((|#2| (-385 |#2|) (-1 |#2| |#2|)) 13)) (-3756 (((-2 (|:| |poly| |#2|) (|:| -2357 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)) 47))) +(((-670 |#1| |#2|) (-10 -7 (-15 -3114 ((-2 (|:| -2357 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3716 ((-2 (|:| -2357 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1650 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -3756 ((-2 (|:| |poly| |#2|) (|:| -2357 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1148 |#1|)) (T -670)) +((-3756 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2357 (-385 *6)) (|:| |special| (-385 *6)))) (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6)))) (-1650 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1148 *5)) (-5 *1 (-670 *5 *2)) (-4 *5 (-341)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2357 (-396 *3)) (|:| |special| (-396 *3)))) (-5 *1 (-670 *5 *3)))) (-3114 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2357 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3))))) +(-10 -7 (-15 -3114 ((-2 (|:| -2357 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3716 ((-2 (|:| -2357 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1650 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -3756 ((-2 (|:| |poly| |#2|) (|:| -2357 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)))) +((-1833 ((|#7| (-592 |#5|) |#6|) NIL)) (-2868 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-671 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2868 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1833 (|#7| (-592 |#5|) |#6|))) (-789) (-735) (-735) (-976) (-976) (-883 |#4| |#2| |#1|) (-883 |#5| |#3| |#1|)) (T -671)) +((-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *9)) (-4 *9 (-976)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-976)) (-4 *2 (-883 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-883 *8 *6 *5)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-976)) (-4 *9 (-976)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *2 (-883 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-883 *8 *6 *5))))) +(-10 -7 (-15 -2868 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1833 (|#7| (-592 |#5|) |#6|))) +((-2868 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-672 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2868 (|#7| (-1 |#2| |#1|) |#6|))) (-789) (-789) (-735) (-735) (-976) (-883 |#5| |#3| |#1|) (-883 |#5| |#4| |#2|)) (T -672)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-4 *7 (-735)) (-4 *9 (-976)) (-4 *2 (-883 *9 *8 *6)) (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-735)) (-4 *4 (-883 *9 *7 *5))))) +(-10 -7 (-15 -2868 (|#7| (-1 |#2| |#1|) |#6|))) +((-2961 (((-396 |#4|) |#4|) 41))) +(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2961 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090))))) (-286) (-883 (-886 |#3|) |#1| |#2|)) (T -673)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090)))))) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-883 (-886 *6) *4 *5))))) +(-10 -7 (-15 -2961 ((-396 |#4|) |#4|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-799 |#1|)) $) NIL)) (-1315 (((-1086 $) $ (-799 |#1|)) NIL) (((-1086 |#2|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2609 (($ $) NIL (|has| |#2| (-517)))) (-1220 (((-108) $) NIL (|has| |#2| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-799 |#1|))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2701 (($ $) NIL (|has| |#2| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-799 |#1|) "failed") $) NIL)) (-2068 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-799 |#1|) $) NIL)) (-3048 (($ $ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-3306 (($ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#2| (-843)))) (-2187 (($ $ |#2| (-497 (-799 |#1|)) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-3110 (($ (-1086 |#2|) (-799 |#1|)) NIL) (($ (-1086 $) (-799 |#1|)) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#2| (-497 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-799 |#1|)) NIL)) (-3762 (((-497 (-799 |#1|)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-1260 (($ $ $) NIL (|has| |#2| (-789)))) (-2154 (($ $ $) NIL (|has| |#2| (-789)))) (-2078 (($ (-1 (-497 (-799 |#1|)) (-497 (-799 |#1|))) $) NIL)) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-3869 (((-3 (-799 |#1|) "failed") $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#2| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1707 (((-1073) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-799 |#1|)) (|:| -1737 (-713))) "failed") $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#2| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2675 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-799 |#1|) |#2|) NIL) (($ $ (-592 (-799 |#1|)) (-592 |#2|)) NIL) (($ $ (-799 |#1|) $) NIL) (($ $ (-592 (-799 |#1|)) (-592 $)) NIL)) (-2257 (($ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-1576 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-1486 (((-497 (-799 |#1|)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-799 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2758 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-799 |#1|)) NIL) (($ $) NIL (|has| |#2| (-517))) (($ (-385 (-525))) NIL (-3215 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525))))))) (-3681 (((-592 |#2|) $) NIL)) (-2100 ((|#2| $ (-497 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3973 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-674 |#1| |#2|) (-883 |#2| (-497 (-799 |#1|)) (-799 |#1|)) (-592 (-1090)) (-976)) (T -674)) +NIL +(-883 |#2| (-497 (-799 |#1|)) (-799 |#1|)) +((-1755 (((-2 (|:| -3207 (-886 |#3|)) (|:| -4134 (-886 |#3|))) |#4|) 14)) (-3223 ((|#4| |#4| |#2|) 33)) (-1994 ((|#4| (-385 (-886 |#3|)) |#2|) 64)) (-1412 ((|#4| (-1086 (-886 |#3|)) |#2|) 77)) (-2382 ((|#4| (-1086 |#4|) |#2|) 51)) (-2756 ((|#4| |#4| |#2|) 54)) (-2961 (((-396 |#4|) |#4|) 40))) +(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1755 ((-2 (|:| -3207 (-886 |#3|)) (|:| -4134 (-886 |#3|))) |#4|)) (-15 -2756 (|#4| |#4| |#2|)) (-15 -2382 (|#4| (-1086 |#4|) |#2|)) (-15 -3223 (|#4| |#4| |#2|)) (-15 -1412 (|#4| (-1086 (-886 |#3|)) |#2|)) (-15 -1994 (|#4| (-385 (-886 |#3|)) |#2|)) (-15 -2961 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)))) (-517) (-883 (-385 (-886 |#3|)) |#1| |#2|)) (T -675)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) (-4 *6 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-883 (-385 (-886 *6)) *4 *5)))) (-1994 (*1 *2 *3 *4) (-12 (-4 *6 (-517)) (-4 *2 (-883 *3 *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-5 *3 (-385 (-886 *6))) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 (-886 *6))) (-4 *6 (-517)) (-4 *2 (-883 (-385 (-886 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))))) (-3223 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-883 (-385 (-886 *5)) *4 *3)))) (-2382 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-883 (-385 (-886 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) (-4 *6 (-517)))) (-2756 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-883 (-385 (-886 *5)) *4 *3)))) (-1755 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) (-4 *6 (-517)) (-5 *2 (-2 (|:| -3207 (-886 *6)) (|:| -4134 (-886 *6)))) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-883 (-385 (-886 *6)) *4 *5))))) +(-10 -7 (-15 -1755 ((-2 (|:| -3207 (-886 |#3|)) (|:| -4134 (-886 |#3|))) |#4|)) (-15 -2756 (|#4| |#4| |#2|)) (-15 -2382 (|#4| (-1086 |#4|) |#2|)) (-15 -3223 (|#4| |#4| |#2|)) (-15 -1412 (|#4| (-1086 (-886 |#3|)) |#2|)) (-15 -1994 (|#4| (-385 (-886 |#3|)) |#2|)) (-15 -2961 ((-396 |#4|) |#4|))) +((-2961 (((-396 |#4|) |#4|) 52))) +(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2961 ((-396 |#4|) |#4|))) (-735) (-789) (-13 (-286) (-138)) (-883 (-385 |#3|) |#1| |#2|)) (T -676)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-883 (-385 *6) *4 *5))))) +(-10 -7 (-15 -2961 ((-396 |#4|) |#4|))) +((-2868 (((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)) 18))) +(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -2868 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)))) (-976) (-976) (-669)) (T -677)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-976)) (-4 *6 (-976)) (-4 *7 (-669)) (-5 *2 (-678 *6 *7)) (-5 *1 (-677 *5 *6 *7))))) +(-10 -7 (-15 -2868 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 28)) (-3423 (((-592 (-2 (|:| -2059 |#1|) (|:| -1784 |#2|))) $) 29)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1651 (((-713)) 20 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2068 ((|#2| $) NIL) ((|#1| $) NIL)) (-3306 (($ $) 79 (|has| |#2| (-789)))) (-1645 (((-3 $ "failed") $) 65)) (-1527 (($) 35 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) 55)) (-1585 (((-592 $) $) 39)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| |#2|) 16)) (-2868 (($ (-1 |#1| |#1|) $) 54)) (-2111 (((-855) $) 32 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-3277 ((|#2| $) 78 (|has| |#2| (-789)))) (-3286 ((|#1| $) 77 (|has| |#2| (-789)))) (-1707 (((-1073) $) NIL)) (-3381 (($ (-855)) 27 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 76) (($ (-525)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-592 (-2 (|:| -2059 |#1|) (|:| -1784 |#2|)))) 11)) (-3681 (((-592 |#1|) $) 41)) (-2100 ((|#1| $ |#2|) 88)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 12 T CONST)) (-1449 (($) 33 T CONST)) (-3899 (((-108) $ $) 80)) (-4033 (($ $) 47) (($ $ $) NIL)) (-4017 (($ $ $) 26)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))))) +(((-678 |#1| |#2|) (-13 (-976) (-967 |#2|) (-967 |#1|) (-10 -8 (-15 -3097 ($ |#1| |#2|)) (-15 -2100 (|#1| $ |#2|)) (-15 -4044 ($ (-592 (-2 (|:| -2059 |#1|) (|:| -1784 |#2|))))) (-15 -3423 ((-592 (-2 (|:| -2059 |#1|) (|:| -1784 |#2|))) $)) (-15 -2868 ($ (-1 |#1| |#1|) $)) (-15 -1432 ((-108) $)) (-15 -3681 ((-592 |#1|) $)) (-15 -1585 ((-592 $) $)) (-15 -3682 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -3277 (|#2| $)) (-15 -3286 (|#1| $)) (-15 -3306 ($ $))) |%noBranch|))) (-976) (-669)) (T -678)) +((-3097 (*1 *1 *2 *3) (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-976)) (-4 *3 (-669)))) (-2100 (*1 *2 *1 *3) (-12 (-4 *2 (-976)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -2059 *3) (|:| -1784 *4)))) (-4 *3 (-976)) (-4 *4 (-669)) (-5 *1 (-678 *3 *4)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -2059 *3) (|:| -1784 *4)))) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-678 *3 *4)) (-4 *4 (-669)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-3277 (*1 *2 *1) (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2)) (-4 *3 (-976)))) (-3286 (*1 *2 *1) (-12 (-4 *2 (-976)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *3 (-669)))) (-3306 (*1 *1 *1) (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-976)) (-4 *3 (-669))))) +(-13 (-976) (-967 |#2|) (-967 |#1|) (-10 -8 (-15 -3097 ($ |#1| |#2|)) (-15 -2100 (|#1| $ |#2|)) (-15 -4044 ($ (-592 (-2 (|:| -2059 |#1|) (|:| -1784 |#2|))))) (-15 -3423 ((-592 (-2 (|:| -2059 |#1|) (|:| -1784 |#2|))) $)) (-15 -2868 ($ (-1 |#1| |#1|) $)) (-15 -1432 ((-108) $)) (-15 -3681 ((-592 |#1|) $)) (-15 -1585 ((-592 $) $)) (-15 -3682 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -3277 (|#2| $)) (-15 -3286 (|#1| $)) (-15 -3306 ($ $))) |%noBranch|))) +((-4028 (((-108) $ $) 19)) (-2272 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3893 (($ $ $) 72)) (-2398 (((-108) $ $) 73)) (-2583 (((-108) $ (-713)) 8)) (-3792 (($ (-592 |#1|)) 68) (($) 67)) (-2696 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-2987 (($ $) 62)) (-1716 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2591 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22)) (-2021 (($ $ $) 69)) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-3027 (((-1037) $) 21)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3676 (((-592 (-2 (|:| -3978 |#1|) (|:| -3053 (-713)))) $) 61)) (-2472 (($ $ |#1|) 71) (($ $ $) 70)) (-3607 (($) 49) (($ (-592 |#1|)) 48)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 50)) (-4044 (((-797) $) 18)) (-3012 (($ (-592 |#1|)) 66) (($) 65)) (-1326 (($ (-592 |#1|)) 42)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20)) (-3928 (((-108) $ $) 64)) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-679 |#1|) (-131) (-1019)) (T -679)) +NIL +(-13 (-637 |t#1|) (-1017 |t#1|)) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-637 |#1|) . T) ((-1017 |#1|) . T) ((-1019) . T) ((-1126) . T)) +((-4028 (((-108) $ $) NIL)) (-2272 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3893 (($ $ $) 79)) (-2398 (((-108) $ $) 83)) (-2583 (((-108) $ (-713)) NIL)) (-3792 (($ (-592 |#1|)) 24) (($) 16)) (-2696 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-2987 (($ $) 71)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1640 (($ |#1| $) 61 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4254))) (($ |#1| $ (-525)) 62) (($ (-1 (-108) |#1|) $ (-525)) 65)) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (($ |#1| $ (-525)) 67) (($ (-1 (-108) |#1|) $ (-525)) 68)) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-3781 (((-592 |#1|) $) 32 (|has| $ (-6 -4254)))) (-3728 (($) 14) (($ |#1|) 26) (($ (-592 |#1|)) 21)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) 38)) (-1883 (((-108) |#1| $) 58 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 75)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2021 (($ $ $) 77)) (-2434 ((|#1| $) 55)) (-4157 (($ |#1| $) 56) (($ |#1| $ (-713)) 72)) (-3027 (((-1037) $) NIL)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3672 ((|#1| $) 54)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 50)) (-3266 (($) 13)) (-3676 (((-592 (-2 (|:| -3978 |#1|) (|:| -3053 (-713)))) $) 48)) (-2472 (($ $ |#1|) NIL) (($ $ $) 78)) (-3607 (($) 15) (($ (-592 |#1|)) 23)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) 60 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) 66)) (-2923 (((-501) $) 36 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 20)) (-4044 (((-797) $) 44)) (-3012 (($ (-592 |#1|)) 25) (($) 17)) (-1326 (($ (-592 |#1|)) 22)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 81)) (-3928 (((-108) $ $) 82)) (-1696 (((-713) $) 59 (|has| $ (-6 -4254))))) +(((-680 |#1|) (-13 (-679 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -3728 ($)) (-15 -3728 ($ |#1|)) (-15 -3728 ($ (-592 |#1|))) (-15 -2679 ((-592 |#1|) $)) (-15 -2591 ($ |#1| $ (-525))) (-15 -2591 ($ (-1 (-108) |#1|) $ (-525))) (-15 -1640 ($ |#1| $ (-525))) (-15 -1640 ($ (-1 (-108) |#1|) $ (-525))))) (-1019)) (T -680)) +((-3728 (*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1019)))) (-3728 (*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1019)))) (-3728 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-680 *3)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1019)))) (-2591 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1019)))) (-2591 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1019)) (-5 *1 (-680 *4)))) (-1640 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1019)))) (-1640 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1019)) (-5 *1 (-680 *4))))) +(-13 (-679 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -3728 ($)) (-15 -3728 ($ |#1|)) (-15 -3728 ($ (-592 |#1|))) (-15 -2679 ((-592 |#1|) $)) (-15 -2591 ($ |#1| $ (-525))) (-15 -2591 ($ (-1 (-108) |#1|) $ (-525))) (-15 -1640 ($ |#1| $ (-525))) (-15 -1640 ($ (-1 (-108) |#1|) $ (-525))))) +((-2228 (((-1177) (-1073)) 8))) +(((-681) (-10 -7 (-15 -2228 ((-1177) (-1073))))) (T -681)) +((-2228 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-681))))) +(-10 -7 (-15 -2228 ((-1177) (-1073)))) +((-3905 (((-592 |#1|) (-592 |#1|) (-592 |#1|)) 10))) +(((-682 |#1|) (-10 -7 (-15 -3905 ((-592 |#1|) (-592 |#1|) (-592 |#1|)))) (-789)) (T -682)) +((-3905 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3))))) +(-10 -7 (-15 -3905 ((-592 |#1|) (-592 |#1|) (-592 |#1|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3122 (((-592 |#2|) $) 136)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 129 (|has| |#1| (-517)))) (-2609 (($ $) 128 (|has| |#1| (-517)))) (-1220 (((-108) $) 126 (|has| |#1| (-517)))) (-3915 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 68 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) 19)) (-2975 (($ $) 67 (|has| |#1| (-37 (-385 (-525)))))) (-3886 (($ $) 84 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 69 (|has| |#1| (-37 (-385 (-525)))))) (-3946 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 70 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) 17 T CONST)) (-3306 (($ $) 120)) (-1645 (((-3 $ "failed") $) 34)) (-3648 (((-886 |#1|) $ (-713)) 98) (((-886 |#1|) $ (-713) (-713)) 97)) (-3951 (((-108) $) 137)) (-1961 (($) 95 (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-713) $ |#2|) 100) (((-713) $ |#2| (-713)) 99)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 66 (|has| |#1| (-37 (-385 (-525)))))) (-1432 (((-108) $) 118)) (-3097 (($ $ (-592 |#2|) (-592 (-497 |#2|))) 135) (($ $ |#2| (-497 |#2|)) 134) (($ |#1| (-497 |#2|)) 119) (($ $ |#2| (-713)) 102) (($ $ (-592 |#2|) (-592 (-713))) 101)) (-2868 (($ (-1 |#1| |#1|) $) 117)) (-2412 (($ $) 92 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) 115)) (-3286 ((|#1| $) 114)) (-1707 (((-1073) $) 9)) (-2313 (($ $ |#2|) 96 (|has| |#1| (-37 (-385 (-525)))))) (-3027 (((-1037) $) 10)) (-1539 (($ $ (-713)) 103)) (-2675 (((-3 $ "failed") $ $) 130 (|has| |#1| (-517)))) (-2840 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (($ $ |#2| $) 111) (($ $ (-592 |#2|) (-592 $)) 110) (($ $ (-592 (-273 $))) 109) (($ $ (-273 $)) 108) (($ $ $ $) 107) (($ $ (-592 $) (-592 $)) 106)) (-1576 (($ $ |#2|) 42) (($ $ (-592 |#2|)) 41) (($ $ |#2| (-713)) 40) (($ $ (-592 |#2|) (-592 (-713))) 39)) (-1486 (((-497 |#2|) $) 116)) (-3960 (($ $) 82 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 71 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 80 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) 138)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 133 (|has| |#1| (-160))) (($ $) 131 (|has| |#1| (-517))) (($ (-385 (-525))) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2100 ((|#1| $ (-497 |#2|)) 121) (($ $ |#2| (-713)) 105) (($ $ (-592 |#2|) (-592 (-713))) 104)) (-1279 (((-3 $ "failed") $) 132 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-4004 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) 127 (|has| |#1| (-517)))) (-3975 (($ $) 90 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 78 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 77 (|has| |#1| (-37 (-385 (-525)))))) (-2608 (($ $) 88 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 76 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 75 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 86 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 74 (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ |#2|) 38) (($ $ (-592 |#2|)) 37) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) 35)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 122 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ $) 94 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 65 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 125 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 124 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 113) (($ $ |#1|) 112))) +(((-683 |#1| |#2|) (-131) (-976) (-789)) (T -683)) +((-2100 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-976)) (-4 *2 (-789)))) (-2100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) (-4 *5 (-789)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-976)) (-4 *4 (-789)))) (-3097 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-976)) (-4 *2 (-789)))) (-3097 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) (-4 *5 (-789)))) (-2158 (*1 *2 *1 *3) (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-976)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2158 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-976)) (-4 *3 (-789)))) (-3648 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) (-4 *5 (-789)) (-5 *2 (-886 *4)))) (-3648 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) (-4 *5 (-789)) (-5 *2 (-886 *4)))) (-2313 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-976)) (-4 *2 (-789)) (-4 *3 (-37 (-385 (-525))))))) +(-13 (-834 |t#2|) (-905 |t#1| (-497 |t#2|) |t#2|) (-486 |t#2| $) (-288 $) (-10 -8 (-15 -2100 ($ $ |t#2| (-713))) (-15 -2100 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -1539 ($ $ (-713))) (-15 -3097 ($ $ |t#2| (-713))) (-15 -3097 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -2158 ((-713) $ |t#2|)) (-15 -2158 ((-713) $ |t#2| (-713))) (-15 -3648 ((-886 |t#1|) $ (-713))) (-15 -3648 ((-886 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $ |t#2|)) (-6 (-933)) (-6 (-1112))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-497 |#2|)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-269) |has| |#1| (-517)) ((-288 $) . T) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 |#2| $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-834 |#2|) . T) ((-905 |#1| #0# |#2|) . T) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-982 #1#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525))))) +((-2961 (((-396 (-1086 |#4|)) (-1086 |#4|)) 30) (((-396 |#4|) |#4|) 26))) +(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2961 ((-396 |#4|) |#4|)) (-15 -2961 ((-396 (-1086 |#4|)) (-1086 |#4|)))) (-789) (-735) (-13 (-286) (-138)) (-883 |#3| |#2| |#1|)) (T -684)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4))))) +(-10 -7 (-15 -2961 ((-396 |#4|) |#4|)) (-15 -2961 ((-396 (-1086 |#4|)) (-1086 |#4|)))) +((-3812 (((-396 |#4|) |#4| |#2|) 118)) (-3689 (((-396 |#4|) |#4|) NIL)) (-1259 (((-396 (-1086 |#4|)) (-1086 |#4|)) 109) (((-396 |#4|) |#4|) 40)) (-2002 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -2961 (-1086 |#4|)) (|:| -1737 (-525)))))) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 68)) (-3910 (((-1086 |#3|) (-1086 |#3|) (-525)) 136)) (-2954 (((-592 (-713)) (-1086 |#4|) (-592 |#2|) (-713)) 60)) (-3325 (((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|)) 64)) (-3383 (((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 25)) (-1558 (((-2 (|:| -3932 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-525)) 56)) (-1322 (((-525) (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525))))) 133)) (-3359 ((|#4| (-525) (-396 |#4|)) 57)) (-1310 (((-108) (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525)))) (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525))))) NIL))) +(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1259 ((-396 |#4|) |#4|)) (-15 -1259 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3689 ((-396 |#4|) |#4|)) (-15 -1322 ((-525) (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525)))))) (-15 -3812 ((-396 |#4|) |#4| |#2|)) (-15 -1558 ((-2 (|:| -3932 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-525))) (-15 -2002 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -2961 (-1086 |#4|)) (|:| -1737 (-525)))))) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3383 ((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3359 (|#4| (-525) (-396 |#4|))) (-15 -1310 ((-108) (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525)))) (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525)))))) (-15 -3325 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -2954 ((-592 (-713)) (-1086 |#4|) (-592 |#2|) (-713))) (-15 -3910 ((-1086 |#3|) (-1086 |#3|) (-525)))) (-735) (-789) (-286) (-883 |#3| |#1| |#2|)) (T -685)) +((-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) (-2954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) (-4 *8 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-713)))) (-3325 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-592 *10)) (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789)) (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-883 *11 *9 *10)) (-5 *2 (-592 (-1086 *5))) (-5 *1 (-685 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) (-1310 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-2 (|:| -2961 (-1086 *6)) (|:| -1737 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-883 *7 *5 *6)) (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-286)))) (-3383 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-592 *8)) (|:| |Lfact| (-592 (-2 (|:| -2961 (-1086 *8)) (|:| -1737 (-525))))) (|:| |ctpol| *8))) (-5 *1 (-685 *6 *7 *8 *9)))) (-2002 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-883 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-592 (-2 (|:| -2961 (-1086 *9)) (|:| -1737 (-525))))))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))) (-1558 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-883 *8 *6 *7)) (-5 *2 (-2 (|:| -3932 (-1086 *9)) (|:| |polval| (-1086 *8)))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))) (-3812 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-883 *6 *5 *4)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2961 (-1086 *6)) (|:| -1737 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-883 *6 *4 *5)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-883 *6 *4 *5))))) +(-10 -7 (-15 -1259 ((-396 |#4|) |#4|)) (-15 -1259 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3689 ((-396 |#4|) |#4|)) (-15 -1322 ((-525) (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525)))))) (-15 -3812 ((-396 |#4|) |#4| |#2|)) (-15 -1558 ((-2 (|:| -3932 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-525))) (-15 -2002 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -2961 (-1086 |#4|)) (|:| -1737 (-525)))))) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3383 ((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3359 (|#4| (-525) (-396 |#4|))) (-15 -1310 ((-108) (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525)))) (-592 (-2 (|:| -2961 (-1086 |#3|)) (|:| -1737 (-525)))))) (-15 -3325 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -2954 ((-592 (-713)) (-1086 |#4|) (-592 |#2|) (-713))) (-15 -3910 ((-1086 |#3|) (-1086 |#3|) (-525)))) +((-1404 (($ $ (-855)) 12))) +(((-686 |#1| |#2|) (-10 -8 (-15 -1404 (|#1| |#1| (-855)))) (-687 |#2|) (-160)) (T -686)) +NIL +(-10 -8 (-15 -1404 (|#1| |#1| (-855)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1469 (($ $ (-855)) 28)) (-1404 (($ $ (-855)) 33)) (-2148 (($ $ (-855)) 29)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1573 (($ $ $) 25)) (-4044 (((-797) $) 11)) (-1762 (($ $ $ $) 26)) (-2407 (($ $ $) 24)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-687 |#1|) (-131) (-160)) (T -687)) +((-1404 (*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-687 *3)) (-4 *3 (-160))))) +(-13 (-704) (-660 |t#1|) (-10 -8 (-15 -1404 ($ $ (-855))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-704) . T) ((-982 |#1|) . T) ((-1019) . T)) +((-4066 (((-965) (-632 (-205)) (-525) (-108) (-525)) 25)) (-1481 (((-965) (-632 (-205)) (-525) (-108) (-525)) 24))) +(((-688) (-10 -7 (-15 -1481 ((-965) (-632 (-205)) (-525) (-108) (-525))) (-15 -4066 ((-965) (-632 (-205)) (-525) (-108) (-525))))) (T -688)) +((-4066 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-965)) (-5 *1 (-688)))) (-1481 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-965)) (-5 *1 (-688))))) +(-10 -7 (-15 -1481 ((-965) (-632 (-205)) (-525) (-108) (-525))) (-15 -4066 ((-965) (-632 (-205)) (-525) (-108) (-525)))) +((-1489 (((-965) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) 43)) (-1236 (((-965) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) 39)) (-1291 (((-965) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) 32))) +(((-689) (-10 -7 (-15 -1291 ((-965) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -1236 ((-965) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -1489 ((-965) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))) (T -689)) +((-1489 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-965)) (-5 *1 (-689)))) (-1236 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-965)) (-5 *1 (-689)))) (-1291 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *2 (-965)) (-5 *1 (-689))))) +(-10 -7 (-15 -1291 ((-965) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -1236 ((-965) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -1489 ((-965) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))))) +((-2892 (((-965) (-525) (-525) (-632 (-205)) (-525)) 34)) (-1710 (((-965) (-525) (-525) (-632 (-205)) (-525)) 33)) (-2695 (((-965) (-525) (-632 (-205)) (-525)) 32)) (-1505 (((-965) (-525) (-632 (-205)) (-525)) 31)) (-3586 (((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 30)) (-2236 (((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-3073 (((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-3664 (((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-1660 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-4186 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-2737 (((-965) (-525) (-632 (-205)) (-525)) 22)) (-2812 (((-965) (-525) (-632 (-205)) (-525)) 21))) +(((-690) (-10 -7 (-15 -2812 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2737 ((-965) (-525) (-632 (-205)) (-525))) (-15 -4186 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1660 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3664 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3073 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2236 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3586 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1505 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2695 ((-965) (-525) (-632 (-205)) (-525))) (-15 -1710 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -2892 ((-965) (-525) (-525) (-632 (-205)) (-525))))) (T -690)) +((-2892 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-1710 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2695 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-1505 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-3586 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2236 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-3073 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-3664 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-1660 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-4186 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2737 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2812 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690))))) +(-10 -7 (-15 -2812 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2737 ((-965) (-525) (-632 (-205)) (-525))) (-15 -4186 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1660 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3664 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3073 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2236 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3586 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1505 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2695 ((-965) (-525) (-632 (-205)) (-525))) (-15 -1710 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -2892 ((-965) (-525) (-525) (-632 (-205)) (-525)))) +((-1684 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 52)) (-3517 (((-965) (-632 (-205)) (-632 (-205)) (-525) (-525)) 51)) (-1873 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2612 (((-965) (-205) (-205) (-525) (-525) (-525) (-525)) 46)) (-2273 (((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 45)) (-1910 (((-965) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 44)) (-3751 (((-965) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 43)) (-3132 (((-965) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 42)) (-2264 (((-965) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) 38)) (-1962 (((-965) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) 37)) (-2968 (((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) 33)) (-2290 (((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) 32))) +(((-691) (-10 -7 (-15 -2290 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -2968 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -1962 ((-965) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -2264 ((-965) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -3132 ((-965) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3751 ((-965) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1910 ((-965) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2273 ((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2612 ((-965) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -1873 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -3517 ((-965) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -1684 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))) (T -691)) +((-1684 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-3517 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-691)))) (-1873 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-2612 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-691)))) (-2273 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-1910 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-3751 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-3132 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-2264 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-1962 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-691)))) (-2968 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-2290 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *2 (-965)) (-5 *1 (-691))))) +(-10 -7 (-15 -2290 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -2968 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -1962 ((-965) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -2264 ((-965) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896))))) (-15 -3132 ((-965) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3751 ((-965) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -1910 ((-965) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2273 ((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2612 ((-965) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -1873 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -3517 ((-965) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -1684 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))))) +((-2400 (((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2230 (((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366)) 69) (((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3832 (((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) 57)) (-3127 (((-965) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 50)) (-1802 (((-965) (-205) (-525) (-525) (-1073) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1790 (((-965) (-205) (-525) (-525) (-205) (-1073) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 45)) (-4137 (((-965) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 42)) (-3022 (((-965) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 38))) +(((-692) (-10 -7 (-15 -3022 ((-965) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -4137 ((-965) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -1790 ((-965) (-205) (-525) (-525) (-205) (-1073) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1802 ((-965) (-205) (-525) (-525) (-1073) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3127 ((-965) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3832 ((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -2230 ((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -2230 ((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -2400 ((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -692)) +((-2400 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-692)))) (-2230 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-366)) (-5 *2 (-965)) (-5 *1 (-692)))) (-2230 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-965)) (-5 *1 (-692)))) (-3832 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-692)))) (-3127 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-965)) (-5 *1 (-692)))) (-1802 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-525)) (-5 *5 (-1073)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-692)))) (-1790 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-525)) (-5 *5 (-1073)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-692)))) (-4137 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-692)))) (-3022 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-692))))) +(-10 -7 (-15 -3022 ((-965) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -4137 ((-965) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -1790 ((-965) (-205) (-525) (-525) (-205) (-1073) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1802 ((-965) (-205) (-525) (-525) (-1073) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3127 ((-965) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3832 ((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -2230 ((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -2230 ((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -2400 ((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))))) +((-4155 (((-965) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525)) 45)) (-2036 (((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1073) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) 41)) (-1518 (((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 23))) +(((-693) (-10 -7 (-15 -1518 ((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2036 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1073) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -4155 ((-965) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525))))) (T -693)) +((-4155 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-620 (-205))) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-693)))) (-2036 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1073)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-965)) (-5 *1 (-693)))) (-1518 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-693))))) +(-10 -7 (-15 -1518 ((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2036 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1073) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -4155 ((-965) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525)))) +((-2909 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525)) 35)) (-1495 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525)) 34)) (-2055 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525)) 33)) (-3772 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-3657 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-2043 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525)) 27)) (-1364 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 24)) (-2817 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 23)) (-4222 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525)) 22)) (-2268 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 21))) +(((-694) (-10 -7 (-15 -2268 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -4222 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2817 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1364 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2043 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -3657 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3772 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2055 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -1495 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -2909 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525))))) (T -694)) +((-2909 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-694)))) (-1495 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-694)))) (-2055 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-694)))) (-3772 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-3657 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-2043 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-694)))) (-1364 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-2817 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-4222 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-2268 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694))))) +(-10 -7 (-15 -2268 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -4222 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2817 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1364 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2043 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -3657 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3772 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2055 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -1495 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -2909 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525)))) +((-3807 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 45)) (-4203 (((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525)) 44)) (-1494 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 43)) (-4010 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 42)) (-1584 (((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525)) 41)) (-2172 (((-965) (-1073) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 40)) (-2354 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525)) 39)) (-1245 (((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525))) 38)) (-3788 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525)) 35)) (-2265 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525)) 34)) (-1398 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525)) 33)) (-1988 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 32)) (-1894 (((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525)) 31)) (-3093 (((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525)) 30)) (-2930 (((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 29)) (-1941 (((-965) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525)) 28)) (-4071 (((-965) (-525) (-632 (-205)) (-205) (-525)) 24)) (-3929 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 21))) +(((-695) (-10 -7 (-15 -3929 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4071 ((-965) (-525) (-632 (-205)) (-205) (-525))) (-15 -1941 ((-965) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -2930 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3093 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -1894 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -1988 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1398 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -2265 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -3788 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1245 ((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -2354 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -2172 ((-965) (-1073) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -1584 ((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4010 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1494 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -4203 ((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3807 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))))) (T -695)) +((-3807 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-4203 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-1494 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-4010 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-1584 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-2172 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1073)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-695)))) (-2354 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-695)))) (-1245 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1073)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-695)))) (-3788 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-2265 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-1398 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-1988 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-1894 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-3093 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-2930 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-1941 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-4071 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-3929 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695))))) +(-10 -7 (-15 -3929 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4071 ((-965) (-525) (-632 (-205)) (-205) (-525))) (-15 -1941 ((-965) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -2930 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3093 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -1894 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -1988 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1398 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -2265 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -3788 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1245 ((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -2354 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -2172 ((-965) (-1073) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -1584 ((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4010 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1494 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -4203 ((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3807 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)))) +((-1718 (((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525)) 63)) (-2718 (((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1849 (((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) 58)) (-2644 (((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525)) 51)) (-1869 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1662 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) 46)) (-3432 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2749 (((-965) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 38))) +(((-696) (-10 -7 (-15 -2749 ((-965) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -3432 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -1662 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -1869 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -2644 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -1849 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -2718 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -1718 ((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525))))) (T -696)) +((-1718 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-696)))) (-2718 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-696)))) (-1849 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-632 (-205))) (-5 *6 (-108)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-696)))) (-2644 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *2 (-965)) (-5 *1 (-696)))) (-1869 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-965)) (-5 *1 (-696)))) (-1662 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-965)) (-5 *1 (-696)))) (-3432 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-965)) (-5 *1 (-696)))) (-2749 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-696))))) +(-10 -7 (-15 -2749 ((-965) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -3432 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -1662 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -1869 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -2644 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -1849 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -2718 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -1718 ((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525)))) +((-2600 (((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 47)) (-3821 (((-965) (-1073) (-1073) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525)) 46)) (-3002 (((-965) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 45)) (-2641 (((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 40)) (-2522 (((-965) (-1073) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525)) 39)) (-2827 (((-965) (-525) (-525) (-525) (-632 (-205)) (-525)) 36)) (-3333 (((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525)) 35)) (-1808 (((-965) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525)) 34)) (-3550 (((-965) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525)) 33)) (-2156 (((-965) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525)) 32))) +(((-697) (-10 -7 (-15 -2156 ((-965) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -3550 ((-965) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -1808 ((-965) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -3333 ((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -2827 ((-965) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -2522 ((-965) (-1073) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -2641 ((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3002 ((-965) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3821 ((-965) (-1073) (-1073) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2600 ((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -697)) +((-2600 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-697)))) (-3821 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-697)))) (-3002 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-697)))) (-2641 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-697)))) (-2522 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-697)))) (-2827 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-697)))) (-3333 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-697)))) (-1808 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-697)))) (-3550 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-632 (-525))) (-5 *5 (-108)) (-5 *7 (-632 (-205))) (-5 *3 (-525)) (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-697)))) (-2156 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205))) (-5 *8 (-632 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *2 (-965)) (-5 *1 (-697))))) +(-10 -7 (-15 -2156 ((-965) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -3550 ((-965) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -1808 ((-965) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -3333 ((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -2827 ((-965) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -2522 ((-965) (-1073) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -2641 ((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3002 ((-965) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3821 ((-965) (-1073) (-1073) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2600 ((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)))) +((-1916 (((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 65)) (-1965 (((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 60)) (-4088 (((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366)) 56) (((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) 55)) (-3719 (((-965) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 37)) (-3640 (((-965) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525)) 33)) (-2511 (((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 30)) (-3937 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-3540 (((-965) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-3476 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-3927 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525)) 26)) (-1555 (((-965) (-525) (-525) (-632 (-205)) (-525)) 25)) (-1392 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-2680 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-2574 (((-965) (-632 (-205)) (-525) (-525) (-525) (-525)) 22)) (-1414 (((-965) (-525) (-525) (-632 (-205)) (-525)) 21))) +(((-698) (-10 -7 (-15 -1414 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -2574 ((-965) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -2680 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1392 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1555 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -3927 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -3476 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3540 ((-965) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3937 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2511 ((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3640 ((-965) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -3719 ((-965) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4088 ((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -4088 ((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -1965 ((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1916 ((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -698)) +((-1916 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-698)))) (-1965 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-4088 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366)) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-698)))) (-4088 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-698)))) (-3719 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-698)))) (-3640 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-698)))) (-2511 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-698)))) (-3937 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-3540 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-3476 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-3927 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-1555 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-1392 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-2680 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-2574 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-698)))) (-1414 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698))))) +(-10 -7 (-15 -1414 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -2574 ((-965) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -2680 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1392 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1555 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -3927 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -3476 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3540 ((-965) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3937 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2511 ((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -3640 ((-965) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -3719 ((-965) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4088 ((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -4088 ((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -1965 ((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1916 ((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)))) +((-2356 (((-965) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) 61)) (-3837 (((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525)) 57)) (-3010 (((-965) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) 56)) (-3707 (((-965) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 37)) (-1822 (((-965) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525)) 36)) (-1903 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 33)) (-2913 (((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205))) 32)) (-2144 (((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525)) 28)) (-2146 (((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 27)) (-2645 (((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 26)) (-2276 (((-965) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 22))) +(((-699) (-10 -7 (-15 -2276 ((-965) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2645 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2146 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2144 ((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -2913 ((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -1903 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1822 ((-965) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3707 ((-965) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -3010 ((-965) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -3837 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -2356 ((-965) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))) (T -699)) +((-2356 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-699)))) (-3837 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-699)))) (-3010 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-965)) (-5 *1 (-699)))) (-3707 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-699)))) (-1822 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-699)))) (-1903 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-699)))) (-2913 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-699)))) (-2144 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-699)))) (-2146 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-699)))) (-2645 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-699)))) (-2276 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-699))))) +(-10 -7 (-15 -2276 ((-965) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2645 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2146 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2144 ((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -2913 ((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -1903 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1822 ((-965) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3707 ((-965) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -3010 ((-965) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -3837 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -2356 ((-965) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))))) +((-4063 (((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205))) 29)) (-2203 (((-965) (-1073) (-525) (-525) (-632 (-205))) 28)) (-2928 (((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205))) 27)) (-2269 (((-965) (-525) (-525) (-525) (-632 (-205))) 21))) +(((-700) (-10 -7 (-15 -2269 ((-965) (-525) (-525) (-525) (-632 (-205)))) (-15 -2928 ((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -2203 ((-965) (-1073) (-525) (-525) (-632 (-205)))) (-15 -4063 ((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)))))) (T -700)) +((-4063 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-700)))) (-2203 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-700)))) (-2928 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1073)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-700)))) (-2269 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-700))))) +(-10 -7 (-15 -2269 ((-965) (-525) (-525) (-525) (-632 (-205)))) (-15 -2928 ((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -2203 ((-965) (-1073) (-525) (-525) (-632 (-205)))) (-15 -4063 ((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205))))) +((-3409 (((-965) (-205) (-205) (-205) (-205) (-525)) 62)) (-2703 (((-965) (-205) (-205) (-205) (-525)) 61)) (-2903 (((-965) (-205) (-205) (-205) (-525)) 60)) (-1733 (((-965) (-205) (-205) (-525)) 59)) (-2282 (((-965) (-205) (-525)) 58)) (-4205 (((-965) (-205) (-525)) 57)) (-3885 (((-965) (-205) (-525)) 56)) (-2969 (((-965) (-205) (-525)) 55)) (-2925 (((-965) (-205) (-525)) 54)) (-3253 (((-965) (-205) (-525)) 53)) (-1669 (((-965) (-205) (-157 (-205)) (-525) (-1073) (-525)) 52)) (-1608 (((-965) (-205) (-157 (-205)) (-525) (-1073) (-525)) 51)) (-3241 (((-965) (-205) (-525)) 50)) (-3544 (((-965) (-205) (-525)) 49)) (-3656 (((-965) (-205) (-525)) 48)) (-1639 (((-965) (-205) (-525)) 47)) (-2211 (((-965) (-525) (-205) (-157 (-205)) (-525) (-1073) (-525)) 46)) (-1666 (((-965) (-1073) (-157 (-205)) (-1073) (-525)) 45)) (-3868 (((-965) (-1073) (-157 (-205)) (-1073) (-525)) 44)) (-2682 (((-965) (-205) (-157 (-205)) (-525) (-1073) (-525)) 43)) (-3633 (((-965) (-205) (-157 (-205)) (-525) (-1073) (-525)) 42)) (-2996 (((-965) (-205) (-525)) 39)) (-3148 (((-965) (-205) (-525)) 38)) (-2260 (((-965) (-205) (-525)) 37)) (-3833 (((-965) (-205) (-525)) 36)) (-1439 (((-965) (-205) (-525)) 35)) (-2496 (((-965) (-205) (-525)) 34)) (-2811 (((-965) (-205) (-525)) 33)) (-1665 (((-965) (-205) (-525)) 32)) (-2796 (((-965) (-205) (-525)) 31)) (-3560 (((-965) (-205) (-525)) 30)) (-2050 (((-965) (-205) (-205) (-205) (-525)) 29)) (-2955 (((-965) (-205) (-525)) 28)) (-2151 (((-965) (-205) (-525)) 27)) (-2558 (((-965) (-205) (-525)) 26)) (-2808 (((-965) (-205) (-525)) 25)) (-2893 (((-965) (-205) (-525)) 24)) (-3976 (((-965) (-157 (-205)) (-525)) 21))) +(((-701) (-10 -7 (-15 -3976 ((-965) (-157 (-205)) (-525))) (-15 -2893 ((-965) (-205) (-525))) (-15 -2808 ((-965) (-205) (-525))) (-15 -2558 ((-965) (-205) (-525))) (-15 -2151 ((-965) (-205) (-525))) (-15 -2955 ((-965) (-205) (-525))) (-15 -2050 ((-965) (-205) (-205) (-205) (-525))) (-15 -3560 ((-965) (-205) (-525))) (-15 -2796 ((-965) (-205) (-525))) (-15 -1665 ((-965) (-205) (-525))) (-15 -2811 ((-965) (-205) (-525))) (-15 -2496 ((-965) (-205) (-525))) (-15 -1439 ((-965) (-205) (-525))) (-15 -3833 ((-965) (-205) (-525))) (-15 -2260 ((-965) (-205) (-525))) (-15 -3148 ((-965) (-205) (-525))) (-15 -2996 ((-965) (-205) (-525))) (-15 -3633 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -2682 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -3868 ((-965) (-1073) (-157 (-205)) (-1073) (-525))) (-15 -1666 ((-965) (-1073) (-157 (-205)) (-1073) (-525))) (-15 -2211 ((-965) (-525) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -1639 ((-965) (-205) (-525))) (-15 -3656 ((-965) (-205) (-525))) (-15 -3544 ((-965) (-205) (-525))) (-15 -3241 ((-965) (-205) (-525))) (-15 -1608 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -1669 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -3253 ((-965) (-205) (-525))) (-15 -2925 ((-965) (-205) (-525))) (-15 -2969 ((-965) (-205) (-525))) (-15 -3885 ((-965) (-205) (-525))) (-15 -4205 ((-965) (-205) (-525))) (-15 -2282 ((-965) (-205) (-525))) (-15 -1733 ((-965) (-205) (-205) (-525))) (-15 -2903 ((-965) (-205) (-205) (-205) (-525))) (-15 -2703 ((-965) (-205) (-205) (-205) (-525))) (-15 -3409 ((-965) (-205) (-205) (-205) (-205) (-525))))) (T -701)) +((-3409 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2703 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2903 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1733 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-4205 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3885 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2969 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3253 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1669 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1608 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3656 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1639 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2211 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-525)) (-5 *5 (-157 (-205))) (-5 *6 (-1073)) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1666 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1073)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3868 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1073)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2682 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3633 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1439 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2050 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2893 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(-10 -7 (-15 -3976 ((-965) (-157 (-205)) (-525))) (-15 -2893 ((-965) (-205) (-525))) (-15 -2808 ((-965) (-205) (-525))) (-15 -2558 ((-965) (-205) (-525))) (-15 -2151 ((-965) (-205) (-525))) (-15 -2955 ((-965) (-205) (-525))) (-15 -2050 ((-965) (-205) (-205) (-205) (-525))) (-15 -3560 ((-965) (-205) (-525))) (-15 -2796 ((-965) (-205) (-525))) (-15 -1665 ((-965) (-205) (-525))) (-15 -2811 ((-965) (-205) (-525))) (-15 -2496 ((-965) (-205) (-525))) (-15 -1439 ((-965) (-205) (-525))) (-15 -3833 ((-965) (-205) (-525))) (-15 -2260 ((-965) (-205) (-525))) (-15 -3148 ((-965) (-205) (-525))) (-15 -2996 ((-965) (-205) (-525))) (-15 -3633 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -2682 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -3868 ((-965) (-1073) (-157 (-205)) (-1073) (-525))) (-15 -1666 ((-965) (-1073) (-157 (-205)) (-1073) (-525))) (-15 -2211 ((-965) (-525) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -1639 ((-965) (-205) (-525))) (-15 -3656 ((-965) (-205) (-525))) (-15 -3544 ((-965) (-205) (-525))) (-15 -3241 ((-965) (-205) (-525))) (-15 -1608 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -1669 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -3253 ((-965) (-205) (-525))) (-15 -2925 ((-965) (-205) (-525))) (-15 -2969 ((-965) (-205) (-525))) (-15 -3885 ((-965) (-205) (-525))) (-15 -4205 ((-965) (-205) (-525))) (-15 -2282 ((-965) (-205) (-525))) (-15 -1733 ((-965) (-205) (-205) (-525))) (-15 -2903 ((-965) (-205) (-205) (-205) (-525))) (-15 -2703 ((-965) (-205) (-205) (-205) (-525))) (-15 -3409 ((-965) (-205) (-205) (-205) (-205) (-525)))) +((-1570 (((-1177)) 18)) (-4119 (((-1073)) 22)) (-2386 (((-1073)) 21)) (-2551 (((-1023) (-1090) (-632 (-525))) 37) (((-1023) (-1090) (-632 (-205))) 32)) (-1912 (((-108)) 16)) (-3730 (((-1073) (-1073)) 25))) +(((-702) (-10 -7 (-15 -2386 ((-1073))) (-15 -4119 ((-1073))) (-15 -3730 ((-1073) (-1073))) (-15 -2551 ((-1023) (-1090) (-632 (-205)))) (-15 -2551 ((-1023) (-1090) (-632 (-525)))) (-15 -1912 ((-108))) (-15 -1570 ((-1177))))) (T -702)) +((-1570 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-702)))) (-1912 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-632 (-525))) (-5 *2 (-1023)) (-5 *1 (-702)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-632 (-205))) (-5 *2 (-1023)) (-5 *1 (-702)))) (-3730 (*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702)))) (-4119 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702)))) (-2386 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702))))) +(-10 -7 (-15 -2386 ((-1073))) (-15 -4119 ((-1073))) (-15 -3730 ((-1073) (-1073))) (-15 -2551 ((-1023) (-1090) (-632 (-205)))) (-15 -2551 ((-1023) (-1090) (-632 (-525)))) (-15 -1912 ((-108))) (-15 -1570 ((-1177)))) +((-1573 (($ $ $) 10)) (-1762 (($ $ $ $) 9)) (-2407 (($ $ $) 12))) +(((-703 |#1|) (-10 -8 (-15 -2407 (|#1| |#1| |#1|)) (-15 -1573 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1| |#1| |#1|))) (-704)) (T -703)) +NIL +(-10 -8 (-15 -2407 (|#1| |#1| |#1|)) (-15 -1573 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1| |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1469 (($ $ (-855)) 28)) (-2148 (($ $ (-855)) 29)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1573 (($ $ $) 25)) (-4044 (((-797) $) 11)) (-1762 (($ $ $ $) 26)) (-2407 (($ $ $) 24)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27))) +(((-704) (-131)) (T -704)) +((-1762 (*1 *1 *1 *1 *1) (-4 *1 (-704))) (-1573 (*1 *1 *1 *1) (-4 *1 (-704))) (-2407 (*1 *1 *1 *1) (-4 *1 (-704)))) +(-13 (-21) (-663) (-10 -8 (-15 -1762 ($ $ $ $)) (-15 -1573 ($ $ $)) (-15 -2407 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-663) . T) ((-1019) . T)) +((-4044 (((-797) $) NIL) (($ (-525)) 10))) +(((-705 |#1|) (-10 -8 (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) (-706)) (T -705)) +NIL +(-10 -8 (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-2256 (((-3 $ "failed") $) 40)) (-1469 (($ $ (-855)) 28) (($ $ (-713)) 35)) (-1645 (((-3 $ "failed") $) 38)) (-2507 (((-108) $) 34)) (-1709 (((-3 $ "failed") $) 39)) (-2148 (($ $ (-855)) 29) (($ $ (-713)) 36)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1573 (($ $ $) 25)) (-4044 (((-797) $) 11) (($ (-525)) 31)) (-2502 (((-713)) 32)) (-1762 (($ $ $ $) 26)) (-2407 (($ $ $) 24)) (-1436 (($) 18 T CONST)) (-1449 (($) 33 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 30) (($ $ (-713)) 37)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27))) +(((-706) (-131)) (T -706)) +((-2502 (*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-713)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-706))))) +(-13 (-704) (-665) (-10 -8 (-15 -2502 ((-713))) (-15 -4044 ($ (-525))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-663) . T) ((-665) . T) ((-704) . T) ((-1019) . T)) +((-1624 (((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|) 33)) (-4091 (((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|) 23)) (-2867 (((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1090)) 20) (((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525))))) 19))) +(((-707 |#1|) (-10 -7 (-15 -2867 ((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -2867 ((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1090))) (-15 -4091 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -1624 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|))) (-13 (-341) (-787))) (T -707)) +((-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 *4))))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-4091 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-2867 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1090)) (-5 *2 (-886 (-157 (-385 (-525))))) (-5 *1 (-707 *5)) (-4 *5 (-13 (-341) (-787))))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-886 (-157 (-385 (-525))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787)))))) +(-10 -7 (-15 -2867 ((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -2867 ((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1090))) (-15 -4091 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -1624 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|))) +((-4089 (((-161 (-525)) |#1|) 25))) +(((-708 |#1|) (-10 -7 (-15 -4089 ((-161 (-525)) |#1|))) (-382)) (T -708)) +((-4089 (*1 *2 *3) (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382))))) +(-10 -7 (-15 -4089 ((-161 (-525)) |#1|))) +((-3826 ((|#1| |#1| |#1|) 24)) (-3506 ((|#1| |#1| |#1|) 23)) (-3355 ((|#1| |#1| |#1|) 32)) (-2979 ((|#1| |#1| |#1|) 28)) (-1734 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3774 (((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|) 22))) +(((-709 |#1| |#2|) (-10 -7 (-15 -3774 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -3506 (|#1| |#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -1734 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2979 (|#1| |#1| |#1|)) (-15 -3355 (|#1| |#1| |#1|))) (-651 |#2|) (-341)) (T -709)) +((-3355 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-2979 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-1734 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3826 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3506 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3774 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4))))) +(-10 -7 (-15 -3774 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -3506 (|#1| |#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -1734 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2979 (|#1| |#1| |#1|)) (-15 -3355 (|#1| |#1| |#1|))) +((-2161 (((-2 (|:| -2734 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)) 59)) (-1920 (((-2 (|:| -2734 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) 57)) (-2257 (((-525)) 70))) +(((-710 |#1| |#2|) (-10 -7 (-15 -2257 ((-525))) (-15 -1920 ((-2 (|:| -2734 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -2161 ((-2 (|:| -2734 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)))) (-1148 (-525)) (-387 (-525) |#1|)) (T -710)) +((-2161 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1148 *3)) (-5 *2 (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-710 *4 *5)) (-4 *5 (-387 *3 *4)))) (-1920 (*1 *2) (-12 (-4 *3 (-1148 (-525))) (-5 *2 (-2 (|:| -2734 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3)))) (-2257 (*1 *2) (-12 (-4 *3 (-1148 *2)) (-5 *2 (-525)) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 *2 *3))))) +(-10 -7 (-15 -2257 ((-525))) (-15 -1920 ((-2 (|:| -2734 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -2161 ((-2 (|:| -2734 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)))) +((-4028 (((-108) $ $) NIL)) (-2068 (((-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $) 21)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 20) (($ (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) 18)) (-3899 (((-108) $ $) NIL))) +(((-711) (-13 (-1019) (-10 -8 (-15 -4044 ($ (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4044 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4044 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -4044 ((-797) $)) (-15 -2068 ((-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))) (T -711)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-711)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711))))) +(-13 (-1019) (-10 -8 (-15 -4044 ($ (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4044 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4044 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -4044 ((-797) $)) (-15 -2068 ((-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $)))) +((-2202 (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|))) 18) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090))) 17)) (-1932 (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|))) 20) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090))) 19))) +(((-712 |#1|) (-10 -7 (-15 -2202 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -2202 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|))))) (-517)) (T -712)) +((-1932 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-712 *4)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-712 *5)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-712 *4)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-712 *5))))) +(-10 -7 (-15 -2202 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -2202 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3207 (($ $ $) 8)) (-3004 (((-3 $ "failed") $ $) 11)) (-4162 (($ $ (-525)) 9)) (-1957 (($) NIL T CONST)) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($ $) NIL)) (-2699 (($ $ $) NIL)) (-2507 (((-108) $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2262 (($ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-4044 (((-797) $) NIL)) (-1594 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-713) $) NIL) (($ (-855) $) NIL) (($ $ $) NIL))) +(((-713) (-13 (-735) (-669) (-10 -8 (-15 -2699 ($ $ $)) (-15 -2720 ($ $ $)) (-15 -2262 ($ $ $)) (-15 -4204 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -2675 ((-3 $ "failed") $ $)) (-15 -4162 ($ $ (-525))) (-15 -1527 ($ $)) (-6 (-4256 "*"))))) (T -713)) +((-2699 (*1 *1 *1 *1) (-5 *1 (-713))) (-2720 (*1 *1 *1 *1) (-5 *1 (-713))) (-2262 (*1 *1 *1 *1) (-5 *1 (-713))) (-4204 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2877 (-713)) (|:| -2097 (-713)))) (-5 *1 (-713)))) (-2675 (*1 *1 *1 *1) (|partial| -5 *1 (-713))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713)))) (-1527 (*1 *1 *1) (-5 *1 (-713)))) +(-13 (-735) (-669) (-10 -8 (-15 -2699 ($ $ $)) (-15 -2720 ($ $ $)) (-15 -2262 ($ $ $)) (-15 -4204 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -2675 ((-3 $ "failed") $ $)) (-15 -4162 ($ $ (-525))) (-15 -1527 ($ $)) (-6 (-4256 "*")))) +((-1932 (((-3 |#2| "failed") |#2| |#2| (-110) (-1090)) 35))) +(((-714 |#1| |#2|) (-10 -7 (-15 -1932 ((-3 |#2| "failed") |#2| |#2| (-110) (-1090)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892))) (T -714)) +((-1932 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1090)) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-714 *5 *2)) (-4 *2 (-13 (-29 *5) (-1112) (-892)))))) +(-10 -7 (-15 -1932 ((-3 |#2| "failed") |#2| |#2| (-110) (-1090)))) +((-4044 (((-716) |#1|) 8))) +(((-715 |#1|) (-10 -7 (-15 -4044 ((-716) |#1|))) (-1126)) (T -715)) +((-4044 (*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1126))))) +(-10 -7 (-15 -4044 ((-716) |#1|))) +((-4028 (((-108) $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 7)) (-3899 (((-108) $ $) 9))) +(((-716) (-1019)) (T -716)) +NIL +(-1019) +((-2281 ((|#2| |#4|) 35))) +(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2281 (|#2| |#4|))) (-429) (-1148 |#1|) (-667 |#1| |#2|) (-1148 |#3|)) (T -717)) +((-2281 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1148 *5))))) +(-10 -7 (-15 -2281 (|#2| |#4|))) +((-1645 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2152 (((-1177) (-1073) (-1073) |#4| |#5|) 33)) (-2428 ((|#4| |#4| |#5|) 73)) (-2231 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#5|) 77)) (-1275 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|) 16))) +(((-718 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1645 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2428 (|#4| |#4| |#5|)) (-15 -2231 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -2152 ((-1177) (-1073) (-1073) |#4| |#5|)) (-15 -1275 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -718)) +((-1275 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2152 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1073)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *4 (-990 *6 *7 *8)) (-5 *2 (-1177)) (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-995 *6 *7 *8 *4)))) (-2231 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2428 (*1 *2 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *2 (-990 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3)) (-4 *3 (-995 *4 *5 *6 *2)))) (-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(-10 -7 (-15 -1645 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2428 (|#4| |#4| |#5|)) (-15 -2231 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -2152 ((-1177) (-1073) (-1073) |#4| |#5|)) (-15 -1275 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|))) +((-2769 (((-3 (-1086 (-1086 |#1|)) "failed") |#4|) 43)) (-1313 (((-592 |#4|) |#4|) 15)) (-3459 ((|#4| |#4|) 11))) +(((-719 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1313 ((-592 |#4|) |#4|)) (-15 -2769 ((-3 (-1086 (-1086 |#1|)) "failed") |#4|)) (-15 -3459 (|#4| |#4|))) (-327) (-307 |#1|) (-1148 |#2|) (-1148 |#3|) (-855)) (T -719)) +((-3459 (*1 *2 *2) (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1148 *4)) (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1148 *5)) (-14 *6 (-855)))) (-2769 (*1 *2 *3) (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1148 *5)) (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1148 *6)) (-14 *7 (-855)))) (-1313 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1148 *5)) (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1148 *6)) (-14 *7 (-855))))) +(-10 -7 (-15 -1313 ((-592 |#4|) |#4|)) (-15 -2769 ((-3 (-1086 (-1086 |#1|)) "failed") |#4|)) (-15 -3459 (|#4| |#4|))) +((-1929 (((-2 (|:| |deter| (-592 (-1086 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1086 |#5|) (-592 |#1|) (-592 |#5|)) 54)) (-3790 (((-592 (-713)) |#1|) 13))) +(((-720 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1929 ((-2 (|:| |deter| (-592 (-1086 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1086 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -3790 ((-592 (-713)) |#1|))) (-1148 |#4|) (-735) (-789) (-286) (-883 |#4| |#2| |#3|)) (T -720)) +((-3790 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7)) (-4 *3 (-1148 *6)) (-4 *7 (-883 *6 *4 *5)))) (-1929 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1148 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286)) (-4 *10 (-883 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-592 (-1086 *10))) (|:| |dterm| (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| *10))))) (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10)))) (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-592 *6)) (-5 *5 (-592 *10))))) +(-10 -7 (-15 -1929 ((-2 (|:| |deter| (-592 (-1086 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1086 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -3790 ((-592 (-713)) |#1|))) +((-2363 (((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|) 31)) (-3733 (((-592 |#1|) (-632 (-385 (-525))) |#1|) 21)) (-2867 (((-886 (-385 (-525))) (-632 (-385 (-525))) (-1090)) 18) (((-886 (-385 (-525))) (-632 (-385 (-525)))) 17))) +(((-721 |#1|) (-10 -7 (-15 -2867 ((-886 (-385 (-525))) (-632 (-385 (-525))))) (-15 -2867 ((-886 (-385 (-525))) (-632 (-385 (-525))) (-1090))) (-15 -3733 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -2363 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|))) (-13 (-341) (-787))) (T -721)) +((-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 (-2 (|:| |outval| *4) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *4)))))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-2867 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1090)) (-5 *2 (-886 (-385 (-525)))) (-5 *1 (-721 *5)) (-4 *5 (-13 (-341) (-787))))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-886 (-385 (-525)))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787)))))) +(-10 -7 (-15 -2867 ((-886 (-385 (-525))) (-632 (-385 (-525))))) (-15 -2867 ((-886 (-385 (-525))) (-632 (-385 (-525))) (-1090))) (-15 -3733 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -2363 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 34)) (-3122 (((-592 |#2|) $) NIL)) (-1315 (((-1086 $) $ |#2|) NIL) (((-1086 |#1|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 |#2|)) NIL)) (-3134 (($ $) 28)) (-4158 (((-108) $ $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2481 (($ $ $) 93 (|has| |#1| (-517)))) (-1482 (((-592 $) $ $) 106 (|has| |#1| (-517)))) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2701 (($ $) NIL (|has| |#1| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-886 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))))) (((-3 $ "failed") (-886 (-525))) NIL (-3215 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2823 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090)))))) (((-3 $ "failed") (-886 |#1|)) NIL (-3215 (-12 (|has| |#2| (-567 (-1090))) (-2823 (|has| |#1| (-37 (-385 (-525))))) (-2823 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2823 (|has| |#1| (-37 (-385 (-525))))) (-2823 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))) (-2823 (|has| |#1| (-924 (-525))))))) (((-3 (-1042 |#1| |#2|) "failed") $) 18)) (-2068 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) ((|#2| $) NIL) (($ (-886 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))))) (($ (-886 (-525))) NIL (-3215 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2823 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090)))))) (($ (-886 |#1|)) NIL (-3215 (-12 (|has| |#2| (-567 (-1090))) (-2823 (|has| |#1| (-37 (-385 (-525))))) (-2823 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2823 (|has| |#1| (-37 (-385 (-525))))) (-2823 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))) (-2823 (|has| |#1| (-924 (-525))))))) (((-1042 |#1| |#2|) $) NIL)) (-3048 (($ $ $ |#2|) NIL (|has| |#1| (-160))) (($ $ $) 104 (|has| |#1| (-517)))) (-3306 (($ $) NIL) (($ $ |#2|) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2175 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3034 (((-108) $) NIL)) (-2683 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 70)) (-2458 (($ $) 119 (|has| |#1| (-429)))) (-2319 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#1| (-843)))) (-3065 (($ $) NIL (|has| |#1| (-517)))) (-2492 (($ $) NIL (|has| |#1| (-517)))) (-2630 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3542 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2187 (($ $ |#1| (-497 |#2|) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| |#1| (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| |#1| (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-1695 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-2092 (($ $ $ $ $) 90 (|has| |#1| (-517)))) (-3632 ((|#2| $) 19)) (-3110 (($ (-1086 |#1|) |#2|) NIL) (($ (-1086 $) |#2|) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3918 (($ $ $) 60)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ |#2|) NIL)) (-1747 (((-108) $) NIL)) (-3762 (((-497 |#2|) $) NIL) (((-713) $ |#2|) NIL) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-3958 (((-713) $) 20)) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2078 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3869 (((-3 |#2| "failed") $) NIL)) (-3863 (($ $) NIL (|has| |#1| (-429)))) (-3822 (($ $) NIL (|has| |#1| (-429)))) (-2582 (((-592 $) $) NIL)) (-2555 (($ $) 37)) (-2836 (($ $) NIL (|has| |#1| (-429)))) (-2822 (((-592 $) $) 41)) (-4096 (($ $) 39)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1631 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1870 (-713))) $ $) 82)) (-2655 (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $) 67) (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $ |#2|) NIL)) (-3180 (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2097 $)) $ $) NIL) (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2097 $)) $ $ |#2|) NIL)) (-1868 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1222 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1707 (((-1073) $) NIL)) (-1503 (($ $ $) 108 (|has| |#1| (-517)))) (-4212 (((-592 $) $) 30)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| |#2|) (|:| -1737 (-713))) "failed") $) NIL)) (-2616 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-1803 (($ $ $) NIL)) (-2039 (($ $) 21)) (-1826 (((-108) $ $) NIL)) (-1483 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-2342 (($ $ $) NIL)) (-3596 (($ $) 23)) (-3027 (((-1037) $) NIL)) (-1582 (((-2 (|:| -2262 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-517)))) (-3211 (((-2 (|:| -2262 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-517)))) (-3256 (((-108) $) 52)) (-3267 ((|#1| $) 55)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-2262 ((|#1| |#1| $) 116 (|has| |#1| (-429))) (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-843)))) (-3183 (((-2 (|:| -2262 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-517)))) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-517)))) (-3971 (($ $ |#1|) 112 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-3202 (($ $ |#1|) 111 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-592 |#2|) (-592 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-592 |#2|) (-592 $)) NIL)) (-2257 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-1576 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1486 (((-497 |#2|) $) NIL) (((-713) $ |#2|) 43) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-2813 (($ $) NIL)) (-1778 (($ $) 33)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501))))) (($ (-886 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))))) (($ (-886 (-525))) NIL (-3215 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2823 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090)))))) (($ (-886 |#1|)) NIL (|has| |#2| (-567 (-1090)))) (((-1073) $) NIL (-12 (|has| |#1| (-967 (-525))) (|has| |#2| (-567 (-1090))))) (((-886 |#1|) $) NIL (|has| |#2| (-567 (-1090))))) (-2758 ((|#1| $) 115 (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-886 |#1|) $) NIL (|has| |#2| (-567 (-1090)))) (((-1042 |#1| |#2|) $) 15) (($ (-1042 |#1| |#2|)) 16) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) 44) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 13 T CONST)) (-4143 (((-3 (-108) "failed") $ $) NIL)) (-1449 (($) 35 T CONST)) (-1785 (($ $ $ $ (-713)) 88 (|has| |#1| (-517)))) (-2408 (($ $ $ (-713)) 87 (|has| |#1| (-517)))) (-1990 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) 54)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) 64)) (-4017 (($ $ $) 74)) (** (($ $ (-855)) NIL) (($ $ (-713)) 61)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 59) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-722 |#1| |#2|) (-13 (-990 |#1| (-497 |#2|) |#2|) (-566 (-1042 |#1| |#2|)) (-967 (-1042 |#1| |#2|))) (-976) (-789)) (T -722)) +NIL +(-13 (-990 |#1| (-497 |#2|) |#2|) (-566 (-1042 |#1| |#2|)) (-967 (-1042 |#1| |#2|))) +((-2868 (((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)) 13))) +(((-723 |#1| |#2|) (-10 -7 (-15 -2868 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)))) (-976) (-976)) (T -723)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-724 *6)) (-5 *1 (-723 *5 *6))))) +(-10 -7 (-15 -2868 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 12)) (-3350 (((-1172 |#1|) $ (-713)) NIL)) (-3122 (((-592 (-1004)) $) NIL)) (-2878 (($ (-1086 |#1|)) NIL)) (-1315 (((-1086 $) $ (-1004)) NIL) (((-1086 |#1|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-1004))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2178 (((-592 $) $ $) 39 (|has| |#1| (-517)))) (-2481 (($ $ $) 35 (|has| |#1| (-517)))) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2701 (($ $) NIL (|has| |#1| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3778 (($ $ (-713)) NIL)) (-3564 (($ $ (-713)) NIL)) (-3302 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1004) "failed") $) NIL) (((-3 (-1086 |#1|) "failed") $) 10)) (-2068 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1004) $) NIL) (((-1086 |#1|) $) NIL)) (-3048 (($ $ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $ $) 43 (|has| |#1| (-160)))) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-1974 (($ $ $) NIL)) (-2932 (($ $ $) 71 (|has| |#1| (-517)))) (-2683 (((-2 (|:| -2059 |#1|) (|:| -2877 $) (|:| -2097 $)) $ $) 70 (|has| |#1| (-517)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2319 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#1| (-843)))) (-2187 (($ $ |#1| (-713) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2158 (((-713) $ $) NIL (|has| |#1| (-517)))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-1066)))) (-3110 (($ (-1086 |#1|) (-1004)) NIL) (($ (-1086 $) (-1004)) NIL)) (-2633 (($ $ (-713)) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-713)) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3918 (($ $ $) 20)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-1004)) NIL) (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-3762 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2078 (($ (-1 (-713) (-713)) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-1298 (((-1086 |#1|) $) NIL)) (-3869 (((-3 (-1004) "failed") $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1631 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1870 (-713))) $ $) 26)) (-2952 (($ $ $) 29)) (-3046 (($ $ $) 32)) (-2655 (((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $) 31)) (-1707 (((-1073) $) NIL)) (-1503 (($ $ $) 41 (|has| |#1| (-517)))) (-2628 (((-2 (|:| -2877 $) (|:| -2097 $)) $ (-713)) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-1004)) (|:| -1737 (-713))) "failed") $) NIL)) (-2313 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2039 (($) NIL (|has| |#1| (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-1582 (((-2 (|:| -2262 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-517)))) (-3211 (((-2 (|:| -2262 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-517)))) (-2037 (((-2 (|:| -3048 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-517)))) (-3378 (((-2 (|:| -3048 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-517)))) (-3256 (((-108) $) 13)) (-3267 ((|#1| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2773 (($ $ (-713) |#1| $) 19)) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-843)))) (-3183 (((-2 (|:| -2262 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-517)))) (-2572 (((-2 (|:| -3048 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-517)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#1|) NIL) (($ $ (-592 (-1004)) (-592 |#1|)) NIL) (($ $ (-1004) $) NIL) (($ $ (-592 (-1004)) (-592 $)) NIL)) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-3907 (((-3 $ "failed") $ (-713)) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-2257 (($ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-1576 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1486 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2758 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-2173 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1004)) NIL) (((-1086 |#1|) $) 7) (($ (-1086 |#1|)) 8) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-713)) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 21 T CONST)) (-1449 (($) 24 T CONST)) (-1990 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) 28) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-724 |#1|) (-13 (-1148 |#1|) (-566 (-1086 |#1|)) (-967 (-1086 |#1|)) (-10 -8 (-15 -2773 ($ $ (-713) |#1| $)) (-15 -3918 ($ $ $)) (-15 -1631 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1870 (-713))) $ $)) (-15 -2952 ($ $ $)) (-15 -2655 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -3046 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -2178 ((-592 $) $ $)) (-15 -1503 ($ $ $)) (-15 -3183 ((-2 (|:| -2262 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3211 ((-2 (|:| -2262 $) (|:| |coef1| $)) $ $)) (-15 -1582 ((-2 (|:| -2262 $) (|:| |coef2| $)) $ $)) (-15 -2572 ((-2 (|:| -3048 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3378 ((-2 (|:| -3048 |#1|) (|:| |coef1| $)) $ $)) (-15 -2037 ((-2 (|:| -3048 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-976)) (T -724)) +((-2773 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-976)))) (-3918 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976)))) (-1631 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -1870 (-713)))) (-5 *1 (-724 *3)) (-4 *3 (-976)))) (-2952 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976)))) (-2655 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2059 *3) (|:| |gap| (-713)) (|:| -2877 (-724 *3)) (|:| -2097 (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-976)))) (-3046 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976)))) (-2178 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-1503 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-976)))) (-3183 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2262 (-724 *3)) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-3211 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2262 (-724 *3)) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-1582 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2262 (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-2572 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3048 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-3378 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3048 *3) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-2037 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3048 *3) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976))))) +(-13 (-1148 |#1|) (-566 (-1086 |#1|)) (-967 (-1086 |#1|)) (-10 -8 (-15 -2773 ($ $ (-713) |#1| $)) (-15 -3918 ($ $ $)) (-15 -1631 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1870 (-713))) $ $)) (-15 -2952 ($ $ $)) (-15 -2655 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -3046 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -2178 ((-592 $) $ $)) (-15 -1503 ($ $ $)) (-15 -3183 ((-2 (|:| -2262 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3211 ((-2 (|:| -2262 $) (|:| |coef1| $)) $ $)) (-15 -1582 ((-2 (|:| -2262 $) (|:| |coef2| $)) $ $)) (-15 -2572 ((-2 (|:| -3048 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3378 ((-2 (|:| -3048 |#1|) (|:| |coef1| $)) $ $)) (-15 -2037 ((-2 (|:| -3048 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-2482 ((|#1| (-713) |#1|) 32 (|has| |#1| (-37 (-385 (-525)))))) (-1402 ((|#1| (-713) |#1|) 22)) (-2016 ((|#1| (-713) |#1|) 34 (|has| |#1| (-37 (-385 (-525))))))) +(((-725 |#1|) (-10 -7 (-15 -1402 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2016 (|#1| (-713) |#1|)) (-15 -2482 (|#1| (-713) |#1|))) |%noBranch|)) (-160)) (T -725)) +((-2482 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-2016 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-1402 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160))))) +(-10 -7 (-15 -1402 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2016 (|#1| (-713) |#1|)) (-15 -2482 (|#1| (-713) |#1|))) |%noBranch|)) +((-4028 (((-108) $ $) 7)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |#4|)))) (-592 |#4|)) 85)) (-2713 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-3122 (((-592 |#3|) $) 33)) (-4037 (((-108) $) 26)) (-3410 (((-108) $) 17 (|has| |#1| (-517)))) (-2576 (((-108) |#4| $) 101) (((-108) $) 97)) (-1792 ((|#4| |#4| $) 92)) (-2701 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| $) 126)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) 27)) (-2583 (((-108) $ (-713)) 44)) (-1249 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1957 (($) 45 T CONST)) (-4164 (((-108) $) 22 (|has| |#1| (-517)))) (-1333 (((-108) $ $) 24 (|has| |#1| (-517)))) (-3508 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3364 (((-108) $) 25 (|has| |#1| (-517)))) (-3722 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2523 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) 36)) (-2068 (($ (-592 |#4|)) 35)) (-1693 (((-3 $ "failed") $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1716 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-2175 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3025 ((|#4| |#4| $) 87)) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2884 (((-2 (|:| -3671 (-592 |#4|)) (|:| -3864 (-592 |#4|))) $) 105)) (-3875 (((-108) |#4| $) 136)) (-2751 (((-108) |#4| $) 133)) (-1591 (((-108) |#4| $) 137) (((-108) $) 134)) (-3781 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-1695 (((-108) |#4| $) 104) (((-108) $) 103)) (-3632 ((|#3| $) 34)) (-2010 (((-108) $ (-713)) 43)) (-2679 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 47)) (-4210 (((-592 |#3|) $) 32)) (-1506 (((-108) |#3| $) 31)) (-2350 (((-108) $ (-713)) 42)) (-1707 (((-1073) $) 9)) (-2686 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-1503 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| |#4| $) 127)) (-2618 (((-3 |#4| "failed") $) 83)) (-3509 (((-592 $) |#4| $) 129)) (-2709 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3854 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2021 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-1476 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-2338 (((-592 |#4|) $) 107)) (-2616 (((-108) |#4| $) 99) (((-108) $) 95)) (-1803 ((|#4| |#4| $) 90)) (-1826 (((-108) $ $) 110)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-1483 (((-108) |#4| $) 100) (((-108) $) 96)) (-2342 ((|#4| |#4| $) 91)) (-3027 (((-1037) $) 10)) (-1683 (((-3 |#4| "failed") $) 84)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2750 (((-3 $ "failed") $ |#4|) 78)) (-1539 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3669 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) 38)) (-3086 (((-108) $) 41)) (-3266 (($) 40)) (-1486 (((-713) $) 106)) (-3053 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-1261 (($ $) 39)) (-2923 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) 60)) (-2484 (($ $ |#3|) 28)) (-4016 (($ $ |#3|) 30)) (-1287 (($ $) 88)) (-3967 (($ $ |#3|) 29)) (-4044 (((-797) $) 11) (((-592 |#4|) $) 37)) (-2665 (((-713) $) 76 (|has| |#3| (-346)))) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2125 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3493 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2443 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2396 (((-592 |#3|) $) 81)) (-4032 (((-108) |#4| $) 135)) (-2238 (((-108) |#3| $) 80)) (-3899 (((-108) $ $) 6)) (-1696 (((-713) $) 46 (|has| $ (-6 -4254))))) +(((-726 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -726)) +NIL +(-13 (-995 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-908 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1126) . T)) +((-3392 (((-3 (-357) "failed") (-294 |#1|) (-855)) 60 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-294 |#1|)) 52 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-385 (-886 |#1|)) (-855)) 39 (|has| |#1| (-517))) (((-3 (-357) "failed") (-385 (-886 |#1|))) 35 (|has| |#1| (-517))) (((-3 (-357) "failed") (-886 |#1|) (-855)) 30 (|has| |#1| (-976))) (((-3 (-357) "failed") (-886 |#1|)) 24 (|has| |#1| (-976)))) (-3806 (((-357) (-294 |#1|) (-855)) 92 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-294 |#1|)) 87 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-385 (-886 |#1|)) (-855)) 84 (|has| |#1| (-517))) (((-357) (-385 (-886 |#1|))) 81 (|has| |#1| (-517))) (((-357) (-886 |#1|) (-855)) 80 (|has| |#1| (-976))) (((-357) (-886 |#1|)) 77 (|has| |#1| (-976))) (((-357) |#1| (-855)) 73) (((-357) |#1|) 22)) (-3545 (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-855)) 68 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|))) 58 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|) (-855)) 61 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|)) 59 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))) (-855)) 44 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|)))) 43 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)) (-855)) 38 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-886 |#1|))) 37 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-886 |#1|) (-855)) 28 (|has| |#1| (-976))) (((-3 (-157 (-357)) "failed") (-886 |#1|)) 26 (|has| |#1| (-976))) (((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)) (-855)) 18 (|has| |#1| (-160))) (((-3 (-157 (-357)) "failed") (-886 (-157 |#1|))) 15 (|has| |#1| (-160)))) (-1281 (((-157 (-357)) (-294 (-157 |#1|)) (-855)) 95 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 (-157 |#1|))) 94 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|) (-855)) 93 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|)) 91 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-385 (-886 (-157 |#1|))) (-855)) 86 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-886 (-157 |#1|)))) 85 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-886 |#1|)) (-855)) 83 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-886 |#1|))) 82 (|has| |#1| (-517))) (((-157 (-357)) (-886 |#1|) (-855)) 79 (|has| |#1| (-976))) (((-157 (-357)) (-886 |#1|)) 78 (|has| |#1| (-976))) (((-157 (-357)) (-886 (-157 |#1|)) (-855)) 75 (|has| |#1| (-160))) (((-157 (-357)) (-886 (-157 |#1|))) 74 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|) (-855)) 17 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|)) 13 (|has| |#1| (-160))) (((-157 (-357)) |#1| (-855)) 27) (((-157 (-357)) |#1|) 25))) +(((-727 |#1|) (-10 -7 (-15 -3806 ((-357) |#1|)) (-15 -3806 ((-357) |#1| (-855))) (-15 -1281 ((-157 (-357)) |#1|)) (-15 -1281 ((-157 (-357)) |#1| (-855))) (IF (|has| |#1| (-160)) (PROGN (-15 -1281 ((-157 (-357)) (-157 |#1|))) (-15 -1281 ((-157 (-357)) (-157 |#1|) (-855))) (-15 -1281 ((-157 (-357)) (-886 (-157 |#1|)))) (-15 -1281 ((-157 (-357)) (-886 (-157 |#1|)) (-855)))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-15 -3806 ((-357) (-886 |#1|))) (-15 -3806 ((-357) (-886 |#1|) (-855))) (-15 -1281 ((-157 (-357)) (-886 |#1|))) (-15 -1281 ((-157 (-357)) (-886 |#1|) (-855)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3806 ((-357) (-385 (-886 |#1|)))) (-15 -3806 ((-357) (-385 (-886 |#1|)) (-855))) (-15 -1281 ((-157 (-357)) (-385 (-886 |#1|)))) (-15 -1281 ((-157 (-357)) (-385 (-886 |#1|)) (-855))) (-15 -1281 ((-157 (-357)) (-385 (-886 (-157 |#1|))))) (-15 -1281 ((-157 (-357)) (-385 (-886 (-157 |#1|))) (-855))) (IF (|has| |#1| (-789)) (PROGN (-15 -3806 ((-357) (-294 |#1|))) (-15 -3806 ((-357) (-294 |#1|) (-855))) (-15 -1281 ((-157 (-357)) (-294 |#1|))) (-15 -1281 ((-157 (-357)) (-294 |#1|) (-855))) (-15 -1281 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -1281 ((-157 (-357)) (-294 (-157 |#1|)) (-855)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -3545 ((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)) (-855)))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-15 -3392 ((-3 (-357) "failed") (-886 |#1|))) (-15 -3392 ((-3 (-357) "failed") (-886 |#1|) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-886 |#1|))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-886 |#1|) (-855)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3392 ((-3 (-357) "failed") (-385 (-886 |#1|)))) (-15 -3392 ((-3 (-357) "failed") (-385 (-886 |#1|)) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))) (-855))) (IF (|has| |#1| (-789)) (PROGN (-15 -3392 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3392 ((-3 (-357) "failed") (-294 |#1|) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-855)))) |%noBranch|)) |%noBranch|)) (-567 (-357))) (T -727)) +((-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3392 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-886 (-157 *5)))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3392 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3392 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3392 (*1 *2 *3) (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3545 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-886 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3545 (*1 *2 *3) (|partial| -12 (-5 *3 (-886 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1281 (*1 *2 *3) (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1281 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-157 *5)))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1281 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1281 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1281 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1281 (*1 *2 *3) (-12 (-5 *3 (-886 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-157 *5)) (-5 *4 (-855)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1281 (*1 *2 *3) (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-1281 (*1 *2 *3) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 *2)))) (-3806 (*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 *2))))) +(-10 -7 (-15 -3806 ((-357) |#1|)) (-15 -3806 ((-357) |#1| (-855))) (-15 -1281 ((-157 (-357)) |#1|)) (-15 -1281 ((-157 (-357)) |#1| (-855))) (IF (|has| |#1| (-160)) (PROGN (-15 -1281 ((-157 (-357)) (-157 |#1|))) (-15 -1281 ((-157 (-357)) (-157 |#1|) (-855))) (-15 -1281 ((-157 (-357)) (-886 (-157 |#1|)))) (-15 -1281 ((-157 (-357)) (-886 (-157 |#1|)) (-855)))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-15 -3806 ((-357) (-886 |#1|))) (-15 -3806 ((-357) (-886 |#1|) (-855))) (-15 -1281 ((-157 (-357)) (-886 |#1|))) (-15 -1281 ((-157 (-357)) (-886 |#1|) (-855)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3806 ((-357) (-385 (-886 |#1|)))) (-15 -3806 ((-357) (-385 (-886 |#1|)) (-855))) (-15 -1281 ((-157 (-357)) (-385 (-886 |#1|)))) (-15 -1281 ((-157 (-357)) (-385 (-886 |#1|)) (-855))) (-15 -1281 ((-157 (-357)) (-385 (-886 (-157 |#1|))))) (-15 -1281 ((-157 (-357)) (-385 (-886 (-157 |#1|))) (-855))) (IF (|has| |#1| (-789)) (PROGN (-15 -3806 ((-357) (-294 |#1|))) (-15 -3806 ((-357) (-294 |#1|) (-855))) (-15 -1281 ((-157 (-357)) (-294 |#1|))) (-15 -1281 ((-157 (-357)) (-294 |#1|) (-855))) (-15 -1281 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -1281 ((-157 (-357)) (-294 (-157 |#1|)) (-855)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -3545 ((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)) (-855)))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-15 -3392 ((-3 (-357) "failed") (-886 |#1|))) (-15 -3392 ((-3 (-357) "failed") (-886 |#1|) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-886 |#1|))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-886 |#1|) (-855)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3392 ((-3 (-357) "failed") (-385 (-886 |#1|)))) (-15 -3392 ((-3 (-357) "failed") (-385 (-886 |#1|)) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))) (-855))) (IF (|has| |#1| (-789)) (PROGN (-15 -3392 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3392 ((-3 (-357) "failed") (-294 |#1|) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-855))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -3545 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-855)))) |%noBranch|)) |%noBranch|)) +((-4020 (((-855) (-1073)) 65)) (-3962 (((-3 (-357) "failed") (-1073)) 33)) (-2134 (((-357) (-1073)) 31)) (-1725 (((-855) (-1073)) 54)) (-2032 (((-1073) (-855)) 55)) (-1338 (((-1073) (-855)) 53))) +(((-728) (-10 -7 (-15 -1338 ((-1073) (-855))) (-15 -1725 ((-855) (-1073))) (-15 -2032 ((-1073) (-855))) (-15 -4020 ((-855) (-1073))) (-15 -2134 ((-357) (-1073))) (-15 -3962 ((-3 (-357) "failed") (-1073))))) (T -728)) +((-3962 (*1 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-728)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-728)))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-855)) (-5 *1 (-728)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1073)) (-5 *1 (-728)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-855)) (-5 *1 (-728)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1073)) (-5 *1 (-728))))) +(-10 -7 (-15 -1338 ((-1073) (-855))) (-15 -1725 ((-855) (-1073))) (-15 -2032 ((-1073) (-855))) (-15 -4020 ((-855) (-1073))) (-15 -2134 ((-357) (-1073))) (-15 -3962 ((-3 (-357) "failed") (-1073)))) +((-4028 (((-108) $ $) 7)) (-3994 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 15) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 13)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 6))) +(((-729) (-131)) (T -729)) +((-1393 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965)))))) (-3994 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-965)) (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-1393 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965)))))) (-3994 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-965)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) +(-13 (-1019) (-10 -7 (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3994 ((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3994 ((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965))))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-1551 (((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357))) 44) (((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) 43)) (-1771 (((-1177) (-1172 (-357)) (-525) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) 50)) (-3135 (((-1177) (-1172 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) 41)) (-3649 (((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357))) 52) (((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) 51))) +(((-730) (-10 -7 (-15 -3649 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -3649 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)))) (-15 -3135 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -1551 ((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -1551 ((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)))) (-15 -1771 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))))) (T -730)) +((-1771 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) (-5 *1 (-730)))) (-1551 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-525)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357)))) (-5 *7 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) (-5 *1 (-730)))) (-1551 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-525)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357)))) (-5 *7 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) (-5 *1 (-730)))) (-3135 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) (-5 *1 (-730)))) (-3649 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) (-5 *1 (-730)))) (-3649 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) (-5 *1 (-730))))) +(-10 -7 (-15 -3649 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -3649 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)))) (-15 -3135 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -1551 ((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -1551 ((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)))) (-15 -1771 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))))) +((-4167 (((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 53)) (-1900 (((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 31)) (-3904 (((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 52)) (-3916 (((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 29)) (-3375 (((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 51)) (-1664 (((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 19)) (-1323 (((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 32)) (-3858 (((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 30)) (-2270 (((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 28))) +(((-731) (-10 -7 (-15 -2270 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3858 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1323 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1664 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3916 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1900 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3375 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3904 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -4167 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))) (T -731)) +((-4167 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3904 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3375 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1900 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3916 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1664 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1323 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3858 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-2270 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525))))) +(-10 -7 (-15 -2270 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3858 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1323 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1664 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3916 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1900 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3375 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3904 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -4167 ((-2 (|:| -3067 (-357)) (|:| -2263 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)))) +((-3345 (((-1122 |#1|) |#1| (-205) (-525)) 46))) +(((-732 |#1|) (-10 -7 (-15 -3345 ((-1122 |#1|) |#1| (-205) (-525)))) (-906)) (T -732)) +((-3345 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1122 *3)) (-5 *1 (-732 *3)) (-4 *3 (-906))))) +(-10 -7 (-15 -3345 ((-1122 |#1|) |#1| (-205) (-525)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 24)) (-3004 (((-3 $ "failed") $ $) 26)) (-1957 (($) 23 T CONST)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 22 T CONST)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18)) (-4033 (($ $ $) 28) (($ $) 27)) (-4017 (($ $ $) 20)) (* (($ (-713) $) 25) (($ (-855) $) 21) (($ (-525) $) 29))) (((-733) (-131)) (T -733)) NIL -(-13 (-735) (-23)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-565 (-796)) . T) ((-735) . T) ((-788) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 24)) (-3343 (($ $ $) 27)) (-3332 (((-3 $ "failed") $ $) 26)) (-2055 (($) 23 T CONST)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 22 T CONST)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18)) (-4036 (($ $ $) 20)) (* (($ (-712) $) 25) (($ (-854) $) 21))) +(-13 (-737) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 24)) (-1957 (($) 23 T CONST)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 22 T CONST)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18)) (-4017 (($ $ $) 20)) (* (($ (-713) $) 25) (($ (-855) $) 21))) (((-734) (-131)) (T -734)) -((-3343 (*1 *1 *1 *1) (-4 *1 (-734)))) -(-13 (-736) (-10 -8 (-15 -3343 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-733) . T) ((-735) . T) ((-736) . T) ((-788) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 24)) (-2055 (($) 23 T CONST)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 22 T CONST)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18)) (-4036 (($ $ $) 20)) (* (($ (-712) $) 25) (($ (-854) $) 21))) -(((-735) (-131)) (T -735)) NIL -(-13 (-788) (-23)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-565 (-796)) . T) ((-788) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 24)) (-3332 (((-3 $ "failed") $ $) 26)) (-2055 (($) 23 T CONST)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 22 T CONST)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18)) (-4036 (($ $ $) 20)) (* (($ (-712) $) 25) (($ (-854) $) 21))) +(-13 (-736) (-23)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-566 (-797)) . T) ((-736) . T) ((-789) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 24)) (-3207 (($ $ $) 27)) (-3004 (((-3 $ "failed") $ $) 26)) (-1957 (($) 23 T CONST)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 22 T CONST)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18)) (-4017 (($ $ $) 20)) (* (($ (-713) $) 25) (($ (-855) $) 21))) +(((-735) (-131)) (T -735)) +((-3207 (*1 *1 *1 *1) (-4 *1 (-735)))) +(-13 (-737) (-10 -8 (-15 -3207 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 24)) (-1957 (($) 23 T CONST)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 22 T CONST)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18)) (-4017 (($ $ $) 20)) (* (($ (-713) $) 25) (($ (-855) $) 21))) (((-736) (-131)) (T -736)) NIL -(-13 (-733) (-126)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-733) . T) ((-735) . T) ((-788) . T) ((-1018) . T)) -((-1306 (((-108) $) 41)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3341 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 42)) (-2350 (((-3 (-385 (-525)) "failed") $) 78)) (-2157 (((-108) $) 72)) (-3184 (((-385 (-525)) $) 76)) (-1525 ((|#2| $) 26)) (-1257 (($ (-1 |#2| |#2|) $) 23)) (-1523 (($ $) 61)) (-1300 (((-501) $) 67)) (-3369 (($ $) 21)) (-2686 (((-796) $) 56) (($ (-525)) 39) (($ |#2|) 37) (($ (-385 (-525))) NIL)) (-3425 (((-712)) 10)) (-1460 ((|#2| $) 71)) (-3944 (((-108) $ $) 29)) (-3971 (((-108) $ $) 69)) (-4047 (($ $) 31) (($ $ $) NIL)) (-4036 (($ $ $) 30)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-737 |#1| |#2|) (-10 -8 (-15 -3971 ((-108) |#1| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -1460 (|#2| |#1|)) (-15 -1525 (|#2| |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -2686 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 -1306 ((-108) |#1|)) (-15 * (|#1| (-854) |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) (-738 |#2|) (-160)) (T -737)) -((-3425 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-712)) (-5 *1 (-737 *3 *4)) (-4 *3 (-738 *4))))) -(-10 -8 (-15 -3971 ((-108) |#1| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -1460 (|#2| |#1|)) (-15 -1525 (|#2| |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -2686 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 -1306 ((-108) |#1|)) (-15 * (|#1| (-854) |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2834 (((-712)) 53 (|has| |#1| (-346)))) (-2055 (($) 17 T CONST)) (-4174 (((-3 (-525) "failed") $) 94 (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 92 (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 90)) (-3341 (((-525) $) 95 (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) 93 (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 89)) (-1522 (((-3 $ "failed") $) 34)) (-2560 ((|#1| $) 79)) (-2350 (((-3 (-385 (-525)) "failed") $) 66 (|has| |#1| (-510)))) (-2157 (((-108) $) 68 (|has| |#1| (-510)))) (-3184 (((-385 (-525)) $) 67 (|has| |#1| (-510)))) (-1325 (($) 56 (|has| |#1| (-346)))) (-3865 (((-108) $) 31)) (-2546 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-1525 ((|#1| $) 71)) (-1923 (($ $ $) 62 (|has| |#1| (-788)))) (-3475 (($ $ $) 61 (|has| |#1| (-788)))) (-1257 (($ (-1 |#1| |#1|) $) 81)) (-1970 (((-854) $) 55 (|has| |#1| (-346)))) (-2621 (((-1072) $) 9)) (-1523 (($ $) 65 (|has| |#1| (-341)))) (-3229 (($ (-854)) 54 (|has| |#1| (-346)))) (-2917 ((|#1| $) 76)) (-4164 ((|#1| $) 77)) (-3809 ((|#1| $) 78)) (-2665 ((|#1| $) 72)) (-2027 ((|#1| $) 73)) (-2042 ((|#1| $) 74)) (-2394 ((|#1| $) 75)) (-2937 (((-1036) $) 10)) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) 87 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 85 (|has| |#1| (-288 |#1|))) (($ $ (-591 (-273 |#1|))) 84 (|has| |#1| (-288 |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) 83 (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) |#1|) 82 (|has| |#1| (-486 (-1089) |#1|)))) (-1881 (($ $ |#1|) 88 (|has| |#1| (-265 |#1| |#1|)))) (-1300 (((-501) $) 63 (|has| |#1| (-566 (-501))))) (-3369 (($ $) 80)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 91 (|has| |#1| (-966 (-385 (-525)))))) (-3751 (((-3 $ "failed") $) 64 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1460 ((|#1| $) 69 (|has| |#1| (-984)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-4004 (((-108) $ $) 59 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 58 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 60 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 57 (|has| |#1| (-788)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-738 |#1|) (-131) (-160)) (T -738)) -((-3369 (*1 *1 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-2546 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)) (-4 *2 (-984)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-738 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-738 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2350 (*1 *2 *1) (|partial| -12 (-4 *1 (-738 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-1523 (*1 *1 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)) (-4 *2 (-341))))) -(-13 (-37 |t#1|) (-389 |t#1|) (-316 |t#1|) (-10 -8 (-15 -3369 ($ $)) (-15 -2560 (|t#1| $)) (-15 -3809 (|t#1| $)) (-15 -4164 (|t#1| $)) (-15 -2917 (|t#1| $)) (-15 -2394 (|t#1| $)) (-15 -2042 (|t#1| $)) (-15 -2027 (|t#1| $)) (-15 -2665 (|t#1| $)) (-15 -1525 (|t#1| $)) (-15 -2546 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-788)) (-6 (-788)) |%noBranch|) (IF (|has| |t#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-984)) (-15 -1460 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -1523 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-346) |has| |#1| (-346)) ((-316 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1089) |#1|) |has| |#1| (-486 (-1089) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-593 |#1|) . T) ((-593 $) . T) ((-659 |#1|) . T) ((-668) . T) ((-788) |has| |#1| (-788)) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-981 |#1|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1257 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 (|#3| (-1 |#4| |#2|) |#1|))) (-738 |#2|) (-160) (-738 |#4|) (-160)) (T -739)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-738 *6)) (-5 *1 (-739 *4 *5 *2 *6)) (-4 *4 (-738 *5))))) -(-10 -7 (-15 -1257 (|#3| (-1 |#4| |#2|) |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2834 (((-712)) NIL (|has| |#1| (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL) (((-3 (-929 |#1|) "failed") $) 35) (((-3 (-525) "failed") $) NIL (-3150 (|has| (-929 |#1|) (-966 (-525))) (|has| |#1| (-966 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL (-3150 (|has| (-929 |#1|) (-966 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525))))))) (-3341 ((|#1| $) NIL) (((-929 |#1|) $) 33) (((-525) $) NIL (-3150 (|has| (-929 |#1|) (-966 (-525))) (|has| |#1| (-966 (-525))))) (((-385 (-525)) $) NIL (-3150 (|has| (-929 |#1|) (-966 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525))))))) (-1522 (((-3 $ "failed") $) NIL)) (-2560 ((|#1| $) 16)) (-2350 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-2157 (((-108) $) NIL (|has| |#1| (-510)))) (-3184 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-1325 (($) NIL (|has| |#1| (-346)))) (-3865 (((-108) $) NIL)) (-2546 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-929 |#1|) (-929 |#1|)) 29)) (-1525 ((|#1| $) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1970 (((-854) $) NIL (|has| |#1| (-346)))) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-3229 (($ (-854)) NIL (|has| |#1| (-346)))) (-2917 ((|#1| $) 22)) (-4164 ((|#1| $) 20)) (-3809 ((|#1| $) 18)) (-2665 ((|#1| $) 26)) (-2027 ((|#1| $) 25)) (-2042 ((|#1| $) 24)) (-2394 ((|#1| $) 23)) (-2937 (((-1036) $) NIL)) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-591 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) NIL (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) |#1|) NIL (|has| |#1| (-486 (-1089) |#1|)))) (-1881 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-3369 (($ $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-929 |#1|)) 30) (($ (-385 (-525))) NIL (-3150 (|has| (-929 |#1|) (-966 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525))))))) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1460 ((|#1| $) NIL (|has| |#1| (-984)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 8 T CONST)) (-1839 (($) 12 T CONST)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-740 |#1|) (-13 (-738 |#1|) (-389 (-929 |#1|)) (-10 -8 (-15 -2546 ($ (-929 |#1|) (-929 |#1|))))) (-160)) (T -740)) -((-2546 (*1 *1 *2 *2) (-12 (-5 *2 (-929 *3)) (-4 *3 (-160)) (-5 *1 (-740 *3))))) -(-13 (-738 |#1|) (-389 (-929 |#1|)) (-10 -8 (-15 -2546 ($ (-929 |#1|) (-929 |#1|))))) -((-2673 (((-108) $ $) 7)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3267 (((-964) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13)) (-3944 (((-108) $ $) 6))) -(((-741) (-131)) (T -741)) -((-2282 (*1 *2 *3 *4) (-12 (-4 *1 (-741)) (-5 *3 (-987)) (-5 *4 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)))))) (-3267 (*1 *2 *3) (-12 (-4 *1 (-741)) (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-964))))) -(-13 (-1018) (-10 -7 (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3267 ((-964) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2325 (((-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) |#3| |#2| (-1089)) 19))) -(((-742 |#1| |#2| |#3|) (-10 -7 (-15 -2325 ((-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) |#3| |#2| (-1089)))) (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138)) (-13 (-29 |#1|) (-1111) (-891)) (-601 |#2|)) (T -742)) -((-2325 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1089)) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1111) (-891))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3612 (-591 *4)))) (-5 *1 (-742 *6 *4 *3)) (-4 *3 (-601 *4))))) -(-10 -7 (-15 -2325 ((-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) |#3| |#2| (-1089)))) -((-2751 (((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-591 |#2|)) 28) (((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-591 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) |#2| "failed") |#2| (-110) (-1089)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1089)) 18) (((-3 (-2 (|:| |particular| (-1171 |#2|)) (|:| -3612 (-591 (-1171 |#2|)))) "failed") (-591 |#2|) (-591 (-110)) (-1089)) 24) (((-3 (-2 (|:| |particular| (-1171 |#2|)) (|:| -3612 (-591 (-1171 |#2|)))) "failed") (-591 (-273 |#2|)) (-591 (-110)) (-1089)) 26) (((-3 (-591 (-1171 |#2|)) "failed") (-631 |#2|) (-1089)) 37) (((-3 (-2 (|:| |particular| (-1171 |#2|)) (|:| -3612 (-591 (-1171 |#2|)))) "failed") (-631 |#2|) (-1171 |#2|) (-1089)) 35))) -(((-743 |#1| |#2|) (-10 -7 (-15 -2751 ((-3 (-2 (|:| |particular| (-1171 |#2|)) (|:| -3612 (-591 (-1171 |#2|)))) "failed") (-631 |#2|) (-1171 |#2|) (-1089))) (-15 -2751 ((-3 (-591 (-1171 |#2|)) "failed") (-631 |#2|) (-1089))) (-15 -2751 ((-3 (-2 (|:| |particular| (-1171 |#2|)) (|:| -3612 (-591 (-1171 |#2|)))) "failed") (-591 (-273 |#2|)) (-591 (-110)) (-1089))) (-15 -2751 ((-3 (-2 (|:| |particular| (-1171 |#2|)) (|:| -3612 (-591 (-1171 |#2|)))) "failed") (-591 |#2|) (-591 (-110)) (-1089))) (-15 -2751 ((-3 (-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1089))) (-15 -2751 ((-3 (-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) |#2| "failed") |#2| (-110) (-1089))) (-15 -2751 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-591 |#2|))) (-15 -2751 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-591 |#2|)))) (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138)) (-13 (-29 |#1|) (-1111) (-891))) (T -743)) -((-2751 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-591 *2)) (-4 *2 (-13 (-29 *6) (-1111) (-891))) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *1 (-743 *6 *2)))) (-2751 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-591 *2)) (-4 *2 (-13 (-29 *6) (-1111) (-891))) (-5 *1 (-743 *6 *2)) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1089)) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3612 (-591 *3))) *3 "failed")) (-5 *1 (-743 *6 *3)) (-4 *3 (-13 (-29 *6) (-1111) (-891))))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1111) (-891))) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3612 (-591 *7))) *7 "failed")) (-5 *1 (-743 *6 *7)))) (-2751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-591 *7)) (-5 *4 (-591 (-110))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1111) (-891))) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1171 *7)) (|:| -3612 (-591 (-1171 *7))))) (-5 *1 (-743 *6 *7)))) (-2751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-591 (-273 *7))) (-5 *4 (-591 (-110))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1111) (-891))) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1171 *7)) (|:| -3612 (-591 (-1171 *7))))) (-5 *1 (-743 *6 *7)))) (-2751 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1089)) (-4 *6 (-13 (-29 *5) (-1111) (-891))) (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-591 (-1171 *6))) (-5 *1 (-743 *5 *6)))) (-2751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1111) (-891))) (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1171 *7)) (|:| -3612 (-591 (-1171 *7))))) (-5 *1 (-743 *6 *7)) (-5 *4 (-1171 *7))))) -(-10 -7 (-15 -2751 ((-3 (-2 (|:| |particular| (-1171 |#2|)) (|:| -3612 (-591 (-1171 |#2|)))) "failed") (-631 |#2|) (-1171 |#2|) (-1089))) (-15 -2751 ((-3 (-591 (-1171 |#2|)) "failed") (-631 |#2|) (-1089))) (-15 -2751 ((-3 (-2 (|:| |particular| (-1171 |#2|)) (|:| -3612 (-591 (-1171 |#2|)))) "failed") (-591 (-273 |#2|)) (-591 (-110)) (-1089))) (-15 -2751 ((-3 (-2 (|:| |particular| (-1171 |#2|)) (|:| -3612 (-591 (-1171 |#2|)))) "failed") (-591 |#2|) (-591 (-110)) (-1089))) (-15 -2751 ((-3 (-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1089))) (-15 -2751 ((-3 (-2 (|:| |particular| |#2|) (|:| -3612 (-591 |#2|))) |#2| "failed") |#2| (-110) (-1089))) (-15 -2751 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-591 |#2|))) (-15 -2751 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-591 |#2|)))) -((-3391 (($) 9)) (-3197 (((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 31)) (-2159 (((-591 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 28)) (-1520 (($ (-2 (|:| -1265 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) 25)) (-2556 (($ (-591 (-2 (|:| -1265 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) 23)) (-1407 (((-1176)) 12))) -(((-744) (-10 -8 (-15 -3391 ($)) (-15 -1407 ((-1176))) (-15 -2159 ((-591 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -2556 ($ (-591 (-2 (|:| -1265 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -1520 ($ (-2 (|:| -1265 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -3197 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -744)) -((-3197 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *1 (-744)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1265 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) (-5 *1 (-744)))) (-2556 (*1 *1 *2) (-12 (-5 *2 (-591 (-2 (|:| -1265 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-5 *1 (-744)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-744)))) (-1407 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-744)))) (-3391 (*1 *1) (-5 *1 (-744)))) -(-10 -8 (-15 -3391 ($)) (-15 -1407 ((-1176))) (-15 -2159 ((-591 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -2556 ($ (-591 (-2 (|:| -1265 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -1520 ($ (-2 (|:| -1265 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -1568 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -3197 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) -((-1421 ((|#2| |#2| (-1089)) 16)) (-3930 ((|#2| |#2| (-1089)) 51)) (-2595 (((-1 |#2| |#2|) (-1089)) 11))) -(((-745 |#1| |#2|) (-10 -7 (-15 -1421 (|#2| |#2| (-1089))) (-15 -3930 (|#2| |#2| (-1089))) (-15 -2595 ((-1 |#2| |#2|) (-1089)))) (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138)) (-13 (-29 |#1|) (-1111) (-891))) (T -745)) -((-2595 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-1 *5 *5)) (-5 *1 (-745 *4 *5)) (-4 *5 (-13 (-29 *4) (-1111) (-891))))) (-3930 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *1 (-745 *4 *2)) (-4 *2 (-13 (-29 *4) (-1111) (-891))))) (-1421 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *1 (-745 *4 *2)) (-4 *2 (-13 (-29 *4) (-1111) (-891)))))) -(-10 -7 (-15 -1421 (|#2| |#2| (-1089))) (-15 -3930 (|#2| |#2| (-1089))) (-15 -2595 ((-1 |#2| |#2|) (-1089)))) -((-2751 (((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-294 (-357)) (-591 (-357)) (-357) (-357)) 116) (((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-294 (-357)) (-591 (-357)) (-357)) 117) (((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-591 (-357)) (-357)) 119) (((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-294 (-357)) (-357)) 120) (((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-357)) 121) (((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357))) 122) (((-964) (-749) (-987)) 108) (((-964) (-749)) 109)) (-2282 (((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-749) (-987)) 75) (((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-749)) 77))) -(((-746) (-10 -7 (-15 -2751 ((-964) (-749))) (-15 -2751 ((-964) (-749) (-987))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-357))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-294 (-357)) (-357))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-591 (-357)) (-357))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-294 (-357)) (-591 (-357)) (-357))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-294 (-357)) (-591 (-357)) (-357) (-357))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-749))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-749) (-987))))) (T -746)) -((-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-987)) (-5 *2 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))))) (-5 *1 (-746)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))))) (-5 *1 (-746)))) (-2751 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1171 (-294 *4))) (-5 *5 (-591 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-964)) (-5 *1 (-746)))) (-2751 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1171 (-294 *4))) (-5 *5 (-591 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-964)) (-5 *1 (-746)))) (-2751 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1171 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-591 *4)) (-5 *2 (-964)) (-5 *1 (-746)))) (-2751 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1171 (-294 *4))) (-5 *5 (-591 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-964)) (-5 *1 (-746)))) (-2751 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1171 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-591 *4)) (-5 *2 (-964)) (-5 *1 (-746)))) (-2751 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1171 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-591 *4)) (-5 *2 (-964)) (-5 *1 (-746)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-987)) (-5 *2 (-964)) (-5 *1 (-746)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-964)) (-5 *1 (-746))))) -(-10 -7 (-15 -2751 ((-964) (-749))) (-15 -2751 ((-964) (-749) (-987))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-357))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-294 (-357)) (-357))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-591 (-357)) (-357))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-294 (-357)) (-591 (-357)) (-357))) (-15 -2751 ((-964) (-1171 (-294 (-357))) (-357) (-357) (-591 (-357)) (-294 (-357)) (-591 (-357)) (-357) (-357))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-749))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-749) (-987)))) -((-3648 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3612 (-591 |#4|))) (-598 |#4|) |#4|) 35))) -(((-747 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3648 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3612 (-591 |#4|))) (-598 |#4|) |#4|))) (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525)))) (-1147 |#1|) (-1147 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -747)) -((-3648 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *4)) (-4 *4 (-320 *5 *6 *7)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) (-5 *1 (-747 *5 *6 *7 *4))))) -(-10 -7 (-15 -3648 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3612 (-591 |#4|))) (-598 |#4|) |#4|))) -((-1221 (((-2 (|:| -2203 |#3|) (|:| |rh| (-591 (-385 |#2|)))) |#4| (-591 (-385 |#2|))) 52)) (-3935 (((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#4| |#2|) 60) (((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#4|) 59) (((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#3| |#2|) 20) (((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#3|) 21)) (-2197 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1223 ((|#2| |#3| (-591 (-385 |#2|))) 93) (((-3 |#2| "failed") |#3| (-385 |#2|)) 90))) -(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1223 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -1223 (|#2| |#3| (-591 (-385 |#2|)))) (-15 -3935 ((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#3|)) (-15 -3935 ((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#3| |#2|)) (-15 -2197 (|#2| |#3| |#1|)) (-15 -3935 ((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#4|)) (-15 -3935 ((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#4| |#2|)) (-15 -2197 (|#2| |#4| |#1|)) (-15 -1221 ((-2 (|:| -2203 |#3|) (|:| |rh| (-591 (-385 |#2|)))) |#4| (-591 (-385 |#2|))))) (-13 (-341) (-138) (-966 (-385 (-525)))) (-1147 |#1|) (-601 |#2|) (-601 (-385 |#2|))) (T -748)) -((-1221 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) (-5 *2 (-2 (|:| -2203 *7) (|:| |rh| (-591 (-385 *6))))) (-5 *1 (-748 *5 *6 *7 *3)) (-5 *4 (-591 (-385 *6))) (-4 *7 (-601 *6)) (-4 *3 (-601 (-385 *6))))) (-2197 (*1 *2 *3 *4) (-12 (-4 *2 (-1147 *4)) (-5 *1 (-748 *4 *2 *5 *3)) (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *5 (-601 *2)) (-4 *3 (-601 (-385 *2))))) (-3935 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *4 (-1147 *5)) (-5 *2 (-591 (-2 (|:| -1708 *4) (|:| -3045 *4)))) (-5 *1 (-748 *5 *4 *6 *3)) (-4 *6 (-601 *4)) (-4 *3 (-601 (-385 *4))))) (-3935 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *5 (-1147 *4)) (-5 *2 (-591 (-2 (|:| -1708 *5) (|:| -3045 *5)))) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 (-385 *5))))) (-2197 (*1 *2 *3 *4) (-12 (-4 *2 (-1147 *4)) (-5 *1 (-748 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-385 *2))))) (-3935 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *4 (-1147 *5)) (-5 *2 (-591 (-2 (|:| -1708 *4) (|:| -3045 *4)))) (-5 *1 (-748 *5 *4 *3 *6)) (-4 *3 (-601 *4)) (-4 *6 (-601 (-385 *4))))) (-3935 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *5 (-1147 *4)) (-5 *2 (-591 (-2 (|:| -1708 *5) (|:| -3045 *5)))) (-5 *1 (-748 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-385 *5))))) (-1223 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-385 *2))) (-4 *2 (-1147 *5)) (-5 *1 (-748 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *3 (-601 *2)) (-4 *6 (-601 (-385 *2))))) (-1223 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1147 *5)) (-5 *1 (-748 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *3 (-601 *2)) (-4 *6 (-601 *4))))) -(-10 -7 (-15 -1223 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -1223 (|#2| |#3| (-591 (-385 |#2|)))) (-15 -3935 ((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#3|)) (-15 -3935 ((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#3| |#2|)) (-15 -2197 (|#2| |#3| |#1|)) (-15 -3935 ((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#4|)) (-15 -3935 ((-591 (-2 (|:| -1708 |#2|) (|:| -3045 |#2|))) |#4| |#2|)) (-15 -2197 (|#2| |#4| |#1|)) (-15 -1221 ((-2 (|:| -2203 |#3|) (|:| |rh| (-591 (-385 |#2|)))) |#4| (-591 (-385 |#2|))))) -((-2673 (((-108) $ $) NIL)) (-3341 (((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $) 13)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 15) (($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 12)) (-3944 (((-108) $ $) NIL))) -(((-749) (-13 (-1018) (-10 -8 (-15 -2686 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2686 ((-796) $)) (-15 -3341 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))) (T -749)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-749)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-749)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-749))))) -(-13 (-1018) (-10 -8 (-15 -2686 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2686 ((-796) $)) (-15 -3341 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $)))) -((-3889 (((-591 (-2 (|:| |frac| (-385 |#2|)) (|:| -2203 |#3|))) |#3| (-1 (-591 |#2|) |#2| (-1085 |#2|)) (-1 (-396 |#2|) |#2|)) 118)) (-3990 (((-591 (-2 (|:| |poly| |#2|) (|:| -2203 |#3|))) |#3| (-1 (-591 |#1|) |#2|)) 46)) (-1208 (((-591 (-2 (|:| |deg| (-712)) (|:| -2203 |#2|))) |#3|) 95)) (-3721 ((|#2| |#3|) 37)) (-3461 (((-591 (-2 (|:| -2277 |#1|) (|:| -2203 |#3|))) |#3| (-1 (-591 |#1|) |#2|)) 82)) (-2298 ((|#3| |#3| (-385 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3721 (|#2| |#3|)) (-15 -1208 ((-591 (-2 (|:| |deg| (-712)) (|:| -2203 |#2|))) |#3|)) (-15 -3461 ((-591 (-2 (|:| -2277 |#1|) (|:| -2203 |#3|))) |#3| (-1 (-591 |#1|) |#2|))) (-15 -3990 ((-591 (-2 (|:| |poly| |#2|) (|:| -2203 |#3|))) |#3| (-1 (-591 |#1|) |#2|))) (-15 -3889 ((-591 (-2 (|:| |frac| (-385 |#2|)) (|:| -2203 |#3|))) |#3| (-1 (-591 |#2|) |#2| (-1085 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -2298 (|#3| |#3| |#2|)) (-15 -2298 (|#3| |#3| (-385 |#2|)))) (-13 (-341) (-138) (-966 (-385 (-525)))) (-1147 |#1|) (-601 |#2|) (-601 (-385 |#2|))) (T -750)) -((-2298 (*1 *2 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *5 (-1147 *4)) (-5 *1 (-750 *4 *5 *2 *6)) (-4 *2 (-601 *5)) (-4 *6 (-601 *3)))) (-2298 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *3 (-1147 *4)) (-5 *1 (-750 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-385 *3))))) (-3889 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-591 *7) *7 (-1085 *7))) (-5 *5 (-1 (-396 *7) *7)) (-4 *7 (-1147 *6)) (-4 *6 (-13 (-341) (-138) (-966 (-385 (-525))))) (-5 *2 (-591 (-2 (|:| |frac| (-385 *7)) (|:| -2203 *3)))) (-5 *1 (-750 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-385 *7))))) (-3990 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-591 *5) *6)) (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) (-5 *2 (-591 (-2 (|:| |poly| *6) (|:| -2203 *3)))) (-5 *1 (-750 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-385 *6))))) (-3461 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-591 *5) *6)) (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) (-5 *2 (-591 (-2 (|:| -2277 *5) (|:| -2203 *3)))) (-5 *1 (-750 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-385 *6))))) (-1208 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *5 (-1147 *4)) (-5 *2 (-591 (-2 (|:| |deg| (-712)) (|:| -2203 *5)))) (-5 *1 (-750 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-385 *5))))) (-3721 (*1 *2 *3) (-12 (-4 *2 (-1147 *4)) (-5 *1 (-750 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-385 *2)))))) -(-10 -7 (-15 -3721 (|#2| |#3|)) (-15 -1208 ((-591 (-2 (|:| |deg| (-712)) (|:| -2203 |#2|))) |#3|)) (-15 -3461 ((-591 (-2 (|:| -2277 |#1|) (|:| -2203 |#3|))) |#3| (-1 (-591 |#1|) |#2|))) (-15 -3990 ((-591 (-2 (|:| |poly| |#2|) (|:| -2203 |#3|))) |#3| (-1 (-591 |#1|) |#2|))) (-15 -3889 ((-591 (-2 (|:| |frac| (-385 |#2|)) (|:| -2203 |#3|))) |#3| (-1 (-591 |#2|) |#2| (-1085 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -2298 (|#3| |#3| |#2|)) (-15 -2298 (|#3| |#3| (-385 |#2|)))) -((-2121 (((-2 (|:| -3612 (-591 (-385 |#2|))) (|:| -2928 (-631 |#1|))) (-599 |#2| (-385 |#2|)) (-591 (-385 |#2|))) 121) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3612 (-591 (-385 |#2|)))) (-599 |#2| (-385 |#2|)) (-385 |#2|)) 120) (((-2 (|:| -3612 (-591 (-385 |#2|))) (|:| -2928 (-631 |#1|))) (-598 (-385 |#2|)) (-591 (-385 |#2|))) 115) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3612 (-591 (-385 |#2|)))) (-598 (-385 |#2|)) (-385 |#2|)) 113)) (-2629 ((|#2| (-599 |#2| (-385 |#2|))) 80) ((|#2| (-598 (-385 |#2|))) 83))) -(((-751 |#1| |#2|) (-10 -7 (-15 -2121 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3612 (-591 (-385 |#2|)))) (-598 (-385 |#2|)) (-385 |#2|))) (-15 -2121 ((-2 (|:| -3612 (-591 (-385 |#2|))) (|:| -2928 (-631 |#1|))) (-598 (-385 |#2|)) (-591 (-385 |#2|)))) (-15 -2121 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3612 (-591 (-385 |#2|)))) (-599 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -2121 ((-2 (|:| -3612 (-591 (-385 |#2|))) (|:| -2928 (-631 |#1|))) (-599 |#2| (-385 |#2|)) (-591 (-385 |#2|)))) (-15 -2629 (|#2| (-598 (-385 |#2|)))) (-15 -2629 (|#2| (-599 |#2| (-385 |#2|))))) (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525)))) (-1147 |#1|)) (T -751)) -((-2629 (*1 *2 *3) (-12 (-5 *3 (-599 *2 (-385 *2))) (-4 *2 (-1147 *4)) (-5 *1 (-751 *4 *2)) (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-598 (-385 *2))) (-4 *2 (-1147 *4)) (-5 *1 (-751 *4 *2)) (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-385 *6))) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-2 (|:| -3612 (-591 (-385 *6))) (|:| -2928 (-631 *5)))) (-5 *1 (-751 *5 *6)) (-5 *4 (-591 (-385 *6))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) (-5 *1 (-751 *5 *6)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-385 *6))) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-2 (|:| -3612 (-591 (-385 *6))) (|:| -2928 (-631 *5)))) (-5 *1 (-751 *5 *6)) (-5 *4 (-591 (-385 *6))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) (-5 *1 (-751 *5 *6))))) -(-10 -7 (-15 -2121 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3612 (-591 (-385 |#2|)))) (-598 (-385 |#2|)) (-385 |#2|))) (-15 -2121 ((-2 (|:| -3612 (-591 (-385 |#2|))) (|:| -2928 (-631 |#1|))) (-598 (-385 |#2|)) (-591 (-385 |#2|)))) (-15 -2121 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -3612 (-591 (-385 |#2|)))) (-599 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -2121 ((-2 (|:| -3612 (-591 (-385 |#2|))) (|:| -2928 (-631 |#1|))) (-599 |#2| (-385 |#2|)) (-591 (-385 |#2|)))) (-15 -2629 (|#2| (-598 (-385 |#2|)))) (-15 -2629 (|#2| (-599 |#2| (-385 |#2|))))) -((-3228 (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#1|))) |#5| |#4|) 48))) -(((-752 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3228 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#1|))) |#5| |#4|))) (-341) (-601 |#1|) (-1147 |#1|) (-666 |#1| |#3|) (-601 |#4|)) (T -752)) -((-3228 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *7 (-1147 *5)) (-4 *4 (-666 *5 *7)) (-5 *2 (-2 (|:| -2928 (-631 *6)) (|:| |vec| (-1171 *5)))) (-5 *1 (-752 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4))))) -(-10 -7 (-15 -3228 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#1|))) |#5| |#4|))) -((-3889 (((-591 (-2 (|:| |frac| (-385 |#2|)) (|:| -2203 (-599 |#2| (-385 |#2|))))) (-599 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 47)) (-1349 (((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 137 (|has| |#1| (-27))) (((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|))) 138 (|has| |#1| (-27))) (((-591 (-385 |#2|)) (-598 (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 139 (|has| |#1| (-27))) (((-591 (-385 |#2|)) (-598 (-385 |#2|))) 140 (|has| |#1| (-27))) (((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)) (-1 (-591 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 38) (((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)) (-1 (-591 |#1|) |#2|)) 39) (((-591 (-385 |#2|)) (-598 (-385 |#2|)) (-1 (-591 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 36) (((-591 (-385 |#2|)) (-598 (-385 |#2|)) (-1 (-591 |#1|) |#2|)) 37)) (-3990 (((-591 (-2 (|:| |poly| |#2|) (|:| -2203 (-599 |#2| (-385 |#2|))))) (-599 |#2| (-385 |#2|)) (-1 (-591 |#1|) |#2|)) 83))) -(((-753 |#1| |#2|) (-10 -7 (-15 -1349 ((-591 (-385 |#2|)) (-598 (-385 |#2|)) (-1 (-591 |#1|) |#2|))) (-15 -1349 ((-591 (-385 |#2|)) (-598 (-385 |#2|)) (-1 (-591 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1349 ((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)) (-1 (-591 |#1|) |#2|))) (-15 -1349 ((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)) (-1 (-591 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -3889 ((-591 (-2 (|:| |frac| (-385 |#2|)) (|:| -2203 (-599 |#2| (-385 |#2|))))) (-599 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3990 ((-591 (-2 (|:| |poly| |#2|) (|:| -2203 (-599 |#2| (-385 |#2|))))) (-599 |#2| (-385 |#2|)) (-1 (-591 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1349 ((-591 (-385 |#2|)) (-598 (-385 |#2|)))) (-15 -1349 ((-591 (-385 |#2|)) (-598 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -1349 ((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)))) (-15 -1349 ((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|)) (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525)))) (-1147 |#1|)) (T -753)) -((-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1147 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-591 (-385 *6))) (-5 *1 (-753 *5 *6)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-599 *5 (-385 *5))) (-4 *5 (-1147 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-591 (-385 *5))) (-5 *1 (-753 *4 *5)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1147 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-591 (-385 *6))) (-5 *1 (-753 *5 *6)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-598 (-385 *5))) (-4 *5 (-1147 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-591 (-385 *5))) (-5 *1 (-753 *4 *5)))) (-3990 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-591 *5) *6)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) (-5 *2 (-591 (-2 (|:| |poly| *6) (|:| -2203 (-599 *6 (-385 *6)))))) (-5 *1 (-753 *5 *6)) (-5 *3 (-599 *6 (-385 *6))))) (-3889 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-5 *2 (-591 (-2 (|:| |frac| (-385 *6)) (|:| -2203 (-599 *6 (-385 *6)))))) (-5 *1 (-753 *5 *6)) (-5 *3 (-599 *6 (-385 *6))))) (-1349 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *7 (-385 *7))) (-5 *4 (-1 (-591 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-4 *7 (-1147 *6)) (-5 *2 (-591 (-385 *7))) (-5 *1 (-753 *6 *7)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-385 *6))) (-5 *4 (-1 (-591 *5) *6)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) (-5 *2 (-591 (-385 *6))) (-5 *1 (-753 *5 *6)))) (-1349 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-385 *7))) (-5 *4 (-1 (-591 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-4 *7 (-1147 *6)) (-5 *2 (-591 (-385 *7))) (-5 *1 (-753 *6 *7)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-385 *6))) (-5 *4 (-1 (-591 *5) *6)) (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) (-5 *2 (-591 (-385 *6))) (-5 *1 (-753 *5 *6))))) -(-10 -7 (-15 -1349 ((-591 (-385 |#2|)) (-598 (-385 |#2|)) (-1 (-591 |#1|) |#2|))) (-15 -1349 ((-591 (-385 |#2|)) (-598 (-385 |#2|)) (-1 (-591 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1349 ((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)) (-1 (-591 |#1|) |#2|))) (-15 -1349 ((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)) (-1 (-591 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -3889 ((-591 (-2 (|:| |frac| (-385 |#2|)) (|:| -2203 (-599 |#2| (-385 |#2|))))) (-599 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3990 ((-591 (-2 (|:| |poly| |#2|) (|:| -2203 (-599 |#2| (-385 |#2|))))) (-599 |#2| (-385 |#2|)) (-1 (-591 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1349 ((-591 (-385 |#2|)) (-598 (-385 |#2|)))) (-15 -1349 ((-591 (-385 |#2|)) (-598 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -1349 ((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)))) (-15 -1349 ((-591 (-385 |#2|)) (-599 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|)) -((-2822 (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#1|))) (-631 |#2|) (-1171 |#1|)) 85) (((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-591 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1171 |#1|)) (|:| -2203 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1171 |#1|)) 15)) (-2910 (((-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|)))) (-631 |#2|) (-1171 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3612 (-591 |#1|))) |#2| |#1|)) 92)) (-2751 (((-3 (-2 (|:| |particular| (-1171 |#1|)) (|:| -3612 (-631 |#1|))) "failed") (-631 |#1|) (-1171 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3612 (-591 |#1|))) "failed") |#2| |#1|)) 43))) -(((-754 |#1| |#2|) (-10 -7 (-15 -2822 ((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-591 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1171 |#1|)) (|:| -2203 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1171 |#1|))) (-15 -2822 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#1|))) (-631 |#2|) (-1171 |#1|))) (-15 -2751 ((-3 (-2 (|:| |particular| (-1171 |#1|)) (|:| -3612 (-631 |#1|))) "failed") (-631 |#1|) (-1171 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3612 (-591 |#1|))) "failed") |#2| |#1|))) (-15 -2910 ((-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|)))) (-631 |#2|) (-1171 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3612 (-591 |#1|))) |#2| |#1|)))) (-341) (-601 |#1|)) (T -754)) -((-2910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3612 (-591 *6))) *7 *6)) (-4 *6 (-341)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1171 *6) "failed")) (|:| -3612 (-591 (-1171 *6))))) (-5 *1 (-754 *6 *7)) (-5 *4 (-1171 *6)))) (-2751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3612 (-591 *6))) "failed") *7 *6)) (-4 *6 (-341)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-1171 *6)) (|:| -3612 (-631 *6)))) (-5 *1 (-754 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1171 *6)))) (-2822 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-601 *5)) (-5 *2 (-2 (|:| -2928 (-631 *6)) (|:| |vec| (-1171 *5)))) (-5 *1 (-754 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1171 *5)))) (-2822 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| A (-631 *5)) (|:| |eqs| (-591 (-2 (|:| C (-631 *5)) (|:| |g| (-1171 *5)) (|:| -2203 *6) (|:| |rh| *5)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1171 *5)) (-4 *6 (-601 *5))))) -(-10 -7 (-15 -2822 ((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-591 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1171 |#1|)) (|:| -2203 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1171 |#1|))) (-15 -2822 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#1|))) (-631 |#2|) (-1171 |#1|))) (-15 -2751 ((-3 (-2 (|:| |particular| (-1171 |#1|)) (|:| -3612 (-631 |#1|))) "failed") (-631 |#1|) (-1171 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3612 (-591 |#1|))) "failed") |#2| |#1|))) (-15 -2910 ((-2 (|:| |particular| (-3 (-1171 |#1|) "failed")) (|:| -3612 (-591 (-1171 |#1|)))) (-631 |#2|) (-1171 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3612 (-591 |#1|))) |#2| |#1|)))) -((-1603 (((-631 |#1|) (-591 |#1|) (-712)) 13) (((-631 |#1|) (-591 |#1|)) 14)) (-2048 (((-3 (-1171 |#1|) "failed") |#2| |#1| (-591 |#1|)) 34)) (-2285 (((-3 |#1| "failed") |#2| |#1| (-591 |#1|) (-1 |#1| |#1|)) 42))) -(((-755 |#1| |#2|) (-10 -7 (-15 -1603 ((-631 |#1|) (-591 |#1|))) (-15 -1603 ((-631 |#1|) (-591 |#1|) (-712))) (-15 -2048 ((-3 (-1171 |#1|) "failed") |#2| |#1| (-591 |#1|))) (-15 -2285 ((-3 |#1| "failed") |#2| |#1| (-591 |#1|) (-1 |#1| |#1|)))) (-341) (-601 |#1|)) (T -755)) -((-2285 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-591 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341)) (-5 *1 (-755 *2 *3)) (-4 *3 (-601 *2)))) (-2048 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-591 *4)) (-4 *4 (-341)) (-5 *2 (-1171 *4)) (-5 *1 (-755 *4 *3)) (-4 *3 (-601 *4)))) (-1603 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *5)) (-5 *4 (-712)) (-4 *5 (-341)) (-5 *2 (-631 *5)) (-5 *1 (-755 *5 *6)) (-4 *6 (-601 *5)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-591 *4)) (-4 *4 (-341)) (-5 *2 (-631 *4)) (-5 *1 (-755 *4 *5)) (-4 *5 (-601 *4))))) -(-10 -7 (-15 -1603 ((-631 |#1|) (-591 |#1|))) (-15 -1603 ((-631 |#1|) (-591 |#1|) (-712))) (-15 -2048 ((-3 (-1171 |#1|) "failed") |#2| |#1| (-591 |#1|))) (-15 -2285 ((-3 |#1| "failed") |#2| |#1| (-591 |#1|) (-1 |#1| |#1|)))) -((-2673 (((-108) $ $) NIL (|has| |#2| (-1018)))) (-1306 (((-108) $) NIL (|has| |#2| (-126)))) (-2191 (($ (-854)) NIL (|has| |#2| (-975)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3343 (($ $ $) NIL (|has| |#2| (-734)))) (-3332 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3727 (((-108) $ (-712)) NIL)) (-2834 (((-712)) NIL (|has| |#2| (-346)))) (-4188 (((-525) $) NIL (|has| |#2| (-786)))) (-2847 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1018)))) (-3341 (((-525) $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) ((|#2| $) NIL (|has| |#2| (-1018)))) (-3925 (((-631 (-525)) (-631 $)) NIL (-12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| |#2| (-587 (-525))) (|has| |#2| (-975)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL (|has| |#2| (-975))) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-975)))) (-1522 (((-3 $ "failed") $) NIL (|has| |#2| (-975)))) (-1325 (($) NIL (|has| |#2| (-346)))) (-4205 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ (-525)) NIL)) (-3489 (((-108) $) NIL (|has| |#2| (-786)))) (-2916 (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3865 (((-108) $) NIL (|has| |#2| (-975)))) (-2256 (((-108) $) NIL (|has| |#2| (-786)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-4207 (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-4192 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-1970 (((-854) $) NIL (|has| |#2| (-346)))) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#2| (-1018)))) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-3229 (($ (-854)) NIL (|has| |#2| (-346)))) (-2937 (((-1036) $) NIL (|has| |#2| (-1018)))) (-2872 ((|#2| $) NIL (|has| (-525) (-788)))) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-3183 ((|#2| $ $) NIL (|has| |#2| (-975)))) (-2580 (($ (-1171 |#2|)) NIL)) (-3840 (((-128)) NIL (|has| |#2| (-341)))) (-2209 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1 |#2| |#2|) (-712)) NIL (|has| |#2| (-975))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-975)))) (-2960 (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-1171 |#2|) $) NIL) (($ (-525)) NIL (-3150 (-12 (|has| |#2| (-966 (-525))) (|has| |#2| (-1018))) (|has| |#2| (-975)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-966 (-385 (-525)))) (|has| |#2| (-1018)))) (($ |#2|) NIL (|has| |#2| (-1018))) (((-796) $) NIL (|has| |#2| (-565 (-796))))) (-3425 (((-712)) NIL (|has| |#2| (-975)))) (-1475 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1460 (($ $) NIL (|has| |#2| (-786)))) (-1401 (($ $ (-712)) NIL (|has| |#2| (-975))) (($ $ (-854)) NIL (|has| |#2| (-975)))) (-1830 (($) NIL (|has| |#2| (-126)) CONST)) (-1839 (($) NIL (|has| |#2| (-975)) CONST)) (-1796 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#2| (-833 (-1089))) (|has| |#2| (-975)))) (($ $ (-1 |#2| |#2|) (-712)) NIL (|has| |#2| (-975))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-975)))) (-4004 (((-108) $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-3982 (((-108) $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-3944 (((-108) $ $) NIL (|has| |#2| (-1018)))) (-3994 (((-108) $ $) NIL (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-3971 (((-108) $ $) 11 (-3150 (|has| |#2| (-734)) (|has| |#2| (-786))))) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $ $) NIL (|has| |#2| (-975))) (($ $) NIL (|has| |#2| (-975)))) (-4036 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-712)) NIL (|has| |#2| (-975))) (($ $ (-854)) NIL (|has| |#2| (-975)))) (* (($ $ $) NIL (|has| |#2| (-975))) (($ (-525) $) NIL (|has| |#2| (-975))) (($ $ |#2|) NIL (|has| |#2| (-668))) (($ |#2| $) NIL (|has| |#2| (-668))) (($ (-712) $) NIL (|has| |#2| (-126))) (($ (-854) $) NIL (|has| |#2| (-25)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-756 |#1| |#2| |#3|) (-218 |#1| |#2|) (-712) (-734) (-1 (-108) (-1171 |#2|) (-1171 |#2|))) (T -756)) +(-13 (-789) (-23)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-566 (-797)) . T) ((-789) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 24)) (-3004 (((-3 $ "failed") $ $) 26)) (-1957 (($) 23 T CONST)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 22 T CONST)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18)) (-4017 (($ $ $) 20)) (* (($ (-713) $) 25) (($ (-855) $) 21))) +(((-737) (-131)) (T -737)) +NIL +(-13 (-734) (-126)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-734) . T) ((-736) . T) ((-789) . T) ((-1019) . T)) +((-2464 (((-108) $) 41)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2068 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 42)) (-2132 (((-3 (-385 (-525)) "failed") $) 78)) (-3748 (((-108) $) 72)) (-1675 (((-385 (-525)) $) 76)) (-2281 ((|#2| $) 26)) (-2868 (($ (-1 |#2| |#2|) $) 23)) (-3243 (($ $) 61)) (-2923 (((-501) $) 67)) (-4025 (($ $) 21)) (-4044 (((-797) $) 56) (($ (-525)) 39) (($ |#2|) 37) (($ (-385 (-525))) NIL)) (-2502 (((-713)) 10)) (-2053 ((|#2| $) 71)) (-3899 (((-108) $ $) 29)) (-3928 (((-108) $ $) 69)) (-4033 (($ $) 31) (($ $ $) NIL)) (-4017 (($ $ $) 30)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-738 |#1| |#2|) (-10 -8 (-15 -3928 ((-108) |#1| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -3243 (|#1| |#1|)) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -4025 (|#1| |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -4044 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) (-739 |#2|) (-160)) (T -738)) +((-2502 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-738 *3 *4)) (-4 *3 (-739 *4))))) +(-10 -8 (-15 -3928 ((-108) |#1| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -3243 (|#1| |#1|)) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -4025 (|#1| |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -4044 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1651 (((-713)) 53 (|has| |#1| (-346)))) (-1957 (($) 17 T CONST)) (-2769 (((-3 (-525) "failed") $) 94 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 92 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 90)) (-2068 (((-525) $) 95 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 93 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 89)) (-1645 (((-3 $ "failed") $) 34)) (-2992 ((|#1| $) 79)) (-2132 (((-3 (-385 (-525)) "failed") $) 66 (|has| |#1| (-510)))) (-3748 (((-108) $) 68 (|has| |#1| (-510)))) (-1675 (((-385 (-525)) $) 67 (|has| |#1| (-510)))) (-1527 (($) 56 (|has| |#1| (-346)))) (-2507 (((-108) $) 31)) (-1643 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2281 ((|#1| $) 71)) (-1260 (($ $ $) 62 (|has| |#1| (-789)))) (-2154 (($ $ $) 61 (|has| |#1| (-789)))) (-2868 (($ (-1 |#1| |#1|) $) 81)) (-2111 (((-855) $) 55 (|has| |#1| (-346)))) (-1707 (((-1073) $) 9)) (-3243 (($ $) 65 (|has| |#1| (-341)))) (-3381 (($ (-855)) 54 (|has| |#1| (-346)))) (-3740 ((|#1| $) 76)) (-1886 ((|#1| $) 77)) (-3849 ((|#1| $) 78)) (-4095 ((|#1| $) 72)) (-2829 ((|#1| $) 73)) (-3699 ((|#1| $) 74)) (-2122 ((|#1| $) 75)) (-3027 (((-1037) $) 10)) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) 87 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 85 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 84 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 83 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) 82 (|has| |#1| (-486 (-1090) |#1|)))) (-1496 (($ $ |#1|) 88 (|has| |#1| (-265 |#1| |#1|)))) (-2923 (((-501) $) 63 (|has| |#1| (-567 (-501))))) (-4025 (($ $) 80)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 91 (|has| |#1| (-967 (-385 (-525)))))) (-1279 (((-3 $ "failed") $) 64 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-2053 ((|#1| $) 69 (|has| |#1| (-985)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3973 (((-108) $ $) 59 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 58 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 60 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 57 (|has| |#1| (-789)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-739 |#1|) (-131) (-160)) (T -739)) +((-4025 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1643 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-985)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2132 (*1 *2 *1) (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-3243 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341))))) +(-13 (-37 |t#1|) (-389 |t#1|) (-316 |t#1|) (-10 -8 (-15 -4025 ($ $)) (-15 -2992 (|t#1| $)) (-15 -3849 (|t#1| $)) (-15 -1886 (|t#1| $)) (-15 -3740 (|t#1| $)) (-15 -2122 (|t#1| $)) (-15 -3699 (|t#1| $)) (-15 -2829 (|t#1| $)) (-15 -4095 (|t#1| $)) (-15 -2281 (|t#1| $)) (-15 -1643 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-985)) (-15 -2053 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -3243 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-346) |has| |#1| (-346)) ((-316 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2868 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 (|#3| (-1 |#4| |#2|) |#1|))) (-739 |#2|) (-160) (-739 |#4|) (-160)) (T -740)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-739 *6)) (-5 *1 (-740 *4 *5 *2 *6)) (-4 *4 (-739 *5))))) +(-10 -7 (-15 -2868 (|#3| (-1 |#4| |#2|) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1651 (((-713)) NIL (|has| |#1| (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL) (((-3 (-930 |#1|) "failed") $) 35) (((-3 (-525) "failed") $) NIL (-3215 (|has| (-930 |#1|) (-967 (-525))) (|has| |#1| (-967 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL (-3215 (|has| (-930 |#1|) (-967 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-2068 ((|#1| $) NIL) (((-930 |#1|) $) 33) (((-525) $) NIL (-3215 (|has| (-930 |#1|) (-967 (-525))) (|has| |#1| (-967 (-525))))) (((-385 (-525)) $) NIL (-3215 (|has| (-930 |#1|) (-967 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-1645 (((-3 $ "failed") $) NIL)) (-2992 ((|#1| $) 16)) (-2132 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-3748 (((-108) $) NIL (|has| |#1| (-510)))) (-1675 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-1527 (($) NIL (|has| |#1| (-346)))) (-2507 (((-108) $) NIL)) (-1643 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-930 |#1|) (-930 |#1|)) 29)) (-2281 ((|#1| $) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2111 (((-855) $) NIL (|has| |#1| (-346)))) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-3381 (($ (-855)) NIL (|has| |#1| (-346)))) (-3740 ((|#1| $) 22)) (-1886 ((|#1| $) 20)) (-3849 ((|#1| $) 18)) (-4095 ((|#1| $) 26)) (-2829 ((|#1| $) 25)) (-3699 ((|#1| $) 24)) (-2122 ((|#1| $) 23)) (-3027 (((-1037) $) NIL)) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|)))) (-1496 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4025 (($ $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-930 |#1|)) 30) (($ (-385 (-525))) NIL (-3215 (|has| (-930 |#1|) (-967 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-2053 ((|#1| $) NIL (|has| |#1| (-985)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 8 T CONST)) (-1449 (($) 12 T CONST)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-741 |#1|) (-13 (-739 |#1|) (-389 (-930 |#1|)) (-10 -8 (-15 -1643 ($ (-930 |#1|) (-930 |#1|))))) (-160)) (T -741)) +((-1643 (*1 *1 *2 *2) (-12 (-5 *2 (-930 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3))))) +(-13 (-739 |#1|) (-389 (-930 |#1|)) (-10 -8 (-15 -1643 ($ (-930 |#1|) (-930 |#1|))))) +((-4028 (((-108) $ $) 7)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3087 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13)) (-3899 (((-108) $ $) 6))) +(((-742) (-131)) (T -742)) +((-1393 (*1 *2 *3 *4) (-12 (-4 *1 (-742)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)))))) (-3087 (*1 *2 *3) (-12 (-4 *1 (-742)) (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-965))))) +(-13 (-1019) (-10 -7 (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3087 ((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-1681 (((-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) |#3| |#2| (-1090)) 19))) +(((-743 |#1| |#2| |#3|) (-10 -7 (-15 -1681 ((-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) |#3| |#2| (-1090)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892)) (-602 |#2|)) (T -743)) +((-1681 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1090)) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1112) (-892))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2734 (-592 *4)))) (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4))))) +(-10 -7 (-15 -1681 ((-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) |#3| |#2| (-1090)))) +((-1932 (((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)) 28) (((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1090)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1090)) 18) (((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2734 (-592 (-1172 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1090)) 24) (((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2734 (-592 (-1172 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1090)) 26) (((-3 (-592 (-1172 |#2|)) "failed") (-632 |#2|) (-1090)) 37) (((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2734 (-592 (-1172 |#2|)))) "failed") (-632 |#2|) (-1172 |#2|) (-1090)) 35))) +(((-744 |#1| |#2|) (-10 -7 (-15 -1932 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2734 (-592 (-1172 |#2|)))) "failed") (-632 |#2|) (-1172 |#2|) (-1090))) (-15 -1932 ((-3 (-592 (-1172 |#2|)) "failed") (-632 |#2|) (-1090))) (-15 -1932 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2734 (-592 (-1172 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1090))) (-15 -1932 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2734 (-592 (-1172 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1090))) (-15 -1932 ((-3 (-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1090))) (-15 -1932 ((-3 (-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1090))) (-15 -1932 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -1932 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892))) (T -744)) +((-1932 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-744 *6 *2)))) (-1932 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1112) (-892))) (-5 *1 (-744 *6 *2)) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))))) (-1932 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1090)) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2734 (-592 *3))) *3 "failed")) (-5 *1 (-744 *6 *3)) (-4 *3 (-13 (-29 *6) (-1112) (-892))))) (-1932 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2734 (-592 *7))) *7 "failed")) (-5 *1 (-744 *6 *7)))) (-1932 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1172 *7)) (|:| -2734 (-592 (-1172 *7))))) (-5 *1 (-744 *6 *7)))) (-1932 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1172 *7)) (|:| -2734 (-592 (-1172 *7))))) (-5 *1 (-744 *6 *7)))) (-1932 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1090)) (-4 *6 (-13 (-29 *5) (-1112) (-892))) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-1172 *6))) (-5 *1 (-744 *5 *6)))) (-1932 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1172 *7)) (|:| -2734 (-592 (-1172 *7))))) (-5 *1 (-744 *6 *7)) (-5 *4 (-1172 *7))))) +(-10 -7 (-15 -1932 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2734 (-592 (-1172 |#2|)))) "failed") (-632 |#2|) (-1172 |#2|) (-1090))) (-15 -1932 ((-3 (-592 (-1172 |#2|)) "failed") (-632 |#2|) (-1090))) (-15 -1932 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2734 (-592 (-1172 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1090))) (-15 -1932 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2734 (-592 (-1172 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1090))) (-15 -1932 ((-3 (-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1090))) (-15 -1932 ((-3 (-2 (|:| |particular| |#2|) (|:| -2734 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1090))) (-15 -1932 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -1932 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)))) +((-1616 (($) 9)) (-3310 (((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 31)) (-2183 (((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 28)) (-4157 (($ (-2 (|:| -3160 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) 25)) (-1250 (($ (-592 (-2 (|:| -3160 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) 23)) (-1370 (((-1177)) 12))) +(((-745) (-10 -8 (-15 -1616 ($)) (-15 -1370 ((-1177))) (-15 -2183 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1250 ($ (-592 (-2 (|:| -3160 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -4157 ($ (-2 (|:| -3160 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -3310 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -745)) +((-3310 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *1 (-745)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3160 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) (-5 *1 (-745)))) (-1250 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3160 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-5 *1 (-745)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-745)))) (-1370 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-745)))) (-1616 (*1 *1) (-5 *1 (-745)))) +(-10 -8 (-15 -1616 ($)) (-15 -1370 ((-1177))) (-15 -2183 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1250 ($ (-592 (-2 (|:| -3160 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -4157 ($ (-2 (|:| -3160 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -3978 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -3310 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) +((-3038 ((|#2| |#2| (-1090)) 16)) (-3460 ((|#2| |#2| (-1090)) 51)) (-3966 (((-1 |#2| |#2|) (-1090)) 11))) +(((-746 |#1| |#2|) (-10 -7 (-15 -3038 (|#2| |#2| (-1090))) (-15 -3460 (|#2| |#2| (-1090))) (-15 -3966 ((-1 |#2| |#2|) (-1090)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892))) (T -746)) +((-3966 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5)) (-4 *5 (-13 (-29 *4) (-1112) (-892))))) (-3460 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1112) (-892))))) (-3038 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1112) (-892)))))) +(-10 -7 (-15 -3038 (|#2| |#2| (-1090))) (-15 -3460 (|#2| |#2| (-1090))) (-15 -3966 ((-1 |#2| |#2|) (-1090)))) +((-1932 (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357)) 116) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357)) 117) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357)) 119) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357)) 120) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357)) 121) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357))) 122) (((-965) (-750) (-988)) 108) (((-965) (-750)) 109)) (-1393 (((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750) (-988)) 75) (((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750)) 77))) +(((-747) (-10 -7 (-15 -1932 ((-965) (-750))) (-15 -1932 ((-965) (-750) (-988))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750) (-988))))) (T -747)) +((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-988)) (-5 *2 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-747)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-747)))) (-1932 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1172 (-294 *4))) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-965)) (-5 *1 (-747)))) (-1932 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1172 (-294 *4))) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-965)) (-5 *1 (-747)))) (-1932 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) (-5 *2 (-965)) (-5 *1 (-747)))) (-1932 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1172 (-294 *4))) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-965)) (-5 *1 (-747)))) (-1932 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) (-5 *2 (-965)) (-5 *1 (-747)))) (-1932 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) (-5 *2 (-965)) (-5 *1 (-747)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-747)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-965)) (-5 *1 (-747))))) +(-10 -7 (-15 -1932 ((-965) (-750))) (-15 -1932 ((-965) (-750) (-988))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -1932 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750) (-988)))) +((-1319 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2734 (-592 |#4|))) (-599 |#4|) |#4|) 35))) +(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1319 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2734 (-592 |#4|))) (-599 |#4|) |#4|))) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -748)) +((-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) (-5 *1 (-748 *5 *6 *7 *4))))) +(-10 -7 (-15 -1319 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2734 (-592 |#4|))) (-599 |#4|) |#4|))) +((-3338 (((-2 (|:| -3941 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))) 52)) (-3140 (((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#4| |#2|) 60) (((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#4|) 59) (((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#3| |#2|) 20) (((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#3|) 21)) (-2785 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3541 ((|#2| |#3| (-592 (-385 |#2|))) 93) (((-3 |#2| "failed") |#3| (-385 |#2|)) 90))) +(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3541 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -3541 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -3140 ((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#3|)) (-15 -3140 ((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#3| |#2|)) (-15 -2785 (|#2| |#3| |#1|)) (-15 -3140 ((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#4|)) (-15 -3140 ((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#4| |#2|)) (-15 -2785 (|#2| |#4| |#1|)) (-15 -3338 ((-2 (|:| -3941 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))))) (-13 (-341) (-138) (-967 (-385 (-525)))) (-1148 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -749)) +((-3338 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-2 (|:| -3941 *7) (|:| |rh| (-592 (-385 *6))))) (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6))) (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6))))) (-2785 (*1 *2 *3 *4) (-12 (-4 *2 (-1148 *4)) (-5 *1 (-749 *4 *2 *5 *3)) (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-602 *2)) (-4 *3 (-602 (-385 *2))))) (-3140 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *4 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -3448 *4) (|:| -2360 *4)))) (-5 *1 (-749 *5 *4 *6 *3)) (-4 *6 (-602 *4)) (-4 *3 (-602 (-385 *4))))) (-3140 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| -3448 *5) (|:| -2360 *5)))) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 (-385 *5))))) (-2785 (*1 *2 *3 *4) (-12 (-4 *2 (-1148 *4)) (-5 *1 (-749 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2))))) (-3140 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *4 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -3448 *4) (|:| -2360 *4)))) (-5 *1 (-749 *5 *4 *3 *6)) (-4 *3 (-602 *4)) (-4 *6 (-602 (-385 *4))))) (-3140 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| -3448 *5) (|:| -2360 *5)))) (-5 *1 (-749 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-3541 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1148 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-385 *2))))) (-3541 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1148 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 *4))))) +(-10 -7 (-15 -3541 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -3541 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -3140 ((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#3|)) (-15 -3140 ((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#3| |#2|)) (-15 -2785 (|#2| |#3| |#1|)) (-15 -3140 ((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#4|)) (-15 -3140 ((-592 (-2 (|:| -3448 |#2|) (|:| -2360 |#2|))) |#4| |#2|)) (-15 -2785 (|#2| |#4| |#1|)) (-15 -3338 ((-2 (|:| -3941 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))))) +((-4028 (((-108) $ $) NIL)) (-2068 (((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $) 13)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 15) (($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 12)) (-3899 (((-108) $ $) NIL))) +(((-750) (-13 (-1019) (-10 -8 (-15 -4044 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4044 ((-797) $)) (-15 -2068 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))) (T -750)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-750)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750))))) +(-13 (-1019) (-10 -8 (-15 -4044 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4044 ((-797) $)) (-15 -2068 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $)))) +((-2252 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3941 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1086 |#2|)) (-1 (-396 |#2|) |#2|)) 118)) (-3782 (((-592 (-2 (|:| |poly| |#2|) (|:| -3941 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 46)) (-1474 (((-592 (-2 (|:| |deg| (-713)) (|:| -3941 |#2|))) |#3|) 95)) (-1656 ((|#2| |#3|) 37)) (-1597 (((-592 (-2 (|:| -3219 |#1|) (|:| -3941 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 82)) (-3614 ((|#3| |#3| (-385 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1656 (|#2| |#3|)) (-15 -1474 ((-592 (-2 (|:| |deg| (-713)) (|:| -3941 |#2|))) |#3|)) (-15 -1597 ((-592 (-2 (|:| -3219 |#1|) (|:| -3941 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3782 ((-592 (-2 (|:| |poly| |#2|) (|:| -3941 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -2252 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3941 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1086 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3614 (|#3| |#3| |#2|)) (-15 -3614 (|#3| |#3| (-385 |#2|)))) (-13 (-341) (-138) (-967 (-385 (-525)))) (-1148 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -751)) +((-3614 (*1 *2 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 *3)))) (-3614 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-1148 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-385 *3))))) (-2252 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-592 *7) *7 (-1086 *7))) (-5 *5 (-1 (-396 *7) *7)) (-4 *7 (-1148 *6)) (-4 *6 (-13 (-341) (-138) (-967 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -3941 *3)))) (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-385 *7))))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -3941 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-1597 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -3219 *5) (|:| -3941 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -3941 *5)))) (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-1656 (*1 *2 *3) (-12 (-4 *2 (-1148 *4)) (-5 *1 (-751 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2)))))) +(-10 -7 (-15 -1656 (|#2| |#3|)) (-15 -1474 ((-592 (-2 (|:| |deg| (-713)) (|:| -3941 |#2|))) |#3|)) (-15 -1597 ((-592 (-2 (|:| -3219 |#1|) (|:| -3941 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3782 ((-592 (-2 (|:| |poly| |#2|) (|:| -3941 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -2252 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3941 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1086 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3614 (|#3| |#3| |#2|)) (-15 -3614 (|#3| |#3| (-385 |#2|)))) +((-1371 (((-2 (|:| -2734 (-592 (-385 |#2|))) (|:| -3471 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|))) 121) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2734 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|)) 120) (((-2 (|:| -2734 (-592 (-385 |#2|))) (|:| -3471 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|))) 115) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2734 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|)) 113)) (-3430 ((|#2| (-600 |#2| (-385 |#2|))) 80) ((|#2| (-599 (-385 |#2|))) 83))) +(((-752 |#1| |#2|) (-10 -7 (-15 -1371 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2734 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -1371 ((-2 (|:| -2734 (-592 (-385 |#2|))) (|:| -3471 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -1371 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2734 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -1371 ((-2 (|:| -2734 (-592 (-385 |#2|))) (|:| -3471 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -3430 (|#2| (-599 (-385 |#2|)))) (-15 -3430 (|#2| (-600 |#2| (-385 |#2|))))) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|)) (T -752)) +((-3430 (*1 *2 *3) (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-2 (|:| -2734 (-592 (-385 *6))) (|:| -3471 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) (-5 *1 (-752 *5 *6)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-2 (|:| -2734 (-592 (-385 *6))) (|:| -3471 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) (-5 *1 (-752 *5 *6))))) +(-10 -7 (-15 -1371 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2734 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -1371 ((-2 (|:| -2734 (-592 (-385 |#2|))) (|:| -3471 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -1371 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2734 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -1371 ((-2 (|:| -2734 (-592 (-385 |#2|))) (|:| -3471 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -3430 (|#2| (-599 (-385 |#2|)))) (-15 -3430 (|#2| (-600 |#2| (-385 |#2|))))) +((-3619 (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) |#5| |#4|) 48))) +(((-753 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3619 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) |#5| |#4|))) (-341) (-602 |#1|) (-1148 |#1|) (-667 |#1| |#3|) (-602 |#4|)) (T -753)) +((-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *7 (-1148 *5)) (-4 *4 (-667 *5 *7)) (-5 *2 (-2 (|:| -3471 (-632 *6)) (|:| |vec| (-1172 *5)))) (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4))))) +(-10 -7 (-15 -3619 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) |#5| |#4|))) +((-2252 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3941 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 47)) (-2159 (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 137 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|))) 138 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 139 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|))) 140 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 38) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 39) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 36) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 37)) (-3782 (((-592 (-2 (|:| |poly| |#2|) (|:| -3941 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 83))) +(((-754 |#1| |#2|) (-10 -7 (-15 -2159 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -2159 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2159 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -2159 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2252 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3941 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3782 ((-592 (-2 (|:| |poly| |#2|) (|:| -3941 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2159 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -2159 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -2159 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -2159 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|)) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|)) (T -754)) +((-2159 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1148 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1148 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -3941 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-2252 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *6)) (|:| -3941 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-2159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *7 (-1148 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-2159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *7 (-1148 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))) +(-10 -7 (-15 -2159 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -2159 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2159 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -2159 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2252 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -3941 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3782 ((-592 (-2 (|:| |poly| |#2|) (|:| -3941 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2159 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -2159 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -2159 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -2159 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|)) +((-3468 (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) (-632 |#2|) (-1172 |#1|)) 85) (((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)) (|:| -3941 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1172 |#1|)) 15)) (-2202 (((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|)))) (-632 |#2|) (-1172 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2734 (-592 |#1|))) |#2| |#1|)) 92)) (-1932 (((-3 (-2 (|:| |particular| (-1172 |#1|)) (|:| -2734 (-632 |#1|))) "failed") (-632 |#1|) (-1172 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2734 (-592 |#1|))) "failed") |#2| |#1|)) 43))) +(((-755 |#1| |#2|) (-10 -7 (-15 -3468 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)) (|:| -3941 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1172 |#1|))) (-15 -3468 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) (-632 |#2|) (-1172 |#1|))) (-15 -1932 ((-3 (-2 (|:| |particular| (-1172 |#1|)) (|:| -2734 (-632 |#1|))) "failed") (-632 |#1|) (-1172 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2734 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -2202 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|)))) (-632 |#2|) (-1172 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2734 (-592 |#1|))) |#2| |#1|)))) (-341) (-602 |#1|)) (T -755)) +((-2202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2734 (-592 *6))) *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1172 *6) "failed")) (|:| -2734 (-592 (-1172 *6))))) (-5 *1 (-755 *6 *7)) (-5 *4 (-1172 *6)))) (-1932 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2734 (-592 *6))) "failed") *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-1172 *6)) (|:| -2734 (-632 *6)))) (-5 *1 (-755 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1172 *6)))) (-3468 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-602 *5)) (-5 *2 (-2 (|:| -3471 (-632 *6)) (|:| |vec| (-1172 *5)))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1172 *5)))) (-3468 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| A (-632 *5)) (|:| |eqs| (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1172 *5)) (|:| -3941 *6) (|:| |rh| *5)))))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *6 (-602 *5))))) +(-10 -7 (-15 -3468 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)) (|:| -3941 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1172 |#1|))) (-15 -3468 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) (-632 |#2|) (-1172 |#1|))) (-15 -1932 ((-3 (-2 (|:| |particular| (-1172 |#1|)) (|:| -2734 (-632 |#1|))) "failed") (-632 |#1|) (-1172 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2734 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -2202 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2734 (-592 (-1172 |#1|)))) (-632 |#2|) (-1172 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2734 (-592 |#1|))) |#2| |#1|)))) +((-4069 (((-632 |#1|) (-592 |#1|) (-713)) 13) (((-632 |#1|) (-592 |#1|)) 14)) (-3589 (((-3 (-1172 |#1|) "failed") |#2| |#1| (-592 |#1|)) 34)) (-3023 (((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)) 42))) +(((-756 |#1| |#2|) (-10 -7 (-15 -4069 ((-632 |#1|) (-592 |#1|))) (-15 -4069 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -3589 ((-3 (-1172 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -3023 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -756)) +((-3023 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341)) (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2)))) (-3589 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1172 *4)) (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)) (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4))))) +(-10 -7 (-15 -4069 ((-632 |#1|) (-592 |#1|))) (-15 -4069 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -3589 ((-3 (-1172 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -3023 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)))) +((-4028 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-2464 (((-108) $) NIL (|has| |#2| (-126)))) (-3510 (($ (-855)) NIL (|has| |#2| (-976)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3207 (($ $ $) NIL (|has| |#2| (-735)))) (-3004 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-2583 (((-108) $ (-713)) NIL)) (-1651 (((-713)) NIL (|has| |#2| (-346)))) (-2780 (((-525) $) NIL (|has| |#2| (-787)))) (-1230 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1019)))) (-2068 (((-525) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) ((|#2| $) NIL (|has| |#2| (-1019)))) (-1307 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL (|has| |#2| (-976))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-976)))) (-1645 (((-3 $ "failed") $) NIL (|has| |#2| (-976)))) (-1527 (($) NIL (|has| |#2| (-346)))) (-2549 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ (-525)) NIL)) (-2973 (((-108) $) NIL (|has| |#2| (-787)))) (-3781 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2507 (((-108) $) NIL (|has| |#2| (-976)))) (-3721 (((-108) $) NIL (|has| |#2| (-787)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2679 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2540 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-2111 (((-855) $) NIL (|has| |#2| (-346)))) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#2| (-1019)))) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3381 (($ (-855)) NIL (|has| |#2| (-346)))) (-3027 (((-1037) $) NIL (|has| |#2| (-1019)))) (-1683 ((|#2| $) NIL (|has| (-525) (-789)))) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-1580 ((|#2| $ $) NIL (|has| |#2| (-976)))) (-3020 (($ (-1172 |#2|)) NIL)) (-2374 (((-128)) NIL (|has| |#2| (-341)))) (-1576 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-3053 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-1172 |#2|) $) NIL) (($ (-525)) NIL (-3215 (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (|has| |#2| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (($ |#2|) NIL (|has| |#2| (-1019))) (((-797) $) NIL (|has| |#2| (-566 (-797))))) (-2502 (((-713)) NIL (|has| |#2| (-976)))) (-2443 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2053 (($ $) NIL (|has| |#2| (-787)))) (-1594 (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (-1436 (($) NIL (|has| |#2| (-126)) CONST)) (-1449 (($) NIL (|has| |#2| (-976)) CONST)) (-1990 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-3973 (((-108) $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3944 (((-108) $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3899 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-3959 (((-108) $ $) NIL (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3928 (((-108) $ $) 11 (-3215 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $ $) NIL (|has| |#2| (-976))) (($ $) NIL (|has| |#2| (-976)))) (-4017 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (* (($ $ $) NIL (|has| |#2| (-976))) (($ (-525) $) NIL (|has| |#2| (-976))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-855) $) NIL (|has| |#2| (-25)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-757 |#1| |#2| |#3|) (-218 |#1| |#2|) (-713) (-735) (-1 (-108) (-1172 |#2|) (-1172 |#2|))) (T -757)) NIL (-218 |#1| |#2|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3827 (((-591 (-712)) $) NIL) (((-591 (-712)) $ (-1089)) NIL)) (-1314 (((-712) $) NIL) (((-712) $ (-1089)) NIL)) (-1444 (((-591 (-759 (-1089))) $) NIL)) (-2514 (((-1085 $) $ (-759 (-1089))) NIL) (((-1085 |#1|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-759 (-1089)))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1720 (($ $) NIL (|has| |#1| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2243 (($ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-759 (-1089)) "failed") $) NIL) (((-3 (-1089) "failed") $) NIL) (((-3 (-1041 |#1| (-1089)) "failed") $) NIL)) (-3341 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-759 (-1089)) $) NIL) (((-1089) $) NIL) (((-1041 |#1| (-1089)) $) NIL)) (-1788 (($ $ $ (-759 (-1089))) NIL (|has| |#1| (-160)))) (-1575 (($ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#1| (-429))) (($ $ (-759 (-1089))) NIL (|has| |#1| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#1| (-842)))) (-2615 (($ $ |#1| (-497 (-759 (-1089))) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-759 (-1089)) (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-759 (-1089)) (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-1676 (((-712) $ (-1089)) NIL) (((-712) $) NIL)) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-1434 (($ (-1085 |#1|) (-759 (-1089))) NIL) (($ (-1085 $) (-759 (-1089))) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-497 (-759 (-1089)))) NIL) (($ $ (-759 (-1089)) (-712)) NIL) (($ $ (-591 (-759 (-1089))) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-759 (-1089))) NIL)) (-3629 (((-497 (-759 (-1089))) $) NIL) (((-712) $ (-759 (-1089))) NIL) (((-591 (-712)) $ (-591 (-759 (-1089)))) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2508 (($ (-1 (-497 (-759 (-1089))) (-497 (-759 (-1089)))) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1695 (((-1 $ (-712)) (-1089)) NIL) (((-1 $ (-712)) $) NIL (|has| |#1| (-213)))) (-3027 (((-3 (-759 (-1089)) "failed") $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-3574 (((-759 (-1089)) $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2621 (((-1072) $) NIL)) (-4156 (((-108) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-759 (-1089))) (|:| -3987 (-712))) "failed") $) NIL)) (-2233 (($ $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#1| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-842)))) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-759 (-1089)) |#1|) NIL) (($ $ (-591 (-759 (-1089))) (-591 |#1|)) NIL) (($ $ (-759 (-1089)) $) NIL) (($ $ (-591 (-759 (-1089))) (-591 $)) NIL) (($ $ (-1089) $) NIL (|has| |#1| (-213))) (($ $ (-591 (-1089)) (-591 $)) NIL (|has| |#1| (-213))) (($ $ (-1089) |#1|) NIL (|has| |#1| (-213))) (($ $ (-591 (-1089)) (-591 |#1|)) NIL (|has| |#1| (-213)))) (-2858 (($ $ (-759 (-1089))) NIL (|has| |#1| (-160)))) (-2209 (($ $ (-759 (-1089))) NIL) (($ $ (-591 (-759 (-1089)))) NIL) (($ $ (-759 (-1089)) (-712)) NIL) (($ $ (-591 (-759 (-1089))) (-591 (-712))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1277 (((-591 (-1089)) $) NIL)) (-2743 (((-497 (-759 (-1089))) $) NIL) (((-712) $ (-759 (-1089))) NIL) (((-591 (-712)) $ (-591 (-759 (-1089)))) NIL) (((-712) $ (-1089)) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-759 (-1089)) (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-759 (-1089)) (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-759 (-1089)) (-566 (-501))) (|has| |#1| (-566 (-501)))))) (-2827 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-759 (-1089))) NIL (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-759 (-1089))) NIL) (($ (-1089)) NIL) (($ (-1041 |#1| (-1089))) NIL) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-497 (-759 (-1089)))) NIL) (($ $ (-759 (-1089)) (-712)) NIL) (($ $ (-591 (-759 (-1089))) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#1| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-759 (-1089))) NIL) (($ $ (-591 (-759 (-1089)))) NIL) (($ $ (-759 (-1089)) (-712)) NIL) (($ $ (-591 (-759 (-1089))) (-591 (-712))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-757 |#1|) (-13 (-232 |#1| (-1089) (-759 (-1089)) (-497 (-759 (-1089)))) (-966 (-1041 |#1| (-1089)))) (-975)) (T -757)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3453 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1090)) NIL)) (-2147 (((-713) $) NIL) (((-713) $ (-1090)) NIL)) (-3122 (((-592 (-760 (-1090))) $) NIL)) (-1315 (((-1086 $) $ (-760 (-1090))) NIL) (((-1086 |#1|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-760 (-1090)))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2701 (($ $) NIL (|has| |#1| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2945 (($ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-760 (-1090)) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL) (((-3 (-1042 |#1| (-1090)) "failed") $) NIL)) (-2068 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-760 (-1090)) $) NIL) (((-1090) $) NIL) (((-1042 |#1| (-1090)) $) NIL)) (-3048 (($ $ $ (-760 (-1090))) NIL (|has| |#1| (-160)))) (-3306 (($ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1090))) NIL (|has| |#1| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#1| (-843)))) (-2187 (($ $ |#1| (-497 (-760 (-1090))) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-760 (-1090)) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-760 (-1090)) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2158 (((-713) $ (-1090)) NIL) (((-713) $) NIL)) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-3110 (($ (-1086 |#1|) (-760 (-1090))) NIL) (($ (-1086 $) (-760 (-1090))) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-497 (-760 (-1090)))) NIL) (($ $ (-760 (-1090)) (-713)) NIL) (($ $ (-592 (-760 (-1090))) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-760 (-1090))) NIL)) (-3762 (((-497 (-760 (-1090))) $) NIL) (((-713) $ (-760 (-1090))) NIL) (((-592 (-713)) $ (-592 (-760 (-1090)))) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2078 (($ (-1 (-497 (-760 (-1090))) (-497 (-760 (-1090)))) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3485 (((-1 $ (-713)) (-1090)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-3869 (((-3 (-760 (-1090)) "failed") $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2241 (((-760 (-1090)) $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1707 (((-1073) $) NIL)) (-1441 (((-108) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-760 (-1090))) (|:| -1737 (-713))) "failed") $) NIL)) (-3980 (($ $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#1| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-760 (-1090)) |#1|) NIL) (($ $ (-592 (-760 (-1090))) (-592 |#1|)) NIL) (($ $ (-760 (-1090)) $) NIL) (($ $ (-592 (-760 (-1090))) (-592 $)) NIL) (($ $ (-1090) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1090)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-2257 (($ $ (-760 (-1090))) NIL (|has| |#1| (-160)))) (-1576 (($ $ (-760 (-1090))) NIL) (($ $ (-592 (-760 (-1090)))) NIL) (($ $ (-760 (-1090)) (-713)) NIL) (($ $ (-592 (-760 (-1090))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3706 (((-592 (-1090)) $) NIL)) (-1486 (((-497 (-760 (-1090))) $) NIL) (((-713) $ (-760 (-1090))) NIL) (((-592 (-713)) $ (-592 (-760 (-1090)))) NIL) (((-713) $ (-1090)) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-760 (-1090)) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-760 (-1090)) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-760 (-1090)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2758 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1090))) NIL (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-760 (-1090))) NIL) (($ (-1090)) NIL) (($ (-1042 |#1| (-1090))) NIL) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-497 (-760 (-1090)))) NIL) (($ $ (-760 (-1090)) (-713)) NIL) (($ $ (-592 (-760 (-1090))) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-760 (-1090))) NIL) (($ $ (-592 (-760 (-1090)))) NIL) (($ $ (-760 (-1090)) (-713)) NIL) (($ $ (-592 (-760 (-1090))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-758 |#1|) (-13 (-232 |#1| (-1090) (-760 (-1090)) (-497 (-760 (-1090)))) (-967 (-1042 |#1| (-1090)))) (-976)) (T -758)) NIL -(-13 (-232 |#1| (-1089) (-759 (-1089)) (-497 (-759 (-1089)))) (-966 (-1041 |#1| (-1089)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#2| (-341)))) (-3641 (($ $) NIL (|has| |#2| (-341)))) (-3077 (((-108) $) NIL (|has| |#2| (-341)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| |#2| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#2| (-341)))) (-1965 (((-108) $ $) NIL (|has| |#2| (-341)))) (-2055 (($) NIL T CONST)) (-3265 (($ $ $) NIL (|has| |#2| (-341)))) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL (|has| |#2| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#2| (-341)))) (-2393 (((-108) $) NIL (|has| |#2| (-341)))) (-3865 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#2| (-341)))) (-2081 (($ (-591 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 20 (|has| |#2| (-341)))) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-2542 (((-396 $) $) NIL (|has| |#2| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#2| (-341)))) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#2| (-341)))) (-3048 (((-712) $) NIL (|has| |#2| (-341)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#2| (-341)))) (-2209 (($ $ (-712)) NIL) (($ $) 13)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-385 (-525))) NIL (|has| |#2| (-341))) (($ $) NIL (|has| |#2| (-341)))) (-3425 (((-712)) NIL)) (-1724 (((-108) $ $) NIL (|has| |#2| (-341)))) (-1401 (($ $ (-712)) NIL) (($ $ (-854)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) 15 (|has| |#2| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-712)) NIL) (($ $ (-854)) NIL) (($ $ (-525)) 18 (|has| |#2| (-341)))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) NIL (|has| |#2| (-341))) (($ $ (-385 (-525))) NIL (|has| |#2| (-341))))) -(((-758 |#1| |#2| |#3|) (-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -2686 ($ |#2|)) (-15 -2686 (|#2| $)))) (-1018) (-833 |#1|) |#1|) (T -758)) -((-2686 (*1 *1 *2) (-12 (-4 *3 (-1018)) (-14 *4 *3) (-5 *1 (-758 *3 *2 *4)) (-4 *2 (-833 *3)))) (-2686 (*1 *2 *1) (-12 (-4 *2 (-833 *3)) (-5 *1 (-758 *3 *2 *4)) (-4 *3 (-1018)) (-14 *4 *3)))) -(-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -2686 ($ |#2|)) (-15 -2686 (|#2| $)))) -((-2673 (((-108) $ $) NIL)) (-1314 (((-712) $) NIL)) (-1592 ((|#1| $) 10)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-1676 (((-712) $) 11)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1695 (($ |#1| (-712)) 9)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2209 (($ $) NIL) (($ $ (-712)) NIL)) (-2686 (((-796) $) NIL) (($ |#1|) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL))) -(((-759 |#1|) (-245 |#1|) (-788)) (T -759)) +(-13 (-232 |#1| (-1090) (-760 (-1090)) (-497 (-760 (-1090)))) (-967 (-1042 |#1| (-1090)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-341)))) (-2609 (($ $) NIL (|has| |#2| (-341)))) (-1220 (((-108) $) NIL (|has| |#2| (-341)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| |#2| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#2| (-341)))) (-1700 (((-108) $ $) NIL (|has| |#2| (-341)))) (-1957 (($) NIL T CONST)) (-2720 (($ $ $) NIL (|has| |#2| (-341)))) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL (|has| |#2| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-2069 (((-108) $) NIL (|has| |#2| (-341)))) (-2507 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2226 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 20 (|has| |#2| (-341)))) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-2961 (((-396 $) $) NIL (|has| |#2| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#2| (-341)))) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2824 (((-713) $) NIL (|has| |#2| (-341)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#2| (-341)))) (-1576 (($ $ (-713)) NIL) (($ $) 13)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-385 (-525))) NIL (|has| |#2| (-341))) (($ $) NIL (|has| |#2| (-341)))) (-2502 (((-713)) NIL)) (-3787 (((-108) $ $) NIL (|has| |#2| (-341)))) (-1594 (($ $ (-713)) NIL) (($ $ (-855)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) 15 (|has| |#2| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL) (($ $ (-525)) 18 (|has| |#2| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) NIL (|has| |#2| (-341))) (($ $ (-385 (-525))) NIL (|has| |#2| (-341))))) +(((-759 |#1| |#2| |#3|) (-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -4044 ($ |#2|)) (-15 -4044 (|#2| $)))) (-1019) (-834 |#1|) |#1|) (T -759)) +((-4044 (*1 *1 *2) (-12 (-4 *3 (-1019)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4)) (-4 *2 (-834 *3)))) (-4044 (*1 *2 *1) (-12 (-4 *2 (-834 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1019)) (-14 *4 *3)))) +(-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -4044 ($ |#2|)) (-15 -4044 (|#2| $)))) +((-4028 (((-108) $ $) NIL)) (-2147 (((-713) $) NIL)) (-2818 ((|#1| $) 10)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-2158 (((-713) $) 11)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-3485 (($ |#1| (-713)) 9)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1576 (($ $) NIL) (($ $ (-713)) NIL)) (-4044 (((-797) $) NIL) (($ |#1|) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL))) +(((-760 |#1|) (-245 |#1|) (-789)) (T -760)) NIL (-245 |#1|) -((-2673 (((-108) $ $) NIL)) (-2758 (((-591 |#1|) $) 29)) (-2834 (((-712) $) NIL)) (-2055 (($) NIL T CONST)) (-1719 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-2884 (($ $) 31)) (-1522 (((-3 $ "failed") $) NIL)) (-3671 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3865 (((-108) $) NIL)) (-2178 ((|#1| $ (-525)) NIL)) (-3782 (((-712) $ (-525)) NIL)) (-1398 (($ $) 36)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-3740 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-4066 (((-108) $ $) 34)) (-2445 (((-712) $) 25)) (-2621 (((-1072) $) NIL)) (-1599 (($ $ $) NIL)) (-2439 (($ $ $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 ((|#1| $) 30)) (-1908 (((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-712)))) $) NIL)) (-3224 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2686 (((-796) $) NIL) (($ |#1|) NIL)) (-1401 (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (-1839 (($) 15 T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 35)) (** (($ $ (-712)) NIL) (($ $ (-854)) NIL) (($ |#1| (-712)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-760 |#1|) (-13 (-784) (-966 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-712))) (-15 -2872 (|#1| $)) (-15 -2884 ($ $)) (-15 -1398 ($ $)) (-15 -4066 ((-108) $ $)) (-15 -2439 ($ $ $)) (-15 -1599 ($ $ $)) (-15 -3740 ((-3 $ "failed") $ $)) (-15 -1719 ((-3 $ "failed") $ $)) (-15 -3740 ((-3 $ "failed") $ |#1|)) (-15 -1719 ((-3 $ "failed") $ |#1|)) (-15 -3224 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3671 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2834 ((-712) $)) (-15 -3782 ((-712) $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -1908 ((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-712)))) $)) (-15 -2445 ((-712) $)) (-15 -2758 ((-591 |#1|) $)))) (-788)) (T -760)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-2872 (*1 *2 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-2884 (*1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-1398 (*1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-4066 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760 *3)) (-4 *3 (-788)))) (-2439 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-1599 (*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-3740 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-1719 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-3740 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-1719 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-3224 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-760 *3)) (|:| |rm| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-788)))) (-3671 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-760 *3)) (|:| |mm| (-760 *3)) (|:| |rm| (-760 *3)))) (-5 *1 (-760 *3)) (-4 *3 (-788)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-760 *3)) (-4 *3 (-788)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-712)) (-5 *1 (-760 *4)) (-4 *4 (-788)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-760 *2)) (-4 *2 (-788)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 (-712))))) (-5 *1 (-760 *3)) (-4 *3 (-788)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-760 *3)) (-4 *3 (-788)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-760 *3)) (-4 *3 (-788))))) -(-13 (-784) (-966 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-712))) (-15 -2872 (|#1| $)) (-15 -2884 ($ $)) (-15 -1398 ($ $)) (-15 -4066 ((-108) $ $)) (-15 -2439 ($ $ $)) (-15 -1599 ($ $ $)) (-15 -3740 ((-3 $ "failed") $ $)) (-15 -1719 ((-3 $ "failed") $ $)) (-15 -3740 ((-3 $ "failed") $ |#1|)) (-15 -1719 ((-3 $ "failed") $ |#1|)) (-15 -3224 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3671 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2834 ((-712) $)) (-15 -3782 ((-712) $ (-525))) (-15 -2178 (|#1| $ (-525))) (-15 -1908 ((-591 (-2 (|:| |gen| |#1|) (|:| -2288 (-712)))) $)) (-15 -2445 ((-712) $)) (-15 -2758 ((-591 |#1|) $)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-4188 (((-525) $) 53)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3489 (((-108) $) 51)) (-3865 (((-108) $) 31)) (-2256 (((-108) $) 52)) (-1923 (($ $ $) 50)) (-3475 (($ $ $) 49)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3210 (((-3 $ "failed") $ $) 42)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1460 (($ $) 54)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-4004 (((-108) $ $) 47)) (-3982 (((-108) $ $) 46)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 48)) (-3971 (((-108) $ $) 45)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-761) (-131)) (T -761)) -NIL -(-13 (-517) (-786)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-732) . T) ((-733) . T) ((-735) . T) ((-736) . T) ((-786) . T) ((-788) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1436 (($ (-1036)) 7)) (-1904 (((-108) $ (-1072) (-1036)) 15)) (-1887 (((-763) $) 12)) (-3195 (((-763) $) 11)) (-1774 (((-1176) $) 9)) (-3815 (((-108) $ (-1036)) 16))) -(((-762) (-10 -8 (-15 -1436 ($ (-1036))) (-15 -1774 ((-1176) $)) (-15 -3195 ((-763) $)) (-15 -1887 ((-763) $)) (-15 -1904 ((-108) $ (-1072) (-1036))) (-15 -3815 ((-108) $ (-1036))))) (T -762)) -((-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-1036)) (-5 *2 (-108)) (-5 *1 (-762)))) (-1904 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-1036)) (-5 *2 (-108)) (-5 *1 (-762)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-762)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-762)))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-762)))) (-1436 (*1 *1 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-762))))) -(-10 -8 (-15 -1436 ($ (-1036))) (-15 -1774 ((-1176) $)) (-15 -3195 ((-763) $)) (-15 -1887 ((-763) $)) (-15 -1904 ((-108) $ (-1072) (-1036))) (-15 -3815 ((-108) $ (-1036)))) -((-3810 (((-1176) $ (-764)) 12)) (-2888 (((-1176) $ (-1089)) 32)) (-3923 (((-1176) $ (-1072) (-1072)) 34)) (-2607 (((-1176) $ (-1072)) 33)) (-2463 (((-1176) $) 19)) (-2279 (((-1176) $ (-525)) 28)) (-2359 (((-1176) $ (-205)) 30)) (-1998 (((-1176) $) 18)) (-3774 (((-1176) $) 26)) (-4105 (((-1176) $) 25)) (-2833 (((-1176) $) 23)) (-2128 (((-1176) $) 24)) (-1790 (((-1176) $) 22)) (-2575 (((-1176) $) 21)) (-1977 (((-1176) $) 20)) (-3539 (((-1176) $) 16)) (-2263 (((-1176) $) 17)) (-1467 (((-1176) $) 15)) (-1399 (((-1176) $) 14)) (-3699 (((-1176) $) 13)) (-1946 (($ (-1072) (-764)) 9)) (-3953 (($ (-1072) (-1072) (-764)) 8)) (-3968 (((-1089) $) 51)) (-4084 (((-1089) $) 55)) (-3857 (((-2 (|:| |cd| (-1072)) (|:| -3419 (-1072))) $) 54)) (-2923 (((-1072) $) 52)) (-3427 (((-1176) $) 41)) (-2855 (((-525) $) 49)) (-3212 (((-205) $) 50)) (-1754 (((-1176) $) 40)) (-4050 (((-1176) $) 48)) (-4044 (((-1176) $) 47)) (-2531 (((-1176) $) 45)) (-3909 (((-1176) $) 46)) (-2921 (((-1176) $) 44)) (-3908 (((-1176) $) 43)) (-3412 (((-1176) $) 42)) (-2608 (((-1176) $) 38)) (-1840 (((-1176) $) 39)) (-3929 (((-1176) $) 37)) (-4005 (((-1176) $) 36)) (-3099 (((-1176) $) 35)) (-1910 (((-1176) $) 11))) -(((-763) (-10 -8 (-15 -3953 ($ (-1072) (-1072) (-764))) (-15 -1946 ($ (-1072) (-764))) (-15 -1910 ((-1176) $)) (-15 -3810 ((-1176) $ (-764))) (-15 -3699 ((-1176) $)) (-15 -1399 ((-1176) $)) (-15 -1467 ((-1176) $)) (-15 -3539 ((-1176) $)) (-15 -2263 ((-1176) $)) (-15 -1998 ((-1176) $)) (-15 -2463 ((-1176) $)) (-15 -1977 ((-1176) $)) (-15 -2575 ((-1176) $)) (-15 -1790 ((-1176) $)) (-15 -2833 ((-1176) $)) (-15 -2128 ((-1176) $)) (-15 -4105 ((-1176) $)) (-15 -3774 ((-1176) $)) (-15 -2279 ((-1176) $ (-525))) (-15 -2359 ((-1176) $ (-205))) (-15 -2888 ((-1176) $ (-1089))) (-15 -2607 ((-1176) $ (-1072))) (-15 -3923 ((-1176) $ (-1072) (-1072))) (-15 -3099 ((-1176) $)) (-15 -4005 ((-1176) $)) (-15 -3929 ((-1176) $)) (-15 -2608 ((-1176) $)) (-15 -1840 ((-1176) $)) (-15 -1754 ((-1176) $)) (-15 -3427 ((-1176) $)) (-15 -3412 ((-1176) $)) (-15 -3908 ((-1176) $)) (-15 -2921 ((-1176) $)) (-15 -2531 ((-1176) $)) (-15 -3909 ((-1176) $)) (-15 -4044 ((-1176) $)) (-15 -4050 ((-1176) $)) (-15 -2855 ((-525) $)) (-15 -3212 ((-205) $)) (-15 -3968 ((-1089) $)) (-15 -2923 ((-1072) $)) (-15 -3857 ((-2 (|:| |cd| (-1072)) (|:| -3419 (-1072))) $)) (-15 -4084 ((-1089) $)))) (T -763)) -((-4084 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-763)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1072)) (|:| -3419 (-1072)))) (-5 *1 (-763)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-763)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-763)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-763)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-763)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3923 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-763)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-763)))) (-2888 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-763)))) (-2359 (*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1176)) (-5 *1 (-763)))) (-2279 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-763)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-764)) (-5 *2 (-1176)) (-5 *1 (-763)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-764)) (-5 *1 (-763)))) (-3953 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-764)) (-5 *1 (-763))))) -(-10 -8 (-15 -3953 ($ (-1072) (-1072) (-764))) (-15 -1946 ($ (-1072) (-764))) (-15 -1910 ((-1176) $)) (-15 -3810 ((-1176) $ (-764))) (-15 -3699 ((-1176) $)) (-15 -1399 ((-1176) $)) (-15 -1467 ((-1176) $)) (-15 -3539 ((-1176) $)) (-15 -2263 ((-1176) $)) (-15 -1998 ((-1176) $)) (-15 -2463 ((-1176) $)) (-15 -1977 ((-1176) $)) (-15 -2575 ((-1176) $)) (-15 -1790 ((-1176) $)) (-15 -2833 ((-1176) $)) (-15 -2128 ((-1176) $)) (-15 -4105 ((-1176) $)) (-15 -3774 ((-1176) $)) (-15 -2279 ((-1176) $ (-525))) (-15 -2359 ((-1176) $ (-205))) (-15 -2888 ((-1176) $ (-1089))) (-15 -2607 ((-1176) $ (-1072))) (-15 -3923 ((-1176) $ (-1072) (-1072))) (-15 -3099 ((-1176) $)) (-15 -4005 ((-1176) $)) (-15 -3929 ((-1176) $)) (-15 -2608 ((-1176) $)) (-15 -1840 ((-1176) $)) (-15 -1754 ((-1176) $)) (-15 -3427 ((-1176) $)) (-15 -3412 ((-1176) $)) (-15 -3908 ((-1176) $)) (-15 -2921 ((-1176) $)) (-15 -2531 ((-1176) $)) (-15 -3909 ((-1176) $)) (-15 -4044 ((-1176) $)) (-15 -4050 ((-1176) $)) (-15 -2855 ((-525) $)) (-15 -3212 ((-205) $)) (-15 -3968 ((-1089) $)) (-15 -2923 ((-1072) $)) (-15 -3857 ((-2 (|:| |cd| (-1072)) (|:| -3419 (-1072))) $)) (-15 -4084 ((-1089) $))) -((-2673 (((-108) $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 12)) (-1940 (($) 15)) (-1245 (($) 13)) (-2436 (($) 16)) (-2870 (($) 14)) (-3944 (((-108) $ $) 8))) -(((-764) (-13 (-1018) (-10 -8 (-15 -1245 ($)) (-15 -1940 ($)) (-15 -2436 ($)) (-15 -2870 ($))))) (T -764)) -((-1245 (*1 *1) (-5 *1 (-764))) (-1940 (*1 *1) (-5 *1 (-764))) (-2436 (*1 *1) (-5 *1 (-764))) (-2870 (*1 *1) (-5 *1 (-764)))) -(-13 (-1018) (-10 -8 (-15 -1245 ($)) (-15 -1940 ($)) (-15 -2436 ($)) (-15 -2870 ($)))) -((-2673 (((-108) $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 21) (($ (-1089)) 17)) (-3146 (((-108) $) 10)) (-3678 (((-108) $) 9)) (-2725 (((-108) $) 11)) (-3496 (((-108) $) 8)) (-3944 (((-108) $ $) 19))) -(((-765) (-13 (-1018) (-10 -8 (-15 -2686 ($ (-1089))) (-15 -3496 ((-108) $)) (-15 -3678 ((-108) $)) (-15 -3146 ((-108) $)) (-15 -2725 ((-108) $))))) (T -765)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-765)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-765)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-765)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-765)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-765))))) -(-13 (-1018) (-10 -8 (-15 -2686 ($ (-1089))) (-15 -3496 ((-108) $)) (-15 -3678 ((-108) $)) (-15 -3146 ((-108) $)) (-15 -2725 ((-108) $)))) -((-2673 (((-108) $ $) NIL)) (-1298 (($ (-765) (-591 (-1089))) 24)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2965 (((-765) $) 25)) (-1342 (((-591 (-1089)) $) 26)) (-2686 (((-796) $) 23)) (-3944 (((-108) $ $) NIL))) -(((-766) (-13 (-1018) (-10 -8 (-15 -2965 ((-765) $)) (-15 -1342 ((-591 (-1089)) $)) (-15 -1298 ($ (-765) (-591 (-1089))))))) (T -766)) -((-2965 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-766)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-766)))) (-1298 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-591 (-1089))) (-5 *1 (-766))))) -(-13 (-1018) (-10 -8 (-15 -2965 ((-765) $)) (-15 -1342 ((-591 (-1089)) $)) (-15 -1298 ($ (-765) (-591 (-1089)))))) -((-3042 (((-1176) (-763) (-294 |#1|) (-108)) 23) (((-1176) (-763) (-294 |#1|)) 79) (((-1072) (-294 |#1|) (-108)) 78) (((-1072) (-294 |#1|)) 77))) -(((-767 |#1|) (-10 -7 (-15 -3042 ((-1072) (-294 |#1|))) (-15 -3042 ((-1072) (-294 |#1|) (-108))) (-15 -3042 ((-1176) (-763) (-294 |#1|))) (-15 -3042 ((-1176) (-763) (-294 |#1|) (-108)))) (-13 (-769) (-788) (-975))) (T -767)) -((-3042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-763)) (-5 *4 (-294 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-769) (-788) (-975))) (-5 *2 (-1176)) (-5 *1 (-767 *6)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-294 *5)) (-4 *5 (-13 (-769) (-788) (-975))) (-5 *2 (-1176)) (-5 *1 (-767 *5)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-769) (-788) (-975))) (-5 *2 (-1072)) (-5 *1 (-767 *5)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-769) (-788) (-975))) (-5 *2 (-1072)) (-5 *1 (-767 *4))))) -(-10 -7 (-15 -3042 ((-1072) (-294 |#1|))) (-15 -3042 ((-1072) (-294 |#1|) (-108))) (-15 -3042 ((-1176) (-763) (-294 |#1|))) (-15 -3042 ((-1176) (-763) (-294 |#1|) (-108)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1237 ((|#1| $) 10)) (-3854 (($ |#1|) 9)) (-3865 (((-108) $) NIL)) (-1422 (($ |#2| (-712)) NIL)) (-3629 (((-712) $) NIL)) (-1556 ((|#2| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2209 (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-2743 (((-712) $) NIL)) (-2686 (((-796) $) 17) (($ (-525)) NIL) (($ |#2|) NIL (|has| |#2| (-160)))) (-1263 ((|#2| $ (-712)) NIL)) (-3425 (((-712)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-768 |#1| |#2|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -3854 ($ |#1|)) (-15 -1237 (|#1| $)))) (-650 |#2|) (-975)) (T -768)) -((-3854 (*1 *1 *2) (-12 (-4 *3 (-975)) (-5 *1 (-768 *2 *3)) (-4 *2 (-650 *3)))) (-1237 (*1 *2 *1) (-12 (-4 *2 (-650 *3)) (-5 *1 (-768 *2 *3)) (-4 *3 (-975))))) -(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -3854 ($ |#1|)) (-15 -1237 (|#1| $)))) -((-3042 (((-1176) (-763) $ (-108)) 9) (((-1176) (-763) $) 8) (((-1072) $ (-108)) 7) (((-1072) $) 6))) -(((-769) (-131)) (T -769)) -((-3042 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-769)) (-5 *3 (-763)) (-5 *4 (-108)) (-5 *2 (-1176)))) (-3042 (*1 *2 *3 *1) (-12 (-4 *1 (-769)) (-5 *3 (-763)) (-5 *2 (-1176)))) (-3042 (*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *3 (-108)) (-5 *2 (-1072)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-769)) (-5 *2 (-1072))))) -(-13 (-10 -8 (-15 -3042 ((-1072) $)) (-15 -3042 ((-1072) $ (-108))) (-15 -3042 ((-1176) (-763) $)) (-15 -3042 ((-1176) (-763) $ (-108))))) -((-1231 (((-290) (-1072) (-1072)) 12)) (-2527 (((-108) (-1072) (-1072)) 34)) (-3924 (((-108) (-1072)) 33)) (-2863 (((-51) (-1072)) 25)) (-4095 (((-51) (-1072)) 23)) (-2797 (((-51) (-763)) 17)) (-2961 (((-591 (-1072)) (-1072)) 28)) (-2136 (((-591 (-1072))) 27))) -(((-770) (-10 -7 (-15 -2797 ((-51) (-763))) (-15 -4095 ((-51) (-1072))) (-15 -2863 ((-51) (-1072))) (-15 -2136 ((-591 (-1072)))) (-15 -2961 ((-591 (-1072)) (-1072))) (-15 -3924 ((-108) (-1072))) (-15 -2527 ((-108) (-1072) (-1072))) (-15 -1231 ((-290) (-1072) (-1072))))) (T -770)) -((-1231 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-290)) (-5 *1 (-770)))) (-2527 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-108)) (-5 *1 (-770)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-108)) (-5 *1 (-770)))) (-2961 (*1 *2 *3) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-770)) (-5 *3 (-1072)))) (-2136 (*1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-770)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-51)) (-5 *1 (-770)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-51)) (-5 *1 (-770)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-770))))) -(-10 -7 (-15 -2797 ((-51) (-763))) (-15 -4095 ((-51) (-1072))) (-15 -2863 ((-51) (-1072))) (-15 -2136 ((-591 (-1072)))) (-15 -2961 ((-591 (-1072)) (-1072))) (-15 -3924 ((-108) (-1072))) (-15 -2527 ((-108) (-1072) (-1072))) (-15 -1231 ((-290) (-1072) (-1072)))) -((-2673 (((-108) $ $) 19)) (-2141 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3772 (($ $ $) 72)) (-3218 (((-108) $ $) 73)) (-3727 (((-108) $ (-712)) 8)) (-1373 (($ (-591 |#1|)) 68) (($) 67)) (-1288 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-3945 (($ $) 62)) (-2908 (($ $) 58 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ |#1| $) 47 (|has| $ (-6 -4250))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4250)))) (-2537 (($ |#1| $) 57 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4250)))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-1923 ((|#1| $) 78)) (-3597 (($ $ $) 81)) (-3459 (($ $ $) 80)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3475 ((|#1| $) 79)) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22)) (-2318 (($ $ $) 69)) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40) (($ |#1| $ (-712)) 63)) (-2937 (((-1036) $) 21)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2592 (((-591 (-2 (|:| -1568 |#1|) (|:| -2960 (-712)))) $) 61)) (-1614 (($ $ |#1|) 71) (($ $ $) 70)) (-3583 (($) 49) (($ (-591 |#1|)) 48)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 59 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 50)) (-2686 (((-796) $) 18)) (-2892 (($ (-591 |#1|)) 66) (($) 65)) (-2453 (($ (-591 |#1|)) 42)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20)) (-3971 (((-108) $ $) 64)) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-771 |#1|) (-131) (-788)) (T -771)) -((-1923 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-788))))) -(-13 (-678 |t#1|) (-900 |t#1|) (-10 -8 (-15 -1923 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-565 (-796)) . T) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-636 |#1|) . T) ((-678 |#1|) . T) ((-900 |#1|) . T) ((-1016 |#1|) . T) ((-1018) . T) ((-1125) . T)) -((-3743 (((-1176) (-1036) (-1036)) 47)) (-1653 (((-1176) (-762) (-51)) 44)) (-3716 (((-51) (-762)) 16))) -(((-772) (-10 -7 (-15 -3716 ((-51) (-762))) (-15 -1653 ((-1176) (-762) (-51))) (-15 -3743 ((-1176) (-1036) (-1036))))) (T -772)) -((-3743 (*1 *2 *3 *3) (-12 (-5 *3 (-1036)) (-5 *2 (-1176)) (-5 *1 (-772)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *3 (-762)) (-5 *4 (-51)) (-5 *2 (-1176)) (-5 *1 (-772)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-51)) (-5 *1 (-772))))) -(-10 -7 (-15 -3716 ((-51) (-762))) (-15 -1653 ((-1176) (-762) (-51))) (-15 -3743 ((-1176) (-1036) (-1036)))) -((-1257 (((-774 |#2|) (-1 |#2| |#1|) (-774 |#1|) (-774 |#2|)) 12) (((-774 |#2|) (-1 |#2| |#1|) (-774 |#1|)) 13))) -(((-773 |#1| |#2|) (-10 -7 (-15 -1257 ((-774 |#2|) (-1 |#2| |#1|) (-774 |#1|))) (-15 -1257 ((-774 |#2|) (-1 |#2| |#1|) (-774 |#1|) (-774 |#2|)))) (-1018) (-1018)) (T -773)) -((-1257 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-774 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-774 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *1 (-773 *5 *6)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-774 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-774 *6)) (-5 *1 (-773 *5 *6))))) -(-10 -7 (-15 -1257 ((-774 |#2|) (-1 |#2| |#1|) (-774 |#1|))) (-15 -1257 ((-774 |#2|) (-1 |#2| |#1|) (-774 |#1|) (-774 |#2|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL (|has| |#1| (-21)))) (-3332 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4188 (((-525) $) NIL (|has| |#1| (-786)))) (-2055 (($) NIL (|has| |#1| (-21)) CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 15)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 9)) (-1522 (((-3 $ "failed") $) 40 (|has| |#1| (-786)))) (-2350 (((-3 (-385 (-525)) "failed") $) 48 (|has| |#1| (-510)))) (-2157 (((-108) $) 43 (|has| |#1| (-510)))) (-3184 (((-385 (-525)) $) 45 (|has| |#1| (-510)))) (-3489 (((-108) $) NIL (|has| |#1| (-786)))) (-3865 (((-108) $) NIL (|has| |#1| (-786)))) (-2256 (((-108) $) NIL (|has| |#1| (-786)))) (-1923 (($ $ $) NIL (|has| |#1| (-786)))) (-3475 (($ $ $) NIL (|has| |#1| (-786)))) (-2621 (((-1072) $) NIL)) (-1429 (($) 13)) (-3722 (((-108) $) 12)) (-2937 (((-1036) $) NIL)) (-2091 (((-108) $) 11)) (-2686 (((-796) $) 18) (($ (-385 (-525))) NIL (|has| |#1| (-966 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3150 (|has| |#1| (-786)) (|has| |#1| (-966 (-525)))))) (-3425 (((-712)) 34 (|has| |#1| (-786)))) (-1460 (($ $) NIL (|has| |#1| (-786)))) (-1401 (($ $ (-854)) NIL (|has| |#1| (-786))) (($ $ (-712)) NIL (|has| |#1| (-786)))) (-1830 (($) 22 (|has| |#1| (-21)) CONST)) (-1839 (($) 31 (|has| |#1| (-786)) CONST)) (-4004 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3944 (((-108) $ $) 20)) (-3994 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3971 (((-108) $ $) 42 (|has| |#1| (-786)))) (-4047 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4036 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-854)) NIL (|has| |#1| (-786))) (($ $ (-712)) NIL (|has| |#1| (-786)))) (* (($ $ $) 37 (|has| |#1| (-786))) (($ (-525) $) 25 (|has| |#1| (-21))) (($ (-712) $) NIL (|has| |#1| (-21))) (($ (-854) $) NIL (|has| |#1| (-21))))) -(((-774 |#1|) (-13 (-1018) (-389 |#1|) (-10 -8 (-15 -1429 ($)) (-15 -2091 ((-108) $)) (-15 -3722 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1018)) (T -774)) -((-1429 (*1 *1) (-12 (-5 *1 (-774 *2)) (-4 *2 (-1018)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-774 *3)) (-4 *3 (-1018)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-774 *3)) (-4 *3 (-1018)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-774 *3)) (-4 *3 (-510)) (-4 *3 (-1018)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-774 *3)) (-4 *3 (-510)) (-4 *3 (-1018)))) (-2350 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-774 *3)) (-4 *3 (-510)) (-4 *3 (-1018))))) -(-13 (-1018) (-389 |#1|) (-10 -8 (-15 -1429 ($)) (-15 -2091 ((-108) $)) (-15 -3722 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-3341 ((|#1| $) NIL) (((-110) $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2372 ((|#1| (-110) |#1|) NIL)) (-3865 (((-108) $) NIL)) (-3281 (($ |#1| (-339 (-110))) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2067 (($ $ (-1 |#1| |#1|)) NIL)) (-2149 (($ $ (-1 |#1| |#1|)) NIL)) (-1881 ((|#1| $ |#1|) NIL)) (-1631 ((|#1| |#1|) NIL (|has| |#1| (-160)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1818 (($ $) NIL (|has| |#1| (-160))) (($ $ $) NIL (|has| |#1| (-160)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))))) -(((-775 |#1|) (-13 (-975) (-966 |#1|) (-966 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1818 ($ $)) (-15 -1818 ($ $ $)) (-15 -1631 (|#1| |#1|))) |%noBranch|) (-15 -2149 ($ $ (-1 |#1| |#1|))) (-15 -2067 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -2372 (|#1| (-110) |#1|)) (-15 -3281 ($ |#1| (-339 (-110)))))) (-975)) (T -775)) -((-1818 (*1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-160)) (-4 *2 (-975)))) (-1818 (*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-160)) (-4 *2 (-975)))) (-1631 (*1 *2 *2) (-12 (-5 *1 (-775 *2)) (-4 *2 (-160)) (-4 *2 (-975)))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-775 *3)))) (-2067 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-775 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-775 *4)) (-4 *4 (-975)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-775 *3)) (-4 *3 (-975)))) (-2372 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-775 *2)) (-4 *2 (-975)))) (-3281 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-5 *1 (-775 *2)) (-4 *2 (-975))))) -(-13 (-975) (-966 |#1|) (-966 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1818 ($ $)) (-15 -1818 ($ $ $)) (-15 -1631 (|#1| |#1|))) |%noBranch|) (-15 -2149 ($ $ (-1 |#1| |#1|))) (-15 -2067 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -2372 (|#1| (-110) |#1|)) (-15 -3281 ($ |#1| (-339 (-110)))))) -((-4180 (((-195 (-475)) (-1072)) 9))) -(((-776) (-10 -7 (-15 -4180 ((-195 (-475)) (-1072))))) (T -776)) -((-4180 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-195 (-475))) (-5 *1 (-776))))) -(-10 -7 (-15 -4180 ((-195 (-475)) (-1072)))) -((-2673 (((-108) $ $) 7)) (-3189 (((-964) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) 14) (((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 13)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 16) (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) 15)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 6))) -(((-777) (-131)) (T -777)) -((-2282 (*1 *2 *3 *4) (-12 (-4 *1 (-777)) (-5 *3 (-987)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)))))) (-2282 (*1 *2 *3 *4) (-12 (-4 *1 (-777)) (-5 *3 (-987)) (-5 *4 (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)))))) (-3189 (*1 *2 *3) (-12 (-4 *1 (-777)) (-5 *3 (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) (-5 *2 (-964)))) (-3189 (*1 *2 *3) (-12 (-4 *1 (-777)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (-5 *2 (-964))))) -(-13 (-1018) (-10 -7 (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205))))))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) (-15 -3189 ((-964) (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) (-15 -3189 ((-964) (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205))))))))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-1239 (((-964) (-591 (-294 (-357))) (-591 (-357))) 147) (((-964) (-294 (-357)) (-591 (-357))) 145) (((-964) (-294 (-357)) (-591 (-357)) (-591 (-781 (-357))) (-591 (-781 (-357)))) 144) (((-964) (-294 (-357)) (-591 (-357)) (-591 (-781 (-357))) (-591 (-294 (-357))) (-591 (-781 (-357)))) 143) (((-964) (-779)) 117) (((-964) (-779) (-987)) 116)) (-2282 (((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-779) (-987)) 82) (((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-779)) 84)) (-1655 (((-964) (-591 (-294 (-357))) (-591 (-357))) 148) (((-964) (-779)) 133))) -(((-778) (-10 -7 (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-779))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-779) (-987))) (-15 -1239 ((-964) (-779) (-987))) (-15 -1239 ((-964) (-779))) (-15 -1655 ((-964) (-779))) (-15 -1239 ((-964) (-294 (-357)) (-591 (-357)) (-591 (-781 (-357))) (-591 (-294 (-357))) (-591 (-781 (-357))))) (-15 -1239 ((-964) (-294 (-357)) (-591 (-357)) (-591 (-781 (-357))) (-591 (-781 (-357))))) (-15 -1239 ((-964) (-294 (-357)) (-591 (-357)))) (-15 -1239 ((-964) (-591 (-294 (-357))) (-591 (-357)))) (-15 -1655 ((-964) (-591 (-294 (-357))) (-591 (-357)))))) (T -778)) -((-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-294 (-357)))) (-5 *4 (-591 (-357))) (-5 *2 (-964)) (-5 *1 (-778)))) (-1239 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-294 (-357)))) (-5 *4 (-591 (-357))) (-5 *2 (-964)) (-5 *1 (-778)))) (-1239 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-357))) (-5 *2 (-964)) (-5 *1 (-778)))) (-1239 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-357))) (-5 *5 (-591 (-781 (-357)))) (-5 *2 (-964)) (-5 *1 (-778)))) (-1239 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-591 (-357))) (-5 *5 (-591 (-781 (-357)))) (-5 *6 (-591 (-294 (-357)))) (-5 *3 (-294 (-357))) (-5 *2 (-964)) (-5 *1 (-778)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-964)) (-5 *1 (-778)))) (-1239 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-964)) (-5 *1 (-778)))) (-1239 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-987)) (-5 *2 (-964)) (-5 *1 (-778)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-987)) (-5 *2 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))))) (-5 *1 (-778)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))))) (-5 *1 (-778))))) -(-10 -7 (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-779))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-779) (-987))) (-15 -1239 ((-964) (-779) (-987))) (-15 -1239 ((-964) (-779))) (-15 -1655 ((-964) (-779))) (-15 -1239 ((-964) (-294 (-357)) (-591 (-357)) (-591 (-781 (-357))) (-591 (-294 (-357))) (-591 (-781 (-357))))) (-15 -1239 ((-964) (-294 (-357)) (-591 (-357)) (-591 (-781 (-357))) (-591 (-781 (-357))))) (-15 -1239 ((-964) (-294 (-357)) (-591 (-357)))) (-15 -1239 ((-964) (-591 (-294 (-357))) (-591 (-357)))) (-15 -1655 ((-964) (-591 (-294 (-357))) (-591 (-357))))) -((-2673 (((-108) $ $) NIL)) (-3341 (((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) $) 21)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 20) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) 14) (($ (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))))) 18)) (-3944 (((-108) $ $) NIL))) -(((-779) (-13 (-1018) (-10 -8 (-15 -2686 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205))))))) (-15 -2686 ($ (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) (-15 -2686 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))))) (-15 -2686 ((-796) $)) (-15 -3341 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) $))))) (T -779)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-779)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (-5 *1 (-779)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) (-5 *1 (-779)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))))) (-5 *1 (-779)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))))) (-5 *1 (-779))))) -(-13 (-1018) (-10 -8 (-15 -2686 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205))))))) (-15 -2686 ($ (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) (-15 -2686 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))))) (-15 -2686 ((-796) $)) (-15 -3341 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) (|:| |ub| (-591 (-781 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205)))))) $)))) -((-1257 (((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|) (-781 |#2|)) 13) (((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|)) 14))) -(((-780 |#1| |#2|) (-10 -7 (-15 -1257 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|))) (-15 -1257 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|) (-781 |#2|)))) (-1018) (-1018)) (T -780)) -((-1257 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-781 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *1 (-780 *5 *6)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-781 *6)) (-5 *1 (-780 *5 *6))))) -(-10 -7 (-15 -1257 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|))) (-15 -1257 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|) (-781 |#2|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL (|has| |#1| (-21)))) (-1612 (((-1036) $) 24)) (-3332 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4188 (((-525) $) NIL (|has| |#1| (-786)))) (-2055 (($) NIL (|has| |#1| (-21)) CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 16)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 9)) (-1522 (((-3 $ "failed") $) 47 (|has| |#1| (-786)))) (-2350 (((-3 (-385 (-525)) "failed") $) 54 (|has| |#1| (-510)))) (-2157 (((-108) $) 49 (|has| |#1| (-510)))) (-3184 (((-385 (-525)) $) 52 (|has| |#1| (-510)))) (-3489 (((-108) $) NIL (|has| |#1| (-786)))) (-1888 (($) 13)) (-3865 (((-108) $) NIL (|has| |#1| (-786)))) (-2256 (((-108) $) NIL (|has| |#1| (-786)))) (-1897 (($) 14)) (-1923 (($ $ $) NIL (|has| |#1| (-786)))) (-3475 (($ $ $) NIL (|has| |#1| (-786)))) (-2621 (((-1072) $) NIL)) (-3722 (((-108) $) 12)) (-2937 (((-1036) $) NIL)) (-2091 (((-108) $) 11)) (-2686 (((-796) $) 22) (($ (-385 (-525))) NIL (|has| |#1| (-966 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3150 (|has| |#1| (-786)) (|has| |#1| (-966 (-525)))))) (-3425 (((-712)) 41 (|has| |#1| (-786)))) (-1460 (($ $) NIL (|has| |#1| (-786)))) (-1401 (($ $ (-854)) NIL (|has| |#1| (-786))) (($ $ (-712)) NIL (|has| |#1| (-786)))) (-1830 (($) 29 (|has| |#1| (-21)) CONST)) (-1839 (($) 38 (|has| |#1| (-786)) CONST)) (-4004 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3944 (((-108) $ $) 27)) (-3994 (((-108) $ $) NIL (|has| |#1| (-786)))) (-3971 (((-108) $ $) 48 (|has| |#1| (-786)))) (-4047 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4036 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-854)) NIL (|has| |#1| (-786))) (($ $ (-712)) NIL (|has| |#1| (-786)))) (* (($ $ $) 44 (|has| |#1| (-786))) (($ (-525) $) 32 (|has| |#1| (-21))) (($ (-712) $) NIL (|has| |#1| (-21))) (($ (-854) $) NIL (|has| |#1| (-21))))) -(((-781 |#1|) (-13 (-1018) (-389 |#1|) (-10 -8 (-15 -1888 ($)) (-15 -1897 ($)) (-15 -2091 ((-108) $)) (-15 -3722 ((-108) $)) (-15 -1612 ((-1036) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1018)) (T -781)) -((-1888 (*1 *1) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1018)))) (-1897 (*1 *1) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1018)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-781 *3)) (-4 *3 (-1018)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-781 *3)) (-4 *3 (-1018)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-1036)) (-5 *1 (-781 *3)) (-4 *3 (-1018)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-781 *3)) (-4 *3 (-510)) (-4 *3 (-1018)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-781 *3)) (-4 *3 (-510)) (-4 *3 (-1018)))) (-2350 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-781 *3)) (-4 *3 (-510)) (-4 *3 (-1018))))) -(-13 (-1018) (-389 |#1|) (-10 -8 (-15 -1888 ($)) (-15 -1897 ($)) (-15 -2091 ((-108) $)) (-15 -3722 ((-108) $)) (-15 -1612 ((-1036) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) -((-2673 (((-108) $ $) 7)) (-2834 (((-712)) 20)) (-1325 (($) 23)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-1970 (((-854) $) 22)) (-2621 (((-1072) $) 9)) (-3229 (($ (-854)) 21)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18))) -(((-782) (-131)) (T -782)) -NIL -(-13 (-788) (-346)) -(((-97) . T) ((-565 (-796)) . T) ((-346) . T) ((-788) . T) ((-1018) . T)) -((-3705 (((-108) (-1171 |#2|) (-1171 |#2|)) 17)) (-3115 (((-108) (-1171 |#2|) (-1171 |#2|)) 18)) (-1367 (((-108) (-1171 |#2|) (-1171 |#2|)) 14))) -(((-783 |#1| |#2|) (-10 -7 (-15 -1367 ((-108) (-1171 |#2|) (-1171 |#2|))) (-15 -3705 ((-108) (-1171 |#2|) (-1171 |#2|))) (-15 -3115 ((-108) (-1171 |#2|) (-1171 |#2|)))) (-712) (-733)) (T -783)) -((-3115 (*1 *2 *3 *3) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-733)) (-5 *2 (-108)) (-5 *1 (-783 *4 *5)) (-14 *4 (-712)))) (-3705 (*1 *2 *3 *3) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-733)) (-5 *2 (-108)) (-5 *1 (-783 *4 *5)) (-14 *4 (-712)))) (-1367 (*1 *2 *3 *3) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-733)) (-5 *2 (-108)) (-5 *1 (-783 *4 *5)) (-14 *4 (-712))))) -(-10 -7 (-15 -1367 ((-108) (-1171 |#2|) (-1171 |#2|))) (-15 -3705 ((-108) (-1171 |#2|) (-1171 |#2|))) (-15 -3115 ((-108) (-1171 |#2|) (-1171 |#2|)))) -((-2673 (((-108) $ $) 7)) (-2055 (($) 24 T CONST)) (-1522 (((-3 $ "failed") $) 28)) (-3865 (((-108) $) 25)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1401 (($ $ (-712)) 27) (($ $ (-854)) 22)) (-1839 (($) 23 T CONST)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18)) (** (($ $ (-712)) 26) (($ $ (-854)) 21)) (* (($ $ $) 20))) -(((-784) (-131)) (T -784)) -NIL -(-13 (-788) (-668)) -(((-97) . T) ((-565 (-796)) . T) ((-668) . T) ((-788) . T) ((-1030) . T) ((-1018) . T)) -((-4188 (((-525) $) 17)) (-3489 (((-108) $) 10)) (-2256 (((-108) $) 11)) (-1460 (($ $) 19))) -(((-785 |#1|) (-10 -8 (-15 -1460 (|#1| |#1|)) (-15 -4188 ((-525) |#1|)) (-15 -2256 ((-108) |#1|)) (-15 -3489 ((-108) |#1|))) (-786)) (T -785)) -NIL -(-10 -8 (-15 -1460 (|#1| |#1|)) (-15 -4188 ((-525) |#1|)) (-15 -2256 ((-108) |#1|)) (-15 -3489 ((-108) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 24)) (-3332 (((-3 $ "failed") $ $) 26)) (-4188 (((-525) $) 33)) (-2055 (($) 23 T CONST)) (-1522 (((-3 $ "failed") $) 39)) (-3489 (((-108) $) 35)) (-3865 (((-108) $) 42)) (-2256 (((-108) $) 34)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 45)) (-3425 (((-712)) 44)) (-1460 (($ $) 32)) (-1401 (($ $ (-712)) 40) (($ $ (-854)) 36)) (-1830 (($) 22 T CONST)) (-1839 (($) 43 T CONST)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18)) (-4047 (($ $ $) 28) (($ $) 27)) (-4036 (($ $ $) 20)) (** (($ $ (-712)) 41) (($ $ (-854)) 37)) (* (($ (-712) $) 25) (($ (-854) $) 21) (($ (-525) $) 29) (($ $ $) 38))) -(((-786) (-131)) (T -786)) -((-3489 (*1 *2 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-786)) (-5 *2 (-525)))) (-1460 (*1 *1 *1) (-4 *1 (-786)))) -(-13 (-732) (-975) (-668) (-10 -8 (-15 -3489 ((-108) $)) (-15 -2256 ((-108) $)) (-15 -4188 ((-525) $)) (-15 -1460 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-668) . T) ((-732) . T) ((-733) . T) ((-735) . T) ((-736) . T) ((-788) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1923 (($ $ $) 10)) (-3475 (($ $ $) 9)) (-4004 (((-108) $ $) 13)) (-3982 (((-108) $ $) 11)) (-3994 (((-108) $ $) 14))) -(((-787 |#1|) (-10 -8 (-15 -1923 (|#1| |#1| |#1|)) (-15 -3475 (|#1| |#1| |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -4004 ((-108) |#1| |#1|)) (-15 -3982 ((-108) |#1| |#1|))) (-788)) (T -787)) -NIL -(-10 -8 (-15 -1923 (|#1| |#1| |#1|)) (-15 -3475 (|#1| |#1| |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -4004 ((-108) |#1| |#1|)) (-15 -3982 ((-108) |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1923 (($ $ $) 13)) (-3475 (($ $ $) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-4004 (((-108) $ $) 16)) (-3982 (((-108) $ $) 17)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 15)) (-3971 (((-108) $ $) 18))) -(((-788) (-131)) (T -788)) -((-3971 (*1 *2 *1 *1) (-12 (-4 *1 (-788)) (-5 *2 (-108)))) (-3982 (*1 *2 *1 *1) (-12 (-4 *1 (-788)) (-5 *2 (-108)))) (-4004 (*1 *2 *1 *1) (-12 (-4 *1 (-788)) (-5 *2 (-108)))) (-3994 (*1 *2 *1 *1) (-12 (-4 *1 (-788)) (-5 *2 (-108)))) (-3475 (*1 *1 *1 *1) (-4 *1 (-788))) (-1923 (*1 *1 *1 *1) (-4 *1 (-788)))) -(-13 (-1018) (-10 -8 (-15 -3971 ((-108) $ $)) (-15 -3982 ((-108) $ $)) (-15 -4004 ((-108) $ $)) (-15 -3994 ((-108) $ $)) (-15 -3475 ($ $ $)) (-15 -1923 ($ $ $)))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-1253 (($ $ $) 45)) (-2049 (($ $ $) 44)) (-1537 (($ $ $) 42)) (-4032 (($ $ $) 51)) (-1318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 46)) (-3991 (((-3 $ "failed") $ $) 49)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3153 (($ $) 35)) (-3327 (($ $ $) 39)) (-3359 (($ $ $) 38)) (-2561 (($ $ $) 47)) (-2748 (($ $ $) 53)) (-2953 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 41)) (-3893 (((-3 $ "failed") $ $) 48)) (-3210 (((-3 $ "failed") $ |#2|) 28)) (-2827 ((|#2| $) 32)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#2|) 12)) (-3109 (((-591 |#2|) $) 18)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-789 |#1| |#2|) (-10 -8 (-15 -2561 (|#1| |#1| |#1|)) (-15 -1318 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3965 |#1|)) |#1| |#1|)) (-15 -4032 (|#1| |#1| |#1|)) (-15 -3991 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1253 (|#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| |#1|)) (-15 -1537 (|#1| |#1| |#1|)) (-15 -2953 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3965 |#1|)) |#1| |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -3893 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -2827 (|#2| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3109 ((-591 |#2|) |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|)) (-15 -2686 ((-796) |#1|))) (-790 |#2|) (-975)) (T -789)) -NIL -(-10 -8 (-15 -2561 (|#1| |#1| |#1|)) (-15 -1318 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3965 |#1|)) |#1| |#1|)) (-15 -4032 (|#1| |#1| |#1|)) (-15 -3991 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1253 (|#1| |#1| |#1|)) (-15 -2049 (|#1| |#1| |#1|)) (-15 -1537 (|#1| |#1| |#1|)) (-15 -2953 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3965 |#1|)) |#1| |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -3893 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -2827 (|#2| |#1|)) (-15 -3210 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3109 ((-591 |#2|) |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|)) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1253 (($ $ $) 45 (|has| |#1| (-341)))) (-2049 (($ $ $) 46 (|has| |#1| (-341)))) (-1537 (($ $ $) 48 (|has| |#1| (-341)))) (-4032 (($ $ $) 43 (|has| |#1| (-341)))) (-1318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 42 (|has| |#1| (-341)))) (-3991 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-3370 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 47 (|has| |#1| (-341)))) (-4174 (((-3 (-525) "failed") $) 74 (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-3341 (((-525) $) 75 (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 68)) (-1575 (($ $) 64)) (-1522 (((-3 $ "failed") $) 34)) (-3153 (($ $) 55 (|has| |#1| (-429)))) (-3865 (((-108) $) 31)) (-1422 (($ |#1| (-712)) 62)) (-1743 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57 (|has| |#1| (-517)))) (-3485 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 58 (|has| |#1| (-517)))) (-3629 (((-712) $) 66)) (-3327 (($ $ $) 52 (|has| |#1| (-341)))) (-3359 (($ $ $) 53 (|has| |#1| (-341)))) (-2561 (($ $ $) 41 (|has| |#1| (-341)))) (-2748 (($ $ $) 50 (|has| |#1| (-341)))) (-2953 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 49 (|has| |#1| (-341)))) (-3893 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-2963 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 54 (|has| |#1| (-341)))) (-1556 ((|#1| $) 65)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3210 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-2743 (((-712) $) 67)) (-2827 ((|#1| $) 56 (|has| |#1| (-429)))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-966 (-385 (-525))))) (($ |#1|) 70)) (-3109 (((-591 |#1|) $) 61)) (-1263 ((|#1| $ (-712)) 63)) (-3425 (((-712)) 29)) (-2814 ((|#1| $ |#1| |#1|) 60)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) -(((-790 |#1|) (-131) (-975)) (T -790)) -((-2743 (*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)))) (-1575 (*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)))) (-1263 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *1 (-790 *2)) (-4 *2 (-975)))) (-1422 (*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-790 *2)) (-4 *2 (-975)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-975)) (-5 *2 (-591 *3)))) (-2814 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)))) (-3210 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-517)))) (-3485 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-790 *3)))) (-1743 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-790 *3)))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-429)))) (-3153 (*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-429)))) (-2963 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-975)) (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-790 *3)))) (-3359 (*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-3327 (*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-3893 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-2748 (*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-2953 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-975)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3965 *1))) (-4 *1 (-790 *3)))) (-1537 (*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-3370 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-975)) (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-790 *3)))) (-2049 (*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-1253 (*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-3991 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-4032 (*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-1318 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-975)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3965 *1))) (-4 *1 (-790 *3)))) (-2561 (*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(-13 (-975) (-107 |t#1| |t#1|) (-389 |t#1|) (-10 -8 (-15 -2743 ((-712) $)) (-15 -3629 ((-712) $)) (-15 -1556 (|t#1| $)) (-15 -1575 ($ $)) (-15 -1263 (|t#1| $ (-712))) (-15 -1422 ($ |t#1| (-712))) (-15 -3109 ((-591 |t#1|) $)) (-15 -2814 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -3210 ((-3 $ "failed") $ |t#1|)) (-15 -3485 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -1743 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2827 (|t#1| $)) (-15 -3153 ($ $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -2963 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -3359 ($ $ $)) (-15 -3327 ($ $ $)) (-15 -3893 ((-3 $ "failed") $ $)) (-15 -2748 ($ $ $)) (-15 -2953 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $)) (-15 -1537 ($ $ $)) (-15 -3370 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -2049 ($ $ $)) (-15 -1253 ($ $ $)) (-15 -3991 ((-3 $ "failed") $ $)) (-15 -4032 ($ $ $)) (-15 -1318 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $)) (-15 -2561 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-389 |#1|) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-659 |#1|) |has| |#1| (-160)) ((-668) . T) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-981 |#1|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2951 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-3370 (((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-341)))) (-1743 (((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-517)))) (-3485 (((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-517)))) (-2963 (((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-341)))) (-2814 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31))) -(((-791 |#1| |#2|) (-10 -7 (-15 -2951 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2814 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -3485 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1743 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -2963 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3370 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-975) (-790 |#1|)) (T -791)) -((-3370 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-975)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-791 *5 *3)) (-4 *3 (-790 *5)))) (-2963 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-975)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-791 *5 *3)) (-4 *3 (-790 *5)))) (-1743 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-975)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-791 *5 *3)) (-4 *3 (-790 *5)))) (-3485 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-975)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-791 *5 *3)) (-4 *3 (-790 *5)))) (-2814 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-975)) (-5 *1 (-791 *2 *3)) (-4 *3 (-790 *2)))) (-2951 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-975)) (-5 *1 (-791 *5 *2)) (-4 *2 (-790 *5))))) -(-10 -7 (-15 -2951 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2814 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -3485 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1743 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -2963 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3370 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1253 (($ $ $) NIL (|has| |#1| (-341)))) (-2049 (($ $ $) NIL (|has| |#1| (-341)))) (-1537 (($ $ $) NIL (|has| |#1| (-341)))) (-4032 (($ $ $) NIL (|has| |#1| (-341)))) (-1318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3991 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3370 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 25 (|has| |#1| (-341)))) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#1| (-429)))) (-3654 (((-796) $ (-796)) NIL)) (-3865 (((-108) $) NIL)) (-1422 (($ |#1| (-712)) NIL)) (-1743 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 21 (|has| |#1| (-517)))) (-3485 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 19 (|has| |#1| (-517)))) (-3629 (((-712) $) NIL)) (-3327 (($ $ $) NIL (|has| |#1| (-341)))) (-3359 (($ $ $) NIL (|has| |#1| (-341)))) (-2561 (($ $ $) NIL (|has| |#1| (-341)))) (-2748 (($ $ $) NIL (|has| |#1| (-341)))) (-2953 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3893 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2963 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 23 (|has| |#1| (-341)))) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-2743 (((-712) $) NIL)) (-2827 ((|#1| $) NIL (|has| |#1| (-429)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-966 (-385 (-525))))) (($ |#1|) NIL)) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-712)) NIL)) (-3425 (((-712)) NIL)) (-2814 ((|#1| $ |#1| |#1|) 15)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-792 |#1| |#2| |#3|) (-13 (-790 |#1|) (-10 -8 (-15 -3654 ((-796) $ (-796))))) (-975) (-94 |#1|) (-1 |#1| |#1|)) (T -792)) -((-3654 (*1 *2 *1 *2) (-12 (-5 *2 (-796)) (-5 *1 (-792 *3 *4 *5)) (-4 *3 (-975)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-790 |#1|) (-10 -8 (-15 -3654 ((-796) $ (-796))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1253 (($ $ $) NIL (|has| |#2| (-341)))) (-2049 (($ $ $) NIL (|has| |#2| (-341)))) (-1537 (($ $ $) NIL (|has| |#2| (-341)))) (-4032 (($ $ $) NIL (|has| |#2| (-341)))) (-1318 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#2| (-341)))) (-3991 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-3370 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#2| (-341)))) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#2| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#2| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-966 (-385 (-525))))) ((|#2| $) NIL)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#2| (-429)))) (-3865 (((-108) $) NIL)) (-1422 (($ |#2| (-712)) 16)) (-1743 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#2| (-517)))) (-3485 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#2| (-517)))) (-3629 (((-712) $) NIL)) (-3327 (($ $ $) NIL (|has| |#2| (-341)))) (-3359 (($ $ $) NIL (|has| |#2| (-341)))) (-2561 (($ $ $) NIL (|has| |#2| (-341)))) (-2748 (($ $ $) NIL (|has| |#2| (-341)))) (-2953 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#2| (-341)))) (-3893 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-2963 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#2| (-341)))) (-1556 ((|#2| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3210 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-2743 (((-712) $) NIL)) (-2827 ((|#2| $) NIL (|has| |#2| (-429)))) (-2686 (((-796) $) 23) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-966 (-385 (-525))))) (($ |#2|) NIL) (($ (-1167 |#1|)) 18)) (-3109 (((-591 |#2|) $) NIL)) (-1263 ((|#2| $ (-712)) NIL)) (-3425 (((-712)) NIL)) (-2814 ((|#2| $ |#2| |#2|) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) 13 T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-793 |#1| |#2| |#3| |#4|) (-13 (-790 |#2|) (-10 -8 (-15 -2686 ($ (-1167 |#1|))))) (-1089) (-975) (-94 |#2|) (-1 |#2| |#2|)) (T -793)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1167 *3)) (-14 *3 (-1089)) (-5 *1 (-793 *3 *4 *5 *6)) (-4 *4 (-975)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-790 |#2|) (-10 -8 (-15 -2686 ($ (-1167 |#1|))))) -((-2691 ((|#1| (-712) |#1|) 35 (|has| |#1| (-37 (-385 (-525)))))) (-3546 ((|#1| (-712) (-712) |#1|) 27) ((|#1| (-712) |#1|) 20)) (-1292 ((|#1| (-712) |#1|) 31)) (-2818 ((|#1| (-712) |#1|) 29)) (-3431 ((|#1| (-712) |#1|) 28))) -(((-794 |#1|) (-10 -7 (-15 -3431 (|#1| (-712) |#1|)) (-15 -2818 (|#1| (-712) |#1|)) (-15 -1292 (|#1| (-712) |#1|)) (-15 -3546 (|#1| (-712) |#1|)) (-15 -3546 (|#1| (-712) (-712) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2691 (|#1| (-712) |#1|)) |%noBranch|)) (-160)) (T -794)) -((-2691 (*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-3546 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160)))) (-3546 (*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160)))) (-1292 (*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160)))) (-2818 (*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160)))) (-3431 (*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160))))) -(-10 -7 (-15 -3431 (|#1| (-712) |#1|)) (-15 -2818 (|#1| (-712) |#1|)) (-15 -1292 (|#1| (-712) |#1|)) (-15 -3546 (|#1| (-712) |#1|)) (-15 -3546 (|#1| (-712) (-712) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2691 (|#1| (-712) |#1|)) |%noBranch|)) -((-2673 (((-108) $ $) NIL)) (-2940 (((-525) $) 12)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 18) (($ (-525)) 11)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 8)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 9))) -(((-795) (-13 (-788) (-10 -8 (-15 -2686 ($ (-525))) (-15 -2940 ((-525) $))))) (T -795)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-795)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-795))))) -(-13 (-788) (-10 -8 (-15 -2686 ($ (-525))) (-15 -2940 ((-525) $)))) -((-2673 (((-108) $ $) NIL) (($ $ $) 77)) (-1765 (($ $ $) 115)) (-1228 (((-525) $) 30) (((-525)) 35)) (-1343 (($ (-525)) 44)) (-1814 (($ $ $) 45) (($ (-591 $)) 76)) (-2304 (($ $ (-591 $)) 74)) (-3812 (((-525) $) 33)) (-1964 (($ $ $) 63)) (-3173 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3778 (((-525) $) 32)) (-2070 (($ $ $) 62)) (-2610 (($ $) 105)) (-1982 (($ $ $) 119)) (-3456 (($ (-591 $)) 52)) (-2458 (($ $ (-591 $)) 69)) (-2139 (($ (-525) (-525)) 46)) (-1387 (($ $) 116) (($ $ $) 117)) (-3192 (($ $ (-525)) 40) (($ $) 43)) (-3265 (($ $ $) 89)) (-1516 (($ $ $) 122)) (-3793 (($ $) 106)) (-3239 (($ $ $) 90)) (-1582 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1872 (((-1176) $) 8)) (-3872 (($ $) 109) (($ $ (-712)) 112)) (-2782 (($ $ $) 65)) (-3820 (($ $ $) 64)) (-3023 (($ $ (-591 $)) 100)) (-4082 (($ $ $) 104)) (-2761 (($ (-591 $)) 50)) (-3625 (($ $) 60) (($ (-591 $)) 61)) (-2543 (($ $ $) 113)) (-2122 (($ $) 107)) (-3617 (($ $ $) 118)) (-3654 (($ (-525)) 20) (($ (-1089)) 22) (($ (-1072)) 29) (($ (-205)) 24)) (-3532 (($ $ $) 93)) (-3389 (($ $) 94)) (-2406 (((-1176) (-1072)) 14)) (-3367 (($ (-1072)) 13)) (-1572 (($ (-591 (-591 $))) 49)) (-3178 (($ $ (-525)) 39) (($ $) 42)) (-2621 (((-1072) $) NIL)) (-1534 (($ $ $) 121)) (-1421 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1565 (((-108) $) 98)) (-3413 (($ $ (-591 $)) 102) (($ $ $ $) 103)) (-3531 (($ (-525)) 36)) (-3457 (((-525) $) 31) (((-525)) 34)) (-2038 (($ $ $) 37) (($ (-591 $)) 75)) (-2937 (((-1036) $) NIL)) (-3210 (($ $ $) 91)) (-3164 (($) 12)) (-1881 (($ $ (-591 $)) 99)) (-3183 (($ $) 108) (($ $ (-712)) 111)) (-3224 (($ $ $) 88)) (-2209 (($ $ (-712)) 127)) (-1539 (($ (-591 $)) 51)) (-2686 (((-796) $) 18)) (-1708 (($ $ (-525)) 38) (($ $) 41)) (-2075 (($ $) 58) (($ (-591 $)) 59)) (-2892 (($ $) 56) (($ (-591 $)) 57)) (-3800 (($ $) 114)) (-3826 (($ (-591 $)) 55)) (-3808 (($ $ $) 97)) (-1502 (($ $ $) 120)) (-3543 (($ $ $) 92)) (-2513 (($ $ $) 95) (($ $) 96)) (-4004 (($ $ $) 81)) (-3982 (($ $ $) 79)) (-3944 (((-108) $ $) 15) (($ $ $) 16)) (-3994 (($ $ $) 80)) (-3971 (($ $ $) 78)) (-4059 (($ $ $) 86)) (-4047 (($ $ $) 83) (($ $) 84)) (-4036 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-796) (-13 (-1018) (-10 -8 (-15 -1872 ((-1176) $)) (-15 -3367 ($ (-1072))) (-15 -2406 ((-1176) (-1072))) (-15 -3654 ($ (-525))) (-15 -3654 ($ (-1089))) (-15 -3654 ($ (-1072))) (-15 -3654 ($ (-205))) (-15 -3164 ($)) (-15 -1228 ((-525) $)) (-15 -3457 ((-525) $)) (-15 -1228 ((-525))) (-15 -3457 ((-525))) (-15 -3778 ((-525) $)) (-15 -3812 ((-525) $)) (-15 -3531 ($ (-525))) (-15 -1343 ($ (-525))) (-15 -2139 ($ (-525) (-525))) (-15 -3178 ($ $ (-525))) (-15 -3192 ($ $ (-525))) (-15 -1708 ($ $ (-525))) (-15 -3178 ($ $)) (-15 -3192 ($ $)) (-15 -1708 ($ $)) (-15 -2038 ($ $ $)) (-15 -1814 ($ $ $)) (-15 -2038 ($ (-591 $))) (-15 -1814 ($ (-591 $))) (-15 -3023 ($ $ (-591 $))) (-15 -3413 ($ $ (-591 $))) (-15 -3413 ($ $ $ $)) (-15 -4082 ($ $ $)) (-15 -1565 ((-108) $)) (-15 -1881 ($ $ (-591 $))) (-15 -2610 ($ $)) (-15 -1534 ($ $ $)) (-15 -3800 ($ $)) (-15 -1572 ($ (-591 (-591 $)))) (-15 -1765 ($ $ $)) (-15 -1387 ($ $)) (-15 -1387 ($ $ $)) (-15 -3617 ($ $ $)) (-15 -1982 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -1516 ($ $ $)) (-15 -2209 ($ $ (-712))) (-15 -3808 ($ $ $)) (-15 -2070 ($ $ $)) (-15 -1964 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -2782 ($ $ $)) (-15 -2458 ($ $ (-591 $))) (-15 -2304 ($ $ (-591 $))) (-15 -3793 ($ $)) (-15 -3183 ($ $)) (-15 -3183 ($ $ (-712))) (-15 -3872 ($ $)) (-15 -3872 ($ $ (-712))) (-15 -2122 ($ $)) (-15 -2543 ($ $ $)) (-15 -3173 ($ $)) (-15 -3173 ($ $ $)) (-15 -3173 ($ $ $ $)) (-15 -1582 ($ $)) (-15 -1582 ($ $ $)) (-15 -1582 ($ $ $ $)) (-15 -1421 ($ $)) (-15 -1421 ($ $ $)) (-15 -1421 ($ $ $ $)) (-15 -2892 ($ $)) (-15 -2892 ($ (-591 $))) (-15 -2075 ($ $)) (-15 -2075 ($ (-591 $))) (-15 -3625 ($ $)) (-15 -3625 ($ (-591 $))) (-15 -2761 ($ (-591 $))) (-15 -1539 ($ (-591 $))) (-15 -3456 ($ (-591 $))) (-15 -3826 ($ (-591 $))) (-15 -3944 ($ $ $)) (-15 -2673 ($ $ $)) (-15 -3971 ($ $ $)) (-15 -3982 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -4004 ($ $ $)) (-15 -4036 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -4047 ($ $)) (-15 * ($ $ $)) (-15 -4059 ($ $ $)) (-15 ** ($ $ $)) (-15 -3224 ($ $ $)) (-15 -3265 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3210 ($ $ $)) (-15 -3543 ($ $ $)) (-15 -3532 ($ $ $)) (-15 -3389 ($ $)) (-15 -2513 ($ $ $)) (-15 -2513 ($ $))))) (T -796)) -((-1872 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-796)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-796)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-796)))) (-3654 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3654 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-796)))) (-3654 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-796)))) (-3654 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-796)))) (-3164 (*1 *1) (-5 *1 (-796))) (-1228 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-1228 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3457 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3812 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-2139 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3178 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-1708 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3178 (*1 *1 *1) (-5 *1 (-796))) (-3192 (*1 *1 *1) (-5 *1 (-796))) (-1708 (*1 *1 *1) (-5 *1 (-796))) (-2038 (*1 *1 *1 *1) (-5 *1 (-796))) (-1814 (*1 *1 *1 *1) (-5 *1 (-796))) (-2038 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-3023 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-3413 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-3413 (*1 *1 *1 *1 *1) (-5 *1 (-796))) (-4082 (*1 *1 *1 *1) (-5 *1 (-796))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-796)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-2610 (*1 *1 *1) (-5 *1 (-796))) (-1534 (*1 *1 *1 *1) (-5 *1 (-796))) (-3800 (*1 *1 *1) (-5 *1 (-796))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 (-796)))) (-5 *1 (-796)))) (-1765 (*1 *1 *1 *1) (-5 *1 (-796))) (-1387 (*1 *1 *1) (-5 *1 (-796))) (-1387 (*1 *1 *1 *1) (-5 *1 (-796))) (-3617 (*1 *1 *1 *1) (-5 *1 (-796))) (-1982 (*1 *1 *1 *1) (-5 *1 (-796))) (-1502 (*1 *1 *1 *1) (-5 *1 (-796))) (-1516 (*1 *1 *1 *1) (-5 *1 (-796))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-796)))) (-3808 (*1 *1 *1 *1) (-5 *1 (-796))) (-2070 (*1 *1 *1 *1) (-5 *1 (-796))) (-1964 (*1 *1 *1 *1) (-5 *1 (-796))) (-3820 (*1 *1 *1 *1) (-5 *1 (-796))) (-2782 (*1 *1 *1 *1) (-5 *1 (-796))) (-2458 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-2304 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-3793 (*1 *1 *1) (-5 *1 (-796))) (-3183 (*1 *1 *1) (-5 *1 (-796))) (-3183 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-796)))) (-3872 (*1 *1 *1) (-5 *1 (-796))) (-3872 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-796)))) (-2122 (*1 *1 *1) (-5 *1 (-796))) (-2543 (*1 *1 *1 *1) (-5 *1 (-796))) (-3173 (*1 *1 *1) (-5 *1 (-796))) (-3173 (*1 *1 *1 *1) (-5 *1 (-796))) (-3173 (*1 *1 *1 *1 *1) (-5 *1 (-796))) (-1582 (*1 *1 *1) (-5 *1 (-796))) (-1582 (*1 *1 *1 *1) (-5 *1 (-796))) (-1582 (*1 *1 *1 *1 *1) (-5 *1 (-796))) (-1421 (*1 *1 *1) (-5 *1 (-796))) (-1421 (*1 *1 *1 *1) (-5 *1 (-796))) (-1421 (*1 *1 *1 *1 *1) (-5 *1 (-796))) (-2892 (*1 *1 *1) (-5 *1 (-796))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-2075 (*1 *1 *1) (-5 *1 (-796))) (-2075 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-3625 (*1 *1 *1) (-5 *1 (-796))) (-3625 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-2761 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-3826 (*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) (-3944 (*1 *1 *1 *1) (-5 *1 (-796))) (-2673 (*1 *1 *1 *1) (-5 *1 (-796))) (-3971 (*1 *1 *1 *1) (-5 *1 (-796))) (-3982 (*1 *1 *1 *1) (-5 *1 (-796))) (-3994 (*1 *1 *1 *1) (-5 *1 (-796))) (-4004 (*1 *1 *1 *1) (-5 *1 (-796))) (-4036 (*1 *1 *1 *1) (-5 *1 (-796))) (-4047 (*1 *1 *1 *1) (-5 *1 (-796))) (-4047 (*1 *1 *1) (-5 *1 (-796))) (* (*1 *1 *1 *1) (-5 *1 (-796))) (-4059 (*1 *1 *1 *1) (-5 *1 (-796))) (** (*1 *1 *1 *1) (-5 *1 (-796))) (-3224 (*1 *1 *1 *1) (-5 *1 (-796))) (-3265 (*1 *1 *1 *1) (-5 *1 (-796))) (-3239 (*1 *1 *1 *1) (-5 *1 (-796))) (-3210 (*1 *1 *1 *1) (-5 *1 (-796))) (-3543 (*1 *1 *1 *1) (-5 *1 (-796))) (-3532 (*1 *1 *1 *1) (-5 *1 (-796))) (-3389 (*1 *1 *1) (-5 *1 (-796))) (-2513 (*1 *1 *1 *1) (-5 *1 (-796))) (-2513 (*1 *1 *1) (-5 *1 (-796)))) -(-13 (-1018) (-10 -8 (-15 -1872 ((-1176) $)) (-15 -3367 ($ (-1072))) (-15 -2406 ((-1176) (-1072))) (-15 -3654 ($ (-525))) (-15 -3654 ($ (-1089))) (-15 -3654 ($ (-1072))) (-15 -3654 ($ (-205))) (-15 -3164 ($)) (-15 -1228 ((-525) $)) (-15 -3457 ((-525) $)) (-15 -1228 ((-525))) (-15 -3457 ((-525))) (-15 -3778 ((-525) $)) (-15 -3812 ((-525) $)) (-15 -3531 ($ (-525))) (-15 -1343 ($ (-525))) (-15 -2139 ($ (-525) (-525))) (-15 -3178 ($ $ (-525))) (-15 -3192 ($ $ (-525))) (-15 -1708 ($ $ (-525))) (-15 -3178 ($ $)) (-15 -3192 ($ $)) (-15 -1708 ($ $)) (-15 -2038 ($ $ $)) (-15 -1814 ($ $ $)) (-15 -2038 ($ (-591 $))) (-15 -1814 ($ (-591 $))) (-15 -3023 ($ $ (-591 $))) (-15 -3413 ($ $ (-591 $))) (-15 -3413 ($ $ $ $)) (-15 -4082 ($ $ $)) (-15 -1565 ((-108) $)) (-15 -1881 ($ $ (-591 $))) (-15 -2610 ($ $)) (-15 -1534 ($ $ $)) (-15 -3800 ($ $)) (-15 -1572 ($ (-591 (-591 $)))) (-15 -1765 ($ $ $)) (-15 -1387 ($ $)) (-15 -1387 ($ $ $)) (-15 -3617 ($ $ $)) (-15 -1982 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -1516 ($ $ $)) (-15 -2209 ($ $ (-712))) (-15 -3808 ($ $ $)) (-15 -2070 ($ $ $)) (-15 -1964 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -2782 ($ $ $)) (-15 -2458 ($ $ (-591 $))) (-15 -2304 ($ $ (-591 $))) (-15 -3793 ($ $)) (-15 -3183 ($ $)) (-15 -3183 ($ $ (-712))) (-15 -3872 ($ $)) (-15 -3872 ($ $ (-712))) (-15 -2122 ($ $)) (-15 -2543 ($ $ $)) (-15 -3173 ($ $)) (-15 -3173 ($ $ $)) (-15 -3173 ($ $ $ $)) (-15 -1582 ($ $)) (-15 -1582 ($ $ $)) (-15 -1582 ($ $ $ $)) (-15 -1421 ($ $)) (-15 -1421 ($ $ $)) (-15 -1421 ($ $ $ $)) (-15 -2892 ($ $)) (-15 -2892 ($ (-591 $))) (-15 -2075 ($ $)) (-15 -2075 ($ (-591 $))) (-15 -3625 ($ $)) (-15 -3625 ($ (-591 $))) (-15 -2761 ($ (-591 $))) (-15 -1539 ($ (-591 $))) (-15 -3456 ($ (-591 $))) (-15 -3826 ($ (-591 $))) (-15 -3944 ($ $ $)) (-15 -2673 ($ $ $)) (-15 -3971 ($ $ $)) (-15 -3982 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -4004 ($ $ $)) (-15 -4036 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -4047 ($ $)) (-15 * ($ $ $)) (-15 -4059 ($ $ $)) (-15 ** ($ $ $)) (-15 -3224 ($ $ $)) (-15 -3265 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3210 ($ $ $)) (-15 -3543 ($ $ $)) (-15 -3532 ($ $ $)) (-15 -3389 ($ $)) (-15 -2513 ($ $ $)) (-15 -2513 ($ $)))) -((-4196 (((-1176) (-591 (-51))) 24)) (-1488 (((-1176) (-1072) (-796)) 14) (((-1176) (-796)) 9) (((-1176) (-1072)) 11))) -(((-797) (-10 -7 (-15 -1488 ((-1176) (-1072))) (-15 -1488 ((-1176) (-796))) (-15 -1488 ((-1176) (-1072) (-796))) (-15 -4196 ((-1176) (-591 (-51)))))) (T -797)) -((-4196 (*1 *2 *3) (-12 (-5 *3 (-591 (-51))) (-5 *2 (-1176)) (-5 *1 (-797)))) (-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-796)) (-5 *2 (-1176)) (-5 *1 (-797)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-797)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-797))))) -(-10 -7 (-15 -1488 ((-1176) (-1072))) (-15 -1488 ((-1176) (-796))) (-15 -1488 ((-1176) (-1072) (-796))) (-15 -4196 ((-1176) (-591 (-51))))) -((-2673 (((-108) $ $) NIL)) (-1592 (((-3 $ "failed") (-1089)) 33)) (-2834 (((-712)) 31)) (-1325 (($) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1970 (((-854) $) 29)) (-2621 (((-1072) $) 39)) (-3229 (($ (-854)) 28)) (-2937 (((-1036) $) NIL)) (-1300 (((-1089) $) 13) (((-501) $) 19) (((-825 (-357)) $) 26) (((-825 (-525)) $) 22)) (-2686 (((-796) $) 16)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 36)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 35))) -(((-798 |#1|) (-13 (-782) (-566 (-1089)) (-566 (-501)) (-566 (-825 (-357))) (-566 (-825 (-525))) (-10 -8 (-15 -1592 ((-3 $ "failed") (-1089))))) (-591 (-1089))) (T -798)) -((-1592 (*1 *1 *2) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-798 *3)) (-14 *3 (-591 *2))))) -(-13 (-782) (-566 (-1089)) (-566 (-501)) (-566 (-825 (-357))) (-566 (-825 (-525))) (-10 -8 (-15 -1592 ((-3 $ "failed") (-1089))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (((-885 |#1|) $) NIL) (($ (-885 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-160)))) (-3425 (((-712)) NIL)) (-1309 (((-1176) (-712)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4059 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))))) -(((-799 |#1| |#2| |#3| |#4|) (-13 (-975) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2686 ((-885 |#1|) $)) (-15 -2686 ($ (-885 |#1|))) (IF (|has| |#1| (-341)) (-15 -4059 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1309 ((-1176) (-712))))) (-975) (-591 (-1089)) (-591 (-712)) (-712)) (T -799)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-885 *3)) (-5 *1 (-799 *3 *4 *5 *6)) (-4 *3 (-975)) (-14 *4 (-591 (-1089))) (-14 *5 (-591 (-712))) (-14 *6 (-712)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-885 *3)) (-4 *3 (-975)) (-5 *1 (-799 *3 *4 *5 *6)) (-14 *4 (-591 (-1089))) (-14 *5 (-591 (-712))) (-14 *6 (-712)))) (-4059 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *2 (-975)) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-712))) (-14 *5 (-712)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-799 *4 *5 *6 *7)) (-4 *4 (-975)) (-14 *5 (-591 (-1089))) (-14 *6 (-591 *3)) (-14 *7 *3)))) -(-13 (-975) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2686 ((-885 |#1|) $)) (-15 -2686 ($ (-885 |#1|))) (IF (|has| |#1| (-341)) (-15 -4059 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1309 ((-1176) (-712))))) -((-2562 (((-3 (-161 |#3|) "failed") (-712) (-712) |#2| |#2|) 31)) (-3312 (((-3 (-385 |#3|) "failed") (-712) (-712) |#2| |#2|) 24))) -(((-800 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-3 (-385 |#3|) "failed") (-712) (-712) |#2| |#2|)) (-15 -2562 ((-3 (-161 |#3|) "failed") (-712) (-712) |#2| |#2|))) (-341) (-1162 |#1|) (-1147 |#1|)) (T -800)) -((-2562 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-712)) (-4 *5 (-341)) (-5 *2 (-161 *6)) (-5 *1 (-800 *5 *4 *6)) (-4 *4 (-1162 *5)) (-4 *6 (-1147 *5)))) (-3312 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-712)) (-4 *5 (-341)) (-5 *2 (-385 *6)) (-5 *1 (-800 *5 *4 *6)) (-4 *4 (-1162 *5)) (-4 *6 (-1147 *5))))) -(-10 -7 (-15 -3312 ((-3 (-385 |#3|) "failed") (-712) (-712) |#2| |#2|)) (-15 -2562 ((-3 (-161 |#3|) "failed") (-712) (-712) |#2| |#2|))) -((-3312 (((-3 (-385 (-1144 |#2| |#1|)) "failed") (-712) (-712) (-1163 |#1| |#2| |#3|)) 28) (((-3 (-385 (-1144 |#2| |#1|)) "failed") (-712) (-712) (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|)) 26))) -(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-3 (-385 (-1144 |#2| |#1|)) "failed") (-712) (-712) (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|))) (-15 -3312 ((-3 (-385 (-1144 |#2| |#1|)) "failed") (-712) (-712) (-1163 |#1| |#2| |#3|)))) (-341) (-1089) |#1|) (T -801)) -((-3312 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-712)) (-5 *4 (-1163 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-385 (-1144 *6 *5))) (-5 *1 (-801 *5 *6 *7)))) (-3312 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-712)) (-5 *4 (-1163 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-385 (-1144 *6 *5))) (-5 *1 (-801 *5 *6 *7))))) -(-10 -7 (-15 -3312 ((-3 (-385 (-1144 |#2| |#1|)) "failed") (-712) (-712) (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|))) (-15 -3312 ((-3 (-385 (-1144 |#2| |#1|)) "failed") (-712) (-712) (-1163 |#1| |#2| |#3|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-2551 (($ $ (-525)) 62)) (-1965 (((-108) $ $) 59)) (-2055 (($) 17 T CONST)) (-1387 (($ (-1085 (-525)) (-525)) 61)) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-2409 (($ $) 64)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-1676 (((-712) $) 69)) (-3865 (((-108) $) 31)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-1233 (((-525)) 66)) (-1701 (((-525) $) 65)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1618 (($ $ (-525)) 68)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-3439 (((-1070 (-525)) $) 70)) (-1664 (($ $) 67)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-4173 (((-525) $ (-525)) 63)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-802 |#1|) (-131) (-525)) (T -802)) -((-3439 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-5 *2 (-1070 (-525))))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-5 *2 (-712)))) (-1618 (*1 *1 *1 *2) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525)))) (-1664 (*1 *1 *1) (-4 *1 (-802 *2))) (-1233 (*1 *2) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525)))) (-1701 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525)))) (-2409 (*1 *1 *1) (-4 *1 (-802 *2))) (-4173 (*1 *2 *1 *2) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525)))) (-2551 (*1 *1 *1 *2) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525)))) (-1387 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 (-525))) (-5 *3 (-525)) (-4 *1 (-802 *4))))) -(-13 (-286) (-138) (-10 -8 (-15 -3439 ((-1070 (-525)) $)) (-15 -1676 ((-712) $)) (-15 -1618 ($ $ (-525))) (-15 -1664 ($ $)) (-15 -1233 ((-525))) (-15 -1701 ((-525) $)) (-15 -2409 ($ $)) (-15 -4173 ((-525) $ (-525))) (-15 -2551 ($ $ (-525))) (-15 -1387 ($ (-1085 (-525)) (-525))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-565 (-796)) . T) ((-160) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-853) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2551 (($ $ (-525)) NIL)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-1387 (($ (-1085 (-525)) (-525)) NIL)) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2409 (($ $) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1676 (((-712) $) NIL)) (-3865 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1233 (((-525)) NIL)) (-1701 (((-525) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1618 (($ $ (-525)) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-3439 (((-1070 (-525)) $) NIL)) (-1664 (($ $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-3425 (((-712)) NIL)) (-1724 (((-108) $ $) NIL)) (-4173 (((-525) $ (-525)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL))) -(((-803 |#1|) (-802 |#1|) (-525)) (T -803)) -NIL -(-802 |#1|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 (((-803 |#1|) $) NIL (|has| (-803 |#1|) (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-803 |#1|) (-842)))) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| (-803 |#1|) (-842)))) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL (|has| (-803 |#1|) (-761)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-803 |#1|) "failed") $) NIL) (((-3 (-1089) "failed") $) NIL (|has| (-803 |#1|) (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-803 |#1|) (-966 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-803 |#1|) (-966 (-525))))) (-3341 (((-803 |#1|) $) NIL) (((-1089) $) NIL (|has| (-803 |#1|) (-966 (-1089)))) (((-385 (-525)) $) NIL (|has| (-803 |#1|) (-966 (-525)))) (((-525) $) NIL (|has| (-803 |#1|) (-966 (-525))))) (-2742 (($ $) NIL) (($ (-525) $) NIL)) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| (-803 |#1|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-803 |#1|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-803 |#1|))) (|:| |vec| (-1171 (-803 |#1|)))) (-631 $) (-1171 $)) NIL) (((-631 (-803 |#1|)) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-803 |#1|) (-510)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3489 (((-108) $) NIL (|has| (-803 |#1|) (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| (-803 |#1|) (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| (-803 |#1|) (-819 (-357))))) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL)) (-1384 (((-803 |#1|) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| (-803 |#1|) (-1065)))) (-2256 (((-108) $) NIL (|has| (-803 |#1|) (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL (|has| (-803 |#1|) (-788)))) (-3475 (($ $ $) NIL (|has| (-803 |#1|) (-788)))) (-1257 (($ (-1 (-803 |#1|) (-803 |#1|)) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-803 |#1|) (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL (|has| (-803 |#1|) (-286)))) (-2767 (((-803 |#1|) $) NIL (|has| (-803 |#1|) (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-803 |#1|) (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-803 |#1|) (-842)))) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1980 (($ $ (-591 (-803 |#1|)) (-591 (-803 |#1|))) NIL (|has| (-803 |#1|) (-288 (-803 |#1|)))) (($ $ (-803 |#1|) (-803 |#1|)) NIL (|has| (-803 |#1|) (-288 (-803 |#1|)))) (($ $ (-273 (-803 |#1|))) NIL (|has| (-803 |#1|) (-288 (-803 |#1|)))) (($ $ (-591 (-273 (-803 |#1|)))) NIL (|has| (-803 |#1|) (-288 (-803 |#1|)))) (($ $ (-591 (-1089)) (-591 (-803 |#1|))) NIL (|has| (-803 |#1|) (-486 (-1089) (-803 |#1|)))) (($ $ (-1089) (-803 |#1|)) NIL (|has| (-803 |#1|) (-486 (-1089) (-803 |#1|))))) (-3048 (((-712) $) NIL)) (-1881 (($ $ (-803 |#1|)) NIL (|has| (-803 |#1|) (-265 (-803 |#1|) (-803 |#1|))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) NIL (|has| (-803 |#1|) (-213))) (($ $ (-712)) NIL (|has| (-803 |#1|) (-213))) (($ $ (-1089)) NIL (|has| (-803 |#1|) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-803 |#1|) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-803 |#1|) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-803 |#1|) (-833 (-1089)))) (($ $ (-1 (-803 |#1|) (-803 |#1|)) (-712)) NIL) (($ $ (-1 (-803 |#1|) (-803 |#1|))) NIL)) (-2774 (($ $) NIL)) (-1396 (((-803 |#1|) $) NIL)) (-1300 (((-825 (-525)) $) NIL (|has| (-803 |#1|) (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| (-803 |#1|) (-566 (-825 (-357))))) (((-501) $) NIL (|has| (-803 |#1|) (-566 (-501)))) (((-357) $) NIL (|has| (-803 |#1|) (-951))) (((-205) $) NIL (|has| (-803 |#1|) (-951)))) (-1217 (((-161 (-385 (-525))) $) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| (-803 |#1|) (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-803 |#1|)) NIL) (($ (-1089)) NIL (|has| (-803 |#1|) (-966 (-1089))))) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| (-803 |#1|) (-842))) (|has| (-803 |#1|) (-136))))) (-3425 (((-712)) NIL)) (-1584 (((-803 |#1|) $) NIL (|has| (-803 |#1|) (-510)))) (-1724 (((-108) $ $) NIL)) (-4173 (((-385 (-525)) $ (-525)) NIL)) (-1460 (($ $) NIL (|has| (-803 |#1|) (-761)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $) NIL (|has| (-803 |#1|) (-213))) (($ $ (-712)) NIL (|has| (-803 |#1|) (-213))) (($ $ (-1089)) NIL (|has| (-803 |#1|) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-803 |#1|) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-803 |#1|) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-803 |#1|) (-833 (-1089)))) (($ $ (-1 (-803 |#1|) (-803 |#1|)) (-712)) NIL) (($ $ (-1 (-803 |#1|) (-803 |#1|))) NIL)) (-4004 (((-108) $ $) NIL (|has| (-803 |#1|) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-803 |#1|) (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| (-803 |#1|) (-788)))) (-3971 (((-108) $ $) NIL (|has| (-803 |#1|) (-788)))) (-4059 (($ $ $) NIL) (($ (-803 |#1|) (-803 |#1|)) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-803 |#1|) $) NIL) (($ $ (-803 |#1|)) NIL))) -(((-804 |#1|) (-13 (-923 (-803 |#1|)) (-10 -8 (-15 -4173 ((-385 (-525)) $ (-525))) (-15 -1217 ((-161 (-385 (-525))) $)) (-15 -2742 ($ $)) (-15 -2742 ($ (-525) $)))) (-525)) (T -804)) -((-4173 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-804 *4)) (-14 *4 *3) (-5 *3 (-525)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-804 *3)) (-14 *3 (-525)))) (-2742 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-14 *2 (-525)))) (-2742 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-804 *3)) (-14 *3 *2)))) -(-13 (-923 (-803 |#1|)) (-10 -8 (-15 -4173 ((-385 (-525)) $ (-525))) (-15 -1217 ((-161 (-385 (-525))) $)) (-15 -2742 ($ $)) (-15 -2742 ($ (-525) $)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 ((|#2| $) NIL (|has| |#2| (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL (|has| |#2| (-761)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-1089) "failed") $) NIL (|has| |#2| (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-966 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-966 (-525))))) (-3341 ((|#2| $) NIL) (((-1089) $) NIL (|has| |#2| (-966 (-1089)))) (((-385 (-525)) $) NIL (|has| |#2| (-966 (-525)))) (((-525) $) NIL (|has| |#2| (-966 (-525))))) (-2742 (($ $) 31) (($ (-525) $) 32)) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL) (((-631 |#2|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) 53)) (-1325 (($) NIL (|has| |#2| (-510)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3489 (((-108) $) NIL (|has| |#2| (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| |#2| (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| |#2| (-819 (-357))))) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL)) (-1384 ((|#2| $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| |#2| (-1065)))) (-2256 (((-108) $) NIL (|has| |#2| (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL (|has| |#2| (-788)))) (-3475 (($ $ $) NIL (|has| |#2| (-788)))) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 49)) (-3492 (($) NIL (|has| |#2| (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL (|has| |#2| (-286)))) (-2767 ((|#2| $) NIL (|has| |#2| (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1980 (($ $ (-591 |#2|) (-591 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-288 |#2|))) (($ $ (-273 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ (-591 (-273 |#2|))) NIL (|has| |#2| (-288 |#2|))) (($ $ (-591 (-1089)) (-591 |#2|)) NIL (|has| |#2| (-486 (-1089) |#2|))) (($ $ (-1089) |#2|) NIL (|has| |#2| (-486 (-1089) |#2|)))) (-3048 (((-712) $) NIL)) (-1881 (($ $ |#2|) NIL (|has| |#2| (-265 |#2| |#2|)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) NIL (|has| |#2| (-213))) (($ $ (-712)) NIL (|has| |#2| (-213))) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2774 (($ $) NIL)) (-1396 ((|#2| $) NIL)) (-1300 (((-825 (-525)) $) NIL (|has| |#2| (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| |#2| (-566 (-825 (-357))))) (((-501) $) NIL (|has| |#2| (-566 (-501)))) (((-357) $) NIL (|has| |#2| (-951))) (((-205) $) NIL (|has| |#2| (-951)))) (-1217 (((-161 (-385 (-525))) $) 68)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-842))))) (-2686 (((-796) $) 87) (($ (-525)) 19) (($ $) NIL) (($ (-385 (-525))) 24) (($ |#2|) 18) (($ (-1089)) NIL (|has| |#2| (-966 (-1089))))) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#2| (-842))) (|has| |#2| (-136))))) (-3425 (((-712)) NIL)) (-1584 ((|#2| $) NIL (|has| |#2| (-510)))) (-1724 (((-108) $ $) NIL)) (-4173 (((-385 (-525)) $ (-525)) 60)) (-1460 (($ $) NIL (|has| |#2| (-761)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 14 T CONST)) (-1839 (($) 16 T CONST)) (-1796 (($ $) NIL (|has| |#2| (-213))) (($ $ (-712)) NIL (|has| |#2| (-213))) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4004 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3944 (((-108) $ $) 35)) (-3994 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#2| (-788)))) (-4059 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4047 (($ $) 39) (($ $ $) 41)) (-4036 (($ $ $) 37)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) 50)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 42) (($ $ $) 44) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-805 |#1| |#2|) (-13 (-923 |#2|) (-10 -8 (-15 -4173 ((-385 (-525)) $ (-525))) (-15 -1217 ((-161 (-385 (-525))) $)) (-15 -2742 ($ $)) (-15 -2742 ($ (-525) $)))) (-525) (-802 |#1|)) (T -805)) -((-4173 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-385 (-525))) (-5 *1 (-805 *4 *5)) (-5 *3 (-525)) (-4 *5 (-802 *4)))) (-1217 (*1 *2 *1) (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-805 *3 *4)) (-4 *4 (-802 *3)))) (-2742 (*1 *1 *1) (-12 (-14 *2 (-525)) (-5 *1 (-805 *2 *3)) (-4 *3 (-802 *2)))) (-2742 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-14 *3 *2) (-5 *1 (-805 *3 *4)) (-4 *4 (-802 *3))))) -(-13 (-923 |#2|) (-10 -8 (-15 -4173 ((-385 (-525)) $ (-525))) (-15 -1217 ((-161 (-385 (-525))) $)) (-15 -2742 ($ $)) (-15 -2742 ($ (-525) $)))) -((-2673 (((-108) $ $) NIL (-12 (|has| |#1| (-1018)) (|has| |#2| (-1018))))) (-2424 ((|#2| $) 12)) (-3275 (($ |#1| |#2|) 9)) (-2621 (((-1072) $) NIL (-12 (|has| |#1| (-1018)) (|has| |#2| (-1018))))) (-2937 (((-1036) $) NIL (-12 (|has| |#1| (-1018)) (|has| |#2| (-1018))))) (-2872 ((|#1| $) 11)) (-2695 (($ |#1| |#2|) 10)) (-2686 (((-796) $) 18 (-3150 (-12 (|has| |#1| (-565 (-796))) (|has| |#2| (-565 (-796)))) (-12 (|has| |#1| (-1018)) (|has| |#2| (-1018)))))) (-3944 (((-108) $ $) 22 (-12 (|has| |#1| (-1018)) (|has| |#2| (-1018)))))) -(((-806 |#1| |#2|) (-13 (-1125) (-10 -8 (IF (|has| |#1| (-565 (-796))) (IF (|has| |#2| (-565 (-796))) (-6 (-565 (-796))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1018)) (IF (|has| |#2| (-1018)) (-6 (-1018)) |%noBranch|) |%noBranch|) (-15 -3275 ($ |#1| |#2|)) (-15 -2695 ($ |#1| |#2|)) (-15 -2872 (|#1| $)) (-15 -2424 (|#2| $)))) (-1125) (-1125)) (T -806)) -((-3275 (*1 *1 *2 *3) (-12 (-5 *1 (-806 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-2695 (*1 *1 *2 *3) (-12 (-5 *1 (-806 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-2872 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-806 *2 *3)) (-4 *3 (-1125)))) (-2424 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-806 *3 *2)) (-4 *3 (-1125))))) -(-13 (-1125) (-10 -8 (IF (|has| |#1| (-565 (-796))) (IF (|has| |#2| (-565 (-796))) (-6 (-565 (-796))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1018)) (IF (|has| |#2| (-1018)) (-6 (-1018)) |%noBranch|) |%noBranch|) (-15 -3275 ($ |#1| |#2|)) (-15 -2695 ($ |#1| |#2|)) (-15 -2872 (|#1| $)) (-15 -2424 (|#2| $)))) -((-2673 (((-108) $ $) NIL)) (-3512 (((-525) $) 15)) (-2160 (($ (-146)) 11)) (-3442 (($ (-146)) 12)) (-2621 (((-1072) $) NIL)) (-4190 (((-146) $) 13)) (-2937 (((-1036) $) NIL)) (-2058 (($ (-146)) 9)) (-2419 (($ (-146)) 8)) (-2686 (((-796) $) 23) (($ (-146)) 16)) (-3169 (($ (-146)) 10)) (-3944 (((-108) $ $) NIL))) -(((-807) (-13 (-1018) (-10 -8 (-15 -2419 ($ (-146))) (-15 -2058 ($ (-146))) (-15 -3169 ($ (-146))) (-15 -2160 ($ (-146))) (-15 -3442 ($ (-146))) (-15 -4190 ((-146) $)) (-15 -3512 ((-525) $)) (-15 -2686 ($ (-146)))))) (T -807)) -((-2419 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807)))) (-2160 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807)))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-807)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-807)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807))))) -(-13 (-1018) (-10 -8 (-15 -2419 ($ (-146))) (-15 -2058 ($ (-146))) (-15 -3169 ($ (-146))) (-15 -2160 ($ (-146))) (-15 -3442 ($ (-146))) (-15 -4190 ((-146) $)) (-15 -3512 ((-525) $)) (-15 -2686 ($ (-146))))) -((-2686 (((-294 (-525)) (-385 (-885 (-47)))) 23) (((-294 (-525)) (-885 (-47))) 18))) -(((-808) (-10 -7 (-15 -2686 ((-294 (-525)) (-885 (-47)))) (-15 -2686 ((-294 (-525)) (-385 (-885 (-47))))))) (T -808)) -((-2686 (*1 *2 *3) (-12 (-5 *3 (-385 (-885 (-47)))) (-5 *2 (-294 (-525))) (-5 *1 (-808)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-885 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-808))))) -(-10 -7 (-15 -2686 ((-294 (-525)) (-885 (-47)))) (-15 -2686 ((-294 (-525)) (-385 (-885 (-47)))))) -((-1257 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 14))) -(((-809 |#1| |#2|) (-10 -7 (-15 -1257 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) (-1125) (-1125)) (T -809)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6))))) -(-10 -7 (-15 -1257 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) -((-4118 (($ |#1| |#1|) 8)) (-3785 ((|#1| $ (-712)) 10))) -(((-810 |#1|) (-10 -8 (-15 -4118 ($ |#1| |#1|)) (-15 -3785 (|#1| $ (-712)))) (-1125)) (T -810)) -((-3785 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *1 (-810 *2)) (-4 *2 (-1125)))) (-4118 (*1 *1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1125))))) -(-10 -8 (-15 -4118 ($ |#1| |#1|)) (-15 -3785 (|#1| $ (-712)))) -((-1257 (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)) 14))) -(((-811 |#1| |#2|) (-10 -7 (-15 -1257 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)))) (-1125) (-1125)) (T -811)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6))))) -(-10 -7 (-15 -1257 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)))) -((-4118 (($ |#1| |#1| |#1|) 8)) (-3785 ((|#1| $ (-712)) 10))) -(((-812 |#1|) (-10 -8 (-15 -4118 ($ |#1| |#1| |#1|)) (-15 -3785 (|#1| $ (-712)))) (-1125)) (T -812)) -((-3785 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *1 (-812 *2)) (-4 *2 (-1125)))) (-4118 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1125))))) -(-10 -8 (-15 -4118 ($ |#1| |#1| |#1|)) (-15 -3785 (|#1| $ (-712)))) -((-2293 (((-591 (-1094)) (-1072)) 9))) -(((-813) (-10 -7 (-15 -2293 ((-591 (-1094)) (-1072))))) (T -813)) -((-2293 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-591 (-1094))) (-5 *1 (-813))))) -(-10 -7 (-15 -2293 ((-591 (-1094)) (-1072)))) -((-1257 (((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|)) 14))) -(((-814 |#1| |#2|) (-10 -7 (-15 -1257 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|)))) (-1125) (-1125)) (T -814)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-815 *6)) (-5 *1 (-814 *5 *6))))) -(-10 -7 (-15 -1257 ((-815 |#2|) (-1 |#2| |#1|) (-815 |#1|)))) -((-3170 (($ |#1| |#1| |#1|) 8)) (-3785 ((|#1| $ (-712)) 10))) -(((-815 |#1|) (-10 -8 (-15 -3170 ($ |#1| |#1| |#1|)) (-15 -3785 (|#1| $ (-712)))) (-1125)) (T -815)) -((-3785 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *1 (-815 *2)) (-4 *2 (-1125)))) (-3170 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1125))))) -(-10 -8 (-15 -3170 ($ |#1| |#1| |#1|)) (-15 -3785 (|#1| $ (-712)))) -((-1541 (((-1070 (-591 (-525))) (-591 (-525)) (-1070 (-591 (-525)))) 32)) (-1361 (((-1070 (-591 (-525))) (-591 (-525)) (-591 (-525))) 28)) (-2672 (((-1070 (-591 (-525))) (-591 (-525))) 41) (((-1070 (-591 (-525))) (-591 (-525)) (-591 (-525))) 40)) (-2793 (((-1070 (-591 (-525))) (-525)) 42)) (-1392 (((-1070 (-591 (-525))) (-525) (-525)) 22) (((-1070 (-591 (-525))) (-525)) 16) (((-1070 (-591 (-525))) (-525) (-525) (-525)) 12)) (-2547 (((-1070 (-591 (-525))) (-1070 (-591 (-525)))) 26)) (-3369 (((-591 (-525)) (-591 (-525))) 25))) -(((-816) (-10 -7 (-15 -1392 ((-1070 (-591 (-525))) (-525) (-525) (-525))) (-15 -1392 ((-1070 (-591 (-525))) (-525))) (-15 -1392 ((-1070 (-591 (-525))) (-525) (-525))) (-15 -3369 ((-591 (-525)) (-591 (-525)))) (-15 -2547 ((-1070 (-591 (-525))) (-1070 (-591 (-525))))) (-15 -1361 ((-1070 (-591 (-525))) (-591 (-525)) (-591 (-525)))) (-15 -1541 ((-1070 (-591 (-525))) (-591 (-525)) (-1070 (-591 (-525))))) (-15 -2672 ((-1070 (-591 (-525))) (-591 (-525)) (-591 (-525)))) (-15 -2672 ((-1070 (-591 (-525))) (-591 (-525)))) (-15 -2793 ((-1070 (-591 (-525))) (-525))))) (T -816)) -((-2793 (*1 *2 *3) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-525)))) (-2672 (*1 *2 *3) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-591 (-525))))) (-2672 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-591 (-525))))) (-1541 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *3 (-591 (-525))) (-5 *1 (-816)))) (-1361 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-591 (-525))))) (-2547 (*1 *2 *2) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)))) (-3369 (*1 *2 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-816)))) (-1392 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-525)))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-525)))) (-1392 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-525))))) -(-10 -7 (-15 -1392 ((-1070 (-591 (-525))) (-525) (-525) (-525))) (-15 -1392 ((-1070 (-591 (-525))) (-525))) (-15 -1392 ((-1070 (-591 (-525))) (-525) (-525))) (-15 -3369 ((-591 (-525)) (-591 (-525)))) (-15 -2547 ((-1070 (-591 (-525))) (-1070 (-591 (-525))))) (-15 -1361 ((-1070 (-591 (-525))) (-591 (-525)) (-591 (-525)))) (-15 -1541 ((-1070 (-591 (-525))) (-591 (-525)) (-1070 (-591 (-525))))) (-15 -2672 ((-1070 (-591 (-525))) (-591 (-525)) (-591 (-525)))) (-15 -2672 ((-1070 (-591 (-525))) (-591 (-525)))) (-15 -2793 ((-1070 (-591 (-525))) (-525)))) -((-1300 (((-825 (-357)) $) 9 (|has| |#1| (-566 (-825 (-357))))) (((-825 (-525)) $) 8 (|has| |#1| (-566 (-825 (-525))))))) -(((-817 |#1|) (-131) (-1125)) (T -817)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-566 (-825 (-525)))) (-6 (-566 (-825 (-525)))) |%noBranch|) (IF (|has| |t#1| (-566 (-825 (-357)))) (-6 (-566 (-825 (-357)))) |%noBranch|))) -(((-566 (-825 (-357))) |has| |#1| (-566 (-825 (-357)))) ((-566 (-825 (-525))) |has| |#1| (-566 (-825 (-525))))) -((-2673 (((-108) $ $) NIL)) (-1316 (($) 14)) (-3254 (($ (-822 |#1| |#2|) (-822 |#1| |#3|)) 27)) (-2271 (((-822 |#1| |#3|) $) 16)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1448 (((-108) $) 22)) (-4081 (($) 19)) (-2686 (((-796) $) 30)) (-3056 (((-822 |#1| |#2|) $) 15)) (-3944 (((-108) $ $) 25))) -(((-818 |#1| |#2| |#3|) (-13 (-1018) (-10 -8 (-15 -1448 ((-108) $)) (-15 -4081 ($)) (-15 -1316 ($)) (-15 -3254 ($ (-822 |#1| |#2|) (-822 |#1| |#3|))) (-15 -3056 ((-822 |#1| |#2|) $)) (-15 -2271 ((-822 |#1| |#3|) $)))) (-1018) (-1018) (-611 |#2|)) (T -818)) -((-1448 (*1 *2 *1) (-12 (-4 *4 (-1018)) (-5 *2 (-108)) (-5 *1 (-818 *3 *4 *5)) (-4 *3 (-1018)) (-4 *5 (-611 *4)))) (-4081 (*1 *1) (-12 (-4 *3 (-1018)) (-5 *1 (-818 *2 *3 *4)) (-4 *2 (-1018)) (-4 *4 (-611 *3)))) (-1316 (*1 *1) (-12 (-4 *3 (-1018)) (-5 *1 (-818 *2 *3 *4)) (-4 *2 (-1018)) (-4 *4 (-611 *3)))) (-3254 (*1 *1 *2 *3) (-12 (-5 *2 (-822 *4 *5)) (-5 *3 (-822 *4 *6)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-611 *5)) (-5 *1 (-818 *4 *5 *6)))) (-3056 (*1 *2 *1) (-12 (-4 *4 (-1018)) (-5 *2 (-822 *3 *4)) (-5 *1 (-818 *3 *4 *5)) (-4 *3 (-1018)) (-4 *5 (-611 *4)))) (-2271 (*1 *2 *1) (-12 (-4 *4 (-1018)) (-5 *2 (-822 *3 *5)) (-5 *1 (-818 *3 *4 *5)) (-4 *3 (-1018)) (-4 *5 (-611 *4))))) -(-13 (-1018) (-10 -8 (-15 -1448 ((-108) $)) (-15 -4081 ($)) (-15 -1316 ($)) (-15 -3254 ($ (-822 |#1| |#2|) (-822 |#1| |#3|))) (-15 -3056 ((-822 |#1| |#2|) $)) (-15 -2271 ((-822 |#1| |#3|) $)))) -((-2673 (((-108) $ $) 7)) (-4018 (((-822 |#1| $) $ (-825 |#1|) (-822 |#1| $)) 13)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 6))) -(((-819 |#1|) (-131) (-1018)) (T -819)) -((-4018 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-822 *4 *1)) (-5 *3 (-825 *4)) (-4 *1 (-819 *4)) (-4 *4 (-1018))))) -(-13 (-1018) (-10 -8 (-15 -4018 ((-822 |t#1| $) $ (-825 |t#1|) (-822 |t#1| $))))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-3029 (((-108) (-591 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-3736 (((-822 |#1| |#2|) |#2| |#3|) 43 (-12 (-3389 (|has| |#2| (-966 (-1089)))) (-3389 (|has| |#2| (-975))))) (((-591 (-273 (-885 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-975)) (-3389 (|has| |#2| (-966 (-1089)))))) (((-591 (-273 |#2|)) |#2| |#3|) 35 (|has| |#2| (-966 (-1089)))) (((-818 |#1| |#2| (-591 |#2|)) (-591 |#2|) |#3|) 21))) -(((-820 |#1| |#2| |#3|) (-10 -7 (-15 -3029 ((-108) |#2| |#3|)) (-15 -3029 ((-108) (-591 |#2|) |#3|)) (-15 -3736 ((-818 |#1| |#2| (-591 |#2|)) (-591 |#2|) |#3|)) (IF (|has| |#2| (-966 (-1089))) (-15 -3736 ((-591 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-975)) (-15 -3736 ((-591 (-273 (-885 |#2|))) |#2| |#3|)) (-15 -3736 ((-822 |#1| |#2|) |#2| |#3|))))) (-1018) (-819 |#1|) (-566 (-825 |#1|))) (T -820)) -((-3736 (*1 *2 *3 *4) (-12 (-4 *5 (-1018)) (-5 *2 (-822 *5 *3)) (-5 *1 (-820 *5 *3 *4)) (-3389 (-4 *3 (-966 (-1089)))) (-3389 (-4 *3 (-975))) (-4 *3 (-819 *5)) (-4 *4 (-566 (-825 *5))))) (-3736 (*1 *2 *3 *4) (-12 (-4 *5 (-1018)) (-5 *2 (-591 (-273 (-885 *3)))) (-5 *1 (-820 *5 *3 *4)) (-4 *3 (-975)) (-3389 (-4 *3 (-966 (-1089)))) (-4 *3 (-819 *5)) (-4 *4 (-566 (-825 *5))))) (-3736 (*1 *2 *3 *4) (-12 (-4 *5 (-1018)) (-5 *2 (-591 (-273 *3))) (-5 *1 (-820 *5 *3 *4)) (-4 *3 (-966 (-1089))) (-4 *3 (-819 *5)) (-4 *4 (-566 (-825 *5))))) (-3736 (*1 *2 *3 *4) (-12 (-4 *5 (-1018)) (-4 *6 (-819 *5)) (-5 *2 (-818 *5 *6 (-591 *6))) (-5 *1 (-820 *5 *6 *4)) (-5 *3 (-591 *6)) (-4 *4 (-566 (-825 *5))))) (-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6)) (-4 *6 (-819 *5)) (-4 *5 (-1018)) (-5 *2 (-108)) (-5 *1 (-820 *5 *6 *4)) (-4 *4 (-566 (-825 *5))))) (-3029 (*1 *2 *3 *4) (-12 (-4 *5 (-1018)) (-5 *2 (-108)) (-5 *1 (-820 *5 *3 *4)) (-4 *3 (-819 *5)) (-4 *4 (-566 (-825 *5)))))) -(-10 -7 (-15 -3029 ((-108) |#2| |#3|)) (-15 -3029 ((-108) (-591 |#2|) |#3|)) (-15 -3736 ((-818 |#1| |#2| (-591 |#2|)) (-591 |#2|) |#3|)) (IF (|has| |#2| (-966 (-1089))) (-15 -3736 ((-591 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-975)) (-15 -3736 ((-591 (-273 (-885 |#2|))) |#2| |#3|)) (-15 -3736 ((-822 |#1| |#2|) |#2| |#3|))))) -((-1257 (((-822 |#1| |#3|) (-1 |#3| |#2|) (-822 |#1| |#2|)) 22))) -(((-821 |#1| |#2| |#3|) (-10 -7 (-15 -1257 ((-822 |#1| |#3|) (-1 |#3| |#2|) (-822 |#1| |#2|)))) (-1018) (-1018) (-1018)) (T -821)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-822 *5 *6)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-822 *5 *7)) (-5 *1 (-821 *5 *6 *7))))) -(-10 -7 (-15 -1257 ((-822 |#1| |#3|) (-1 |#3| |#2|) (-822 |#1| |#2|)))) -((-2673 (((-108) $ $) NIL)) (-2141 (($ $ $) 39)) (-3216 (((-3 (-108) "failed") $ (-825 |#1|)) 36)) (-1316 (($) 12)) (-2621 (((-1072) $) NIL)) (-3604 (($ (-825 |#1|) |#2| $) 20)) (-2937 (((-1036) $) NIL)) (-1995 (((-3 |#2| "failed") (-825 |#1|) $) 50)) (-1448 (((-108) $) 15)) (-4081 (($) 13)) (-2601 (((-591 (-2 (|:| -1265 (-1089)) (|:| -1568 |#2|))) $) 25)) (-2695 (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 |#2|)))) 23)) (-2686 (((-796) $) 44)) (-3530 (($ (-825 |#1|) |#2| $ |#2|) 48)) (-3819 (($ (-825 |#1|) |#2| $) 47)) (-3944 (((-108) $ $) 41))) -(((-822 |#1| |#2|) (-13 (-1018) (-10 -8 (-15 -1448 ((-108) $)) (-15 -4081 ($)) (-15 -1316 ($)) (-15 -2141 ($ $ $)) (-15 -1995 ((-3 |#2| "failed") (-825 |#1|) $)) (-15 -3819 ($ (-825 |#1|) |#2| $)) (-15 -3604 ($ (-825 |#1|) |#2| $)) (-15 -3530 ($ (-825 |#1|) |#2| $ |#2|)) (-15 -2601 ((-591 (-2 (|:| -1265 (-1089)) (|:| -1568 |#2|))) $)) (-15 -2695 ($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 |#2|))))) (-15 -3216 ((-3 (-108) "failed") $ (-825 |#1|))))) (-1018) (-1018)) (T -822)) -((-1448 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-822 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) (-4081 (*1 *1) (-12 (-5 *1 (-822 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) (-1316 (*1 *1) (-12 (-5 *1 (-822 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) (-2141 (*1 *1 *1 *1) (-12 (-5 *1 (-822 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) (-1995 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1018)) (-4 *2 (-1018)) (-5 *1 (-822 *4 *2)))) (-3819 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1018)) (-5 *1 (-822 *4 *3)) (-4 *3 (-1018)))) (-3604 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1018)) (-5 *1 (-822 *4 *3)) (-4 *3 (-1018)))) (-3530 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1018)) (-5 *1 (-822 *4 *3)) (-4 *3 (-1018)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 *4)))) (-5 *1 (-822 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 *4)))) (-4 *4 (-1018)) (-5 *1 (-822 *3 *4)) (-4 *3 (-1018)))) (-3216 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1018)) (-5 *2 (-108)) (-5 *1 (-822 *4 *5)) (-4 *5 (-1018))))) -(-13 (-1018) (-10 -8 (-15 -1448 ((-108) $)) (-15 -4081 ($)) (-15 -1316 ($)) (-15 -2141 ($ $ $)) (-15 -1995 ((-3 |#2| "failed") (-825 |#1|) $)) (-15 -3819 ($ (-825 |#1|) |#2| $)) (-15 -3604 ($ (-825 |#1|) |#2| $)) (-15 -3530 ($ (-825 |#1|) |#2| $ |#2|)) (-15 -2601 ((-591 (-2 (|:| -1265 (-1089)) (|:| -1568 |#2|))) $)) (-15 -2695 ($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 |#2|))))) (-15 -3216 ((-3 (-108) "failed") $ (-825 |#1|))))) -((-1261 (((-825 |#1|) (-825 |#1|) (-591 (-1089)) (-1 (-108) (-591 |#2|))) 32) (((-825 |#1|) (-825 |#1|) (-591 (-1 (-108) |#2|))) 43) (((-825 |#1|) (-825 |#1|) (-1 (-108) |#2|)) 35)) (-3216 (((-108) (-591 |#2|) (-825 |#1|)) 40) (((-108) |#2| (-825 |#1|)) 36)) (-3669 (((-1 (-108) |#2|) (-825 |#1|)) 16)) (-2505 (((-591 |#2|) (-825 |#1|)) 24)) (-3054 (((-825 |#1|) (-825 |#1|) |#2|) 20))) -(((-823 |#1| |#2|) (-10 -7 (-15 -1261 ((-825 |#1|) (-825 |#1|) (-1 (-108) |#2|))) (-15 -1261 ((-825 |#1|) (-825 |#1|) (-591 (-1 (-108) |#2|)))) (-15 -1261 ((-825 |#1|) (-825 |#1|) (-591 (-1089)) (-1 (-108) (-591 |#2|)))) (-15 -3669 ((-1 (-108) |#2|) (-825 |#1|))) (-15 -3216 ((-108) |#2| (-825 |#1|))) (-15 -3216 ((-108) (-591 |#2|) (-825 |#1|))) (-15 -3054 ((-825 |#1|) (-825 |#1|) |#2|)) (-15 -2505 ((-591 |#2|) (-825 |#1|)))) (-1018) (-1125)) (T -823)) -((-2505 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-1018)) (-5 *2 (-591 *5)) (-5 *1 (-823 *4 *5)) (-4 *5 (-1125)))) (-3054 (*1 *2 *2 *3) (-12 (-5 *2 (-825 *4)) (-4 *4 (-1018)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1125)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) (-4 *6 (-1125)) (-5 *2 (-108)) (-5 *1 (-823 *5 *6)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-825 *5)) (-4 *5 (-1018)) (-5 *2 (-108)) (-5 *1 (-823 *5 *3)) (-4 *3 (-1125)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-1018)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-823 *4 *5)) (-4 *5 (-1125)))) (-1261 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-825 *5)) (-5 *3 (-591 (-1089))) (-5 *4 (-1 (-108) (-591 *6))) (-4 *5 (-1018)) (-4 *6 (-1125)) (-5 *1 (-823 *5 *6)))) (-1261 (*1 *2 *2 *3) (-12 (-5 *2 (-825 *4)) (-5 *3 (-591 (-1 (-108) *5))) (-4 *4 (-1018)) (-4 *5 (-1125)) (-5 *1 (-823 *4 *5)))) (-1261 (*1 *2 *2 *3) (-12 (-5 *2 (-825 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1018)) (-4 *5 (-1125)) (-5 *1 (-823 *4 *5))))) -(-10 -7 (-15 -1261 ((-825 |#1|) (-825 |#1|) (-1 (-108) |#2|))) (-15 -1261 ((-825 |#1|) (-825 |#1|) (-591 (-1 (-108) |#2|)))) (-15 -1261 ((-825 |#1|) (-825 |#1|) (-591 (-1089)) (-1 (-108) (-591 |#2|)))) (-15 -3669 ((-1 (-108) |#2|) (-825 |#1|))) (-15 -3216 ((-108) |#2| (-825 |#1|))) (-15 -3216 ((-108) (-591 |#2|) (-825 |#1|))) (-15 -3054 ((-825 |#1|) (-825 |#1|) |#2|)) (-15 -2505 ((-591 |#2|) (-825 |#1|)))) -((-1257 (((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)) 19))) -(((-824 |#1| |#2|) (-10 -7 (-15 -1257 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)))) (-1018) (-1018)) (T -824)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *2 (-825 *6)) (-5 *1 (-824 *5 *6))))) -(-10 -7 (-15 -1257 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)))) -((-2673 (((-108) $ $) NIL)) (-2741 (($ $ (-591 (-51))) 64)) (-1444 (((-591 $) $) 118)) (-2517 (((-2 (|:| |var| (-591 (-1089))) (|:| |pred| (-51))) $) 24)) (-2697 (((-108) $) 30)) (-1317 (($ $ (-591 (-1089)) (-51)) 25)) (-1471 (($ $ (-591 (-51))) 63)) (-4174 (((-3 |#1| "failed") $) 61) (((-3 (-1089) "failed") $) 140)) (-3341 ((|#1| $) 58) (((-1089) $) NIL)) (-1975 (($ $) 108)) (-1485 (((-108) $) 47)) (-1512 (((-591 (-51)) $) 45)) (-2765 (($ (-1089) (-108) (-108) (-108)) 65)) (-1906 (((-3 (-591 $) "failed") (-591 $)) 72)) (-1860 (((-108) $) 50)) (-2284 (((-108) $) 49)) (-2621 (((-1072) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) 36)) (-3399 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1713 (((-3 (-2 (|:| |val| $) (|:| -3987 $)) "failed") $) 83)) (-4008 (((-3 (-591 $) "failed") $) 33)) (-3919 (((-3 (-591 $) "failed") $ (-110)) 107) (((-3 (-2 (|:| -3854 (-110)) (|:| |arg| (-591 $))) "failed") $) 95)) (-3100 (((-3 (-591 $) "failed") $) 37)) (-3410 (((-3 (-2 (|:| |val| $) (|:| -3987 (-712))) "failed") $) 40)) (-1912 (((-108) $) 29)) (-2937 (((-1036) $) NIL)) (-2617 (((-108) $) 21)) (-3941 (((-108) $) 46)) (-4218 (((-591 (-51)) $) 111)) (-4061 (((-108) $) 48)) (-1881 (($ (-110) (-591 $)) 92)) (-2333 (((-712) $) 28)) (-2873 (($ $) 62)) (-1300 (($ (-591 $)) 59)) (-3220 (((-108) $) 26)) (-2686 (((-796) $) 53) (($ |#1|) 18) (($ (-1089)) 66)) (-3054 (($ $ (-51)) 110)) (-1830 (($) 91 T CONST)) (-1839 (($) 73 T CONST)) (-3944 (((-108) $ $) 79)) (-4059 (($ $ $) 100)) (-4036 (($ $ $) 104)) (** (($ $ (-712)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-825 |#1|) (-13 (-1018) (-966 |#1|) (-966 (-1089)) (-10 -8 (-15 0 ($) -2277) (-15 1 ($) -2277) (-15 -4008 ((-3 (-591 $) "failed") $)) (-15 -3401 ((-3 (-591 $) "failed") $)) (-15 -3919 ((-3 (-591 $) "failed") $ (-110))) (-15 -3919 ((-3 (-2 (|:| -3854 (-110)) (|:| |arg| (-591 $))) "failed") $)) (-15 -3410 ((-3 (-2 (|:| |val| $) (|:| -3987 (-712))) "failed") $)) (-15 -3399 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3100 ((-3 (-591 $) "failed") $)) (-15 -1713 ((-3 (-2 (|:| |val| $) (|:| -3987 $)) "failed") $)) (-15 -1881 ($ (-110) (-591 $))) (-15 -4036 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-712))) (-15 ** ($ $ $)) (-15 -4059 ($ $ $)) (-15 -2333 ((-712) $)) (-15 -1300 ($ (-591 $))) (-15 -2873 ($ $)) (-15 -1912 ((-108) $)) (-15 -1485 ((-108) $)) (-15 -2697 ((-108) $)) (-15 -3220 ((-108) $)) (-15 -4061 ((-108) $)) (-15 -2284 ((-108) $)) (-15 -1860 ((-108) $)) (-15 -3941 ((-108) $)) (-15 -1512 ((-591 (-51)) $)) (-15 -1471 ($ $ (-591 (-51)))) (-15 -2741 ($ $ (-591 (-51)))) (-15 -2765 ($ (-1089) (-108) (-108) (-108))) (-15 -1317 ($ $ (-591 (-1089)) (-51))) (-15 -2517 ((-2 (|:| |var| (-591 (-1089))) (|:| |pred| (-51))) $)) (-15 -2617 ((-108) $)) (-15 -1975 ($ $)) (-15 -3054 ($ $ (-51))) (-15 -4218 ((-591 (-51)) $)) (-15 -1444 ((-591 $) $)) (-15 -1906 ((-3 (-591 $) "failed") (-591 $))))) (-1018)) (T -825)) -((-1830 (*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) (-1839 (*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) (-4008 (*1 *2 *1) (|partial| -12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-3401 (*1 *2 *1) (|partial| -12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-3919 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-591 (-825 *4))) (-5 *1 (-825 *4)) (-4 *4 (-1018)))) (-3919 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3854 (-110)) (|:| |arg| (-591 (-825 *3))))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-3410 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -3987 (-712)))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-3399 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-825 *3)) (|:| |den| (-825 *3)))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-3100 (*1 *2 *1) (|partial| -12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1713 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -3987 (-825 *3)))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1881 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-591 (-825 *4))) (-5 *1 (-825 *4)) (-4 *4 (-1018)))) (-4036 (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) (-4059 (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-2873 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1860 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-591 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1471 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-2765 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-108)) (-5 *1 (-825 *4)) (-4 *4 (-1018)))) (-1317 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-51)) (-5 *1 (-825 *4)) (-4 *4 (-1018)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-591 (-1089))) (|:| |pred| (-51)))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1975 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) (-3054 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-591 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) (-1906 (*1 *2 *2) (|partial| -12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(-13 (-1018) (-966 |#1|) (-966 (-1089)) (-10 -8 (-15 (-1830) ($) -2277) (-15 (-1839) ($) -2277) (-15 -4008 ((-3 (-591 $) "failed") $)) (-15 -3401 ((-3 (-591 $) "failed") $)) (-15 -3919 ((-3 (-591 $) "failed") $ (-110))) (-15 -3919 ((-3 (-2 (|:| -3854 (-110)) (|:| |arg| (-591 $))) "failed") $)) (-15 -3410 ((-3 (-2 (|:| |val| $) (|:| -3987 (-712))) "failed") $)) (-15 -3399 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3100 ((-3 (-591 $) "failed") $)) (-15 -1713 ((-3 (-2 (|:| |val| $) (|:| -3987 $)) "failed") $)) (-15 -1881 ($ (-110) (-591 $))) (-15 -4036 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-712))) (-15 ** ($ $ $)) (-15 -4059 ($ $ $)) (-15 -2333 ((-712) $)) (-15 -1300 ($ (-591 $))) (-15 -2873 ($ $)) (-15 -1912 ((-108) $)) (-15 -1485 ((-108) $)) (-15 -2697 ((-108) $)) (-15 -3220 ((-108) $)) (-15 -4061 ((-108) $)) (-15 -2284 ((-108) $)) (-15 -1860 ((-108) $)) (-15 -3941 ((-108) $)) (-15 -1512 ((-591 (-51)) $)) (-15 -1471 ($ $ (-591 (-51)))) (-15 -2741 ($ $ (-591 (-51)))) (-15 -2765 ($ (-1089) (-108) (-108) (-108))) (-15 -1317 ($ $ (-591 (-1089)) (-51))) (-15 -2517 ((-2 (|:| |var| (-591 (-1089))) (|:| |pred| (-51))) $)) (-15 -2617 ((-108) $)) (-15 -1975 ($ $)) (-15 -3054 ($ $ (-51))) (-15 -4218 ((-591 (-51)) $)) (-15 -1444 ((-591 $) $)) (-15 -1906 ((-3 (-591 $) "failed") (-591 $))))) -((-2673 (((-108) $ $) NIL)) (-2758 (((-591 |#1|) $) 16)) (-3417 (((-108) $) 38)) (-4174 (((-3 (-616 |#1|) "failed") $) 43)) (-3341 (((-616 |#1|) $) 41)) (-2884 (($ $) 18)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2445 (((-712) $) 46)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 (((-616 |#1|) $) 17)) (-2686 (((-796) $) 37) (($ (-616 |#1|)) 21) (((-760 |#1|) $) 27) (($ |#1|) 20)) (-1839 (($) 8 T CONST)) (-1994 (((-591 (-616 |#1|)) $) 23)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 11)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 49))) -(((-826 |#1|) (-13 (-788) (-966 (-616 |#1|)) (-10 -8 (-15 1 ($) -2277) (-15 -2686 ((-760 |#1|) $)) (-15 -2686 ($ |#1|)) (-15 -2872 ((-616 |#1|) $)) (-15 -2445 ((-712) $)) (-15 -1994 ((-591 (-616 |#1|)) $)) (-15 -2884 ($ $)) (-15 -3417 ((-108) $)) (-15 -2758 ((-591 |#1|) $)))) (-788)) (T -826)) -((-1839 (*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-788)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-760 *3)) (-5 *1 (-826 *3)) (-4 *3 (-788)))) (-2686 (*1 *1 *2) (-12 (-5 *1 (-826 *2)) (-4 *2 (-788)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-826 *3)) (-4 *3 (-788)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-826 *3)) (-4 *3 (-788)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-591 (-616 *3))) (-5 *1 (-826 *3)) (-4 *3 (-788)))) (-2884 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-788)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-788)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-826 *3)) (-4 *3 (-788))))) -(-13 (-788) (-966 (-616 |#1|)) (-10 -8 (-15 (-1839) ($) -2277) (-15 -2686 ((-760 |#1|) $)) (-15 -2686 ($ |#1|)) (-15 -2872 ((-616 |#1|) $)) (-15 -2445 ((-712) $)) (-15 -1994 ((-591 (-616 |#1|)) $)) (-15 -2884 ($ $)) (-15 -3417 ((-108) $)) (-15 -2758 ((-591 |#1|) $)))) -((-1435 ((|#1| |#1| |#1|) 19))) -(((-827 |#1| |#2|) (-10 -7 (-15 -1435 (|#1| |#1| |#1|))) (-1147 |#2|) (-975)) (T -827)) -((-1435 (*1 *2 *2 *2) (-12 (-4 *3 (-975)) (-5 *1 (-827 *2 *3)) (-4 *2 (-1147 *3))))) -(-10 -7 (-15 -1435 (|#1| |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-2282 (((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) 14)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3266 (((-964) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) 13)) (-3944 (((-108) $ $) 6))) -(((-828) (-131)) (T -828)) -((-2282 (*1 *2 *3 *4) (-12 (-4 *1 (-828)) (-5 *3 (-987)) (-5 *4 (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)))))) (-3266 (*1 *2 *3) (-12 (-4 *1 (-828)) (-5 *3 (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) (-5 *2 (-964))))) -(-13 (-1018) (-10 -7 (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| |explanations| (-1072))) (-987) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205))))) (-15 -3266 ((-964) (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205))))))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-3645 ((|#1| |#1| (-712)) 24)) (-2330 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3601 (((-3 (-2 (|:| -3178 |#1|) (|:| -3192 |#1|)) "failed") |#1| (-712) (-712)) 27) (((-591 |#1|) |#1|) 29))) -(((-829 |#1| |#2|) (-10 -7 (-15 -3601 ((-591 |#1|) |#1|)) (-15 -3601 ((-3 (-2 (|:| -3178 |#1|) (|:| -3192 |#1|)) "failed") |#1| (-712) (-712))) (-15 -2330 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3645 (|#1| |#1| (-712)))) (-1147 |#2|) (-341)) (T -829)) -((-3645 (*1 *2 *2 *3) (-12 (-5 *3 (-712)) (-4 *4 (-341)) (-5 *1 (-829 *2 *4)) (-4 *2 (-1147 *4)))) (-2330 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1147 *3)))) (-3601 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-712)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3178 *3) (|:| -3192 *3))) (-5 *1 (-829 *3 *5)) (-4 *3 (-1147 *5)))) (-3601 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-591 *3)) (-5 *1 (-829 *3 *4)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -3601 ((-591 |#1|) |#1|)) (-15 -3601 ((-3 (-2 (|:| -3178 |#1|) (|:| -3192 |#1|)) "failed") |#1| (-712) (-712))) (-15 -2330 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3645 (|#1| |#1| (-712)))) -((-2751 (((-964) (-357) (-357) (-357) (-357) (-712) (-712) (-591 (-294 (-357))) (-591 (-591 (-294 (-357)))) (-1072)) 96) (((-964) (-357) (-357) (-357) (-357) (-712) (-712) (-591 (-294 (-357))) (-591 (-591 (-294 (-357)))) (-1072) (-205)) 91) (((-964) (-831) (-987)) 83) (((-964) (-831)) 84)) (-2282 (((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-831) (-987)) 59) (((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-831)) 61))) -(((-830) (-10 -7 (-15 -2751 ((-964) (-831))) (-15 -2751 ((-964) (-831) (-987))) (-15 -2751 ((-964) (-357) (-357) (-357) (-357) (-712) (-712) (-591 (-294 (-357))) (-591 (-591 (-294 (-357)))) (-1072) (-205))) (-15 -2751 ((-964) (-357) (-357) (-357) (-357) (-712) (-712) (-591 (-294 (-357))) (-591 (-591 (-294 (-357)))) (-1072))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-831))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-831) (-987))))) (T -830)) -((-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-987)) (-5 *2 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))))) (-5 *1 (-830)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072))))) (-5 *1 (-830)))) (-2751 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-712)) (-5 *6 (-591 (-591 (-294 *3)))) (-5 *7 (-1072)) (-5 *5 (-591 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-964)) (-5 *1 (-830)))) (-2751 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-712)) (-5 *6 (-591 (-591 (-294 *3)))) (-5 *7 (-1072)) (-5 *8 (-205)) (-5 *5 (-591 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-964)) (-5 *1 (-830)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-987)) (-5 *2 (-964)) (-5 *1 (-830)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-964)) (-5 *1 (-830))))) -(-10 -7 (-15 -2751 ((-964) (-831))) (-15 -2751 ((-964) (-831) (-987))) (-15 -2751 ((-964) (-357) (-357) (-357) (-357) (-712) (-712) (-591 (-294 (-357))) (-591 (-591 (-294 (-357)))) (-1072) (-205))) (-15 -2751 ((-964) (-357) (-357) (-357) (-357) (-712) (-712) (-591 (-294 (-357))) (-591 (-591 (-294 (-357)))) (-1072))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-831))) (-15 -2282 ((-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) (|:| |explanations| (-591 (-1072)))) (-831) (-987)))) -((-2673 (((-108) $ $) NIL)) (-3341 (((-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205))) $) 19)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 21) (($ (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) 18)) (-3944 (((-108) $ $) NIL))) -(((-831) (-13 (-1018) (-10 -8 (-15 -2686 ($ (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205))))) (-15 -2686 ((-796) $)) (-15 -3341 ((-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205))) $))))) (T -831)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-831)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) (-5 *1 (-831)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205)))) (-5 *1 (-831))))) -(-13 (-1018) (-10 -8 (-15 -2686 ($ (-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205))))) (-15 -2686 ((-796) $)) (-15 -3341 ((-2 (|:| |pde| (-591 (-294 (-205)))) (|:| |constraints| (-591 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-712)) (|:| |boundaryType| (-525)) (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) (|:| |tol| (-205))) $)))) -((-2209 (($ $ |#2|) NIL) (($ $ (-591 |#2|)) 10) (($ $ |#2| (-712)) 12) (($ $ (-591 |#2|) (-591 (-712))) 15)) (-1796 (($ $ |#2|) 16) (($ $ (-591 |#2|)) 18) (($ $ |#2| (-712)) 19) (($ $ (-591 |#2|) (-591 (-712))) 21))) -(((-832 |#1| |#2|) (-10 -8 (-15 -1796 (|#1| |#1| (-591 |#2|) (-591 (-712)))) (-15 -1796 (|#1| |#1| |#2| (-712))) (-15 -1796 (|#1| |#1| (-591 |#2|))) (-15 -1796 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-591 |#2|) (-591 (-712)))) (-15 -2209 (|#1| |#1| |#2| (-712))) (-15 -2209 (|#1| |#1| (-591 |#2|))) (-15 -2209 (|#1| |#1| |#2|))) (-833 |#2|) (-1018)) (T -832)) -NIL -(-10 -8 (-15 -1796 (|#1| |#1| (-591 |#2|) (-591 (-712)))) (-15 -1796 (|#1| |#1| |#2| (-712))) (-15 -1796 (|#1| |#1| (-591 |#2|))) (-15 -1796 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-591 |#2|) (-591 (-712)))) (-15 -2209 (|#1| |#1| |#2| (-712))) (-15 -2209 (|#1| |#1| (-591 |#2|))) (-15 -2209 (|#1| |#1| |#2|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2209 (($ $ |#1|) 42) (($ $ (-591 |#1|)) 41) (($ $ |#1| (-712)) 40) (($ $ (-591 |#1|) (-591 (-712))) 39)) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ |#1|) 38) (($ $ (-591 |#1|)) 37) (($ $ |#1| (-712)) 36) (($ $ (-591 |#1|) (-591 (-712))) 35)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-833 |#1|) (-131) (-1018)) (T -833)) -((-2209 (*1 *1 *1 *2) (-12 (-4 *1 (-833 *2)) (-4 *2 (-1018)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *1 (-833 *3)) (-4 *3 (-1018)))) (-2209 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-833 *2)) (-4 *2 (-1018)))) (-2209 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 *4)) (-5 *3 (-591 (-712))) (-4 *1 (-833 *4)) (-4 *4 (-1018)))) (-1796 (*1 *1 *1 *2) (-12 (-4 *1 (-833 *2)) (-4 *2 (-1018)))) (-1796 (*1 *1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *1 (-833 *3)) (-4 *3 (-1018)))) (-1796 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-833 *2)) (-4 *2 (-1018)))) (-1796 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 *4)) (-5 *3 (-591 (-712))) (-4 *1 (-833 *4)) (-4 *4 (-1018))))) -(-13 (-975) (-10 -8 (-15 -2209 ($ $ |t#1|)) (-15 -2209 ($ $ (-591 |t#1|))) (-15 -2209 ($ $ |t#1| (-712))) (-15 -2209 ($ $ (-591 |t#1|) (-591 (-712)))) (-15 -1796 ($ $ |t#1|)) (-15 -1796 ($ $ (-591 |t#1|))) (-15 -1796 ($ $ |t#1| (-712))) (-15 -1796 ($ $ (-591 |t#1|) (-591 (-712)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-668) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) 26)) (-3727 (((-108) $ (-712)) NIL)) (-3912 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-2175 (($ $ $) NIL (|has| $ (-6 -4251)))) (-3934 (($ $ $) NIL (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251))) (($ $ "left" $) NIL (|has| $ (-6 -4251))) (($ $ "right" $) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-3192 (($ $) 25)) (-1311 (($ |#1|) 12) (($ $ $) 17)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-3178 (($ $) 23)) (-2065 (((-591 |#1|) $) NIL)) (-2878 (((-108) $) 20)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2194 (((-525) $ $) NIL)) (-4133 (((-108) $) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-1112 |#1|) $) 9) (((-796) $) 29 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 21 (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-834 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -1311 ($ |#1|)) (-15 -1311 ($ $ $)) (-15 -2686 ((-1112 |#1|) $)))) (-1018)) (T -834)) -((-1311 (*1 *1 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1018)))) (-1311 (*1 *1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1018)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1112 *3)) (-5 *1 (-834 *3)) (-4 *3 (-1018))))) -(-13 (-115 |#1|) (-10 -8 (-15 -1311 ($ |#1|)) (-15 -1311 ($ $ $)) (-15 -2686 ((-1112 |#1|) $)))) -((-1901 ((|#2| (-1056 |#1| |#2|)) 41))) -(((-835 |#1| |#2|) (-10 -7 (-15 -1901 (|#2| (-1056 |#1| |#2|)))) (-854) (-13 (-975) (-10 -7 (-6 (-4252 "*"))))) (T -835)) -((-1901 (*1 *2 *3) (-12 (-5 *3 (-1056 *4 *2)) (-14 *4 (-854)) (-4 *2 (-13 (-975) (-10 -7 (-6 (-4252 "*"))))) (-5 *1 (-835 *4 *2))))) -(-10 -7 (-15 -1901 (|#2| (-1056 |#1| |#2|)))) -((-2673 (((-108) $ $) 7)) (-2055 (($) 20 T CONST)) (-1522 (((-3 $ "failed") $) 16)) (-3097 (((-1020 |#1|) $ |#1|) 35)) (-3865 (((-108) $) 19)) (-1923 (($ $ $) 33 (-3150 (|has| |#1| (-788)) (|has| |#1| (-346))))) (-3475 (($ $ $) 32 (-3150 (|has| |#1| (-788)) (|has| |#1| (-346))))) (-2621 (((-1072) $) 9)) (-1523 (($ $) 27)) (-2937 (((-1036) $) 10)) (-1980 ((|#1| $ |#1|) 37)) (-1881 ((|#1| $ |#1|) 36)) (-3076 (($ (-591 (-591 |#1|))) 38)) (-4189 (($ (-591 |#1|)) 39)) (-3369 (($ $ $) 23)) (-4027 (($ $ $) 22)) (-2686 (((-796) $) 11)) (-1401 (($ $ (-854)) 13) (($ $ (-712)) 17) (($ $ (-525)) 24)) (-1839 (($) 21 T CONST)) (-4004 (((-108) $ $) 30 (-3150 (|has| |#1| (-788)) (|has| |#1| (-346))))) (-3982 (((-108) $ $) 29 (-3150 (|has| |#1| (-788)) (|has| |#1| (-346))))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 31 (-3150 (|has| |#1| (-788)) (|has| |#1| (-346))))) (-3971 (((-108) $ $) 34)) (-4059 (($ $ $) 26)) (** (($ $ (-854)) 14) (($ $ (-712)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15))) -(((-836 |#1|) (-131) (-1018)) (T -836)) -((-4189 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-4 *1 (-836 *3)))) (-3076 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-4 *1 (-836 *3)))) (-1980 (*1 *2 *1 *2) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1018)))) (-1881 (*1 *2 *1 *2) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1018)))) (-3097 (*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1018)) (-5 *2 (-1020 *3)))) (-3971 (*1 *2 *1 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1018)) (-5 *2 (-108))))) -(-13 (-450) (-10 -8 (-15 -4189 ($ (-591 |t#1|))) (-15 -3076 ($ (-591 (-591 |t#1|)))) (-15 -1980 (|t#1| $ |t#1|)) (-15 -1881 (|t#1| $ |t#1|)) (-15 -3097 ((-1020 |t#1|) $ |t#1|)) (-15 -3971 ((-108) $ $)) (IF (|has| |t#1| (-788)) (-6 (-788)) |%noBranch|) (IF (|has| |t#1| (-346)) (-6 (-788)) |%noBranch|))) -(((-97) . T) ((-565 (-796)) . T) ((-450) . T) ((-668) . T) ((-788) -3150 (|has| |#1| (-788)) (|has| |#1| (-346))) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-1760 (((-591 (-591 (-712))) $) 109)) (-1621 (((-591 (-712)) (-838 |#1|) $) 131)) (-3544 (((-591 (-712)) (-838 |#1|) $) 132)) (-1797 (((-591 (-838 |#1|)) $) 99)) (-1325 (((-838 |#1|) $ (-525)) 104) (((-838 |#1|) $) 105)) (-2603 (($ (-591 (-838 |#1|))) 111)) (-1676 (((-712) $) 106)) (-2185 (((-1020 (-1020 |#1|)) $) 129)) (-3097 (((-1020 |#1|) $ |#1|) 122) (((-1020 (-1020 |#1|)) $ (-1020 |#1|)) 140) (((-1020 (-591 |#1|)) $ (-591 |#1|)) 143)) (-2982 (((-1020 |#1|) $) 102)) (-3956 (((-108) (-838 |#1|) $) 93)) (-2621 (((-1072) $) NIL)) (-3317 (((-1176) $) 96) (((-1176) $ (-525) (-525)) 144)) (-2937 (((-1036) $) NIL)) (-1252 (((-591 (-838 |#1|)) $) 97)) (-1881 (((-838 |#1|) $ (-712)) 100)) (-2743 (((-712) $) 107)) (-2686 (((-796) $) 120) (((-591 (-838 |#1|)) $) 23) (($ (-591 (-838 |#1|))) 110)) (-3523 (((-591 |#1|) $) 108)) (-3944 (((-108) $ $) 137)) (-3994 (((-108) $ $) 135)) (-3971 (((-108) $ $) 134))) -(((-837 |#1|) (-13 (-1018) (-10 -8 (-15 -2686 ((-591 (-838 |#1|)) $)) (-15 -1252 ((-591 (-838 |#1|)) $)) (-15 -1881 ((-838 |#1|) $ (-712))) (-15 -1325 ((-838 |#1|) $ (-525))) (-15 -1325 ((-838 |#1|) $)) (-15 -1676 ((-712) $)) (-15 -2743 ((-712) $)) (-15 -3523 ((-591 |#1|) $)) (-15 -1797 ((-591 (-838 |#1|)) $)) (-15 -1760 ((-591 (-591 (-712))) $)) (-15 -2686 ($ (-591 (-838 |#1|)))) (-15 -2603 ($ (-591 (-838 |#1|)))) (-15 -3097 ((-1020 |#1|) $ |#1|)) (-15 -2185 ((-1020 (-1020 |#1|)) $)) (-15 -3097 ((-1020 (-1020 |#1|)) $ (-1020 |#1|))) (-15 -3097 ((-1020 (-591 |#1|)) $ (-591 |#1|))) (-15 -3956 ((-108) (-838 |#1|) $)) (-15 -1621 ((-591 (-712)) (-838 |#1|) $)) (-15 -3544 ((-591 (-712)) (-838 |#1|) $)) (-15 -2982 ((-1020 |#1|) $)) (-15 -3971 ((-108) $ $)) (-15 -3994 ((-108) $ $)) (-15 -3317 ((-1176) $)) (-15 -3317 ((-1176) $ (-525) (-525))))) (-1018)) (T -837)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-591 (-838 *3))) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-591 (-838 *3))) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *2 (-838 *4)) (-5 *1 (-837 *4)) (-4 *4 (-1018)))) (-1325 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-838 *4)) (-5 *1 (-837 *4)) (-4 *4 (-1018)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-838 *3)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-591 (-838 *3))) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-591 (-591 (-712)))) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-838 *3))) (-4 *3 (-1018)) (-5 *1 (-837 *3)))) (-2603 (*1 *1 *2) (-12 (-5 *2 (-591 (-838 *3))) (-4 *3 (-1018)) (-5 *1 (-837 *3)))) (-3097 (*1 *2 *1 *3) (-12 (-5 *2 (-1020 *3)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1020 (-1020 *3))) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-3097 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-1020 (-1020 *4))) (-5 *1 (-837 *4)) (-5 *3 (-1020 *4)))) (-3097 (*1 *2 *1 *3) (-12 (-4 *4 (-1018)) (-5 *2 (-1020 (-591 *4))) (-5 *1 (-837 *4)) (-5 *3 (-591 *4)))) (-3956 (*1 *2 *3 *1) (-12 (-5 *3 (-838 *4)) (-4 *4 (-1018)) (-5 *2 (-108)) (-5 *1 (-837 *4)))) (-1621 (*1 *2 *3 *1) (-12 (-5 *3 (-838 *4)) (-4 *4 (-1018)) (-5 *2 (-591 (-712))) (-5 *1 (-837 *4)))) (-3544 (*1 *2 *3 *1) (-12 (-5 *3 (-838 *4)) (-4 *4 (-1018)) (-5 *2 (-591 (-712))) (-5 *1 (-837 *4)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-1020 *3)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-3971 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-3994 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) (-3317 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-837 *4)) (-4 *4 (-1018))))) -(-13 (-1018) (-10 -8 (-15 -2686 ((-591 (-838 |#1|)) $)) (-15 -1252 ((-591 (-838 |#1|)) $)) (-15 -1881 ((-838 |#1|) $ (-712))) (-15 -1325 ((-838 |#1|) $ (-525))) (-15 -1325 ((-838 |#1|) $)) (-15 -1676 ((-712) $)) (-15 -2743 ((-712) $)) (-15 -3523 ((-591 |#1|) $)) (-15 -1797 ((-591 (-838 |#1|)) $)) (-15 -1760 ((-591 (-591 (-712))) $)) (-15 -2686 ($ (-591 (-838 |#1|)))) (-15 -2603 ($ (-591 (-838 |#1|)))) (-15 -3097 ((-1020 |#1|) $ |#1|)) (-15 -2185 ((-1020 (-1020 |#1|)) $)) (-15 -3097 ((-1020 (-1020 |#1|)) $ (-1020 |#1|))) (-15 -3097 ((-1020 (-591 |#1|)) $ (-591 |#1|))) (-15 -3956 ((-108) (-838 |#1|) $)) (-15 -1621 ((-591 (-712)) (-838 |#1|) $)) (-15 -3544 ((-591 (-712)) (-838 |#1|) $)) (-15 -2982 ((-1020 |#1|) $)) (-15 -3971 ((-108) $ $)) (-15 -3994 ((-108) $ $)) (-15 -3317 ((-1176) $)) (-15 -3317 ((-1176) $ (-525) (-525))))) -((-2673 (((-108) $ $) NIL)) (-1282 (((-591 $) (-591 $)) 77)) (-4188 (((-525) $) 60)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-1676 (((-712) $) 58)) (-3097 (((-1020 |#1|) $ |#1|) 49)) (-3865 (((-108) $) NIL)) (-2116 (((-108) $) 63)) (-2478 (((-712) $) 61)) (-2982 (((-1020 |#1|) $) 42)) (-1923 (($ $ $) NIL (-3150 (|has| |#1| (-346)) (|has| |#1| (-788))))) (-3475 (($ $ $) NIL (-3150 (|has| |#1| (-346)) (|has| |#1| (-788))))) (-3304 (((-2 (|:| |preimage| (-591 |#1|)) (|:| |image| (-591 |#1|))) $) 37)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 93)) (-2937 (((-1036) $) NIL)) (-1330 (((-1020 |#1|) $) 99 (|has| |#1| (-346)))) (-2882 (((-108) $) 59)) (-1980 ((|#1| $ |#1|) 47)) (-1881 ((|#1| $ |#1|) 94)) (-2743 (((-712) $) 44)) (-3076 (($ (-591 (-591 |#1|))) 85)) (-3659 (((-902) $) 53)) (-4189 (($ (-591 |#1|)) 21)) (-3369 (($ $ $) NIL)) (-4027 (($ $ $) NIL)) (-3679 (($ (-591 (-591 |#1|))) 39)) (-2050 (($ (-591 (-591 |#1|))) 88)) (-2488 (($ (-591 |#1|)) 96)) (-2686 (((-796) $) 84) (($ (-591 (-591 |#1|))) 66) (($ (-591 |#1|)) 67)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1839 (($) 16 T CONST)) (-4004 (((-108) $ $) NIL (-3150 (|has| |#1| (-346)) (|has| |#1| (-788))))) (-3982 (((-108) $ $) NIL (-3150 (|has| |#1| (-346)) (|has| |#1| (-788))))) (-3944 (((-108) $ $) 45)) (-3994 (((-108) $ $) NIL (-3150 (|has| |#1| (-346)) (|has| |#1| (-788))))) (-3971 (((-108) $ $) 65)) (-4059 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 22))) -(((-838 |#1|) (-13 (-836 |#1|) (-10 -8 (-15 -3304 ((-2 (|:| |preimage| (-591 |#1|)) (|:| |image| (-591 |#1|))) $)) (-15 -3679 ($ (-591 (-591 |#1|)))) (-15 -2686 ($ (-591 (-591 |#1|)))) (-15 -2686 ($ (-591 |#1|))) (-15 -2050 ($ (-591 (-591 |#1|)))) (-15 -2743 ((-712) $)) (-15 -2982 ((-1020 |#1|) $)) (-15 -3659 ((-902) $)) (-15 -1676 ((-712) $)) (-15 -2478 ((-712) $)) (-15 -4188 ((-525) $)) (-15 -2882 ((-108) $)) (-15 -2116 ((-108) $)) (-15 -1282 ((-591 $) (-591 $))) (IF (|has| |#1| (-346)) (-15 -1330 ((-1020 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -2488 ($ (-591 |#1|))) (IF (|has| |#1| (-346)) (-15 -2488 ($ (-591 |#1|))) |%noBranch|)))) (-1018)) (T -838)) -((-3304 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-591 *3)) (|:| |image| (-591 *3)))) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-3679 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-5 *1 (-838 *3)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-5 *1 (-838 *3)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-838 *3)))) (-2050 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-5 *1 (-838 *3)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-1020 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-3659 (*1 *2 *1) (-12 (-5 *2 (-902)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-1282 (*1 *2 *2) (-12 (-5 *2 (-591 (-838 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-1020 *3)) (-5 *1 (-838 *3)) (-4 *3 (-346)) (-4 *3 (-1018)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-838 *3))))) -(-13 (-836 |#1|) (-10 -8 (-15 -3304 ((-2 (|:| |preimage| (-591 |#1|)) (|:| |image| (-591 |#1|))) $)) (-15 -3679 ($ (-591 (-591 |#1|)))) (-15 -2686 ($ (-591 (-591 |#1|)))) (-15 -2686 ($ (-591 |#1|))) (-15 -2050 ($ (-591 (-591 |#1|)))) (-15 -2743 ((-712) $)) (-15 -2982 ((-1020 |#1|) $)) (-15 -3659 ((-902) $)) (-15 -1676 ((-712) $)) (-15 -2478 ((-712) $)) (-15 -4188 ((-525) $)) (-15 -2882 ((-108) $)) (-15 -2116 ((-108) $)) (-15 -1282 ((-591 $) (-591 $))) (IF (|has| |#1| (-346)) (-15 -1330 ((-1020 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -2488 ($ (-591 |#1|))) (IF (|has| |#1| (-346)) (-15 -2488 ($ (-591 |#1|))) |%noBranch|)))) -((-3172 (((-3 (-591 (-1085 |#4|)) "failed") (-591 (-1085 |#4|)) (-1085 |#4|)) 128)) (-1397 ((|#1|) 77)) (-3479 (((-396 (-1085 |#4|)) (-1085 |#4|)) 137)) (-1985 (((-396 (-1085 |#4|)) (-591 |#3|) (-1085 |#4|)) 69)) (-1810 (((-396 (-1085 |#4|)) (-1085 |#4|)) 147)) (-3113 (((-3 (-591 (-1085 |#4|)) "failed") (-591 (-1085 |#4|)) (-1085 |#4|) |#3|) 92))) -(((-839 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3172 ((-3 (-591 (-1085 |#4|)) "failed") (-591 (-1085 |#4|)) (-1085 |#4|))) (-15 -1810 ((-396 (-1085 |#4|)) (-1085 |#4|))) (-15 -3479 ((-396 (-1085 |#4|)) (-1085 |#4|))) (-15 -1397 (|#1|)) (-15 -3113 ((-3 (-591 (-1085 |#4|)) "failed") (-591 (-1085 |#4|)) (-1085 |#4|) |#3|)) (-15 -1985 ((-396 (-1085 |#4|)) (-591 |#3|) (-1085 |#4|)))) (-842) (-734) (-788) (-882 |#1| |#2| |#3|)) (T -839)) -((-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *7)) (-4 *7 (-788)) (-4 *5 (-842)) (-4 *6 (-734)) (-4 *8 (-882 *5 *6 *7)) (-5 *2 (-396 (-1085 *8))) (-5 *1 (-839 *5 *6 *7 *8)) (-5 *4 (-1085 *8)))) (-3113 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-591 (-1085 *7))) (-5 *3 (-1085 *7)) (-4 *7 (-882 *5 *6 *4)) (-4 *5 (-842)) (-4 *6 (-734)) (-4 *4 (-788)) (-5 *1 (-839 *5 *6 *4 *7)))) (-1397 (*1 *2) (-12 (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-842)) (-5 *1 (-839 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-396 (-1085 *7))) (-5 *1 (-839 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-1810 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-396 (-1085 *7))) (-5 *1 (-839 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3172 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-591 (-1085 *7))) (-5 *3 (-1085 *7)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-842)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-839 *4 *5 *6 *7))))) -(-10 -7 (-15 -3172 ((-3 (-591 (-1085 |#4|)) "failed") (-591 (-1085 |#4|)) (-1085 |#4|))) (-15 -1810 ((-396 (-1085 |#4|)) (-1085 |#4|))) (-15 -3479 ((-396 (-1085 |#4|)) (-1085 |#4|))) (-15 -1397 (|#1|)) (-15 -3113 ((-3 (-591 (-1085 |#4|)) "failed") (-591 (-1085 |#4|)) (-1085 |#4|) |#3|)) (-15 -1985 ((-396 (-1085 |#4|)) (-591 |#3|) (-1085 |#4|)))) -((-3172 (((-3 (-591 (-1085 |#2|)) "failed") (-591 (-1085 |#2|)) (-1085 |#2|)) 36)) (-1397 ((|#1|) 54)) (-3479 (((-396 (-1085 |#2|)) (-1085 |#2|)) 102)) (-1985 (((-396 (-1085 |#2|)) (-1085 |#2|)) 90)) (-1810 (((-396 (-1085 |#2|)) (-1085 |#2|)) 113))) -(((-840 |#1| |#2|) (-10 -7 (-15 -3172 ((-3 (-591 (-1085 |#2|)) "failed") (-591 (-1085 |#2|)) (-1085 |#2|))) (-15 -1810 ((-396 (-1085 |#2|)) (-1085 |#2|))) (-15 -3479 ((-396 (-1085 |#2|)) (-1085 |#2|))) (-15 -1397 (|#1|)) (-15 -1985 ((-396 (-1085 |#2|)) (-1085 |#2|)))) (-842) (-1147 |#1|)) (T -840)) -((-1985 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-1147 *4)) (-5 *2 (-396 (-1085 *5))) (-5 *1 (-840 *4 *5)) (-5 *3 (-1085 *5)))) (-1397 (*1 *2) (-12 (-4 *2 (-842)) (-5 *1 (-840 *2 *3)) (-4 *3 (-1147 *2)))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-1147 *4)) (-5 *2 (-396 (-1085 *5))) (-5 *1 (-840 *4 *5)) (-5 *3 (-1085 *5)))) (-1810 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-1147 *4)) (-5 *2 (-396 (-1085 *5))) (-5 *1 (-840 *4 *5)) (-5 *3 (-1085 *5)))) (-3172 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-591 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-842)) (-5 *1 (-840 *4 *5))))) -(-10 -7 (-15 -3172 ((-3 (-591 (-1085 |#2|)) "failed") (-591 (-1085 |#2|)) (-1085 |#2|))) (-15 -1810 ((-396 (-1085 |#2|)) (-1085 |#2|))) (-15 -3479 ((-396 (-1085 |#2|)) (-1085 |#2|))) (-15 -1397 (|#1|)) (-15 -1985 ((-396 (-1085 |#2|)) (-1085 |#2|)))) -((-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 41)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 18)) (-3751 (((-3 $ "failed") $) 35))) -(((-841 |#1|) (-10 -8 (-15 -3751 ((-3 |#1| "failed") |#1|)) (-15 -3008 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|))) (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) (-842)) (T -841)) -NIL -(-10 -8 (-15 -3751 ((-3 |#1| "failed") |#1|)) (-15 -3008 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|))) (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-2179 (((-396 (-1085 $)) (-1085 $)) 60)) (-1720 (($ $) 51)) (-3898 (((-396 $) $) 52)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 57)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-2393 (((-108) $) 53)) (-3865 (((-108) $) 31)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-3550 (((-396 (-1085 $)) (-1085 $)) 58)) (-3534 (((-396 (-1085 $)) (-1085 $)) 59)) (-2542 (((-396 $) $) 50)) (-3210 (((-3 $ "failed") $ $) 42)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 56 (|has| $ (-136)))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43)) (-3751 (((-3 $ "failed") $) 55 (|has| $ (-136)))) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-842) (-131)) (T -842)) -((-3910 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-842)))) (-2179 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-396 (-1085 *1))) (-5 *3 (-1085 *1)))) (-3534 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-396 (-1085 *1))) (-5 *3 (-1085 *1)))) (-3550 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-396 (-1085 *1))) (-5 *3 (-1085 *1)))) (-3008 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-591 (-1085 *1))) (-5 *3 (-1085 *1)) (-4 *1 (-842)))) (-3124 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-136)) (-4 *1 (-842)) (-5 *2 (-1171 *1)))) (-3751 (*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-842))))) -(-13 (-1129) (-10 -8 (-15 -2179 ((-396 (-1085 $)) (-1085 $))) (-15 -3534 ((-396 (-1085 $)) (-1085 $))) (-15 -3550 ((-396 (-1085 $)) (-1085 $))) (-15 -3910 ((-1085 $) (-1085 $) (-1085 $))) (-15 -3008 ((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $))) (IF (|has| $ (-136)) (PROGN (-15 -3124 ((-3 (-1171 $) "failed") (-631 $))) (-15 -3751 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-2862 (((-108) $) NIL)) (-3981 (((-712)) NIL)) (-1481 (($ $ (-854)) NIL (|has| $ (-346))) (($ $) NIL)) (-2666 (((-1099 (-854) (-712)) (-525)) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2834 (((-712)) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3341 (($ $) NIL)) (-1554 (($ (-1171 $)) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-1268 (($) NIL)) (-2096 (((-108) $) NIL)) (-3477 (($ $) NIL) (($ $ (-712)) NIL)) (-2393 (((-108) $) NIL)) (-1676 (((-774 (-854)) $) NIL) (((-854) $) NIL)) (-3865 (((-108) $) NIL)) (-2805 (($) NIL (|has| $ (-346)))) (-3108 (((-108) $) NIL (|has| $ (-346)))) (-1525 (($ $ (-854)) NIL (|has| $ (-346))) (($ $) NIL)) (-2115 (((-3 $ "failed") $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3205 (((-1085 $) $ (-854)) NIL (|has| $ (-346))) (((-1085 $) $) NIL)) (-1970 (((-854) $) NIL)) (-3004 (((-1085 $) $) NIL (|has| $ (-346)))) (-2224 (((-3 (-1085 $) "failed") $ $) NIL (|has| $ (-346))) (((-1085 $) $) NIL (|has| $ (-346)))) (-2594 (($ $ (-1085 $)) NIL (|has| $ (-346)))) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL T CONST)) (-3229 (($ (-854)) NIL)) (-1326 (((-108) $) NIL)) (-2937 (((-1036) $) NIL)) (-3965 (($) NIL (|has| $ (-346)))) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL)) (-2542 (((-396 $) $) NIL)) (-3383 (((-854)) NIL) (((-774 (-854))) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2652 (((-3 (-712) "failed") $ $) NIL) (((-712) $) NIL)) (-3840 (((-128)) NIL)) (-2209 (($ $ (-712)) NIL) (($ $) NIL)) (-2743 (((-854) $) NIL) (((-774 (-854)) $) NIL)) (-1341 (((-1085 $)) NIL)) (-3560 (($) NIL)) (-2200 (($) NIL (|has| $ (-346)))) (-1671 (((-631 $) (-1171 $)) NIL) (((-1171 $) $) NIL)) (-1300 (((-525) $) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL)) (-3751 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3425 (((-712)) NIL)) (-3612 (((-1171 $) (-854)) NIL) (((-1171 $)) NIL)) (-1724 (((-108) $ $) NIL)) (-2588 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-3861 (($ $ (-712)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) -(((-843 |#1|) (-13 (-327) (-307 $) (-566 (-525))) (-854)) (T -843)) -NIL -(-13 (-327) (-307 $) (-566 (-525))) -((-2999 (((-3 (-2 (|:| -1676 (-712)) (|:| -1954 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)) 79)) (-2522 (((-108) (-314 |#2| |#3| |#4| |#5|)) 17)) (-1676 (((-3 (-712) "failed") (-314 |#2| |#3| |#4| |#5|)) 15))) -(((-844 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1676 ((-3 (-712) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -2522 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -2999 ((-3 (-2 (|:| -1676 (-712)) (|:| -1954 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)))) (-13 (-788) (-517) (-966 (-525))) (-408 |#1|) (-1147 |#2|) (-1147 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -844)) -((-2999 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-788) (-517) (-966 (-525)))) (-5 *2 (-2 (|:| -1676 (-712)) (|:| -1954 *8))) (-5 *1 (-844 *4 *5 *6 *7 *8)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-788) (-517) (-966 (-525)))) (-5 *2 (-108)) (-5 *1 (-844 *4 *5 *6 *7 *8)))) (-1676 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-788) (-517) (-966 (-525)))) (-5 *2 (-712)) (-5 *1 (-844 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -1676 ((-3 (-712) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -2522 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -2999 ((-3 (-2 (|:| -1676 (-712)) (|:| -1954 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)))) -((-2999 (((-3 (-2 (|:| -1676 (-712)) (|:| -1954 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 56)) (-2522 (((-108) (-314 (-385 (-525)) |#1| |#2| |#3|)) 16)) (-1676 (((-3 (-712) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 14))) -(((-845 |#1| |#2| |#3|) (-10 -7 (-15 -1676 ((-3 (-712) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -2522 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -2999 ((-3 (-2 (|:| -1676 (-712)) (|:| -1954 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)))) (-1147 (-385 (-525))) (-1147 (-385 |#1|)) (-320 (-385 (-525)) |#1| |#2|)) (T -845)) -((-2999 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1147 (-385 (-525)))) (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-2 (|:| -1676 (-712)) (|:| -1954 *6))) (-5 *1 (-845 *4 *5 *6)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1147 (-385 (-525)))) (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-845 *4 *5 *6)))) (-1676 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1147 (-385 (-525)))) (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-712)) (-5 *1 (-845 *4 *5 *6))))) -(-10 -7 (-15 -1676 ((-3 (-712) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -2522 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -2999 ((-3 (-2 (|:| -1676 (-712)) (|:| -1954 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)))) -((-1726 ((|#2| |#2|) 26)) (-3306 (((-525) (-591 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) 15)) (-3927 (((-854) (-525)) 35)) (-1785 (((-525) |#2|) 42)) (-1703 (((-525) |#2|) 21) (((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|) 20))) -(((-846 |#1| |#2|) (-10 -7 (-15 -3927 ((-854) (-525))) (-15 -1703 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -1703 ((-525) |#2|)) (-15 -3306 ((-525) (-591 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -1785 ((-525) |#2|)) (-15 -1726 (|#2| |#2|))) (-1147 (-385 (-525))) (-1147 (-385 |#1|))) (T -846)) -((-1726 (*1 *2 *2) (-12 (-4 *3 (-1147 (-385 (-525)))) (-5 *1 (-846 *3 *2)) (-4 *2 (-1147 (-385 *3))))) (-1785 (*1 *2 *3) (-12 (-4 *4 (-1147 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-846 *4 *3)) (-4 *3 (-1147 (-385 *4))))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) (-4 *4 (-1147 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-846 *4 *5)) (-4 *5 (-1147 (-385 *4))))) (-1703 (*1 *2 *3) (-12 (-4 *4 (-1147 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-846 *4 *3)) (-4 *3 (-1147 (-385 *4))))) (-1703 (*1 *2 *3) (-12 (-4 *3 (-1147 (-385 (-525)))) (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))) (-5 *1 (-846 *3 *4)) (-4 *4 (-1147 (-385 *3))))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1147 (-385 *3))) (-5 *2 (-854)) (-5 *1 (-846 *4 *5)) (-4 *5 (-1147 (-385 *4)))))) -(-10 -7 (-15 -3927 ((-854) (-525))) (-15 -1703 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -1703 ((-525) |#2|)) (-15 -3306 ((-525) (-591 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -1785 ((-525) |#2|)) (-15 -1726 (|#2| |#2|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 ((|#1| $) 81)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-3265 (($ $ $) NIL)) (-1522 (((-3 $ "failed") $) 75)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-4111 (($ |#1| (-396 |#1|)) 73)) (-1758 (((-1085 |#1|) |#1| |#1|) 41)) (-3121 (($ $) 49)) (-3865 (((-108) $) NIL)) (-3235 (((-525) $) 78)) (-3901 (($ $ (-525)) 80)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2035 ((|#1| $) 77)) (-2701 (((-396 |#1|) $) 76)) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) 74)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-3974 (($ $) 39)) (-2686 (((-796) $) 99) (($ (-525)) 54) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 31) (((-385 |#1|) $) 59) (($ (-385 (-396 |#1|))) 67)) (-3425 (((-712)) 52)) (-1724 (((-108) $ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 23 T CONST)) (-1839 (($) 12 T CONST)) (-3944 (((-108) $ $) 68)) (-4059 (($ $ $) NIL)) (-4047 (($ $) 88) (($ $ $) NIL)) (-4036 (($ $ $) 38)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 90) (($ $ $) 37) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-847 |#1|) (-13 (-341) (-37 |#1|) (-10 -8 (-15 -2686 ((-385 |#1|) $)) (-15 -2686 ($ (-385 (-396 |#1|)))) (-15 -3974 ($ $)) (-15 -2701 ((-396 |#1|) $)) (-15 -2035 (|#1| $)) (-15 -3901 ($ $ (-525))) (-15 -3235 ((-525) $)) (-15 -1758 ((-1085 |#1|) |#1| |#1|)) (-15 -3121 ($ $)) (-15 -4111 ($ |#1| (-396 |#1|))) (-15 -2314 (|#1| $)))) (-286)) (T -847)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-847 *3)) (-4 *3 (-286)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-847 *3)))) (-3974 (*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-286)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-847 *3)) (-4 *3 (-286)))) (-2035 (*1 *2 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-286)))) (-3901 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-847 *3)) (-4 *3 (-286)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-847 *3)) (-4 *3 (-286)))) (-1758 (*1 *2 *3 *3) (-12 (-5 *2 (-1085 *3)) (-5 *1 (-847 *3)) (-4 *3 (-286)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-286)))) (-4111 (*1 *1 *2 *3) (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-847 *2)))) (-2314 (*1 *2 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-286))))) -(-13 (-341) (-37 |#1|) (-10 -8 (-15 -2686 ((-385 |#1|) $)) (-15 -2686 ($ (-385 (-396 |#1|)))) (-15 -3974 ($ $)) (-15 -2701 ((-396 |#1|) $)) (-15 -2035 (|#1| $)) (-15 -3901 ($ $ (-525))) (-15 -3235 ((-525) $)) (-15 -1758 ((-1085 |#1|) |#1| |#1|)) (-15 -3121 ($ $)) (-15 -4111 ($ |#1| (-396 |#1|))) (-15 -2314 (|#1| $)))) -((-4111 (((-51) (-885 |#1|) (-396 (-885 |#1|)) (-1089)) 17) (((-51) (-385 (-885 |#1|)) (-1089)) 18))) -(((-848 |#1|) (-10 -7 (-15 -4111 ((-51) (-385 (-885 |#1|)) (-1089))) (-15 -4111 ((-51) (-885 |#1|) (-396 (-885 |#1|)) (-1089)))) (-13 (-286) (-138))) (T -848)) -((-4111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-396 (-885 *6))) (-5 *5 (-1089)) (-5 *3 (-885 *6)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-848 *6)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-848 *5))))) -(-10 -7 (-15 -4111 ((-51) (-385 (-885 |#1|)) (-1089))) (-15 -4111 ((-51) (-885 |#1|) (-396 (-885 |#1|)) (-1089)))) -((-2807 ((|#4| (-591 |#4|)) 121) (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2124 (((-1085 |#4|) (-591 (-1085 |#4|))) 114) (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 50) ((|#4| (-591 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-849 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#4| |#4| |#4|)) (-15 -2124 (|#4| (-591 |#4|))) (-15 -2124 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2124 ((-1085 |#4|) (-591 (-1085 |#4|)))) (-15 -2807 (|#4| |#4| |#4|)) (-15 -2807 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2807 (|#4| (-591 |#4|)))) (-734) (-788) (-286) (-882 |#3| |#1| |#2|)) (T -849)) -((-2807 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *6 *4 *5)) (-5 *1 (-849 *4 *5 *6 *2)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)))) (-2807 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-882 *5 *3 *4)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-286)) (-5 *1 (-849 *3 *4 *5 *6)))) (-2807 (*1 *2 *2 *2) (-12 (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-286)) (-5 *1 (-849 *3 *4 *5 *2)) (-4 *2 (-882 *5 *3 *4)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-591 (-1085 *7))) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)) (-5 *2 (-1085 *7)) (-5 *1 (-849 *4 *5 *6 *7)) (-4 *7 (-882 *6 *4 *5)))) (-2124 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-882 *5 *3 *4)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-286)) (-5 *1 (-849 *3 *4 *5 *6)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *6 *4 *5)) (-5 *1 (-849 *4 *5 *6 *2)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)))) (-2124 (*1 *2 *2 *2) (-12 (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-286)) (-5 *1 (-849 *3 *4 *5 *2)) (-4 *2 (-882 *5 *3 *4))))) -(-10 -7 (-15 -2124 (|#4| |#4| |#4|)) (-15 -2124 (|#4| (-591 |#4|))) (-15 -2124 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2124 ((-1085 |#4|) (-591 (-1085 |#4|)))) (-15 -2807 (|#4| |#4| |#4|)) (-15 -2807 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2807 (|#4| (-591 |#4|)))) -((-4068 (((-837 (-525)) (-902)) 23) (((-837 (-525)) (-591 (-525))) 20)) (-3822 (((-837 (-525)) (-591 (-525))) 48) (((-837 (-525)) (-854)) 49)) (-2964 (((-837 (-525))) 24)) (-2355 (((-837 (-525))) 38) (((-837 (-525)) (-591 (-525))) 37)) (-2378 (((-837 (-525))) 36) (((-837 (-525)) (-591 (-525))) 35)) (-1931 (((-837 (-525))) 34) (((-837 (-525)) (-591 (-525))) 33)) (-4213 (((-837 (-525))) 32) (((-837 (-525)) (-591 (-525))) 31)) (-3897 (((-837 (-525))) 30) (((-837 (-525)) (-591 (-525))) 29)) (-3863 (((-837 (-525))) 40) (((-837 (-525)) (-591 (-525))) 39)) (-4208 (((-837 (-525)) (-591 (-525))) 52) (((-837 (-525)) (-854)) 53)) (-2826 (((-837 (-525)) (-591 (-525))) 50) (((-837 (-525)) (-854)) 51)) (-3495 (((-837 (-525)) (-591 (-525))) 46) (((-837 (-525)) (-854)) 47)) (-1370 (((-837 (-525)) (-591 (-854))) 43))) -(((-850) (-10 -7 (-15 -3822 ((-837 (-525)) (-854))) (-15 -3822 ((-837 (-525)) (-591 (-525)))) (-15 -3495 ((-837 (-525)) (-854))) (-15 -3495 ((-837 (-525)) (-591 (-525)))) (-15 -1370 ((-837 (-525)) (-591 (-854)))) (-15 -2826 ((-837 (-525)) (-854))) (-15 -2826 ((-837 (-525)) (-591 (-525)))) (-15 -4208 ((-837 (-525)) (-854))) (-15 -4208 ((-837 (-525)) (-591 (-525)))) (-15 -3897 ((-837 (-525)) (-591 (-525)))) (-15 -3897 ((-837 (-525)))) (-15 -4213 ((-837 (-525)) (-591 (-525)))) (-15 -4213 ((-837 (-525)))) (-15 -1931 ((-837 (-525)) (-591 (-525)))) (-15 -1931 ((-837 (-525)))) (-15 -2378 ((-837 (-525)) (-591 (-525)))) (-15 -2378 ((-837 (-525)))) (-15 -2355 ((-837 (-525)) (-591 (-525)))) (-15 -2355 ((-837 (-525)))) (-15 -3863 ((-837 (-525)) (-591 (-525)))) (-15 -3863 ((-837 (-525)))) (-15 -2964 ((-837 (-525)))) (-15 -4068 ((-837 (-525)) (-591 (-525)))) (-15 -4068 ((-837 (-525)) (-902))))) (T -850)) -((-4068 (*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-2964 (*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-3863 (*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-2355 (*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-2378 (*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-1931 (*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-4213 (*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-3897 (*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-591 (-854))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(-10 -7 (-15 -3822 ((-837 (-525)) (-854))) (-15 -3822 ((-837 (-525)) (-591 (-525)))) (-15 -3495 ((-837 (-525)) (-854))) (-15 -3495 ((-837 (-525)) (-591 (-525)))) (-15 -1370 ((-837 (-525)) (-591 (-854)))) (-15 -2826 ((-837 (-525)) (-854))) (-15 -2826 ((-837 (-525)) (-591 (-525)))) (-15 -4208 ((-837 (-525)) (-854))) (-15 -4208 ((-837 (-525)) (-591 (-525)))) (-15 -3897 ((-837 (-525)) (-591 (-525)))) (-15 -3897 ((-837 (-525)))) (-15 -4213 ((-837 (-525)) (-591 (-525)))) (-15 -4213 ((-837 (-525)))) (-15 -1931 ((-837 (-525)) (-591 (-525)))) (-15 -1931 ((-837 (-525)))) (-15 -2378 ((-837 (-525)) (-591 (-525)))) (-15 -2378 ((-837 (-525)))) (-15 -2355 ((-837 (-525)) (-591 (-525)))) (-15 -2355 ((-837 (-525)))) (-15 -3863 ((-837 (-525)) (-591 (-525)))) (-15 -3863 ((-837 (-525)))) (-15 -2964 ((-837 (-525)))) (-15 -4068 ((-837 (-525)) (-591 (-525)))) (-15 -4068 ((-837 (-525)) (-902)))) -((-2944 (((-591 (-885 |#1|)) (-591 (-885 |#1|)) (-591 (-1089))) 12)) (-1409 (((-591 (-885 |#1|)) (-591 (-885 |#1|)) (-591 (-1089))) 11))) -(((-851 |#1|) (-10 -7 (-15 -1409 ((-591 (-885 |#1|)) (-591 (-885 |#1|)) (-591 (-1089)))) (-15 -2944 ((-591 (-885 |#1|)) (-591 (-885 |#1|)) (-591 (-1089))))) (-429)) (T -851)) -((-2944 (*1 *2 *2 *3) (-12 (-5 *2 (-591 (-885 *4))) (-5 *3 (-591 (-1089))) (-4 *4 (-429)) (-5 *1 (-851 *4)))) (-1409 (*1 *2 *2 *3) (-12 (-5 *2 (-591 (-885 *4))) (-5 *3 (-591 (-1089))) (-4 *4 (-429)) (-5 *1 (-851 *4))))) -(-10 -7 (-15 -1409 ((-591 (-885 |#1|)) (-591 (-885 |#1|)) (-591 (-1089)))) (-15 -2944 ((-591 (-885 |#1|)) (-591 (-885 |#1|)) (-591 (-1089))))) -((-2686 (((-294 |#1|) (-454)) 16))) -(((-852 |#1|) (-10 -7 (-15 -2686 ((-294 |#1|) (-454)))) (-13 (-788) (-517))) (T -852)) -((-2686 (*1 *2 *3) (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-852 *4)) (-4 *4 (-13 (-788) (-517)))))) -(-10 -7 (-15 -2686 ((-294 |#1|) (-454)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-3865 (((-108) $) 31)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-853) (-131)) (T -853)) -((-1550 (*1 *2 *3) (-12 (-4 *1 (-853)) (-5 *2 (-2 (|:| -2976 (-591 *1)) (|:| -3965 *1))) (-5 *3 (-591 *1)))) (-2018 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-853))))) -(-13 (-429) (-10 -8 (-15 -1550 ((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $))) (-15 -2018 ((-3 (-591 $) "failed") (-591 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2124 (($ $ $) NIL)) (-2686 (((-796) $) NIL)) (-1401 (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (-1839 (($) NIL T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (* (($ (-854) $) NIL) (($ $ $) NIL))) -(((-854) (-13 (-25) (-788) (-668) (-10 -8 (-15 -2124 ($ $ $)) (-6 (-4252 "*"))))) (T -854)) -((-2124 (*1 *1 *1 *1) (-5 *1 (-854)))) -(-13 (-25) (-788) (-668) (-10 -8 (-15 -2124 ($ $ $)) (-6 (-4252 "*")))) -((-3611 ((|#2| (-591 |#1|) (-591 |#1|)) 24))) -(((-855 |#1| |#2|) (-10 -7 (-15 -3611 (|#2| (-591 |#1|) (-591 |#1|)))) (-341) (-1147 |#1|)) (T -855)) -((-3611 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *4)) (-4 *4 (-341)) (-4 *2 (-1147 *4)) (-5 *1 (-855 *4 *2))))) -(-10 -7 (-15 -3611 (|#2| (-591 |#1|) (-591 |#1|)))) -((-3813 (((-1085 |#2|) (-591 |#2|) (-591 |#2|)) 17) (((-1144 |#1| |#2|) (-1144 |#1| |#2|) (-591 |#2|) (-591 |#2|)) 13))) -(((-856 |#1| |#2|) (-10 -7 (-15 -3813 ((-1144 |#1| |#2|) (-1144 |#1| |#2|) (-591 |#2|) (-591 |#2|))) (-15 -3813 ((-1085 |#2|) (-591 |#2|) (-591 |#2|)))) (-1089) (-341)) (T -856)) -((-3813 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-341)) (-5 *2 (-1085 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-1089)))) (-3813 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1144 *4 *5)) (-5 *3 (-591 *5)) (-14 *4 (-1089)) (-4 *5 (-341)) (-5 *1 (-856 *4 *5))))) -(-10 -7 (-15 -3813 ((-1144 |#1| |#2|) (-1144 |#1| |#2|) (-591 |#2|) (-591 |#2|))) (-15 -3813 ((-1085 |#2|) (-591 |#2|) (-591 |#2|)))) -((-2090 (((-525) (-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-1072)) 139)) (-3858 ((|#4| |#4|) 155)) (-1571 (((-591 (-385 (-885 |#1|))) (-591 (-1089))) 119)) (-1453 (((-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))) (-631 |#4|) (-591 (-385 (-885 |#1|))) (-591 (-591 |#4|)) (-712) (-712) (-525)) 75)) (-1683 (((-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))) (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))) (-591 |#4|)) 59)) (-1446 (((-631 |#4|) (-631 |#4|) (-591 |#4|)) 55)) (-3764 (((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-1072)) 151)) (-3244 (((-525) (-631 |#4|) (-854) (-1072)) 133) (((-525) (-631 |#4|) (-591 (-1089)) (-854) (-1072)) 132) (((-525) (-631 |#4|) (-591 |#4|) (-854) (-1072)) 131) (((-525) (-631 |#4|) (-1072)) 128) (((-525) (-631 |#4|) (-591 (-1089)) (-1072)) 127) (((-525) (-631 |#4|) (-591 |#4|) (-1072)) 126) (((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-854)) 125) (((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 (-1089)) (-854)) 124) (((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 |#4|) (-854)) 123) (((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|)) 121) (((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 (-1089))) 120) (((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 |#4|)) 116)) (-2894 ((|#4| (-885 |#1|)) 68)) (-4070 (((-108) (-591 |#4|) (-591 (-591 |#4|))) 152)) (-4226 (((-591 (-591 (-525))) (-525) (-525)) 130)) (-1496 (((-591 (-591 |#4|)) (-591 (-591 |#4|))) 88)) (-3905 (((-712) (-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 |#4|))))) 86)) (-3609 (((-712) (-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 |#4|))))) 85)) (-4198 (((-108) (-591 (-885 |#1|))) 17) (((-108) (-591 |#4|)) 13)) (-2735 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-591 |#4|)) (|:| |n0| (-591 |#4|))) (-591 |#4|) (-591 |#4|)) 71)) (-4155 (((-591 |#4|) |#4|) 49)) (-2876 (((-591 (-385 (-885 |#1|))) (-591 |#4|)) 115) (((-631 (-385 (-885 |#1|))) (-631 |#4|)) 56) (((-385 (-885 |#1|)) |#4|) 112)) (-2574 (((-2 (|:| |rgl| (-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))))))) (|:| |rgsz| (-525))) (-631 |#4|) (-591 (-385 (-885 |#1|))) (-712) (-1072) (-525)) 93)) (-4043 (((-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 |#4|)))) (-631 |#4|) (-712)) 84)) (-2936 (((-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525))))) (-631 |#4|) (-712)) 101)) (-2718 (((-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))) (-2 (|:| -2928 (-631 (-385 (-885 |#1|)))) (|:| |vec| (-591 (-385 (-885 |#1|)))) (|:| -2193 (-712)) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525))))) 48))) -(((-857 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 |#4|))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 (-1089)))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 |#4|) (-854))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 (-1089)) (-854))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-854))) (-15 -3244 ((-525) (-631 |#4|) (-591 |#4|) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-591 (-1089)) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-591 |#4|) (-854) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-591 (-1089)) (-854) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-854) (-1072))) (-15 -2090 ((-525) (-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-1072))) (-15 -3764 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-1072))) (-15 -2574 ((-2 (|:| |rgl| (-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))))))) (|:| |rgsz| (-525))) (-631 |#4|) (-591 (-385 (-885 |#1|))) (-712) (-1072) (-525))) (-15 -2876 ((-385 (-885 |#1|)) |#4|)) (-15 -2876 ((-631 (-385 (-885 |#1|))) (-631 |#4|))) (-15 -2876 ((-591 (-385 (-885 |#1|))) (-591 |#4|))) (-15 -1571 ((-591 (-385 (-885 |#1|))) (-591 (-1089)))) (-15 -2894 (|#4| (-885 |#1|))) (-15 -2735 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-591 |#4|)) (|:| |n0| (-591 |#4|))) (-591 |#4|) (-591 |#4|))) (-15 -4043 ((-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 |#4|)))) (-631 |#4|) (-712))) (-15 -1683 ((-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))) (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))) (-591 |#4|))) (-15 -2718 ((-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))) (-2 (|:| -2928 (-631 (-385 (-885 |#1|)))) (|:| |vec| (-591 (-385 (-885 |#1|)))) (|:| -2193 (-712)) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (-15 -4155 ((-591 |#4|) |#4|)) (-15 -3609 ((-712) (-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 |#4|)))))) (-15 -3905 ((-712) (-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 |#4|)))))) (-15 -1496 ((-591 (-591 |#4|)) (-591 (-591 |#4|)))) (-15 -4226 ((-591 (-591 (-525))) (-525) (-525))) (-15 -4070 ((-108) (-591 |#4|) (-591 (-591 |#4|)))) (-15 -2936 ((-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525))))) (-631 |#4|) (-712))) (-15 -1446 ((-631 |#4|) (-631 |#4|) (-591 |#4|))) (-15 -1453 ((-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))) (-631 |#4|) (-591 (-385 (-885 |#1|))) (-591 (-591 |#4|)) (-712) (-712) (-525))) (-15 -3858 (|#4| |#4|)) (-15 -4198 ((-108) (-591 |#4|))) (-15 -4198 ((-108) (-591 (-885 |#1|))))) (-13 (-286) (-138)) (-13 (-788) (-566 (-1089))) (-734) (-882 |#1| |#3| |#2|)) (T -857)) -((-4198 (*1 *2 *3) (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-108)) (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-882 *4 *6 *5)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-108)) (-5 *1 (-857 *4 *5 *6 *7)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-788) (-566 (-1089)))) (-4 *5 (-734)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-882 *3 *5 *4)))) (-1453 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525))))) (-5 *4 (-631 *12)) (-5 *5 (-591 (-385 (-885 *9)))) (-5 *6 (-591 (-591 *12))) (-5 *7 (-712)) (-5 *8 (-525)) (-4 *9 (-13 (-286) (-138))) (-4 *12 (-882 *9 *11 *10)) (-4 *10 (-13 (-788) (-566 (-1089)))) (-4 *11 (-734)) (-5 *2 (-2 (|:| |eqzro| (-591 *12)) (|:| |neqzro| (-591 *12)) (|:| |wcond| (-591 (-885 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *9)))) (|:| -3612 (-591 (-1171 (-385 (-885 *9))))))))) (-5 *1 (-857 *9 *10 *11 *12)))) (-1446 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *1 (-857 *4 *5 *6 *7)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-712)) (-4 *8 (-882 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-591 (-2 (|:| |det| *8) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (-5 *1 (-857 *5 *6 *7 *8)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-591 *8))) (-5 *3 (-591 *8)) (-4 *8 (-882 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-108)) (-5 *1 (-857 *5 *6 *7 *8)))) (-4226 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-591 (-591 (-525)))) (-5 *1 (-857 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-882 *4 *6 *5)))) (-1496 (*1 *2 *2) (-12 (-5 *2 (-591 (-591 *6))) (-4 *6 (-882 *3 *5 *4)) (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-788) (-566 (-1089)))) (-4 *5 (-734)) (-5 *1 (-857 *3 *4 *5 *6)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| *7) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 *7))))) (-4 *7 (-882 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-712)) (-5 *1 (-857 *4 *5 *6 *7)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| *7) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 *7))))) (-4 *7 (-882 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-712)) (-5 *1 (-857 *4 *5 *6 *7)))) (-4155 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-591 *3)) (-5 *1 (-857 *4 *5 *6 *3)) (-4 *3 (-882 *4 *6 *5)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2928 (-631 (-385 (-885 *4)))) (|:| |vec| (-591 (-385 (-885 *4)))) (|:| -2193 (-712)) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525))))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-2 (|:| |partsol| (-1171 (-385 (-885 *4)))) (|:| -3612 (-591 (-1171 (-385 (-885 *4))))))) (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-882 *4 *6 *5)))) (-1683 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1171 (-385 (-885 *4)))) (|:| -3612 (-591 (-1171 (-385 (-885 *4))))))) (-5 *3 (-591 *7)) (-4 *4 (-13 (-286) (-138))) (-4 *7 (-882 *4 *6 *5)) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *1 (-857 *4 *5 *6 *7)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-882 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| *8) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 *8))))) (-5 *1 (-857 *5 *6 *7 *8)) (-5 *4 (-712)))) (-2735 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-4 *7 (-882 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-591 *7)) (|:| |n0| (-591 *7)))) (-5 *1 (-857 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-885 *4)) (-4 *4 (-13 (-286) (-138))) (-4 *2 (-882 *4 *6 *5)) (-5 *1 (-857 *4 *5 *6 *2)) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-591 (-1089))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-591 (-385 (-885 *4)))) (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-882 *4 *6 *5)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-591 (-385 (-885 *4)))) (-5 *1 (-857 *4 *5 *6 *7)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-882 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-631 (-385 (-885 *4)))) (-5 *1 (-857 *4 *5 *6 *7)))) (-2876 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-385 (-885 *4))) (-5 *1 (-857 *4 *5 *6 *3)) (-4 *3 (-882 *4 *6 *5)))) (-2574 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-631 *11)) (-5 *4 (-591 (-385 (-885 *8)))) (-5 *5 (-712)) (-5 *6 (-1072)) (-4 *8 (-13 (-286) (-138))) (-4 *11 (-882 *8 *10 *9)) (-4 *9 (-13 (-788) (-566 (-1089)))) (-4 *10 (-734)) (-5 *2 (-2 (|:| |rgl| (-591 (-2 (|:| |eqzro| (-591 *11)) (|:| |neqzro| (-591 *11)) (|:| |wcond| (-591 (-885 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *8)))) (|:| -3612 (-591 (-1171 (-385 (-885 *8)))))))))) (|:| |rgsz| (-525)))) (-5 *1 (-857 *8 *9 *10 *11)) (-5 *7 (-525)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-591 (-2 (|:| |eqzro| (-591 *7)) (|:| |neqzro| (-591 *7)) (|:| |wcond| (-591 (-885 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *4)))) (|:| -3612 (-591 (-1171 (-385 (-885 *4)))))))))) (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-882 *4 *6 *5)))) (-2090 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-2 (|:| |eqzro| (-591 *8)) (|:| |neqzro| (-591 *8)) (|:| |wcond| (-591 (-885 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *5)))) (|:| -3612 (-591 (-1171 (-385 (-885 *5)))))))))) (-5 *4 (-1072)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-882 *5 *7 *6)) (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-525)) (-5 *1 (-857 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-854)) (-5 *5 (-1072)) (-4 *9 (-882 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-788) (-566 (-1089)))) (-4 *8 (-734)) (-5 *2 (-525)) (-5 *1 (-857 *6 *7 *8 *9)))) (-3244 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-591 (-1089))) (-5 *5 (-854)) (-5 *6 (-1072)) (-4 *10 (-882 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-788) (-566 (-1089)))) (-4 *9 (-734)) (-5 *2 (-525)) (-5 *1 (-857 *7 *8 *9 *10)))) (-3244 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-591 *10)) (-5 *5 (-854)) (-5 *6 (-1072)) (-4 *10 (-882 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-788) (-566 (-1089)))) (-4 *9 (-734)) (-5 *2 (-525)) (-5 *1 (-857 *7 *8 *9 *10)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-1072)) (-4 *8 (-882 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-525)) (-5 *1 (-857 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-591 (-1089))) (-5 *5 (-1072)) (-4 *9 (-882 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-788) (-566 (-1089)))) (-4 *8 (-734)) (-5 *2 (-525)) (-5 *1 (-857 *6 *7 *8 *9)))) (-3244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-591 *9)) (-5 *5 (-1072)) (-4 *9 (-882 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-788) (-566 (-1089)))) (-4 *8 (-734)) (-5 *2 (-525)) (-5 *1 (-857 *6 *7 *8 *9)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-854)) (-4 *8 (-882 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-591 (-2 (|:| |eqzro| (-591 *8)) (|:| |neqzro| (-591 *8)) (|:| |wcond| (-591 (-885 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *5)))) (|:| -3612 (-591 (-1171 (-385 (-885 *5)))))))))) (-5 *1 (-857 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-591 (-1089))) (-5 *5 (-854)) (-4 *9 (-882 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-788) (-566 (-1089)))) (-4 *8 (-734)) (-5 *2 (-591 (-2 (|:| |eqzro| (-591 *9)) (|:| |neqzro| (-591 *9)) (|:| |wcond| (-591 (-885 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *6)))) (|:| -3612 (-591 (-1171 (-385 (-885 *6)))))))))) (-5 *1 (-857 *6 *7 *8 *9)))) (-3244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *5 (-854)) (-4 *9 (-882 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-788) (-566 (-1089)))) (-4 *8 (-734)) (-5 *2 (-591 (-2 (|:| |eqzro| (-591 *9)) (|:| |neqzro| (-591 *9)) (|:| |wcond| (-591 (-885 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *6)))) (|:| -3612 (-591 (-1171 (-385 (-885 *6)))))))))) (-5 *1 (-857 *6 *7 *8 *9)) (-5 *4 (-591 *9)))) (-3244 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-882 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-591 (-2 (|:| |eqzro| (-591 *7)) (|:| |neqzro| (-591 *7)) (|:| |wcond| (-591 (-885 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *4)))) (|:| -3612 (-591 (-1171 (-385 (-885 *4)))))))))) (-5 *1 (-857 *4 *5 *6 *7)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-591 (-1089))) (-4 *8 (-882 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-591 (-2 (|:| |eqzro| (-591 *8)) (|:| |neqzro| (-591 *8)) (|:| |wcond| (-591 (-885 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *5)))) (|:| -3612 (-591 (-1171 (-385 (-885 *5)))))))))) (-5 *1 (-857 *5 *6 *7 *8)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-882 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-591 (-2 (|:| |eqzro| (-591 *8)) (|:| |neqzro| (-591 *8)) (|:| |wcond| (-591 (-885 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 *5)))) (|:| -3612 (-591 (-1171 (-385 (-885 *5)))))))))) (-5 *1 (-857 *5 *6 *7 *8)) (-5 *4 (-591 *8))))) -(-10 -7 (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 |#4|))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 (-1089)))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 |#4|) (-854))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-591 (-1089)) (-854))) (-15 -3244 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-631 |#4|) (-854))) (-15 -3244 ((-525) (-631 |#4|) (-591 |#4|) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-591 (-1089)) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-591 |#4|) (-854) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-591 (-1089)) (-854) (-1072))) (-15 -3244 ((-525) (-631 |#4|) (-854) (-1072))) (-15 -2090 ((-525) (-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-1072))) (-15 -3764 ((-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|))))))))) (-1072))) (-15 -2574 ((-2 (|:| |rgl| (-591 (-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))))))) (|:| |rgsz| (-525))) (-631 |#4|) (-591 (-385 (-885 |#1|))) (-712) (-1072) (-525))) (-15 -2876 ((-385 (-885 |#1|)) |#4|)) (-15 -2876 ((-631 (-385 (-885 |#1|))) (-631 |#4|))) (-15 -2876 ((-591 (-385 (-885 |#1|))) (-591 |#4|))) (-15 -1571 ((-591 (-385 (-885 |#1|))) (-591 (-1089)))) (-15 -2894 (|#4| (-885 |#1|))) (-15 -2735 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-591 |#4|)) (|:| |n0| (-591 |#4|))) (-591 |#4|) (-591 |#4|))) (-15 -4043 ((-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 |#4|)))) (-631 |#4|) (-712))) (-15 -1683 ((-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))) (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))) (-591 |#4|))) (-15 -2718 ((-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))) (-2 (|:| -2928 (-631 (-385 (-885 |#1|)))) (|:| |vec| (-591 (-385 (-885 |#1|)))) (|:| -2193 (-712)) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (-15 -4155 ((-591 |#4|) |#4|)) (-15 -3609 ((-712) (-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 |#4|)))))) (-15 -3905 ((-712) (-591 (-2 (|:| -2193 (-712)) (|:| |eqns| (-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))))) (|:| |fgb| (-591 |#4|)))))) (-15 -1496 ((-591 (-591 |#4|)) (-591 (-591 |#4|)))) (-15 -4226 ((-591 (-591 (-525))) (-525) (-525))) (-15 -4070 ((-108) (-591 |#4|) (-591 (-591 |#4|)))) (-15 -2936 ((-591 (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525))))) (-631 |#4|) (-712))) (-15 -1446 ((-631 |#4|) (-631 |#4|) (-591 |#4|))) (-15 -1453 ((-2 (|:| |eqzro| (-591 |#4|)) (|:| |neqzro| (-591 |#4|)) (|:| |wcond| (-591 (-885 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1171 (-385 (-885 |#1|)))) (|:| -3612 (-591 (-1171 (-385 (-885 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525)))) (-631 |#4|) (-591 (-385 (-885 |#1|))) (-591 (-591 |#4|)) (-712) (-712) (-525))) (-15 -3858 (|#4| |#4|)) (-15 -4198 ((-108) (-591 |#4|))) (-15 -4198 ((-108) (-591 (-885 |#1|))))) -((-3388 (((-860) |#1| (-1089)) 17) (((-860) |#1| (-1089) (-1013 (-205))) 21)) (-1771 (((-860) |#1| |#1| (-1089) (-1013 (-205))) 19) (((-860) |#1| (-1089) (-1013 (-205))) 15))) -(((-858 |#1|) (-10 -7 (-15 -1771 ((-860) |#1| (-1089) (-1013 (-205)))) (-15 -1771 ((-860) |#1| |#1| (-1089) (-1013 (-205)))) (-15 -3388 ((-860) |#1| (-1089) (-1013 (-205)))) (-15 -3388 ((-860) |#1| (-1089)))) (-566 (-501))) (T -858)) -((-3388 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-860)) (-5 *1 (-858 *3)) (-4 *3 (-566 (-501))))) (-3388 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1013 (-205))) (-5 *2 (-860)) (-5 *1 (-858 *3)) (-4 *3 (-566 (-501))))) (-1771 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1013 (-205))) (-5 *2 (-860)) (-5 *1 (-858 *3)) (-4 *3 (-566 (-501))))) (-1771 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1013 (-205))) (-5 *2 (-860)) (-5 *1 (-858 *3)) (-4 *3 (-566 (-501)))))) -(-10 -7 (-15 -1771 ((-860) |#1| (-1089) (-1013 (-205)))) (-15 -1771 ((-860) |#1| |#1| (-1089) (-1013 (-205)))) (-15 -3388 ((-860) |#1| (-1089) (-1013 (-205)))) (-15 -3388 ((-860) |#1| (-1089)))) -((-2689 (($ $ (-1013 (-205)) (-1013 (-205)) (-1013 (-205))) 70)) (-4178 (((-1013 (-205)) $) 40)) (-4162 (((-1013 (-205)) $) 39)) (-4148 (((-1013 (-205)) $) 38)) (-2889 (((-591 (-591 (-205))) $) 43)) (-3026 (((-1013 (-205)) $) 41)) (-4216 (((-525) (-525)) 32)) (-1528 (((-525) (-525)) 28)) (-2087 (((-525) (-525)) 30)) (-2100 (((-108) (-108)) 35)) (-2702 (((-525)) 31)) (-2713 (($ $ (-1013 (-205))) 73) (($ $) 74)) (-2300 (($ (-1 (-876 (-205)) (-205)) (-1013 (-205))) 78) (($ (-1 (-876 (-205)) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205))) 79)) (-1771 (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205))) 82) (($ $ (-1013 (-205))) 76)) (-3510 (((-525)) 36)) (-3337 (((-525)) 27)) (-3748 (((-525)) 29)) (-1870 (((-591 (-591 (-876 (-205)))) $) 94)) (-2602 (((-108) (-108)) 37)) (-2686 (((-796) $) 93)) (-4120 (((-108)) 34))) -(((-859) (-13 (-905) (-10 -8 (-15 -2300 ($ (-1 (-876 (-205)) (-205)) (-1013 (-205)))) (-15 -2300 ($ (-1 (-876 (-205)) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -1771 ($ $ (-1013 (-205)))) (-15 -2689 ($ $ (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -2713 ($ $ (-1013 (-205)))) (-15 -2713 ($ $)) (-15 -3026 ((-1013 (-205)) $)) (-15 -2889 ((-591 (-591 (-205))) $)) (-15 -3337 ((-525))) (-15 -1528 ((-525) (-525))) (-15 -3748 ((-525))) (-15 -2087 ((-525) (-525))) (-15 -2702 ((-525))) (-15 -4216 ((-525) (-525))) (-15 -4120 ((-108))) (-15 -2100 ((-108) (-108))) (-15 -3510 ((-525))) (-15 -2602 ((-108) (-108)))))) (T -859)) -((-2300 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-876 (-205)) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-859)))) (-2300 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-876 (-205)) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-859)))) (-1771 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-859)))) (-1771 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-859)))) (-1771 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-859)))) (-2689 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-859)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-859)))) (-2713 (*1 *1 *1) (-5 *1 (-859))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-859)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-591 (-591 (-205)))) (-5 *1 (-859)))) (-3337 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859)))) (-1528 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859)))) (-3748 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859)))) (-2702 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859)))) (-4216 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859)))) (-4120 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-859)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-859)))) (-3510 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859)))) (-2602 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-859))))) -(-13 (-905) (-10 -8 (-15 -2300 ($ (-1 (-876 (-205)) (-205)) (-1013 (-205)))) (-15 -2300 ($ (-1 (-876 (-205)) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -1771 ($ $ (-1013 (-205)))) (-15 -2689 ($ $ (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -2713 ($ $ (-1013 (-205)))) (-15 -2713 ($ $)) (-15 -3026 ((-1013 (-205)) $)) (-15 -2889 ((-591 (-591 (-205))) $)) (-15 -3337 ((-525))) (-15 -1528 ((-525) (-525))) (-15 -3748 ((-525))) (-15 -2087 ((-525) (-525))) (-15 -2702 ((-525))) (-15 -4216 ((-525) (-525))) (-15 -4120 ((-108))) (-15 -2100 ((-108) (-108))) (-15 -3510 ((-525))) (-15 -2602 ((-108) (-108))))) -((-2689 (($ $ (-1013 (-205))) 70) (($ $ (-1013 (-205)) (-1013 (-205))) 71)) (-4162 (((-1013 (-205)) $) 44)) (-4148 (((-1013 (-205)) $) 43)) (-3026 (((-1013 (-205)) $) 45)) (-3825 (((-525) (-525)) 37)) (-2088 (((-525) (-525)) 33)) (-2644 (((-525) (-525)) 35)) (-3613 (((-108) (-108)) 39)) (-2101 (((-525)) 36)) (-2713 (($ $ (-1013 (-205))) 74) (($ $) 75)) (-2300 (($ (-1 (-876 (-205)) (-205)) (-1013 (-205))) 84) (($ (-1 (-876 (-205)) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205))) 85)) (-3388 (($ (-1 (-205) (-205)) (-1013 (-205))) 92) (($ (-1 (-205) (-205))) 95)) (-1771 (($ (-1 (-205) (-205)) (-1013 (-205))) 79) (($ (-1 (-205) (-205)) (-1013 (-205)) (-1013 (-205))) 80) (($ (-591 (-1 (-205) (-205))) (-1013 (-205))) 87) (($ (-591 (-1 (-205) (-205))) (-1013 (-205)) (-1013 (-205))) 88) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205))) 82) (($ $ (-1013 (-205))) 76)) (-2540 (((-108) $) 40)) (-2398 (((-525)) 41)) (-1366 (((-525)) 32)) (-2654 (((-525)) 34)) (-1870 (((-591 (-591 (-876 (-205)))) $) 23)) (-2825 (((-108) (-108)) 42)) (-2686 (((-796) $) 106)) (-1845 (((-108)) 38))) -(((-860) (-13 (-887) (-10 -8 (-15 -1771 ($ (-1 (-205) (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -1771 ($ (-591 (-1 (-205) (-205))) (-1013 (-205)))) (-15 -1771 ($ (-591 (-1 (-205) (-205))) (-1013 (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -2300 ($ (-1 (-876 (-205)) (-205)) (-1013 (-205)))) (-15 -2300 ($ (-1 (-876 (-205)) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -3388 ($ (-1 (-205) (-205)) (-1013 (-205)))) (-15 -3388 ($ (-1 (-205) (-205)))) (-15 -1771 ($ $ (-1013 (-205)))) (-15 -2540 ((-108) $)) (-15 -2689 ($ $ (-1013 (-205)))) (-15 -2689 ($ $ (-1013 (-205)) (-1013 (-205)))) (-15 -2713 ($ $ (-1013 (-205)))) (-15 -2713 ($ $)) (-15 -3026 ((-1013 (-205)) $)) (-15 -1366 ((-525))) (-15 -2088 ((-525) (-525))) (-15 -2654 ((-525))) (-15 -2644 ((-525) (-525))) (-15 -2101 ((-525))) (-15 -3825 ((-525) (-525))) (-15 -1845 ((-108))) (-15 -3613 ((-108) (-108))) (-15 -2398 ((-525))) (-15 -2825 ((-108) (-108)))))) (T -860)) -((-1771 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-860)))) (-1771 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-860)))) (-1771 (*1 *1 *2 *3) (-12 (-5 *2 (-591 (-1 (-205) (-205)))) (-5 *3 (-1013 (-205))) (-5 *1 (-860)))) (-1771 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-591 (-1 (-205) (-205)))) (-5 *3 (-1013 (-205))) (-5 *1 (-860)))) (-1771 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-860)))) (-1771 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-860)))) (-2300 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-876 (-205)) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-860)))) (-2300 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-876 (-205)) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-860)))) (-3388 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) (-5 *1 (-860)))) (-3388 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-860)))) (-1771 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-860)))) (-2689 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860)))) (-2689 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860)))) (-2713 (*1 *1 *1) (-5 *1 (-860))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860)))) (-1366 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2654 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2644 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2101 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-1845 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))) (-2398 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2825 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860))))) -(-13 (-887) (-10 -8 (-15 -1771 ($ (-1 (-205) (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -1771 ($ (-591 (-1 (-205) (-205))) (-1013 (-205)))) (-15 -1771 ($ (-591 (-1 (-205) (-205))) (-1013 (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)))) (-15 -1771 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -2300 ($ (-1 (-876 (-205)) (-205)) (-1013 (-205)))) (-15 -2300 ($ (-1 (-876 (-205)) (-205)) (-1013 (-205)) (-1013 (-205)) (-1013 (-205)))) (-15 -3388 ($ (-1 (-205) (-205)) (-1013 (-205)))) (-15 -3388 ($ (-1 (-205) (-205)))) (-15 -1771 ($ $ (-1013 (-205)))) (-15 -2540 ((-108) $)) (-15 -2689 ($ $ (-1013 (-205)))) (-15 -2689 ($ $ (-1013 (-205)) (-1013 (-205)))) (-15 -2713 ($ $ (-1013 (-205)))) (-15 -2713 ($ $)) (-15 -3026 ((-1013 (-205)) $)) (-15 -1366 ((-525))) (-15 -2088 ((-525) (-525))) (-15 -2654 ((-525))) (-15 -2644 ((-525) (-525))) (-15 -2101 ((-525))) (-15 -3825 ((-525) (-525))) (-15 -1845 ((-108))) (-15 -3613 ((-108) (-108))) (-15 -2398 ((-525))) (-15 -2825 ((-108) (-108))))) -((-1947 (((-591 (-1013 (-205))) (-591 (-591 (-876 (-205))))) 24))) -(((-861) (-10 -7 (-15 -1947 ((-591 (-1013 (-205))) (-591 (-591 (-876 (-205)))))))) (T -861)) -((-1947 (*1 *2 *3) (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *2 (-591 (-1013 (-205)))) (-5 *1 (-861))))) -(-10 -7 (-15 -1947 ((-591 (-1013 (-205))) (-591 (-591 (-876 (-205))))))) -((-1275 ((|#2| |#2|) 26)) (-4217 ((|#2| |#2|) 27)) (-2277 ((|#2| |#2|) 25)) (-2772 ((|#2| |#2| (-1072)) 24))) -(((-862 |#1| |#2|) (-10 -7 (-15 -2772 (|#2| |#2| (-1072))) (-15 -2277 (|#2| |#2|)) (-15 -1275 (|#2| |#2|)) (-15 -4217 (|#2| |#2|))) (-788) (-408 |#1|)) (T -862)) -((-4217 (*1 *2 *2) (-12 (-4 *3 (-788)) (-5 *1 (-862 *3 *2)) (-4 *2 (-408 *3)))) (-1275 (*1 *2 *2) (-12 (-4 *3 (-788)) (-5 *1 (-862 *3 *2)) (-4 *2 (-408 *3)))) (-2277 (*1 *2 *2) (-12 (-4 *3 (-788)) (-5 *1 (-862 *3 *2)) (-4 *2 (-408 *3)))) (-2772 (*1 *2 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-788)) (-5 *1 (-862 *4 *2)) (-4 *2 (-408 *4))))) -(-10 -7 (-15 -2772 (|#2| |#2| (-1072))) (-15 -2277 (|#2| |#2|)) (-15 -1275 (|#2| |#2|)) (-15 -4217 (|#2| |#2|))) -((-1275 (((-294 (-525)) (-1089)) 16)) (-4217 (((-294 (-525)) (-1089)) 14)) (-2277 (((-294 (-525)) (-1089)) 12)) (-2772 (((-294 (-525)) (-1089) (-1072)) 19))) -(((-863) (-10 -7 (-15 -2772 ((-294 (-525)) (-1089) (-1072))) (-15 -2277 ((-294 (-525)) (-1089))) (-15 -1275 ((-294 (-525)) (-1089))) (-15 -4217 ((-294 (-525)) (-1089))))) (T -863)) -((-4217 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-294 (-525))) (-5 *1 (-863)))) (-1275 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-294 (-525))) (-5 *1 (-863)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-294 (-525))) (-5 *1 (-863)))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-1072)) (-5 *2 (-294 (-525))) (-5 *1 (-863))))) -(-10 -7 (-15 -2772 ((-294 (-525)) (-1089) (-1072))) (-15 -2277 ((-294 (-525)) (-1089))) (-15 -1275 ((-294 (-525)) (-1089))) (-15 -4217 ((-294 (-525)) (-1089)))) -((-4018 (((-822 |#1| |#3|) |#2| (-825 |#1|) (-822 |#1| |#3|)) 25)) (-3364 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 13))) -(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -3364 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -4018 ((-822 |#1| |#3|) |#2| (-825 |#1|) (-822 |#1| |#3|)))) (-1018) (-819 |#1|) (-13 (-1018) (-966 |#2|))) (T -864)) -((-4018 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-822 *5 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) (-4 *6 (-13 (-1018) (-966 *3))) (-4 *3 (-819 *5)) (-5 *1 (-864 *5 *3 *6)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1018) (-966 *5))) (-4 *5 (-819 *4)) (-4 *4 (-1018)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-864 *4 *5 *6))))) -(-10 -7 (-15 -3364 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -4018 ((-822 |#1| |#3|) |#2| (-825 |#1|) (-822 |#1| |#3|)))) -((-4018 (((-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|)) 30))) -(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -4018 ((-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|)))) (-1018) (-13 (-517) (-788) (-819 |#1|)) (-13 (-408 |#2|) (-566 (-825 |#1|)) (-819 |#1|) (-966 (-564 $)))) (T -865)) -((-4018 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-822 *5 *3)) (-4 *5 (-1018)) (-4 *3 (-13 (-408 *6) (-566 *4) (-819 *5) (-966 (-564 $)))) (-5 *4 (-825 *5)) (-4 *6 (-13 (-517) (-788) (-819 *5))) (-5 *1 (-865 *5 *6 *3))))) -(-10 -7 (-15 -4018 ((-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|)))) -((-4018 (((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|)) 13))) -(((-866 |#1|) (-10 -7 (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|)))) (-510)) (T -866)) -((-4018 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-822 (-525) *3)) (-5 *4 (-825 (-525))) (-4 *3 (-510)) (-5 *1 (-866 *3))))) -(-10 -7 (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|)))) -((-4018 (((-822 |#1| |#2|) (-564 |#2|) (-825 |#1|) (-822 |#1| |#2|)) 54))) -(((-867 |#1| |#2|) (-10 -7 (-15 -4018 ((-822 |#1| |#2|) (-564 |#2|) (-825 |#1|) (-822 |#1| |#2|)))) (-1018) (-13 (-788) (-966 (-564 $)) (-566 (-825 |#1|)) (-819 |#1|))) (T -867)) -((-4018 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-822 *5 *6)) (-5 *3 (-564 *6)) (-4 *5 (-1018)) (-4 *6 (-13 (-788) (-966 (-564 $)) (-566 *4) (-819 *5))) (-5 *4 (-825 *5)) (-5 *1 (-867 *5 *6))))) -(-10 -7 (-15 -4018 ((-822 |#1| |#2|) (-564 |#2|) (-825 |#1|) (-822 |#1| |#2|)))) -((-4018 (((-818 |#1| |#2| |#3|) |#3| (-825 |#1|) (-818 |#1| |#2| |#3|)) 15))) -(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -4018 ((-818 |#1| |#2| |#3|) |#3| (-825 |#1|) (-818 |#1| |#2| |#3|)))) (-1018) (-819 |#1|) (-611 |#2|)) (T -868)) -((-4018 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *6 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) (-4 *6 (-819 *5)) (-4 *3 (-611 *6)) (-5 *1 (-868 *5 *6 *3))))) -(-10 -7 (-15 -4018 ((-818 |#1| |#2| |#3|) |#3| (-825 |#1|) (-818 |#1| |#2| |#3|)))) -((-4018 (((-822 |#1| |#5|) |#5| (-825 |#1|) (-822 |#1| |#5|)) 17 (|has| |#3| (-819 |#1|))) (((-822 |#1| |#5|) |#5| (-825 |#1|) (-822 |#1| |#5|) (-1 (-822 |#1| |#5|) |#3| (-825 |#1|) (-822 |#1| |#5|))) 16))) -(((-869 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4018 ((-822 |#1| |#5|) |#5| (-825 |#1|) (-822 |#1| |#5|) (-1 (-822 |#1| |#5|) |#3| (-825 |#1|) (-822 |#1| |#5|)))) (IF (|has| |#3| (-819 |#1|)) (-15 -4018 ((-822 |#1| |#5|) |#5| (-825 |#1|) (-822 |#1| |#5|))) |%noBranch|)) (-1018) (-734) (-788) (-13 (-975) (-788) (-819 |#1|)) (-13 (-882 |#4| |#2| |#3|) (-566 (-825 |#1|)))) (T -869)) -((-4018 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-822 *5 *3)) (-4 *5 (-1018)) (-4 *3 (-13 (-882 *8 *6 *7) (-566 *4))) (-5 *4 (-825 *5)) (-4 *7 (-819 *5)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-13 (-975) (-788) (-819 *5))) (-5 *1 (-869 *5 *6 *7 *8 *3)))) (-4018 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-822 *6 *3) *8 (-825 *6) (-822 *6 *3))) (-4 *8 (-788)) (-5 *2 (-822 *6 *3)) (-5 *4 (-825 *6)) (-4 *6 (-1018)) (-4 *3 (-13 (-882 *9 *7 *8) (-566 *4))) (-4 *7 (-734)) (-4 *9 (-13 (-975) (-788) (-819 *6))) (-5 *1 (-869 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -4018 ((-822 |#1| |#5|) |#5| (-825 |#1|) (-822 |#1| |#5|) (-1 (-822 |#1| |#5|) |#3| (-825 |#1|) (-822 |#1| |#5|)))) (IF (|has| |#3| (-819 |#1|)) (-15 -4018 ((-822 |#1| |#5|) |#5| (-825 |#1|) (-822 |#1| |#5|))) |%noBranch|)) -((-1261 ((|#2| |#2| (-591 (-1 (-108) |#3|))) 12) ((|#2| |#2| (-1 (-108) |#3|)) 13))) -(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -1261 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1261 (|#2| |#2| (-591 (-1 (-108) |#3|))))) (-788) (-408 |#1|) (-1125)) (T -870)) -((-1261 (*1 *2 *2 *3) (-12 (-5 *3 (-591 (-1 (-108) *5))) (-4 *5 (-1125)) (-4 *4 (-788)) (-5 *1 (-870 *4 *2 *5)) (-4 *2 (-408 *4)))) (-1261 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1125)) (-4 *4 (-788)) (-5 *1 (-870 *4 *2 *5)) (-4 *2 (-408 *4))))) -(-10 -7 (-15 -1261 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1261 (|#2| |#2| (-591 (-1 (-108) |#3|))))) -((-1261 (((-294 (-525)) (-1089) (-591 (-1 (-108) |#1|))) 18) (((-294 (-525)) (-1089) (-1 (-108) |#1|)) 15))) -(((-871 |#1|) (-10 -7 (-15 -1261 ((-294 (-525)) (-1089) (-1 (-108) |#1|))) (-15 -1261 ((-294 (-525)) (-1089) (-591 (-1 (-108) |#1|))))) (-1125)) (T -871)) -((-1261 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-591 (-1 (-108) *5))) (-4 *5 (-1125)) (-5 *2 (-294 (-525))) (-5 *1 (-871 *5)))) (-1261 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1125)) (-5 *2 (-294 (-525))) (-5 *1 (-871 *5))))) -(-10 -7 (-15 -1261 ((-294 (-525)) (-1089) (-1 (-108) |#1|))) (-15 -1261 ((-294 (-525)) (-1089) (-591 (-1 (-108) |#1|))))) -((-4018 (((-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|)) 25))) -(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -4018 ((-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|)))) (-1018) (-13 (-517) (-819 |#1|) (-566 (-825 |#1|))) (-923 |#2|)) (T -872)) -((-4018 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-822 *5 *3)) (-4 *5 (-1018)) (-4 *3 (-923 *6)) (-4 *6 (-13 (-517) (-819 *5) (-566 *4))) (-5 *4 (-825 *5)) (-5 *1 (-872 *5 *6 *3))))) -(-10 -7 (-15 -4018 ((-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|)))) -((-4018 (((-822 |#1| (-1089)) (-1089) (-825 |#1|) (-822 |#1| (-1089))) 17))) -(((-873 |#1|) (-10 -7 (-15 -4018 ((-822 |#1| (-1089)) (-1089) (-825 |#1|) (-822 |#1| (-1089))))) (-1018)) (T -873)) -((-4018 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-822 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) (-5 *1 (-873 *5))))) -(-10 -7 (-15 -4018 ((-822 |#1| (-1089)) (-1089) (-825 |#1|) (-822 |#1| (-1089))))) -((-2361 (((-822 |#1| |#3|) (-591 |#3|) (-591 (-825 |#1|)) (-822 |#1| |#3|) (-1 (-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|))) 33)) (-4018 (((-822 |#1| |#3|) (-591 |#3|) (-591 (-825 |#1|)) (-1 |#3| (-591 |#3|)) (-822 |#1| |#3|) (-1 (-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|))) 32))) -(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -4018 ((-822 |#1| |#3|) (-591 |#3|) (-591 (-825 |#1|)) (-1 |#3| (-591 |#3|)) (-822 |#1| |#3|) (-1 (-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|)))) (-15 -2361 ((-822 |#1| |#3|) (-591 |#3|) (-591 (-825 |#1|)) (-822 |#1| |#3|) (-1 (-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|))))) (-1018) (-13 (-975) (-788)) (-13 (-975) (-566 (-825 |#1|)) (-966 |#2|))) (T -874)) -((-2361 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 (-825 *6))) (-5 *5 (-1 (-822 *6 *8) *8 (-825 *6) (-822 *6 *8))) (-4 *6 (-1018)) (-4 *8 (-13 (-975) (-566 (-825 *6)) (-966 *7))) (-5 *2 (-822 *6 *8)) (-4 *7 (-13 (-975) (-788))) (-5 *1 (-874 *6 *7 *8)))) (-4018 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-591 (-825 *7))) (-5 *5 (-1 *9 (-591 *9))) (-5 *6 (-1 (-822 *7 *9) *9 (-825 *7) (-822 *7 *9))) (-4 *7 (-1018)) (-4 *9 (-13 (-975) (-566 (-825 *7)) (-966 *8))) (-5 *2 (-822 *7 *9)) (-5 *3 (-591 *9)) (-4 *8 (-13 (-975) (-788))) (-5 *1 (-874 *7 *8 *9))))) -(-10 -7 (-15 -4018 ((-822 |#1| |#3|) (-591 |#3|) (-591 (-825 |#1|)) (-1 |#3| (-591 |#3|)) (-822 |#1| |#3|) (-1 (-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|)))) (-15 -2361 ((-822 |#1| |#3|) (-591 |#3|) (-591 (-825 |#1|)) (-822 |#1| |#3|) (-1 (-822 |#1| |#3|) |#3| (-825 |#1|) (-822 |#1| |#3|))))) -((-3571 (((-1085 (-385 (-525))) (-525)) 63)) (-2142 (((-1085 (-525)) (-525)) 66)) (-3773 (((-1085 (-525)) (-525)) 60)) (-1368 (((-525) (-1085 (-525))) 55)) (-1458 (((-1085 (-385 (-525))) (-525)) 49)) (-3762 (((-1085 (-525)) (-525)) 38)) (-2818 (((-1085 (-525)) (-525)) 68)) (-3431 (((-1085 (-525)) (-525)) 67)) (-2117 (((-1085 (-385 (-525))) (-525)) 51))) -(((-875) (-10 -7 (-15 -2117 ((-1085 (-385 (-525))) (-525))) (-15 -3431 ((-1085 (-525)) (-525))) (-15 -2818 ((-1085 (-525)) (-525))) (-15 -3762 ((-1085 (-525)) (-525))) (-15 -1458 ((-1085 (-385 (-525))) (-525))) (-15 -1368 ((-525) (-1085 (-525)))) (-15 -3773 ((-1085 (-525)) (-525))) (-15 -2142 ((-1085 (-525)) (-525))) (-15 -3571 ((-1085 (-385 (-525))) (-525))))) (T -875)) -((-3571 (*1 *2 *3) (-12 (-5 *2 (-1085 (-385 (-525)))) (-5 *1 (-875)) (-5 *3 (-525)))) (-2142 (*1 *2 *3) (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525)))) (-3773 (*1 *2 *3) (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-1085 (-525))) (-5 *2 (-525)) (-5 *1 (-875)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1085 (-385 (-525)))) (-5 *1 (-875)) (-5 *3 (-525)))) (-3762 (*1 *2 *3) (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525)))) (-2818 (*1 *2 *3) (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525)))) (-3431 (*1 *2 *3) (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525)))) (-2117 (*1 *2 *3) (-12 (-5 *2 (-1085 (-385 (-525)))) (-5 *1 (-875)) (-5 *3 (-525))))) -(-10 -7 (-15 -2117 ((-1085 (-385 (-525))) (-525))) (-15 -3431 ((-1085 (-525)) (-525))) (-15 -2818 ((-1085 (-525)) (-525))) (-15 -3762 ((-1085 (-525)) (-525))) (-15 -1458 ((-1085 (-385 (-525))) (-525))) (-15 -1368 ((-525) (-1085 (-525)))) (-15 -3773 ((-1085 (-525)) (-525))) (-15 -2142 ((-1085 (-525)) (-525))) (-15 -3571 ((-1085 (-385 (-525))) (-525)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3559 (($ (-712)) NIL (|has| |#1| (-23)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-1734 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018)))) (-1867 (($ (-591 |#1|)) 13)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-2533 (((-631 |#1|) $ $) NIL (|has| |#1| (-975)))) (-1316 (($ (-712) |#1|) 8)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) 10 (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2380 ((|#1| $) NIL (-12 (|has| |#1| (-932)) (|has| |#1| (-975))))) (-3295 (((-108) $ (-712)) NIL)) (-2445 ((|#1| $) NIL (-12 (|has| |#1| (-932)) (|has| |#1| (-975))))) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2872 ((|#1| $) NIL (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-1618 (($ $ (-591 |#1|)) 26)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 20) (($ $ (-1138 (-525))) NIL)) (-3183 ((|#1| $ $) NIL (|has| |#1| (-975)))) (-3840 (((-854) $) 16)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-1804 (($ $ $) 24)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501)))) (($ (-591 |#1|)) 17)) (-2695 (($ (-591 |#1|)) NIL)) (-1624 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-591 $)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4047 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4036 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-668))) (($ $ |#1|) NIL (|has| |#1| (-668)))) (-2028 (((-712) $) 14 (|has| $ (-6 -4250))))) -(((-876 |#1|) (-911 |#1|) (-975)) (T -876)) -NIL -(-911 |#1|) -((-4003 (((-457 |#1| |#2|) (-885 |#2|)) 20)) (-4219 (((-227 |#1| |#2|) (-885 |#2|)) 33)) (-2895 (((-885 |#2|) (-457 |#1| |#2|)) 25)) (-1721 (((-227 |#1| |#2|) (-457 |#1| |#2|)) 55)) (-1454 (((-885 |#2|) (-227 |#1| |#2|)) 30)) (-3767 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 46))) -(((-877 |#1| |#2|) (-10 -7 (-15 -3767 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -1721 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -4003 ((-457 |#1| |#2|) (-885 |#2|))) (-15 -2895 ((-885 |#2|) (-457 |#1| |#2|))) (-15 -1454 ((-885 |#2|) (-227 |#1| |#2|))) (-15 -4219 ((-227 |#1| |#2|) (-885 |#2|)))) (-591 (-1089)) (-975)) (T -877)) -((-4219 (*1 *2 *3) (-12 (-5 *3 (-885 *5)) (-4 *5 (-975)) (-5 *2 (-227 *4 *5)) (-5 *1 (-877 *4 *5)) (-14 *4 (-591 (-1089))))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-975)) (-5 *2 (-885 *5)) (-5 *1 (-877 *4 *5)))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-975)) (-5 *2 (-885 *5)) (-5 *1 (-877 *4 *5)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-885 *5)) (-4 *5 (-975)) (-5 *2 (-457 *4 *5)) (-5 *1 (-877 *4 *5)) (-14 *4 (-591 (-1089))))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-975)) (-5 *2 (-227 *4 *5)) (-5 *1 (-877 *4 *5)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-975)) (-5 *2 (-457 *4 *5)) (-5 *1 (-877 *4 *5))))) -(-10 -7 (-15 -3767 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -1721 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -4003 ((-457 |#1| |#2|) (-885 |#2|))) (-15 -2895 ((-885 |#2|) (-457 |#1| |#2|))) (-15 -1454 ((-885 |#2|) (-227 |#1| |#2|))) (-15 -4219 ((-227 |#1| |#2|) (-885 |#2|)))) -((-3823 (((-591 |#2|) |#2| |#2|) 10)) (-2332 (((-712) (-591 |#1|)) 37 (|has| |#1| (-786)))) (-3650 (((-591 |#2|) |#2|) 11)) (-2294 (((-712) (-591 |#1|) (-525) (-525)) 36 (|has| |#1| (-786)))) (-3696 ((|#1| |#2|) 32 (|has| |#1| (-786))))) -(((-878 |#1| |#2|) (-10 -7 (-15 -3823 ((-591 |#2|) |#2| |#2|)) (-15 -3650 ((-591 |#2|) |#2|)) (IF (|has| |#1| (-786)) (PROGN (-15 -3696 (|#1| |#2|)) (-15 -2332 ((-712) (-591 |#1|))) (-15 -2294 ((-712) (-591 |#1|) (-525) (-525)))) |%noBranch|)) (-341) (-1147 |#1|)) (T -878)) -((-2294 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-591 *5)) (-5 *4 (-525)) (-4 *5 (-786)) (-4 *5 (-341)) (-5 *2 (-712)) (-5 *1 (-878 *5 *6)) (-4 *6 (-1147 *5)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-591 *4)) (-4 *4 (-786)) (-4 *4 (-341)) (-5 *2 (-712)) (-5 *1 (-878 *4 *5)) (-4 *5 (-1147 *4)))) (-3696 (*1 *2 *3) (-12 (-4 *2 (-341)) (-4 *2 (-786)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1147 *2)))) (-3650 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-591 *3)) (-5 *1 (-878 *4 *3)) (-4 *3 (-1147 *4)))) (-3823 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-591 *3)) (-5 *1 (-878 *4 *3)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -3823 ((-591 |#2|) |#2| |#2|)) (-15 -3650 ((-591 |#2|) |#2|)) (IF (|has| |#1| (-786)) (PROGN (-15 -3696 (|#1| |#2|)) (-15 -2332 ((-712) (-591 |#1|))) (-15 -2294 ((-712) (-591 |#1|) (-525) (-525)))) |%noBranch|)) -((-1257 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 19))) -(((-879 |#1| |#2|) (-10 -7 (-15 -1257 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-975) (-975)) (T -879)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-975)) (-4 *6 (-975)) (-5 *2 (-885 *6)) (-5 *1 (-879 *5 *6))))) -(-10 -7 (-15 -1257 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) -((-2514 (((-1144 |#1| (-885 |#2|)) (-885 |#2|) (-1167 |#1|)) 18))) -(((-880 |#1| |#2|) (-10 -7 (-15 -2514 ((-1144 |#1| (-885 |#2|)) (-885 |#2|) (-1167 |#1|)))) (-1089) (-975)) (T -880)) -((-2514 (*1 *2 *3 *4) (-12 (-5 *4 (-1167 *5)) (-14 *5 (-1089)) (-4 *6 (-975)) (-5 *2 (-1144 *5 (-885 *6))) (-5 *1 (-880 *5 *6)) (-5 *3 (-885 *6))))) -(-10 -7 (-15 -2514 ((-1144 |#1| (-885 |#2|)) (-885 |#2|) (-1167 |#1|)))) -((-1978 (((-712) $) 71) (((-712) $ (-591 |#4|)) 74)) (-1720 (($ $) 173)) (-3898 (((-396 $) $) 165)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 116)) (-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-3341 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) 59)) (-1788 (($ $ $ |#4|) 76)) (-3925 (((-631 (-525)) (-631 $)) NIL) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) 106) (((-631 |#2|) (-631 $)) 99)) (-3153 (($ $) 180) (($ $ |#4|) 183)) (-1564 (((-591 $) $) 63)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 199) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 192)) (-2987 (((-591 $) $) 28)) (-1422 (($ |#2| |#3|) NIL) (($ $ |#4| (-712)) NIL) (($ $ (-591 |#4|) (-591 (-712))) 57)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ |#4|) 162)) (-3401 (((-3 (-591 $) "failed") $) 42)) (-4008 (((-3 (-591 $) "failed") $) 31)) (-3410 (((-3 (-2 (|:| |var| |#4|) (|:| -3987 (-712))) "failed") $) 47)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 109)) (-3550 (((-396 (-1085 $)) (-1085 $)) 122)) (-3534 (((-396 (-1085 $)) (-1085 $)) 120)) (-2542 (((-396 $) $) 140)) (-1980 (($ $ (-591 (-273 $))) 21) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-591 |#4|) (-591 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-591 |#4|) (-591 $)) NIL)) (-2858 (($ $ |#4|) 78)) (-1300 (((-825 (-357)) $) 213) (((-825 (-525)) $) 206) (((-501) $) 221)) (-2827 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 154)) (-1263 ((|#2| $ |#3|) NIL) (($ $ |#4| (-712)) 52) (($ $ (-591 |#4|) (-591 (-712))) 55)) (-3751 (((-3 $ "failed") $) 156)) (-3971 (((-108) $ $) 186))) -(((-881 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -3751 ((-3 |#1| "failed") |#1|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|))) (-15 -4018 ((-822 (-357) |#1|) |#1| (-825 (-357)) (-822 (-357) |#1|))) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3534 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3550 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3008 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|))) (-15 -3124 ((-3 (-1171 |#1|) "failed") (-631 |#1|))) (-15 -3153 (|#1| |#1| |#4|)) (-15 -2827 (|#1| |#1| |#4|)) (-15 -2858 (|#1| |#1| |#4|)) (-15 -1788 (|#1| |#1| |#1| |#4|)) (-15 -1564 ((-591 |#1|) |#1|)) (-15 -1978 ((-712) |#1| (-591 |#4|))) (-15 -1978 ((-712) |#1|)) (-15 -3410 ((-3 (-2 (|:| |var| |#4|) (|:| -3987 (-712))) "failed") |#1|)) (-15 -3401 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -4008 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -1422 (|#1| |#1| (-591 |#4|) (-591 (-712)))) (-15 -1422 (|#1| |#1| |#4| (-712))) (-15 -3148 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1| |#4|)) (-15 -2987 ((-591 |#1|) |#1|)) (-15 -1263 (|#1| |#1| (-591 |#4|) (-591 (-712)))) (-15 -1263 (|#1| |#1| |#4| (-712))) (-15 -3925 ((-631 |#2|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3341 (|#4| |#1|)) (-15 -4174 ((-3 |#4| "failed") |#1|)) (-15 -1980 (|#1| |#1| (-591 |#4|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#4| |#1|)) (-15 -1980 (|#1| |#1| (-591 |#4|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#4| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -1422 (|#1| |#2| |#3|)) (-15 -1263 (|#2| |#1| |#3|)) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -2827 (|#2| |#1|)) (-15 -3153 (|#1| |#1|))) (-882 |#2| |#3| |#4|) (-975) (-734) (-788)) (T -881)) -NIL -(-10 -8 (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -3751 ((-3 |#1| "failed") |#1|)) (-15 -3971 ((-108) |#1| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|))) (-15 -4018 ((-822 (-357) |#1|) |#1| (-825 (-357)) (-822 (-357) |#1|))) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3534 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3550 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3008 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|))) (-15 -3124 ((-3 (-1171 |#1|) "failed") (-631 |#1|))) (-15 -3153 (|#1| |#1| |#4|)) (-15 -2827 (|#1| |#1| |#4|)) (-15 -2858 (|#1| |#1| |#4|)) (-15 -1788 (|#1| |#1| |#1| |#4|)) (-15 -1564 ((-591 |#1|) |#1|)) (-15 -1978 ((-712) |#1| (-591 |#4|))) (-15 -1978 ((-712) |#1|)) (-15 -3410 ((-3 (-2 (|:| |var| |#4|) (|:| -3987 (-712))) "failed") |#1|)) (-15 -3401 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -4008 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -1422 (|#1| |#1| (-591 |#4|) (-591 (-712)))) (-15 -1422 (|#1| |#1| |#4| (-712))) (-15 -3148 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1| |#4|)) (-15 -2987 ((-591 |#1|) |#1|)) (-15 -1263 (|#1| |#1| (-591 |#4|) (-591 (-712)))) (-15 -1263 (|#1| |#1| |#4| (-712))) (-15 -3925 ((-631 |#2|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3341 (|#4| |#1|)) (-15 -4174 ((-3 |#4| "failed") |#1|)) (-15 -1980 (|#1| |#1| (-591 |#4|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#4| |#1|)) (-15 -1980 (|#1| |#1| (-591 |#4|) (-591 |#2|))) (-15 -1980 (|#1| |#1| |#4| |#2|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -1422 (|#1| |#2| |#3|)) (-15 -1263 (|#2| |#1| |#3|)) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -2827 (|#2| |#1|)) (-15 -3153 (|#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1444 (((-591 |#3|) $) 110)) (-2514 (((-1085 $) $ |#3|) 125) (((-1085 |#1|) $) 124)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3641 (($ $) 88 (|has| |#1| (-517)))) (-3077 (((-108) $) 90 (|has| |#1| (-517)))) (-1978 (((-712) $) 112) (((-712) $ (-591 |#3|)) 111)) (-3332 (((-3 $ "failed") $ $) 19)) (-2179 (((-396 (-1085 $)) (-1085 $)) 100 (|has| |#1| (-842)))) (-1720 (($ $) 98 (|has| |#1| (-429)))) (-3898 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 103 (|has| |#1| (-842)))) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-966 (-525)))) (((-3 |#3| "failed") $) 136)) (-3341 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-966 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-966 (-525)))) ((|#3| $) 135)) (-1788 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-1575 (($ $) 154)) (-3925 (((-631 (-525)) (-631 $)) 134 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 133 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 132) (((-631 |#1|) (-631 $)) 131)) (-1522 (((-3 $ "failed") $) 34)) (-3153 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-1564 (((-591 $) $) 109)) (-2393 (((-108) $) 96 (|has| |#1| (-842)))) (-2615 (($ $ |#1| |#2| $) 172)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 84 (-12 (|has| |#3| (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 83 (-12 (|has| |#3| (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-3865 (((-108) $) 31)) (-3667 (((-712) $) 169)) (-1434 (($ (-1085 |#1|) |#3|) 117) (($ (-1085 $) |#3|) 116)) (-2987 (((-591 $) $) 126)) (-3802 (((-108) $) 152)) (-1422 (($ |#1| |#2|) 153) (($ $ |#3| (-712)) 119) (($ $ (-591 |#3|) (-591 (-712))) 118)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ |#3|) 120)) (-3629 ((|#2| $) 170) (((-712) $ |#3|) 122) (((-591 (-712)) $ (-591 |#3|)) 121)) (-1923 (($ $ $) 79 (|has| |#1| (-788)))) (-3475 (($ $ $) 78 (|has| |#1| (-788)))) (-2508 (($ (-1 |#2| |#2|) $) 171)) (-1257 (($ (-1 |#1| |#1|) $) 151)) (-3027 (((-3 |#3| "failed") $) 123)) (-1548 (($ $) 149)) (-1556 ((|#1| $) 148)) (-2081 (($ (-591 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2621 (((-1072) $) 9)) (-3401 (((-3 (-591 $) "failed") $) 114)) (-4008 (((-3 (-591 $) "failed") $) 115)) (-3410 (((-3 (-2 (|:| |var| |#3|) (|:| -3987 (-712))) "failed") $) 113)) (-2937 (((-1036) $) 10)) (-1531 (((-108) $) 166)) (-1540 ((|#1| $) 167)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 95 (|has| |#1| (-429)))) (-2124 (($ (-591 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) 102 (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) 101 (|has| |#1| (-842)))) (-2542 (((-396 $) $) 99 (|has| |#1| (-842)))) (-3210 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-1980 (($ $ (-591 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-591 $) (-591 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-591 |#3|) (-591 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-591 |#3|) (-591 $)) 138)) (-2858 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-2209 (($ $ |#3|) 42) (($ $ (-591 |#3|)) 41) (($ $ |#3| (-712)) 40) (($ $ (-591 |#3|) (-591 (-712))) 39)) (-2743 ((|#2| $) 150) (((-712) $ |#3|) 130) (((-591 (-712)) $ (-591 |#3|)) 129)) (-1300 (((-825 (-357)) $) 82 (-12 (|has| |#3| (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) 81 (-12 (|has| |#3| (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-566 (-501))) (|has| |#1| (-566 (-501)))))) (-2827 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 104 (-3543 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-517))) (($ (-385 (-525))) 72 (-3150 (|has| |#1| (-966 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-3109 (((-591 |#1|) $) 168)) (-1263 ((|#1| $ |#2|) 155) (($ $ |#3| (-712)) 128) (($ $ (-591 |#3|) (-591 (-712))) 127)) (-3751 (((-3 $ "failed") $) 73 (-3150 (-3543 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) 29)) (-2931 (($ $ $ (-712)) 173 (|has| |#1| (-160)))) (-1724 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ |#3|) 38) (($ $ (-591 |#3|)) 37) (($ $ |#3| (-712)) 36) (($ $ (-591 |#3|) (-591 (-712))) 35)) (-4004 (((-108) $ $) 76 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 75 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 77 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 74 (|has| |#1| (-788)))) (-4059 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-882 |#1| |#2| |#3|) (-131) (-975) (-734) (-788)) (T -882)) -((-3153 (*1 *1 *1) (-12 (-4 *1 (-882 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-429)))) (-2743 (*1 *2 *1 *3) (-12 (-4 *1 (-882 *4 *5 *3)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) (-5 *2 (-712)))) (-2743 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *6)) (-4 *1 (-882 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 (-712))))) (-1263 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-882 *4 *5 *2)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *2 (-788)))) (-1263 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 *6)) (-5 *3 (-591 (-712))) (-4 *1 (-882 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)))) (-2987 (*1 *2 *1) (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-882 *3 *4 *5)))) (-2514 (*1 *2 *1 *3) (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) (-5 *2 (-1085 *1)) (-4 *1 (-882 *4 *5 *3)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-1085 *3)))) (-3027 (*1 *2 *1) (|partial| -12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)))) (-3629 (*1 *2 *1 *3) (-12 (-4 *1 (-882 *4 *5 *3)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) (-5 *2 (-712)))) (-3629 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *6)) (-4 *1 (-882 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 (-712))))) (-3148 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-882 *4 *5 *3)))) (-1422 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-882 *4 *5 *2)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *2 (-788)))) (-1422 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 *6)) (-5 *3 (-591 (-712))) (-4 *1 (-882 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)))) (-1434 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *4)) (-4 *4 (-975)) (-4 *1 (-882 *4 *5 *3)) (-4 *5 (-734)) (-4 *3 (-788)))) (-1434 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-882 *4 *5 *3)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)))) (-4008 (*1 *2 *1) (|partial| -12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-882 *3 *4 *5)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-882 *3 *4 *5)))) (-3410 (*1 *2 *1) (|partial| -12 (-4 *1 (-882 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-2 (|:| |var| *5) (|:| -3987 (-712)))))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-712)))) (-1978 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *6)) (-4 *1 (-882 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-712)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *5)))) (-1564 (*1 *2 *1) (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-882 *3 *4 *5)))) (-1788 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)) (-4 *3 (-160)))) (-2858 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)) (-4 *3 (-160)))) (-2827 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)) (-4 *3 (-429)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)) (-4 *3 (-429)))) (-1720 (*1 *1 *1) (-12 (-4 *1 (-882 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-429)))) (-3898 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-396 *1)) (-4 *1 (-882 *3 *4 *5))))) -(-13 (-833 |t#3|) (-304 |t#1| |t#2|) (-288 $) (-486 |t#3| |t#1|) (-486 |t#3| $) (-966 |t#3|) (-355 |t#1|) (-10 -8 (-15 -2743 ((-712) $ |t#3|)) (-15 -2743 ((-591 (-712)) $ (-591 |t#3|))) (-15 -1263 ($ $ |t#3| (-712))) (-15 -1263 ($ $ (-591 |t#3|) (-591 (-712)))) (-15 -2987 ((-591 $) $)) (-15 -2514 ((-1085 $) $ |t#3|)) (-15 -2514 ((-1085 |t#1|) $)) (-15 -3027 ((-3 |t#3| "failed") $)) (-15 -3629 ((-712) $ |t#3|)) (-15 -3629 ((-591 (-712)) $ (-591 |t#3|))) (-15 -3148 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $ |t#3|)) (-15 -1422 ($ $ |t#3| (-712))) (-15 -1422 ($ $ (-591 |t#3|) (-591 (-712)))) (-15 -1434 ($ (-1085 |t#1|) |t#3|)) (-15 -1434 ($ (-1085 $) |t#3|)) (-15 -4008 ((-3 (-591 $) "failed") $)) (-15 -3401 ((-3 (-591 $) "failed") $)) (-15 -3410 ((-3 (-2 (|:| |var| |t#3|) (|:| -3987 (-712))) "failed") $)) (-15 -1978 ((-712) $)) (-15 -1978 ((-712) $ (-591 |t#3|))) (-15 -1444 ((-591 |t#3|) $)) (-15 -1564 ((-591 $) $)) (IF (|has| |t#1| (-788)) (-6 (-788)) |%noBranch|) (IF (|has| |t#1| (-566 (-501))) (IF (|has| |t#3| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-566 (-825 (-525)))) (IF (|has| |t#3| (-566 (-825 (-525)))) (-6 (-566 (-825 (-525)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-566 (-825 (-357)))) (IF (|has| |t#3| (-566 (-825 (-357)))) (-6 (-566 (-825 (-357)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-819 (-525))) (IF (|has| |t#3| (-819 (-525))) (-6 (-819 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-819 (-357))) (IF (|has| |t#3| (-819 (-357))) (-6 (-819 (-357))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -1788 ($ $ $ |t#3|)) (-15 -2858 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-6 (-429)) (-15 -2827 ($ $ |t#3|)) (-15 -3153 ($ $)) (-15 -3153 ($ $ |t#3|)) (-15 -3898 ((-396 $) $)) (-15 -1720 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4248)) (-6 -4248) |%noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-566 (-501)) -12 (|has| |#1| (-566 (-501))) (|has| |#3| (-566 (-501)))) ((-566 (-825 (-357))) -12 (|has| |#1| (-566 (-825 (-357)))) (|has| |#3| (-566 (-825 (-357))))) ((-566 (-825 (-525))) -12 (|has| |#1| (-566 (-825 (-525)))) (|has| |#3| (-566 (-825 (-525))))) ((-269) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3150 (|has| |#1| (-842)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-593 #0#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-587 (-525)) |has| |#1| (-587 (-525))) ((-587 |#1|) . T) ((-659 #0#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-668) . T) ((-788) |has| |#1| (-788)) ((-833 |#3|) . T) ((-819 (-357)) -12 (|has| |#1| (-819 (-357))) (|has| |#3| (-819 (-357)))) ((-819 (-525)) -12 (|has| |#1| (-819 (-525))) (|has| |#3| (-819 (-525)))) ((-842) |has| |#1| (-842)) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-966 |#3|) . T) ((-981 #0#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) |has| |#1| (-842))) -((-1444 (((-591 |#2|) |#5|) 36)) (-2514 (((-1085 |#5|) |#5| |#2| (-1085 |#5|)) 23) (((-385 (-1085 |#5|)) |#5| |#2|) 16)) (-1434 ((|#5| (-385 (-1085 |#5|)) |#2|) 30)) (-3027 (((-3 |#2| "failed") |#5|) 65)) (-3401 (((-3 (-591 |#5|) "failed") |#5|) 59)) (-1713 (((-3 (-2 (|:| |val| |#5|) (|:| -3987 (-525))) "failed") |#5|) 47)) (-4008 (((-3 (-591 |#5|) "failed") |#5|) 61)) (-3410 (((-3 (-2 (|:| |var| |#2|) (|:| -3987 (-525))) "failed") |#5|) 51))) -(((-883 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1444 ((-591 |#2|) |#5|)) (-15 -3027 ((-3 |#2| "failed") |#5|)) (-15 -2514 ((-385 (-1085 |#5|)) |#5| |#2|)) (-15 -1434 (|#5| (-385 (-1085 |#5|)) |#2|)) (-15 -2514 ((-1085 |#5|) |#5| |#2| (-1085 |#5|))) (-15 -4008 ((-3 (-591 |#5|) "failed") |#5|)) (-15 -3401 ((-3 (-591 |#5|) "failed") |#5|)) (-15 -3410 ((-3 (-2 (|:| |var| |#2|) (|:| -3987 (-525))) "failed") |#5|)) (-15 -1713 ((-3 (-2 (|:| |val| |#5|) (|:| -3987 (-525))) "failed") |#5|))) (-734) (-788) (-975) (-882 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -2686 ($ |#4|)) (-15 -1384 (|#4| $)) (-15 -1396 (|#4| $))))) (T -883)) -((-1713 (*1 *2 *3) (|partial| -12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3987 (-525)))) (-5 *1 (-883 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))))) (-3410 (*1 *2 *3) (|partial| -12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3987 (-525)))) (-5 *1 (-883 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))))) (-3401 (*1 *2 *3) (|partial| -12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-591 *3)) (-5 *1 (-883 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))))) (-4008 (*1 *2 *3) (|partial| -12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-591 *3)) (-5 *1 (-883 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))))) (-2514 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))) (-4 *7 (-882 *6 *5 *4)) (-4 *5 (-734)) (-4 *4 (-788)) (-4 *6 (-975)) (-5 *1 (-883 *5 *4 *6 *7 *3)))) (-1434 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1085 *2))) (-4 *5 (-734)) (-4 *4 (-788)) (-4 *6 (-975)) (-4 *2 (-13 (-341) (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))) (-5 *1 (-883 *5 *4 *6 *7 *2)) (-4 *7 (-882 *6 *5 *4)))) (-2514 (*1 *2 *3 *4) (-12 (-4 *5 (-734)) (-4 *4 (-788)) (-4 *6 (-975)) (-4 *7 (-882 *6 *5 *4)) (-5 *2 (-385 (-1085 *3))) (-5 *1 (-883 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))))) (-3027 (*1 *2 *3) (|partial| -12 (-4 *4 (-734)) (-4 *5 (-975)) (-4 *6 (-882 *5 *4 *2)) (-4 *2 (-788)) (-5 *1 (-883 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -2686 ($ *6)) (-15 -1384 (*6 $)) (-15 -1396 (*6 $))))))) (-1444 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-591 *5)) (-5 *1 (-883 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $)))))))) -(-10 -7 (-15 -1444 ((-591 |#2|) |#5|)) (-15 -3027 ((-3 |#2| "failed") |#5|)) (-15 -2514 ((-385 (-1085 |#5|)) |#5| |#2|)) (-15 -1434 (|#5| (-385 (-1085 |#5|)) |#2|)) (-15 -2514 ((-1085 |#5|) |#5| |#2| (-1085 |#5|))) (-15 -4008 ((-3 (-591 |#5|) "failed") |#5|)) (-15 -3401 ((-3 (-591 |#5|) "failed") |#5|)) (-15 -3410 ((-3 (-2 (|:| |var| |#2|) (|:| -3987 (-525))) "failed") |#5|)) (-15 -1713 ((-3 (-2 (|:| |val| |#5|) (|:| -3987 (-525))) "failed") |#5|))) -((-1257 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-884 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1257 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-734) (-788) (-975) (-882 |#3| |#1| |#2|) (-13 (-1018) (-10 -8 (-15 -4036 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-712)))))) (T -884)) -((-1257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-788)) (-4 *8 (-975)) (-4 *6 (-734)) (-4 *2 (-13 (-1018) (-10 -8 (-15 -4036 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-712)))))) (-5 *1 (-884 *6 *7 *8 *5 *2)) (-4 *5 (-882 *8 *6 *7))))) -(-10 -7 (-15 -1257 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-1089)) $) 16)) (-2514 (((-1085 $) $ (-1089)) 21) (((-1085 |#1|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-1089))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1720 (($ $) NIL (|has| |#1| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) 8) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-1089) "failed") $) NIL)) (-3341 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-1089) $) NIL)) (-1788 (($ $ $ (-1089)) NIL (|has| |#1| (-160)))) (-1575 (($ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1089)) NIL (|has| |#1| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#1| (-842)))) (-2615 (($ $ |#1| (-497 (-1089)) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-1089) (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-1089) (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-1434 (($ (-1085 |#1|) (-1089)) NIL) (($ (-1085 $) (-1089)) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-497 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-1089)) NIL)) (-3629 (((-497 (-1089)) $) NIL) (((-712) $ (-1089)) NIL) (((-591 (-712)) $ (-591 (-1089))) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2508 (($ (-1 (-497 (-1089)) (-497 (-1089))) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3027 (((-3 (-1089) "failed") $) 19)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2621 (((-1072) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-1089)) (|:| -3987 (-712))) "failed") $) NIL)) (-2452 (($ $ (-1089)) 29 (|has| |#1| (-37 (-385 (-525)))))) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#1| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-842)))) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-1089) |#1|) NIL) (($ $ (-591 (-1089)) (-591 |#1|)) NIL) (($ $ (-1089) $) NIL) (($ $ (-591 (-1089)) (-591 $)) NIL)) (-2858 (($ $ (-1089)) NIL (|has| |#1| (-160)))) (-2209 (($ $ (-1089)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL)) (-2743 (((-497 (-1089)) $) NIL) (((-712) $ (-1089)) NIL) (((-591 (-712)) $ (-591 (-1089))) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-1089) (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-1089) (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-1089) (-566 (-501))) (|has| |#1| (-566 (-501)))))) (-2827 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1089)) NIL (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) 25) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1089)) 27) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-497 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#1| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-1089)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-885 |#1|) (-13 (-882 |#1| (-497 (-1089)) (-1089)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1089))) |%noBranch|))) (-975)) (T -885)) -((-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-885 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975))))) -(-13 (-882 |#1| (-497 (-1089)) (-1089)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1089))) |%noBranch|))) -((-2205 (((-2 (|:| -3987 (-712)) (|:| -2976 |#5|) (|:| |radicand| |#5|)) |#3| (-712)) 38)) (-2262 (((-2 (|:| -3987 (-712)) (|:| -2976 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-712)) 34)) (-2738 (((-2 (|:| -3987 (-712)) (|:| -2976 |#4|) (|:| |radicand| (-591 |#4|))) |#4| (-712)) 54)) (-3047 (((-2 (|:| -3987 (-712)) (|:| -2976 |#5|) (|:| |radicand| |#5|)) |#5| (-712)) 64 (|has| |#3| (-429))))) -(((-886 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2205 ((-2 (|:| -3987 (-712)) (|:| -2976 |#5|) (|:| |radicand| |#5|)) |#3| (-712))) (-15 -2262 ((-2 (|:| -3987 (-712)) (|:| -2976 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-712))) (IF (|has| |#3| (-429)) (-15 -3047 ((-2 (|:| -3987 (-712)) (|:| -2976 |#5|) (|:| |radicand| |#5|)) |#5| (-712))) |%noBranch|) (-15 -2738 ((-2 (|:| -3987 (-712)) (|:| -2976 |#4|) (|:| |radicand| (-591 |#4|))) |#4| (-712)))) (-734) (-788) (-517) (-882 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -1384 (|#4| $)) (-15 -1396 (|#4| $)) (-15 -2686 ($ |#4|))))) (T -886)) -((-2738 (*1 *2 *3 *4) (-12 (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-517)) (-4 *3 (-882 *7 *5 *6)) (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *3) (|:| |radicand| (-591 *3)))) (-5 *1 (-886 *5 *6 *7 *3 *8)) (-5 *4 (-712)) (-4 *8 (-13 (-341) (-10 -8 (-15 -1384 (*3 $)) (-15 -1396 (*3 $)) (-15 -2686 ($ *3))))))) (-3047 (*1 *2 *3 *4) (-12 (-4 *7 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-517)) (-4 *8 (-882 *7 *5 *6)) (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *3) (|:| |radicand| *3))) (-5 *1 (-886 *5 *6 *7 *8 *3)) (-5 *4 (-712)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1384 (*8 $)) (-15 -1396 (*8 $)) (-15 -2686 ($ *8))))))) (-2262 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-517)) (-4 *8 (-882 *7 *5 *6)) (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *9) (|:| |radicand| *9))) (-5 *1 (-886 *5 *6 *7 *8 *9)) (-5 *4 (-712)) (-4 *9 (-13 (-341) (-10 -8 (-15 -1384 (*8 $)) (-15 -1396 (*8 $)) (-15 -2686 ($ *8))))))) (-2205 (*1 *2 *3 *4) (-12 (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-517)) (-4 *7 (-882 *3 *5 *6)) (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *8) (|:| |radicand| *8))) (-5 *1 (-886 *5 *6 *3 *7 *8)) (-5 *4 (-712)) (-4 *8 (-13 (-341) (-10 -8 (-15 -1384 (*7 $)) (-15 -1396 (*7 $)) (-15 -2686 ($ *7)))))))) -(-10 -7 (-15 -2205 ((-2 (|:| -3987 (-712)) (|:| -2976 |#5|) (|:| |radicand| |#5|)) |#3| (-712))) (-15 -2262 ((-2 (|:| -3987 (-712)) (|:| -2976 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-712))) (IF (|has| |#3| (-429)) (-15 -3047 ((-2 (|:| -3987 (-712)) (|:| -2976 |#5|) (|:| |radicand| |#5|)) |#5| (-712))) |%noBranch|) (-15 -2738 ((-2 (|:| -3987 (-712)) (|:| -2976 |#4|) (|:| |radicand| (-591 |#4|))) |#4| (-712)))) -((-4162 (((-1013 (-205)) $) 8)) (-4148 (((-1013 (-205)) $) 9)) (-1870 (((-591 (-591 (-876 (-205)))) $) 10)) (-2686 (((-796) $) 6))) -(((-887) (-131)) (T -887)) -((-1870 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-591 (-591 (-876 (-205))))))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1013 (-205))))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1013 (-205)))))) -(-13 (-565 (-796)) (-10 -8 (-15 -1870 ((-591 (-591 (-876 (-205)))) $)) (-15 -4148 ((-1013 (-205)) $)) (-15 -4162 ((-1013 (-205)) $)))) -(((-565 (-796)) . T)) -((-4210 (((-3 (-631 |#1|) "failed") |#2| (-854)) 15))) -(((-888 |#1| |#2|) (-10 -7 (-15 -4210 ((-3 (-631 |#1|) "failed") |#2| (-854)))) (-517) (-601 |#1|)) (T -888)) -((-4210 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-854)) (-4 *5 (-517)) (-5 *2 (-631 *5)) (-5 *1 (-888 *5 *3)) (-4 *3 (-601 *5))))) -(-10 -7 (-15 -4210 ((-3 (-631 |#1|) "failed") |#2| (-854)))) -((-1350 (((-890 |#2|) (-1 |#2| |#1| |#2|) (-890 |#1|) |#2|) 16)) (-3618 ((|#2| (-1 |#2| |#1| |#2|) (-890 |#1|) |#2|) 18)) (-1257 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 13))) -(((-889 |#1| |#2|) (-10 -7 (-15 -1350 ((-890 |#2|) (-1 |#2| |#1| |#2|) (-890 |#1|) |#2|)) (-15 -3618 (|#2| (-1 |#2| |#1| |#2|) (-890 |#1|) |#2|)) (-15 -1257 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1125) (-1125)) (T -889)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) (-3618 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-890 *5)) (-4 *5 (-1125)) (-4 *2 (-1125)) (-5 *1 (-889 *5 *2)))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-890 *6)) (-4 *6 (-1125)) (-4 *5 (-1125)) (-5 *2 (-890 *5)) (-5 *1 (-889 *6 *5))))) -(-10 -7 (-15 -1350 ((-890 |#2|) (-1 |#2| |#1| |#2|) (-890 |#1|) |#2|)) (-15 -3618 (|#2| (-1 |#2| |#1| |#2|) (-890 |#1|) |#2|)) (-15 -1257 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-525) |#1|) 16 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) 15 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 13)) (-1734 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018)))) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-1316 (($ (-712) |#1|) 12)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) 10 (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2872 ((|#1| $) NIL (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) 17 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) 11)) (-1881 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 14) (($ $ (-1138 (-525))) NIL)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) NIL)) (-1624 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-591 $)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-2028 (((-712) $) 8 (|has| $ (-6 -4250))))) -(((-890 |#1|) (-19 |#1|) (-1125)) (T -890)) +((-4028 (((-108) $ $) NIL)) (-1562 (((-592 |#1|) $) 29)) (-1651 (((-713) $) NIL)) (-1957 (($) NIL T CONST)) (-2554 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-1693 (($ $) 31)) (-1645 (((-3 $ "failed") $) NIL)) (-3982 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2507 (((-108) $) NIL)) (-2339 ((|#1| $ (-525)) NIL)) (-3446 (((-713) $ (-525)) NIL)) (-2414 (($ $) 36)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-1890 (((-108) $ $) 34)) (-2520 (((-713) $) 25)) (-1707 (((-1073) $) NIL)) (-1598 (($ $ $) NIL)) (-2627 (($ $ $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 ((|#1| $) 30)) (-2826 (((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-713)))) $) NIL)) (-2685 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4044 (((-797) $) NIL) (($ |#1|) NIL)) (-1594 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-1449 (($) 15 T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 35)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL) (($ |#1| (-713)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-761 |#1|) (-13 (-785) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -1683 (|#1| $)) (-15 -1693 ($ $)) (-15 -2414 ($ $)) (-15 -1890 ((-108) $ $)) (-15 -2627 ($ $ $)) (-15 -1598 ($ $ $)) (-15 -1257 ((-3 $ "failed") $ $)) (-15 -2554 ((-3 $ "failed") $ $)) (-15 -1257 ((-3 $ "failed") $ |#1|)) (-15 -2554 ((-3 $ "failed") $ |#1|)) (-15 -2685 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3982 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1651 ((-713) $)) (-15 -3446 ((-713) $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -2826 ((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-713)))) $)) (-15 -2520 ((-713) $)) (-15 -1562 ((-592 |#1|) $)))) (-789)) (T -761)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1683 (*1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2414 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1890 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2627 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1598 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1257 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2554 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1257 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2554 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2685 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-3982 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 (-713))))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789))))) +(-13 (-785) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -1683 (|#1| $)) (-15 -1693 ($ $)) (-15 -2414 ($ $)) (-15 -1890 ((-108) $ $)) (-15 -2627 ($ $ $)) (-15 -1598 ($ $ $)) (-15 -1257 ((-3 $ "failed") $ $)) (-15 -2554 ((-3 $ "failed") $ $)) (-15 -1257 ((-3 $ "failed") $ |#1|)) (-15 -2554 ((-3 $ "failed") $ |#1|)) (-15 -2685 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3982 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1651 ((-713) $)) (-15 -3446 ((-713) $ (-525))) (-15 -2339 (|#1| $ (-525))) (-15 -2826 ((-592 (-2 (|:| |gen| |#1|) (|:| -2840 (-713)))) $)) (-15 -2520 ((-713) $)) (-15 -1562 ((-592 |#1|) $)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-2780 (((-525) $) 53)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2973 (((-108) $) 51)) (-2507 (((-108) $) 31)) (-3721 (((-108) $) 52)) (-1260 (($ $ $) 50)) (-2154 (($ $ $) 49)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2675 (((-3 $ "failed") $ $) 42)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-2053 (($ $) 54)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3973 (((-108) $ $) 47)) (-3944 (((-108) $ $) 46)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 48)) (-3928 (((-108) $ $) 45)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-762) (-131)) (T -762)) +NIL +(-13 (-517) (-787)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-1331 (($ (-1037)) 7)) (-1350 (((-108) $ (-1073) (-1037)) 15)) (-3720 (((-764) $) 12)) (-1357 (((-764) $) 11)) (-1980 (((-1177) $) 9)) (-2964 (((-108) $ (-1037)) 16))) +(((-763) (-10 -8 (-15 -1331 ($ (-1037))) (-15 -1980 ((-1177) $)) (-15 -1357 ((-764) $)) (-15 -3720 ((-764) $)) (-15 -1350 ((-108) $ (-1073) (-1037))) (-15 -2964 ((-108) $ (-1037))))) (T -763)) +((-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-1037)) (-5 *2 (-108)) (-5 *1 (-763)))) (-1350 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1037)) (-5 *2 (-108)) (-5 *1 (-763)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-763)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-763))))) +(-10 -8 (-15 -1331 ($ (-1037))) (-15 -1980 ((-1177) $)) (-15 -1357 ((-764) $)) (-15 -3720 ((-764) $)) (-15 -1350 ((-108) $ (-1073) (-1037))) (-15 -2964 ((-108) $ (-1037)))) +((-1251 (((-1177) $ (-765)) 12)) (-1375 (((-1177) $ (-1090)) 32)) (-4104 (((-1177) $ (-1073) (-1073)) 34)) (-2483 (((-1177) $ (-1073)) 33)) (-1796 (((-1177) $) 19)) (-2143 (((-1177) $ (-525)) 28)) (-1713 (((-1177) $ (-205)) 30)) (-3568 (((-1177) $) 18)) (-4110 (((-1177) $) 26)) (-2365 (((-1177) $) 25)) (-2261 (((-1177) $) 23)) (-1694 (((-1177) $) 24)) (-2911 (((-1177) $) 22)) (-2456 (((-1177) $) 21)) (-2786 (((-1177) $) 20)) (-2305 (((-1177) $) 16)) (-3094 (((-1177) $) 17)) (-4120 (((-1177) $) 15)) (-2513 (((-1177) $) 14)) (-1864 (((-1177) $) 13)) (-4200 (($ (-1073) (-765)) 9)) (-2210 (($ (-1073) (-1073) (-765)) 8)) (-3400 (((-1090) $) 51)) (-3419 (((-1090) $) 55)) (-3112 (((-2 (|:| |cd| (-1073)) (|:| -3515 (-1073))) $) 54)) (-3131 (((-1073) $) 52)) (-3190 (((-1177) $) 41)) (-1971 (((-525) $) 49)) (-2536 (((-205) $) 50)) (-2071 (((-1177) $) 40)) (-2834 (((-1177) $) 48)) (-1359 (((-1177) $) 47)) (-2575 (((-1177) $) 45)) (-2075 (((-1177) $) 46)) (-4179 (((-1177) $) 44)) (-1963 (((-1177) $) 43)) (-4117 (((-1177) $) 42)) (-2588 (((-1177) $) 38)) (-3784 (((-1177) $) 39)) (-3407 (((-1177) $) 37)) (-1424 (((-1177) $) 36)) (-2244 (((-1177) $) 35)) (-3074 (((-1177) $) 11))) +(((-764) (-10 -8 (-15 -2210 ($ (-1073) (-1073) (-765))) (-15 -4200 ($ (-1073) (-765))) (-15 -3074 ((-1177) $)) (-15 -1251 ((-1177) $ (-765))) (-15 -1864 ((-1177) $)) (-15 -2513 ((-1177) $)) (-15 -4120 ((-1177) $)) (-15 -2305 ((-1177) $)) (-15 -3094 ((-1177) $)) (-15 -3568 ((-1177) $)) (-15 -1796 ((-1177) $)) (-15 -2786 ((-1177) $)) (-15 -2456 ((-1177) $)) (-15 -2911 ((-1177) $)) (-15 -2261 ((-1177) $)) (-15 -1694 ((-1177) $)) (-15 -2365 ((-1177) $)) (-15 -4110 ((-1177) $)) (-15 -2143 ((-1177) $ (-525))) (-15 -1713 ((-1177) $ (-205))) (-15 -1375 ((-1177) $ (-1090))) (-15 -2483 ((-1177) $ (-1073))) (-15 -4104 ((-1177) $ (-1073) (-1073))) (-15 -2244 ((-1177) $)) (-15 -1424 ((-1177) $)) (-15 -3407 ((-1177) $)) (-15 -2588 ((-1177) $)) (-15 -3784 ((-1177) $)) (-15 -2071 ((-1177) $)) (-15 -3190 ((-1177) $)) (-15 -4117 ((-1177) $)) (-15 -1963 ((-1177) $)) (-15 -4179 ((-1177) $)) (-15 -2575 ((-1177) $)) (-15 -2075 ((-1177) $)) (-15 -1359 ((-1177) $)) (-15 -2834 ((-1177) $)) (-15 -1971 ((-525) $)) (-15 -2536 ((-205) $)) (-15 -3400 ((-1090) $)) (-15 -3131 ((-1073) $)) (-15 -3112 ((-2 (|:| |cd| (-1073)) (|:| -3515 (-1073))) $)) (-15 -3419 ((-1090) $)))) (T -764)) +((-3419 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-764)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1073)) (|:| -3515 (-1073)))) (-5 *1 (-764)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-764)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-764)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2075 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-4104 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-2483 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-1375 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-1713 (*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-2143 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2456 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1251 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-4200 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-765)) (-5 *1 (-764)))) (-2210 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-765)) (-5 *1 (-764))))) +(-10 -8 (-15 -2210 ($ (-1073) (-1073) (-765))) (-15 -4200 ($ (-1073) (-765))) (-15 -3074 ((-1177) $)) (-15 -1251 ((-1177) $ (-765))) (-15 -1864 ((-1177) $)) (-15 -2513 ((-1177) $)) (-15 -4120 ((-1177) $)) (-15 -2305 ((-1177) $)) (-15 -3094 ((-1177) $)) (-15 -3568 ((-1177) $)) (-15 -1796 ((-1177) $)) (-15 -2786 ((-1177) $)) (-15 -2456 ((-1177) $)) (-15 -2911 ((-1177) $)) (-15 -2261 ((-1177) $)) (-15 -1694 ((-1177) $)) (-15 -2365 ((-1177) $)) (-15 -4110 ((-1177) $)) (-15 -2143 ((-1177) $ (-525))) (-15 -1713 ((-1177) $ (-205))) (-15 -1375 ((-1177) $ (-1090))) (-15 -2483 ((-1177) $ (-1073))) (-15 -4104 ((-1177) $ (-1073) (-1073))) (-15 -2244 ((-1177) $)) (-15 -1424 ((-1177) $)) (-15 -3407 ((-1177) $)) (-15 -2588 ((-1177) $)) (-15 -3784 ((-1177) $)) (-15 -2071 ((-1177) $)) (-15 -3190 ((-1177) $)) (-15 -4117 ((-1177) $)) (-15 -1963 ((-1177) $)) (-15 -4179 ((-1177) $)) (-15 -2575 ((-1177) $)) (-15 -2075 ((-1177) $)) (-15 -1359 ((-1177) $)) (-15 -2834 ((-1177) $)) (-15 -1971 ((-525) $)) (-15 -2536 ((-205) $)) (-15 -3400 ((-1090) $)) (-15 -3131 ((-1073) $)) (-15 -3112 ((-2 (|:| |cd| (-1073)) (|:| -3515 (-1073))) $)) (-15 -3419 ((-1090) $))) +((-4028 (((-108) $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 12)) (-1588 (($) 15)) (-4115 (($) 13)) (-3507 (($) 16)) (-3977 (($) 14)) (-3899 (((-108) $ $) 8))) +(((-765) (-13 (-1019) (-10 -8 (-15 -4115 ($)) (-15 -1588 ($)) (-15 -3507 ($)) (-15 -3977 ($))))) (T -765)) +((-4115 (*1 *1) (-5 *1 (-765))) (-1588 (*1 *1) (-5 *1 (-765))) (-3507 (*1 *1) (-5 *1 (-765))) (-3977 (*1 *1) (-5 *1 (-765)))) +(-13 (-1019) (-10 -8 (-15 -4115 ($)) (-15 -1588 ($)) (-15 -3507 ($)) (-15 -3977 ($)))) +((-4028 (((-108) $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 21) (($ (-1090)) 17)) (-2690 (((-108) $) 10)) (-3252 (((-108) $) 9)) (-2052 (((-108) $) 11)) (-2266 (((-108) $) 8)) (-3899 (((-108) $ $) 19))) +(((-766) (-13 (-1019) (-10 -8 (-15 -4044 ($ (-1090))) (-15 -2266 ((-108) $)) (-15 -3252 ((-108) $)) (-15 -2690 ((-108) $)) (-15 -2052 ((-108) $))))) (T -766)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-766)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766))))) +(-13 (-1019) (-10 -8 (-15 -4044 ($ (-1090))) (-15 -2266 ((-108) $)) (-15 -3252 ((-108) $)) (-15 -2690 ((-108) $)) (-15 -2052 ((-108) $)))) +((-4028 (((-108) $ $) NIL)) (-2594 (($ (-766) (-592 (-1090))) 24)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4079 (((-766) $) 25)) (-2841 (((-592 (-1090)) $) 26)) (-4044 (((-797) $) 23)) (-3899 (((-108) $ $) NIL))) +(((-767) (-13 (-1019) (-10 -8 (-15 -4079 ((-766) $)) (-15 -2841 ((-592 (-1090)) $)) (-15 -2594 ($ (-766) (-592 (-1090))))))) (T -767)) +((-4079 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-767)))) (-2594 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1090))) (-5 *1 (-767))))) +(-13 (-1019) (-10 -8 (-15 -4079 ((-766) $)) (-15 -2841 ((-592 (-1090)) $)) (-15 -2594 ($ (-766) (-592 (-1090)))))) +((-2453 (((-1177) (-764) (-294 |#1|) (-108)) 23) (((-1177) (-764) (-294 |#1|)) 79) (((-1073) (-294 |#1|) (-108)) 78) (((-1073) (-294 |#1|)) 77))) +(((-768 |#1|) (-10 -7 (-15 -2453 ((-1073) (-294 |#1|))) (-15 -2453 ((-1073) (-294 |#1|) (-108))) (-15 -2453 ((-1177) (-764) (-294 |#1|))) (-15 -2453 ((-1177) (-764) (-294 |#1|) (-108)))) (-13 (-770) (-789) (-976))) (T -768)) +((-2453 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-764)) (-5 *4 (-294 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-770) (-789) (-976))) (-5 *2 (-1177)) (-5 *1 (-768 *6)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-764)) (-5 *4 (-294 *5)) (-4 *5 (-13 (-770) (-789) (-976))) (-5 *2 (-1177)) (-5 *1 (-768 *5)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-770) (-789) (-976))) (-5 *2 (-1073)) (-5 *1 (-768 *5)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-976))) (-5 *2 (-1073)) (-5 *1 (-768 *4))))) +(-10 -7 (-15 -2453 ((-1073) (-294 |#1|))) (-15 -2453 ((-1073) (-294 |#1|) (-108))) (-15 -2453 ((-1177) (-764) (-294 |#1|))) (-15 -2453 ((-1177) (-764) (-294 |#1|) (-108)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3662 ((|#1| $) 10)) (-3892 (($ |#1|) 9)) (-2507 (((-108) $) NIL)) (-3097 (($ |#2| (-713)) NIL)) (-3762 (((-713) $) NIL)) (-3286 ((|#2| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1576 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-1486 (((-713) $) NIL)) (-4044 (((-797) $) 17) (($ (-525)) NIL) (($ |#2|) NIL (|has| |#2| (-160)))) (-2100 ((|#2| $ (-713)) NIL)) (-2502 (((-713)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-769 |#1| |#2|) (-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -3892 ($ |#1|)) (-15 -3662 (|#1| $)))) (-651 |#2|) (-976)) (T -769)) +((-3892 (*1 *1 *2) (-12 (-4 *3 (-976)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3)))) (-3662 (*1 *2 *1) (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-976))))) +(-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -3892 ($ |#1|)) (-15 -3662 (|#1| $)))) +((-2453 (((-1177) (-764) $ (-108)) 9) (((-1177) (-764) $) 8) (((-1073) $ (-108)) 7) (((-1073) $) 6))) +(((-770) (-131)) (T -770)) +((-2453 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1177)))) (-2453 (*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1177)))) (-2453 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1073)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1073))))) +(-13 (-10 -8 (-15 -2453 ((-1073) $)) (-15 -2453 ((-1073) $ (-108))) (-15 -2453 ((-1177) (-764) $)) (-15 -2453 ((-1177) (-764) $ (-108))))) +((-1389 (((-290) (-1073) (-1073)) 12)) (-3463 (((-108) (-1073) (-1073)) 34)) (-1205 (((-108) (-1073)) 33)) (-1523 (((-51) (-1073)) 25)) (-2832 (((-51) (-1073)) 23)) (-1218 (((-51) (-764)) 17)) (-3622 (((-592 (-1073)) (-1073)) 28)) (-3871 (((-592 (-1073))) 27))) +(((-771) (-10 -7 (-15 -1218 ((-51) (-764))) (-15 -2832 ((-51) (-1073))) (-15 -1523 ((-51) (-1073))) (-15 -3871 ((-592 (-1073)))) (-15 -3622 ((-592 (-1073)) (-1073))) (-15 -1205 ((-108) (-1073))) (-15 -3463 ((-108) (-1073) (-1073))) (-15 -1389 ((-290) (-1073) (-1073))))) (T -771)) +((-1389 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-771)))) (-3463 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-771)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-771)))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-771)) (-5 *3 (-1073)))) (-3871 (*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-771)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-771)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-771)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771))))) +(-10 -7 (-15 -1218 ((-51) (-764))) (-15 -2832 ((-51) (-1073))) (-15 -1523 ((-51) (-1073))) (-15 -3871 ((-592 (-1073)))) (-15 -3622 ((-592 (-1073)) (-1073))) (-15 -1205 ((-108) (-1073))) (-15 -3463 ((-108) (-1073) (-1073))) (-15 -1389 ((-290) (-1073) (-1073)))) +((-4028 (((-108) $ $) 19)) (-2272 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3893 (($ $ $) 72)) (-2398 (((-108) $ $) 73)) (-2583 (((-108) $ (-713)) 8)) (-3792 (($ (-592 |#1|)) 68) (($) 67)) (-2696 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-2987 (($ $) 62)) (-1716 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2591 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-1260 ((|#1| $) 78)) (-1636 (($ $ $) 81)) (-1440 (($ $ $) 80)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2154 ((|#1| $) 79)) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22)) (-2021 (($ $ $) 69)) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-3027 (((-1037) $) 21)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3676 (((-592 (-2 (|:| -3978 |#1|) (|:| -3053 (-713)))) $) 61)) (-2472 (($ $ |#1|) 71) (($ $ $) 70)) (-3607 (($) 49) (($ (-592 |#1|)) 48)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 50)) (-4044 (((-797) $) 18)) (-3012 (($ (-592 |#1|)) 66) (($) 65)) (-1326 (($ (-592 |#1|)) 42)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20)) (-3928 (((-108) $ $) 64)) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-772 |#1|) (-131) (-789)) (T -772)) +((-1260 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789))))) +(-13 (-679 |t#1|) (-901 |t#1|) (-10 -8 (-15 -1260 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-637 |#1|) . T) ((-679 |#1|) . T) ((-901 |#1|) . T) ((-1017 |#1|) . T) ((-1019) . T) ((-1126) . T)) +((-3898 (((-1177) (-1037) (-1037)) 47)) (-4074 (((-1177) (-763) (-51)) 44)) (-1823 (((-51) (-763)) 16))) +(((-773) (-10 -7 (-15 -1823 ((-51) (-763))) (-15 -4074 ((-1177) (-763) (-51))) (-15 -3898 ((-1177) (-1037) (-1037))))) (T -773)) +((-3898 (*1 *2 *3 *3) (-12 (-5 *3 (-1037)) (-5 *2 (-1177)) (-5 *1 (-773)))) (-4074 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1177)) (-5 *1 (-773)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773))))) +(-10 -7 (-15 -1823 ((-51) (-763))) (-15 -4074 ((-1177) (-763) (-51))) (-15 -3898 ((-1177) (-1037) (-1037)))) +((-2868 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)) 12) (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 13))) +(((-774 |#1| |#2|) (-10 -7 (-15 -2868 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -2868 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)))) (-1019) (-1019)) (T -774)) +((-2868 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *1 (-774 *5 *6)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6))))) +(-10 -7 (-15 -2868 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -2868 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL (|has| |#1| (-21)))) (-3004 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2780 (((-525) $) NIL (|has| |#1| (-787)))) (-1957 (($) NIL (|has| |#1| (-21)) CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 15)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 9)) (-1645 (((-3 $ "failed") $) 40 (|has| |#1| (-787)))) (-2132 (((-3 (-385 (-525)) "failed") $) 48 (|has| |#1| (-510)))) (-3748 (((-108) $) 43 (|has| |#1| (-510)))) (-1675 (((-385 (-525)) $) 45 (|has| |#1| (-510)))) (-2973 (((-108) $) NIL (|has| |#1| (-787)))) (-2507 (((-108) $) NIL (|has| |#1| (-787)))) (-3721 (((-108) $) NIL (|has| |#1| (-787)))) (-1260 (($ $ $) NIL (|has| |#1| (-787)))) (-2154 (($ $ $) NIL (|has| |#1| (-787)))) (-1707 (((-1073) $) NIL)) (-1968 (($) 13)) (-2220 (((-108) $) 12)) (-3027 (((-1037) $) NIL)) (-3443 (((-108) $) 11)) (-4044 (((-797) $) 18) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3215 (|has| |#1| (-787)) (|has| |#1| (-967 (-525)))))) (-2502 (((-713)) 34 (|has| |#1| (-787)))) (-2053 (($ $) NIL (|has| |#1| (-787)))) (-1594 (($ $ (-855)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-1436 (($) 22 (|has| |#1| (-21)) CONST)) (-1449 (($) 31 (|has| |#1| (-787)) CONST)) (-3973 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3899 (((-108) $ $) 20)) (-3959 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3928 (((-108) $ $) 42 (|has| |#1| (-787)))) (-4033 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4017 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-855)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 37 (|has| |#1| (-787))) (($ (-525) $) 25 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-855) $) NIL (|has| |#1| (-21))))) +(((-775 |#1|) (-13 (-1019) (-389 |#1|) (-10 -8 (-15 -1968 ($)) (-15 -3443 ((-108) $)) (-15 -2220 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1019)) (T -775)) +((-1968 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1019)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1019)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1019)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) (-2132 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1019))))) +(-13 (-1019) (-389 |#1|) (-10 -8 (-15 -1968 ($)) (-15 -3443 ((-108) $)) (-15 -2220 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-2068 ((|#1| $) NIL) (((-110) $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3144 ((|#1| (-110) |#1|) NIL)) (-2507 (((-108) $) NIL)) (-3259 (($ |#1| (-339 (-110))) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3192 (($ $ (-1 |#1| |#1|)) NIL)) (-3575 (($ $ (-1 |#1| |#1|)) NIL)) (-1496 ((|#1| $ |#1|) NIL)) (-3055 ((|#1| |#1|) NIL (|has| |#1| (-160)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-3092 (($ $) NIL (|has| |#1| (-160))) (($ $ $) NIL (|has| |#1| (-160)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))))) +(((-776 |#1|) (-13 (-976) (-967 |#1|) (-967 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -3092 ($ $)) (-15 -3092 ($ $ $)) (-15 -3055 (|#1| |#1|))) |%noBranch|) (-15 -3575 ($ $ (-1 |#1| |#1|))) (-15 -3192 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3144 (|#1| (-110) |#1|)) (-15 -3259 ($ |#1| (-339 (-110)))))) (-976)) (T -776)) +((-3092 (*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976)))) (-3092 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976)))) (-3055 (*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976)))) (-3575 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-776 *3)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-776 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-976)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-976)))) (-3144 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-976)))) (-3259 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-976))))) +(-13 (-976) (-967 |#1|) (-967 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -3092 ($ $)) (-15 -3092 ($ $ $)) (-15 -3055 (|#1| |#1|))) |%noBranch|) (-15 -3575 ($ $ (-1 |#1| |#1|))) (-15 -3192 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3144 (|#1| (-110) |#1|)) (-15 -3259 ($ |#1| (-339 (-110)))))) +((-3414 (((-195 (-475)) (-1073)) 9))) +(((-777) (-10 -7 (-15 -3414 ((-195 (-475)) (-1073))))) (T -777)) +((-3414 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-195 (-475))) (-5 *1 (-777))))) +(-10 -7 (-15 -3414 ((-195 (-475)) (-1073)))) +((-4028 (((-108) $ $) 7)) (-3796 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) 14) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 13)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 16) (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) 15)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 6))) +(((-778) (-131)) (T -778)) +((-1393 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)))))) (-1393 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)))))) (-3796 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) (-5 *2 (-965)))) (-3796 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-965))))) +(-13 (-1019) (-10 -7 (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) (-15 -3796 ((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) (-15 -3796 ((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-2845 (((-965) (-592 (-294 (-357))) (-592 (-357))) 147) (((-965) (-294 (-357)) (-592 (-357))) 145) (((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357)))) 144) (((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357)))) 143) (((-965) (-780)) 117) (((-965) (-780) (-988)) 116)) (-1393 (((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780) (-988)) 82) (((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780)) 84)) (-4188 (((-965) (-592 (-294 (-357))) (-592 (-357))) 148) (((-965) (-780)) 133))) +(((-779) (-10 -7 (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780) (-988))) (-15 -2845 ((-965) (-780) (-988))) (-15 -2845 ((-965) (-780))) (-15 -4188 ((-965) (-780))) (-15 -2845 ((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -2845 ((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -2845 ((-965) (-294 (-357)) (-592 (-357)))) (-15 -2845 ((-965) (-592 (-294 (-357))) (-592 (-357)))) (-15 -4188 ((-965) (-592 (-294 (-357))) (-592 (-357)))))) (T -779)) +((-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-779)))) (-2845 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-779)))) (-2845 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-779)))) (-2845 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-965)) (-5 *1 (-779)))) (-2845 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *6 (-592 (-294 (-357)))) (-5 *3 (-294 (-357))) (-5 *2 (-965)) (-5 *1 (-779)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-965)) (-5 *1 (-779)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-965)) (-5 *1 (-779)))) (-2845 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-779)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-988)) (-5 *2 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-779)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-779))))) +(-10 -7 (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780) (-988))) (-15 -2845 ((-965) (-780) (-988))) (-15 -2845 ((-965) (-780))) (-15 -4188 ((-965) (-780))) (-15 -2845 ((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -2845 ((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -2845 ((-965) (-294 (-357)) (-592 (-357)))) (-15 -2845 ((-965) (-592 (-294 (-357))) (-592 (-357)))) (-15 -4188 ((-965) (-592 (-294 (-357))) (-592 (-357))))) +((-4028 (((-108) $ $) NIL)) (-2068 (((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) $) 21)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 20) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 14) (($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))))) 18)) (-3899 (((-108) $ $) NIL))) +(((-780) (-13 (-1019) (-10 -8 (-15 -4044 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -4044 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) (-15 -4044 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))))) (-15 -4044 ((-797) $)) (-15 -2068 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) $))))) (T -780)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-780)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-780)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) (-5 *1 (-780)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))))) (-5 *1 (-780)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))))) (-5 *1 (-780))))) +(-13 (-1019) (-10 -8 (-15 -4044 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -4044 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) (-15 -4044 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))))) (-15 -4044 ((-797) $)) (-15 -2068 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205)))))) $)))) +((-2868 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)) 13) (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 14))) +(((-781 |#1| |#2|) (-10 -7 (-15 -2868 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -2868 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)))) (-1019) (-1019)) (T -781)) +((-2868 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-782 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *1 (-781 *5 *6)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))) +(-10 -7 (-15 -2868 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -2868 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL (|has| |#1| (-21)))) (-2208 (((-1037) $) 24)) (-3004 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2780 (((-525) $) NIL (|has| |#1| (-787)))) (-1957 (($) NIL (|has| |#1| (-21)) CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 16)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 9)) (-1645 (((-3 $ "failed") $) 47 (|has| |#1| (-787)))) (-2132 (((-3 (-385 (-525)) "failed") $) 54 (|has| |#1| (-510)))) (-3748 (((-108) $) 49 (|has| |#1| (-510)))) (-1675 (((-385 (-525)) $) 52 (|has| |#1| (-510)))) (-2973 (((-108) $) NIL (|has| |#1| (-787)))) (-2091 (($) 13)) (-2507 (((-108) $) NIL (|has| |#1| (-787)))) (-3721 (((-108) $) NIL (|has| |#1| (-787)))) (-2099 (($) 14)) (-1260 (($ $ $) NIL (|has| |#1| (-787)))) (-2154 (($ $ $) NIL (|has| |#1| (-787)))) (-1707 (((-1073) $) NIL)) (-2220 (((-108) $) 12)) (-3027 (((-1037) $) NIL)) (-3443 (((-108) $) 11)) (-4044 (((-797) $) 22) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3215 (|has| |#1| (-787)) (|has| |#1| (-967 (-525)))))) (-2502 (((-713)) 41 (|has| |#1| (-787)))) (-2053 (($ $) NIL (|has| |#1| (-787)))) (-1594 (($ $ (-855)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-1436 (($) 29 (|has| |#1| (-21)) CONST)) (-1449 (($) 38 (|has| |#1| (-787)) CONST)) (-3973 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3899 (((-108) $ $) 27)) (-3959 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3928 (((-108) $ $) 48 (|has| |#1| (-787)))) (-4033 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4017 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-855)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 44 (|has| |#1| (-787))) (($ (-525) $) 32 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-855) $) NIL (|has| |#1| (-21))))) +(((-782 |#1|) (-13 (-1019) (-389 |#1|) (-10 -8 (-15 -2091 ($)) (-15 -2099 ($)) (-15 -3443 ((-108) $)) (-15 -2220 ((-108) $)) (-15 -2208 ((-1037) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1019)) (T -782)) +((-2091 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1019)))) (-2099 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1019)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1019)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1019)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-782 *3)) (-4 *3 (-1019)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) (-2132 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1019))))) +(-13 (-1019) (-389 |#1|) (-10 -8 (-15 -2091 ($)) (-15 -2099 ($)) (-15 -3443 ((-108) $)) (-15 -2220 ((-108) $)) (-15 -2208 ((-1037) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) +((-4028 (((-108) $ $) 7)) (-1651 (((-713)) 20)) (-1527 (($) 23)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-2111 (((-855) $) 22)) (-1707 (((-1073) $) 9)) (-3381 (($ (-855)) 21)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18))) +(((-783) (-131)) (T -783)) +NIL +(-13 (-789) (-346)) +(((-97) . T) ((-566 (-797)) . T) ((-346) . T) ((-789) . T) ((-1019) . T)) +((-3440 (((-108) (-1172 |#2|) (-1172 |#2|)) 17)) (-1297 (((-108) (-1172 |#2|) (-1172 |#2|)) 18)) (-1925 (((-108) (-1172 |#2|) (-1172 |#2|)) 14))) +(((-784 |#1| |#2|) (-10 -7 (-15 -1925 ((-108) (-1172 |#2|) (-1172 |#2|))) (-15 -3440 ((-108) (-1172 |#2|) (-1172 |#2|))) (-15 -1297 ((-108) (-1172 |#2|) (-1172 |#2|)))) (-713) (-734)) (T -784)) +((-1297 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-3440 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-1925 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713))))) +(-10 -7 (-15 -1925 ((-108) (-1172 |#2|) (-1172 |#2|))) (-15 -3440 ((-108) (-1172 |#2|) (-1172 |#2|))) (-15 -1297 ((-108) (-1172 |#2|) (-1172 |#2|)))) +((-4028 (((-108) $ $) 7)) (-1957 (($) 24 T CONST)) (-1645 (((-3 $ "failed") $) 28)) (-2507 (((-108) $) 25)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1594 (($ $ (-713)) 27) (($ $ (-855)) 22)) (-1449 (($) 23 T CONST)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18)) (** (($ $ (-713)) 26) (($ $ (-855)) 21)) (* (($ $ $) 20))) +(((-785) (-131)) (T -785)) +NIL +(-13 (-789) (-669)) +(((-97) . T) ((-566 (-797)) . T) ((-669) . T) ((-789) . T) ((-1031) . T) ((-1019) . T)) +((-2780 (((-525) $) 17)) (-2973 (((-108) $) 10)) (-3721 (((-108) $) 11)) (-2053 (($ $) 19))) +(((-786 |#1|) (-10 -8 (-15 -2053 (|#1| |#1|)) (-15 -2780 ((-525) |#1|)) (-15 -3721 ((-108) |#1|)) (-15 -2973 ((-108) |#1|))) (-787)) (T -786)) +NIL +(-10 -8 (-15 -2053 (|#1| |#1|)) (-15 -2780 ((-525) |#1|)) (-15 -3721 ((-108) |#1|)) (-15 -2973 ((-108) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 24)) (-3004 (((-3 $ "failed") $ $) 26)) (-2780 (((-525) $) 33)) (-1957 (($) 23 T CONST)) (-1645 (((-3 $ "failed") $) 39)) (-2973 (((-108) $) 35)) (-2507 (((-108) $) 42)) (-3721 (((-108) $) 34)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 45)) (-2502 (((-713)) 44)) (-2053 (($ $) 32)) (-1594 (($ $ (-713)) 40) (($ $ (-855)) 36)) (-1436 (($) 22 T CONST)) (-1449 (($) 43 T CONST)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18)) (-4033 (($ $ $) 28) (($ $) 27)) (-4017 (($ $ $) 20)) (** (($ $ (-713)) 41) (($ $ (-855)) 37)) (* (($ (-713) $) 25) (($ (-855) $) 21) (($ (-525) $) 29) (($ $ $) 38))) +(((-787) (-131)) (T -787)) +((-2973 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525)))) (-2053 (*1 *1 *1) (-4 *1 (-787)))) +(-13 (-733) (-976) (-669) (-10 -8 (-15 -2973 ((-108) $)) (-15 -3721 ((-108) $)) (-15 -2780 ((-525) $)) (-15 -2053 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-1260 (($ $ $) 10)) (-2154 (($ $ $) 9)) (-3973 (((-108) $ $) 13)) (-3944 (((-108) $ $) 11)) (-3959 (((-108) $ $) 14))) +(((-788 |#1|) (-10 -8 (-15 -1260 (|#1| |#1| |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -3959 ((-108) |#1| |#1|)) (-15 -3973 ((-108) |#1| |#1|)) (-15 -3944 ((-108) |#1| |#1|))) (-789)) (T -788)) +NIL +(-10 -8 (-15 -1260 (|#1| |#1| |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -3959 ((-108) |#1| |#1|)) (-15 -3973 ((-108) |#1| |#1|)) (-15 -3944 ((-108) |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-1260 (($ $ $) 13)) (-2154 (($ $ $) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3973 (((-108) $ $) 16)) (-3944 (((-108) $ $) 17)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 15)) (-3928 (((-108) $ $) 18))) +(((-789) (-131)) (T -789)) +((-3928 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-3944 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-3973 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-3959 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-2154 (*1 *1 *1 *1) (-4 *1 (-789))) (-1260 (*1 *1 *1 *1) (-4 *1 (-789)))) +(-13 (-1019) (-10 -8 (-15 -3928 ((-108) $ $)) (-15 -3944 ((-108) $ $)) (-15 -3973 ((-108) $ $)) (-15 -3959 ((-108) $ $)) (-15 -2154 ($ $ $)) (-15 -1260 ($ $ $)))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-2457 (($ $ $) 45)) (-1383 (($ $ $) 44)) (-3374 (($ $ $) 42)) (-4180 (($ $ $) 51)) (-2279 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 46)) (-3860 (((-3 $ "failed") $ $) 49)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2319 (($ $) 35)) (-3826 (($ $ $) 39)) (-3506 (($ $ $) 38)) (-3355 (($ $ $) 47)) (-2979 (($ $ $) 53)) (-3872 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 41)) (-1734 (((-3 $ "failed") $ $) 48)) (-2675 (((-3 $ "failed") $ |#2|) 28)) (-2758 ((|#2| $) 32)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#2|) 12)) (-3681 (((-592 |#2|) $) 18)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-790 |#1| |#2|) (-10 -8 (-15 -3355 (|#1| |#1| |#1|)) (-15 -2279 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3258 |#1|)) |#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -3860 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -3374 (|#1| |#1| |#1|)) (-15 -3872 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3258 |#1|)) |#1| |#1|)) (-15 -2979 (|#1| |#1| |#1|)) (-15 -1734 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -3506 (|#1| |#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2758 (|#2| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3681 ((-592 |#2|) |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4044 ((-797) |#1|))) (-791 |#2|) (-976)) (T -790)) +NIL +(-10 -8 (-15 -3355 (|#1| |#1| |#1|)) (-15 -2279 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3258 |#1|)) |#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|)) (-15 -3860 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -3374 (|#1| |#1| |#1|)) (-15 -3872 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3258 |#1|)) |#1| |#1|)) (-15 -2979 (|#1| |#1| |#1|)) (-15 -1734 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -3506 (|#1| |#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2758 (|#2| |#1|)) (-15 -2675 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3681 ((-592 |#2|) |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-2457 (($ $ $) 45 (|has| |#1| (-341)))) (-1383 (($ $ $) 46 (|has| |#1| (-341)))) (-3374 (($ $ $) 48 (|has| |#1| (-341)))) (-4180 (($ $ $) 43 (|has| |#1| (-341)))) (-2279 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 42 (|has| |#1| (-341)))) (-3860 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-4147 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 47 (|has| |#1| (-341)))) (-2769 (((-3 (-525) "failed") $) 74 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-2068 (((-525) $) 75 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 68)) (-3306 (($ $) 64)) (-1645 (((-3 $ "failed") $) 34)) (-2319 (($ $) 55 (|has| |#1| (-429)))) (-2507 (((-108) $) 31)) (-3097 (($ |#1| (-713)) 62)) (-2370 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57 (|has| |#1| (-517)))) (-2664 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 58 (|has| |#1| (-517)))) (-3762 (((-713) $) 66)) (-3826 (($ $ $) 52 (|has| |#1| (-341)))) (-3506 (($ $ $) 53 (|has| |#1| (-341)))) (-3355 (($ $ $) 41 (|has| |#1| (-341)))) (-2979 (($ $ $) 50 (|has| |#1| (-341)))) (-3872 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 49 (|has| |#1| (-341)))) (-1734 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-3774 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 54 (|has| |#1| (-341)))) (-3286 ((|#1| $) 65)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2675 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-1486 (((-713) $) 67)) (-2758 ((|#1| $) 56 (|has| |#1| (-429)))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 70)) (-3681 (((-592 |#1|) $) 61)) (-2100 ((|#1| $ (-713)) 63)) (-2502 (((-713)) 29)) (-1627 ((|#1| $ |#1| |#1|) 60)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(((-791 |#1|) (-131) (-976)) (T -791)) +((-1486 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-3306 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-3097 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-592 *3)))) (-1627 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-2675 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-517)))) (-2664 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-791 *3)))) (-2370 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-791 *3)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-429)))) (-2319 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-429)))) (-3774 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-791 *3)))) (-3506 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-3826 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-1734 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-2979 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-3872 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-976)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3258 *1))) (-4 *1 (-791 *3)))) (-3374 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-4147 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-791 *3)))) (-1383 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-2457 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-3860 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-4180 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-2279 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-976)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3258 *1))) (-4 *1 (-791 *3)))) (-3355 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(-13 (-976) (-107 |t#1| |t#1|) (-389 |t#1|) (-10 -8 (-15 -1486 ((-713) $)) (-15 -3762 ((-713) $)) (-15 -3286 (|t#1| $)) (-15 -3306 ($ $)) (-15 -2100 (|t#1| $ (-713))) (-15 -3097 ($ |t#1| (-713))) (-15 -3681 ((-592 |t#1|) $)) (-15 -1627 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -2675 ((-3 $ "failed") $ |t#1|)) (-15 -2664 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -2370 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2758 (|t#1| $)) (-15 -2319 ($ $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -3774 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -3506 ($ $ $)) (-15 -3826 ($ $ $)) (-15 -1734 ((-3 $ "failed") $ $)) (-15 -2979 ($ $ $)) (-15 -3872 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $)) (-15 -3374 ($ $ $)) (-15 -4147 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -1383 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -3860 ((-3 $ "failed") $ $)) (-15 -4180 ($ $ $)) (-15 -2279 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $)) (-15 -3355 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-389 |#1|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-1752 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-4147 (((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-341)))) (-2370 (((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-517)))) (-2664 (((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-517)))) (-3774 (((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-341)))) (-1627 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31))) +(((-792 |#1| |#2|) (-10 -7 (-15 -1752 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1627 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -2664 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2370 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3774 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -4147 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-976) (-791 |#1|)) (T -792)) +((-4147 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-3774 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-2370 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-2664 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-1627 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-976)) (-5 *1 (-792 *2 *3)) (-4 *3 (-791 *2)))) (-1752 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-976)) (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5))))) +(-10 -7 (-15 -1752 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1627 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -2664 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2370 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3774 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -4147 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2457 (($ $ $) NIL (|has| |#1| (-341)))) (-1383 (($ $ $) NIL (|has| |#1| (-341)))) (-3374 (($ $ $) NIL (|has| |#1| (-341)))) (-4180 (($ $ $) NIL (|has| |#1| (-341)))) (-2279 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-3860 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4147 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 25 (|has| |#1| (-341)))) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-429)))) (-2926 (((-797) $ (-797)) NIL)) (-2507 (((-108) $) NIL)) (-3097 (($ |#1| (-713)) NIL)) (-2370 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 21 (|has| |#1| (-517)))) (-2664 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 19 (|has| |#1| (-517)))) (-3762 (((-713) $) NIL)) (-3826 (($ $ $) NIL (|has| |#1| (-341)))) (-3506 (($ $ $) NIL (|has| |#1| (-341)))) (-3355 (($ $ $) NIL (|has| |#1| (-341)))) (-2979 (($ $ $) NIL (|has| |#1| (-341)))) (-3872 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1734 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3774 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 23 (|has| |#1| (-341)))) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1486 (((-713) $) NIL)) (-2758 ((|#1| $) NIL (|has| |#1| (-429)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) NIL)) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-713)) NIL)) (-2502 (((-713)) NIL)) (-1627 ((|#1| $ |#1| |#1|) 15)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-793 |#1| |#2| |#3|) (-13 (-791 |#1|) (-10 -8 (-15 -2926 ((-797) $ (-797))))) (-976) (-94 |#1|) (-1 |#1| |#1|)) (T -793)) +((-2926 (*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-791 |#1|) (-10 -8 (-15 -2926 ((-797) $ (-797))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2457 (($ $ $) NIL (|has| |#2| (-341)))) (-1383 (($ $ $) NIL (|has| |#2| (-341)))) (-3374 (($ $ $) NIL (|has| |#2| (-341)))) (-4180 (($ $ $) NIL (|has| |#2| (-341)))) (-2279 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#2| (-341)))) (-3860 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-4147 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#2| (-341)))) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) ((|#2| $) NIL)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#2| (-429)))) (-2507 (((-108) $) NIL)) (-3097 (($ |#2| (-713)) 16)) (-2370 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#2| (-517)))) (-2664 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#2| (-517)))) (-3762 (((-713) $) NIL)) (-3826 (($ $ $) NIL (|has| |#2| (-341)))) (-3506 (($ $ $) NIL (|has| |#2| (-341)))) (-3355 (($ $ $) NIL (|has| |#2| (-341)))) (-2979 (($ $ $) NIL (|has| |#2| (-341)))) (-3872 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#2| (-341)))) (-1734 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-3774 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#2| (-341)))) (-3286 ((|#2| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2675 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-1486 (((-713) $) NIL)) (-2758 ((|#2| $) NIL (|has| |#2| (-429)))) (-4044 (((-797) $) 23) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-967 (-385 (-525))))) (($ |#2|) NIL) (($ (-1168 |#1|)) 18)) (-3681 (((-592 |#2|) $) NIL)) (-2100 ((|#2| $ (-713)) NIL)) (-2502 (((-713)) NIL)) (-1627 ((|#2| $ |#2| |#2|) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) 13 T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-794 |#1| |#2| |#3| |#4|) (-13 (-791 |#2|) (-10 -8 (-15 -4044 ($ (-1168 |#1|))))) (-1090) (-976) (-94 |#2|) (-1 |#2| |#2|)) (T -794)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-14 *3 (-1090)) (-5 *1 (-794 *3 *4 *5 *6)) (-4 *4 (-976)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-791 |#2|) (-10 -8 (-15 -4044 ($ (-1168 |#1|))))) +((-1390 ((|#1| (-713) |#1|) 35 (|has| |#1| (-37 (-385 (-525)))))) (-1738 ((|#1| (-713) (-713) |#1|) 27) ((|#1| (-713) |#1|) 20)) (-2971 ((|#1| (-713) |#1|) 31)) (-2185 ((|#1| (-713) |#1|) 29)) (-1691 ((|#1| (-713) |#1|) 28))) +(((-795 |#1|) (-10 -7 (-15 -1691 (|#1| (-713) |#1|)) (-15 -2185 (|#1| (-713) |#1|)) (-15 -2971 (|#1| (-713) |#1|)) (-15 -1738 (|#1| (-713) |#1|)) (-15 -1738 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1390 (|#1| (-713) |#1|)) |%noBranch|)) (-160)) (T -795)) +((-1390 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-1738 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-1738 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-2971 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-2185 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-1691 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))) +(-10 -7 (-15 -1691 (|#1| (-713) |#1|)) (-15 -2185 (|#1| (-713) |#1|)) (-15 -2971 (|#1| (-713) |#1|)) (-15 -1738 (|#1| (-713) |#1|)) (-15 -1738 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1390 (|#1| (-713) |#1|)) |%noBranch|)) +((-4028 (((-108) $ $) NIL)) (-3067 (((-525) $) 12)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 18) (($ (-525)) 11)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 8)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 9))) +(((-796) (-13 (-789) (-10 -8 (-15 -4044 ($ (-525))) (-15 -3067 ((-525) $))))) (T -796)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796))))) +(-13 (-789) (-10 -8 (-15 -4044 ($ (-525))) (-15 -3067 ((-525) $)))) +((-4028 (((-108) $ $) NIL) (($ $ $) 77)) (-1282 (($ $ $) 115)) (-1348 (((-525) $) 30) (((-525)) 35)) (-2917 (($ (-525)) 44)) (-2637 (($ $ $) 45) (($ (-592 $)) 76)) (-1399 (($ $ (-592 $)) 74)) (-1478 (((-525) $) 33)) (-1671 (($ $ $) 63)) (-4138 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3193 (((-525) $) 32)) (-3529 (($ $ $) 62)) (-2717 (($ $) 105)) (-3268 (($ $ $) 119)) (-2328 (($ (-592 $)) 52)) (-2530 (($ $ (-592 $)) 69)) (-4219 (($ (-525) (-525)) 46)) (-4121 (($ $) 116) (($ $ $) 117)) (-3356 (($ $ (-525)) 40) (($ $) 43)) (-2720 (($ $ $) 89)) (-4193 (($ $ $) 122)) (-3032 (($ $) 106)) (-2699 (($ $ $) 90)) (-3963 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1538 (((-1177) $) 8)) (-1951 (($ $) 109) (($ $ (-713)) 112)) (-1475 (($ $ $) 65)) (-3853 (($ $ $) 64)) (-1819 (($ $ (-592 $)) 100)) (-3314 (($ $ $) 104)) (-3165 (($ (-592 $)) 50)) (-1759 (($ $) 60) (($ (-592 $)) 61)) (-2429 (($ $ $) 113)) (-1464 (($ $) 107)) (-2182 (($ $ $) 118)) (-2926 (($ (-525)) 20) (($ (-1090)) 22) (($ (-1073)) 29) (($ (-205)) 24)) (-2377 (($ $ $) 93)) (-2823 (($ $) 94)) (-1766 (((-1177) (-1073)) 14)) (-3479 (($ (-1073)) 13)) (-1521 (($ (-592 (-592 $))) 49)) (-3347 (($ $ (-525)) 39) (($ $) 42)) (-1707 (((-1073) $) NIL)) (-1715 (($ $ $) 121)) (-3038 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3299 (((-108) $) 98)) (-1221 (($ $ (-592 $)) 102) (($ $ $ $) 103)) (-2821 (($ (-525)) 36)) (-2138 (((-525) $) 31) (((-525)) 34)) (-1327 (($ $ $) 37) (($ (-592 $)) 75)) (-3027 (((-1037) $) NIL)) (-2675 (($ $ $) 91)) (-3266 (($) 12)) (-1496 (($ $ (-592 $)) 99)) (-1580 (($ $) 108) (($ $ (-713)) 111)) (-2685 (($ $ $) 88)) (-1576 (($ $ (-713)) 127)) (-1702 (($ (-592 $)) 51)) (-4044 (((-797) $) 18)) (-3448 (($ $ (-525)) 38) (($ $) 41)) (-1730 (($ $) 58) (($ (-592 $)) 59)) (-3012 (($ $) 56) (($ (-592 $)) 57)) (-3882 (($ $) 114)) (-3376 (($ (-592 $)) 55)) (-3738 (($ $ $) 97)) (-4206 (($ $ $) 120)) (-2385 (($ $ $) 92)) (-2956 (($ $ $) 95) (($ $) 96)) (-3973 (($ $ $) 81)) (-3944 (($ $ $) 79)) (-3899 (((-108) $ $) 15) (($ $ $) 16)) (-3959 (($ $ $) 80)) (-3928 (($ $ $) 78)) (-4047 (($ $ $) 86)) (-4033 (($ $ $) 83) (($ $) 84)) (-4017 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-797) (-13 (-1019) (-10 -8 (-15 -1538 ((-1177) $)) (-15 -3479 ($ (-1073))) (-15 -1766 ((-1177) (-1073))) (-15 -2926 ($ (-525))) (-15 -2926 ($ (-1090))) (-15 -2926 ($ (-1073))) (-15 -2926 ($ (-205))) (-15 -3266 ($)) (-15 -1348 ((-525) $)) (-15 -2138 ((-525) $)) (-15 -1348 ((-525))) (-15 -2138 ((-525))) (-15 -3193 ((-525) $)) (-15 -1478 ((-525) $)) (-15 -2821 ($ (-525))) (-15 -2917 ($ (-525))) (-15 -4219 ($ (-525) (-525))) (-15 -3347 ($ $ (-525))) (-15 -3356 ($ $ (-525))) (-15 -3448 ($ $ (-525))) (-15 -3347 ($ $)) (-15 -3356 ($ $)) (-15 -3448 ($ $)) (-15 -1327 ($ $ $)) (-15 -2637 ($ $ $)) (-15 -1327 ($ (-592 $))) (-15 -2637 ($ (-592 $))) (-15 -1819 ($ $ (-592 $))) (-15 -1221 ($ $ (-592 $))) (-15 -1221 ($ $ $ $)) (-15 -3314 ($ $ $)) (-15 -3299 ((-108) $)) (-15 -1496 ($ $ (-592 $))) (-15 -2717 ($ $)) (-15 -1715 ($ $ $)) (-15 -3882 ($ $)) (-15 -1521 ($ (-592 (-592 $)))) (-15 -1282 ($ $ $)) (-15 -4121 ($ $)) (-15 -4121 ($ $ $)) (-15 -2182 ($ $ $)) (-15 -3268 ($ $ $)) (-15 -4206 ($ $ $)) (-15 -4193 ($ $ $)) (-15 -1576 ($ $ (-713))) (-15 -3738 ($ $ $)) (-15 -3529 ($ $ $)) (-15 -1671 ($ $ $)) (-15 -3853 ($ $ $)) (-15 -1475 ($ $ $)) (-15 -2530 ($ $ (-592 $))) (-15 -1399 ($ $ (-592 $))) (-15 -3032 ($ $)) (-15 -1580 ($ $)) (-15 -1580 ($ $ (-713))) (-15 -1951 ($ $)) (-15 -1951 ($ $ (-713))) (-15 -1464 ($ $)) (-15 -2429 ($ $ $)) (-15 -4138 ($ $)) (-15 -4138 ($ $ $)) (-15 -4138 ($ $ $ $)) (-15 -3963 ($ $)) (-15 -3963 ($ $ $)) (-15 -3963 ($ $ $ $)) (-15 -3038 ($ $)) (-15 -3038 ($ $ $)) (-15 -3038 ($ $ $ $)) (-15 -3012 ($ $)) (-15 -3012 ($ (-592 $))) (-15 -1730 ($ $)) (-15 -1730 ($ (-592 $))) (-15 -1759 ($ $)) (-15 -1759 ($ (-592 $))) (-15 -3165 ($ (-592 $))) (-15 -1702 ($ (-592 $))) (-15 -2328 ($ (-592 $))) (-15 -3376 ($ (-592 $))) (-15 -3899 ($ $ $)) (-15 -4028 ($ $ $)) (-15 -3928 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -3959 ($ $ $)) (-15 -3973 ($ $ $)) (-15 -4017 ($ $ $)) (-15 -4033 ($ $ $)) (-15 -4033 ($ $)) (-15 * ($ $ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2720 ($ $ $)) (-15 -2699 ($ $ $)) (-15 -2675 ($ $ $)) (-15 -2385 ($ $ $)) (-15 -2377 ($ $ $)) (-15 -2823 ($ $)) (-15 -2956 ($ $ $)) (-15 -2956 ($ $))))) (T -797)) +((-1538 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-797)))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-797)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-797)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-797)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-797)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-797)))) (-3266 (*1 *1) (-5 *1 (-797))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-1348 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-2138 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-2917 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-4219 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3347 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3356 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3347 (*1 *1 *1) (-5 *1 (-797))) (-3356 (*1 *1 *1) (-5 *1 (-797))) (-3448 (*1 *1 *1) (-5 *1 (-797))) (-1327 (*1 *1 *1 *1) (-5 *1 (-797))) (-2637 (*1 *1 *1 *1) (-5 *1 (-797))) (-1327 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2637 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-1819 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-1221 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-1221 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-3314 (*1 *1 *1 *1) (-5 *1 (-797))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-797)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2717 (*1 *1 *1) (-5 *1 (-797))) (-1715 (*1 *1 *1 *1) (-5 *1 (-797))) (-3882 (*1 *1 *1) (-5 *1 (-797))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-797)))) (-5 *1 (-797)))) (-1282 (*1 *1 *1 *1) (-5 *1 (-797))) (-4121 (*1 *1 *1) (-5 *1 (-797))) (-4121 (*1 *1 *1 *1) (-5 *1 (-797))) (-2182 (*1 *1 *1 *1) (-5 *1 (-797))) (-3268 (*1 *1 *1 *1) (-5 *1 (-797))) (-4206 (*1 *1 *1 *1) (-5 *1 (-797))) (-4193 (*1 *1 *1 *1) (-5 *1 (-797))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797)))) (-3738 (*1 *1 *1 *1) (-5 *1 (-797))) (-3529 (*1 *1 *1 *1) (-5 *1 (-797))) (-1671 (*1 *1 *1 *1) (-5 *1 (-797))) (-3853 (*1 *1 *1 *1) (-5 *1 (-797))) (-1475 (*1 *1 *1 *1) (-5 *1 (-797))) (-2530 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-1399 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-3032 (*1 *1 *1) (-5 *1 (-797))) (-1580 (*1 *1 *1) (-5 *1 (-797))) (-1580 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797)))) (-1951 (*1 *1 *1) (-5 *1 (-797))) (-1951 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797)))) (-1464 (*1 *1 *1) (-5 *1 (-797))) (-2429 (*1 *1 *1 *1) (-5 *1 (-797))) (-4138 (*1 *1 *1) (-5 *1 (-797))) (-4138 (*1 *1 *1 *1) (-5 *1 (-797))) (-4138 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-3963 (*1 *1 *1) (-5 *1 (-797))) (-3963 (*1 *1 *1 *1) (-5 *1 (-797))) (-3963 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-3038 (*1 *1 *1) (-5 *1 (-797))) (-3038 (*1 *1 *1 *1) (-5 *1 (-797))) (-3038 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-3012 (*1 *1 *1) (-5 *1 (-797))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-1730 (*1 *1 *1) (-5 *1 (-797))) (-1730 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-1759 (*1 *1 *1) (-5 *1 (-797))) (-1759 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-3165 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2328 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-3899 (*1 *1 *1 *1) (-5 *1 (-797))) (-4028 (*1 *1 *1 *1) (-5 *1 (-797))) (-3928 (*1 *1 *1 *1) (-5 *1 (-797))) (-3944 (*1 *1 *1 *1) (-5 *1 (-797))) (-3959 (*1 *1 *1 *1) (-5 *1 (-797))) (-3973 (*1 *1 *1 *1) (-5 *1 (-797))) (-4017 (*1 *1 *1 *1) (-5 *1 (-797))) (-4033 (*1 *1 *1 *1) (-5 *1 (-797))) (-4033 (*1 *1 *1) (-5 *1 (-797))) (* (*1 *1 *1 *1) (-5 *1 (-797))) (-4047 (*1 *1 *1 *1) (-5 *1 (-797))) (** (*1 *1 *1 *1) (-5 *1 (-797))) (-2685 (*1 *1 *1 *1) (-5 *1 (-797))) (-2720 (*1 *1 *1 *1) (-5 *1 (-797))) (-2699 (*1 *1 *1 *1) (-5 *1 (-797))) (-2675 (*1 *1 *1 *1) (-5 *1 (-797))) (-2385 (*1 *1 *1 *1) (-5 *1 (-797))) (-2377 (*1 *1 *1 *1) (-5 *1 (-797))) (-2823 (*1 *1 *1) (-5 *1 (-797))) (-2956 (*1 *1 *1 *1) (-5 *1 (-797))) (-2956 (*1 *1 *1) (-5 *1 (-797)))) +(-13 (-1019) (-10 -8 (-15 -1538 ((-1177) $)) (-15 -3479 ($ (-1073))) (-15 -1766 ((-1177) (-1073))) (-15 -2926 ($ (-525))) (-15 -2926 ($ (-1090))) (-15 -2926 ($ (-1073))) (-15 -2926 ($ (-205))) (-15 -3266 ($)) (-15 -1348 ((-525) $)) (-15 -2138 ((-525) $)) (-15 -1348 ((-525))) (-15 -2138 ((-525))) (-15 -3193 ((-525) $)) (-15 -1478 ((-525) $)) (-15 -2821 ($ (-525))) (-15 -2917 ($ (-525))) (-15 -4219 ($ (-525) (-525))) (-15 -3347 ($ $ (-525))) (-15 -3356 ($ $ (-525))) (-15 -3448 ($ $ (-525))) (-15 -3347 ($ $)) (-15 -3356 ($ $)) (-15 -3448 ($ $)) (-15 -1327 ($ $ $)) (-15 -2637 ($ $ $)) (-15 -1327 ($ (-592 $))) (-15 -2637 ($ (-592 $))) (-15 -1819 ($ $ (-592 $))) (-15 -1221 ($ $ (-592 $))) (-15 -1221 ($ $ $ $)) (-15 -3314 ($ $ $)) (-15 -3299 ((-108) $)) (-15 -1496 ($ $ (-592 $))) (-15 -2717 ($ $)) (-15 -1715 ($ $ $)) (-15 -3882 ($ $)) (-15 -1521 ($ (-592 (-592 $)))) (-15 -1282 ($ $ $)) (-15 -4121 ($ $)) (-15 -4121 ($ $ $)) (-15 -2182 ($ $ $)) (-15 -3268 ($ $ $)) (-15 -4206 ($ $ $)) (-15 -4193 ($ $ $)) (-15 -1576 ($ $ (-713))) (-15 -3738 ($ $ $)) (-15 -3529 ($ $ $)) (-15 -1671 ($ $ $)) (-15 -3853 ($ $ $)) (-15 -1475 ($ $ $)) (-15 -2530 ($ $ (-592 $))) (-15 -1399 ($ $ (-592 $))) (-15 -3032 ($ $)) (-15 -1580 ($ $)) (-15 -1580 ($ $ (-713))) (-15 -1951 ($ $)) (-15 -1951 ($ $ (-713))) (-15 -1464 ($ $)) (-15 -2429 ($ $ $)) (-15 -4138 ($ $)) (-15 -4138 ($ $ $)) (-15 -4138 ($ $ $ $)) (-15 -3963 ($ $)) (-15 -3963 ($ $ $)) (-15 -3963 ($ $ $ $)) (-15 -3038 ($ $)) (-15 -3038 ($ $ $)) (-15 -3038 ($ $ $ $)) (-15 -3012 ($ $)) (-15 -3012 ($ (-592 $))) (-15 -1730 ($ $)) (-15 -1730 ($ (-592 $))) (-15 -1759 ($ $)) (-15 -1759 ($ (-592 $))) (-15 -3165 ($ (-592 $))) (-15 -1702 ($ (-592 $))) (-15 -2328 ($ (-592 $))) (-15 -3376 ($ (-592 $))) (-15 -3899 ($ $ $)) (-15 -4028 ($ $ $)) (-15 -3928 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -3959 ($ $ $)) (-15 -3973 ($ $ $)) (-15 -4017 ($ $ $)) (-15 -4033 ($ $ $)) (-15 -4033 ($ $)) (-15 * ($ $ $)) (-15 -4047 ($ $ $)) (-15 ** ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2720 ($ $ $)) (-15 -2699 ($ $ $)) (-15 -2675 ($ $ $)) (-15 -2385 ($ $ $)) (-15 -2377 ($ $ $)) (-15 -2823 ($ $)) (-15 -2956 ($ $ $)) (-15 -2956 ($ $)))) +((-4029 (((-1177) (-592 (-51))) 24)) (-3184 (((-1177) (-1073) (-797)) 14) (((-1177) (-797)) 9) (((-1177) (-1073)) 11))) +(((-798) (-10 -7 (-15 -3184 ((-1177) (-1073))) (-15 -3184 ((-1177) (-797))) (-15 -3184 ((-1177) (-1073) (-797))) (-15 -4029 ((-1177) (-592 (-51)))))) (T -798)) +((-4029 (*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1177)) (-5 *1 (-798)))) (-3184 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-797)) (-5 *2 (-1177)) (-5 *1 (-798)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-798)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-798))))) +(-10 -7 (-15 -3184 ((-1177) (-1073))) (-15 -3184 ((-1177) (-797))) (-15 -3184 ((-1177) (-1073) (-797))) (-15 -4029 ((-1177) (-592 (-51))))) +((-4028 (((-108) $ $) NIL)) (-2818 (((-3 $ "failed") (-1090)) 33)) (-1651 (((-713)) 31)) (-1527 (($) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2111 (((-855) $) 29)) (-1707 (((-1073) $) 39)) (-3381 (($ (-855)) 28)) (-3027 (((-1037) $) NIL)) (-2923 (((-1090) $) 13) (((-501) $) 19) (((-826 (-357)) $) 26) (((-826 (-525)) $) 22)) (-4044 (((-797) $) 16)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 36)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 35))) +(((-799 |#1|) (-13 (-783) (-567 (-1090)) (-567 (-501)) (-567 (-826 (-357))) (-567 (-826 (-525))) (-10 -8 (-15 -2818 ((-3 $ "failed") (-1090))))) (-592 (-1090))) (T -799)) +((-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-799 *3)) (-14 *3 (-592 *2))))) +(-13 (-783) (-567 (-1090)) (-567 (-501)) (-567 (-826 (-357))) (-567 (-826 (-525))) (-10 -8 (-15 -2818 ((-3 $ "failed") (-1090))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (((-886 |#1|) $) NIL) (($ (-886 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-160)))) (-2502 (((-713)) NIL)) (-3301 (((-1177) (-713)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4047 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))))) +(((-800 |#1| |#2| |#3| |#4|) (-13 (-976) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4044 ((-886 |#1|) $)) (-15 -4044 ($ (-886 |#1|))) (IF (|has| |#1| (-341)) (-15 -4047 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3301 ((-1177) (-713))))) (-976) (-592 (-1090)) (-592 (-713)) (-713)) (T -800)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-886 *3)) (-5 *1 (-800 *3 *4 *5 *6)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-5 *1 (-800 *3 *4 *5 *6)) (-14 *4 (-592 (-1090))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-4047 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-800 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *2 (-976)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-713))) (-14 *5 (-713)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-800 *4 *5 *6 *7)) (-4 *4 (-976)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 *3)) (-14 *7 *3)))) +(-13 (-976) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4044 ((-886 |#1|) $)) (-15 -4044 ($ (-886 |#1|))) (IF (|has| |#1| (-341)) (-15 -4047 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3301 ((-1177) (-713))))) +((-4060 (((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|) 31)) (-2795 (((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|) 24))) +(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -4060 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|))) (-341) (-1163 |#1|) (-1148 |#1|)) (T -801)) +((-4060 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6)) (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1148 *5)))) (-2795 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6)) (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1148 *5))))) +(-10 -7 (-15 -2795 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -4060 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|))) +((-2795 (((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|)) 28) (((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) 26))) +(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (-15 -2795 ((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|)))) (-341) (-1090) |#1|) (T -802)) +((-2795 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1164 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-385 (-1145 *6 *5))) (-5 *1 (-802 *5 *6 *7)))) (-2795 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1164 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-385 (-1145 *6 *5))) (-5 *1 (-802 *5 *6 *7))))) +(-10 -7 (-15 -2795 ((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (-15 -2795 ((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-2975 (($ $ (-525)) 62)) (-1700 (((-108) $ $) 59)) (-1957 (($) 17 T CONST)) (-4121 (($ (-1086 (-525)) (-525)) 61)) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-3785 (($ $) 64)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2158 (((-713) $) 69)) (-2507 (((-108) $) 31)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-1690 (((-525)) 66)) (-1933 (((-525) $) 65)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1539 (($ $ (-525)) 68)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-3943 (((-1071 (-525)) $) 70)) (-2789 (($ $) 67)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-2371 (((-525) $ (-525)) 63)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-803 |#1|) (-131) (-525)) (T -803)) +((-3943 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-1071 (-525))))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-713)))) (-1539 (*1 *1 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-2789 (*1 *1 *1) (-4 *1 (-803 *2))) (-1690 (*1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-3785 (*1 *1 *1) (-4 *1 (-803 *2))) (-2371 (*1 *2 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-2975 (*1 *1 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-4121 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *3 (-525)) (-4 *1 (-803 *4))))) +(-13 (-286) (-138) (-10 -8 (-15 -3943 ((-1071 (-525)) $)) (-15 -2158 ((-713) $)) (-15 -1539 ($ $ (-525))) (-15 -2789 ($ $)) (-15 -1690 ((-525))) (-15 -1933 ((-525) $)) (-15 -3785 ($ $)) (-15 -2371 ((-525) $ (-525))) (-15 -2975 ($ $ (-525))) (-15 -4121 ($ (-1086 (-525)) (-525))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2975 (($ $ (-525)) NIL)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-4121 (($ (-1086 (-525)) (-525)) NIL)) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3785 (($ $) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2158 (((-713) $) NIL)) (-2507 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1690 (((-525)) NIL)) (-1933 (((-525) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1539 (($ $ (-525)) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-3943 (((-1071 (-525)) $) NIL)) (-2789 (($ $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-2502 (((-713)) NIL)) (-3787 (((-108) $ $) NIL)) (-2371 (((-525) $ (-525)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL))) +(((-804 |#1|) (-803 |#1|) (-525)) (T -804)) +NIL +(-803 |#1|) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 (((-804 |#1|) $) NIL (|has| (-804 |#1|) (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-804 |#1|) (-843)))) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-804 |#1|) (-843)))) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL (|has| (-804 |#1|) (-762)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-804 |#1|) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-804 |#1|) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-804 |#1|) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-804 |#1|) (-967 (-525))))) (-2068 (((-804 |#1|) $) NIL) (((-1090) $) NIL (|has| (-804 |#1|) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-804 |#1|) (-967 (-525)))) (((-525) $) NIL (|has| (-804 |#1|) (-967 (-525))))) (-1373 (($ $) NIL) (($ (-525) $) NIL)) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| (-804 |#1|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-804 |#1|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-804 |#1|))) (|:| |vec| (-1172 (-804 |#1|)))) (-632 $) (-1172 $)) NIL) (((-632 (-804 |#1|)) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-804 |#1|) (-510)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2973 (((-108) $) NIL (|has| (-804 |#1|) (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-804 |#1|) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-804 |#1|) (-820 (-357))))) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL)) (-1936 (((-804 |#1|) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| (-804 |#1|) (-1066)))) (-3721 (((-108) $) NIL (|has| (-804 |#1|) (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL (|has| (-804 |#1|) (-789)))) (-2154 (($ $ $) NIL (|has| (-804 |#1|) (-789)))) (-2868 (($ (-1 (-804 |#1|) (-804 |#1|)) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-804 |#1|) (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL (|has| (-804 |#1|) (-286)))) (-2473 (((-804 |#1|) $) NIL (|has| (-804 |#1|) (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-804 |#1|) (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-804 |#1|) (-843)))) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (($ $ (-592 (-804 |#1|)) (-592 (-804 |#1|))) NIL (|has| (-804 |#1|) (-288 (-804 |#1|)))) (($ $ (-804 |#1|) (-804 |#1|)) NIL (|has| (-804 |#1|) (-288 (-804 |#1|)))) (($ $ (-273 (-804 |#1|))) NIL (|has| (-804 |#1|) (-288 (-804 |#1|)))) (($ $ (-592 (-273 (-804 |#1|)))) NIL (|has| (-804 |#1|) (-288 (-804 |#1|)))) (($ $ (-592 (-1090)) (-592 (-804 |#1|))) NIL (|has| (-804 |#1|) (-486 (-1090) (-804 |#1|)))) (($ $ (-1090) (-804 |#1|)) NIL (|has| (-804 |#1|) (-486 (-1090) (-804 |#1|))))) (-2824 (((-713) $) NIL)) (-1496 (($ $ (-804 |#1|)) NIL (|has| (-804 |#1|) (-265 (-804 |#1|) (-804 |#1|))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) NIL (|has| (-804 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-804 |#1|) (-213))) (($ $ (-1090)) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-1 (-804 |#1|) (-804 |#1|)) (-713)) NIL) (($ $ (-1 (-804 |#1|) (-804 |#1|))) NIL)) (-1987 (($ $) NIL)) (-1945 (((-804 |#1|) $) NIL)) (-2923 (((-826 (-525)) $) NIL (|has| (-804 |#1|) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-804 |#1|) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-804 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-804 |#1|) (-952))) (((-205) $) NIL (|has| (-804 |#1|) (-952)))) (-4089 (((-161 (-385 (-525))) $) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-804 |#1|) (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-804 |#1|)) NIL) (($ (-1090)) NIL (|has| (-804 |#1|) (-967 (-1090))))) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| (-804 |#1|) (-843))) (|has| (-804 |#1|) (-136))))) (-2502 (((-713)) NIL)) (-1448 (((-804 |#1|) $) NIL (|has| (-804 |#1|) (-510)))) (-3787 (((-108) $ $) NIL)) (-2371 (((-385 (-525)) $ (-525)) NIL)) (-2053 (($ $) NIL (|has| (-804 |#1|) (-762)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $) NIL (|has| (-804 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-804 |#1|) (-213))) (($ $ (-1090)) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-1 (-804 |#1|) (-804 |#1|)) (-713)) NIL) (($ $ (-1 (-804 |#1|) (-804 |#1|))) NIL)) (-3973 (((-108) $ $) NIL (|has| (-804 |#1|) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-804 |#1|) (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| (-804 |#1|) (-789)))) (-3928 (((-108) $ $) NIL (|has| (-804 |#1|) (-789)))) (-4047 (($ $ $) NIL) (($ (-804 |#1|) (-804 |#1|)) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-804 |#1|) $) NIL) (($ $ (-804 |#1|)) NIL))) +(((-805 |#1|) (-13 (-924 (-804 |#1|)) (-10 -8 (-15 -2371 ((-385 (-525)) $ (-525))) (-15 -4089 ((-161 (-385 (-525))) $)) (-15 -1373 ($ $)) (-15 -1373 ($ (-525) $)))) (-525)) (T -805)) +((-2371 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-805 *4)) (-14 *4 *3) (-5 *3 (-525)))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-805 *3)) (-14 *3 (-525)))) (-1373 (*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-14 *2 (-525)))) (-1373 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-805 *3)) (-14 *3 *2)))) +(-13 (-924 (-804 |#1|)) (-10 -8 (-15 -2371 ((-385 (-525)) $ (-525))) (-15 -4089 ((-161 (-385 (-525))) $)) (-15 -1373 ($ $)) (-15 -1373 ($ (-525) $)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 ((|#2| $) NIL (|has| |#2| (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL (|has| |#2| (-762)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| |#2| (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525))))) (-2068 ((|#2| $) NIL) (((-1090) $) NIL (|has| |#2| (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-525)))) (((-525) $) NIL (|has| |#2| (-967 (-525))))) (-1373 (($ $) 31) (($ (-525) $) 32)) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) 53)) (-1527 (($) NIL (|has| |#2| (-510)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2973 (((-108) $) NIL (|has| |#2| (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| |#2| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| |#2| (-820 (-357))))) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL)) (-1936 ((|#2| $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| |#2| (-1066)))) (-3721 (((-108) $) NIL (|has| |#2| (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL (|has| |#2| (-789)))) (-2154 (($ $ $) NIL (|has| |#2| (-789)))) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 49)) (-2039 (($) NIL (|has| |#2| (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL (|has| |#2| (-286)))) (-2473 ((|#2| $) NIL (|has| |#2| (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (($ $ (-592 |#2|) (-592 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-288 |#2|))) (($ $ (-273 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-273 |#2|))) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-1090)) (-592 |#2|)) NIL (|has| |#2| (-486 (-1090) |#2|))) (($ $ (-1090) |#2|) NIL (|has| |#2| (-486 (-1090) |#2|)))) (-2824 (((-713) $) NIL)) (-1496 (($ $ |#2|) NIL (|has| |#2| (-265 |#2| |#2|)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1987 (($ $) NIL)) (-1945 ((|#2| $) NIL)) (-2923 (((-826 (-525)) $) NIL (|has| |#2| (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| |#2| (-567 (-826 (-357))))) (((-501) $) NIL (|has| |#2| (-567 (-501)))) (((-357) $) NIL (|has| |#2| (-952))) (((-205) $) NIL (|has| |#2| (-952)))) (-4089 (((-161 (-385 (-525))) $) 68)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-4044 (((-797) $) 87) (($ (-525)) 19) (($ $) NIL) (($ (-385 (-525))) 24) (($ |#2|) 18) (($ (-1090)) NIL (|has| |#2| (-967 (-1090))))) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2502 (((-713)) NIL)) (-1448 ((|#2| $) NIL (|has| |#2| (-510)))) (-3787 (((-108) $ $) NIL)) (-2371 (((-385 (-525)) $ (-525)) 60)) (-2053 (($ $) NIL (|has| |#2| (-762)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 14 T CONST)) (-1449 (($) 16 T CONST)) (-1990 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3973 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3899 (((-108) $ $) 35)) (-3959 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4047 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4033 (($ $) 39) (($ $ $) 41)) (-4017 (($ $ $) 37)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 50)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 42) (($ $ $) 44) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-806 |#1| |#2|) (-13 (-924 |#2|) (-10 -8 (-15 -2371 ((-385 (-525)) $ (-525))) (-15 -4089 ((-161 (-385 (-525))) $)) (-15 -1373 ($ $)) (-15 -1373 ($ (-525) $)))) (-525) (-803 |#1|)) (T -806)) +((-2371 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-385 (-525))) (-5 *1 (-806 *4 *5)) (-5 *3 (-525)) (-4 *5 (-803 *4)))) (-4089 (*1 *2 *1) (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-806 *3 *4)) (-4 *4 (-803 *3)))) (-1373 (*1 *1 *1) (-12 (-14 *2 (-525)) (-5 *1 (-806 *2 *3)) (-4 *3 (-803 *2)))) (-1373 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-14 *3 *2) (-5 *1 (-806 *3 *4)) (-4 *4 (-803 *3))))) +(-13 (-924 |#2|) (-10 -8 (-15 -2371 ((-385 (-525)) $ (-525))) (-15 -4089 ((-161 (-385 (-525))) $)) (-15 -1373 ($ $)) (-15 -1373 ($ (-525) $)))) +((-4028 (((-108) $ $) NIL (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))))) (-4227 ((|#2| $) 12)) (-3408 (($ |#1| |#2|) 9)) (-1707 (((-1073) $) NIL (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))))) (-3027 (((-1037) $) NIL (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))))) (-1683 ((|#1| $) 11)) (-4059 (($ |#1| |#2|) 10)) (-4044 (((-797) $) 18 (-3215 (-12 (|has| |#1| (-566 (-797))) (|has| |#2| (-566 (-797)))) (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019)))))) (-3899 (((-108) $ $) 22 (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019)))))) +(((-807 |#1| |#2|) (-13 (-1126) (-10 -8 (IF (|has| |#1| (-566 (-797))) (IF (|has| |#2| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1019)) (IF (|has| |#2| (-1019)) (-6 (-1019)) |%noBranch|) |%noBranch|) (-15 -3408 ($ |#1| |#2|)) (-15 -4059 ($ |#1| |#2|)) (-15 -1683 (|#1| $)) (-15 -4227 (|#2| $)))) (-1126) (-1126)) (T -807)) +((-3408 (*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1126)) (-4 *3 (-1126)))) (-4059 (*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1126)) (-4 *3 (-1126)))) (-1683 (*1 *2 *1) (-12 (-4 *2 (-1126)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1126)))) (-4227 (*1 *2 *1) (-12 (-4 *2 (-1126)) (-5 *1 (-807 *3 *2)) (-4 *3 (-1126))))) +(-13 (-1126) (-10 -8 (IF (|has| |#1| (-566 (-797))) (IF (|has| |#2| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1019)) (IF (|has| |#2| (-1019)) (-6 (-1019)) |%noBranch|) |%noBranch|) (-15 -3408 ($ |#1| |#2|)) (-15 -4059 ($ |#1| |#2|)) (-15 -1683 (|#1| $)) (-15 -4227 (|#2| $)))) +((-4028 (((-108) $ $) NIL)) (-3559 (((-525) $) 15)) (-3835 (($ (-146)) 11)) (-1526 (($ (-146)) 12)) (-1707 (((-1073) $) NIL)) (-2949 (((-146) $) 13)) (-3027 (((-1037) $) NIL)) (-3815 (($ (-146)) 9)) (-3623 (($ (-146)) 8)) (-4044 (((-797) $) 23) (($ (-146)) 16)) (-2654 (($ (-146)) 10)) (-3899 (((-108) $ $) NIL))) +(((-808) (-13 (-1019) (-10 -8 (-15 -3623 ($ (-146))) (-15 -3815 ($ (-146))) (-15 -2654 ($ (-146))) (-15 -3835 ($ (-146))) (-15 -1526 ($ (-146))) (-15 -2949 ((-146) $)) (-15 -3559 ((-525) $)) (-15 -4044 ($ (-146)))))) (T -808)) +((-3623 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-3835 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-808)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808))))) +(-13 (-1019) (-10 -8 (-15 -3623 ($ (-146))) (-15 -3815 ($ (-146))) (-15 -2654 ($ (-146))) (-15 -3835 ($ (-146))) (-15 -1526 ($ (-146))) (-15 -2949 ((-146) $)) (-15 -3559 ((-525) $)) (-15 -4044 ($ (-146))))) +((-4044 (((-294 (-525)) (-385 (-886 (-47)))) 23) (((-294 (-525)) (-886 (-47))) 18))) +(((-809) (-10 -7 (-15 -4044 ((-294 (-525)) (-886 (-47)))) (-15 -4044 ((-294 (-525)) (-385 (-886 (-47))))))) (T -809)) +((-4044 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 (-47)))) (-5 *2 (-294 (-525))) (-5 *1 (-809)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-886 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-809))))) +(-10 -7 (-15 -4044 ((-294 (-525)) (-886 (-47)))) (-15 -4044 ((-294 (-525)) (-385 (-886 (-47)))))) +((-2868 (((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)) 14))) +(((-810 |#1| |#2|) (-10 -7 (-15 -2868 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)))) (-1126) (-1126)) (T -810)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6))))) +(-10 -7 (-15 -2868 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)))) +((-1595 (($ |#1| |#1|) 8)) (-3621 ((|#1| $ (-713)) 10))) +(((-811 |#1|) (-10 -8 (-15 -1595 ($ |#1| |#1|)) (-15 -3621 (|#1| $ (-713)))) (-1126)) (T -811)) +((-3621 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-811 *2)) (-4 *2 (-1126)))) (-1595 (*1 *1 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1126))))) +(-10 -8 (-15 -1595 ($ |#1| |#1|)) (-15 -3621 (|#1| $ (-713)))) +((-2868 (((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)) 14))) +(((-812 |#1| |#2|) (-10 -7 (-15 -2868 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)))) (-1126) (-1126)) (T -812)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6))))) +(-10 -7 (-15 -2868 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)))) +((-1595 (($ |#1| |#1| |#1|) 8)) (-3621 ((|#1| $ (-713)) 10))) +(((-813 |#1|) (-10 -8 (-15 -1595 ($ |#1| |#1| |#1|)) (-15 -3621 (|#1| $ (-713)))) (-1126)) (T -813)) +((-3621 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-813 *2)) (-4 *2 (-1126)))) (-1595 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1126))))) +(-10 -8 (-15 -1595 ($ |#1| |#1| |#1|)) (-15 -3621 (|#1| $ (-713)))) +((-2077 (((-592 (-1095)) (-1073)) 9))) +(((-814) (-10 -7 (-15 -2077 ((-592 (-1095)) (-1073))))) (T -814)) +((-2077 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-592 (-1095))) (-5 *1 (-814))))) +(-10 -7 (-15 -2077 ((-592 (-1095)) (-1073)))) +((-2868 (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)) 14))) +(((-815 |#1| |#2|) (-10 -7 (-15 -2868 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)))) (-1126) (-1126)) (T -815)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6))))) +(-10 -7 (-15 -2868 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)))) +((-2603 (($ |#1| |#1| |#1|) 8)) (-3621 ((|#1| $ (-713)) 10))) +(((-816 |#1|) (-10 -8 (-15 -2603 ($ |#1| |#1| |#1|)) (-15 -3621 (|#1| $ (-713)))) (-1126)) (T -816)) +((-3621 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-816 *2)) (-4 *2 (-1126)))) (-2603 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1126))))) +(-10 -8 (-15 -2603 ($ |#1| |#1| |#1|)) (-15 -3621 (|#1| $ (-713)))) +((-3731 (((-1071 (-592 (-525))) (-592 (-525)) (-1071 (-592 (-525)))) 32)) (-1349 (((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525))) 28)) (-1274 (((-1071 (-592 (-525))) (-592 (-525))) 41) (((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525))) 40)) (-3897 (((-1071 (-592 (-525))) (-525)) 42)) (-3178 (((-1071 (-592 (-525))) (-525) (-525)) 22) (((-1071 (-592 (-525))) (-525)) 16) (((-1071 (-592 (-525))) (-525) (-525) (-525)) 12)) (-1767 (((-1071 (-592 (-525))) (-1071 (-592 (-525)))) 26)) (-4025 (((-592 (-525)) (-592 (-525))) 25))) +(((-817) (-10 -7 (-15 -3178 ((-1071 (-592 (-525))) (-525) (-525) (-525))) (-15 -3178 ((-1071 (-592 (-525))) (-525))) (-15 -3178 ((-1071 (-592 (-525))) (-525) (-525))) (-15 -4025 ((-592 (-525)) (-592 (-525)))) (-15 -1767 ((-1071 (-592 (-525))) (-1071 (-592 (-525))))) (-15 -1349 ((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -3731 ((-1071 (-592 (-525))) (-592 (-525)) (-1071 (-592 (-525))))) (-15 -1274 ((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -1274 ((-1071 (-592 (-525))) (-592 (-525)))) (-15 -3897 ((-1071 (-592 (-525))) (-525))))) (T -817)) +((-3897 (*1 *2 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))) (-1274 (*1 *2 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-592 (-525))))) (-1274 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-592 (-525))))) (-3731 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *3 (-592 (-525))) (-5 *1 (-817)))) (-1349 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-592 (-525))))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)))) (-4025 (*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-817)))) (-3178 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))) (-3178 (*1 *2 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))) (-3178 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525))))) +(-10 -7 (-15 -3178 ((-1071 (-592 (-525))) (-525) (-525) (-525))) (-15 -3178 ((-1071 (-592 (-525))) (-525))) (-15 -3178 ((-1071 (-592 (-525))) (-525) (-525))) (-15 -4025 ((-592 (-525)) (-592 (-525)))) (-15 -1767 ((-1071 (-592 (-525))) (-1071 (-592 (-525))))) (-15 -1349 ((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -3731 ((-1071 (-592 (-525))) (-592 (-525)) (-1071 (-592 (-525))))) (-15 -1274 ((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -1274 ((-1071 (-592 (-525))) (-592 (-525)))) (-15 -3897 ((-1071 (-592 (-525))) (-525)))) +((-2923 (((-826 (-357)) $) 9 (|has| |#1| (-567 (-826 (-357))))) (((-826 (-525)) $) 8 (|has| |#1| (-567 (-826 (-525))))))) +(((-818 |#1|) (-131) (-1126)) (T -818)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-567 (-826 (-525)))) (-6 (-567 (-826 (-525)))) |%noBranch|) (IF (|has| |t#1| (-567 (-826 (-357)))) (-6 (-567 (-826 (-357)))) |%noBranch|))) +(((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525))))) +((-4028 (((-108) $ $) NIL)) (-3248 (($) 14)) (-1363 (($ (-823 |#1| |#2|) (-823 |#1| |#3|)) 27)) (-3492 (((-823 |#1| |#3|) $) 16)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3670 (((-108) $) 22)) (-4081 (($) 19)) (-4044 (((-797) $) 30)) (-2285 (((-823 |#1| |#2|) $) 15)) (-3899 (((-108) $ $) 25))) +(((-819 |#1| |#2| |#3|) (-13 (-1019) (-10 -8 (-15 -3670 ((-108) $)) (-15 -4081 ($)) (-15 -3248 ($)) (-15 -1363 ($ (-823 |#1| |#2|) (-823 |#1| |#3|))) (-15 -2285 ((-823 |#1| |#2|) $)) (-15 -3492 ((-823 |#1| |#3|) $)))) (-1019) (-1019) (-612 |#2|)) (T -819)) +((-3670 (*1 *2 *1) (-12 (-4 *4 (-1019)) (-5 *2 (-108)) (-5 *1 (-819 *3 *4 *5)) (-4 *3 (-1019)) (-4 *5 (-612 *4)))) (-4081 (*1 *1) (-12 (-4 *3 (-1019)) (-5 *1 (-819 *2 *3 *4)) (-4 *2 (-1019)) (-4 *4 (-612 *3)))) (-3248 (*1 *1) (-12 (-4 *3 (-1019)) (-5 *1 (-819 *2 *3 *4)) (-4 *2 (-1019)) (-4 *4 (-612 *3)))) (-1363 (*1 *1 *2 *3) (-12 (-5 *2 (-823 *4 *5)) (-5 *3 (-823 *4 *6)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-612 *5)) (-5 *1 (-819 *4 *5 *6)))) (-2285 (*1 *2 *1) (-12 (-4 *4 (-1019)) (-5 *2 (-823 *3 *4)) (-5 *1 (-819 *3 *4 *5)) (-4 *3 (-1019)) (-4 *5 (-612 *4)))) (-3492 (*1 *2 *1) (-12 (-4 *4 (-1019)) (-5 *2 (-823 *3 *5)) (-5 *1 (-819 *3 *4 *5)) (-4 *3 (-1019)) (-4 *5 (-612 *4))))) +(-13 (-1019) (-10 -8 (-15 -3670 ((-108) $)) (-15 -4081 ($)) (-15 -3248 ($)) (-15 -1363 ($ (-823 |#1| |#2|) (-823 |#1| |#3|))) (-15 -2285 ((-823 |#1| |#2|) $)) (-15 -3492 ((-823 |#1| |#3|) $)))) +((-4028 (((-108) $ $) 7)) (-2029 (((-823 |#1| $) $ (-826 |#1|) (-823 |#1| $)) 13)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 6))) +(((-820 |#1|) (-131) (-1019)) (T -820)) +((-2029 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-823 *4 *1)) (-5 *3 (-826 *4)) (-4 *1 (-820 *4)) (-4 *4 (-1019))))) +(-13 (-1019) (-10 -8 (-15 -2029 ((-823 |t#1| $) $ (-826 |t#1|) (-823 |t#1| $))))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4084 (((-108) (-592 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-1763 (((-823 |#1| |#2|) |#2| |#3|) 43 (-12 (-2823 (|has| |#2| (-967 (-1090)))) (-2823 (|has| |#2| (-976))))) (((-592 (-273 (-886 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-976)) (-2823 (|has| |#2| (-967 (-1090)))))) (((-592 (-273 |#2|)) |#2| |#3|) 35 (|has| |#2| (-967 (-1090)))) (((-819 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|) 21))) +(((-821 |#1| |#2| |#3|) (-10 -7 (-15 -4084 ((-108) |#2| |#3|)) (-15 -4084 ((-108) (-592 |#2|) |#3|)) (-15 -1763 ((-819 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-967 (-1090))) (-15 -1763 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-976)) (-15 -1763 ((-592 (-273 (-886 |#2|))) |#2| |#3|)) (-15 -1763 ((-823 |#1| |#2|) |#2| |#3|))))) (-1019) (-820 |#1|) (-567 (-826 |#1|))) (T -821)) +((-1763 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-5 *2 (-823 *5 *3)) (-5 *1 (-821 *5 *3 *4)) (-2823 (-4 *3 (-967 (-1090)))) (-2823 (-4 *3 (-976))) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))) (-1763 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-5 *2 (-592 (-273 (-886 *3)))) (-5 *1 (-821 *5 *3 *4)) (-4 *3 (-976)) (-2823 (-4 *3 (-967 (-1090)))) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))) (-1763 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-821 *5 *3 *4)) (-4 *3 (-967 (-1090))) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))) (-1763 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *6 (-820 *5)) (-5 *2 (-819 *5 *6 (-592 *6))) (-5 *1 (-821 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-826 *5))))) (-4084 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-4 *6 (-820 *5)) (-4 *5 (-1019)) (-5 *2 (-108)) (-5 *1 (-821 *5 *6 *4)) (-4 *4 (-567 (-826 *5))))) (-4084 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-5 *2 (-108)) (-5 *1 (-821 *5 *3 *4)) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5)))))) +(-10 -7 (-15 -4084 ((-108) |#2| |#3|)) (-15 -4084 ((-108) (-592 |#2|) |#3|)) (-15 -1763 ((-819 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-967 (-1090))) (-15 -1763 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-976)) (-15 -1763 ((-592 (-273 (-886 |#2|))) |#2| |#3|)) (-15 -1763 ((-823 |#1| |#2|) |#2| |#3|))))) +((-2868 (((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|)) 22))) +(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -2868 ((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|)))) (-1019) (-1019) (-1019)) (T -822)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-823 *5 *6)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-823 *5 *7)) (-5 *1 (-822 *5 *6 *7))))) +(-10 -7 (-15 -2868 ((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|)))) +((-4028 (((-108) $ $) NIL)) (-2272 (($ $ $) 39)) (-3133 (((-3 (-108) "failed") $ (-826 |#1|)) 36)) (-3248 (($) 12)) (-1707 (((-1073) $) NIL)) (-1314 (($ (-826 |#1|) |#2| $) 20)) (-3027 (((-1037) $) NIL)) (-3331 (((-3 |#2| "failed") (-826 |#1|) $) 50)) (-3670 (((-108) $) 15)) (-4081 (($) 13)) (-3049 (((-592 (-2 (|:| -3160 (-1090)) (|:| -3978 |#2|))) $) 25)) (-4059 (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 |#2|)))) 23)) (-4044 (((-797) $) 44)) (-2732 (($ (-826 |#1|) |#2| $ |#2|) 48)) (-3741 (($ (-826 |#1|) |#2| $) 47)) (-3899 (((-108) $ $) 41))) +(((-823 |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -3670 ((-108) $)) (-15 -4081 ($)) (-15 -3248 ($)) (-15 -2272 ($ $ $)) (-15 -3331 ((-3 |#2| "failed") (-826 |#1|) $)) (-15 -3741 ($ (-826 |#1|) |#2| $)) (-15 -1314 ($ (-826 |#1|) |#2| $)) (-15 -2732 ($ (-826 |#1|) |#2| $ |#2|)) (-15 -3049 ((-592 (-2 (|:| -3160 (-1090)) (|:| -3978 |#2|))) $)) (-15 -4059 ($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 |#2|))))) (-15 -3133 ((-3 (-108) "failed") $ (-826 |#1|))))) (-1019) (-1019)) (T -823)) +((-3670 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-4081 (*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-3248 (*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-2272 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-3331 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-4 *2 (-1019)) (-5 *1 (-823 *4 *2)))) (-3741 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1019)))) (-1314 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1019)))) (-2732 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1019)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 *4)))) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 *4)))) (-4 *4 (-1019)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)))) (-3133 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-108)) (-5 *1 (-823 *4 *5)) (-4 *5 (-1019))))) +(-13 (-1019) (-10 -8 (-15 -3670 ((-108) $)) (-15 -4081 ($)) (-15 -3248 ($)) (-15 -2272 ($ $ $)) (-15 -3331 ((-3 |#2| "failed") (-826 |#1|) $)) (-15 -3741 ($ (-826 |#1|) |#2| $)) (-15 -1314 ($ (-826 |#1|) |#2| $)) (-15 -2732 ($ (-826 |#1|) |#2| $ |#2|)) (-15 -3049 ((-592 (-2 (|:| -3160 (-1090)) (|:| -3978 |#2|))) $)) (-15 -4059 ($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 |#2|))))) (-15 -3133 ((-3 (-108) "failed") $ (-826 |#1|))))) +((-4169 (((-826 |#1|) (-826 |#1|) (-592 (-1090)) (-1 (-108) (-592 |#2|))) 32) (((-826 |#1|) (-826 |#1|) (-592 (-1 (-108) |#2|))) 43) (((-826 |#1|) (-826 |#1|) (-1 (-108) |#2|)) 35)) (-3133 (((-108) (-592 |#2|) (-826 |#1|)) 40) (((-108) |#2| (-826 |#1|)) 36)) (-2743 (((-1 (-108) |#2|) (-826 |#1|)) 16)) (-2807 (((-592 |#2|) (-826 |#1|)) 24)) (-2136 (((-826 |#1|) (-826 |#1|) |#2|) 20))) +(((-824 |#1| |#2|) (-10 -7 (-15 -4169 ((-826 |#1|) (-826 |#1|) (-1 (-108) |#2|))) (-15 -4169 ((-826 |#1|) (-826 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -4169 ((-826 |#1|) (-826 |#1|) (-592 (-1090)) (-1 (-108) (-592 |#2|)))) (-15 -2743 ((-1 (-108) |#2|) (-826 |#1|))) (-15 -3133 ((-108) |#2| (-826 |#1|))) (-15 -3133 ((-108) (-592 |#2|) (-826 |#1|))) (-15 -2136 ((-826 |#1|) (-826 |#1|) |#2|)) (-15 -2807 ((-592 |#2|) (-826 |#1|)))) (-1019) (-1126)) (T -824)) +((-2807 (*1 *2 *3) (-12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-592 *5)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1126)))) (-2136 (*1 *2 *2 *3) (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1126)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *2 (-108)) (-5 *1 (-824 *5 *6)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-5 *2 (-108)) (-5 *1 (-824 *5 *3)) (-4 *3 (-1126)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1126)))) (-4169 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-826 *5)) (-5 *3 (-592 (-1090))) (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *1 (-824 *5 *6)))) (-4169 (*1 *2 *2 *3) (-12 (-5 *2 (-826 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1019)) (-4 *5 (-1126)) (-5 *1 (-824 *4 *5)))) (-4169 (*1 *2 *2 *3) (-12 (-5 *2 (-826 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1019)) (-4 *5 (-1126)) (-5 *1 (-824 *4 *5))))) +(-10 -7 (-15 -4169 ((-826 |#1|) (-826 |#1|) (-1 (-108) |#2|))) (-15 -4169 ((-826 |#1|) (-826 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -4169 ((-826 |#1|) (-826 |#1|) (-592 (-1090)) (-1 (-108) (-592 |#2|)))) (-15 -2743 ((-1 (-108) |#2|) (-826 |#1|))) (-15 -3133 ((-108) |#2| (-826 |#1|))) (-15 -3133 ((-108) (-592 |#2|) (-826 |#1|))) (-15 -2136 ((-826 |#1|) (-826 |#1|) |#2|)) (-15 -2807 ((-592 |#2|) (-826 |#1|)))) +((-2868 (((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|)) 19))) +(((-825 |#1| |#2|) (-10 -7 (-15 -2868 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|)))) (-1019) (-1019)) (T -825)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-826 *6)) (-5 *1 (-825 *5 *6))))) +(-10 -7 (-15 -2868 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|)))) +((-4028 (((-108) $ $) NIL)) (-1267 (($ $ (-592 (-51))) 64)) (-3122 (((-592 $) $) 118)) (-1776 (((-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51))) $) 24)) (-1837 (((-108) $) 30)) (-2232 (($ $ (-592 (-1090)) (-51)) 25)) (-3368 (($ $ (-592 (-51))) 63)) (-2769 (((-3 |#1| "failed") $) 61) (((-3 (-1090) "failed") $) 140)) (-2068 ((|#1| $) 58) (((-1090) $) NIL)) (-1487 (($ $) 108)) (-3909 (((-108) $) 47)) (-3786 (((-592 (-51)) $) 45)) (-3472 (($ (-1090) (-108) (-108) (-108)) 65)) (-1549 (((-3 (-592 $) "failed") (-592 $)) 72)) (-4105 (((-108) $) 50)) (-1630 (((-108) $) 49)) (-1707 (((-1073) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) 36)) (-2103 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-4098 (((-3 (-2 (|:| |val| $) (|:| -1737 $)) "failed") $) 83)) (-4103 (((-3 (-592 $) "failed") $) 33)) (-1923 (((-3 (-592 $) "failed") $ (-110)) 107) (((-3 (-2 (|:| -3892 (-110)) (|:| |arg| (-592 $))) "failed") $) 95)) (-2323 (((-3 (-592 $) "failed") $) 37)) (-1850 (((-3 (-2 (|:| |val| $) (|:| -1737 (-713))) "failed") $) 40)) (-3870 (((-108) $) 29)) (-3027 (((-1037) $) NIL)) (-1345 (((-108) $) 21)) (-2495 (((-108) $) 46)) (-1793 (((-592 (-51)) $) 111)) (-1530 (((-108) $) 48)) (-1496 (($ (-110) (-592 $)) 92)) (-3465 (((-713) $) 28)) (-1261 (($ $) 62)) (-2923 (($ (-592 $)) 59)) (-3078 (((-108) $) 26)) (-4044 (((-797) $) 53) (($ |#1|) 18) (($ (-1090)) 66)) (-2136 (($ $ (-51)) 110)) (-1436 (($) 91 T CONST)) (-1449 (($) 73 T CONST)) (-3899 (((-108) $ $) 79)) (-4047 (($ $ $) 100)) (-4017 (($ $ $) 104)) (** (($ $ (-713)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-826 |#1|) (-13 (-1019) (-967 |#1|) (-967 (-1090)) (-10 -8 (-15 0 ($) -3219) (-15 1 ($) -3219) (-15 -4103 ((-3 (-592 $) "failed") $)) (-15 -3466 ((-3 (-592 $) "failed") $)) (-15 -1923 ((-3 (-592 $) "failed") $ (-110))) (-15 -1923 ((-3 (-2 (|:| -3892 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -1850 ((-3 (-2 (|:| |val| $) (|:| -1737 (-713))) "failed") $)) (-15 -2103 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2323 ((-3 (-592 $) "failed") $)) (-15 -4098 ((-3 (-2 (|:| |val| $) (|:| -1737 $)) "failed") $)) (-15 -1496 ($ (-110) (-592 $))) (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -4047 ($ $ $)) (-15 -3465 ((-713) $)) (-15 -2923 ($ (-592 $))) (-15 -1261 ($ $)) (-15 -3870 ((-108) $)) (-15 -3909 ((-108) $)) (-15 -1837 ((-108) $)) (-15 -3078 ((-108) $)) (-15 -1530 ((-108) $)) (-15 -1630 ((-108) $)) (-15 -4105 ((-108) $)) (-15 -2495 ((-108) $)) (-15 -3786 ((-592 (-51)) $)) (-15 -3368 ($ $ (-592 (-51)))) (-15 -1267 ($ $ (-592 (-51)))) (-15 -3472 ($ (-1090) (-108) (-108) (-108))) (-15 -2232 ($ $ (-592 (-1090)) (-51))) (-15 -1776 ((-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51))) $)) (-15 -1345 ((-108) $)) (-15 -1487 ($ $)) (-15 -2136 ($ $ (-51))) (-15 -1793 ((-592 (-51)) $)) (-15 -3122 ((-592 $) $)) (-15 -1549 ((-3 (-592 $) "failed") (-592 $))))) (-1019)) (T -826)) +((-1436 (*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-1449 (*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-4103 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3466 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1923 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-826 *4))) (-5 *1 (-826 *4)) (-4 *4 (-1019)))) (-1923 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3892 (-110)) (|:| |arg| (-592 (-826 *3))))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1850 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-826 *3)) (|:| -1737 (-713)))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2103 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-826 *3)) (|:| |den| (-826 *3)))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2323 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-4098 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-826 *3)) (|:| -1737 (-826 *3)))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1496 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-826 *4))) (-5 *1 (-826 *4)) (-4 *4 (-1019)))) (-4017 (*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-4047 (*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1261 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1267 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3472 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-108)) (-5 *1 (-826 *4)) (-4 *4 (-1019)))) (-2232 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-51)) (-5 *1 (-826 *4)) (-4 *4 (-1019)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51)))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1487 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1549 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(-13 (-1019) (-967 |#1|) (-967 (-1090)) (-10 -8 (-15 (-1436) ($) -3219) (-15 (-1449) ($) -3219) (-15 -4103 ((-3 (-592 $) "failed") $)) (-15 -3466 ((-3 (-592 $) "failed") $)) (-15 -1923 ((-3 (-592 $) "failed") $ (-110))) (-15 -1923 ((-3 (-2 (|:| -3892 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -1850 ((-3 (-2 (|:| |val| $) (|:| -1737 (-713))) "failed") $)) (-15 -2103 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2323 ((-3 (-592 $) "failed") $)) (-15 -4098 ((-3 (-2 (|:| |val| $) (|:| -1737 $)) "failed") $)) (-15 -1496 ($ (-110) (-592 $))) (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -4047 ($ $ $)) (-15 -3465 ((-713) $)) (-15 -2923 ($ (-592 $))) (-15 -1261 ($ $)) (-15 -3870 ((-108) $)) (-15 -3909 ((-108) $)) (-15 -1837 ((-108) $)) (-15 -3078 ((-108) $)) (-15 -1530 ((-108) $)) (-15 -1630 ((-108) $)) (-15 -4105 ((-108) $)) (-15 -2495 ((-108) $)) (-15 -3786 ((-592 (-51)) $)) (-15 -3368 ($ $ (-592 (-51)))) (-15 -1267 ($ $ (-592 (-51)))) (-15 -3472 ($ (-1090) (-108) (-108) (-108))) (-15 -2232 ($ $ (-592 (-1090)) (-51))) (-15 -1776 ((-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51))) $)) (-15 -1345 ((-108) $)) (-15 -1487 ($ $)) (-15 -2136 ($ $ (-51))) (-15 -1793 ((-592 (-51)) $)) (-15 -3122 ((-592 $) $)) (-15 -1549 ((-3 (-592 $) "failed") (-592 $))))) +((-4028 (((-108) $ $) NIL)) (-1562 (((-592 |#1|) $) 16)) (-2634 (((-108) $) 38)) (-2769 (((-3 (-617 |#1|) "failed") $) 43)) (-2068 (((-617 |#1|) $) 41)) (-1693 (($ $) 18)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2520 (((-713) $) 46)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 (((-617 |#1|) $) 17)) (-4044 (((-797) $) 37) (($ (-617 |#1|)) 21) (((-761 |#1|) $) 27) (($ |#1|) 20)) (-1449 (($) 8 T CONST)) (-3365 (((-592 (-617 |#1|)) $) 23)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 11)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 49))) +(((-827 |#1|) (-13 (-789) (-967 (-617 |#1|)) (-10 -8 (-15 1 ($) -3219) (-15 -4044 ((-761 |#1|) $)) (-15 -4044 ($ |#1|)) (-15 -1683 ((-617 |#1|) $)) (-15 -2520 ((-713) $)) (-15 -3365 ((-592 (-617 |#1|)) $)) (-15 -1693 ($ $)) (-15 -2634 ((-108) $)) (-15 -1562 ((-592 |#1|) $)))) (-789)) (T -827)) +((-1449 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-4044 (*1 *1 *2) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789))))) +(-13 (-789) (-967 (-617 |#1|)) (-10 -8 (-15 (-1449) ($) -3219) (-15 -4044 ((-761 |#1|) $)) (-15 -4044 ($ |#1|)) (-15 -1683 ((-617 |#1|) $)) (-15 -2520 ((-713) $)) (-15 -3365 ((-592 (-617 |#1|)) $)) (-15 -1693 ($ $)) (-15 -2634 ((-108) $)) (-15 -1562 ((-592 |#1|) $)))) +((-3947 ((|#1| |#1| |#1|) 19))) +(((-828 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#1| |#1|))) (-1148 |#2|) (-976)) (T -828)) +((-3947 (*1 *2 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-828 *2 *3)) (-4 *2 (-1148 *3))))) +(-10 -7 (-15 -3947 (|#1| |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-1393 (((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 14)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1219 (((-965) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 13)) (-3899 (((-108) $ $) 6))) +(((-829) (-131)) (T -829)) +((-1393 (*1 *2 *3 *4) (-12 (-4 *1 (-829)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)))))) (-1219 (*1 *2 *3) (-12 (-4 *1 (-829)) (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *2 (-965))))) +(-13 (-1019) (-10 -7 (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))) (-15 -1219 ((-965) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-3066 ((|#1| |#1| (-713)) 24)) (-1601 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3756 (((-3 (-2 (|:| -3347 |#1|) (|:| -3356 |#1|)) "failed") |#1| (-713) (-713)) 27) (((-592 |#1|) |#1|) 29))) +(((-830 |#1| |#2|) (-10 -7 (-15 -3756 ((-592 |#1|) |#1|)) (-15 -3756 ((-3 (-2 (|:| -3347 |#1|) (|:| -3356 |#1|)) "failed") |#1| (-713) (-713))) (-15 -1601 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3066 (|#1| |#1| (-713)))) (-1148 |#2|) (-341)) (T -830)) +((-3066 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-830 *2 *4)) (-4 *2 (-1148 *4)))) (-1601 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-830 *2 *3)) (-4 *2 (-1148 *3)))) (-3756 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3347 *3) (|:| -3356 *3))) (-5 *1 (-830 *3 *5)) (-4 *3 (-1148 *5)))) (-3756 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -3756 ((-592 |#1|) |#1|)) (-15 -3756 ((-3 (-2 (|:| -3347 |#1|) (|:| -3356 |#1|)) "failed") |#1| (-713) (-713))) (-15 -1601 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3066 (|#1| |#1| (-713)))) +((-1932 (((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073)) 96) (((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073) (-205)) 91) (((-965) (-832) (-988)) 83) (((-965) (-832)) 84)) (-1393 (((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832) (-988)) 59) (((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832)) 61))) +(((-831) (-10 -7 (-15 -1932 ((-965) (-832))) (-15 -1932 ((-965) (-832) (-988))) (-15 -1932 ((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073) (-205))) (-15 -1932 ((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832) (-988))))) (T -831)) +((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-988)) (-5 *2 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-831)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-831)))) (-1932 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-713)) (-5 *6 (-592 (-592 (-294 *3)))) (-5 *7 (-1073)) (-5 *5 (-592 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-965)) (-5 *1 (-831)))) (-1932 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-713)) (-5 *6 (-592 (-592 (-294 *3)))) (-5 *7 (-1073)) (-5 *8 (-205)) (-5 *5 (-592 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-965)) (-5 *1 (-831)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-831)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-965)) (-5 *1 (-831))))) +(-10 -7 (-15 -1932 ((-965) (-832))) (-15 -1932 ((-965) (-832) (-988))) (-15 -1932 ((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073) (-205))) (-15 -1932 ((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832))) (-15 -1393 ((-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832) (-988)))) +((-4028 (((-108) $ $) NIL)) (-2068 (((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))) $) 19)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 21) (($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 18)) (-3899 (((-108) $ $) NIL))) +(((-832) (-13 (-1019) (-10 -8 (-15 -4044 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))) (-15 -4044 ((-797) $)) (-15 -2068 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))) $))))) (T -832)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-832)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *1 (-832)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *1 (-832))))) +(-13 (-1019) (-10 -8 (-15 -4044 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))) (-15 -4044 ((-797) $)) (-15 -2068 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))) $)))) +((-1576 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) 10) (($ $ |#2| (-713)) 12) (($ $ (-592 |#2|) (-592 (-713))) 15)) (-1990 (($ $ |#2|) 16) (($ $ (-592 |#2|)) 18) (($ $ |#2| (-713)) 19) (($ $ (-592 |#2|) (-592 (-713))) 21))) +(((-833 |#1| |#2|) (-10 -8 (-15 -1990 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -1990 (|#1| |#1| |#2| (-713))) (-15 -1990 (|#1| |#1| (-592 |#2|))) (-15 -1990 (|#1| |#1| |#2|)) (-15 -1576 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -1576 (|#1| |#1| |#2| (-713))) (-15 -1576 (|#1| |#1| (-592 |#2|))) (-15 -1576 (|#1| |#1| |#2|))) (-834 |#2|) (-1019)) (T -833)) +NIL +(-10 -8 (-15 -1990 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -1990 (|#1| |#1| |#2| (-713))) (-15 -1990 (|#1| |#1| (-592 |#2|))) (-15 -1990 (|#1| |#1| |#2|)) (-15 -1576 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -1576 (|#1| |#1| |#2| (-713))) (-15 -1576 (|#1| |#1| (-592 |#2|))) (-15 -1576 (|#1| |#1| |#2|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1576 (($ $ |#1|) 42) (($ $ (-592 |#1|)) 41) (($ $ |#1| (-713)) 40) (($ $ (-592 |#1|) (-592 (-713))) 39)) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ |#1|) 38) (($ $ (-592 |#1|)) 37) (($ $ |#1| (-713)) 36) (($ $ (-592 |#1|) (-592 (-713))) 35)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-834 |#1|) (-131) (-1019)) (T -834)) +((-1576 (*1 *1 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1019)))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-834 *3)) (-4 *3 (-1019)))) (-1576 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-834 *2)) (-4 *2 (-1019)))) (-1576 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-834 *4)) (-4 *4 (-1019)))) (-1990 (*1 *1 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1019)))) (-1990 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-834 *3)) (-4 *3 (-1019)))) (-1990 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-834 *2)) (-4 *2 (-1019)))) (-1990 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-834 *4)) (-4 *4 (-1019))))) +(-13 (-976) (-10 -8 (-15 -1576 ($ $ |t#1|)) (-15 -1576 ($ $ (-592 |t#1|))) (-15 -1576 ($ $ |t#1| (-713))) (-15 -1576 ($ $ (-592 |t#1|) (-592 (-713)))) (-15 -1990 ($ $ |t#1|)) (-15 -1990 ($ $ (-592 |t#1|))) (-15 -1990 ($ $ |t#1| (-713))) (-15 -1990 ($ $ (-592 |t#1|) (-592 (-713)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) 26)) (-2583 (((-108) $ (-713)) NIL)) (-2325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-2019 (($ $ $) NIL (|has| $ (-6 -4255)))) (-2998 (($ $ $) NIL (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-3356 (($ $) 25)) (-2940 (($ |#1|) 12) (($ $ $) 17)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-3347 (($ $) 23)) (-2401 (((-592 |#1|) $) NIL)) (-3260 (((-108) $) 20)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3612 (((-525) $ $) NIL)) (-3105 (((-108) $) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-1113 |#1|) $) 9) (((-797) $) 29 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 21 (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-835 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -2940 ($ |#1|)) (-15 -2940 ($ $ $)) (-15 -4044 ((-1113 |#1|) $)))) (-1019)) (T -835)) +((-2940 (*1 *1 *2) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1019)))) (-2940 (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1019)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1019))))) +(-13 (-115 |#1|) (-10 -8 (-15 -2940 ($ |#1|)) (-15 -2940 ($ $ $)) (-15 -4044 ((-1113 |#1|) $)))) +((-2391 ((|#2| (-1057 |#1| |#2|)) 41))) +(((-836 |#1| |#2|) (-10 -7 (-15 -2391 (|#2| (-1057 |#1| |#2|)))) (-855) (-13 (-976) (-10 -7 (-6 (-4256 "*"))))) (T -836)) +((-2391 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-855)) (-4 *2 (-13 (-976) (-10 -7 (-6 (-4256 "*"))))) (-5 *1 (-836 *4 *2))))) +(-10 -7 (-15 -2391 (|#2| (-1057 |#1| |#2|)))) +((-4028 (((-108) $ $) 7)) (-1957 (($) 20 T CONST)) (-1645 (((-3 $ "failed") $) 16)) (-2113 (((-1021 |#1|) $ |#1|) 35)) (-2507 (((-108) $) 19)) (-1260 (($ $ $) 33 (-3215 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-2154 (($ $ $) 32 (-3215 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-1707 (((-1073) $) 9)) (-3243 (($ $) 27)) (-3027 (((-1037) $) 10)) (-2168 ((|#1| $ |#1|) 37)) (-1496 ((|#1| $ |#1|) 36)) (-4142 (($ (-592 (-592 |#1|))) 38)) (-2856 (($ (-592 |#1|)) 39)) (-4025 (($ $ $) 23)) (-1573 (($ $ $) 22)) (-4044 (((-797) $) 11)) (-1594 (($ $ (-855)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-1449 (($) 21 T CONST)) (-3973 (((-108) $ $) 30 (-3215 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3944 (((-108) $ $) 29 (-3215 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 31 (-3215 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3928 (((-108) $ $) 34)) (-4047 (($ $ $) 26)) (** (($ $ (-855)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15))) +(((-837 |#1|) (-131) (-1019)) (T -837)) +((-2856 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-837 *3)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-4 *1 (-837 *3)))) (-2168 (*1 *2 *1 *2) (-12 (-4 *1 (-837 *2)) (-4 *2 (-1019)))) (-1496 (*1 *2 *1 *2) (-12 (-4 *1 (-837 *2)) (-4 *2 (-1019)))) (-2113 (*1 *2 *1 *3) (-12 (-4 *1 (-837 *3)) (-4 *3 (-1019)) (-5 *2 (-1021 *3)))) (-3928 (*1 *2 *1 *1) (-12 (-4 *1 (-837 *3)) (-4 *3 (-1019)) (-5 *2 (-108))))) +(-13 (-450) (-10 -8 (-15 -2856 ($ (-592 |t#1|))) (-15 -4142 ($ (-592 (-592 |t#1|)))) (-15 -2168 (|t#1| $ |t#1|)) (-15 -1496 (|t#1| $ |t#1|)) (-15 -2113 ((-1021 |t#1|) $ |t#1|)) (-15 -3928 ((-108) $ $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-346)) (-6 (-789)) |%noBranch|))) +(((-97) . T) ((-566 (-797)) . T) ((-450) . T) ((-669) . T) ((-789) -3215 (|has| |#1| (-789)) (|has| |#1| (-346))) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-1753 (((-592 (-592 (-713))) $) 109)) (-2907 (((-592 (-713)) (-839 |#1|) $) 131)) (-1577 (((-592 (-713)) (-839 |#1|) $) 132)) (-4122 (((-592 (-839 |#1|)) $) 99)) (-1527 (((-839 |#1|) $ (-525)) 104) (((-839 |#1|) $) 105)) (-3341 (($ (-592 (-839 |#1|))) 111)) (-2158 (((-713) $) 106)) (-4057 (((-1021 (-1021 |#1|)) $) 129)) (-2113 (((-1021 |#1|) $ |#1|) 122) (((-1021 (-1021 |#1|)) $ (-1021 |#1|)) 140) (((-1021 (-592 |#1|)) $ (-592 |#1|)) 143)) (-2512 (((-1021 |#1|) $) 102)) (-1883 (((-108) (-839 |#1|) $) 93)) (-1707 (((-1073) $) NIL)) (-2237 (((-1177) $) 96) (((-1177) $ (-525) (-525)) 144)) (-3027 (((-1037) $) NIL)) (-3594 (((-592 (-839 |#1|)) $) 97)) (-1496 (((-839 |#1|) $ (-713)) 100)) (-1486 (((-713) $) 107)) (-4044 (((-797) $) 120) (((-592 (-839 |#1|)) $) 23) (($ (-592 (-839 |#1|))) 110)) (-3758 (((-592 |#1|) $) 108)) (-3899 (((-108) $ $) 137)) (-3959 (((-108) $ $) 135)) (-3928 (((-108) $ $) 134))) +(((-838 |#1|) (-13 (-1019) (-10 -8 (-15 -4044 ((-592 (-839 |#1|)) $)) (-15 -3594 ((-592 (-839 |#1|)) $)) (-15 -1496 ((-839 |#1|) $ (-713))) (-15 -1527 ((-839 |#1|) $ (-525))) (-15 -1527 ((-839 |#1|) $)) (-15 -2158 ((-713) $)) (-15 -1486 ((-713) $)) (-15 -3758 ((-592 |#1|) $)) (-15 -4122 ((-592 (-839 |#1|)) $)) (-15 -1753 ((-592 (-592 (-713))) $)) (-15 -4044 ($ (-592 (-839 |#1|)))) (-15 -3341 ($ (-592 (-839 |#1|)))) (-15 -2113 ((-1021 |#1|) $ |#1|)) (-15 -4057 ((-1021 (-1021 |#1|)) $)) (-15 -2113 ((-1021 (-1021 |#1|)) $ (-1021 |#1|))) (-15 -2113 ((-1021 (-592 |#1|)) $ (-592 |#1|))) (-15 -1883 ((-108) (-839 |#1|) $)) (-15 -2907 ((-592 (-713)) (-839 |#1|) $)) (-15 -1577 ((-592 (-713)) (-839 |#1|) $)) (-15 -2512 ((-1021 |#1|) $)) (-15 -3928 ((-108) $ $)) (-15 -3959 ((-108) $ $)) (-15 -2237 ((-1177) $)) (-15 -2237 ((-1177) $ (-525) (-525))))) (-1019)) (T -838)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-839 *4)) (-5 *1 (-838 *4)) (-4 *4 (-1019)))) (-1527 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-839 *4)) (-5 *1 (-838 *4)) (-4 *4 (-1019)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-3758 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-838 *3)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-838 *3)))) (-2113 (*1 *2 *1 *3) (-12 (-5 *2 (-1021 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-1021 (-1021 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-2113 (*1 *2 *1 *3) (-12 (-4 *4 (-1019)) (-5 *2 (-1021 (-1021 *4))) (-5 *1 (-838 *4)) (-5 *3 (-1021 *4)))) (-2113 (*1 *2 *1 *3) (-12 (-4 *4 (-1019)) (-5 *2 (-1021 (-592 *4))) (-5 *1 (-838 *4)) (-5 *3 (-592 *4)))) (-1883 (*1 *2 *3 *1) (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-108)) (-5 *1 (-838 *4)))) (-2907 (*1 *2 *3 *1) (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-592 (-713))) (-5 *1 (-838 *4)))) (-1577 (*1 *2 *3 *1) (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-592 (-713))) (-5 *1 (-838 *4)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-1021 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-3928 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-3959 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-2237 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-838 *4)) (-4 *4 (-1019))))) +(-13 (-1019) (-10 -8 (-15 -4044 ((-592 (-839 |#1|)) $)) (-15 -3594 ((-592 (-839 |#1|)) $)) (-15 -1496 ((-839 |#1|) $ (-713))) (-15 -1527 ((-839 |#1|) $ (-525))) (-15 -1527 ((-839 |#1|) $)) (-15 -2158 ((-713) $)) (-15 -1486 ((-713) $)) (-15 -3758 ((-592 |#1|) $)) (-15 -4122 ((-592 (-839 |#1|)) $)) (-15 -1753 ((-592 (-592 (-713))) $)) (-15 -4044 ($ (-592 (-839 |#1|)))) (-15 -3341 ($ (-592 (-839 |#1|)))) (-15 -2113 ((-1021 |#1|) $ |#1|)) (-15 -4057 ((-1021 (-1021 |#1|)) $)) (-15 -2113 ((-1021 (-1021 |#1|)) $ (-1021 |#1|))) (-15 -2113 ((-1021 (-592 |#1|)) $ (-592 |#1|))) (-15 -1883 ((-108) (-839 |#1|) $)) (-15 -2907 ((-592 (-713)) (-839 |#1|) $)) (-15 -1577 ((-592 (-713)) (-839 |#1|) $)) (-15 -2512 ((-1021 |#1|) $)) (-15 -3928 ((-108) $ $)) (-15 -3959 ((-108) $ $)) (-15 -2237 ((-1177) $)) (-15 -2237 ((-1177) $ (-525) (-525))))) +((-4028 (((-108) $ $) NIL)) (-1473 (((-592 $) (-592 $)) 77)) (-2780 (((-525) $) 60)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2158 (((-713) $) 58)) (-2113 (((-1021 |#1|) $ |#1|) 49)) (-2507 (((-108) $) NIL)) (-2057 (((-108) $) 63)) (-3326 (((-713) $) 61)) (-2512 (((-1021 |#1|) $) 42)) (-1260 (($ $ $) NIL (-3215 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-2154 (($ $ $) NIL (-3215 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-1227 (((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $) 37)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 93)) (-3027 (((-1037) $) NIL)) (-3844 (((-1021 |#1|) $) 99 (|has| |#1| (-346)))) (-3524 (((-108) $) 59)) (-2168 ((|#1| $ |#1|) 47)) (-1496 ((|#1| $ |#1|) 94)) (-1486 (((-713) $) 44)) (-4142 (($ (-592 (-592 |#1|))) 85)) (-2462 (((-903) $) 53)) (-2856 (($ (-592 |#1|)) 21)) (-4025 (($ $ $) NIL)) (-1573 (($ $ $) NIL)) (-3349 (($ (-592 (-592 |#1|))) 39)) (-1484 (($ (-592 (-592 |#1|))) 88)) (-2837 (($ (-592 |#1|)) 96)) (-4044 (((-797) $) 84) (($ (-592 (-592 |#1|))) 66) (($ (-592 |#1|)) 67)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1449 (($) 16 T CONST)) (-3973 (((-108) $ $) NIL (-3215 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3944 (((-108) $ $) NIL (-3215 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3899 (((-108) $ $) 45)) (-3959 (((-108) $ $) NIL (-3215 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3928 (((-108) $ $) 65)) (-4047 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 22))) +(((-839 |#1|) (-13 (-837 |#1|) (-10 -8 (-15 -1227 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -3349 ($ (-592 (-592 |#1|)))) (-15 -4044 ($ (-592 (-592 |#1|)))) (-15 -4044 ($ (-592 |#1|))) (-15 -1484 ($ (-592 (-592 |#1|)))) (-15 -1486 ((-713) $)) (-15 -2512 ((-1021 |#1|) $)) (-15 -2462 ((-903) $)) (-15 -2158 ((-713) $)) (-15 -3326 ((-713) $)) (-15 -2780 ((-525) $)) (-15 -3524 ((-108) $)) (-15 -2057 ((-108) $)) (-15 -1473 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -3844 ((-1021 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -2837 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -2837 ($ (-592 |#1|))) |%noBranch|)))) (-1019)) (T -839)) +((-1227 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-592 *3)) (|:| |image| (-592 *3)))) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-1021 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-1473 (*1 *2 *2) (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1021 *3)) (-5 *1 (-839 *3)) (-4 *3 (-346)) (-4 *3 (-1019)))) (-2837 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-839 *3))))) +(-13 (-837 |#1|) (-10 -8 (-15 -1227 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -3349 ($ (-592 (-592 |#1|)))) (-15 -4044 ($ (-592 (-592 |#1|)))) (-15 -4044 ($ (-592 |#1|))) (-15 -1484 ($ (-592 (-592 |#1|)))) (-15 -1486 ((-713) $)) (-15 -2512 ((-1021 |#1|) $)) (-15 -2462 ((-903) $)) (-15 -2158 ((-713) $)) (-15 -3326 ((-713) $)) (-15 -2780 ((-525) $)) (-15 -3524 ((-108) $)) (-15 -2057 ((-108) $)) (-15 -1473 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -3844 ((-1021 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -2837 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -2837 ($ (-592 |#1|))) |%noBranch|)))) +((-2851 (((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|)) 128)) (-3535 ((|#1|) 77)) (-3464 (((-396 (-1086 |#4|)) (-1086 |#4|)) 137)) (-1948 (((-396 (-1086 |#4|)) (-592 |#3|) (-1086 |#4|)) 69)) (-3804 (((-396 (-1086 |#4|)) (-1086 |#4|)) 147)) (-4076 (((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|) |#3|) 92))) +(((-840 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2851 ((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|))) (-15 -3804 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3464 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3535 (|#1|)) (-15 -4076 ((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|) |#3|)) (-15 -1948 ((-396 (-1086 |#4|)) (-592 |#3|) (-1086 |#4|)))) (-843) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -840)) +((-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-843)) (-4 *6 (-735)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-396 (-1086 *8))) (-5 *1 (-840 *5 *6 *7 *8)) (-5 *4 (-1086 *8)))) (-4076 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-592 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-883 *5 *6 *4)) (-4 *5 (-843)) (-4 *6 (-735)) (-4 *4 (-789)) (-5 *1 (-840 *5 *6 *4 *7)))) (-3535 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-843)) (-5 *1 (-840 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-3464 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-840 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3804 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-840 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2851 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-840 *4 *5 *6 *7))))) +(-10 -7 (-15 -2851 ((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|))) (-15 -3804 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3464 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3535 (|#1|)) (-15 -4076 ((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|) |#3|)) (-15 -1948 ((-396 (-1086 |#4|)) (-592 |#3|) (-1086 |#4|)))) +((-2851 (((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|)) 36)) (-3535 ((|#1|) 54)) (-3464 (((-396 (-1086 |#2|)) (-1086 |#2|)) 102)) (-1948 (((-396 (-1086 |#2|)) (-1086 |#2|)) 90)) (-3804 (((-396 (-1086 |#2|)) (-1086 |#2|)) 113))) +(((-841 |#1| |#2|) (-10 -7 (-15 -2851 ((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|))) (-15 -3804 ((-396 (-1086 |#2|)) (-1086 |#2|))) (-15 -3464 ((-396 (-1086 |#2|)) (-1086 |#2|))) (-15 -3535 (|#1|)) (-15 -1948 ((-396 (-1086 |#2|)) (-1086 |#2|)))) (-843) (-1148 |#1|)) (T -841)) +((-1948 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5))) (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5)))) (-3535 (*1 *2) (-12 (-4 *2 (-843)) (-5 *1 (-841 *2 *3)) (-4 *3 (-1148 *2)))) (-3464 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5))) (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5)))) (-3804 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5))) (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5)))) (-2851 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-843)) (-5 *1 (-841 *4 *5))))) +(-10 -7 (-15 -2851 ((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|))) (-15 -3804 ((-396 (-1086 |#2|)) (-1086 |#2|))) (-15 -3464 ((-396 (-1086 |#2|)) (-1086 |#2|))) (-15 -3535 (|#1|)) (-15 -1948 ((-396 (-1086 |#2|)) (-1086 |#2|)))) +((-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 41)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 18)) (-1279 (((-3 $ "failed") $) 35))) +(((-842 |#1|) (-10 -8 (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -2746 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-843)) (T -842)) +NIL +(-10 -8 (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -2746 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-1426 (((-396 (-1086 $)) (-1086 $)) 60)) (-2701 (($ $) 51)) (-1259 (((-396 $) $) 52)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 57)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2069 (((-108) $) 53)) (-2507 (((-108) $) 31)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-3725 (((-396 (-1086 $)) (-1086 $)) 58)) (-1944 (((-396 (-1086 $)) (-1086 $)) 59)) (-2961 (((-396 $) $) 50)) (-2675 (((-3 $ "failed") $ $) 42)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 56 (|has| $ (-136)))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-1279 (((-3 $ "failed") $) 55 (|has| $ (-136)))) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-843) (-131)) (T -843)) +((-2160 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-843)))) (-1426 (*1 *2 *3) (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1)))) (-1944 (*1 *2 *3) (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1)))) (-3725 (*1 *2 *3) (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2746 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-843)))) (-2420 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-843)) (-5 *2 (-1172 *1)))) (-1279 (*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-843))))) +(-13 (-1130) (-10 -8 (-15 -1426 ((-396 (-1086 $)) (-1086 $))) (-15 -1944 ((-396 (-1086 $)) (-1086 $))) (-15 -3725 ((-396 (-1086 $)) (-1086 $))) (-15 -2160 ((-1086 $) (-1086 $) (-1086 $))) (-15 -2746 ((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $))) (IF (|has| $ (-136)) (PROGN (-15 -2420 ((-3 (-1172 $) "failed") (-632 $))) (-15 -1279 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-1433 (((-108) $) NIL)) (-2275 (((-713)) NIL)) (-3942 (($ $ (-855)) NIL (|has| $ (-346))) (($ $) NIL)) (-1207 (((-1100 (-855) (-713)) (-525)) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1651 (((-713)) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 $ "failed") $) NIL)) (-2068 (($ $) NIL)) (-1689 (($ (-1172 $)) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2376 (($) NIL)) (-3703 (((-108) $) NIL)) (-3351 (($ $) NIL) (($ $ (-713)) NIL)) (-2069 (((-108) $) NIL)) (-2158 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2507 (((-108) $) NIL)) (-2431 (($) NIL (|has| $ (-346)))) (-1872 (((-108) $) NIL (|has| $ (-346)))) (-2281 (($ $ (-855)) NIL (|has| $ (-346))) (($ $) NIL)) (-1978 (((-3 $ "failed") $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3800 (((-1086 $) $ (-855)) NIL (|has| $ (-346))) (((-1086 $) $) NIL)) (-2111 (((-855) $) NIL)) (-1311 (((-1086 $) $) NIL (|has| $ (-346)))) (-3819 (((-3 (-1086 $) "failed") $ $) NIL (|has| $ (-346))) (((-1086 $) $) NIL (|has| $ (-346)))) (-3851 (($ $ (-1086 $)) NIL (|has| $ (-346)))) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL T CONST)) (-3381 (($ (-855)) NIL)) (-1769 (((-108) $) NIL)) (-3027 (((-1037) $) NIL)) (-3258 (($) NIL (|has| $ (-346)))) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL)) (-2961 (((-396 $) $) NIL)) (-1927 (((-855)) NIL) (((-775 (-855))) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2729 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-2374 (((-128)) NIL)) (-1576 (($ $ (-713)) NIL) (($ $) NIL)) (-1486 (((-855) $) NIL) (((-775 (-855)) $) NIL)) (-2775 (((-1086 $)) NIL)) (-3405 (($) NIL)) (-2041 (($) NIL (|has| $ (-346)))) (-1625 (((-632 $) (-1172 $)) NIL) (((-1172 $) $) NIL)) (-2923 (((-525) $) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL)) (-1279 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2502 (((-713)) NIL)) (-2734 (((-1172 $) (-855)) NIL) (((-1172 $)) NIL)) (-3787 (((-108) $ $) NIL)) (-2238 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-3459 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) +(((-844 |#1|) (-13 (-327) (-307 $) (-567 (-525))) (-855)) (T -844)) +NIL +(-13 (-327) (-307 $) (-567 (-525))) +((-1233 (((-3 (-2 (|:| -2158 (-713)) (|:| -2131 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)) 79)) (-3953 (((-108) (-314 |#2| |#3| |#4| |#5|)) 17)) (-2158 (((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|)) 15))) +(((-845 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2158 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -3953 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -1233 ((-3 (-2 (|:| -2158 (-713)) (|:| -2131 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)))) (-13 (-789) (-517) (-967 (-525))) (-408 |#1|) (-1148 |#2|) (-1148 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -845)) +((-1233 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-2 (|:| -2158 (-713)) (|:| -2131 *8))) (-5 *1 (-845 *4 *5 *6 *7 *8)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-108)) (-5 *1 (-845 *4 *5 *6 *7 *8)))) (-2158 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-713)) (-5 *1 (-845 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -2158 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -3953 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -1233 ((-3 (-2 (|:| -2158 (-713)) (|:| -2131 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)))) +((-1233 (((-3 (-2 (|:| -2158 (-713)) (|:| -2131 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 56)) (-3953 (((-108) (-314 (-385 (-525)) |#1| |#2| |#3|)) 16)) (-2158 (((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 14))) +(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2158 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3953 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -1233 ((-3 (-2 (|:| -2158 (-713)) (|:| -2131 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)))) (-1148 (-385 (-525))) (-1148 (-385 |#1|)) (-320 (-385 (-525)) |#1| |#2|)) (T -846)) +((-1233 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-2 (|:| -2158 (-713)) (|:| -2131 *6))) (-5 *1 (-846 *4 *5 *6)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-846 *4 *5 *6)))) (-2158 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713)) (-5 *1 (-846 *4 *5 *6))))) +(-10 -7 (-15 -2158 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3953 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -1233 ((-3 (-2 (|:| -2158 (-713)) (|:| -2131 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)))) +((-4040 ((|#2| |#2|) 26)) (-3315 (((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) 15)) (-3246 (((-855) (-525)) 35)) (-4163 (((-525) |#2|) 42)) (-2162 (((-525) |#2|) 21) (((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|) 20))) +(((-847 |#1| |#2|) (-10 -7 (-15 -3246 ((-855) (-525))) (-15 -2162 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -2162 ((-525) |#2|)) (-15 -3315 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -4163 ((-525) |#2|)) (-15 -4040 (|#2| |#2|))) (-1148 (-385 (-525))) (-1148 (-385 |#1|))) (T -847)) +((-4040 (*1 *2 *2) (-12 (-4 *3 (-1148 (-385 (-525)))) (-5 *1 (-847 *3 *2)) (-4 *2 (-1148 (-385 *3))))) (-4163 (*1 *2 *3) (-12 (-4 *4 (-1148 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1148 (-385 *4))))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) (-4 *4 (-1148 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-847 *4 *5)) (-4 *5 (-1148 (-385 *4))))) (-2162 (*1 *2 *3) (-12 (-4 *4 (-1148 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1148 (-385 *4))))) (-2162 (*1 *2 *3) (-12 (-4 *3 (-1148 (-385 (-525)))) (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))) (-5 *1 (-847 *3 *4)) (-4 *4 (-1148 (-385 *3))))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1148 (-385 *3))) (-5 *2 (-855)) (-5 *1 (-847 *4 *5)) (-4 *5 (-1148 (-385 *4)))))) +(-10 -7 (-15 -3246 ((-855) (-525))) (-15 -2162 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -2162 ((-525) |#2|)) (-15 -3315 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -4163 ((-525) |#2|)) (-15 -4040 (|#2| |#2|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 ((|#1| $) 81)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-2720 (($ $ $) NIL)) (-1645 (((-3 $ "failed") $) 75)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-1782 (($ |#1| (-396 |#1|)) 73)) (-1470 (((-1086 |#1|) |#1| |#1|) 41)) (-3495 (($ $) 49)) (-2507 (((-108) $) NIL)) (-1210 (((-525) $) 78)) (-3420 (($ $ (-525)) 80)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1960 ((|#1| $) 77)) (-3877 (((-396 |#1|) $) 76)) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) 74)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-2553 (($ $) 39)) (-4044 (((-797) $) 99) (($ (-525)) 54) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 31) (((-385 |#1|) $) 59) (($ (-385 (-396 |#1|))) 67)) (-2502 (((-713)) 52)) (-3787 (((-108) $ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 23 T CONST)) (-1449 (($) 12 T CONST)) (-3899 (((-108) $ $) 68)) (-4047 (($ $ $) NIL)) (-4033 (($ $) 88) (($ $ $) NIL)) (-4017 (($ $ $) 38)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 90) (($ $ $) 37) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-848 |#1|) (-13 (-341) (-37 |#1|) (-10 -8 (-15 -4044 ((-385 |#1|) $)) (-15 -4044 ($ (-385 (-396 |#1|)))) (-15 -2553 ($ $)) (-15 -3877 ((-396 |#1|) $)) (-15 -1960 (|#1| $)) (-15 -3420 ($ $ (-525))) (-15 -1210 ((-525) $)) (-15 -1470 ((-1086 |#1|) |#1| |#1|)) (-15 -3495 ($ $)) (-15 -1782 ($ |#1| (-396 |#1|))) (-15 -4094 (|#1| $)))) (-286)) (T -848)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-848 *3)))) (-2553 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-1960 (*1 *2 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))) (-3420 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-1470 (*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-3495 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))) (-1782 (*1 *1 *2 *3) (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-848 *2)))) (-4094 (*1 *2 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286))))) +(-13 (-341) (-37 |#1|) (-10 -8 (-15 -4044 ((-385 |#1|) $)) (-15 -4044 ($ (-385 (-396 |#1|)))) (-15 -2553 ($ $)) (-15 -3877 ((-396 |#1|) $)) (-15 -1960 (|#1| $)) (-15 -3420 ($ $ (-525))) (-15 -1210 ((-525) $)) (-15 -1470 ((-1086 |#1|) |#1| |#1|)) (-15 -3495 ($ $)) (-15 -1782 ($ |#1| (-396 |#1|))) (-15 -4094 (|#1| $)))) +((-1782 (((-51) (-886 |#1|) (-396 (-886 |#1|)) (-1090)) 17) (((-51) (-385 (-886 |#1|)) (-1090)) 18))) +(((-849 |#1|) (-10 -7 (-15 -1782 ((-51) (-385 (-886 |#1|)) (-1090))) (-15 -1782 ((-51) (-886 |#1|) (-396 (-886 |#1|)) (-1090)))) (-13 (-286) (-138))) (T -849)) +((-1782 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-396 (-886 *6))) (-5 *5 (-1090)) (-5 *3 (-886 *6)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-849 *6)))) (-1782 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-849 *5))))) +(-10 -7 (-15 -1782 ((-51) (-385 (-886 |#1|)) (-1090))) (-15 -1782 ((-51) (-886 |#1|) (-396 (-886 |#1|)) (-1090)))) +((-2527 ((|#4| (-592 |#4|)) 121) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2262 (((-1086 |#4|) (-592 (-1086 |#4|))) 114) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 50) ((|#4| (-592 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-850 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2262 (|#4| |#4| |#4|)) (-15 -2262 (|#4| (-592 |#4|))) (-15 -2262 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2262 ((-1086 |#4|) (-592 (-1086 |#4|)))) (-15 -2527 (|#4| |#4| |#4|)) (-15 -2527 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2527 (|#4| (-592 |#4|)))) (-735) (-789) (-286) (-883 |#3| |#1| |#2|)) (T -850)) +((-2527 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *6 *4 *5)) (-5 *1 (-850 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-2527 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *6)))) (-2527 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *2)) (-4 *2 (-883 *5 *3 *4)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-592 (-1086 *7))) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-1086 *7)) (-5 *1 (-850 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) (-2262 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *6)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *6 *4 *5)) (-5 *1 (-850 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-2262 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *2)) (-4 *2 (-883 *5 *3 *4))))) +(-10 -7 (-15 -2262 (|#4| |#4| |#4|)) (-15 -2262 (|#4| (-592 |#4|))) (-15 -2262 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2262 ((-1086 |#4|) (-592 (-1086 |#4|)))) (-15 -2527 (|#4| |#4| |#4|)) (-15 -2527 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2527 (|#4| (-592 |#4|)))) +((-3705 (((-838 (-525)) (-903)) 23) (((-838 (-525)) (-592 (-525))) 20)) (-4135 (((-838 (-525)) (-592 (-525))) 48) (((-838 (-525)) (-855)) 49)) (-3964 (((-838 (-525))) 24)) (-1427 (((-838 (-525))) 38) (((-838 (-525)) (-592 (-525))) 37)) (-3474 (((-838 (-525))) 36) (((-838 (-525)) (-592 (-525))) 35)) (-2669 (((-838 (-525))) 34) (((-838 (-525)) (-592 (-525))) 33)) (-2310 (((-838 (-525))) 32) (((-838 (-525)) (-592 (-525))) 31)) (-4085 (((-838 (-525))) 30) (((-838 (-525)) (-592 (-525))) 29)) (-3565 (((-838 (-525))) 40) (((-838 (-525)) (-592 (-525))) 39)) (-2828 (((-838 (-525)) (-592 (-525))) 52) (((-838 (-525)) (-855)) 53)) (-2606 (((-838 (-525)) (-592 (-525))) 50) (((-838 (-525)) (-855)) 51)) (-2190 (((-838 (-525)) (-592 (-525))) 46) (((-838 (-525)) (-855)) 47)) (-2149 (((-838 (-525)) (-592 (-855))) 43))) +(((-851) (-10 -7 (-15 -4135 ((-838 (-525)) (-855))) (-15 -4135 ((-838 (-525)) (-592 (-525)))) (-15 -2190 ((-838 (-525)) (-855))) (-15 -2190 ((-838 (-525)) (-592 (-525)))) (-15 -2149 ((-838 (-525)) (-592 (-855)))) (-15 -2606 ((-838 (-525)) (-855))) (-15 -2606 ((-838 (-525)) (-592 (-525)))) (-15 -2828 ((-838 (-525)) (-855))) (-15 -2828 ((-838 (-525)) (-592 (-525)))) (-15 -4085 ((-838 (-525)) (-592 (-525)))) (-15 -4085 ((-838 (-525)))) (-15 -2310 ((-838 (-525)) (-592 (-525)))) (-15 -2310 ((-838 (-525)))) (-15 -2669 ((-838 (-525)) (-592 (-525)))) (-15 -2669 ((-838 (-525)))) (-15 -3474 ((-838 (-525)) (-592 (-525)))) (-15 -3474 ((-838 (-525)))) (-15 -1427 ((-838 (-525)) (-592 (-525)))) (-15 -1427 ((-838 (-525)))) (-15 -3565 ((-838 (-525)) (-592 (-525)))) (-15 -3565 ((-838 (-525)))) (-15 -3964 ((-838 (-525)))) (-15 -3705 ((-838 (-525)) (-592 (-525)))) (-15 -3705 ((-838 (-525)) (-903))))) (T -851)) +((-3705 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3964 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3565 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-1427 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3474 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2669 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2310 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-4085 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-592 (-855))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(-10 -7 (-15 -4135 ((-838 (-525)) (-855))) (-15 -4135 ((-838 (-525)) (-592 (-525)))) (-15 -2190 ((-838 (-525)) (-855))) (-15 -2190 ((-838 (-525)) (-592 (-525)))) (-15 -2149 ((-838 (-525)) (-592 (-855)))) (-15 -2606 ((-838 (-525)) (-855))) (-15 -2606 ((-838 (-525)) (-592 (-525)))) (-15 -2828 ((-838 (-525)) (-855))) (-15 -2828 ((-838 (-525)) (-592 (-525)))) (-15 -4085 ((-838 (-525)) (-592 (-525)))) (-15 -4085 ((-838 (-525)))) (-15 -2310 ((-838 (-525)) (-592 (-525)))) (-15 -2310 ((-838 (-525)))) (-15 -2669 ((-838 (-525)) (-592 (-525)))) (-15 -2669 ((-838 (-525)))) (-15 -3474 ((-838 (-525)) (-592 (-525)))) (-15 -3474 ((-838 (-525)))) (-15 -1427 ((-838 (-525)) (-592 (-525)))) (-15 -1427 ((-838 (-525)))) (-15 -3565 ((-838 (-525)) (-592 (-525)))) (-15 -3565 ((-838 (-525)))) (-15 -3964 ((-838 (-525)))) (-15 -3705 ((-838 (-525)) (-592 (-525)))) (-15 -3705 ((-838 (-525)) (-903)))) +((-1418 (((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090))) 12)) (-1234 (((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090))) 11))) +(((-852 |#1|) (-10 -7 (-15 -1234 ((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -1418 ((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090))))) (-429)) (T -852)) +((-1418 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-886 *4))) (-5 *3 (-592 (-1090))) (-4 *4 (-429)) (-5 *1 (-852 *4)))) (-1234 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-886 *4))) (-5 *3 (-592 (-1090))) (-4 *4 (-429)) (-5 *1 (-852 *4))))) +(-10 -7 (-15 -1234 ((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -1418 ((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090))))) +((-4044 (((-294 |#1|) (-454)) 16))) +(((-853 |#1|) (-10 -7 (-15 -4044 ((-294 |#1|) (-454)))) (-13 (-789) (-517))) (T -853)) +((-4044 (*1 *2 *3) (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-853 *4)) (-4 *4 (-13 (-789) (-517)))))) +(-10 -7 (-15 -4044 ((-294 |#1|) (-454)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2507 (((-108) $) 31)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-854) (-131)) (T -854)) +((-2340 (*1 *2 *3) (-12 (-4 *1 (-854)) (-5 *2 (-2 (|:| -2059 (-592 *1)) (|:| -3258 *1))) (-5 *3 (-592 *1)))) (-3554 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-854))))) +(-13 (-429) (-10 -8 (-15 -2340 ((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $))) (-15 -3554 ((-3 (-592 $) "failed") (-592 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2262 (($ $ $) NIL)) (-4044 (((-797) $) NIL)) (-1594 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-1449 (($) NIL T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ $ $) NIL))) +(((-855) (-13 (-25) (-789) (-669) (-10 -8 (-15 -2262 ($ $ $)) (-6 (-4256 "*"))))) (T -855)) +((-2262 (*1 *1 *1 *1) (-5 *1 (-855)))) +(-13 (-25) (-789) (-669) (-10 -8 (-15 -2262 ($ $ $)) (-6 (-4256 "*")))) +((-2587 ((|#2| (-592 |#1|) (-592 |#1|)) 24))) +(((-856 |#1| |#2|) (-10 -7 (-15 -2587 (|#2| (-592 |#1|) (-592 |#1|)))) (-341) (-1148 |#1|)) (T -856)) +((-2587 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1148 *4)) (-5 *1 (-856 *4 *2))))) +(-10 -7 (-15 -2587 (|#2| (-592 |#1|) (-592 |#1|)))) +((-1633 (((-1086 |#2|) (-592 |#2|) (-592 |#2|)) 17) (((-1145 |#1| |#2|) (-1145 |#1| |#2|) (-592 |#2|) (-592 |#2|)) 13))) +(((-857 |#1| |#2|) (-10 -7 (-15 -1633 ((-1145 |#1| |#2|) (-1145 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -1633 ((-1086 |#2|) (-592 |#2|) (-592 |#2|)))) (-1090) (-341)) (T -857)) +((-1633 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1086 *5)) (-5 *1 (-857 *4 *5)) (-14 *4 (-1090)))) (-1633 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1145 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1090)) (-4 *5 (-341)) (-5 *1 (-857 *4 *5))))) +(-10 -7 (-15 -1633 ((-1145 |#1| |#2|) (-1145 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -1633 ((-1086 |#2|) (-592 |#2|) (-592 |#2|)))) +((-3390 (((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073)) 139)) (-3200 ((|#4| |#4|) 155)) (-3874 (((-592 (-385 (-886 |#1|))) (-592 (-1090))) 119)) (-3294 (((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525)) 75)) (-1746 (((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))) (-592 |#4|)) 59)) (-2298 (((-632 |#4|) (-632 |#4|) (-592 |#4|)) 55)) (-1563 (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073)) 151)) (-2501 (((-525) (-632 |#4|) (-855) (-1073)) 133) (((-525) (-632 |#4|) (-592 (-1090)) (-855) (-1073)) 132) (((-525) (-632 |#4|) (-592 |#4|) (-855) (-1073)) 131) (((-525) (-632 |#4|) (-1073)) 128) (((-525) (-632 |#4|) (-592 (-1090)) (-1073)) 127) (((-525) (-632 |#4|) (-592 |#4|) (-1073)) 126) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-855)) 125) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)) (-855)) 124) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-855)) 123) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|)) 121) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090))) 120) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|)) 116)) (-2427 ((|#4| (-886 |#1|)) 68)) (-3857 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 152)) (-3482 (((-592 (-592 (-525))) (-525) (-525)) 130)) (-1644 (((-592 (-592 |#4|)) (-592 (-592 |#4|))) 88)) (-2676 (((-713) (-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 86)) (-2463 (((-713) (-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 85)) (-2163 (((-108) (-592 (-886 |#1|))) 17) (((-108) (-592 |#4|)) 13)) (-1731 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|)) 71)) (-1355 (((-592 |#4|) |#4|) 49)) (-1321 (((-592 (-385 (-886 |#1|))) (-592 |#4|)) 115) (((-632 (-385 (-886 |#1|))) (-632 |#4|)) 56) (((-385 (-886 |#1|)) |#4|) 112)) (-1477 (((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-713) (-1073) (-525)) 93)) (-1254 (((-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713)) 84)) (-1919 (((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713)) 101)) (-2723 (((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| -3471 (-632 (-385 (-886 |#1|)))) (|:| |vec| (-592 (-385 (-886 |#1|)))) (|:| -3439 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) 48))) +(((-858 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-855))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)) (-855))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-855))) (-15 -2501 ((-525) (-632 |#4|) (-592 |#4|) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-592 (-1090)) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-592 |#4|) (-855) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-592 (-1090)) (-855) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-855) (-1073))) (-15 -3390 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073))) (-15 -1563 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073))) (-15 -1477 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-713) (-1073) (-525))) (-15 -1321 ((-385 (-886 |#1|)) |#4|)) (-15 -1321 ((-632 (-385 (-886 |#1|))) (-632 |#4|))) (-15 -1321 ((-592 (-385 (-886 |#1|))) (-592 |#4|))) (-15 -3874 ((-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -2427 (|#4| (-886 |#1|))) (-15 -1731 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -1254 ((-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -1746 ((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))) (-592 |#4|))) (-15 -2723 ((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| -3471 (-632 (-385 (-886 |#1|)))) (|:| |vec| (-592 (-385 (-886 |#1|)))) (|:| -3439 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -1355 ((-592 |#4|) |#4|)) (-15 -2463 ((-713) (-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -2676 ((-713) (-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -1644 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -3482 ((-592 (-592 (-525))) (-525) (-525))) (-15 -3857 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -1919 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -2298 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -3294 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -3200 (|#4| |#4|)) (-15 -2163 ((-108) (-592 |#4|))) (-15 -2163 ((-108) (-592 (-886 |#1|))))) (-13 (-286) (-138)) (-13 (-789) (-567 (-1090))) (-735) (-883 |#1| |#3| |#2|)) (T -858)) +((-2163 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-858 *4 *5 *6 *7)))) (-3200 (*1 *2 *2) (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1090)))) (-4 *5 (-735)) (-5 *1 (-858 *3 *4 *5 *2)) (-4 *2 (-883 *3 *5 *4)))) (-3294 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-886 *9)))) (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525)) (-4 *9 (-13 (-286) (-138))) (-4 *12 (-883 *9 *11 *10)) (-4 *10 (-13 (-789) (-567 (-1090)))) (-4 *11 (-735)) (-5 *2 (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12)) (|:| |wcond| (-592 (-886 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *9)))) (|:| -2734 (-592 (-1172 (-385 (-886 *9))))))))) (-5 *1 (-858 *9 *10 *11 *12)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *1 (-858 *4 *5 *6 *7)))) (-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-5 *1 (-858 *5 *6 *7 *8)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-858 *5 *6 *7 *8)))) (-3482 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-858 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-883 *4 *6 *5)))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-883 *3 *5 *4)) (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1090)))) (-4 *5 (-735)) (-5 *1 (-858 *3 *4 *5 *6)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-858 *4 *5 *6 *7)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-858 *4 *5 *6 *7)))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-858 *4 *5 *6 *3)) (-4 *3 (-883 *4 *6 *5)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3471 (-632 (-385 (-886 *4)))) (|:| |vec| (-592 (-385 (-886 *4)))) (|:| -3439 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) (|:| -2734 (-592 (-1172 (-385 (-886 *4))))))) (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))) (-1746 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) (|:| -2734 (-592 (-1172 (-385 (-886 *4))))))) (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138))) (-4 *7 (-883 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *1 (-858 *4 *5 *6 *7)))) (-1254 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *8))))) (-5 *1 (-858 *5 *6 *7 *8)) (-5 *4 (-713)))) (-1731 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-4 *7 (-883 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7)))) (-5 *1 (-858 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-13 (-286) (-138))) (-4 *2 (-883 *4 *6 *5)) (-5 *1 (-858 *4 *5 *6 *2)) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-886 *4)))) (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-886 *4)))) (-5 *1 (-858 *4 *5 *6 *7)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-632 (-385 (-886 *4)))) (-5 *1 (-858 *4 *5 *6 *7)))) (-1321 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-385 (-886 *4))) (-5 *1 (-858 *4 *5 *6 *3)) (-4 *3 (-883 *4 *6 *5)))) (-1477 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-886 *8)))) (-5 *5 (-713)) (-5 *6 (-1073)) (-4 *8 (-13 (-286) (-138))) (-4 *11 (-883 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1090)))) (-4 *10 (-735)) (-5 *2 (-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11)) (|:| |wcond| (-592 (-886 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *8)))) (|:| -2734 (-592 (-1172 (-385 (-886 *8)))))))))) (|:| |rgsz| (-525)))) (-5 *1 (-858 *8 *9 *10 *11)) (-5 *7 (-525)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-886 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) (|:| -2734 (-592 (-1172 (-385 (-886 *4)))))))))) (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-886 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) (|:| -2734 (-592 (-1172 (-385 (-886 *5)))))))))) (-5 *4 (-1073)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-883 *5 *7 *6)) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *5 *6 *7 *8)))) (-2501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-855)) (-5 *5 (-1073)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *6 *7 *8 *9)))) (-2501 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 (-1090))) (-5 *5 (-855)) (-5 *6 (-1073)) (-4 *10 (-883 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1090)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *7 *8 *9 *10)))) (-2501 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 *10)) (-5 *5 (-855)) (-5 *6 (-1073)) (-4 *10 (-883 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1090)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *7 *8 *9 *10)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-1073)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *5 *6 *7 *8)))) (-2501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1090))) (-5 *5 (-1073)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *6 *7 *8 *9)))) (-2501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 *9)) (-5 *5 (-1073)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *6 *7 *8 *9)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-855)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-886 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) (|:| -2734 (-592 (-1172 (-385 (-886 *5)))))))))) (-5 *1 (-858 *5 *6 *7 *8)))) (-2501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1090))) (-5 *5 (-855)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-886 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *6)))) (|:| -2734 (-592 (-1172 (-385 (-886 *6)))))))))) (-5 *1 (-858 *6 *7 *8 *9)))) (-2501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *5 (-855)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-886 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *6)))) (|:| -2734 (-592 (-1172 (-385 (-886 *6)))))))))) (-5 *1 (-858 *6 *7 *8 *9)) (-5 *4 (-592 *9)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-886 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) (|:| -2734 (-592 (-1172 (-385 (-886 *4)))))))))) (-5 *1 (-858 *4 *5 *6 *7)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-592 (-1090))) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-886 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) (|:| -2734 (-592 (-1172 (-385 (-886 *5)))))))))) (-5 *1 (-858 *5 *6 *7 *8)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-886 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) (|:| -2734 (-592 (-1172 (-385 (-886 *5)))))))))) (-5 *1 (-858 *5 *6 *7 *8)) (-5 *4 (-592 *8))))) +(-10 -7 (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-855))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)) (-855))) (-15 -2501 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-855))) (-15 -2501 ((-525) (-632 |#4|) (-592 |#4|) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-592 (-1090)) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-592 |#4|) (-855) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-592 (-1090)) (-855) (-1073))) (-15 -2501 ((-525) (-632 |#4|) (-855) (-1073))) (-15 -3390 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073))) (-15 -1563 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073))) (-15 -1477 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-713) (-1073) (-525))) (-15 -1321 ((-385 (-886 |#1|)) |#4|)) (-15 -1321 ((-632 (-385 (-886 |#1|))) (-632 |#4|))) (-15 -1321 ((-592 (-385 (-886 |#1|))) (-592 |#4|))) (-15 -3874 ((-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -2427 (|#4| (-886 |#1|))) (-15 -1731 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -1254 ((-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -1746 ((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))) (-592 |#4|))) (-15 -2723 ((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| -3471 (-632 (-385 (-886 |#1|)))) (|:| |vec| (-592 (-385 (-886 |#1|)))) (|:| -3439 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -1355 ((-592 |#4|) |#4|)) (-15 -2463 ((-713) (-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -2676 ((-713) (-592 (-2 (|:| -3439 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -1644 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -3482 ((-592 (-592 (-525))) (-525) (-525))) (-15 -3857 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -1919 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -2298 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -3294 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2734 (-592 (-1172 (-385 (-886 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -3200 (|#4| |#4|)) (-15 -2163 ((-108) (-592 |#4|))) (-15 -2163 ((-108) (-592 (-886 |#1|))))) +((-1405 (((-861) |#1| (-1090)) 17) (((-861) |#1| (-1090) (-1014 (-205))) 21)) (-2712 (((-861) |#1| |#1| (-1090) (-1014 (-205))) 19) (((-861) |#1| (-1090) (-1014 (-205))) 15))) +(((-859 |#1|) (-10 -7 (-15 -2712 ((-861) |#1| (-1090) (-1014 (-205)))) (-15 -2712 ((-861) |#1| |#1| (-1090) (-1014 (-205)))) (-15 -1405 ((-861) |#1| (-1090) (-1014 (-205)))) (-15 -1405 ((-861) |#1| (-1090)))) (-567 (-501))) (T -859)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-861)) (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))) (-1405 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861)) (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))) (-2712 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861)) (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))) (-2712 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861)) (-5 *1 (-859 *3)) (-4 *3 (-567 (-501)))))) +(-10 -7 (-15 -2712 ((-861) |#1| (-1090) (-1014 (-205)))) (-15 -2712 ((-861) |#1| |#1| (-1090) (-1014 (-205)))) (-15 -1405 ((-861) |#1| (-1090) (-1014 (-205)))) (-15 -1405 ((-861) |#1| (-1090)))) +((-2311 (($ $ (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 70)) (-2529 (((-1014 (-205)) $) 40)) (-2519 (((-1014 (-205)) $) 39)) (-2508 (((-1014 (-205)) $) 38)) (-1308 (((-592 (-592 (-205))) $) 43)) (-3767 (((-1014 (-205)) $) 41)) (-1670 (((-525) (-525)) 32)) (-1224 (((-525) (-525)) 28)) (-2216 (((-525) (-525)) 30)) (-3950 (((-108) (-108)) 35)) (-3997 (((-525)) 31)) (-3563 (($ $ (-1014 (-205))) 73) (($ $) 74)) (-3763 (($ (-1 (-877 (-205)) (-205)) (-1014 (-205))) 78) (($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 79)) (-2712 (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 82) (($ $ (-1014 (-205))) 76)) (-1657 (((-525)) 36)) (-2661 (((-525)) 27)) (-2415 (((-525)) 29)) (-2204 (((-592 (-592 (-877 (-205)))) $) 94)) (-3264 (((-108) (-108)) 37)) (-4044 (((-797) $) 93)) (-2898 (((-108)) 34))) +(((-860) (-13 (-906) (-10 -8 (-15 -3763 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)))) (-15 -3763 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2712 ($ $ (-1014 (-205)))) (-15 -2311 ($ $ (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -3563 ($ $ (-1014 (-205)))) (-15 -3563 ($ $)) (-15 -3767 ((-1014 (-205)) $)) (-15 -1308 ((-592 (-592 (-205))) $)) (-15 -2661 ((-525))) (-15 -1224 ((-525) (-525))) (-15 -2415 ((-525))) (-15 -2216 ((-525) (-525))) (-15 -3997 ((-525))) (-15 -1670 ((-525) (-525))) (-15 -2898 ((-108))) (-15 -3950 ((-108) (-108))) (-15 -1657 ((-525))) (-15 -3264 ((-108) (-108)))))) (T -860)) +((-3763 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-860)))) (-3763 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-860)))) (-2712 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-860)))) (-2712 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-860)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) (-2311 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) (-3563 (*1 *1 *1) (-5 *1 (-860))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-860)))) (-2661 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-1224 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2415 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2216 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-3997 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2898 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))) (-1657 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860))))) +(-13 (-906) (-10 -8 (-15 -3763 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)))) (-15 -3763 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2712 ($ $ (-1014 (-205)))) (-15 -2311 ($ $ (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -3563 ($ $ (-1014 (-205)))) (-15 -3563 ($ $)) (-15 -3767 ((-1014 (-205)) $)) (-15 -1308 ((-592 (-592 (-205))) $)) (-15 -2661 ((-525))) (-15 -1224 ((-525) (-525))) (-15 -2415 ((-525))) (-15 -2216 ((-525) (-525))) (-15 -3997 ((-525))) (-15 -1670 ((-525) (-525))) (-15 -2898 ((-108))) (-15 -3950 ((-108) (-108))) (-15 -1657 ((-525))) (-15 -3264 ((-108) (-108))))) +((-2311 (($ $ (-1014 (-205))) 70) (($ $ (-1014 (-205)) (-1014 (-205))) 71)) (-2519 (((-1014 (-205)) $) 44)) (-2508 (((-1014 (-205)) $) 43)) (-3767 (((-1014 (-205)) $) 45)) (-3274 (((-525) (-525)) 37)) (-3232 (((-525) (-525)) 33)) (-1300 (((-525) (-525)) 35)) (-2833 (((-108) (-108)) 39)) (-4108 (((-525)) 36)) (-3563 (($ $ (-1014 (-205))) 74) (($ $) 75)) (-3763 (($ (-1 (-877 (-205)) (-205)) (-1014 (-205))) 84) (($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 85)) (-1405 (($ (-1 (-205) (-205)) (-1014 (-205))) 92) (($ (-1 (-205) (-205))) 95)) (-2712 (($ (-1 (-205) (-205)) (-1014 (-205))) 79) (($ (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205))) 80) (($ (-592 (-1 (-205) (-205))) (-1014 (-205))) 87) (($ (-592 (-1 (-205) (-205))) (-1014 (-205)) (-1014 (-205))) 88) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 82) (($ $ (-1014 (-205))) 76)) (-2267 (((-108) $) 40)) (-2335 (((-525)) 41)) (-2800 (((-525)) 32)) (-2566 (((-525)) 34)) (-2204 (((-592 (-592 (-877 (-205)))) $) 23)) (-3555 (((-108) (-108)) 42)) (-4044 (((-797) $) 106)) (-1365 (((-108)) 38))) +(((-861) (-13 (-888) (-10 -8 (-15 -2712 ($ (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2712 ($ (-592 (-1 (-205) (-205))) (-1014 (-205)))) (-15 -2712 ($ (-592 (-1 (-205) (-205))) (-1014 (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -3763 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)))) (-15 -3763 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -1405 ($ (-1 (-205) (-205)) (-1014 (-205)))) (-15 -1405 ($ (-1 (-205) (-205)))) (-15 -2712 ($ $ (-1014 (-205)))) (-15 -2267 ((-108) $)) (-15 -2311 ($ $ (-1014 (-205)))) (-15 -2311 ($ $ (-1014 (-205)) (-1014 (-205)))) (-15 -3563 ($ $ (-1014 (-205)))) (-15 -3563 ($ $)) (-15 -3767 ((-1014 (-205)) $)) (-15 -2800 ((-525))) (-15 -3232 ((-525) (-525))) (-15 -2566 ((-525))) (-15 -1300 ((-525) (-525))) (-15 -4108 ((-525))) (-15 -3274 ((-525) (-525))) (-15 -1365 ((-108))) (-15 -2833 ((-108) (-108))) (-15 -2335 ((-525))) (-15 -3555 ((-108) (-108)))))) (T -861)) +((-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2712 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2712 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2712 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2712 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-3763 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-3763 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-1405 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-1405 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-861)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-2311 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-2311 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-3563 (*1 *1 *1) (-5 *1 (-861))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-2800 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3232 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2566 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-4108 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3274 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-1365 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-2833 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-2335 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3555 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861))))) +(-13 (-888) (-10 -8 (-15 -2712 ($ (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2712 ($ (-592 (-1 (-205) (-205))) (-1014 (-205)))) (-15 -2712 ($ (-592 (-1 (-205) (-205))) (-1014 (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2712 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -3763 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)))) (-15 -3763 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -1405 ($ (-1 (-205) (-205)) (-1014 (-205)))) (-15 -1405 ($ (-1 (-205) (-205)))) (-15 -2712 ($ $ (-1014 (-205)))) (-15 -2267 ((-108) $)) (-15 -2311 ($ $ (-1014 (-205)))) (-15 -2311 ($ $ (-1014 (-205)) (-1014 (-205)))) (-15 -3563 ($ $ (-1014 (-205)))) (-15 -3563 ($ $)) (-15 -3767 ((-1014 (-205)) $)) (-15 -2800 ((-525))) (-15 -3232 ((-525) (-525))) (-15 -2566 ((-525))) (-15 -1300 ((-525) (-525))) (-15 -4108 ((-525))) (-15 -3274 ((-525) (-525))) (-15 -1365 ((-108))) (-15 -2833 ((-108) (-108))) (-15 -2335 ((-525))) (-15 -3555 ((-108) (-108))))) +((-1309 (((-592 (-1014 (-205))) (-592 (-592 (-877 (-205))))) 24))) +(((-862) (-10 -7 (-15 -1309 ((-592 (-1014 (-205))) (-592 (-592 (-877 (-205)))))))) (T -862)) +((-1309 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-592 (-1014 (-205)))) (-5 *1 (-862))))) +(-10 -7 (-15 -1309 ((-592 (-1014 (-205))) (-592 (-592 (-877 (-205))))))) +((-1397 ((|#2| |#2|) 26)) (-4064 ((|#2| |#2|) 27)) (-3219 ((|#2| |#2|) 25)) (-2274 ((|#2| |#2| (-1073)) 24))) +(((-863 |#1| |#2|) (-10 -7 (-15 -2274 (|#2| |#2| (-1073))) (-15 -3219 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -4064 (|#2| |#2|))) (-789) (-408 |#1|)) (T -863)) +((-4064 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3)))) (-1397 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3)))) (-3219 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3)))) (-2274 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-789)) (-5 *1 (-863 *4 *2)) (-4 *2 (-408 *4))))) +(-10 -7 (-15 -2274 (|#2| |#2| (-1073))) (-15 -3219 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -4064 (|#2| |#2|))) +((-1397 (((-294 (-525)) (-1090)) 16)) (-4064 (((-294 (-525)) (-1090)) 14)) (-3219 (((-294 (-525)) (-1090)) 12)) (-2274 (((-294 (-525)) (-1090) (-1073)) 19))) +(((-864) (-10 -7 (-15 -2274 ((-294 (-525)) (-1090) (-1073))) (-15 -3219 ((-294 (-525)) (-1090))) (-15 -1397 ((-294 (-525)) (-1090))) (-15 -4064 ((-294 (-525)) (-1090))))) (T -864)) +((-4064 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-1073)) (-5 *2 (-294 (-525))) (-5 *1 (-864))))) +(-10 -7 (-15 -2274 ((-294 (-525)) (-1090) (-1073))) (-15 -3219 ((-294 (-525)) (-1090))) (-15 -1397 ((-294 (-525)) (-1090))) (-15 -4064 ((-294 (-525)) (-1090)))) +((-2029 (((-823 |#1| |#3|) |#2| (-826 |#1|) (-823 |#1| |#3|)) 25)) (-3652 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 13))) +(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -3652 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2029 ((-823 |#1| |#3|) |#2| (-826 |#1|) (-823 |#1| |#3|)))) (-1019) (-820 |#1|) (-13 (-1019) (-967 |#2|))) (T -865)) +((-2029 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *6)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *6 (-13 (-1019) (-967 *3))) (-4 *3 (-820 *5)) (-5 *1 (-865 *5 *3 *6)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1019) (-967 *5))) (-4 *5 (-820 *4)) (-4 *4 (-1019)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-865 *4 *5 *6))))) +(-10 -7 (-15 -3652 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2029 ((-823 |#1| |#3|) |#2| (-826 |#1|) (-823 |#1| |#3|)))) +((-2029 (((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)) 30))) +(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -2029 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) (-1019) (-13 (-517) (-789) (-820 |#1|)) (-13 (-408 |#2|) (-567 (-826 |#1|)) (-820 |#1|) (-967 (-565 $)))) (T -866)) +((-2029 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1019)) (-4 *3 (-13 (-408 *6) (-567 *4) (-820 *5) (-967 (-565 $)))) (-5 *4 (-826 *5)) (-4 *6 (-13 (-517) (-789) (-820 *5))) (-5 *1 (-866 *5 *6 *3))))) +(-10 -7 (-15 -2029 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) +((-2029 (((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|)) 13))) +(((-867 |#1|) (-10 -7 (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|)))) (-510)) (T -867)) +((-2029 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 (-525) *3)) (-5 *4 (-826 (-525))) (-4 *3 (-510)) (-5 *1 (-867 *3))))) +(-10 -7 (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|)))) +((-2029 (((-823 |#1| |#2|) (-565 |#2|) (-826 |#1|) (-823 |#1| |#2|)) 54))) +(((-868 |#1| |#2|) (-10 -7 (-15 -2029 ((-823 |#1| |#2|) (-565 |#2|) (-826 |#1|) (-823 |#1| |#2|)))) (-1019) (-13 (-789) (-967 (-565 $)) (-567 (-826 |#1|)) (-820 |#1|))) (T -868)) +((-2029 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *6)) (-5 *3 (-565 *6)) (-4 *5 (-1019)) (-4 *6 (-13 (-789) (-967 (-565 $)) (-567 *4) (-820 *5))) (-5 *4 (-826 *5)) (-5 *1 (-868 *5 *6))))) +(-10 -7 (-15 -2029 ((-823 |#1| |#2|) (-565 |#2|) (-826 |#1|) (-823 |#1| |#2|)))) +((-2029 (((-819 |#1| |#2| |#3|) |#3| (-826 |#1|) (-819 |#1| |#2| |#3|)) 15))) +(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -2029 ((-819 |#1| |#2| |#3|) |#3| (-826 |#1|) (-819 |#1| |#2| |#3|)))) (-1019) (-820 |#1|) (-612 |#2|)) (T -869)) +((-2029 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-819 *5 *6 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *6 (-820 *5)) (-4 *3 (-612 *6)) (-5 *1 (-869 *5 *6 *3))))) +(-10 -7 (-15 -2029 ((-819 |#1| |#2| |#3|) |#3| (-826 |#1|) (-819 |#1| |#2| |#3|)))) +((-2029 (((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|)) 17 (|has| |#3| (-820 |#1|))) (((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-826 |#1|) (-823 |#1| |#5|))) 16))) +(((-870 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2029 ((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-826 |#1|) (-823 |#1| |#5|)))) (IF (|has| |#3| (-820 |#1|)) (-15 -2029 ((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|))) |%noBranch|)) (-1019) (-735) (-789) (-13 (-976) (-789) (-820 |#1|)) (-13 (-883 |#4| |#2| |#3|) (-567 (-826 |#1|)))) (T -870)) +((-2029 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1019)) (-4 *3 (-13 (-883 *8 *6 *7) (-567 *4))) (-5 *4 (-826 *5)) (-4 *7 (-820 *5)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-13 (-976) (-789) (-820 *5))) (-5 *1 (-870 *5 *6 *7 *8 *3)))) (-2029 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-823 *6 *3) *8 (-826 *6) (-823 *6 *3))) (-4 *8 (-789)) (-5 *2 (-823 *6 *3)) (-5 *4 (-826 *6)) (-4 *6 (-1019)) (-4 *3 (-13 (-883 *9 *7 *8) (-567 *4))) (-4 *7 (-735)) (-4 *9 (-13 (-976) (-789) (-820 *6))) (-5 *1 (-870 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -2029 ((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-826 |#1|) (-823 |#1| |#5|)))) (IF (|has| |#3| (-820 |#1|)) (-15 -2029 ((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|))) |%noBranch|)) +((-4169 ((|#2| |#2| (-592 (-1 (-108) |#3|))) 12) ((|#2| |#2| (-1 (-108) |#3|)) 13))) +(((-871 |#1| |#2| |#3|) (-10 -7 (-15 -4169 (|#2| |#2| (-1 (-108) |#3|))) (-15 -4169 (|#2| |#2| (-592 (-1 (-108) |#3|))))) (-789) (-408 |#1|) (-1126)) (T -871)) +((-4169 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1126)) (-4 *4 (-789)) (-5 *1 (-871 *4 *2 *5)) (-4 *2 (-408 *4)))) (-4169 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1126)) (-4 *4 (-789)) (-5 *1 (-871 *4 *2 *5)) (-4 *2 (-408 *4))))) +(-10 -7 (-15 -4169 (|#2| |#2| (-1 (-108) |#3|))) (-15 -4169 (|#2| |#2| (-592 (-1 (-108) |#3|))))) +((-4169 (((-294 (-525)) (-1090) (-592 (-1 (-108) |#1|))) 18) (((-294 (-525)) (-1090) (-1 (-108) |#1|)) 15))) +(((-872 |#1|) (-10 -7 (-15 -4169 ((-294 (-525)) (-1090) (-1 (-108) |#1|))) (-15 -4169 ((-294 (-525)) (-1090) (-592 (-1 (-108) |#1|))))) (-1126)) (T -872)) +((-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1126)) (-5 *2 (-294 (-525))) (-5 *1 (-872 *5)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1126)) (-5 *2 (-294 (-525))) (-5 *1 (-872 *5))))) +(-10 -7 (-15 -4169 ((-294 (-525)) (-1090) (-1 (-108) |#1|))) (-15 -4169 ((-294 (-525)) (-1090) (-592 (-1 (-108) |#1|))))) +((-2029 (((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)) 25))) +(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -2029 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) (-1019) (-13 (-517) (-820 |#1|) (-567 (-826 |#1|))) (-924 |#2|)) (T -873)) +((-2029 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1019)) (-4 *3 (-924 *6)) (-4 *6 (-13 (-517) (-820 *5) (-567 *4))) (-5 *4 (-826 *5)) (-5 *1 (-873 *5 *6 *3))))) +(-10 -7 (-15 -2029 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) +((-2029 (((-823 |#1| (-1090)) (-1090) (-826 |#1|) (-823 |#1| (-1090))) 17))) +(((-874 |#1|) (-10 -7 (-15 -2029 ((-823 |#1| (-1090)) (-1090) (-826 |#1|) (-823 |#1| (-1090))))) (-1019)) (T -874)) +((-2029 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-5 *1 (-874 *5))))) +(-10 -7 (-15 -2029 ((-823 |#1| (-1090)) (-1090) (-826 |#1|) (-823 |#1| (-1090))))) +((-1777 (((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))) 33)) (-2029 (((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-1 |#3| (-592 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))) 32))) +(((-875 |#1| |#2| |#3|) (-10 -7 (-15 -2029 ((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-1 |#3| (-592 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) (-15 -1777 ((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))))) (-1019) (-13 (-976) (-789)) (-13 (-976) (-567 (-826 |#1|)) (-967 |#2|))) (T -875)) +((-1777 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-826 *6))) (-5 *5 (-1 (-823 *6 *8) *8 (-826 *6) (-823 *6 *8))) (-4 *6 (-1019)) (-4 *8 (-13 (-976) (-567 (-826 *6)) (-967 *7))) (-5 *2 (-823 *6 *8)) (-4 *7 (-13 (-976) (-789))) (-5 *1 (-875 *6 *7 *8)))) (-2029 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-592 (-826 *7))) (-5 *5 (-1 *9 (-592 *9))) (-5 *6 (-1 (-823 *7 *9) *9 (-826 *7) (-823 *7 *9))) (-4 *7 (-1019)) (-4 *9 (-13 (-976) (-567 (-826 *7)) (-967 *8))) (-5 *2 (-823 *7 *9)) (-5 *3 (-592 *9)) (-4 *8 (-13 (-976) (-789))) (-5 *1 (-875 *7 *8 *9))))) +(-10 -7 (-15 -2029 ((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-1 |#3| (-592 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) (-15 -1777 ((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))))) +((-3009 (((-1086 (-385 (-525))) (-525)) 63)) (-3171 (((-1086 (-525)) (-525)) 66)) (-4012 (((-1086 (-525)) (-525)) 60)) (-2007 (((-525) (-1086 (-525))) 55)) (-2774 (((-1086 (-385 (-525))) (-525)) 49)) (-1402 (((-1086 (-525)) (-525)) 38)) (-2185 (((-1086 (-525)) (-525)) 68)) (-1691 (((-1086 (-525)) (-525)) 67)) (-2127 (((-1086 (-385 (-525))) (-525)) 51))) +(((-876) (-10 -7 (-15 -2127 ((-1086 (-385 (-525))) (-525))) (-15 -1691 ((-1086 (-525)) (-525))) (-15 -2185 ((-1086 (-525)) (-525))) (-15 -1402 ((-1086 (-525)) (-525))) (-15 -2774 ((-1086 (-385 (-525))) (-525))) (-15 -2007 ((-525) (-1086 (-525)))) (-15 -4012 ((-1086 (-525)) (-525))) (-15 -3171 ((-1086 (-525)) (-525))) (-15 -3009 ((-1086 (-385 (-525))) (-525))))) (T -876)) +((-3009 (*1 *2 *3) (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525)))) (-3171 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1086 (-525))) (-5 *2 (-525)) (-5 *1 (-876)))) (-2774 (*1 *2 *3) (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525)))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-2185 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-1691 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-2127 (*1 *2 *3) (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525))))) +(-10 -7 (-15 -2127 ((-1086 (-385 (-525))) (-525))) (-15 -1691 ((-1086 (-525)) (-525))) (-15 -2185 ((-1086 (-525)) (-525))) (-15 -1402 ((-1086 (-525)) (-525))) (-15 -2774 ((-1086 (-385 (-525))) (-525))) (-15 -2007 ((-525) (-1086 (-525)))) (-15 -4012 ((-1086 (-525)) (-525))) (-15 -3171 ((-1086 (-525)) (-525))) (-15 -3009 ((-1086 (-385 (-525))) (-525)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2957 (($ (-713)) NIL (|has| |#1| (-23)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-1930 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-4183 (($ (-592 |#1|)) 13)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1336 (((-632 |#1|) $ $) NIL (|has| |#1| (-976)))) (-3248 (($ (-713) |#1|) 8)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) 10 (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3597 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-2350 (((-108) $ (-713)) NIL)) (-2520 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1683 ((|#1| $) NIL (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-1539 (($ $ (-592 |#1|)) 26)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 20) (($ $ (-1139 (-525))) NIL)) (-1580 ((|#1| $ $) NIL (|has| |#1| (-976)))) (-2374 (((-855) $) 16)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2331 (($ $ $) 24)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 17)) (-4059 (($ (-592 |#1|)) NIL)) (-1810 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-592 $)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4033 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4017 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-1696 (((-713) $) 14 (|has| $ (-6 -4254))))) +(((-877 |#1|) (-912 |#1|) (-976)) (T -877)) +NIL +(-912 |#1|) +((-4208 (((-457 |#1| |#2|) (-886 |#2|)) 20)) (-1906 (((-227 |#1| |#2|) (-886 |#2|)) 33)) (-2503 (((-886 |#2|) (-457 |#1| |#2|)) 25)) (-2803 (((-227 |#1| |#2|) (-457 |#1| |#2|)) 55)) (-3393 (((-886 |#2|) (-227 |#1| |#2|)) 30)) (-1825 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 46))) +(((-878 |#1| |#2|) (-10 -7 (-15 -1825 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -2803 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -4208 ((-457 |#1| |#2|) (-886 |#2|))) (-15 -2503 ((-886 |#2|) (-457 |#1| |#2|))) (-15 -3393 ((-886 |#2|) (-227 |#1| |#2|))) (-15 -1906 ((-227 |#1| |#2|) (-886 |#2|)))) (-592 (-1090)) (-976)) (T -878)) +((-1906 (*1 *2 *3) (-12 (-5 *3 (-886 *5)) (-4 *5 (-976)) (-5 *2 (-227 *4 *5)) (-5 *1 (-878 *4 *5)) (-14 *4 (-592 (-1090))))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) (-5 *2 (-886 *5)) (-5 *1 (-878 *4 *5)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) (-5 *2 (-886 *5)) (-5 *1 (-878 *4 *5)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-886 *5)) (-4 *5 (-976)) (-5 *2 (-457 *4 *5)) (-5 *1 (-878 *4 *5)) (-14 *4 (-592 (-1090))))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) (-5 *2 (-227 *4 *5)) (-5 *1 (-878 *4 *5)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) (-5 *2 (-457 *4 *5)) (-5 *1 (-878 *4 *5))))) +(-10 -7 (-15 -1825 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -2803 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -4208 ((-457 |#1| |#2|) (-886 |#2|))) (-15 -2503 ((-886 |#2|) (-457 |#1| |#2|))) (-15 -3393 ((-886 |#2|) (-227 |#1| |#2|))) (-15 -1906 ((-227 |#1| |#2|) (-886 |#2|)))) +((-3015 (((-592 |#2|) |#2| |#2|) 10)) (-1775 (((-713) (-592 |#1|)) 37 (|has| |#1| (-787)))) (-1485 (((-592 |#2|) |#2|) 11)) (-3404 (((-713) (-592 |#1|) (-525) (-525)) 36 (|has| |#1| (-787)))) (-1567 ((|#1| |#2|) 32 (|has| |#1| (-787))))) +(((-879 |#1| |#2|) (-10 -7 (-15 -3015 ((-592 |#2|) |#2| |#2|)) (-15 -1485 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -1567 (|#1| |#2|)) (-15 -1775 ((-713) (-592 |#1|))) (-15 -3404 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|)) (-341) (-1148 |#1|)) (T -879)) +((-3404 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-879 *5 *6)) (-4 *6 (-1148 *5)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-879 *4 *5)) (-4 *5 (-1148 *4)))) (-1567 (*1 *2 *3) (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1148 *2)))) (-1485 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1148 *4)))) (-3015 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -3015 ((-592 |#2|) |#2| |#2|)) (-15 -1485 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -1567 (|#1| |#2|)) (-15 -1775 ((-713) (-592 |#1|))) (-15 -3404 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|)) +((-2868 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 19))) +(((-880 |#1| |#2|) (-10 -7 (-15 -2868 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-976) (-976)) (T -880)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-886 *6)) (-5 *1 (-880 *5 *6))))) +(-10 -7 (-15 -2868 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) +((-1315 (((-1145 |#1| (-886 |#2|)) (-886 |#2|) (-1168 |#1|)) 18))) +(((-881 |#1| |#2|) (-10 -7 (-15 -1315 ((-1145 |#1| (-886 |#2|)) (-886 |#2|) (-1168 |#1|)))) (-1090) (-976)) (T -881)) +((-1315 (*1 *2 *3 *4) (-12 (-5 *4 (-1168 *5)) (-14 *5 (-1090)) (-4 *6 (-976)) (-5 *2 (-1145 *5 (-886 *6))) (-5 *1 (-881 *5 *6)) (-5 *3 (-886 *6))))) +(-10 -7 (-15 -1315 ((-1145 |#1| (-886 |#2|)) (-886 |#2|) (-1168 |#1|)))) +((-2874 (((-713) $) 71) (((-713) $ (-592 |#4|)) 74)) (-2701 (($ $) 173)) (-1259 (((-396 $) $) 165)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 116)) (-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2068 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) 59)) (-3048 (($ $ $ |#4|) 76)) (-1307 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 106) (((-632 |#2|) (-632 $)) 99)) (-2319 (($ $) 180) (($ $ |#4|) 183)) (-3295 (((-592 $) $) 63)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 199) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 192)) (-1585 (((-592 $) $) 28)) (-3097 (($ |#2| |#3|) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) 57)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ |#4|) 162)) (-3466 (((-3 (-592 $) "failed") $) 42)) (-4103 (((-3 (-592 $) "failed") $) 31)) (-1850 (((-3 (-2 (|:| |var| |#4|) (|:| -1737 (-713))) "failed") $) 47)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 109)) (-3725 (((-396 (-1086 $)) (-1086 $)) 122)) (-1944 (((-396 (-1086 $)) (-1086 $)) 120)) (-2961 (((-396 $) $) 140)) (-2168 (($ $ (-592 (-273 $))) 21) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL)) (-2257 (($ $ |#4|) 78)) (-2923 (((-826 (-357)) $) 213) (((-826 (-525)) $) 206) (((-501) $) 221)) (-2758 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 154)) (-2100 ((|#2| $ |#3|) NIL) (($ $ |#4| (-713)) 52) (($ $ (-592 |#4|) (-592 (-713))) 55)) (-1279 (((-3 $ "failed") $) 156)) (-3928 (((-108) $ $) 186))) +(((-882 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -2029 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -1944 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -3725 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2746 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2420 ((-3 (-1172 |#1|) "failed") (-632 |#1|))) (-15 -2319 (|#1| |#1| |#4|)) (-15 -2758 (|#1| |#1| |#4|)) (-15 -2257 (|#1| |#1| |#4|)) (-15 -3048 (|#1| |#1| |#1| |#4|)) (-15 -3295 ((-592 |#1|) |#1|)) (-15 -2874 ((-713) |#1| (-592 |#4|))) (-15 -2874 ((-713) |#1|)) (-15 -1850 ((-3 (-2 (|:| |var| |#4|) (|:| -1737 (-713))) "failed") |#1|)) (-15 -3466 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -4103 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3097 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3097 (|#1| |#1| |#4| (-713))) (-15 -2995 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1| |#4|)) (-15 -1585 ((-592 |#1|) |#1|)) (-15 -2100 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2100 (|#1| |#1| |#4| (-713))) (-15 -1307 ((-632 |#2|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -2068 (|#4| |#1|)) (-15 -2769 ((-3 |#4| "failed") |#1|)) (-15 -2168 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#4| |#1|)) (-15 -2168 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#4| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3097 (|#1| |#2| |#3|)) (-15 -2100 (|#2| |#1| |#3|)) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2758 (|#2| |#1|)) (-15 -2319 (|#1| |#1|))) (-883 |#2| |#3| |#4|) (-976) (-735) (-789)) (T -882)) +NIL +(-10 -8 (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -1279 ((-3 |#1| "failed") |#1|)) (-15 -3928 ((-108) |#1| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -2029 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -1944 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -3725 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2746 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2420 ((-3 (-1172 |#1|) "failed") (-632 |#1|))) (-15 -2319 (|#1| |#1| |#4|)) (-15 -2758 (|#1| |#1| |#4|)) (-15 -2257 (|#1| |#1| |#4|)) (-15 -3048 (|#1| |#1| |#1| |#4|)) (-15 -3295 ((-592 |#1|) |#1|)) (-15 -2874 ((-713) |#1| (-592 |#4|))) (-15 -2874 ((-713) |#1|)) (-15 -1850 ((-3 (-2 (|:| |var| |#4|) (|:| -1737 (-713))) "failed") |#1|)) (-15 -3466 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -4103 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3097 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3097 (|#1| |#1| |#4| (-713))) (-15 -2995 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1| |#4|)) (-15 -1585 ((-592 |#1|) |#1|)) (-15 -2100 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2100 (|#1| |#1| |#4| (-713))) (-15 -1307 ((-632 |#2|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -2068 (|#4| |#1|)) (-15 -2769 ((-3 |#4| "failed") |#1|)) (-15 -2168 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#4| |#1|)) (-15 -2168 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2168 (|#1| |#1| |#4| |#2|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3097 (|#1| |#2| |#3|)) (-15 -2100 (|#2| |#1| |#3|)) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2758 (|#2| |#1|)) (-15 -2319 (|#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3122 (((-592 |#3|) $) 110)) (-1315 (((-1086 $) $ |#3|) 125) (((-1086 |#1|) $) 124)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-2609 (($ $) 88 (|has| |#1| (-517)))) (-1220 (((-108) $) 90 (|has| |#1| (-517)))) (-2874 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-3004 (((-3 $ "failed") $ $) 19)) (-1426 (((-396 (-1086 $)) (-1086 $)) 100 (|has| |#1| (-843)))) (-2701 (($ $) 98 (|has| |#1| (-429)))) (-1259 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-843)))) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-967 (-525)))) (((-3 |#3| "failed") $) 136)) (-2068 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-967 (-525)))) ((|#3| $) 135)) (-3048 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-3306 (($ $) 154)) (-1307 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-1645 (((-3 $ "failed") $) 34)) (-2319 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-3295 (((-592 $) $) 109)) (-2069 (((-108) $) 96 (|has| |#1| (-843)))) (-2187 (($ $ |#1| |#2| $) 172)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84 (-12 (|has| |#3| (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 83 (-12 (|has| |#3| (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2507 (((-108) $) 31)) (-3682 (((-713) $) 169)) (-3110 (($ (-1086 |#1|) |#3|) 117) (($ (-1086 $) |#3|) 116)) (-1585 (((-592 $) $) 126)) (-1432 (((-108) $) 152)) (-3097 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ |#3|) 120)) (-3762 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-1260 (($ $ $) 79 (|has| |#1| (-789)))) (-2154 (($ $ $) 78 (|has| |#1| (-789)))) (-2078 (($ (-1 |#2| |#2|) $) 171)) (-2868 (($ (-1 |#1| |#1|) $) 151)) (-3869 (((-3 |#3| "failed") $) 123)) (-3277 (($ $) 149)) (-3286 ((|#1| $) 148)) (-2226 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-1707 (((-1073) $) 9)) (-3466 (((-3 (-592 $) "failed") $) 114)) (-4103 (((-3 (-592 $) "failed") $) 115)) (-1850 (((-3 (-2 (|:| |var| |#3|) (|:| -1737 (-713))) "failed") $) 113)) (-3027 (((-1037) $) 10)) (-3256 (((-108) $) 166)) (-3267 ((|#1| $) 167)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 95 (|has| |#1| (-429)))) (-2262 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) 101 (|has| |#1| (-843)))) (-2961 (((-396 $) $) 99 (|has| |#1| (-843)))) (-2675 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2168 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-2257 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-1576 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-1486 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-2923 (((-826 (-357)) $) 82 (-12 (|has| |#3| (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) 81 (-12 (|has| |#3| (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2758 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 104 (-2385 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-517))) (($ (-385 (-525))) 72 (-3215 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-3681 (((-592 |#1|) $) 168)) (-2100 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-1279 (((-3 $ "failed") $) 73 (-3215 (-2385 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) 29)) (-2541 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3787 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-3973 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4047 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-883 |#1| |#2| |#3|) (-131) (-976) (-735) (-789)) (T -883)) +((-2319 (*1 *1 *1) (-12 (-4 *1 (-883 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-1486 (*1 *2 *1 *3) (-12 (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-1486 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-2100 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-883 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *2 (-789)))) (-2100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)))) (-1585 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) (-1315 (*1 *2 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1086 *1)) (-4 *1 (-883 *4 *5 *3)))) (-1315 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1086 *3)))) (-3869 (*1 *2 *1) (|partial| -12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3762 (*1 *2 *1 *3) (-12 (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-3762 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-2995 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-883 *4 *5 *3)))) (-3097 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-883 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *2 (-789)))) (-3097 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)))) (-3110 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *4)) (-4 *4 (-976)) (-4 *1 (-883 *4 *5 *3)) (-4 *5 (-735)) (-4 *3 (-789)))) (-3110 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)))) (-4103 (*1 *2 *1) (|partial| -12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) (-3466 (*1 *2 *1) (|partial| -12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) (-1850 (*1 *2 *1) (|partial| -12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -1737 (-713)))))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-2874 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-3295 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) (-3048 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2257 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2758 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-2319 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-2701 (*1 *1 *1) (-12 (-4 *1 (-883 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-1259 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-396 *1)) (-4 *1 (-883 *3 *4 *5))))) +(-13 (-834 |t#3|) (-304 |t#1| |t#2|) (-288 $) (-486 |t#3| |t#1|) (-486 |t#3| $) (-967 |t#3|) (-355 |t#1|) (-10 -8 (-15 -1486 ((-713) $ |t#3|)) (-15 -1486 ((-592 (-713)) $ (-592 |t#3|))) (-15 -2100 ($ $ |t#3| (-713))) (-15 -2100 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -1585 ((-592 $) $)) (-15 -1315 ((-1086 $) $ |t#3|)) (-15 -1315 ((-1086 |t#1|) $)) (-15 -3869 ((-3 |t#3| "failed") $)) (-15 -3762 ((-713) $ |t#3|)) (-15 -3762 ((-592 (-713)) $ (-592 |t#3|))) (-15 -2995 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $ |t#3|)) (-15 -3097 ($ $ |t#3| (-713))) (-15 -3097 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -3110 ($ (-1086 |t#1|) |t#3|)) (-15 -3110 ($ (-1086 $) |t#3|)) (-15 -4103 ((-3 (-592 $) "failed") $)) (-15 -3466 ((-3 (-592 $) "failed") $)) (-15 -1850 ((-3 (-2 (|:| |var| |t#3|) (|:| -1737 (-713))) "failed") $)) (-15 -2874 ((-713) $)) (-15 -2874 ((-713) $ (-592 |t#3|))) (-15 -3122 ((-592 |t#3|) $)) (-15 -3295 ((-592 $) $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (IF (|has| |t#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-826 (-525)))) (IF (|has| |t#3| (-567 (-826 (-525)))) (-6 (-567 (-826 (-525)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-826 (-357)))) (IF (|has| |t#3| (-567 (-826 (-357)))) (-6 (-567 (-826 (-357)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-820 (-525))) (IF (|has| |t#3| (-820 (-525))) (-6 (-820 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-820 (-357))) (IF (|has| |t#3| (-820 (-357))) (-6 (-820 (-357))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -3048 ($ $ $ |t#3|)) (-15 -2257 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-6 (-429)) (-15 -2758 ($ $ |t#3|)) (-15 -2319 ($ $)) (-15 -2319 ($ $ |t#3|)) (-15 -1259 ((-396 $) $)) (-15 -2701 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4252)) (-6 -4252) |%noBranch|) (IF (|has| |t#1| (-843)) (-6 (-843)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525))))) ((-269) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3215 (|has| |#1| (-843)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 |#3|) . T) ((-820 (-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357)))) ((-820 (-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))) ((-843) |has| |#1| (-843)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-967 |#3|) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) |has| |#1| (-843))) +((-3122 (((-592 |#2|) |#5|) 36)) (-1315 (((-1086 |#5|) |#5| |#2| (-1086 |#5|)) 23) (((-385 (-1086 |#5|)) |#5| |#2|) 16)) (-3110 ((|#5| (-385 (-1086 |#5|)) |#2|) 30)) (-3869 (((-3 |#2| "failed") |#5|) 65)) (-3466 (((-3 (-592 |#5|) "failed") |#5|) 59)) (-4098 (((-3 (-2 (|:| |val| |#5|) (|:| -1737 (-525))) "failed") |#5|) 47)) (-4103 (((-3 (-592 |#5|) "failed") |#5|) 61)) (-1850 (((-3 (-2 (|:| |var| |#2|) (|:| -1737 (-525))) "failed") |#5|) 51))) +(((-884 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3122 ((-592 |#2|) |#5|)) (-15 -3869 ((-3 |#2| "failed") |#5|)) (-15 -1315 ((-385 (-1086 |#5|)) |#5| |#2|)) (-15 -3110 (|#5| (-385 (-1086 |#5|)) |#2|)) (-15 -1315 ((-1086 |#5|) |#5| |#2| (-1086 |#5|))) (-15 -4103 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -3466 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -1850 ((-3 (-2 (|:| |var| |#2|) (|:| -1737 (-525))) "failed") |#5|)) (-15 -4098 ((-3 (-2 (|:| |val| |#5|) (|:| -1737 (-525))) "failed") |#5|))) (-735) (-789) (-976) (-883 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -4044 ($ |#4|)) (-15 -1936 (|#4| $)) (-15 -1945 (|#4| $))))) (T -884)) +((-4098 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1737 (-525)))) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))))) (-1850 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1737 (-525)))) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))))) (-3466 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))))) (-4103 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))))) (-1315 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))) (-4 *7 (-883 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976)) (-5 *1 (-884 *5 *4 *6 *7 *3)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1086 *2))) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976)) (-4 *2 (-13 (-341) (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))) (-5 *1 (-884 *5 *4 *6 *7 *2)) (-4 *7 (-883 *6 *5 *4)))) (-1315 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-385 (-1086 *3))) (-5 *1 (-884 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))))) (-3869 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-976)) (-4 *6 (-883 *5 *4 *2)) (-4 *2 (-789)) (-5 *1 (-884 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4044 ($ *6)) (-15 -1936 (*6 $)) (-15 -1945 (*6 $))))))) (-3122 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *5)) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $)))))))) +(-10 -7 (-15 -3122 ((-592 |#2|) |#5|)) (-15 -3869 ((-3 |#2| "failed") |#5|)) (-15 -1315 ((-385 (-1086 |#5|)) |#5| |#2|)) (-15 -3110 (|#5| (-385 (-1086 |#5|)) |#2|)) (-15 -1315 ((-1086 |#5|) |#5| |#2| (-1086 |#5|))) (-15 -4103 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -3466 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -1850 ((-3 (-2 (|:| |var| |#2|) (|:| -1737 (-525))) "failed") |#5|)) (-15 -4098 ((-3 (-2 (|:| |val| |#5|) (|:| -1737 (-525))) "failed") |#5|))) +((-2868 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-885 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2868 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-735) (-789) (-976) (-883 |#3| |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (T -885)) +((-2868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-789)) (-4 *8 (-976)) (-4 *6 (-735)) (-4 *2 (-13 (-1019) (-10 -8 (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (-5 *1 (-885 *6 *7 *8 *5 *2)) (-4 *5 (-883 *8 *6 *7))))) +(-10 -7 (-15 -2868 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-1090)) $) 16)) (-1315 (((-1086 $) $ (-1090)) 21) (((-1086 |#1|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-1090))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2701 (($ $) NIL (|has| |#1| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) 8) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1090) "failed") $) NIL)) (-2068 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1090) $) NIL)) (-3048 (($ $ $ (-1090)) NIL (|has| |#1| (-160)))) (-3306 (($ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1090)) NIL (|has| |#1| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#1| (-843)))) (-2187 (($ $ |#1| (-497 (-1090)) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1090) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1090) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-3110 (($ (-1086 |#1|) (-1090)) NIL) (($ (-1086 $) (-1090)) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-497 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-1090)) NIL)) (-3762 (((-497 (-1090)) $) NIL) (((-713) $ (-1090)) NIL) (((-592 (-713)) $ (-592 (-1090))) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2078 (($ (-1 (-497 (-1090)) (-497 (-1090))) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3869 (((-3 (-1090) "failed") $) 19)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1707 (((-1073) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1737 (-713))) "failed") $) NIL)) (-2313 (($ $ (-1090)) 29 (|has| |#1| (-37 (-385 (-525)))))) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#1| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1090) |#1|) NIL) (($ $ (-592 (-1090)) (-592 |#1|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-592 (-1090)) (-592 $)) NIL)) (-2257 (($ $ (-1090)) NIL (|has| |#1| (-160)))) (-1576 (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-1486 (((-497 (-1090)) $) NIL) (((-713) $ (-1090)) NIL) (((-592 (-713)) $ (-592 (-1090))) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-1090) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1090) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1090) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2758 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1090)) NIL (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) 25) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1090)) 27) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-497 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-886 |#1|) (-13 (-883 |#1| (-497 (-1090)) (-1090)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1090))) |%noBranch|))) (-976)) (T -886)) +((-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-886 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976))))) +(-13 (-883 |#1| (-497 (-1090)) (-1090)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1090))) |%noBranch|))) +((-2308 (((-2 (|:| -1737 (-713)) (|:| -2059 |#5|) (|:| |radicand| |#5|)) |#3| (-713)) 38)) (-1243 (((-2 (|:| -1737 (-713)) (|:| -2059 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713)) 34)) (-1913 (((-2 (|:| -1737 (-713)) (|:| -2059 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)) 54)) (-2765 (((-2 (|:| -1737 (-713)) (|:| -2059 |#5|) (|:| |radicand| |#5|)) |#5| (-713)) 64 (|has| |#3| (-429))))) +(((-887 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2308 ((-2 (|:| -1737 (-713)) (|:| -2059 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -1243 ((-2 (|:| -1737 (-713)) (|:| -2059 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -2765 ((-2 (|:| -1737 (-713)) (|:| -2059 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -1913 ((-2 (|:| -1737 (-713)) (|:| -2059 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)))) (-735) (-789) (-517) (-883 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -1936 (|#4| $)) (-15 -1945 (|#4| $)) (-15 -4044 ($ |#4|))))) (T -887)) +((-1913 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *3 (-883 *7 *5 *6)) (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *3) (|:| |radicand| (-592 *3)))) (-5 *1 (-887 *5 *6 *7 *3 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -1936 (*3 $)) (-15 -1945 (*3 $)) (-15 -4044 ($ *3))))))) (-2765 (*1 *2 *3 *4) (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-883 *7 *5 *6)) (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *3) (|:| |radicand| *3))) (-5 *1 (-887 *5 *6 *7 *8 *3)) (-5 *4 (-713)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1936 (*8 $)) (-15 -1945 (*8 $)) (-15 -4044 ($ *8))))))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-883 *7 *5 *6)) (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *9) (|:| |radicand| *9))) (-5 *1 (-887 *5 *6 *7 *8 *9)) (-5 *4 (-713)) (-4 *9 (-13 (-341) (-10 -8 (-15 -1936 (*8 $)) (-15 -1945 (*8 $)) (-15 -4044 ($ *8))))))) (-2308 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517)) (-4 *7 (-883 *3 *5 *6)) (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *8) (|:| |radicand| *8))) (-5 *1 (-887 *5 *6 *3 *7 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -1936 (*7 $)) (-15 -1945 (*7 $)) (-15 -4044 ($ *7)))))))) +(-10 -7 (-15 -2308 ((-2 (|:| -1737 (-713)) (|:| -2059 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -1243 ((-2 (|:| -1737 (-713)) (|:| -2059 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -2765 ((-2 (|:| -1737 (-713)) (|:| -2059 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -1913 ((-2 (|:| -1737 (-713)) (|:| -2059 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)))) +((-2519 (((-1014 (-205)) $) 8)) (-2508 (((-1014 (-205)) $) 9)) (-2204 (((-592 (-592 (-877 (-205)))) $) 10)) (-4044 (((-797) $) 6))) +(((-888) (-131)) (T -888)) +((-2204 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-592 (-592 (-877 (-205))))))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1014 (-205))))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1014 (-205)))))) +(-13 (-566 (-797)) (-10 -8 (-15 -2204 ((-592 (-592 (-877 (-205)))) $)) (-15 -2508 ((-1014 (-205)) $)) (-15 -2519 ((-1014 (-205)) $)))) +(((-566 (-797)) . T)) +((-2011 (((-3 (-632 |#1|) "failed") |#2| (-855)) 15))) +(((-889 |#1| |#2|) (-10 -7 (-15 -2011 ((-3 (-632 |#1|) "failed") |#2| (-855)))) (-517) (-602 |#1|)) (T -889)) +((-2011 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-855)) (-4 *5 (-517)) (-5 *2 (-632 *5)) (-5 *1 (-889 *5 *3)) (-4 *3 (-602 *5))))) +(-10 -7 (-15 -2011 ((-3 (-632 |#1|) "failed") |#2| (-855)))) +((-2225 (((-891 |#2|) (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|) 16)) (-3336 ((|#2| (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|) 18)) (-2868 (((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)) 13))) +(((-890 |#1| |#2|) (-10 -7 (-15 -2225 ((-891 |#2|) (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|)) (-15 -3336 (|#2| (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|)) (-15 -2868 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) (-1126) (-1126)) (T -890)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6)))) (-3336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-891 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-890 *5 *2)))) (-2225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-891 *6)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-5 *2 (-891 *5)) (-5 *1 (-890 *6 *5))))) +(-10 -7 (-15 -2225 ((-891 |#2|) (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|)) (-15 -3336 (|#2| (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|)) (-15 -2868 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-525) |#1|) 16 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) 15 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 13)) (-1930 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3248 (($ (-713) |#1|) 12)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) 10 (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1683 ((|#1| $) NIL (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) 17 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) 11)) (-1496 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 14) (($ $ (-1139 (-525))) NIL)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) NIL)) (-1810 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-1696 (((-713) $) 8 (|has| $ (-6 -4254))))) +(((-891 |#1|) (-19 |#1|) (-1126)) (T -891)) NIL (-19 |#1|) -((-2168 (($ $ (-1011 $)) 7) (($ $ (-1089)) 6))) -(((-891) (-131)) (T -891)) -((-2168 (*1 *1 *1 *2) (-12 (-5 *2 (-1011 *1)) (-4 *1 (-891)))) (-2168 (*1 *1 *1 *2) (-12 (-4 *1 (-891)) (-5 *2 (-1089))))) -(-13 (-10 -8 (-15 -2168 ($ $ (-1089))) (-15 -2168 ($ $ (-1011 $))))) -((-1268 (((-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-591 (-885 |#1|)) (-591 (-1089)) (-1089)) 25) (((-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-591 (-885 |#1|)) (-591 (-1089))) 26) (((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1085 |#1|))) (-885 |#1|) (-1089) (-885 |#1|) (-1089)) 43))) -(((-892 |#1|) (-10 -7 (-15 -1268 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1085 |#1|))) (-885 |#1|) (-1089) (-885 |#1|) (-1089))) (-15 -1268 ((-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-591 (-885 |#1|)) (-591 (-1089)))) (-15 -1268 ((-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-591 (-885 |#1|)) (-591 (-1089)) (-1089)))) (-13 (-341) (-138))) (T -892)) -((-1268 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 (-885 *6))) (-5 *4 (-591 (-1089))) (-5 *5 (-1089)) (-4 *6 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 *6))) (|:| |prim| (-1085 *6)))) (-5 *1 (-892 *6)))) (-1268 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-591 (-1089))) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 *5))) (|:| |prim| (-1085 *5)))) (-5 *1 (-892 *5)))) (-1268 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1085 *5)))) (-5 *1 (-892 *5))))) -(-10 -7 (-15 -1268 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1085 |#1|))) (-885 |#1|) (-1089) (-885 |#1|) (-1089))) (-15 -1268 ((-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-591 (-885 |#1|)) (-591 (-1089)))) (-15 -1268 ((-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-591 (-885 |#1|)) (-591 (-1089)) (-1089)))) -((-1371 (((-591 |#1|) |#1| |#1|) 42)) (-2393 (((-108) |#1|) 39)) (-3294 ((|#1| |#1|) 65)) (-2611 ((|#1| |#1|) 64))) -(((-893 |#1|) (-10 -7 (-15 -2393 ((-108) |#1|)) (-15 -2611 (|#1| |#1|)) (-15 -3294 (|#1| |#1|)) (-15 -1371 ((-591 |#1|) |#1| |#1|))) (-510)) (T -893)) -((-1371 (*1 *2 *3 *3) (-12 (-5 *2 (-591 *3)) (-5 *1 (-893 *3)) (-4 *3 (-510)))) (-3294 (*1 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-510)))) (-2611 (*1 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-510)))) (-2393 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-510))))) -(-10 -7 (-15 -2393 ((-108) |#1|)) (-15 -2611 (|#1| |#1|)) (-15 -3294 (|#1| |#1|)) (-15 -1371 ((-591 |#1|) |#1| |#1|))) -((-1872 (((-1176) (-796)) 9))) -(((-894) (-10 -7 (-15 -1872 ((-1176) (-796))))) (T -894)) -((-1872 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-894))))) -(-10 -7 (-15 -1872 ((-1176) (-796)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 63 (|has| |#1| (-517)))) (-3641 (($ $) 64 (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 28)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL)) (-1575 (($ $) 24)) (-1522 (((-3 $ "failed") $) 35)) (-3153 (($ $) NIL (|has| |#1| (-429)))) (-2615 (($ $ |#1| |#2| $) 48)) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) 16)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| |#2|) NIL)) (-3629 ((|#2| $) 19)) (-2508 (($ (-1 |#2| |#2|) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (($ $) 23)) (-1556 ((|#1| $) 21)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) 40)) (-1540 ((|#1| $) NIL)) (-3381 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-126)) (|has| |#1| (-517))))) (-3210 (((-3 $ "failed") $ $) 75 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-517)))) (-2743 ((|#2| $) 17)) (-2827 ((|#1| $) NIL (|has| |#1| (-429)))) (-2686 (((-796) $) NIL) (($ (-525)) 39) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 34) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525))))))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ |#2|) 31)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) 15)) (-2931 (($ $ $ (-712)) 59 (|has| |#1| (-160)))) (-1724 (((-108) $ $) 69 (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 55) (($ $ (-712)) 56)) (-1830 (($) 22 T CONST)) (-1839 (($) 12 T CONST)) (-3944 (((-108) $ $) 68)) (-4059 (($ $ |#1|) 76 (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) 54) (($ $ (-712)) 52)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-895 |#1| |#2|) (-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -3381 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4248)) (-6 -4248) |%noBranch|))) (-975) (-733)) (T -895)) -((-3381 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-895 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517)) (-4 *3 (-975)) (-4 *2 (-733))))) -(-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -3381 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4248)) (-6 -4248) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL (-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))) (-3343 (($ $ $) 63 (-12 (|has| |#1| (-734)) (|has| |#2| (-734))))) (-3332 (((-3 $ "failed") $ $) 50 (-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))) (-2834 (((-712)) 34 (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-3095 ((|#2| $) 21)) (-3221 ((|#1| $) 20)) (-2055 (($) NIL (-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))) CONST)) (-1522 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668)))))) (-1325 (($) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-3865 (((-108) $) NIL (-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668)))))) (-1923 (($ $ $) NIL (-3150 (-12 (|has| |#1| (-734)) (|has| |#2| (-734))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-3475 (($ $ $) NIL (-3150 (-12 (|has| |#1| (-734)) (|has| |#2| (-734))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-3009 (($ |#1| |#2|) 19)) (-1970 (((-854) $) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 37 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-3229 (($ (-854)) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2937 (((-1036) $) NIL)) (-3369 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-4027 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-2686 (((-796) $) 14)) (-1401 (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-712)) NIL (-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668))))) (($ $ (-854)) NIL (-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668)))))) (-1830 (($) 40 (-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))) CONST)) (-1839 (($) 24 (-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668)))) CONST)) (-4004 (((-108) $ $) NIL (-3150 (-12 (|has| |#1| (-734)) (|has| |#2| (-734))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-3982 (((-108) $ $) NIL (-3150 (-12 (|has| |#1| (-734)) (|has| |#2| (-734))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-3944 (((-108) $ $) 18)) (-3994 (((-108) $ $) NIL (-3150 (-12 (|has| |#1| (-734)) (|has| |#2| (-734))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-3971 (((-108) $ $) 66 (-3150 (-12 (|has| |#1| (-734)) (|has| |#2| (-734))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-4059 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-4047 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4036 (($ $ $) 43 (-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))) (** (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-712)) 31 (-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668))))) (($ $ (-854)) NIL (-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668)))))) (* (($ (-525) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-712) $) 46 (-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))))) (($ (-854) $) NIL (-3150 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))))) (($ $ $) 27 (-3150 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-668)) (|has| |#2| (-668))))))) -(((-896 |#1| |#2|) (-13 (-1018) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-668)) (IF (|has| |#2| (-668)) (-6 (-668)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-734)) (IF (|has| |#2| (-734)) (-6 (-734)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-788)) (IF (|has| |#2| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (-15 -3009 ($ |#1| |#2|)) (-15 -3221 (|#1| $)) (-15 -3095 (|#2| $)))) (-1018) (-1018)) (T -896)) -((-3009 (*1 *1 *2 *3) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) (-3221 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1018)))) (-3095 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-896 *3 *2)) (-4 *3 (-1018))))) -(-13 (-1018) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-668)) (IF (|has| |#2| (-668)) (-6 (-668)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-734)) (IF (|has| |#2| (-734)) (-6 (-734)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-788)) (IF (|has| |#2| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (-15 -3009 ($ |#1| |#2|)) (-15 -3221 (|#1| $)) (-15 -3095 (|#2| $)))) -((-2940 (((-1022) $) 12)) (-3065 (($ (-1089) (-1022)) 13)) (-3419 (((-1089) $) 10)) (-2686 (((-796) $) 24))) -(((-897) (-13 (-565 (-796)) (-10 -8 (-15 -3419 ((-1089) $)) (-15 -2940 ((-1022) $)) (-15 -3065 ($ (-1089) (-1022)))))) (T -897)) -((-3419 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-897)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-897)))) (-3065 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1022)) (-5 *1 (-897))))) -(-13 (-565 (-796)) (-10 -8 (-15 -3419 ((-1089) $)) (-15 -2940 ((-1022) $)) (-15 -3065 ($ (-1089) (-1022))))) -((-1444 (((-1020 (-1089)) $) 19)) (-1490 (((-108) $) 26)) (-1592 (((-1089) $) 27)) (-3190 (((-108) $) 24)) (-3424 ((|#1| $) 25)) (-2593 (((-806 $ $) $) 34)) (-2612 (((-108) $) 33)) (-3532 (($ $ $) 12)) (-4065 (($ $) 29)) (-1305 (((-108) $) 28)) (-3389 (($ $) 10)) (-1750 (((-806 $ $) $) 36)) (-1486 (((-108) $) 35)) (-2201 (($ $ $) 13)) (-1566 (((-806 $ $) $) 38)) (-2653 (((-108) $) 37)) (-2433 (($ $ $) 14)) (-2686 (($ |#1|) 7) (($ (-1089)) 9) (((-796) $) 40 (|has| |#1| (-565 (-796))))) (-4055 (((-806 $ $) $) 32)) (-4101 (((-108) $) 30)) (-3543 (($ $ $) 11))) -(((-898 |#1|) (-13 (-899) (-10 -8 (IF (|has| |#1| (-565 (-796))) (-6 (-565 (-796))) |%noBranch|) (-15 -2686 ($ |#1|)) (-15 -2686 ($ (-1089))) (-15 -1444 ((-1020 (-1089)) $)) (-15 -3190 ((-108) $)) (-15 -3424 (|#1| $)) (-15 -1490 ((-108) $)) (-15 -1592 ((-1089) $)) (-15 -1305 ((-108) $)) (-15 -4065 ($ $)) (-15 -4101 ((-108) $)) (-15 -4055 ((-806 $ $) $)) (-15 -2612 ((-108) $)) (-15 -2593 ((-806 $ $) $)) (-15 -1486 ((-108) $)) (-15 -1750 ((-806 $ $) $)) (-15 -2653 ((-108) $)) (-15 -1566 ((-806 $ $) $)))) (-899)) (T -898)) -((-2686 (*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-899)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-1020 (-1089))) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-3424 (*1 *2 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-899)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-4065 (*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-899)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-806 (-898 *3) (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-806 (-898 *3) (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-806 (-898 *3) (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-806 (-898 *3) (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-899))))) -(-13 (-899) (-10 -8 (IF (|has| |#1| (-565 (-796))) (-6 (-565 (-796))) |%noBranch|) (-15 -2686 ($ |#1|)) (-15 -2686 ($ (-1089))) (-15 -1444 ((-1020 (-1089)) $)) (-15 -3190 ((-108) $)) (-15 -3424 (|#1| $)) (-15 -1490 ((-108) $)) (-15 -1592 ((-1089) $)) (-15 -1305 ((-108) $)) (-15 -4065 ($ $)) (-15 -4101 ((-108) $)) (-15 -4055 ((-806 $ $) $)) (-15 -2612 ((-108) $)) (-15 -2593 ((-806 $ $) $)) (-15 -1486 ((-108) $)) (-15 -1750 ((-806 $ $) $)) (-15 -2653 ((-108) $)) (-15 -1566 ((-806 $ $) $)))) -((-3532 (($ $ $) 8)) (-3389 (($ $) 6)) (-2201 (($ $ $) 9)) (-2433 (($ $ $) 10)) (-3543 (($ $ $) 7))) -(((-899) (-131)) (T -899)) -((-2433 (*1 *1 *1 *1) (-4 *1 (-899))) (-2201 (*1 *1 *1 *1) (-4 *1 (-899))) (-3532 (*1 *1 *1 *1) (-4 *1 (-899))) (-3543 (*1 *1 *1 *1) (-4 *1 (-899))) (-3389 (*1 *1 *1) (-4 *1 (-899)))) -(-13 (-10 -8 (-15 -3389 ($ $)) (-15 -3543 ($ $ $)) (-15 -3532 ($ $ $)) (-15 -2201 ($ $ $)) (-15 -2433 ($ $ $)))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-2055 (($) 7 T CONST)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-3597 (($ $ $) 43)) (-3459 (($ $ $) 44)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3475 ((|#1| $) 45)) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) 42)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-900 |#1|) (-131) (-788)) (T -900)) -((-3475 (*1 *2 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-788)))) (-3459 (*1 *1 *1 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-788)))) (-3597 (*1 *1 *1 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-788))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4250) (-15 -3475 (|t#1| $)) (-15 -3459 ($ $ $)) (-15 -3597 ($ $ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-3260 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2124 |#2|)) |#2| |#2|) 85)) (-2584 ((|#2| |#2| |#2|) 83)) (-1524 (((-2 (|:| |coef2| |#2|) (|:| -2124 |#2|)) |#2| |#2|) 87)) (-1286 (((-2 (|:| |coef1| |#2|) (|:| -2124 |#2|)) |#2| |#2|) 89)) (-1560 (((-2 (|:| |coef2| |#2|) (|:| -2596 |#1|)) |#2| |#2|) 107 (|has| |#1| (-429)))) (-1272 (((-2 (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|) 46)) (-2828 (((-2 (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|) 64)) (-3524 (((-2 (|:| |coef1| |#2|) (|:| -1788 |#1|)) |#2| |#2|) 66)) (-3091 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2627 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712)) 71)) (-1644 (((-2 (|:| |coef2| |#2|) (|:| -2858 |#1|)) |#2|) 97)) (-2865 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712)) 74)) (-3877 (((-591 (-712)) |#2| |#2|) 82)) (-3103 ((|#1| |#2| |#2|) 42)) (-2604 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2596 |#1|)) |#2| |#2|) 105 (|has| |#1| (-429)))) (-2596 ((|#1| |#2| |#2|) 103 (|has| |#1| (-429)))) (-1798 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|) 44)) (-2485 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|) 63)) (-1788 ((|#1| |#2| |#2|) 61)) (-1627 (((-2 (|:| -2976 |#1|) (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2|) 35)) (-2214 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3268 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2456 ((|#2| |#2| |#2|) 75)) (-2451 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712)) 69)) (-4206 ((|#2| |#2| |#2| (-712)) 67)) (-2124 ((|#2| |#2| |#2|) 111 (|has| |#1| (-429)))) (-3210 (((-1171 |#2|) (-1171 |#2|) |#1|) 21)) (-3576 (((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2|) 39)) (-3655 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2858 |#1|)) |#2|) 95)) (-2858 ((|#1| |#2|) 92)) (-1632 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712)) 73)) (-2019 ((|#2| |#2| |#2| (-712)) 72)) (-2682 (((-591 |#2|) |#2| |#2|) 80)) (-4177 ((|#2| |#2| |#1| |#1| (-712)) 50)) (-1209 ((|#1| |#1| |#1| (-712)) 49)) (* (((-1171 |#2|) |#1| (-1171 |#2|)) 16))) -(((-901 |#1| |#2|) (-10 -7 (-15 -1788 (|#1| |#2| |#2|)) (-15 -2485 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|)) (-15 -2828 ((-2 (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|)) (-15 -3524 ((-2 (|:| |coef1| |#2|) (|:| -1788 |#1|)) |#2| |#2|)) (-15 -4206 (|#2| |#2| |#2| (-712))) (-15 -2451 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712))) (-15 -2627 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712))) (-15 -2019 (|#2| |#2| |#2| (-712))) (-15 -1632 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712))) (-15 -2865 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712))) (-15 -2456 (|#2| |#2| |#2|)) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3091 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2584 (|#2| |#2| |#2|)) (-15 -3260 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2124 |#2|)) |#2| |#2|)) (-15 -1524 ((-2 (|:| |coef2| |#2|) (|:| -2124 |#2|)) |#2| |#2|)) (-15 -1286 ((-2 (|:| |coef1| |#2|) (|:| -2124 |#2|)) |#2| |#2|)) (-15 -2858 (|#1| |#2|)) (-15 -3655 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2858 |#1|)) |#2|)) (-15 -1644 ((-2 (|:| |coef2| |#2|) (|:| -2858 |#1|)) |#2|)) (-15 -2682 ((-591 |#2|) |#2| |#2|)) (-15 -3877 ((-591 (-712)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -2596 (|#1| |#2| |#2|)) (-15 -2604 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2596 |#1|)) |#2| |#2|)) (-15 -1560 ((-2 (|:| |coef2| |#2|) (|:| -2596 |#1|)) |#2| |#2|)) (-15 -2124 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1171 |#2|) |#1| (-1171 |#2|))) (-15 -3210 ((-1171 |#2|) (-1171 |#2|) |#1|)) (-15 -1627 ((-2 (|:| -2976 |#1|) (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2|)) (-15 -3576 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2|)) (-15 -1209 (|#1| |#1| |#1| (-712))) (-15 -4177 (|#2| |#2| |#1| |#1| (-712))) (-15 -2214 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3103 (|#1| |#2| |#2|)) (-15 -1798 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|)) (-15 -1272 ((-2 (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|))) (-517) (-1147 |#1|)) (T -901)) -((-1272 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1788 *4))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-1798 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1788 *4))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-3103 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1147 *2)))) (-2214 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) (-4 *2 (-1147 *3)))) (-4177 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-712)) (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) (-4 *2 (-1147 *3)))) (-1209 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-712)) (-4 *2 (-517)) (-5 *1 (-901 *2 *4)) (-4 *4 (-1147 *2)))) (-3576 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-1627 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2976 *4) (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1147 *3)) (-4 *3 (-517)) (-5 *1 (-901 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1147 *3)) (-4 *3 (-517)) (-5 *1 (-901 *3 *4)))) (-2124 (*1 *2 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) (-4 *2 (-1147 *3)))) (-1560 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2596 *4))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-2604 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2596 *4))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-2596 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1147 *2)))) (-3877 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-591 (-712))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-2682 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-591 *3)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2858 *4))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-3655 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2858 *4))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-2858 (*1 *2 *3) (-12 (-4 *2 (-517)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1147 *2)))) (-1286 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2124 *3))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-1524 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2124 *3))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-3260 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2124 *3))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-2584 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) (-4 *2 (-1147 *3)))) (-3091 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-2456 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) (-4 *2 (-1147 *3)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-712)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-901 *5 *3)) (-4 *3 (-1147 *5)))) (-1632 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-712)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-901 *5 *3)) (-4 *3 (-1147 *5)))) (-2019 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-712)) (-4 *4 (-517)) (-5 *1 (-901 *4 *2)) (-4 *2 (-1147 *4)))) (-2627 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-712)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-901 *5 *3)) (-4 *3 (-1147 *5)))) (-2451 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-712)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-901 *5 *3)) (-4 *3 (-1147 *5)))) (-4206 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-712)) (-4 *4 (-517)) (-5 *1 (-901 *4 *2)) (-4 *2 (-1147 *4)))) (-3524 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1788 *4))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-2828 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1788 *4))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-2485 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1788 *4))) (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) (-1788 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1147 *2))))) -(-10 -7 (-15 -1788 (|#1| |#2| |#2|)) (-15 -2485 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|)) (-15 -2828 ((-2 (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|)) (-15 -3524 ((-2 (|:| |coef1| |#2|) (|:| -1788 |#1|)) |#2| |#2|)) (-15 -4206 (|#2| |#2| |#2| (-712))) (-15 -2451 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712))) (-15 -2627 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712))) (-15 -2019 (|#2| |#2| |#2| (-712))) (-15 -1632 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712))) (-15 -2865 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-712))) (-15 -2456 (|#2| |#2| |#2|)) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3091 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2584 (|#2| |#2| |#2|)) (-15 -3260 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2124 |#2|)) |#2| |#2|)) (-15 -1524 ((-2 (|:| |coef2| |#2|) (|:| -2124 |#2|)) |#2| |#2|)) (-15 -1286 ((-2 (|:| |coef1| |#2|) (|:| -2124 |#2|)) |#2| |#2|)) (-15 -2858 (|#1| |#2|)) (-15 -3655 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2858 |#1|)) |#2|)) (-15 -1644 ((-2 (|:| |coef2| |#2|) (|:| -2858 |#1|)) |#2|)) (-15 -2682 ((-591 |#2|) |#2| |#2|)) (-15 -3877 ((-591 (-712)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -2596 (|#1| |#2| |#2|)) (-15 -2604 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2596 |#1|)) |#2| |#2|)) (-15 -1560 ((-2 (|:| |coef2| |#2|) (|:| -2596 |#1|)) |#2| |#2|)) (-15 -2124 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1171 |#2|) |#1| (-1171 |#2|))) (-15 -3210 ((-1171 |#2|) (-1171 |#2|) |#1|)) (-15 -1627 ((-2 (|:| -2976 |#1|) (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2|)) (-15 -3576 ((-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) |#2| |#2|)) (-15 -1209 (|#1| |#1| |#1| (-712))) (-15 -4177 (|#2| |#2| |#1| |#1| (-712))) (-15 -2214 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3103 (|#1| |#2| |#2|)) (-15 -1798 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|)) (-15 -1272 ((-2 (|:| |coef2| |#2|) (|:| -1788 |#1|)) |#2| |#2|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) 27)) (-2055 (($) NIL T CONST)) (-1212 (((-591 (-591 (-525))) (-591 (-525))) 29)) (-3375 (((-525) $) 45)) (-3309 (($ (-591 (-525))) 17)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1300 (((-591 (-525)) $) 12)) (-3369 (($ $) 32)) (-2686 (((-796) $) 43) (((-591 (-525)) $) 10)) (-1830 (($) 7 T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 20)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 19)) (-4036 (($ $ $) 21)) (* (($ (-712) $) 25) (($ (-854) $) NIL))) -(((-902) (-13 (-736) (-566 (-591 (-525))) (-10 -8 (-15 -3309 ($ (-591 (-525)))) (-15 -1212 ((-591 (-591 (-525))) (-591 (-525)))) (-15 -3375 ((-525) $)) (-15 -3369 ($ $)) (-15 -2686 ((-591 (-525)) $))))) (T -902)) -((-3309 (*1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-902)))) (-1212 (*1 *2 *3) (-12 (-5 *2 (-591 (-591 (-525)))) (-5 *1 (-902)) (-5 *3 (-591 (-525))))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-902)))) (-3369 (*1 *1 *1) (-5 *1 (-902))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-902))))) -(-13 (-736) (-566 (-591 (-525))) (-10 -8 (-15 -3309 ($ (-591 (-525)))) (-15 -1212 ((-591 (-591 (-525))) (-591 (-525)))) (-15 -3375 ((-525) $)) (-15 -3369 ($ $)) (-15 -2686 ((-591 (-525)) $)))) -((-4059 (($ $ |#2|) 30)) (-4047 (($ $) 22) (($ $ $) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-385 (-525)) $) 26) (($ $ (-385 (-525))) 28))) -(((-903 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4059 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) (-904 |#2| |#3| |#4|) (-975) (-733) (-788)) (T -903)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4059 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 * (|#1| (-854) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1444 (((-591 |#3|) $) 74)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3641 (($ $) 52 (|has| |#1| (-517)))) (-3077 (((-108) $) 54 (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1575 (($ $) 60)) (-1522 (((-3 $ "failed") $) 34)) (-1795 (((-108) $) 73)) (-3865 (((-108) $) 31)) (-3802 (((-108) $) 62)) (-1422 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-591 |#3|) (-591 |#2|)) 75)) (-1257 (($ (-1 |#1| |#1|) $) 63)) (-1548 (($ $) 65)) (-1556 ((|#1| $) 66)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3210 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2743 ((|#2| $) 64)) (-1664 (($ $) 72)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1263 ((|#1| $ |#2|) 59)) (-3751 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) -(((-904 |#1| |#2| |#3|) (-131) (-975) (-733) (-788)) (T -904)) -((-1556 (*1 *2 *1) (-12 (-4 *1 (-904 *2 *3 *4)) (-4 *3 (-733)) (-4 *4 (-788)) (-4 *2 (-975)))) (-1548 (*1 *1 *1) (-12 (-4 *1 (-904 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-733)) (-4 *4 (-788)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-904 *3 *2 *4)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *2 (-733)))) (-1422 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-904 *4 *3 *2)) (-4 *4 (-975)) (-4 *3 (-733)) (-4 *2 (-788)))) (-1422 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 *6)) (-5 *3 (-591 *5)) (-4 *1 (-904 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-733)) (-4 *6 (-788)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-904 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-733)) (-4 *5 (-788)) (-5 *2 (-591 *5)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-904 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-733)) (-4 *5 (-788)) (-5 *2 (-108)))) (-1664 (*1 *1 *1) (-12 (-4 *1 (-904 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-733)) (-4 *4 (-788))))) -(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1422 ($ $ |t#3| |t#2|)) (-15 -1422 ($ $ (-591 |t#3|) (-591 |t#2|))) (-15 -1548 ($ $)) (-15 -1556 (|t#1| $)) (-15 -2743 (|t#2| $)) (-15 -1444 ((-591 |t#3|) $)) (-15 -1795 ((-108) $)) (-15 -1664 ($ $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-593 #0#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #0#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) |has| |#1| (-517)) ((-668) . T) ((-981 #0#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-4178 (((-1013 (-205)) $) 8)) (-4162 (((-1013 (-205)) $) 9)) (-4148 (((-1013 (-205)) $) 10)) (-1870 (((-591 (-591 (-876 (-205)))) $) 11)) (-2686 (((-796) $) 6))) -(((-905) (-131)) (T -905)) -((-1870 (*1 *2 *1) (-12 (-4 *1 (-905)) (-5 *2 (-591 (-591 (-876 (-205))))))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-905)) (-5 *2 (-1013 (-205))))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-905)) (-5 *2 (-1013 (-205))))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-905)) (-5 *2 (-1013 (-205)))))) -(-13 (-565 (-796)) (-10 -8 (-15 -1870 ((-591 (-591 (-876 (-205)))) $)) (-15 -4148 ((-1013 (-205)) $)) (-15 -4162 ((-1013 (-205)) $)) (-15 -4178 ((-1013 (-205)) $)))) -(((-565 (-796)) . T)) -((-1444 (((-591 |#4|) $) 23)) (-3713 (((-108) $) 48)) (-1996 (((-108) $) 47)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#4|) 36)) (-3435 (((-108) $) 49)) (-2342 (((-108) $ $) 55)) (-2605 (((-108) $ $) 58)) (-2167 (((-108) $) 53)) (-1533 (((-591 |#5|) (-591 |#5|) $) 90)) (-2978 (((-591 |#5|) (-591 |#5|) $) 87)) (-2449 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3520 (((-591 |#4|) $) 27)) (-1574 (((-108) |#4| $) 30)) (-2499 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3786 (($ $ |#4|) 33)) (-2794 (($ $ |#4|) 32)) (-1918 (($ $ |#4|) 34)) (-3944 (((-108) $ $) 40))) -(((-906 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1996 ((-108) |#1|)) (-15 -1533 ((-591 |#5|) (-591 |#5|) |#1|)) (-15 -2978 ((-591 |#5|) (-591 |#5|) |#1|)) (-15 -2449 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2499 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3435 ((-108) |#1|)) (-15 -2605 ((-108) |#1| |#1|)) (-15 -2342 ((-108) |#1| |#1|)) (-15 -2167 ((-108) |#1|)) (-15 -3713 ((-108) |#1|)) (-15 -1282 ((-2 (|:| |under| |#1|) (|:| -2767 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3786 (|#1| |#1| |#4|)) (-15 -1918 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -1574 ((-108) |#4| |#1|)) (-15 -3520 ((-591 |#4|) |#1|)) (-15 -1444 ((-591 |#4|) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) (-907 |#2| |#3| |#4| |#5|) (-975) (-734) (-788) (-989 |#2| |#3| |#4|)) (T -906)) -NIL -(-10 -8 (-15 -1996 ((-108) |#1|)) (-15 -1533 ((-591 |#5|) (-591 |#5|) |#1|)) (-15 -2978 ((-591 |#5|) (-591 |#5|) |#1|)) (-15 -2449 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2499 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3435 ((-108) |#1|)) (-15 -2605 ((-108) |#1| |#1|)) (-15 -2342 ((-108) |#1| |#1|)) (-15 -2167 ((-108) |#1|)) (-15 -3713 ((-108) |#1|)) (-15 -1282 ((-2 (|:| |under| |#1|) (|:| -2767 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3786 (|#1| |#1| |#4|)) (-15 -1918 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -1574 ((-108) |#4| |#1|)) (-15 -3520 ((-591 |#4|) |#1|)) (-15 -1444 ((-591 |#4|) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1444 (((-591 |#3|) $) 33)) (-3713 (((-108) $) 26)) (-1996 (((-108) $) 17 (|has| |#1| (-517)))) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) 27)) (-3727 (((-108) $ (-712)) 44)) (-2467 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4250)))) (-2055 (($) 45 T CONST)) (-3435 (((-108) $) 22 (|has| |#1| (-517)))) (-2342 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2605 (((-108) $ $) 23 (|has| |#1| (-517)))) (-2167 (((-108) $) 25 (|has| |#1| (-517)))) (-1533 (((-591 |#4|) (-591 |#4|) $) 18 (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) 19 (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) 36)) (-3341 (($ (-591 |#4|)) 35)) (-2908 (($ $) 68 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#4| $) 67 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4250)))) (-2916 (((-591 |#4|) $) 52 (|has| $ (-6 -4250)))) (-3998 ((|#3| $) 34)) (-3491 (((-108) $ (-712)) 43)) (-4207 (((-591 |#4|) $) 53 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 47)) (-3520 (((-591 |#3|) $) 32)) (-1574 (((-108) |#3| $) 31)) (-3295 (((-108) $ (-712)) 42)) (-2621 (((-1072) $) 9)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2937 (((-1036) $) 10)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3465 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) 38)) (-2077 (((-108) $) 41)) (-3164 (($) 40)) (-2960 (((-712) |#4| $) 54 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4250)))) (-2873 (($ $) 39)) (-1300 (((-501) $) 69 (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) 60)) (-3786 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-1918 (($ $ |#3|) 29)) (-2686 (((-796) $) 11) (((-591 |#4|) $) 37)) (-1475 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 6)) (-2028 (((-712) $) 46 (|has| $ (-6 -4250))))) -(((-907 |#1| |#2| |#3| |#4|) (-131) (-975) (-734) (-788) (-989 |t#1| |t#2| |t#3|)) (T -907)) -((-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *1 (-907 *3 *4 *5 *6)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *1 (-907 *3 *4 *5 *6)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-907 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-989 *3 *4 *2)) (-4 *2 (-788)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-591 *5)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-591 *5)))) (-1574 (*1 *2 *3 *1) (-12 (-4 *1 (-907 *4 *5 *3 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) (-4 *6 (-989 *4 *5 *3)) (-5 *2 (-108)))) (-2794 (*1 *1 *1 *2) (-12 (-4 *1 (-907 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)) (-4 *5 (-989 *3 *4 *2)))) (-1918 (*1 *1 *1 *2) (-12 (-4 *1 (-907 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)) (-4 *5 (-989 *3 *4 *2)))) (-3786 (*1 *1 *1 *2) (-12 (-4 *1 (-907 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)) (-4 *5 (-989 *3 *4 *2)))) (-1282 (*1 *2 *1 *3) (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) (-4 *6 (-989 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2767 *1) (|:| |upper| *1))) (-4 *1 (-907 *4 *5 *3 *6)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2342 (*1 *2 *1 *1) (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2605 (*1 *2 *1 *1) (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2499 (*1 *2 *3 *1) (-12 (-4 *1 (-907 *4 *5 *6 *3)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2449 (*1 *2 *3 *1) (-12 (-4 *1 (-907 *4 *5 *6 *3)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2978 (*1 *2 *2 *1) (-12 (-5 *2 (-591 *6)) (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)))) (-1533 (*1 *2 *2 *1) (-12 (-5 *2 (-591 *6)) (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108))))) -(-13 (-1018) (-142 |t#4|) (-565 (-591 |t#4|)) (-10 -8 (-6 -4250) (-15 -4174 ((-3 $ "failed") (-591 |t#4|))) (-15 -3341 ($ (-591 |t#4|))) (-15 -3998 (|t#3| $)) (-15 -1444 ((-591 |t#3|) $)) (-15 -3520 ((-591 |t#3|) $)) (-15 -1574 ((-108) |t#3| $)) (-15 -2794 ($ $ |t#3|)) (-15 -1918 ($ $ |t#3|)) (-15 -3786 ($ $ |t#3|)) (-15 -1282 ((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |t#3|)) (-15 -3713 ((-108) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -2167 ((-108) $)) (-15 -2342 ((-108) $ $)) (-15 -2605 ((-108) $ $)) (-15 -3435 ((-108) $)) (-15 -2499 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2449 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2978 ((-591 |t#4|) (-591 |t#4|) $)) (-15 -1533 ((-591 |t#4|) (-591 |t#4|) $)) (-15 -1996 ((-108) $))) |%noBranch|))) -(((-33) . T) ((-97) . T) ((-565 (-591 |#4|)) . T) ((-565 (-796)) . T) ((-142 |#4|) . T) ((-566 (-501)) |has| |#4| (-566 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-1018) . T) ((-1125) . T)) -((-2295 (((-591 |#4|) |#4| |#4|) 116)) (-3378 (((-591 |#4|) (-591 |#4|) (-108)) 105 (|has| |#1| (-429))) (((-591 |#4|) (-591 |#4|)) 106 (|has| |#1| (-429)))) (-3668 (((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|)) 35)) (-3703 (((-108) |#4|) 34)) (-3781 (((-591 |#4|) |#4|) 102 (|has| |#1| (-429)))) (-3049 (((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-1 (-108) |#4|) (-591 |#4|)) 20)) (-3012 (((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 (-1 (-108) |#4|)) (-591 |#4|)) 22)) (-3159 (((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 (-1 (-108) |#4|)) (-591 |#4|)) 23)) (-1665 (((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|)) 73)) (-3331 (((-591 |#4|) (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2005 (((-591 |#4|) (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 109)) (-2700 (((-591 |#4|) (-591 |#4|)) 108)) (-1744 (((-591 |#4|) (-591 |#4|) (-591 |#4|) (-108)) 48) (((-591 |#4|) (-591 |#4|) (-591 |#4|)) 50)) (-4153 ((|#4| |#4| (-591 |#4|)) 49)) (-3710 (((-591 |#4|) (-591 |#4|) (-591 |#4|)) 112 (|has| |#1| (-429)))) (-2694 (((-591 |#4|) (-591 |#4|) (-591 |#4|)) 115 (|has| |#1| (-429)))) (-1244 (((-591 |#4|) (-591 |#4|) (-591 |#4|)) 114 (|has| |#1| (-429)))) (-2043 (((-591 |#4|) (-591 |#4|) (-591 |#4|) (-1 (-591 |#4|) (-591 |#4|))) 87) (((-591 |#4|) (-591 |#4|) (-591 |#4|)) 89) (((-591 |#4|) (-591 |#4|) |#4|) 119) (((-591 |#4|) |#4| |#4|) 117) (((-591 |#4|) (-591 |#4|)) 88)) (-2015 (((-591 |#4|) (-591 |#4|) (-591 |#4|)) 99 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-1643 (((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|)) 41)) (-2166 (((-108) (-591 |#4|)) 62)) (-4033 (((-108) (-591 |#4|) (-591 (-591 |#4|))) 53)) (-1357 (((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|)) 29)) (-1674 (((-108) |#4|) 28)) (-4048 (((-591 |#4|) (-591 |#4|)) 98 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-3273 (((-591 |#4|) (-591 |#4|)) 97 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-2515 (((-591 |#4|) (-591 |#4|)) 66)) (-1600 (((-591 |#4|) (-591 |#4|)) 79)) (-1625 (((-108) (-591 |#4|) (-591 |#4|)) 51)) (-1640 (((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|)) 39)) (-2723 (((-108) |#4|) 36))) -(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2043 ((-591 |#4|) (-591 |#4|))) (-15 -2043 ((-591 |#4|) |#4| |#4|)) (-15 -2700 ((-591 |#4|) (-591 |#4|))) (-15 -2295 ((-591 |#4|) |#4| |#4|)) (-15 -2043 ((-591 |#4|) (-591 |#4|) |#4|)) (-15 -2043 ((-591 |#4|) (-591 |#4|) (-591 |#4|))) (-15 -2043 ((-591 |#4|) (-591 |#4|) (-591 |#4|) (-1 (-591 |#4|) (-591 |#4|)))) (-15 -1625 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -4033 ((-108) (-591 |#4|) (-591 (-591 |#4|)))) (-15 -2166 ((-108) (-591 |#4|))) (-15 -3049 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-1 (-108) |#4|) (-591 |#4|))) (-15 -3012 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 (-1 (-108) |#4|)) (-591 |#4|))) (-15 -3159 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 (-1 (-108) |#4|)) (-591 |#4|))) (-15 -1643 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|))) (-15 -3703 ((-108) |#4|)) (-15 -3668 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|))) (-15 -1674 ((-108) |#4|)) (-15 -1357 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|))) (-15 -2723 ((-108) |#4|)) (-15 -1640 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|))) (-15 -1744 ((-591 |#4|) (-591 |#4|) (-591 |#4|))) (-15 -1744 ((-591 |#4|) (-591 |#4|) (-591 |#4|) (-108))) (-15 -4153 (|#4| |#4| (-591 |#4|))) (-15 -2515 ((-591 |#4|) (-591 |#4|))) (-15 -1665 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|))) (-15 -1600 ((-591 |#4|) (-591 |#4|))) (-15 -3331 ((-591 |#4|) (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2005 ((-591 |#4|) (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3781 ((-591 |#4|) |#4|)) (-15 -3378 ((-591 |#4|) (-591 |#4|))) (-15 -3378 ((-591 |#4|) (-591 |#4|) (-108))) (-15 -3710 ((-591 |#4|) (-591 |#4|) (-591 |#4|))) (-15 -1244 ((-591 |#4|) (-591 |#4|) (-591 |#4|))) (-15 -2694 ((-591 |#4|) (-591 |#4|) (-591 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -3273 ((-591 |#4|) (-591 |#4|))) (-15 -4048 ((-591 |#4|) (-591 |#4|))) (-15 -2015 ((-591 |#4|) (-591 |#4|) (-591 |#4|)))) |%noBranch|) |%noBranch|)) (-517) (-734) (-788) (-989 |#1| |#2| |#3|)) (T -908)) -((-2015 (*1 *2 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-4048 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-2694 (*1 *2 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-1244 (*1 *2 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-3710 (*1 *2 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-3378 (*1 *2 *2 *3) (-12 (-5 *2 (-591 *7)) (-5 *3 (-108)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-908 *4 *5 *6 *7)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-3781 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *3)) (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6)))) (-2005 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-591 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-908 *5 *6 *7 *8)))) (-3331 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-591 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-989 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-734)) (-4 *8 (-788)) (-5 *1 (-908 *6 *7 *8 *9)))) (-1600 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-1665 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -1505 (-591 *7)))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) (-2515 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-4153 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-989 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-908 *4 *5 *6 *2)))) (-1744 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-591 *7)) (-5 *3 (-108)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-908 *4 *5 *6 *7)))) (-1744 (*1 *2 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-1640 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-591 *7)) (|:| |badPols| (-591 *7)))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) (-2723 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6)))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-591 *7)) (|:| |badPols| (-591 *7)))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6)))) (-3668 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-591 *7)) (|:| |badPols| (-591 *7)))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) (-3703 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6)))) (-1643 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-591 *7)) (|:| |badPols| (-591 *7)))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) (-3159 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-1 (-108) *8))) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-2 (|:| |goodPols| (-591 *8)) (|:| |badPols| (-591 *8)))) (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-591 *8)))) (-3012 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-1 (-108) *8))) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-2 (|:| |goodPols| (-591 *8)) (|:| |badPols| (-591 *8)))) (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-591 *8)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-2 (|:| |goodPols| (-591 *8)) (|:| |badPols| (-591 *8)))) (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-591 *8)))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-908 *4 *5 *6 *7)))) (-4033 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-591 *8))) (-5 *3 (-591 *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-108)) (-5 *1 (-908 *5 *6 *7 *8)))) (-1625 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-908 *4 *5 *6 *7)))) (-2043 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-591 *7) (-591 *7))) (-5 *2 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-908 *4 *5 *6 *7)))) (-2043 (*1 *2 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-2043 (*1 *2 *2 *3) (-12 (-5 *2 (-591 *3)) (-4 *3 (-989 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-908 *4 *5 *6 *3)))) (-2295 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *3)) (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6)))) (-2700 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) (-2043 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *3)) (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6)))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6))))) -(-10 -7 (-15 -2043 ((-591 |#4|) (-591 |#4|))) (-15 -2043 ((-591 |#4|) |#4| |#4|)) (-15 -2700 ((-591 |#4|) (-591 |#4|))) (-15 -2295 ((-591 |#4|) |#4| |#4|)) (-15 -2043 ((-591 |#4|) (-591 |#4|) |#4|)) (-15 -2043 ((-591 |#4|) (-591 |#4|) (-591 |#4|))) (-15 -2043 ((-591 |#4|) (-591 |#4|) (-591 |#4|) (-1 (-591 |#4|) (-591 |#4|)))) (-15 -1625 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -4033 ((-108) (-591 |#4|) (-591 (-591 |#4|)))) (-15 -2166 ((-108) (-591 |#4|))) (-15 -3049 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-1 (-108) |#4|) (-591 |#4|))) (-15 -3012 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 (-1 (-108) |#4|)) (-591 |#4|))) (-15 -3159 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 (-1 (-108) |#4|)) (-591 |#4|))) (-15 -1643 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|))) (-15 -3703 ((-108) |#4|)) (-15 -3668 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|))) (-15 -1674 ((-108) |#4|)) (-15 -1357 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|))) (-15 -2723 ((-108) |#4|)) (-15 -1640 ((-2 (|:| |goodPols| (-591 |#4|)) (|:| |badPols| (-591 |#4|))) (-591 |#4|))) (-15 -1744 ((-591 |#4|) (-591 |#4|) (-591 |#4|))) (-15 -1744 ((-591 |#4|) (-591 |#4|) (-591 |#4|) (-108))) (-15 -4153 (|#4| |#4| (-591 |#4|))) (-15 -2515 ((-591 |#4|) (-591 |#4|))) (-15 -1665 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|))) (-15 -1600 ((-591 |#4|) (-591 |#4|))) (-15 -3331 ((-591 |#4|) (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2005 ((-591 |#4|) (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3781 ((-591 |#4|) |#4|)) (-15 -3378 ((-591 |#4|) (-591 |#4|))) (-15 -3378 ((-591 |#4|) (-591 |#4|) (-108))) (-15 -3710 ((-591 |#4|) (-591 |#4|) (-591 |#4|))) (-15 -1244 ((-591 |#4|) (-591 |#4|) (-591 |#4|))) (-15 -2694 ((-591 |#4|) (-591 |#4|) (-591 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -3273 ((-591 |#4|) (-591 |#4|))) (-15 -4048 ((-591 |#4|) (-591 |#4|))) (-15 -2015 ((-591 |#4|) (-591 |#4|) (-591 |#4|)))) |%noBranch|) |%noBranch|)) -((-3853 (((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-2783 (((-591 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1171 |#1|)))) (-631 |#1|) (-1171 |#1|)) 36)) (-1681 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) -(((-909 |#1|) (-10 -7 (-15 -3853 ((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1681 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2783 ((-591 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1171 |#1|)))) (-631 |#1|) (-1171 |#1|)))) (-341)) (T -909)) -((-2783 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-591 (-2 (|:| C (-631 *5)) (|:| |g| (-1171 *5))))) (-5 *1 (-909 *5)) (-5 *3 (-631 *5)) (-5 *4 (-1171 *5)))) (-1681 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-631 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-909 *5)))) (-3853 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) (-5 *1 (-909 *6)) (-5 *3 (-631 *6))))) -(-10 -7 (-15 -3853 ((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1681 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2783 ((-591 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1171 |#1|)))) (-631 |#1|) (-1171 |#1|)))) -((-3898 (((-396 |#4|) |#4|) 48))) -(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3898 ((-396 |#4|) |#4|))) (-788) (-734) (-429) (-882 |#3| |#2| |#1|)) (T -910)) -((-3898 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-429)) (-5 *2 (-396 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-882 *6 *5 *4))))) -(-10 -7 (-15 -3898 ((-396 |#4|) |#4|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3559 (($ (-712)) 112 (|has| |#1| (-23)))) (-3832 (((-1176) $ (-525) (-525)) 40 (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4251))) (($ $) 88 (-12 (|has| |#1| (-788)) (|has| $ (-6 -4251))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) 8)) (-2847 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 58 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-3405 (($ $) 90 (|has| $ (-6 -4251)))) (-2747 (($ $) 100)) (-2908 (($ $) 78 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#1| $) 77 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 51)) (-1734 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1018)))) (-1867 (($ (-591 |#1|)) 118)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-2533 (((-631 |#1|) $ $) 105 (|has| |#1| (-975)))) (-1316 (($ (-712) |#1|) 69)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 43 (|has| (-525) (-788)))) (-1923 (($ $ $) 87 (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 44 (|has| (-525) (-788)))) (-3475 (($ $ $) 86 (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2380 ((|#1| $) 102 (-12 (|has| |#1| (-975)) (|has| |#1| (-932))))) (-3295 (((-108) $ (-712)) 10)) (-2445 ((|#1| $) 103 (-12 (|has| |#1| (-975)) (|has| |#1| (-932))))) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3761 (((-591 (-525)) $) 46)) (-1675 (((-108) (-525) $) 47)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2872 ((|#1| $) 42 (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1858 (($ $ |#1|) 41 (|has| $ (-6 -4251)))) (-1618 (($ $ (-591 |#1|)) 115)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1138 (-525))) 63)) (-3183 ((|#1| $ $) 106 (|has| |#1| (-975)))) (-3840 (((-854) $) 117)) (-3226 (($ $ (-525)) 62) (($ $ (-1138 (-525))) 61)) (-1804 (($ $ $) 104)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2992 (($ $ $ (-525)) 91 (|has| $ (-6 -4251)))) (-2873 (($ $) 13)) (-1300 (((-501) $) 79 (|has| |#1| (-566 (-501)))) (($ (-591 |#1|)) 116)) (-2695 (($ (-591 |#1|)) 70)) (-1624 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-591 $)) 65)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) 84 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 83 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-3994 (((-108) $ $) 85 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 82 (|has| |#1| (-788)))) (-4047 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4036 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-668))) (($ $ |#1|) 107 (|has| |#1| (-668)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-911 |#1|) (-131) (-975)) (T -911)) -((-1867 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-975)) (-4 *1 (-911 *3)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-975)) (-5 *2 (-854)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-975)) (-4 *1 (-911 *3)))) (-1804 (*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-975)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *1 (-911 *3)) (-4 *3 (-975))))) -(-13 (-1169 |t#1|) (-10 -8 (-15 -1867 ($ (-591 |t#1|))) (-15 -3840 ((-854) $)) (-15 -1300 ($ (-591 |t#1|))) (-15 -1804 ($ $ $)) (-15 -1618 ($ $ (-591 |t#1|))))) -(((-33) . T) ((-97) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-596 |#1|) . T) ((-19 |#1|) . T) ((-788) |has| |#1| (-788)) ((-1018) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-1125) . T) ((-1169 |#1|) . T)) -((-1257 (((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)) 17))) -(((-912 |#1| |#2|) (-10 -7 (-15 -1257 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) (-975) (-975)) (T -912)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-975)) (-4 *6 (-975)) (-5 *2 (-876 *6)) (-5 *1 (-912 *5 *6))))) -(-10 -7 (-15 -1257 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) -((-1751 ((|#1| (-876 |#1|)) 13)) (-1420 ((|#1| (-876 |#1|)) 12)) (-3568 ((|#1| (-876 |#1|)) 11)) (-3443 ((|#1| (-876 |#1|)) 15)) (-3512 ((|#1| (-876 |#1|)) 21)) (-1331 ((|#1| (-876 |#1|)) 14)) (-2618 ((|#1| (-876 |#1|)) 16)) (-4190 ((|#1| (-876 |#1|)) 20)) (-2476 ((|#1| (-876 |#1|)) 19))) -(((-913 |#1|) (-10 -7 (-15 -3568 (|#1| (-876 |#1|))) (-15 -1420 (|#1| (-876 |#1|))) (-15 -1751 (|#1| (-876 |#1|))) (-15 -1331 (|#1| (-876 |#1|))) (-15 -3443 (|#1| (-876 |#1|))) (-15 -2618 (|#1| (-876 |#1|))) (-15 -2476 (|#1| (-876 |#1|))) (-15 -4190 (|#1| (-876 |#1|))) (-15 -3512 (|#1| (-876 |#1|)))) (-975)) (T -913)) -((-3512 (*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(-10 -7 (-15 -3568 (|#1| (-876 |#1|))) (-15 -1420 (|#1| (-876 |#1|))) (-15 -1751 (|#1| (-876 |#1|))) (-15 -1331 (|#1| (-876 |#1|))) (-15 -3443 (|#1| (-876 |#1|))) (-15 -2618 (|#1| (-876 |#1|))) (-15 -2476 (|#1| (-876 |#1|))) (-15 -4190 (|#1| (-876 |#1|))) (-15 -3512 (|#1| (-876 |#1|)))) -((-3879 (((-3 |#1| "failed") |#1|) 18)) (-2392 (((-3 |#1| "failed") |#1|) 6)) (-1989 (((-3 |#1| "failed") |#1|) 16)) (-2668 (((-3 |#1| "failed") |#1|) 4)) (-4144 (((-3 |#1| "failed") |#1|) 20)) (-2799 (((-3 |#1| "failed") |#1|) 8)) (-2808 (((-3 |#1| "failed") |#1| (-712)) 1)) (-3948 (((-3 |#1| "failed") |#1|) 3)) (-2156 (((-3 |#1| "failed") |#1|) 2)) (-3241 (((-3 |#1| "failed") |#1|) 21)) (-1842 (((-3 |#1| "failed") |#1|) 9)) (-1339 (((-3 |#1| "failed") |#1|) 19)) (-1379 (((-3 |#1| "failed") |#1|) 7)) (-2259 (((-3 |#1| "failed") |#1|) 17)) (-1542 (((-3 |#1| "failed") |#1|) 5)) (-1590 (((-3 |#1| "failed") |#1|) 24)) (-1942 (((-3 |#1| "failed") |#1|) 12)) (-2120 (((-3 |#1| "failed") |#1|) 22)) (-2845 (((-3 |#1| "failed") |#1|) 10)) (-3052 (((-3 |#1| "failed") |#1|) 26)) (-3928 (((-3 |#1| "failed") |#1|) 14)) (-1513 (((-3 |#1| "failed") |#1|) 27)) (-2486 (((-3 |#1| "failed") |#1|) 15)) (-3060 (((-3 |#1| "failed") |#1|) 25)) (-2716 (((-3 |#1| "failed") |#1|) 13)) (-1499 (((-3 |#1| "failed") |#1|) 23)) (-4197 (((-3 |#1| "failed") |#1|) 11))) -(((-914 |#1|) (-131) (-1111)) (T -914)) -((-1513 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-3052 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-3060 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-1590 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-1499 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2120 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-3241 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-4144 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-1339 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-3879 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2259 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-1989 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2486 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-3928 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2716 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-1942 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-4197 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2845 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-1842 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2799 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-1379 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2392 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-1542 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2668 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-3948 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2156 (*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111)))) (-2808 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-712)) (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(-13 (-10 -7 (-15 -2808 ((-3 |t#1| "failed") |t#1| (-712))) (-15 -2156 ((-3 |t#1| "failed") |t#1|)) (-15 -3948 ((-3 |t#1| "failed") |t#1|)) (-15 -2668 ((-3 |t#1| "failed") |t#1|)) (-15 -1542 ((-3 |t#1| "failed") |t#1|)) (-15 -2392 ((-3 |t#1| "failed") |t#1|)) (-15 -1379 ((-3 |t#1| "failed") |t#1|)) (-15 -2799 ((-3 |t#1| "failed") |t#1|)) (-15 -1842 ((-3 |t#1| "failed") |t#1|)) (-15 -2845 ((-3 |t#1| "failed") |t#1|)) (-15 -4197 ((-3 |t#1| "failed") |t#1|)) (-15 -1942 ((-3 |t#1| "failed") |t#1|)) (-15 -2716 ((-3 |t#1| "failed") |t#1|)) (-15 -3928 ((-3 |t#1| "failed") |t#1|)) (-15 -2486 ((-3 |t#1| "failed") |t#1|)) (-15 -1989 ((-3 |t#1| "failed") |t#1|)) (-15 -2259 ((-3 |t#1| "failed") |t#1|)) (-15 -3879 ((-3 |t#1| "failed") |t#1|)) (-15 -1339 ((-3 |t#1| "failed") |t#1|)) (-15 -4144 ((-3 |t#1| "failed") |t#1|)) (-15 -3241 ((-3 |t#1| "failed") |t#1|)) (-15 -2120 ((-3 |t#1| "failed") |t#1|)) (-15 -1499 ((-3 |t#1| "failed") |t#1|)) (-15 -1590 ((-3 |t#1| "failed") |t#1|)) (-15 -3060 ((-3 |t#1| "failed") |t#1|)) (-15 -3052 ((-3 |t#1| "failed") |t#1|)) (-15 -1513 ((-3 |t#1| "failed") |t#1|)))) -((-1375 ((|#4| |#4| (-591 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3171 ((|#4| |#4| (-591 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1257 ((|#4| (-1 |#4| (-885 |#1|)) |#4|) 30))) -(((-915 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3171 (|#4| |#4| |#3|)) (-15 -3171 (|#4| |#4| (-591 |#3|))) (-15 -1375 (|#4| |#4| |#3|)) (-15 -1375 (|#4| |#4| (-591 |#3|))) (-15 -1257 (|#4| (-1 |#4| (-885 |#1|)) |#4|))) (-975) (-734) (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089))))) (-882 (-885 |#1|) |#2| |#3|)) (T -915)) -((-1257 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-885 *4))) (-4 *4 (-975)) (-4 *2 (-882 (-885 *4) *5 *6)) (-4 *5 (-734)) (-4 *6 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089)))))) (-5 *1 (-915 *4 *5 *6 *2)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *6)) (-4 *6 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089)))))) (-4 *4 (-975)) (-4 *5 (-734)) (-5 *1 (-915 *4 *5 *6 *2)) (-4 *2 (-882 (-885 *4) *5 *6)))) (-1375 (*1 *2 *2 *3) (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089)))))) (-5 *1 (-915 *4 *5 *3 *2)) (-4 *2 (-882 (-885 *4) *5 *3)))) (-3171 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *6)) (-4 *6 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089)))))) (-4 *4 (-975)) (-4 *5 (-734)) (-5 *1 (-915 *4 *5 *6 *2)) (-4 *2 (-882 (-885 *4) *5 *6)))) (-3171 (*1 *2 *2 *3) (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)) (-15 -1592 ((-3 $ "failed") (-1089)))))) (-5 *1 (-915 *4 *5 *3 *2)) (-4 *2 (-882 (-885 *4) *5 *3))))) -(-10 -7 (-15 -3171 (|#4| |#4| |#3|)) (-15 -3171 (|#4| |#4| (-591 |#3|))) (-15 -1375 (|#4| |#4| |#3|)) (-15 -1375 (|#4| |#4| (-591 |#3|))) (-15 -1257 (|#4| (-1 |#4| (-885 |#1|)) |#4|))) -((-4214 ((|#2| |#3|) 35)) (-3662 (((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 73)) (-2773 (((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 89))) -(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2773 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3662 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|)) (-15 -4214 (|#2| |#3|))) (-327) (-1147 |#1|) (-1147 |#2|) (-666 |#2| |#3|)) (T -916)) -((-4214 (*1 *2 *3) (-12 (-4 *3 (-1147 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-916 *4 *2 *3 *5)) (-4 *4 (-327)) (-4 *5 (-666 *2 *3)))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 *3)) (-5 *2 (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-916 *4 *3 *5 *6)) (-4 *6 (-666 *3 *5)))) (-2773 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 *4)) (-5 *2 (-2 (|:| -3612 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-666 *4 *5))))) -(-10 -7 (-15 -2773 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3662 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|)) (-15 -4214 (|#2| |#3|))) -((-2993 (((-918 (-385 (-525)) (-798 |#1|) (-220 |#2| (-712)) (-227 |#1| (-385 (-525)))) (-918 (-385 (-525)) (-798 |#1|) (-220 |#2| (-712)) (-227 |#1| (-385 (-525))))) 69))) -(((-917 |#1| |#2|) (-10 -7 (-15 -2993 ((-918 (-385 (-525)) (-798 |#1|) (-220 |#2| (-712)) (-227 |#1| (-385 (-525)))) (-918 (-385 (-525)) (-798 |#1|) (-220 |#2| (-712)) (-227 |#1| (-385 (-525))))))) (-591 (-1089)) (-712)) (T -917)) -((-2993 (*1 *2 *2) (-12 (-5 *2 (-918 (-385 (-525)) (-798 *3) (-220 *4 (-712)) (-227 *3 (-385 (-525))))) (-14 *3 (-591 (-1089))) (-14 *4 (-712)) (-5 *1 (-917 *3 *4))))) -(-10 -7 (-15 -2993 ((-918 (-385 (-525)) (-798 |#1|) (-220 |#2| (-712)) (-227 |#1| (-385 (-525)))) (-918 (-385 (-525)) (-798 |#1|) (-220 |#2| (-712)) (-227 |#1| (-385 (-525))))))) -((-2673 (((-108) $ $) NIL)) (-2680 (((-3 (-108) "failed") $) 69)) (-3421 (($ $) 36 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-3322 (($ $ (-3 (-108) "failed")) 70)) (-1442 (($ (-591 |#4|) |#4|) 25)) (-2621 (((-1072) $) NIL)) (-1595 (($ $) 67)) (-2937 (((-1036) $) NIL)) (-2077 (((-108) $) 68)) (-3164 (($) 30)) (-3886 ((|#4| $) 72)) (-1747 (((-591 |#4|) $) 71)) (-2686 (((-796) $) 66)) (-3944 (((-108) $ $) NIL))) -(((-918 |#1| |#2| |#3| |#4|) (-13 (-1018) (-565 (-796)) (-10 -8 (-15 -3164 ($)) (-15 -1442 ($ (-591 |#4|) |#4|)) (-15 -2680 ((-3 (-108) "failed") $)) (-15 -3322 ($ $ (-3 (-108) "failed"))) (-15 -2077 ((-108) $)) (-15 -1747 ((-591 |#4|) $)) (-15 -3886 (|#4| $)) (-15 -1595 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -3421 ($ $)) |%noBranch|) |%noBranch|))) (-429) (-788) (-734) (-882 |#1| |#3| |#2|)) (T -918)) -((-3164 (*1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-788)) (-4 *4 (-734)) (-5 *1 (-918 *2 *3 *4 *5)) (-4 *5 (-882 *2 *4 *3)))) (-1442 (*1 *1 *2 *3) (-12 (-5 *2 (-591 *3)) (-4 *3 (-882 *4 *6 *5)) (-4 *4 (-429)) (-4 *5 (-788)) (-4 *6 (-734)) (-5 *1 (-918 *4 *5 *6 *3)))) (-2680 (*1 *2 *1) (|partial| -12 (-4 *3 (-429)) (-4 *4 (-788)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-882 *3 *5 *4)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-788)) (-4 *5 (-734)) (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-882 *3 *5 *4)))) (-2077 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-788)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-882 *3 *5 *4)))) (-1747 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-788)) (-4 *5 (-734)) (-5 *2 (-591 *6)) (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-882 *3 *5 *4)))) (-3886 (*1 *2 *1) (-12 (-4 *2 (-882 *3 *5 *4)) (-5 *1 (-918 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-788)) (-4 *5 (-734)))) (-1595 (*1 *1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-788)) (-4 *4 (-734)) (-5 *1 (-918 *2 *3 *4 *5)) (-4 *5 (-882 *2 *4 *3)))) (-3421 (*1 *1 *1) (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-788)) (-4 *4 (-734)) (-5 *1 (-918 *2 *3 *4 *5)) (-4 *5 (-882 *2 *4 *3))))) -(-13 (-1018) (-565 (-796)) (-10 -8 (-15 -3164 ($)) (-15 -1442 ($ (-591 |#4|) |#4|)) (-15 -2680 ((-3 (-108) "failed") $)) (-15 -3322 ($ $ (-3 (-108) "failed"))) (-15 -2077 ((-108) $)) (-15 -1747 ((-591 |#4|) $)) (-15 -3886 (|#4| $)) (-15 -1595 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -3421 ($ $)) |%noBranch|) |%noBranch|))) -((-3969 (((-108) |#5| |#5|) 38)) (-3232 (((-108) |#5| |#5|) 52)) (-2800 (((-108) |#5| (-591 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-1759 (((-108) (-591 |#4|) (-591 |#4|)) 58)) (-2311 (((-108) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) 63)) (-1336 (((-1176)) 33)) (-4079 (((-1176) (-1072) (-1072) (-1072)) 29)) (-2896 (((-591 |#5|) (-591 |#5|)) 81)) (-2017 (((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) 79)) (-3801 (((-591 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|)))) (-591 |#4|) (-591 |#5|) (-108) (-108)) 101)) (-2572 (((-108) |#5| |#5|) 47)) (-2107 (((-3 (-108) "failed") |#5| |#5|) 71)) (-1412 (((-108) (-591 |#4|) (-591 |#4|)) 57)) (-2357 (((-108) (-591 |#4|) (-591 |#4|)) 59)) (-3300 (((-108) (-591 |#4|) (-591 |#4|)) 60)) (-2632 (((-3 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|))) "failed") (-591 |#4|) |#5| (-591 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-4001 (((-591 |#5|) (-591 |#5|)) 43))) -(((-919 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4079 ((-1176) (-1072) (-1072) (-1072))) (-15 -1336 ((-1176))) (-15 -3969 ((-108) |#5| |#5|)) (-15 -4001 ((-591 |#5|) (-591 |#5|))) (-15 -2572 ((-108) |#5| |#5|)) (-15 -3232 ((-108) |#5| |#5|)) (-15 -1759 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -1412 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -2357 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -3300 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -2107 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2800 ((-108) |#5| |#5|)) (-15 -2800 ((-108) |#5| (-591 |#5|))) (-15 -2896 ((-591 |#5|) (-591 |#5|))) (-15 -2311 ((-108) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) (-15 -2017 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-15 -3801 ((-591 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|)))) (-591 |#4|) (-591 |#5|) (-108) (-108))) (-15 -2632 ((-3 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|))) "failed") (-591 |#4|) |#5| (-591 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|) (-994 |#1| |#2| |#3| |#4|)) (T -919)) -((-2632 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *9 (-989 *6 *7 *8)) (-5 *2 (-2 (|:| -2203 (-591 *9)) (|:| -3585 *4) (|:| |ineq| (-591 *9)))) (-5 *1 (-919 *6 *7 *8 *9 *4)) (-5 *3 (-591 *9)) (-4 *4 (-994 *6 *7 *8 *9)))) (-3801 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-591 *10)) (-5 *5 (-108)) (-4 *10 (-994 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *9 (-989 *6 *7 *8)) (-5 *2 (-591 (-2 (|:| -2203 (-591 *9)) (|:| -3585 *10) (|:| |ineq| (-591 *9))))) (-5 *1 (-919 *6 *7 *8 *9 *10)) (-5 *3 (-591 *9)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-591 (-2 (|:| |val| (-591 *6)) (|:| -3585 *7)))) (-4 *6 (-989 *3 *4 *5)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *6 *7)))) (-2311 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-591 *7)) (|:| -3585 *8))) (-4 *7 (-989 *4 *5 *6)) (-4 *8 (-994 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *8)))) (-2896 (*1 *2 *2) (-12 (-5 *2 (-591 *7)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *1 (-919 *3 *4 *5 *6 *7)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-919 *5 *6 *7 *8 *3)))) (-2800 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-2107 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-3300 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-2357 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-1412 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-1759 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-3232 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-2572 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-591 *7)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *1 (-919 *3 *4 *5 *6 *7)))) (-3969 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-1336 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-919 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6)))) (-4079 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) -(-10 -7 (-15 -4079 ((-1176) (-1072) (-1072) (-1072))) (-15 -1336 ((-1176))) (-15 -3969 ((-108) |#5| |#5|)) (-15 -4001 ((-591 |#5|) (-591 |#5|))) (-15 -2572 ((-108) |#5| |#5|)) (-15 -3232 ((-108) |#5| |#5|)) (-15 -1759 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -1412 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -2357 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -3300 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -2107 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2800 ((-108) |#5| |#5|)) (-15 -2800 ((-108) |#5| (-591 |#5|))) (-15 -2896 ((-591 |#5|) (-591 |#5|))) (-15 -2311 ((-108) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) (-15 -2017 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-15 -3801 ((-591 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|)))) (-591 |#4|) (-591 |#5|) (-108) (-108))) (-15 -2632 ((-3 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|))) "failed") (-591 |#4|) |#5| (-591 |#4|) (-108) (-108) (-108) (-108) (-108)))) -((-1592 (((-1089) $) 15)) (-2940 (((-1072) $) 16)) (-3045 (($ (-1089) (-1072)) 14)) (-2686 (((-796) $) 13))) -(((-920) (-13 (-565 (-796)) (-10 -8 (-15 -3045 ($ (-1089) (-1072))) (-15 -1592 ((-1089) $)) (-15 -2940 ((-1072) $))))) (T -920)) -((-3045 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-920)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-920)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-920))))) -(-13 (-565 (-796)) (-10 -8 (-15 -3045 ($ (-1089) (-1072))) (-15 -1592 ((-1089) $)) (-15 -2940 ((-1072) $)))) -((-1257 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 (|#4| (-1 |#2| |#1|) |#3|))) (-517) (-517) (-923 |#1|) (-923 |#2|)) (T -921)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-4 *2 (-923 *6)) (-5 *1 (-921 *5 *6 *4 *2)) (-4 *4 (-923 *5))))) -(-10 -7 (-15 -1257 (|#4| (-1 |#2| |#1|) |#3|))) -((-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-1089) "failed") $) 65) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) 95)) (-3341 ((|#2| $) NIL) (((-1089) $) 60) (((-385 (-525)) $) NIL) (((-525) $) 92)) (-3925 (((-631 (-525)) (-631 $)) NIL) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) 112) (((-631 |#2|) (-631 $)) 28)) (-1325 (($) 98)) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 75) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 84)) (-2920 (($ $) 10)) (-2115 (((-3 $ "failed") $) 20)) (-1257 (($ (-1 |#2| |#2|) $) 22)) (-3492 (($) 16)) (-1583 (($ $) 54)) (-2209 (($ $) NIL) (($ $ (-712)) NIL) (($ $ (-1089)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2774 (($ $) 12)) (-1300 (((-825 (-525)) $) 70) (((-825 (-357)) $) 79) (((-501) $) 40) (((-357) $) 44) (((-205) $) 47)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 90) (($ |#2|) NIL) (($ (-1089)) 57)) (-3425 (((-712)) 31)) (-3971 (((-108) $ $) 50))) -(((-922 |#1| |#2|) (-10 -8 (-15 -3971 ((-108) |#1| |#1|)) (-15 -3492 (|#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1300 ((-205) |#1|)) (-15 -1300 ((-357) |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -3341 ((-1089) |#1|)) (-15 -4174 ((-3 (-1089) "failed") |#1|)) (-15 -2686 (|#1| (-1089))) (-15 -1325 (|#1|)) (-15 -1583 (|#1| |#1|)) (-15 -2774 (|#1| |#1|)) (-15 -2920 (|#1| |#1|)) (-15 -4018 ((-822 (-357) |#1|) |#1| (-825 (-357)) (-822 (-357) |#1|))) (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|))) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -3925 ((-631 |#2|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 -2686 ((-796) |#1|))) (-923 |#2|) (-517)) (T -922)) -((-3425 (*1 *2) (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-922 *3 *4)) (-4 *3 (-923 *4))))) -(-10 -8 (-15 -3971 ((-108) |#1| |#1|)) (-15 -3492 (|#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1300 ((-205) |#1|)) (-15 -1300 ((-357) |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -3341 ((-1089) |#1|)) (-15 -4174 ((-3 (-1089) "failed") |#1|)) (-15 -2686 (|#1| (-1089))) (-15 -1325 (|#1|)) (-15 -1583 (|#1| |#1|)) (-15 -2774 (|#1| |#1|)) (-15 -2920 (|#1| |#1|)) (-15 -4018 ((-822 (-357) |#1|) |#1| (-825 (-357)) (-822 (-357) |#1|))) (-15 -4018 ((-822 (-525) |#1|) |#1| (-825 (-525)) (-822 (-525) |#1|))) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -3925 ((-631 |#2|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2314 ((|#1| $) 139 (|has| |#1| (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-2179 (((-396 (-1085 $)) (-1085 $)) 130 (|has| |#1| (-842)))) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 133 (|has| |#1| (-842)))) (-1965 (((-108) $ $) 59)) (-4188 (((-525) $) 120 (|has| |#1| (-761)))) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#1| "failed") $) 178) (((-3 (-1089) "failed") $) 128 (|has| |#1| (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) 112 (|has| |#1| (-966 (-525)))) (((-3 (-525) "failed") $) 110 (|has| |#1| (-966 (-525))))) (-3341 ((|#1| $) 177) (((-1089) $) 127 (|has| |#1| (-966 (-1089)))) (((-385 (-525)) $) 111 (|has| |#1| (-966 (-525)))) (((-525) $) 109 (|has| |#1| (-966 (-525))))) (-3265 (($ $ $) 55)) (-3925 (((-631 (-525)) (-631 $)) 152 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 151 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 150) (((-631 |#1|) (-631 $)) 149)) (-1522 (((-3 $ "failed") $) 34)) (-1325 (($) 137 (|has| |#1| (-510)))) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-2393 (((-108) $) 71)) (-3489 (((-108) $) 122 (|has| |#1| (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 146 (|has| |#1| (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 145 (|has| |#1| (-819 (-357))))) (-3865 (((-108) $) 31)) (-2920 (($ $) 141)) (-1384 ((|#1| $) 143)) (-2115 (((-3 $ "failed") $) 108 (|has| |#1| (-1065)))) (-2256 (((-108) $) 121 (|has| |#1| (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-1923 (($ $ $) 118 (|has| |#1| (-788)))) (-3475 (($ $ $) 117 (|has| |#1| (-788)))) (-1257 (($ (-1 |#1| |#1|) $) 169)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 70)) (-3492 (($) 107 (|has| |#1| (-1065)) CONST)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-1583 (($ $) 138 (|has| |#1| (-286)))) (-2767 ((|#1| $) 135 (|has| |#1| (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) 132 (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) 131 (|has| |#1| (-842)))) (-2542 (((-396 $) $) 74)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) 175 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 173 (|has| |#1| (-288 |#1|))) (($ $ (-591 (-273 |#1|))) 172 (|has| |#1| (-288 |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) 171 (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) |#1|) 170 (|has| |#1| (-486 (-1089) |#1|)))) (-3048 (((-712) $) 58)) (-1881 (($ $ |#1|) 176 (|has| |#1| (-265 |#1| |#1|)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-2209 (($ $) 168 (|has| |#1| (-213))) (($ $ (-712)) 166 (|has| |#1| (-213))) (($ $ (-1089)) 164 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 163 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 162 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) 161 (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2774 (($ $) 140)) (-1396 ((|#1| $) 142)) (-1300 (((-825 (-525)) $) 148 (|has| |#1| (-566 (-825 (-525))))) (((-825 (-357)) $) 147 (|has| |#1| (-566 (-825 (-357))))) (((-501) $) 125 (|has| |#1| (-566 (-501)))) (((-357) $) 124 (|has| |#1| (-951))) (((-205) $) 123 (|has| |#1| (-951)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 134 (-3543 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 181) (($ (-1089)) 129 (|has| |#1| (-966 (-1089))))) (-3751 (((-3 $ "failed") $) 126 (-3150 (|has| |#1| (-136)) (-3543 (|has| $ (-136)) (|has| |#1| (-842)))))) (-3425 (((-712)) 29)) (-1584 ((|#1| $) 136 (|has| |#1| (-510)))) (-1724 (((-108) $ $) 39)) (-1460 (($ $) 119 (|has| |#1| (-761)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $) 167 (|has| |#1| (-213))) (($ $ (-712)) 165 (|has| |#1| (-213))) (($ $ (-1089)) 160 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 159 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 158 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) 157 (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-4004 (((-108) $ $) 115 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 114 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 116 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 113 (|has| |#1| (-788)))) (-4059 (($ $ $) 64) (($ |#1| |#1|) 144)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) -(((-923 |#1|) (-131) (-517)) (T -923)) -((-4059 (*1 *1 *2 *2) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)))) (-1396 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)))) (-2920 (*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)))) (-2774 (*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-1325 (*1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-510)) (-4 *2 (-517)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) (-2767 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)) (-4 *2 (-510))))) -(-13 (-341) (-37 |t#1|) (-966 |t#1|) (-316 |t#1|) (-211 |t#1|) (-355 |t#1|) (-817 |t#1|) (-378 |t#1|) (-10 -8 (-15 -4059 ($ |t#1| |t#1|)) (-15 -1384 (|t#1| $)) (-15 -1396 (|t#1| $)) (-15 -2920 ($ $)) (-15 -2774 ($ $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-966 (-525))) (PROGN (-6 (-966 (-525))) (-6 (-966 (-385 (-525))))) |%noBranch|) (IF (|has| |t#1| (-788)) (-6 (-788)) |%noBranch|) (IF (|has| |t#1| (-761)) (-6 (-761)) |%noBranch|) (IF (|has| |t#1| (-951)) (-6 (-951)) |%noBranch|) (IF (|has| |t#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-966 (-1089))) (-6 (-966 (-1089))) |%noBranch|) (IF (|has| |t#1| (-286)) (PROGN (-15 -2314 (|t#1| $)) (-15 -1583 ($ $))) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -1325 ($)) (-15 -1584 (|t#1| $)) (-15 -2767 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) . T) ((-566 (-205)) |has| |#1| (-951)) ((-566 (-357)) |has| |#1| (-951)) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-566 (-825 (-357))) |has| |#1| (-566 (-825 (-357)))) ((-566 (-825 (-525))) |has| |#1| (-566 (-825 (-525)))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) . T) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) . T) ((-286) . T) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-429) . T) ((-486 (-1089) |#1|) |has| |#1| (-486 (-1089) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) . T) ((-593 #0#) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-587 (-525)) |has| |#1| (-587 (-525))) ((-587 |#1|) . T) ((-659 #0#) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-668) . T) ((-732) |has| |#1| (-761)) ((-733) |has| |#1| (-761)) ((-735) |has| |#1| (-761)) ((-736) |has| |#1| (-761)) ((-761) |has| |#1| (-761)) ((-786) |has| |#1| (-761)) ((-788) -3150 (|has| |#1| (-788)) (|has| |#1| (-761))) ((-833 (-1089)) |has| |#1| (-833 (-1089))) ((-819 (-357)) |has| |#1| (-819 (-357))) ((-819 (-525)) |has| |#1| (-819 (-525))) ((-817 |#1|) . T) ((-842) |has| |#1| (-842)) ((-853) . T) ((-951) |has| |#1| (-951)) ((-966 (-385 (-525))) |has| |#1| (-966 (-525))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 (-1089)) |has| |#1| (-966 (-1089))) ((-966 |#1|) . T) ((-981 #0#) . T) ((-981 |#1|) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1065) |has| |#1| (-1065)) ((-1125) . T) ((-1129) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-3437 (($ (-1056 |#1| |#2|)) 11)) (-1572 (((-1056 |#1| |#2|) $) 12)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1881 ((|#2| $ (-220 |#1| |#2|)) 16)) (-2686 (((-796) $) NIL)) (-1830 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL))) -(((-924 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3437 ($ (-1056 |#1| |#2|))) (-15 -1572 ((-1056 |#1| |#2|) $)) (-15 -1881 (|#2| $ (-220 |#1| |#2|))))) (-854) (-341)) (T -924)) -((-3437 (*1 *1 *2) (-12 (-5 *2 (-1056 *3 *4)) (-14 *3 (-854)) (-4 *4 (-341)) (-5 *1 (-924 *3 *4)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-5 *1 (-924 *3 *4)) (-14 *3 (-854)) (-4 *4 (-341)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-854)) (-4 *2 (-341)) (-5 *1 (-924 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3437 ($ (-1056 |#1| |#2|))) (-15 -1572 ((-1056 |#1| |#2|) $)) (-15 -1881 (|#2| $ (-220 |#1| |#2|))))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) 8)) (-2055 (($) 7 T CONST)) (-1876 (($ $) 46)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2445 (((-712) $) 45)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-3590 ((|#1| $) 44)) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2559 ((|#1| |#1| $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2557 ((|#1| $) 47)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) 42)) (-3775 ((|#1| $) 43)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-925 |#1|) (-131) (-1125)) (T -925)) -((-2559 (*1 *2 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125)))) (-1876 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1125)) (-5 *2 (-712)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4250) (-15 -2559 (|t#1| |t#1| $)) (-15 -2557 (|t#1| $)) (-15 -1876 ($ $)) (-15 -2445 ((-712) $)) (-15 -3590 (|t#1| $)) (-15 -3775 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-1306 (((-108) $) 42)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3341 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 43)) (-2350 (((-3 (-385 (-525)) "failed") $) 78)) (-2157 (((-108) $) 72)) (-3184 (((-385 (-525)) $) 76)) (-3865 (((-108) $) 41)) (-1525 ((|#2| $) 22)) (-1257 (($ (-1 |#2| |#2|) $) 19)) (-1523 (($ $) 61)) (-2209 (($ $) NIL) (($ $ (-712)) NIL) (($ $ (-1089)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1300 (((-501) $) 67)) (-3369 (($ $) 17)) (-2686 (((-796) $) 56) (($ (-525)) 38) (($ |#2|) 36) (($ (-385 (-525))) NIL)) (-3425 (((-712)) 10)) (-1460 ((|#2| $) 71)) (-3944 (((-108) $ $) 25)) (-3971 (((-108) $ $) 69)) (-4047 (($ $) 29) (($ $ $) 28)) (-4036 (($ $ $) 26)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) -(((-926 |#1| |#2|) (-10 -8 (-15 -2686 (|#1| (-385 (-525)))) (-15 -3971 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -1523 (|#1| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -1460 (|#2| |#1|)) (-15 -1525 (|#2| |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -2686 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 -3865 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 -1306 ((-108) |#1|)) (-15 * (|#1| (-854) |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) (-927 |#2|) (-160)) (T -926)) -((-3425 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-712)) (-5 *1 (-926 *3 *4)) (-4 *3 (-927 *4))))) -(-10 -8 (-15 -2686 (|#1| (-385 (-525)))) (-15 -3971 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -1523 (|#1| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -1460 (|#2| |#1|)) (-15 -1525 (|#2| |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -1257 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -2686 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 -3865 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 * (|#1| (-712) |#1|)) (-15 -1306 ((-108) |#1|)) (-15 * (|#1| (-854) |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-4174 (((-3 (-525) "failed") $) 119 (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 117 (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-3341 (((-525) $) 120 (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) 118 (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) 115)) (-3925 (((-631 (-525)) (-631 $)) 90 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 89 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 88) (((-631 |#1|) (-631 $)) 87)) (-1522 (((-3 $ "failed") $) 34)) (-2560 ((|#1| $) 80)) (-2350 (((-3 (-385 (-525)) "failed") $) 76 (|has| |#1| (-510)))) (-2157 (((-108) $) 78 (|has| |#1| (-510)))) (-3184 (((-385 (-525)) $) 77 (|has| |#1| (-510)))) (-4159 (($ |#1| |#1| |#1| |#1|) 81)) (-3865 (((-108) $) 31)) (-1525 ((|#1| $) 82)) (-1923 (($ $ $) 68 (|has| |#1| (-788)))) (-3475 (($ $ $) 67 (|has| |#1| (-788)))) (-1257 (($ (-1 |#1| |#1|) $) 91)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 73 (|has| |#1| (-341)))) (-2665 ((|#1| $) 83)) (-2027 ((|#1| $) 84)) (-2042 ((|#1| $) 85)) (-2937 (((-1036) $) 10)) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) 97 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 95 (|has| |#1| (-288 |#1|))) (($ $ (-591 (-273 |#1|))) 94 (|has| |#1| (-288 |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) 93 (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) |#1|) 92 (|has| |#1| (-486 (-1089) |#1|)))) (-1881 (($ $ |#1|) 98 (|has| |#1| (-265 |#1| |#1|)))) (-2209 (($ $) 114 (|has| |#1| (-213))) (($ $ (-712)) 112 (|has| |#1| (-213))) (($ $ (-1089)) 110 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 109 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 108 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) 107 (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1300 (((-501) $) 74 (|has| |#1| (-566 (-501))))) (-3369 (($ $) 86)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 62 (-3150 (|has| |#1| (-341)) (|has| |#1| (-966 (-385 (-525))))))) (-3751 (((-3 $ "failed") $) 75 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1460 ((|#1| $) 79 (|has| |#1| (-984)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 72 (|has| |#1| (-341)))) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $) 113 (|has| |#1| (-213))) (($ $ (-712)) 111 (|has| |#1| (-213))) (($ $ (-1089)) 106 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 105 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 104 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) 103 (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-4004 (((-108) $ $) 65 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 64 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 66 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 63 (|has| |#1| (-788)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 71 (|has| |#1| (-341)))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-385 (-525))) 70 (|has| |#1| (-341))) (($ (-385 (-525)) $) 69 (|has| |#1| (-341))))) -(((-927 |#1|) (-131) (-160)) (T -927)) -((-3369 (*1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)))) (-4159 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)) (-4 *2 (-984)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2350 (*1 *2 *1) (|partial| -12 (-4 *1 (-927 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525)))))) -(-13 (-37 |t#1|) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-355 |t#1|) (-10 -8 (-15 -3369 ($ $)) (-15 -2042 (|t#1| $)) (-15 -2027 (|t#1| $)) (-15 -2665 (|t#1| $)) (-15 -1525 (|t#1| $)) (-15 -4159 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2560 (|t#1| $)) (IF (|has| |t#1| (-269)) (-6 (-269)) |%noBranch|) (IF (|has| |t#1| (-788)) (-6 (-788)) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-223)) |%noBranch|) (IF (|has| |t#1| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-984)) (-15 -1460 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -2157 ((-108) $)) (-15 -3184 ((-385 (-525)) $)) (-15 -2350 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-341)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-341)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) |has| |#1| (-341)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3150 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1089) |#1|) |has| |#1| (-486 (-1089) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-593 #0#) |has| |#1| (-341)) ((-593 |#1|) . T) ((-593 $) . T) ((-587 (-525)) |has| |#1| (-587 (-525))) ((-587 |#1|) . T) ((-659 #0#) |has| |#1| (-341)) ((-659 |#1|) . T) ((-668) . T) ((-788) |has| |#1| (-788)) ((-833 (-1089)) |has| |#1| (-833 (-1089))) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-981 #0#) |has| |#1| (-341)) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1257 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-928 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 (|#3| (-1 |#4| |#2|) |#1|))) (-927 |#2|) (-160) (-927 |#4|) (-160)) (T -928)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-927 *6)) (-5 *1 (-928 *4 *5 *2 *6)) (-4 *4 (-927 *5))))) -(-10 -7 (-15 -1257 (|#3| (-1 |#4| |#2|) |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2560 ((|#1| $) 12)) (-2350 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-2157 (((-108) $) NIL (|has| |#1| (-510)))) (-3184 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-4159 (($ |#1| |#1| |#1| |#1|) 16)) (-3865 (((-108) $) NIL)) (-1525 ((|#1| $) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-2665 ((|#1| $) 15)) (-2027 ((|#1| $) 14)) (-2042 ((|#1| $) 13)) (-2937 (((-1036) $) NIL)) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-591 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-591 (-1089)) (-591 |#1|)) NIL (|has| |#1| (-486 (-1089) |#1|))) (($ $ (-1089) |#1|) NIL (|has| |#1| (-486 (-1089) |#1|)))) (-1881 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2209 (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-3369 (($ $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-341)) (|has| |#1| (-966 (-385 (-525))))))) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1460 ((|#1| $) NIL (|has| |#1| (-984)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) 8 T CONST)) (-1839 (($) 10 T CONST)) (-1796 (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))))) -(((-929 |#1|) (-927 |#1|) (-160)) (T -929)) -NIL -(-927 |#1|) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3727 (((-108) $ (-712)) NIL)) (-2055 (($) NIL T CONST)) (-1876 (($ $) 20)) (-3143 (($ (-591 |#1|)) 29)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2445 (((-712) $) 22)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-3949 ((|#1| $) 24)) (-1520 (($ |#1| $) 15)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3590 ((|#1| $) 23)) (-4166 ((|#1| $) 19)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2559 ((|#1| |#1| $) 14)) (-2077 (((-108) $) 17)) (-3164 (($) NIL)) (-2557 ((|#1| $) 18)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) NIL)) (-3775 ((|#1| $) 26)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-930 |#1|) (-13 (-925 |#1|) (-10 -8 (-15 -3143 ($ (-591 |#1|))))) (-1018)) (T -930)) -((-3143 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-930 *3))))) -(-13 (-925 |#1|) (-10 -8 (-15 -3143 ($ (-591 |#1|))))) -((-2551 (($ $) 12)) (-3126 (($ $ (-525)) 13))) -(((-931 |#1|) (-10 -8 (-15 -2551 (|#1| |#1|)) (-15 -3126 (|#1| |#1| (-525)))) (-932)) (T -931)) -NIL -(-10 -8 (-15 -2551 (|#1| |#1|)) (-15 -3126 (|#1| |#1| (-525)))) -((-2551 (($ $) 6)) (-3126 (($ $ (-525)) 7)) (** (($ $ (-385 (-525))) 8))) -(((-932) (-131)) (T -932)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-932)) (-5 *2 (-385 (-525))))) (-3126 (*1 *1 *1 *2) (-12 (-4 *1 (-932)) (-5 *2 (-525)))) (-2551 (*1 *1 *1) (-4 *1 (-932)))) -(-13 (-10 -8 (-15 -2551 ($ $)) (-15 -3126 ($ $ (-525))) (-15 ** ($ $ (-385 (-525)))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2301 (((-2 (|:| |num| (-1171 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-3641 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3077 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1712 (((-631 (-385 |#2|)) (-1171 $)) NIL) (((-631 (-385 |#2|))) NIL)) (-1481 (((-385 |#2|) $) NIL)) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3898 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1965 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2834 (((-712)) NIL (|has| (-385 |#2|) (-346)))) (-2190 (((-108)) NIL)) (-1911 (((-108) |#1|) 148) (((-108) |#2|) 153)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-966 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| (-385 |#2|) (-966 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-966 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-1554 (($ (-1171 (-385 |#2|)) (-1171 $)) NIL) (($ (-1171 (-385 |#2|))) 70) (($ (-1171 |#2|) |#2|) NIL)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-3265 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4054 (((-631 (-385 |#2|)) $ (-1171 $)) NIL) (((-631 (-385 |#2|)) $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| (-385 |#2|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-385 |#2|) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-385 |#2|))) (|:| |vec| (-1171 (-385 |#2|)))) (-631 $) (-1171 $)) NIL) (((-631 (-385 |#2|)) (-631 $)) NIL)) (-2052 (((-1171 $) (-1171 $)) NIL)) (-3618 (($ |#3|) 65) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-1522 (((-3 $ "failed") $) NIL)) (-2904 (((-591 (-591 |#1|))) NIL (|has| |#1| (-346)))) (-3759 (((-108) |#1| |#1|) NIL)) (-2193 (((-854)) NIL)) (-1325 (($) NIL (|has| (-385 |#2|) (-346)))) (-3506 (((-108)) NIL)) (-1461 (((-108) |#1|) 56) (((-108) |#2|) 150)) (-3239 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| (-385 |#2|) (-341)))) (-3153 (($ $) NIL)) (-1268 (($) NIL (|has| (-385 |#2|) (-327)))) (-2096 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-3477 (($ $ (-712)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-2393 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1676 (((-854) $) NIL (|has| (-385 |#2|) (-327))) (((-774 (-854)) $) NIL (|has| (-385 |#2|) (-327)))) (-3865 (((-108) $) NIL)) (-3340 (((-712)) NIL)) (-2792 (((-1171 $) (-1171 $)) NIL)) (-1525 (((-385 |#2|) $) NIL)) (-2056 (((-591 (-885 |#1|)) (-1089)) NIL (|has| |#1| (-341)))) (-2115 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3205 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-1970 (((-854) $) NIL (|has| (-385 |#2|) (-346)))) (-3610 ((|#3| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2621 (((-1072) $) NIL)) (-1705 (((-631 (-385 |#2|))) 52)) (-2636 (((-631 (-385 |#2|))) 51)) (-1523 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3470 (($ (-1171 |#2|) |#2|) 71)) (-3101 (((-631 (-385 |#2|))) 50)) (-2646 (((-631 (-385 |#2|))) 49)) (-1652 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2137 (((-2 (|:| |num| (-1171 |#2|)) (|:| |den| |#2|)) $) 77)) (-2045 (((-1171 $)) 46)) (-2773 (((-1171 $)) 45)) (-3790 (((-108) $) NIL)) (-2353 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3492 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-3229 (($ (-854)) NIL (|has| (-385 |#2|) (-346)))) (-3695 (((-3 |#2| "failed")) 63)) (-2937 (((-1036) $) NIL)) (-2658 (((-712)) NIL)) (-3965 (($) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| (-385 |#2|) (-341)))) (-2124 (($ (-591 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-2542 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-3210 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3048 (((-712) $) NIL (|has| (-385 |#2|) (-341)))) (-1881 ((|#1| $ |#1| |#1|) NIL)) (-1945 (((-3 |#2| "failed")) 62)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2858 (((-385 |#2|) (-1171 $)) NIL) (((-385 |#2|)) 42)) (-2652 (((-712) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-712) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-2209 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-712)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-712)) NIL (-3150 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3150 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3206 (((-631 (-385 |#2|)) (-1171 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-1341 ((|#3|) 53)) (-3560 (($) NIL (|has| (-385 |#2|) (-327)))) (-1671 (((-1171 (-385 |#2|)) $ (-1171 $)) NIL) (((-631 (-385 |#2|)) (-1171 $) (-1171 $)) NIL) (((-1171 (-385 |#2|)) $) 72) (((-631 (-385 |#2|)) (-1171 $)) NIL)) (-1300 (((-1171 (-385 |#2|)) $) NIL) (($ (-1171 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| (-385 |#2|) (-327)))) (-3010 (((-1171 $) (-1171 $)) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3150 (|has| (-385 |#2|) (-966 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3751 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-2173 ((|#3| $) NIL)) (-3425 (((-712)) NIL)) (-1425 (((-108)) 60)) (-3977 (((-108) |#1|) 154) (((-108) |#2|) 155)) (-3612 (((-1171 $)) 125)) (-1724 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1776 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1787 (((-108)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-1830 (($) 94 T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-712)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-833 (-1089))))) (($ $ (-712)) NIL (-3150 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3150 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341))))) -(((-933 |#1| |#2| |#3| |#4| |#5|) (-320 |#1| |#2| |#3|) (-1129) (-1147 |#1|) (-1147 (-385 |#2|)) (-385 |#2|) (-712)) (T -933)) +((-3450 (($ $ (-1012 $)) 7) (($ $ (-1090)) 6))) +(((-892) (-131)) (T -892)) +((-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-892)))) (-3450 (*1 *1 *1 *2) (-12 (-4 *1 (-892)) (-5 *2 (-1090))))) +(-13 (-10 -8 (-15 -3450 ($ $ (-1090))) (-15 -3450 ($ $ (-1012 $))))) +((-2376 (((-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)) (-1090)) 25) (((-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090))) 26) (((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1086 |#1|))) (-886 |#1|) (-1090) (-886 |#1|) (-1090)) 43))) +(((-893 |#1|) (-10 -7 (-15 -2376 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1086 |#1|))) (-886 |#1|) (-1090) (-886 |#1|) (-1090))) (-15 -2376 ((-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -2376 ((-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)) (-1090)))) (-13 (-341) (-138))) (T -893)) +((-2376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-5 *5 (-1090)) (-4 *6 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 *6))) (|:| |prim| (-1086 *6)))) (-5 *1 (-893 *6)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-893 *5)))) (-2376 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1086 *5)))) (-5 *1 (-893 *5))))) +(-10 -7 (-15 -2376 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1086 |#1|))) (-886 |#1|) (-1090) (-886 |#1|) (-1090))) (-15 -2376 ((-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -2376 ((-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)) (-1090)))) +((-2213 (((-592 |#1|) |#1| |#1|) 42)) (-2069 (((-108) |#1|) 39)) (-2239 ((|#1| |#1|) 65)) (-2793 ((|#1| |#1|) 64))) +(((-894 |#1|) (-10 -7 (-15 -2069 ((-108) |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2213 ((-592 |#1|) |#1| |#1|))) (-510)) (T -894)) +((-2213 (*1 *2 *3 *3) (-12 (-5 *2 (-592 *3)) (-5 *1 (-894 *3)) (-4 *3 (-510)))) (-2239 (*1 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-510)))) (-2793 (*1 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-510)))) (-2069 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-510))))) +(-10 -7 (-15 -2069 ((-108) |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -2239 (|#1| |#1|)) (-15 -2213 ((-592 |#1|) |#1| |#1|))) +((-1538 (((-1177) (-797)) 9))) +(((-895) (-10 -7 (-15 -1538 ((-1177) (-797))))) (T -895)) +((-1538 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-895))))) +(-10 -7 (-15 -1538 ((-1177) (-797)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 63 (|has| |#1| (-517)))) (-2609 (($ $) 64 (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 28)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-3306 (($ $) 24)) (-1645 (((-3 $ "failed") $) 35)) (-2319 (($ $) NIL (|has| |#1| (-429)))) (-2187 (($ $ |#1| |#2| $) 48)) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) 16)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| |#2|) NIL)) (-3762 ((|#2| $) 19)) (-2078 (($ (-1 |#2| |#2|) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (($ $) 23)) (-3286 ((|#1| $) 21)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) 40)) (-3267 ((|#1| $) NIL)) (-2773 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-126)) (|has| |#1| (-517))))) (-2675 (((-3 $ "failed") $ $) 75 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-517)))) (-1486 ((|#2| $) 17)) (-2758 ((|#1| $) NIL (|has| |#1| (-429)))) (-4044 (((-797) $) NIL) (($ (-525)) 39) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 34) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ |#2|) 31)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) 15)) (-2541 (($ $ $ (-713)) 59 (|has| |#1| (-160)))) (-3787 (((-108) $ $) 69 (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 55) (($ $ (-713)) 56)) (-1436 (($) 22 T CONST)) (-1449 (($) 12 T CONST)) (-3899 (((-108) $ $) 68)) (-4047 (($ $ |#1|) 76 (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) 54) (($ $ (-713)) 52)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-896 |#1| |#2|) (-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -2773 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|))) (-976) (-734)) (T -896)) +((-2773 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-896 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517)) (-4 *3 (-976)) (-4 *2 (-734))))) +(-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -2773 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL (-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-3207 (($ $ $) 63 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (-3004 (((-3 $ "failed") $ $) 50 (-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-1651 (((-713)) 34 (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-1969 ((|#2| $) 21)) (-3205 ((|#1| $) 20)) (-1957 (($) NIL (-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-1645 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-1527 (($) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2507 (((-108) $) NIL (-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-1260 (($ $ $) NIL (-3215 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2154 (($ $ $) NIL (-3215 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2844 (($ |#1| |#2|) 19)) (-2111 (((-855) $) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 37 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-3381 (($ (-855)) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-3027 (((-1037) $) NIL)) (-4025 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-1573 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-4044 (((-797) $) 14)) (-1594 (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) NIL (-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-855)) NIL (-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-1436 (($) 40 (-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-1449 (($) 24 (-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))) CONST)) (-3973 (((-108) $ $) NIL (-3215 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3944 (((-108) $ $) NIL (-3215 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3899 (((-108) $ $) 18)) (-3959 (((-108) $ $) NIL (-3215 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3928 (((-108) $ $) 66 (-3215 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-4047 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-4033 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4017 (($ $ $) 43 (-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (** (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) 31 (-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-855)) NIL (-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (* (($ (-525) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-713) $) 46 (-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ (-855) $) NIL (-3215 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ $ $) 27 (-3215 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))))) +(((-897 |#1| |#2|) (-13 (-1019) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -2844 ($ |#1| |#2|)) (-15 -3205 (|#1| $)) (-15 -1969 (|#2| $)))) (-1019) (-1019)) (T -897)) +((-2844 (*1 *1 *2 *3) (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-3205 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1019)))) (-1969 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1019))))) +(-13 (-1019) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -2844 ($ |#1| |#2|)) (-15 -3205 (|#1| $)) (-15 -1969 (|#2| $)))) +((-3067 (((-1023) $) 12)) (-3816 (($ (-1090) (-1023)) 13)) (-3515 (((-1090) $) 10)) (-4044 (((-797) $) 24))) +(((-898) (-13 (-566 (-797)) (-10 -8 (-15 -3515 ((-1090) $)) (-15 -3067 ((-1023) $)) (-15 -3816 ($ (-1090) (-1023)))))) (T -898)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-898)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-898)))) (-3816 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1023)) (-5 *1 (-898))))) +(-13 (-566 (-797)) (-10 -8 (-15 -3515 ((-1090) $)) (-15 -3067 ((-1023) $)) (-15 -3816 ($ (-1090) (-1023))))) +((-3122 (((-1021 (-1090)) $) 19)) (-3401 (((-108) $) 26)) (-2818 (((-1090) $) 27)) (-3903 (((-108) $) 24)) (-2004 ((|#1| $) 25)) (-3754 (((-807 $ $) $) 34)) (-2941 (((-108) $) 33)) (-2377 (($ $ $) 12)) (-1794 (($ $) 29)) (-3234 (((-108) $) 28)) (-2823 (($ $) 10)) (-3668 (((-807 $ $) $) 36)) (-1294 (((-108) $) 35)) (-1818 (($ $ $) 13)) (-2082 (((-807 $ $) $) 38)) (-2072 (((-108) $) 37)) (-3320 (($ $ $) 14)) (-4044 (($ |#1|) 7) (($ (-1090)) 9) (((-797) $) 40 (|has| |#1| (-566 (-797))))) (-3883 (((-807 $ $) $) 32)) (-2076 (((-108) $) 30)) (-2385 (($ $ $) 11))) +(((-899 |#1|) (-13 (-900) (-10 -8 (IF (|has| |#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (-15 -4044 ($ |#1|)) (-15 -4044 ($ (-1090))) (-15 -3122 ((-1021 (-1090)) $)) (-15 -3903 ((-108) $)) (-15 -2004 (|#1| $)) (-15 -3401 ((-108) $)) (-15 -2818 ((-1090) $)) (-15 -3234 ((-108) $)) (-15 -1794 ($ $)) (-15 -2076 ((-108) $)) (-15 -3883 ((-807 $ $) $)) (-15 -2941 ((-108) $)) (-15 -3754 ((-807 $ $) $)) (-15 -1294 ((-108) $)) (-15 -3668 ((-807 $ $) $)) (-15 -2072 ((-108) $)) (-15 -2082 ((-807 $ $) $)))) (-900)) (T -899)) +((-4044 (*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1021 (-1090))) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-2004 (*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-1794 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-900))))) +(-13 (-900) (-10 -8 (IF (|has| |#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (-15 -4044 ($ |#1|)) (-15 -4044 ($ (-1090))) (-15 -3122 ((-1021 (-1090)) $)) (-15 -3903 ((-108) $)) (-15 -2004 (|#1| $)) (-15 -3401 ((-108) $)) (-15 -2818 ((-1090) $)) (-15 -3234 ((-108) $)) (-15 -1794 ($ $)) (-15 -2076 ((-108) $)) (-15 -3883 ((-807 $ $) $)) (-15 -2941 ((-108) $)) (-15 -3754 ((-807 $ $) $)) (-15 -1294 ((-108) $)) (-15 -3668 ((-807 $ $) $)) (-15 -2072 ((-108) $)) (-15 -2082 ((-807 $ $) $)))) +((-2377 (($ $ $) 8)) (-2823 (($ $) 6)) (-1818 (($ $ $) 9)) (-3320 (($ $ $) 10)) (-2385 (($ $ $) 7))) +(((-900) (-131)) (T -900)) +((-3320 (*1 *1 *1 *1) (-4 *1 (-900))) (-1818 (*1 *1 *1 *1) (-4 *1 (-900))) (-2377 (*1 *1 *1 *1) (-4 *1 (-900))) (-2385 (*1 *1 *1 *1) (-4 *1 (-900))) (-2823 (*1 *1 *1) (-4 *1 (-900)))) +(-13 (-10 -8 (-15 -2823 ($ $)) (-15 -2385 ($ $ $)) (-15 -2377 ($ $ $)) (-15 -1818 ($ $ $)) (-15 -3320 ($ $ $)))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-1957 (($) 7 T CONST)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-1636 (($ $ $) 43)) (-1440 (($ $ $) 44)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2154 ((|#1| $) 45)) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) 42)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-901 |#1|) (-131) (-789)) (T -901)) +((-2154 (*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789)))) (-1440 (*1 *1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789)))) (-1636 (*1 *1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4254) (-15 -2154 (|t#1| $)) (-15 -1440 ($ $ $)) (-15 -1636 ($ $ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-3726 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2262 |#2|)) |#2| |#2|) 85)) (-2481 ((|#2| |#2| |#2|) 83)) (-2194 (((-2 (|:| |coef2| |#2|) (|:| -2262 |#2|)) |#2| |#2|) 87)) (-2493 (((-2 (|:| |coef1| |#2|) (|:| -2262 |#2|)) |#2| |#2|) 89)) (-3744 (((-2 (|:| |coef2| |#2|) (|:| -4082 |#1|)) |#2| |#2|) 107 (|has| |#1| (-429)))) (-1605 (((-2 (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|) 46)) (-2899 (((-2 (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|) 64)) (-3332 (((-2 (|:| |coef1| |#2|) (|:| -3048 |#1|)) |#2| |#2|) 66)) (-2754 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2026 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 71)) (-2936 (((-2 (|:| |coef2| |#2|) (|:| -2257 |#1|)) |#2|) 97)) (-1739 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 74)) (-3147 (((-592 (-713)) |#2| |#2|) 82)) (-1524 ((|#1| |#2| |#2|) 42)) (-3426 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4082 |#1|)) |#2| |#2|) 105 (|has| |#1| (-429)))) (-4082 ((|#1| |#2| |#2|) 103 (|has| |#1| (-429)))) (-3573 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|) 44)) (-2666 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|) 63)) (-3048 ((|#1| |#2| |#2|) 61)) (-2683 (((-2 (|:| -2059 |#1|) (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2|) 35)) (-3710 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3233 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1503 ((|#2| |#2| |#2|) 75)) (-2235 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 69)) (-2548 ((|#2| |#2| |#2| (-713)) 67)) (-2262 ((|#2| |#2| |#2|) 111 (|has| |#1| (-429)))) (-2675 (((-1172 |#2|) (-1172 |#2|) |#1|) 21)) (-4204 (((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2|) 39)) (-3033 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2257 |#1|)) |#2|) 95)) (-2257 ((|#1| |#2|) 92)) (-3116 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 73)) (-2329 ((|#2| |#2| |#2| (-713)) 72)) (-1622 (((-592 |#2|) |#2| |#2|) 80)) (-3344 ((|#2| |#2| |#1| |#1| (-713)) 50)) (-1578 ((|#1| |#1| |#1| (-713)) 49)) (* (((-1172 |#2|) |#1| (-1172 |#2|)) 16))) +(((-902 |#1| |#2|) (-10 -7 (-15 -3048 (|#1| |#2| |#2|)) (-15 -2666 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|)) (-15 -2899 ((-2 (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|)) (-15 -3332 ((-2 (|:| |coef1| |#2|) (|:| -3048 |#1|)) |#2| |#2|)) (-15 -2548 (|#2| |#2| |#2| (-713))) (-15 -2235 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2026 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2329 (|#2| |#2| |#2| (-713))) (-15 -3116 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1739 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1503 (|#2| |#2| |#2|)) (-15 -3233 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2754 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2481 (|#2| |#2| |#2|)) (-15 -3726 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2262 |#2|)) |#2| |#2|)) (-15 -2194 ((-2 (|:| |coef2| |#2|) (|:| -2262 |#2|)) |#2| |#2|)) (-15 -2493 ((-2 (|:| |coef1| |#2|) (|:| -2262 |#2|)) |#2| |#2|)) (-15 -2257 (|#1| |#2|)) (-15 -3033 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2257 |#1|)) |#2|)) (-15 -2936 ((-2 (|:| |coef2| |#2|) (|:| -2257 |#1|)) |#2|)) (-15 -1622 ((-592 |#2|) |#2| |#2|)) (-15 -3147 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -4082 (|#1| |#2| |#2|)) (-15 -3426 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4082 |#1|)) |#2| |#2|)) (-15 -3744 ((-2 (|:| |coef2| |#2|) (|:| -4082 |#1|)) |#2| |#2|)) (-15 -2262 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1172 |#2|) |#1| (-1172 |#2|))) (-15 -2675 ((-1172 |#2|) (-1172 |#2|) |#1|)) (-15 -2683 ((-2 (|:| -2059 |#1|) (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2|)) (-15 -4204 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2|)) (-15 -1578 (|#1| |#1| |#1| (-713))) (-15 -3344 (|#2| |#2| |#1| |#1| (-713))) (-15 -3710 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1524 (|#1| |#2| |#2|)) (-15 -3573 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|)) (-15 -1605 ((-2 (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|))) (-517) (-1148 |#1|)) (T -902)) +((-1605 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3048 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3573 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3048 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-1524 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))) (-3710 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-3344 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-1578 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-902 *2 *4)) (-4 *4 (-1148 *2)))) (-4204 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2683 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2059 *4) (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2675 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-517)) (-5 *1 (-902 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-517)) (-5 *1 (-902 *3 *4)))) (-2262 (*1 *2 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-3744 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4082 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3426 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4082 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-4082 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))) (-3147 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-1622 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2936 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2257 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3033 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2257 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2257 (*1 *2 *3) (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))) (-2493 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2262 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2194 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2262 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3726 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2262 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2481 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-2754 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3233 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-1503 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-1739 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))) (-3116 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))) (-2329 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-902 *4 *2)) (-4 *2 (-1148 *4)))) (-2026 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))) (-2235 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))) (-2548 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-902 *4 *2)) (-4 *2 (-1148 *4)))) (-3332 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3048 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2899 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3048 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2666 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3048 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3048 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2))))) +(-10 -7 (-15 -3048 (|#1| |#2| |#2|)) (-15 -2666 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|)) (-15 -2899 ((-2 (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|)) (-15 -3332 ((-2 (|:| |coef1| |#2|) (|:| -3048 |#1|)) |#2| |#2|)) (-15 -2548 (|#2| |#2| |#2| (-713))) (-15 -2235 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2026 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2329 (|#2| |#2| |#2| (-713))) (-15 -3116 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1739 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1503 (|#2| |#2| |#2|)) (-15 -3233 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2754 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2481 (|#2| |#2| |#2|)) (-15 -3726 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2262 |#2|)) |#2| |#2|)) (-15 -2194 ((-2 (|:| |coef2| |#2|) (|:| -2262 |#2|)) |#2| |#2|)) (-15 -2493 ((-2 (|:| |coef1| |#2|) (|:| -2262 |#2|)) |#2| |#2|)) (-15 -2257 (|#1| |#2|)) (-15 -3033 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2257 |#1|)) |#2|)) (-15 -2936 ((-2 (|:| |coef2| |#2|) (|:| -2257 |#1|)) |#2|)) (-15 -1622 ((-592 |#2|) |#2| |#2|)) (-15 -3147 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -4082 (|#1| |#2| |#2|)) (-15 -3426 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4082 |#1|)) |#2| |#2|)) (-15 -3744 ((-2 (|:| |coef2| |#2|) (|:| -4082 |#1|)) |#2| |#2|)) (-15 -2262 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1172 |#2|) |#1| (-1172 |#2|))) (-15 -2675 ((-1172 |#2|) (-1172 |#2|) |#1|)) (-15 -2683 ((-2 (|:| -2059 |#1|) (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2|)) (-15 -4204 ((-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) |#2| |#2|)) (-15 -1578 (|#1| |#1| |#1| (-713))) (-15 -3344 (|#2| |#2| |#1| |#1| (-713))) (-15 -3710 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1524 (|#1| |#2| |#2|)) (-15 -3573 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|)) (-15 -1605 ((-2 (|:| |coef2| |#2|) (|:| -3048 |#1|)) |#2| |#2|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) 27)) (-1957 (($) NIL T CONST)) (-3629 (((-592 (-592 (-525))) (-592 (-525))) 29)) (-3384 (((-525) $) 45)) (-3605 (($ (-592 (-525))) 17)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2923 (((-592 (-525)) $) 12)) (-4025 (($ $) 32)) (-4044 (((-797) $) 43) (((-592 (-525)) $) 10)) (-1436 (($) 7 T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 20)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 19)) (-4017 (($ $ $) 21)) (* (($ (-713) $) 25) (($ (-855) $) NIL))) +(((-903) (-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -3605 ($ (-592 (-525)))) (-15 -3629 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -3384 ((-525) $)) (-15 -4025 ($ $)) (-15 -4044 ((-592 (-525)) $))))) (T -903)) +((-3605 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-903)))) (-3629 (*1 *2 *3) (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-903)) (-5 *3 (-592 (-525))))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-903)))) (-4025 (*1 *1 *1) (-5 *1 (-903))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-903))))) +(-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -3605 ($ (-592 (-525)))) (-15 -3629 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -3384 ((-525) $)) (-15 -4025 ($ $)) (-15 -4044 ((-592 (-525)) $)))) +((-4047 (($ $ |#2|) 30)) (-4033 (($ $) 22) (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-385 (-525)) $) 26) (($ $ (-385 (-525))) 28))) +(((-904 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4047 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-905 |#2| |#3| |#4|) (-976) (-734) (-789)) (T -904)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4047 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3122 (((-592 |#3|) $) 74)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2609 (($ $) 52 (|has| |#1| (-517)))) (-1220 (((-108) $) 54 (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-3306 (($ $) 60)) (-1645 (((-3 $ "failed") $) 34)) (-3951 (((-108) $) 73)) (-2507 (((-108) $) 31)) (-1432 (((-108) $) 62)) (-3097 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-592 |#3|) (-592 |#2|)) 75)) (-2868 (($ (-1 |#1| |#1|) $) 63)) (-3277 (($ $) 65)) (-3286 ((|#1| $) 66)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2675 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1486 ((|#2| $) 64)) (-2789 (($ $) 72)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-2100 ((|#1| $ |#2|) 59)) (-1279 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) +(((-905 |#1| |#2| |#3|) (-131) (-976) (-734) (-789)) (T -905)) +((-3286 (*1 *2 *1) (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789)) (-4 *2 (-976)))) (-3277 (*1 *1 *1) (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *4 (-789)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *2 *4)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *2 (-734)))) (-3097 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-905 *4 *3 *2)) (-4 *4 (-976)) (-4 *3 (-734)) (-4 *2 (-789)))) (-3097 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-905 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-734)) (-4 *6 (-789)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2789 (*1 *1 *1) (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *4 (-789))))) +(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -3097 ($ $ |t#3| |t#2|)) (-15 -3097 ($ $ (-592 |t#3|) (-592 |t#2|))) (-15 -3277 ($ $)) (-15 -3286 (|t#1| $)) (-15 -1486 (|t#2| $)) (-15 -3122 ((-592 |t#3|) $)) (-15 -3951 ((-108) $)) (-15 -2789 ($ $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2529 (((-1014 (-205)) $) 8)) (-2519 (((-1014 (-205)) $) 9)) (-2508 (((-1014 (-205)) $) 10)) (-2204 (((-592 (-592 (-877 (-205)))) $) 11)) (-4044 (((-797) $) 6))) +(((-906) (-131)) (T -906)) +((-2204 (*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-592 (-592 (-877 (-205))))))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205))))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205))))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205)))))) +(-13 (-566 (-797)) (-10 -8 (-15 -2204 ((-592 (-592 (-877 (-205)))) $)) (-15 -2508 ((-1014 (-205)) $)) (-15 -2519 ((-1014 (-205)) $)) (-15 -2529 ((-1014 (-205)) $)))) +(((-566 (-797)) . T)) +((-3122 (((-592 |#4|) $) 23)) (-4037 (((-108) $) 48)) (-3410 (((-108) $) 47)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#4|) 36)) (-4164 (((-108) $) 49)) (-1333 (((-108) $ $) 55)) (-3508 (((-108) $ $) 58)) (-3364 (((-108) $) 53)) (-2523 (((-592 |#5|) (-592 |#5|) $) 90)) (-1241 (((-592 |#5|) (-592 |#5|) $) 87)) (-2097 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4210 (((-592 |#4|) $) 27)) (-1506 (((-108) |#4| $) 30)) (-3415 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2484 (($ $ |#4|) 33)) (-4016 (($ $ |#4|) 32)) (-3967 (($ $ |#4|) 34)) (-3899 (((-108) $ $) 40))) +(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3410 ((-108) |#1|)) (-15 -2523 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1241 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -2097 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3415 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4164 ((-108) |#1|)) (-15 -3508 ((-108) |#1| |#1|)) (-15 -1333 ((-108) |#1| |#1|)) (-15 -3364 ((-108) |#1|)) (-15 -4037 ((-108) |#1|)) (-15 -1473 ((-2 (|:| |under| |#1|) (|:| -2473 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2484 (|#1| |#1| |#4|)) (-15 -3967 (|#1| |#1| |#4|)) (-15 -4016 (|#1| |#1| |#4|)) (-15 -1506 ((-108) |#4| |#1|)) (-15 -4210 ((-592 |#4|) |#1|)) (-15 -3122 ((-592 |#4|) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) (-908 |#2| |#3| |#4| |#5|) (-976) (-735) (-789) (-990 |#2| |#3| |#4|)) (T -907)) +NIL +(-10 -8 (-15 -3410 ((-108) |#1|)) (-15 -2523 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1241 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -2097 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3415 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4164 ((-108) |#1|)) (-15 -3508 ((-108) |#1| |#1|)) (-15 -1333 ((-108) |#1| |#1|)) (-15 -3364 ((-108) |#1|)) (-15 -4037 ((-108) |#1|)) (-15 -1473 ((-2 (|:| |under| |#1|) (|:| -2473 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2484 (|#1| |#1| |#4|)) (-15 -3967 (|#1| |#1| |#4|)) (-15 -4016 (|#1| |#1| |#4|)) (-15 -1506 ((-108) |#4| |#1|)) (-15 -4210 ((-592 |#4|) |#1|)) (-15 -3122 ((-592 |#4|) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-3122 (((-592 |#3|) $) 33)) (-4037 (((-108) $) 26)) (-3410 (((-108) $) 17 (|has| |#1| (-517)))) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) 27)) (-2583 (((-108) $ (-713)) 44)) (-1249 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254)))) (-1957 (($) 45 T CONST)) (-4164 (((-108) $) 22 (|has| |#1| (-517)))) (-1333 (((-108) $ $) 24 (|has| |#1| (-517)))) (-3508 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3364 (((-108) $) 25 (|has| |#1| (-517)))) (-2523 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) 36)) (-2068 (($ (-592 |#4|)) 35)) (-1716 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254)))) (-3781 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-3632 ((|#3| $) 34)) (-2010 (((-108) $ (-713)) 43)) (-2679 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 47)) (-4210 (((-592 |#3|) $) 32)) (-1506 (((-108) |#3| $) 31)) (-2350 (((-108) $ (-713)) 42)) (-1707 (((-1073) $) 9)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-3027 (((-1037) $) 10)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3669 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) 38)) (-3086 (((-108) $) 41)) (-3266 (($) 40)) (-3053 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-1261 (($ $) 39)) (-2923 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) 60)) (-2484 (($ $ |#3|) 28)) (-4016 (($ $ |#3|) 30)) (-3967 (($ $ |#3|) 29)) (-4044 (((-797) $) 11) (((-592 |#4|) $) 37)) (-2443 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 6)) (-1696 (((-713) $) 46 (|has| $ (-6 -4254))))) +(((-908 |#1| |#2| |#3| |#4|) (-131) (-976) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -908)) +((-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-908 *3 *4 *5 *6)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-908 *3 *4 *5 *6)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-990 *3 *4 *2)) (-4 *2 (-789)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5)))) (-1506 (*1 *2 *3 *1) (-12 (-4 *1 (-908 *4 *5 *3 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-108)))) (-4016 (*1 *1 *1 *2) (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2)))) (-3967 (*1 *1 *1 *2) (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2)))) (-2484 (*1 *1 *1 *2) (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2)))) (-1473 (*1 *2 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2473 *1) (|:| |upper| *1))) (-4 *1 (-908 *4 *5 *3 *6)))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-1333 (*1 *2 *1 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-3508 (*1 *2 *1 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-3415 (*1 *2 *3 *1) (-12 (-4 *1 (-908 *4 *5 *6 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2097 (*1 *2 *3 *1) (-12 (-4 *1 (-908 *4 *5 *6 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1241 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)))) (-2523 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)))) (-3410 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108))))) +(-13 (-1019) (-142 |t#4|) (-566 (-592 |t#4|)) (-10 -8 (-6 -4254) (-15 -2769 ((-3 $ "failed") (-592 |t#4|))) (-15 -2068 ($ (-592 |t#4|))) (-15 -3632 (|t#3| $)) (-15 -3122 ((-592 |t#3|) $)) (-15 -4210 ((-592 |t#3|) $)) (-15 -1506 ((-108) |t#3| $)) (-15 -4016 ($ $ |t#3|)) (-15 -3967 ($ $ |t#3|)) (-15 -2484 ($ $ |t#3|)) (-15 -1473 ((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |t#3|)) (-15 -4037 ((-108) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -3364 ((-108) $)) (-15 -1333 ((-108) $ $)) (-15 -3508 ((-108) $ $)) (-15 -4164 ((-108) $)) (-15 -3415 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2097 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1241 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -2523 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -3410 ((-108) $))) |%noBranch|))) +(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-1019) . T) ((-1126) . T)) +((-3475 (((-592 |#4|) |#4| |#4|) 116)) (-2424 (((-592 |#4|) (-592 |#4|) (-108)) 105 (|has| |#1| (-429))) (((-592 |#4|) (-592 |#4|)) 106 (|has| |#1| (-429)))) (-3766 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 35)) (-2035 (((-108) |#4|) 34)) (-3394 (((-592 |#4|) |#4|) 102 (|has| |#1| (-429)))) (-2906 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|)) 20)) (-3216 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 22)) (-3768 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 23)) (-2934 (((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|)) 73)) (-1299 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2066 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 109)) (-3802 (((-592 |#4|) (-592 |#4|)) 108)) (-2452 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108)) 48) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 50)) (-2255 ((|#4| |#4| (-592 |#4|)) 49)) (-1602 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 112 (|has| |#1| (-429)))) (-1661 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 115 (|has| |#1| (-429)))) (-4002 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 114 (|has| |#1| (-429)))) (-1515 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|))) 87) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 89) (((-592 |#4|) (-592 |#4|) |#4|) 119) (((-592 |#4|) |#4| |#4|) 117) (((-592 |#4|) (-592 |#4|)) 88)) (-3900 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 99 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-3330 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 41)) (-3269 (((-108) (-592 |#4|)) 62)) (-1628 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 53)) (-1809 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 29)) (-1935 (((-108) |#4|) 28)) (-1560 (((-592 |#4|) (-592 |#4|)) 98 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-3736 (((-592 |#4|) (-592 |#4|)) 97 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-1499 (((-592 |#4|) (-592 |#4|)) 66)) (-1743 (((-592 |#4|) (-592 |#4|)) 79)) (-3845 (((-108) (-592 |#4|) (-592 |#4|)) 51)) (-2494 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 39)) (-3047 (((-108) |#4|) 36))) +(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1515 ((-592 |#4|) (-592 |#4|))) (-15 -1515 ((-592 |#4|) |#4| |#4|)) (-15 -3802 ((-592 |#4|) (-592 |#4|))) (-15 -3475 ((-592 |#4|) |#4| |#4|)) (-15 -1515 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -1515 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1515 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -3845 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1628 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -3269 ((-108) (-592 |#4|))) (-15 -2906 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -3216 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3768 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3330 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2035 ((-108) |#4|)) (-15 -3766 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1935 ((-108) |#4|)) (-15 -1809 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -3047 ((-108) |#4|)) (-15 -2494 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2452 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2452 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2255 (|#4| |#4| (-592 |#4|))) (-15 -1499 ((-592 |#4|) (-592 |#4|))) (-15 -2934 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -1743 ((-592 |#4|) (-592 |#4|))) (-15 -1299 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2066 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3394 ((-592 |#4|) |#4|)) (-15 -2424 ((-592 |#4|) (-592 |#4|))) (-15 -2424 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -1602 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -4002 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1661 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -3736 ((-592 |#4|) (-592 |#4|))) (-15 -1560 ((-592 |#4|) (-592 |#4|))) (-15 -3900 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|)) (-517) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -909)) +((-3900 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1560 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3736 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-4002 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1602 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-2424 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *7)))) (-2424 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3394 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-2066 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-909 *5 *6 *7 *8)))) (-1299 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *1 (-909 *6 *7 *8 *9)))) (-1743 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-2934 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -3214 (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *2)))) (-2452 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *7)))) (-2452 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1935 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-2906 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *7)))) (-1628 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *5 *6 *7 *8)))) (-3845 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *7)))) (-1515 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-592 *7) (-592 *7))) (-5 *2 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *7)))) (-1515 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1515 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *3)))) (-3475 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1515 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-1515 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6))))) +(-10 -7 (-15 -1515 ((-592 |#4|) (-592 |#4|))) (-15 -1515 ((-592 |#4|) |#4| |#4|)) (-15 -3802 ((-592 |#4|) (-592 |#4|))) (-15 -3475 ((-592 |#4|) |#4| |#4|)) (-15 -1515 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -1515 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1515 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -3845 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1628 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -3269 ((-108) (-592 |#4|))) (-15 -2906 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -3216 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3768 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3330 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2035 ((-108) |#4|)) (-15 -3766 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1935 ((-108) |#4|)) (-15 -1809 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -3047 ((-108) |#4|)) (-15 -2494 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2452 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2452 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2255 (|#4| |#4| (-592 |#4|))) (-15 -1499 ((-592 |#4|) (-592 |#4|))) (-15 -2934 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -1743 ((-592 |#4|) (-592 |#4|))) (-15 -1299 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2066 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3394 ((-592 |#4|) |#4|)) (-15 -2424 ((-592 |#4|) (-592 |#4|))) (-15 -2424 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -1602 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -4002 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1661 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -3736 ((-592 |#4|) (-592 |#4|))) (-15 -1560 ((-592 |#4|) (-592 |#4|))) (-15 -3900 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|)) +((-4127 (((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-1556 (((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|)) 36)) (-1532 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) +(((-910 |#1|) (-10 -7 (-15 -4127 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1532 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1556 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|)))) (-341)) (T -910)) +((-1556 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1172 *5))))) (-5 *1 (-910 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)))) (-1532 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-910 *5)))) (-4127 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) (-5 *1 (-910 *6)) (-5 *3 (-632 *6))))) +(-10 -7 (-15 -4127 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1532 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1556 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|)))) +((-1259 (((-396 |#4|) |#4|) 48))) +(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1259 ((-396 |#4|) |#4|))) (-789) (-735) (-429) (-883 |#3| |#2| |#1|)) (T -911)) +((-1259 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3)) (-5 *1 (-911 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4))))) +(-10 -7 (-15 -1259 ((-396 |#4|) |#4|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2957 (($ (-713)) 112 (|has| |#1| (-23)))) (-2792 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) 8)) (-1230 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-1626 (($ $) 90 (|has| $ (-6 -4255)))) (-3263 (($ $) 100)) (-1716 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 51)) (-1930 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1019)))) (-4183 (($ (-592 |#1|)) 118)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-1336 (((-632 |#1|) $ $) 105 (|has| |#1| (-976)))) (-3248 (($ (-713) |#1|) 69)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 43 (|has| (-525) (-789)))) (-1260 (($ $ $) 87 (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 44 (|has| (-525) (-789)))) (-2154 (($ $ $) 86 (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3597 ((|#1| $) 102 (-12 (|has| |#1| (-976)) (|has| |#1| (-933))))) (-2350 (((-108) $ (-713)) 10)) (-2520 ((|#1| $) 103 (-12 (|has| |#1| (-976)) (|has| |#1| (-933))))) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2379 (((-592 (-525)) $) 46)) (-2030 (((-108) (-525) $) 47)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1683 ((|#1| $) 42 (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1614 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-1539 (($ $ (-592 |#1|)) 115)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-1580 ((|#1| $ $) 106 (|has| |#1| (-976)))) (-2374 (((-855) $) 117)) (-2697 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2331 (($ $ $) 104)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-4038 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-1261 (($ $) 13)) (-2923 (((-501) $) 79 (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 116)) (-4059 (($ (-592 |#1|)) 70)) (-1810 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-3959 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4033 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4017 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-912 |#1|) (-131) (-976)) (T -912)) +((-4183 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-912 *3)))) (-2374 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-976)) (-5 *2 (-855)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-912 *3)))) (-2331 (*1 *1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-976)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-912 *3)) (-4 *3 (-976))))) +(-13 (-1170 |t#1|) (-10 -8 (-15 -4183 ($ (-592 |t#1|))) (-15 -2374 ((-855) $)) (-15 -2923 ($ (-592 |t#1|))) (-15 -2331 ($ $ $)) (-15 -1539 ($ $ (-592 |t#1|))))) +(((-33) . T) ((-97) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1019) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1126) . T) ((-1170 |#1|) . T)) +((-2868 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 17))) +(((-913 |#1| |#2|) (-10 -7 (-15 -2868 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-976) (-976)) (T -913)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-877 *6)) (-5 *1 (-913 *5 *6))))) +(-10 -7 (-15 -2868 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) +((-2779 ((|#1| (-877 |#1|)) 13)) (-2857 ((|#1| (-877 |#1|)) 12)) (-2748 ((|#1| (-877 |#1|)) 11)) (-2362 ((|#1| (-877 |#1|)) 15)) (-3559 ((|#1| (-877 |#1|)) 21)) (-3969 ((|#1| (-877 |#1|)) 14)) (-1465 ((|#1| (-877 |#1|)) 16)) (-2949 ((|#1| (-877 |#1|)) 20)) (-3244 ((|#1| (-877 |#1|)) 19))) +(((-914 |#1|) (-10 -7 (-15 -2748 (|#1| (-877 |#1|))) (-15 -2857 (|#1| (-877 |#1|))) (-15 -2779 (|#1| (-877 |#1|))) (-15 -3969 (|#1| (-877 |#1|))) (-15 -2362 (|#1| (-877 |#1|))) (-15 -1465 (|#1| (-877 |#1|))) (-15 -3244 (|#1| (-877 |#1|))) (-15 -2949 (|#1| (-877 |#1|))) (-15 -3559 (|#1| (-877 |#1|)))) (-976)) (T -914)) +((-3559 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-3244 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) +(-10 -7 (-15 -2748 (|#1| (-877 |#1|))) (-15 -2857 (|#1| (-877 |#1|))) (-15 -2779 (|#1| (-877 |#1|))) (-15 -3969 (|#1| (-877 |#1|))) (-15 -2362 (|#1| (-877 |#1|))) (-15 -1465 (|#1| (-877 |#1|))) (-15 -3244 (|#1| (-877 |#1|))) (-15 -2949 (|#1| (-877 |#1|))) (-15 -3559 (|#1| (-877 |#1|)))) +((-3379 (((-3 |#1| "failed") |#1|) 18)) (-1999 (((-3 |#1| "failed") |#1|) 6)) (-4130 (((-3 |#1| "failed") |#1|) 16)) (-1724 (((-3 |#1| "failed") |#1|) 4)) (-2849 (((-3 |#1| "failed") |#1|) 20)) (-3217 (((-3 |#1| "failed") |#1|) 8)) (-2632 (((-3 |#1| "failed") |#1| (-713)) 1)) (-2351 (((-3 |#1| "failed") |#1|) 3)) (-3650 (((-3 |#1| "failed") |#1|) 2)) (-3435 (((-3 |#1| "failed") |#1|) 21)) (-4036 (((-3 |#1| "failed") |#1|) 9)) (-2613 (((-3 |#1| "failed") |#1|) 19)) (-2948 (((-3 |#1| "failed") |#1|) 7)) (-3906 (((-3 |#1| "failed") |#1|) 17)) (-3866 (((-3 |#1| "failed") |#1|) 5)) (-4191 (((-3 |#1| "failed") |#1|) 24)) (-4160 (((-3 |#1| "failed") |#1|) 12)) (-2364 (((-3 |#1| "failed") |#1|) 22)) (-3334 (((-3 |#1| "failed") |#1|) 10)) (-2025 (((-3 |#1| "failed") |#1|) 26)) (-3339 (((-3 |#1| "failed") |#1|) 14)) (-3979 (((-3 |#1| "failed") |#1|) 27)) (-2759 (((-3 |#1| "failed") |#1|) 15)) (-1579 (((-3 |#1| "failed") |#1|) 25)) (-2545 (((-3 |#1| "failed") |#1|) 13)) (-2993 (((-3 |#1| "failed") |#1|) 23)) (-2095 (((-3 |#1| "failed") |#1|) 11))) +(((-915 |#1|) (-131) (-1112)) (T -915)) +((-3979 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2025 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1579 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-4191 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2993 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2364 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3435 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2849 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2613 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3379 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3906 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-4130 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2759 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3339 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2545 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-4160 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2095 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3334 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-4036 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3217 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2948 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1999 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3866 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1724 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2351 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3650 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2632 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(-13 (-10 -7 (-15 -2632 ((-3 |t#1| "failed") |t#1| (-713))) (-15 -3650 ((-3 |t#1| "failed") |t#1|)) (-15 -2351 ((-3 |t#1| "failed") |t#1|)) (-15 -1724 ((-3 |t#1| "failed") |t#1|)) (-15 -3866 ((-3 |t#1| "failed") |t#1|)) (-15 -1999 ((-3 |t#1| "failed") |t#1|)) (-15 -2948 ((-3 |t#1| "failed") |t#1|)) (-15 -3217 ((-3 |t#1| "failed") |t#1|)) (-15 -4036 ((-3 |t#1| "failed") |t#1|)) (-15 -3334 ((-3 |t#1| "failed") |t#1|)) (-15 -2095 ((-3 |t#1| "failed") |t#1|)) (-15 -4160 ((-3 |t#1| "failed") |t#1|)) (-15 -2545 ((-3 |t#1| "failed") |t#1|)) (-15 -3339 ((-3 |t#1| "failed") |t#1|)) (-15 -2759 ((-3 |t#1| "failed") |t#1|)) (-15 -4130 ((-3 |t#1| "failed") |t#1|)) (-15 -3906 ((-3 |t#1| "failed") |t#1|)) (-15 -3379 ((-3 |t#1| "failed") |t#1|)) (-15 -2613 ((-3 |t#1| "failed") |t#1|)) (-15 -2849 ((-3 |t#1| "failed") |t#1|)) (-15 -3435 ((-3 |t#1| "failed") |t#1|)) (-15 -2364 ((-3 |t#1| "failed") |t#1|)) (-15 -2993 ((-3 |t#1| "failed") |t#1|)) (-15 -4191 ((-3 |t#1| "failed") |t#1|)) (-15 -1579 ((-3 |t#1| "failed") |t#1|)) (-15 -2025 ((-3 |t#1| "failed") |t#1|)) (-15 -3979 ((-3 |t#1| "failed") |t#1|)))) +((-3223 ((|#4| |#4| (-592 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2756 ((|#4| |#4| (-592 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2868 ((|#4| (-1 |#4| (-886 |#1|)) |#4|) 30))) +(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2756 (|#4| |#4| |#3|)) (-15 -2756 (|#4| |#4| (-592 |#3|))) (-15 -3223 (|#4| |#4| |#3|)) (-15 -3223 (|#4| |#4| (-592 |#3|))) (-15 -2868 (|#4| (-1 |#4| (-886 |#1|)) |#4|))) (-976) (-735) (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090))))) (-883 (-886 |#1|) |#2| |#3|)) (T -916)) +((-2868 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-886 *4))) (-4 *4 (-976)) (-4 *2 (-883 (-886 *4) *5 *6)) (-4 *5 (-735)) (-4 *6 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090)))))) (-5 *1 (-916 *4 *5 *6 *2)))) (-3223 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090)))))) (-4 *4 (-976)) (-4 *5 (-735)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *2 (-883 (-886 *4) *5 *6)))) (-3223 (*1 *2 *2 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090)))))) (-5 *1 (-916 *4 *5 *3 *2)) (-4 *2 (-883 (-886 *4) *5 *3)))) (-2756 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090)))))) (-4 *4 (-976)) (-4 *5 (-735)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *2 (-883 (-886 *4) *5 *6)))) (-2756 (*1 *2 *2 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)) (-15 -2818 ((-3 $ "failed") (-1090)))))) (-5 *1 (-916 *4 *5 *3 *2)) (-4 *2 (-883 (-886 *4) *5 *3))))) +(-10 -7 (-15 -2756 (|#4| |#4| |#3|)) (-15 -2756 (|#4| |#4| (-592 |#3|))) (-15 -3223 (|#4| |#4| |#3|)) (-15 -3223 (|#4| |#4| (-592 |#3|))) (-15 -2868 (|#4| (-1 |#4| (-886 |#1|)) |#4|))) +((-1360 ((|#2| |#3|) 35)) (-2161 (((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 73)) (-1920 (((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 89))) +(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1920 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -2161 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -1360 (|#2| |#3|))) (-327) (-1148 |#1|) (-1148 |#2|) (-667 |#2| |#3|)) (T -917)) +((-1360 (*1 *2 *3) (-12 (-4 *3 (-1148 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-917 *4 *2 *3 *5)) (-4 *4 (-327)) (-4 *5 (-667 *2 *3)))) (-2161 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 *3)) (-5 *2 (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-917 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5)))) (-1920 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -2734 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-917 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5))))) +(-10 -7 (-15 -1920 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -2161 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -1360 (|#2| |#3|))) +((-4196 (((-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))) 69))) +(((-918 |#1| |#2|) (-10 -7 (-15 -4196 ((-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))))) (-592 (-1090)) (-713)) (T -918)) +((-4196 (*1 *2 *2) (-12 (-5 *2 (-919 (-385 (-525)) (-799 *3) (-220 *4 (-713)) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1090))) (-14 *4 (-713)) (-5 *1 (-918 *3 *4))))) +(-10 -7 (-15 -4196 ((-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))))) +((-4028 (((-108) $ $) NIL)) (-2777 (((-3 (-108) "failed") $) 69)) (-1351 (($ $) 36 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-1593 (($ $ (-3 (-108) "failed")) 70)) (-4156 (($ (-592 |#4|) |#4|) 25)) (-1707 (((-1073) $) NIL)) (-2989 (($ $) 67)) (-3027 (((-1037) $) NIL)) (-3086 (((-108) $) 68)) (-3266 (($) 30)) (-1952 ((|#4| $) 72)) (-2219 (((-592 |#4|) $) 71)) (-4044 (((-797) $) 66)) (-3899 (((-108) $ $) NIL))) +(((-919 |#1| |#2| |#3| |#4|) (-13 (-1019) (-566 (-797)) (-10 -8 (-15 -3266 ($)) (-15 -4156 ($ (-592 |#4|) |#4|)) (-15 -2777 ((-3 (-108) "failed") $)) (-15 -1593 ($ $ (-3 (-108) "failed"))) (-15 -3086 ((-108) $)) (-15 -2219 ((-592 |#4|) $)) (-15 -1952 (|#4| $)) (-15 -2989 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -1351 ($ $)) |%noBranch|) |%noBranch|))) (-429) (-789) (-735) (-883 |#1| |#3| |#2|)) (T -919)) +((-3266 (*1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3)))) (-4156 (*1 *1 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-883 *4 *6 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-919 *4 *5 *6 *3)))) (-2777 (*1 *2 *1) (|partial| -12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))) (-3086 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))) (-2219 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))) (-1952 (*1 *2 *1) (-12 (-4 *2 (-883 *3 *5 *4)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)))) (-2989 (*1 *1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3)))) (-1351 (*1 *1 *1) (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3))))) +(-13 (-1019) (-566 (-797)) (-10 -8 (-15 -3266 ($)) (-15 -4156 ($ (-592 |#4|) |#4|)) (-15 -2777 ((-3 (-108) "failed") $)) (-15 -1593 ($ $ (-3 (-108) "failed"))) (-15 -3086 ((-108) $)) (-15 -2219 ((-592 |#4|) $)) (-15 -1952 (|#4| $)) (-15 -2989 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -1351 ($ $)) |%noBranch|) |%noBranch|))) +((-3481 (((-108) |#5| |#5|) 38)) (-3880 (((-108) |#5| |#5|) 52)) (-3316 (((-108) |#5| (-592 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-1599 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-1722 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) 63)) (-2465 (((-1177)) 33)) (-3254 (((-1177) (-1073) (-1073) (-1073)) 29)) (-2579 (((-592 |#5|) (-592 |#5|)) 81)) (-3438 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) 79)) (-2403 (((-592 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 101)) (-1329 (((-108) |#5| |#5|) 47)) (-3561 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3245 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-1520 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-1826 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-3599 (((-3 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-4006 (((-592 |#5|) (-592 |#5|)) 43))) +(((-920 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3254 ((-1177) (-1073) (-1073) (-1073))) (-15 -2465 ((-1177))) (-15 -3481 ((-108) |#5| |#5|)) (-15 -4006 ((-592 |#5|) (-592 |#5|))) (-15 -1329 ((-108) |#5| |#5|)) (-15 -3880 ((-108) |#5| |#5|)) (-15 -1599 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3245 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1520 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1826 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3561 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3316 ((-108) |#5| |#5|)) (-15 -3316 ((-108) |#5| (-592 |#5|))) (-15 -2579 ((-592 |#5|) (-592 |#5|))) (-15 -1722 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) (-15 -3438 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-15 -2403 ((-592 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3599 ((-3 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -920)) +((-3599 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| -3941 (-592 *9)) (|:| -2249 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-920 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-995 *6 *7 *8 *9)))) (-2403 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-995 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -3941 (-592 *9)) (|:| -2249 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-920 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -2249 *7)))) (-4 *6 (-990 *3 *4 *5)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6 *7)))) (-1722 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2249 *8))) (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-920 *3 *4 *5 *6 *7)))) (-3316 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-920 *5 *6 *7 *8 *3)))) (-3316 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-3561 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-1826 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-1520 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-3245 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-1599 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-3880 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-1329 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-920 *3 *4 *5 *6 *7)))) (-3481 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-2465 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-920 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-3254 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) +(-10 -7 (-15 -3254 ((-1177) (-1073) (-1073) (-1073))) (-15 -2465 ((-1177))) (-15 -3481 ((-108) |#5| |#5|)) (-15 -4006 ((-592 |#5|) (-592 |#5|))) (-15 -1329 ((-108) |#5| |#5|)) (-15 -3880 ((-108) |#5| |#5|)) (-15 -1599 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3245 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1520 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1826 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3561 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3316 ((-108) |#5| |#5|)) (-15 -3316 ((-108) |#5| (-592 |#5|))) (-15 -2579 ((-592 |#5|) (-592 |#5|))) (-15 -1722 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) (-15 -3438 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-15 -2403 ((-592 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3599 ((-3 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) +((-2818 (((-1090) $) 15)) (-3067 (((-1073) $) 16)) (-2360 (($ (-1090) (-1073)) 14)) (-4044 (((-797) $) 13))) +(((-921) (-13 (-566 (-797)) (-10 -8 (-15 -2360 ($ (-1090) (-1073))) (-15 -2818 ((-1090) $)) (-15 -3067 ((-1073) $))))) (T -921)) +((-2360 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-921)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-921)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-921))))) +(-13 (-566 (-797)) (-10 -8 (-15 -2360 ($ (-1090) (-1073))) (-15 -2818 ((-1090) $)) (-15 -3067 ((-1073) $)))) +((-2868 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 (|#4| (-1 |#2| |#1|) |#3|))) (-517) (-517) (-924 |#1|) (-924 |#2|)) (T -922)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-4 *2 (-924 *6)) (-5 *1 (-922 *5 *6 *4 *2)) (-4 *4 (-924 *5))))) +(-10 -7 (-15 -2868 (|#4| (-1 |#2| |#1|) |#3|))) +((-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-1090) "failed") $) 65) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) 95)) (-2068 ((|#2| $) NIL) (((-1090) $) 60) (((-385 (-525)) $) NIL) (((-525) $) 92)) (-1307 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 112) (((-632 |#2|) (-632 $)) 28)) (-1527 (($) 98)) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 75) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84)) (-4055 (($ $) 10)) (-1978 (((-3 $ "failed") $) 20)) (-2868 (($ (-1 |#2| |#2|) $) 22)) (-2039 (($) 16)) (-1341 (($ $) 54)) (-1576 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1987 (($ $) 12)) (-2923 (((-826 (-525)) $) 70) (((-826 (-357)) $) 79) (((-501) $) 40) (((-357) $) 44) (((-205) $) 47)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 90) (($ |#2|) NIL) (($ (-1090)) 57)) (-2502 (((-713)) 31)) (-3928 (((-108) $ $) 50))) +(((-923 |#1| |#2|) (-10 -8 (-15 -3928 ((-108) |#1| |#1|)) (-15 -2039 (|#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2923 ((-205) |#1|)) (-15 -2923 ((-357) |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2068 ((-1090) |#1|)) (-15 -2769 ((-3 (-1090) "failed") |#1|)) (-15 -4044 (|#1| (-1090))) (-15 -1527 (|#1|)) (-15 -1341 (|#1| |#1|)) (-15 -1987 (|#1| |#1|)) (-15 -4055 (|#1| |#1|)) (-15 -2029 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -1307 ((-632 |#2|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| |#1|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 -4044 ((-797) |#1|))) (-924 |#2|) (-517)) (T -923)) +((-2502 (*1 *2) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-923 *3 *4)) (-4 *3 (-924 *4))))) +(-10 -8 (-15 -3928 ((-108) |#1| |#1|)) (-15 -2039 (|#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2923 ((-205) |#1|)) (-15 -2923 ((-357) |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2068 ((-1090) |#1|)) (-15 -2769 ((-3 (-1090) "failed") |#1|)) (-15 -4044 (|#1| (-1090))) (-15 -1527 (|#1|)) (-15 -1341 (|#1| |#1|)) (-15 -1987 (|#1| |#1|)) (-15 -4055 (|#1| |#1|)) (-15 -2029 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -2029 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -1307 ((-632 |#2|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| |#1|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-4094 ((|#1| $) 139 (|has| |#1| (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-1426 (((-396 (-1086 $)) (-1086 $)) 130 (|has| |#1| (-843)))) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 133 (|has| |#1| (-843)))) (-1700 (((-108) $ $) 59)) (-2780 (((-525) $) 120 (|has| |#1| (-762)))) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#1| "failed") $) 178) (((-3 (-1090) "failed") $) 128 (|has| |#1| (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) 112 (|has| |#1| (-967 (-525)))) (((-3 (-525) "failed") $) 110 (|has| |#1| (-967 (-525))))) (-2068 ((|#1| $) 177) (((-1090) $) 127 (|has| |#1| (-967 (-1090)))) (((-385 (-525)) $) 111 (|has| |#1| (-967 (-525)))) (((-525) $) 109 (|has| |#1| (-967 (-525))))) (-2720 (($ $ $) 55)) (-1307 (((-632 (-525)) (-632 $)) 152 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 151 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 150) (((-632 |#1|) (-632 $)) 149)) (-1645 (((-3 $ "failed") $) 34)) (-1527 (($) 137 (|has| |#1| (-510)))) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2069 (((-108) $) 71)) (-2973 (((-108) $) 122 (|has| |#1| (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 146 (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 145 (|has| |#1| (-820 (-357))))) (-2507 (((-108) $) 31)) (-4055 (($ $) 141)) (-1936 ((|#1| $) 143)) (-1978 (((-3 $ "failed") $) 108 (|has| |#1| (-1066)))) (-3721 (((-108) $) 121 (|has| |#1| (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-1260 (($ $ $) 118 (|has| |#1| (-789)))) (-2154 (($ $ $) 117 (|has| |#1| (-789)))) (-2868 (($ (-1 |#1| |#1|) $) 169)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 70)) (-2039 (($) 107 (|has| |#1| (-1066)) CONST)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-1341 (($ $) 138 (|has| |#1| (-286)))) (-2473 ((|#1| $) 135 (|has| |#1| (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) 132 (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) 131 (|has| |#1| (-843)))) (-2961 (((-396 $) $) 74)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) 175 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 173 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 172 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 171 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) 170 (|has| |#1| (-486 (-1090) |#1|)))) (-2824 (((-713) $) 58)) (-1496 (($ $ |#1|) 176 (|has| |#1| (-265 |#1| |#1|)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-1576 (($ $) 168 (|has| |#1| (-213))) (($ $ (-713)) 166 (|has| |#1| (-213))) (($ $ (-1090)) 164 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 163 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 162 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 161 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-1987 (($ $) 140)) (-1945 ((|#1| $) 142)) (-2923 (((-826 (-525)) $) 148 (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) 147 (|has| |#1| (-567 (-826 (-357))))) (((-501) $) 125 (|has| |#1| (-567 (-501)))) (((-357) $) 124 (|has| |#1| (-952))) (((-205) $) 123 (|has| |#1| (-952)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 134 (-2385 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 181) (($ (-1090)) 129 (|has| |#1| (-967 (-1090))))) (-1279 (((-3 $ "failed") $) 126 (-3215 (|has| |#1| (-136)) (-2385 (|has| $ (-136)) (|has| |#1| (-843)))))) (-2502 (((-713)) 29)) (-1448 ((|#1| $) 136 (|has| |#1| (-510)))) (-3787 (((-108) $ $) 39)) (-2053 (($ $) 119 (|has| |#1| (-762)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $) 167 (|has| |#1| (-213))) (($ $ (-713)) 165 (|has| |#1| (-213))) (($ $ (-1090)) 160 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 159 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 158 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 157 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-3973 (((-108) $ $) 115 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 114 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 116 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 113 (|has| |#1| (-789)))) (-4047 (($ $ $) 64) (($ |#1| |#1|) 144)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) +(((-924 |#1|) (-131) (-517)) (T -924)) +((-4047 (*1 *1 *2 *2) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-1936 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-4055 (*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-1987 (*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-1341 (*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-1527 (*1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-510)) (-4 *2 (-517)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-510))))) +(-13 (-341) (-37 |t#1|) (-967 |t#1|) (-316 |t#1|) (-211 |t#1|) (-355 |t#1|) (-818 |t#1|) (-378 |t#1|) (-10 -8 (-15 -4047 ($ |t#1| |t#1|)) (-15 -1936 (|t#1| $)) (-15 -1945 (|t#1| $)) (-15 -4055 ($ $)) (-15 -1987 ($ $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-967 (-525))) (PROGN (-6 (-967 (-525))) (-6 (-967 (-385 (-525))))) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-762)) (-6 (-762)) |%noBranch|) (IF (|has| |t#1| (-952)) (-6 (-952)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-967 (-1090))) (-6 (-967 (-1090))) |%noBranch|) (IF (|has| |t#1| (-286)) (PROGN (-15 -4094 (|t#1| $)) (-15 -1341 ($ $))) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -1527 ($)) (-15 -1448 (|t#1| $)) (-15 -2473 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-843)) (-6 (-843)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 (-205)) |has| |#1| (-952)) ((-567 (-357)) |has| |#1| (-952)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525)))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) . T) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) . T) ((-286) . T) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-429) . T) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-733) |has| |#1| (-762)) ((-734) |has| |#1| (-762)) ((-736) |has| |#1| (-762)) ((-737) |has| |#1| (-762)) ((-762) |has| |#1| (-762)) ((-787) |has| |#1| (-762)) ((-789) -3215 (|has| |#1| (-789)) (|has| |#1| (-762))) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-818 |#1|) . T) ((-843) |has| |#1| (-843)) ((-854) . T) ((-952) |has| |#1| (-952)) ((-967 (-385 (-525))) |has| |#1| (-967 (-525))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 (-1090)) |has| |#1| (-967 (-1090))) ((-967 |#1|) . T) ((-982 #0#) . T) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-1066)) ((-1126) . T) ((-1130) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-1717 (($ (-1057 |#1| |#2|)) 11)) (-1521 (((-1057 |#1| |#2|) $) 12)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1496 ((|#2| $ (-220 |#1| |#2|)) 16)) (-4044 (((-797) $) NIL)) (-1436 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL))) +(((-925 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1717 ($ (-1057 |#1| |#2|))) (-15 -1521 ((-1057 |#1| |#2|) $)) (-15 -1496 (|#2| $ (-220 |#1| |#2|))))) (-855) (-341)) (T -925)) +((-1717 (*1 *1 *2) (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-855)) (-4 *4 (-341)) (-5 *1 (-925 *3 *4)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-925 *3 *4)) (-14 *3 (-855)) (-4 *4 (-341)))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-855)) (-4 *2 (-341)) (-5 *1 (-925 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -1717 ($ (-1057 |#1| |#2|))) (-15 -1521 ((-1057 |#1| |#2|) $)) (-15 -1496 (|#2| $ (-220 |#1| |#2|))))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) 8)) (-1957 (($) 7 T CONST)) (-2561 (($ $) 46)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-2520 (((-713) $) 45)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-2950 ((|#1| $) 44)) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3280 ((|#1| |#1| $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1340 ((|#1| $) 47)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) 42)) (-4214 ((|#1| $) 43)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-926 |#1|) (-131) (-1126)) (T -926)) +((-3280 (*1 *2 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))) (-1340 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))) (-2561 (*1 *1 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))) (-4214 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4254) (-15 -3280 (|t#1| |t#1| $)) (-15 -1340 (|t#1| $)) (-15 -2561 ($ $)) (-15 -2520 ((-713) $)) (-15 -2950 (|t#1| $)) (-15 -4214 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-2464 (((-108) $) 42)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2068 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 43)) (-2132 (((-3 (-385 (-525)) "failed") $) 78)) (-3748 (((-108) $) 72)) (-1675 (((-385 (-525)) $) 76)) (-2507 (((-108) $) 41)) (-2281 ((|#2| $) 22)) (-2868 (($ (-1 |#2| |#2|) $) 19)) (-3243 (($ $) 61)) (-1576 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2923 (((-501) $) 67)) (-4025 (($ $) 17)) (-4044 (((-797) $) 56) (($ (-525)) 38) (($ |#2|) 36) (($ (-385 (-525))) NIL)) (-2502 (((-713)) 10)) (-2053 ((|#2| $) 71)) (-3899 (((-108) $ $) 25)) (-3928 (((-108) $ $) 69)) (-4033 (($ $) 29) (($ $ $) 28)) (-4017 (($ $ $) 26)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL))) +(((-927 |#1| |#2|) (-10 -8 (-15 -4044 (|#1| (-385 (-525)))) (-15 -3928 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -3243 (|#1| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -4025 (|#1| |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -4044 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 -2507 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) (-928 |#2|) (-160)) (T -927)) +((-2502 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-927 *3 *4)) (-4 *3 (-928 *4))))) +(-10 -8 (-15 -4044 (|#1| (-385 (-525)))) (-15 -3928 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -3243 (|#1| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2281 (|#2| |#1|)) (-15 -4025 (|#1| |#1|)) (-15 -2868 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -4044 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 -2507 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4017 (|#1| |#1| |#1|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-2769 (((-3 (-525) "failed") $) 119 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 117 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-2068 (((-525) $) 120 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 118 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 115)) (-1307 (((-632 (-525)) (-632 $)) 90 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 89 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 88) (((-632 |#1|) (-632 $)) 87)) (-1645 (((-3 $ "failed") $) 34)) (-2992 ((|#1| $) 80)) (-2132 (((-3 (-385 (-525)) "failed") $) 76 (|has| |#1| (-510)))) (-3748 (((-108) $) 78 (|has| |#1| (-510)))) (-1675 (((-385 (-525)) $) 77 (|has| |#1| (-510)))) (-1685 (($ |#1| |#1| |#1| |#1|) 81)) (-2507 (((-108) $) 31)) (-2281 ((|#1| $) 82)) (-1260 (($ $ $) 68 (|has| |#1| (-789)))) (-2154 (($ $ $) 67 (|has| |#1| (-789)))) (-2868 (($ (-1 |#1| |#1|) $) 91)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 73 (|has| |#1| (-341)))) (-4095 ((|#1| $) 83)) (-2829 ((|#1| $) 84)) (-3699 ((|#1| $) 85)) (-3027 (((-1037) $) 10)) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) 97 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 95 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 94 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 93 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) 92 (|has| |#1| (-486 (-1090) |#1|)))) (-1496 (($ $ |#1|) 98 (|has| |#1| (-265 |#1| |#1|)))) (-1576 (($ $) 114 (|has| |#1| (-213))) (($ $ (-713)) 112 (|has| |#1| (-213))) (($ $ (-1090)) 110 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 109 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 108 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 107 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-2923 (((-501) $) 74 (|has| |#1| (-567 (-501))))) (-4025 (($ $) 86)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 62 (-3215 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525))))))) (-1279 (((-3 $ "failed") $) 75 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-2053 ((|#1| $) 79 (|has| |#1| (-985)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 72 (|has| |#1| (-341)))) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $) 113 (|has| |#1| (-213))) (($ $ (-713)) 111 (|has| |#1| (-213))) (($ $ (-1090)) 106 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 105 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 104 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 103 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-3973 (((-108) $ $) 65 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 64 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 66 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 63 (|has| |#1| (-789)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 71 (|has| |#1| (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-385 (-525))) 70 (|has| |#1| (-341))) (($ (-385 (-525)) $) 69 (|has| |#1| (-341))))) +(((-928 |#1|) (-131) (-160)) (T -928)) +((-4025 (*1 *1 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-1685 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)) (-4 *2 (-985)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2132 (*1 *2 *1) (|partial| -12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525)))))) +(-13 (-37 |t#1|) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-355 |t#1|) (-10 -8 (-15 -4025 ($ $)) (-15 -3699 (|t#1| $)) (-15 -2829 (|t#1| $)) (-15 -4095 (|t#1| $)) (-15 -2281 (|t#1| $)) (-15 -1685 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2992 (|t#1| $)) (IF (|has| |t#1| (-269)) (-6 (-269)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-223)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-985)) (-15 -2053 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3748 ((-108) $)) (-15 -1675 ((-385 (-525)) $)) (-15 -2132 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-341)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-341)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) |has| |#1| (-341)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3215 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-594 #0#) |has| |#1| (-341)) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-341)) ((-660 |#1|) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 #0#) |has| |#1| (-341)) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2868 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-929 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 (|#3| (-1 |#4| |#2|) |#1|))) (-928 |#2|) (-160) (-928 |#4|) (-160)) (T -929)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-928 *6)) (-5 *1 (-929 *4 *5 *2 *6)) (-4 *4 (-928 *5))))) +(-10 -7 (-15 -2868 (|#3| (-1 |#4| |#2|) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2992 ((|#1| $) 12)) (-2132 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-3748 (((-108) $) NIL (|has| |#1| (-510)))) (-1675 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-1685 (($ |#1| |#1| |#1| |#1|) 16)) (-2507 (((-108) $) NIL)) (-2281 ((|#1| $) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-4095 ((|#1| $) 15)) (-2829 ((|#1| $) 14)) (-3699 ((|#1| $) 13)) (-3027 (((-1037) $) NIL)) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|)))) (-1496 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-1576 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4025 (($ $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525))))))) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-2053 ((|#1| $) NIL (|has| |#1| (-985)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) 8 T CONST)) (-1449 (($) 10 T CONST)) (-1990 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))))) +(((-930 |#1|) (-928 |#1|) (-160)) (T -930)) +NIL +(-928 |#1|) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2583 (((-108) $ (-713)) NIL)) (-1957 (($) NIL T CONST)) (-2561 (($ $) 20)) (-2421 (($ (-592 |#1|)) 29)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-2520 (((-713) $) 22)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2434 ((|#1| $) 24)) (-4157 (($ |#1| $) 15)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-2950 ((|#1| $) 23)) (-3672 ((|#1| $) 19)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3280 ((|#1| |#1| $) 14)) (-3086 (((-108) $) 17)) (-3266 (($) NIL)) (-1340 ((|#1| $) 18)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) NIL)) (-4214 ((|#1| $) 26)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-931 |#1|) (-13 (-926 |#1|) (-10 -8 (-15 -2421 ($ (-592 |#1|))))) (-1019)) (T -931)) +((-2421 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-931 *3))))) +(-13 (-926 |#1|) (-10 -8 (-15 -2421 ($ (-592 |#1|))))) +((-2975 (($ $) 12)) (-2581 (($ $ (-525)) 13))) +(((-932 |#1|) (-10 -8 (-15 -2975 (|#1| |#1|)) (-15 -2581 (|#1| |#1| (-525)))) (-933)) (T -932)) +NIL +(-10 -8 (-15 -2975 (|#1| |#1|)) (-15 -2581 (|#1| |#1| (-525)))) +((-2975 (($ $) 6)) (-2581 (($ $ (-525)) 7)) (** (($ $ (-385 (-525))) 8))) +(((-933) (-131)) (T -933)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-385 (-525))))) (-2581 (*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-525)))) (-2975 (*1 *1 *1) (-4 *1 (-933)))) +(-13 (-10 -8 (-15 -2975 ($ $)) (-15 -2581 ($ $ (-525))) (-15 ** ($ $ (-385 (-525)))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3949 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-2609 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1220 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-3852 (((-632 (-385 |#2|)) (-1172 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-3942 (((-385 |#2|) $) NIL)) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1259 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1700 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1651 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-3402 (((-108)) NIL)) (-3169 (((-108) |#1|) 148) (((-108) |#2|) 153)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| (-385 |#2|) (-967 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-1689 (($ (-1172 (-385 |#2|)) (-1172 $)) NIL) (($ (-1172 (-385 |#2|))) 70) (($ (-1172 |#2|) |#2|) NIL)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-2720 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3198 (((-632 (-385 |#2|)) $ (-1172 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-385 |#2|))) (|:| |vec| (-1172 (-385 |#2|)))) (-632 $) (-1172 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-1536 (((-1172 $) (-1172 $)) NIL)) (-3336 (($ |#3|) 65) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-1645 (((-3 $ "failed") $) NIL)) (-2442 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-3242 (((-108) |#1| |#1|) NIL)) (-3439 (((-855)) NIL)) (-1527 (($) NIL (|has| (-385 |#2|) (-346)))) (-3902 (((-108)) NIL)) (-3641 (((-108) |#1|) 56) (((-108) |#2|) 150)) (-2699 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-2319 (($ $) NIL)) (-2376 (($) NIL (|has| (-385 |#2|) (-327)))) (-3703 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-3351 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-2069 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-2158 (((-855) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-855)) $) NIL (|has| (-385 |#2|) (-327)))) (-2507 (((-108) $) NIL)) (-3029 (((-713)) NIL)) (-3770 (((-1172 $) (-1172 $)) NIL)) (-2281 (((-385 |#2|) $) NIL)) (-2027 (((-592 (-886 |#1|)) (-1090)) NIL (|has| |#1| (-341)))) (-1978 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3800 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-2111 (((-855) $) NIL (|has| (-385 |#2|) (-346)))) (-3325 ((|#3| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1707 (((-1073) $) NIL)) (-2378 (((-632 (-385 |#2|))) 52)) (-4021 (((-632 (-385 |#2|))) 51)) (-3243 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-4136 (($ (-1172 |#2|) |#2|) 71)) (-1344 (((-632 (-385 |#2|))) 50)) (-2209 (((-632 (-385 |#2|))) 49)) (-1742 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3974 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) 77)) (-4124 (((-1172 $)) 46)) (-1920 (((-1172 $)) 45)) (-2784 (((-108) $) NIL)) (-2318 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2039 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-3381 (($ (-855)) NIL (|has| (-385 |#2|) (-346)))) (-1443 (((-3 |#2| "failed")) 63)) (-3027 (((-1037) $) NIL)) (-3399 (((-713)) NIL)) (-3258 (($) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-385 |#2|) (-341)))) (-2262 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-2961 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2675 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2824 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-1496 ((|#1| $ |#1| |#1|) NIL)) (-1887 (((-3 |#2| "failed")) 62)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2257 (((-385 |#2|) (-1172 $)) NIL) (((-385 |#2|)) 42)) (-2729 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-1576 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-713)) NIL (-3215 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3215 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-1410 (((-632 (-385 |#2|)) (-1172 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-2775 ((|#3|) 53)) (-3405 (($) NIL (|has| (-385 |#2|) (-327)))) (-1625 (((-1172 (-385 |#2|)) $ (-1172 $)) NIL) (((-632 (-385 |#2|)) (-1172 $) (-1172 $)) NIL) (((-1172 (-385 |#2|)) $) 72) (((-632 (-385 |#2|)) (-1172 $)) NIL)) (-2923 (((-1172 (-385 |#2|)) $) NIL) (($ (-1172 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-2918 (((-1172 $) (-1172 $)) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3215 (|has| (-385 |#2|) (-967 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1279 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-2867 ((|#3| $) NIL)) (-2502 (((-713)) NIL)) (-1446 (((-108)) 60)) (-2860 (((-108) |#1|) 154) (((-108) |#2|) 155)) (-2734 (((-1172 $)) 125)) (-3787 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-3416 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2598 (((-108)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-1436 (($) 94 T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-713)) NIL (-3215 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3215 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341))))) +(((-934 |#1| |#2| |#3| |#4| |#5|) (-320 |#1| |#2| |#3|) (-1130) (-1148 |#1|) (-1148 (-385 |#2|)) (-385 |#2|) (-713)) (T -934)) NIL (-320 |#1| |#2| |#3|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2597 (((-591 (-525)) $) 54)) (-1685 (($ (-591 (-525))) 62)) (-2314 (((-525) $) 40 (|has| (-525) (-286)))) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL (|has| (-525) (-761)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) 49) (((-3 (-1089) "failed") $) NIL (|has| (-525) (-966 (-1089)))) (((-3 (-385 (-525)) "failed") $) 47 (|has| (-525) (-966 (-525)))) (((-3 (-525) "failed") $) 49 (|has| (-525) (-966 (-525))))) (-3341 (((-525) $) NIL) (((-1089) $) NIL (|has| (-525) (-966 (-1089)))) (((-385 (-525)) $) NIL (|has| (-525) (-966 (-525)))) (((-525) $) NIL (|has| (-525) (-966 (-525))))) (-3265 (($ $ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| (-525) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| (-525) (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-631 (-525)) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1325 (($) NIL (|has| (-525) (-510)))) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3821 (((-591 (-525)) $) 60)) (-3489 (((-108) $) NIL (|has| (-525) (-761)))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (|has| (-525) (-819 (-525)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (|has| (-525) (-819 (-357))))) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL)) (-1384 (((-525) $) 37)) (-2115 (((-3 $ "failed") $) NIL (|has| (-525) (-1065)))) (-2256 (((-108) $) NIL (|has| (-525) (-761)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| (-525) (-788)))) (-1257 (($ (-1 (-525) (-525)) $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL)) (-3492 (($) NIL (|has| (-525) (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-1583 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) 42)) (-1246 (((-1070 (-525)) $) 59)) (-3533 (($ (-591 (-525)) (-591 (-525))) 63)) (-2767 (((-525) $) 53 (|has| (-525) (-510)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| (-525) (-842)))) (-2542 (((-396 $) $) NIL)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1980 (($ $ (-591 (-525)) (-591 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-591 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-591 (-1089)) (-591 (-525))) NIL (|has| (-525) (-486 (-1089) (-525)))) (($ $ (-1089) (-525)) NIL (|has| (-525) (-486 (-1089) (-525))))) (-3048 (((-712) $) NIL)) (-1881 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $) 11 (|has| (-525) (-213))) (($ $ (-712)) NIL (|has| (-525) (-213))) (($ $ (-1089)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1 (-525) (-525)) (-712)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2774 (($ $) NIL)) (-1396 (((-525) $) 39)) (-3497 (((-591 (-525)) $) 61)) (-1300 (((-825 (-525)) $) NIL (|has| (-525) (-566 (-825 (-525))))) (((-825 (-357)) $) NIL (|has| (-525) (-566 (-825 (-357))))) (((-501) $) NIL (|has| (-525) (-566 (-501)))) (((-357) $) NIL (|has| (-525) (-951))) (((-205) $) NIL (|has| (-525) (-951)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-842))))) (-2686 (((-796) $) 77) (($ (-525)) 43) (($ $) NIL) (($ (-385 (-525))) 20) (($ (-525)) 43) (($ (-1089)) NIL (|has| (-525) (-966 (-1089)))) (((-385 (-525)) $) 18)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| (-525) (-842))) (|has| (-525) (-136))))) (-3425 (((-712)) 9)) (-1584 (((-525) $) 51 (|has| (-525) (-510)))) (-1724 (((-108) $ $) NIL)) (-1460 (($ $) NIL (|has| (-525) (-761)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 10 T CONST)) (-1839 (($) 12 T CONST)) (-1796 (($ $) NIL (|has| (-525) (-213))) (($ $ (-712)) NIL (|has| (-525) (-213))) (($ $ (-1089)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| (-525) (-833 (-1089)))) (($ $ (-1 (-525) (-525)) (-712)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4004 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3944 (((-108) $ $) 14)) (-3994 (((-108) $ $) NIL (|has| (-525) (-788)))) (-3971 (((-108) $ $) 33 (|has| (-525) (-788)))) (-4059 (($ $ $) 29) (($ (-525) (-525)) 31)) (-4047 (($ $) 15) (($ $ $) 23)) (-4036 (($ $ $) 21)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 25) (($ $ $) 27) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) 25) (($ $ (-525)) NIL))) -(((-934 |#1|) (-13 (-923 (-525)) (-10 -8 (-15 -2686 ((-385 (-525)) $)) (-15 -1583 ((-385 (-525)) $)) (-15 -2597 ((-591 (-525)) $)) (-15 -1246 ((-1070 (-525)) $)) (-15 -3821 ((-591 (-525)) $)) (-15 -3497 ((-591 (-525)) $)) (-15 -1685 ($ (-591 (-525)))) (-15 -3533 ($ (-591 (-525)) (-591 (-525)))))) (-525)) (T -934)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525)))) (-1246 (*1 *2 *1) (-12 (-5 *2 (-1070 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525)))) (-1685 (*1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525)))) (-3533 (*1 *1 *2 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525))))) -(-13 (-923 (-525)) (-10 -8 (-15 -2686 ((-385 (-525)) $)) (-15 -1583 ((-385 (-525)) $)) (-15 -2597 ((-591 (-525)) $)) (-15 -1246 ((-1070 (-525)) $)) (-15 -3821 ((-591 (-525)) $)) (-15 -3497 ((-591 (-525)) $)) (-15 -1685 ($ (-591 (-525)))) (-15 -3533 ($ (-591 (-525)) (-591 (-525)))))) -((-1927 (((-51) (-385 (-525)) (-525)) 9))) -(((-935) (-10 -7 (-15 -1927 ((-51) (-385 (-525)) (-525))))) (T -935)) -((-1927 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51)) (-5 *1 (-935))))) -(-10 -7 (-15 -1927 ((-51) (-385 (-525)) (-525)))) -((-2834 (((-525)) 13)) (-3787 (((-525)) 16)) (-3411 (((-1176) (-525)) 15)) (-1742 (((-525) (-525)) 17) (((-525)) 12))) -(((-936) (-10 -7 (-15 -1742 ((-525))) (-15 -2834 ((-525))) (-15 -1742 ((-525) (-525))) (-15 -3411 ((-1176) (-525))) (-15 -3787 ((-525))))) (T -936)) -((-3787 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-936)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-936)))) (-1742 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-936)))) (-2834 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-936)))) (-1742 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-936))))) -(-10 -7 (-15 -1742 ((-525))) (-15 -2834 ((-525))) (-15 -1742 ((-525) (-525))) (-15 -3411 ((-1176) (-525))) (-15 -3787 ((-525)))) -((-3033 (((-396 |#1|) |#1|) 41)) (-2542 (((-396 |#1|) |#1|) 40))) -(((-937 |#1|) (-10 -7 (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3033 ((-396 |#1|) |#1|))) (-1147 (-385 (-525)))) (T -937)) -((-3033 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-937 *3)) (-4 *3 (-1147 (-385 (-525)))))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-937 *3)) (-4 *3 (-1147 (-385 (-525))))))) -(-10 -7 (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3033 ((-396 |#1|) |#1|))) -((-2350 (((-3 (-385 (-525)) "failed") |#1|) 15)) (-2157 (((-108) |#1|) 14)) (-3184 (((-385 (-525)) |#1|) 10))) -(((-938 |#1|) (-10 -7 (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|))) (-966 (-385 (-525)))) (T -938)) -((-2350 (*1 *2 *3) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-938 *3)) (-4 *3 (-966 *2)))) (-2157 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-938 *3)) (-4 *3 (-966 (-385 (-525)))))) (-3184 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-938 *3)) (-4 *3 (-966 *2))))) -(-10 -7 (-15 -3184 ((-385 (-525)) |#1|)) (-15 -2157 ((-108) |#1|)) (-15 -2350 ((-3 (-385 (-525)) "failed") |#1|))) -((-2847 ((|#2| $ "value" |#2|) 12)) (-1881 ((|#2| $ "value") 10)) (-3592 (((-108) $ $) 18))) -(((-939 |#1| |#2|) (-10 -8 (-15 -2847 (|#2| |#1| "value" |#2|)) (-15 -3592 ((-108) |#1| |#1|)) (-15 -1881 (|#2| |#1| "value"))) (-940 |#2|) (-1125)) (T -939)) -NIL -(-10 -8 (-15 -2847 (|#2| |#1| "value" |#2|)) (-15 -3592 ((-108) |#1| |#1|)) (-15 -1881 (|#2| |#1| "value"))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-2940 ((|#1| $) 48)) (-3727 (((-108) $ (-712)) 8)) (-3912 ((|#1| $ |#1|) 39 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 41 (|has| $ (-6 -4251)))) (-2055 (($) 7 T CONST)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 50)) (-3219 (((-108) $ $) 42 (|has| |#1| (-1018)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2065 (((-591 |#1|) $) 45)) (-2878 (((-108) $) 49)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ "value") 47)) (-2194 (((-525) $ $) 44)) (-4133 (((-108) $) 46)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) 51)) (-3592 (((-108) $ $) 43 (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-940 |#1|) (-131) (-1125)) (T -940)) -((-1567 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-5 *2 (-591 *1)) (-4 *1 (-940 *3)))) (-2275 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-5 *2 (-591 *1)) (-4 *1 (-940 *3)))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-5 *2 (-108)))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-940 *2)) (-4 *2 (-1125)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-940 *2)) (-4 *2 (-1125)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-5 *2 (-108)))) (-2065 (*1 *2 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-5 *2 (-591 *3)))) (-2194 (*1 *2 *1 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-5 *2 (-525)))) (-3592 (*1 *2 *1 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-4 *3 (-1018)) (-5 *2 (-108)))) (-3219 (*1 *2 *1 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-4 *3 (-1018)) (-5 *2 (-108)))) (-3245 (*1 *1 *1 *2) (-12 (-5 *2 (-591 *1)) (|has| *1 (-6 -4251)) (-4 *1 (-940 *3)) (-4 *3 (-1125)))) (-2847 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4251)) (-4 *1 (-940 *2)) (-4 *2 (-1125)))) (-3912 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-940 *2)) (-4 *2 (-1125))))) -(-13 (-464 |t#1|) (-10 -8 (-15 -1567 ((-591 $) $)) (-15 -2275 ((-591 $) $)) (-15 -2878 ((-108) $)) (-15 -2940 (|t#1| $)) (-15 -1881 (|t#1| $ "value")) (-15 -4133 ((-108) $)) (-15 -2065 ((-591 |t#1|) $)) (-15 -2194 ((-525) $ $)) (IF (|has| |t#1| (-1018)) (PROGN (-15 -3592 ((-108) $ $)) (-15 -3219 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4251)) (PROGN (-15 -3245 ($ $ (-591 $))) (-15 -2847 (|t#1| $ "value" |t#1|)) (-15 -3912 (|t#1| $ |t#1|))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-2551 (($ $) 9) (($ $ (-712)) 43) (($ (-385 (-525))) 13) (($ (-525)) 15)) (-1254 (((-3 $ "failed") (-1085 $) (-854) (-796)) 23) (((-3 $ "failed") (-1085 $) (-854)) 28)) (-3126 (($ $ (-525)) 49)) (-3425 (((-712)) 16)) (-1634 (((-591 $) (-1085 $)) NIL) (((-591 $) (-1085 (-385 (-525)))) 54) (((-591 $) (-1085 (-525))) 59) (((-591 $) (-885 $)) 63) (((-591 $) (-885 (-385 (-525)))) 67) (((-591 $) (-885 (-525))) 71)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 47))) -(((-941 |#1|) (-10 -8 (-15 -2551 (|#1| (-525))) (-15 -2551 (|#1| (-385 (-525)))) (-15 -2551 (|#1| |#1| (-712))) (-15 -1634 ((-591 |#1|) (-885 (-525)))) (-15 -1634 ((-591 |#1|) (-885 (-385 (-525))))) (-15 -1634 ((-591 |#1|) (-885 |#1|))) (-15 -1634 ((-591 |#1|) (-1085 (-525)))) (-15 -1634 ((-591 |#1|) (-1085 (-385 (-525))))) (-15 -1634 ((-591 |#1|) (-1085 |#1|))) (-15 -1254 ((-3 |#1| "failed") (-1085 |#1|) (-854))) (-15 -1254 ((-3 |#1| "failed") (-1085 |#1|) (-854) (-796))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3126 (|#1| |#1| (-525))) (-15 -2551 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -3425 ((-712))) (-15 ** (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-854)))) (-942)) (T -941)) -((-3425 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-941 *3)) (-4 *3 (-942))))) -(-10 -8 (-15 -2551 (|#1| (-525))) (-15 -2551 (|#1| (-385 (-525)))) (-15 -2551 (|#1| |#1| (-712))) (-15 -1634 ((-591 |#1|) (-885 (-525)))) (-15 -1634 ((-591 |#1|) (-885 (-385 (-525))))) (-15 -1634 ((-591 |#1|) (-885 |#1|))) (-15 -1634 ((-591 |#1|) (-1085 (-525)))) (-15 -1634 ((-591 |#1|) (-1085 (-385 (-525))))) (-15 -1634 ((-591 |#1|) (-1085 |#1|))) (-15 -1254 ((-3 |#1| "failed") (-1085 |#1|) (-854))) (-15 -1254 ((-3 |#1| "failed") (-1085 |#1|) (-854) (-796))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3126 (|#1| |#1| (-525))) (-15 -2551 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -3425 ((-712))) (-15 ** (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-854)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 89)) (-3641 (($ $) 90)) (-3077 (((-108) $) 92)) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 109)) (-3898 (((-396 $) $) 110)) (-2551 (($ $) 73) (($ $ (-712)) 59) (($ (-385 (-525))) 58) (($ (-525)) 57)) (-1965 (((-108) $ $) 100)) (-4188 (((-525) $) 127)) (-2055 (($) 17 T CONST)) (-1254 (((-3 $ "failed") (-1085 $) (-854) (-796)) 67) (((-3 $ "failed") (-1085 $) (-854)) 66)) (-4174 (((-3 (-525) "failed") $) 85 (|has| (-385 (-525)) (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 83 (|has| (-385 (-525)) (-966 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) 81)) (-3341 (((-525) $) 86 (|has| (-385 (-525)) (-966 (-525)))) (((-385 (-525)) $) 84 (|has| (-385 (-525)) (-966 (-385 (-525))))) (((-385 (-525)) $) 80)) (-1859 (($ $ (-796)) 56)) (-2536 (($ $ (-796)) 55)) (-3265 (($ $ $) 104)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 103)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 98)) (-2393 (((-108) $) 111)) (-3489 (((-108) $) 125)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 72)) (-2256 (((-108) $) 126)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 107)) (-1923 (($ $ $) 124)) (-3475 (($ $ $) 123)) (-3338 (((-3 (-1085 $) "failed") $) 68)) (-1226 (((-3 (-796) "failed") $) 70)) (-1852 (((-3 (-1085 $) "failed") $) 69)) (-2081 (($ (-591 $)) 96) (($ $ $) 95)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 112)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 97)) (-2124 (($ (-591 $)) 94) (($ $ $) 93)) (-2542 (((-396 $) $) 108)) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 105)) (-3210 (((-3 $ "failed") $ $) 88)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 99)) (-3048 (((-712) $) 101)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 102)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 117) (($ $) 87) (($ (-385 (-525))) 82) (($ (-525)) 79) (($ (-385 (-525))) 76)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 91)) (-4173 (((-385 (-525)) $ $) 54)) (-1634 (((-591 $) (-1085 $)) 65) (((-591 $) (-1085 (-385 (-525)))) 64) (((-591 $) (-1085 (-525))) 63) (((-591 $) (-885 $)) 62) (((-591 $) (-885 (-385 (-525)))) 61) (((-591 $) (-885 (-525))) 60)) (-1460 (($ $) 128)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 113)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-4004 (((-108) $ $) 121)) (-3982 (((-108) $ $) 120)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 122)) (-3971 (((-108) $ $) 119)) (-4059 (($ $ $) 118)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 114) (($ $ (-385 (-525))) 71)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 116) (($ $ (-385 (-525))) 115) (($ (-525) $) 78) (($ $ (-525)) 77) (($ (-385 (-525)) $) 75) (($ $ (-385 (-525))) 74))) -(((-942) (-131)) (T -942)) -((-2551 (*1 *1 *1) (-4 *1 (-942))) (-1226 (*1 *2 *1) (|partial| -12 (-4 *1 (-942)) (-5 *2 (-796)))) (-1852 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-942)))) (-3338 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-942)))) (-1254 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-854)) (-5 *4 (-796)) (-4 *1 (-942)))) (-1254 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-854)) (-4 *1 (-942)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-942)) (-5 *2 (-591 *1)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-1085 (-385 (-525)))) (-5 *2 (-591 *1)) (-4 *1 (-942)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-1085 (-525))) (-5 *2 (-591 *1)) (-4 *1 (-942)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-885 *1)) (-4 *1 (-942)) (-5 *2 (-591 *1)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-885 (-385 (-525)))) (-5 *2 (-591 *1)) (-4 *1 (-942)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-885 (-525))) (-5 *2 (-591 *1)) (-4 *1 (-942)))) (-2551 (*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-712)))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-942)))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-942)))) (-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-796)))) (-2536 (*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-796)))) (-4173 (*1 *2 *1 *1) (-12 (-4 *1 (-942)) (-5 *2 (-385 (-525)))))) -(-13 (-138) (-786) (-160) (-341) (-389 (-385 (-525))) (-37 (-525)) (-37 (-385 (-525))) (-932) (-10 -8 (-15 -1226 ((-3 (-796) "failed") $)) (-15 -1852 ((-3 (-1085 $) "failed") $)) (-15 -3338 ((-3 (-1085 $) "failed") $)) (-15 -1254 ((-3 $ "failed") (-1085 $) (-854) (-796))) (-15 -1254 ((-3 $ "failed") (-1085 $) (-854))) (-15 -1634 ((-591 $) (-1085 $))) (-15 -1634 ((-591 $) (-1085 (-385 (-525))))) (-15 -1634 ((-591 $) (-1085 (-525)))) (-15 -1634 ((-591 $) (-885 $))) (-15 -1634 ((-591 $) (-885 (-385 (-525))))) (-15 -1634 ((-591 $) (-885 (-525)))) (-15 -2551 ($ $ (-712))) (-15 -2551 ($ $)) (-15 -2551 ($ (-385 (-525)))) (-15 -2551 ($ (-525))) (-15 -1859 ($ $ (-796))) (-15 -2536 ($ $ (-796))) (-15 -4173 ((-385 (-525)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 #1=(-525)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-565 (-796)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-389 (-385 (-525))) . T) ((-429) . T) ((-517) . T) ((-593 #0#) . T) ((-593 #1#) . T) ((-593 $) . T) ((-659 #0#) . T) ((-659 #1#) . T) ((-659 $) . T) ((-668) . T) ((-732) . T) ((-733) . T) ((-735) . T) ((-736) . T) ((-786) . T) ((-788) . T) ((-853) . T) ((-932) . T) ((-966 (-385 (-525))) . T) ((-966 (-525)) |has| (-385 (-525)) (-966 (-525))) ((-981 #0#) . T) ((-981 #1#) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) . T)) -((-2489 (((-2 (|:| |ans| |#2|) (|:| -3192 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|)) (-1 (-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-943 |#1| |#2|) (-10 -7 (-15 -2489 ((-2 (|:| |ans| |#2|) (|:| -3192 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|)) (-1 (-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525))) (-13 (-1111) (-27) (-408 |#1|))) (T -943)) -((-2489 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-591 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2428 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1111) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-788) (-138) (-966 *3) (-587 *3))) (-5 *3 (-525)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3192 *4) (|:| |sol?| (-108)))) (-5 *1 (-943 *8 *4))))) -(-10 -7 (-15 -2489 ((-2 (|:| |ans| |#2|) (|:| -3192 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|)) (-1 (-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2006 (((-3 (-591 |#2|) "failed") (-525) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|)) (-1 (-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-944 |#1| |#2|) (-10 -7 (-15 -2006 ((-3 (-591 |#2|) "failed") (-525) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|)) (-1 (-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525))) (-13 (-1111) (-27) (-408 |#1|))) (T -944)) -((-2006 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-591 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2428 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1111) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-788) (-138) (-966 *3) (-587 *3))) (-5 *3 (-525)) (-5 *2 (-591 *4)) (-5 *1 (-944 *8 *4))))) -(-10 -7 (-15 -2006 ((-3 (-591 |#2|) "failed") (-525) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-591 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|)) (-1 (-3 (-2 (|:| -2428 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3326 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -2203 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)) 30)) (-3881 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -2744 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 58)) (-2248 (((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|)) 63))) -(((-945 |#1| |#2|) (-10 -7 (-15 -3881 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -2744 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2248 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -3326 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -2203 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)))) (-13 (-341) (-138) (-966 (-525))) (-1147 |#1|)) (T -945)) -((-3326 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1147 *6)) (-4 *6 (-13 (-341) (-138) (-966 *4))) (-5 *4 (-525)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -2203 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-945 *6 *3)))) (-2248 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-138) (-966 (-525)))) (-4 *5 (-1147 *4)) (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108)))) (-5 *1 (-945 *4 *5)) (-5 *3 (-385 *5)))) (-3881 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-341) (-138) (-966 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6)) (|:| -2744 *6))) (-5 *1 (-945 *5 *6)) (-5 *3 (-385 *6))))) -(-10 -7 (-15 -3881 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -2744 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2248 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -3326 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -2203 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)))) -((-4138 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -2744 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 22)) (-1393 (((-3 (-591 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 33))) -(((-946 |#1| |#2|) (-10 -7 (-15 -4138 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -2744 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1393 ((-3 (-591 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)))) (-13 (-341) (-138) (-966 (-525))) (-1147 |#1|)) (T -946)) -((-1393 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-966 (-525)))) (-4 *5 (-1147 *4)) (-5 *2 (-591 (-385 *5))) (-5 *1 (-946 *4 *5)) (-5 *3 (-385 *5)))) (-4138 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-13 (-341) (-138) (-966 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6) (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -2744 *6))) (-5 *1 (-946 *5 *6)) (-5 *3 (-385 *6))))) -(-10 -7 (-15 -4138 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -2744 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1393 ((-3 (-591 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)))) -((-4125 (((-1 |#1|) (-591 (-2 (|:| -2940 |#1|) (|:| -1314 (-525))))) 37)) (-3158 (((-1 |#1|) (-1020 |#1|)) 45)) (-3217 (((-1 |#1|) (-1171 |#1|) (-1171 (-525)) (-525)) 34))) -(((-947 |#1|) (-10 -7 (-15 -3158 ((-1 |#1|) (-1020 |#1|))) (-15 -4125 ((-1 |#1|) (-591 (-2 (|:| -2940 |#1|) (|:| -1314 (-525)))))) (-15 -3217 ((-1 |#1|) (-1171 |#1|) (-1171 (-525)) (-525)))) (-1018)) (T -947)) -((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *6)) (-5 *4 (-1171 (-525))) (-5 *5 (-525)) (-4 *6 (-1018)) (-5 *2 (-1 *6)) (-5 *1 (-947 *6)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| -2940 *4) (|:| -1314 (-525))))) (-4 *4 (-1018)) (-5 *2 (-1 *4)) (-5 *1 (-947 *4)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-1020 *4)) (-4 *4 (-1018)) (-5 *2 (-1 *4)) (-5 *1 (-947 *4))))) -(-10 -7 (-15 -3158 ((-1 |#1|) (-1020 |#1|))) (-15 -4125 ((-1 |#1|) (-591 (-2 (|:| -2940 |#1|) (|:| -1314 (-525)))))) (-15 -3217 ((-1 |#1|) (-1171 |#1|) (-1171 (-525)) (-525)))) -((-1676 (((-712) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1676 ((-712) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-341) (-1147 |#1|) (-1147 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-13 (-346) (-341))) (T -948)) -((-1676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341)) (-4 *7 (-1147 *6)) (-4 *4 (-1147 (-385 *7))) (-4 *8 (-320 *6 *7 *4)) (-4 *9 (-13 (-346) (-341))) (-5 *2 (-712)) (-5 *1 (-948 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -1676 ((-712) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2713 (((-3 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) "failed") |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) 31) (((-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525))) 28)) (-3933 (((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525))) 33) (((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-385 (-525))) 29) (((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) 32) (((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1|) 27)) (-2885 (((-591 (-385 (-525))) (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) 19)) (-1817 (((-385 (-525)) (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) 16))) -(((-949 |#1|) (-10 -7 (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1|)) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525)))) (-15 -2713 ((-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525)))) (-15 -2713 ((-3 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) "failed") |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-15 -1817 ((-385 (-525)) (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-15 -2885 ((-591 (-385 (-525))) (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))))) (-1147 (-525))) (T -949)) -((-2885 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-5 *2 (-591 (-385 (-525)))) (-5 *1 (-949 *4)) (-4 *4 (-1147 (-525))))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) (-5 *2 (-385 (-525))) (-5 *1 (-949 *4)) (-4 *4 (-1147 (-525))))) (-2713 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))))) (-2713 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))))) (-3933 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-591 (-2 (|:| -3178 *5) (|:| -3192 *5)))) (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))) (-5 *4 (-2 (|:| -3178 *5) (|:| -3192 *5))))) (-3933 (*1 *2 *3 *4) (-12 (-5 *2 (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))) (-5 *4 (-385 (-525))))) (-3933 (*1 *2 *3 *4) (-12 (-5 *2 (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))) (-5 *4 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525)))))) -(-10 -7 (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1|)) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525)))) (-15 -2713 ((-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525)))) (-15 -2713 ((-3 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) "failed") |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-15 -1817 ((-385 (-525)) (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-15 -2885 ((-591 (-385 (-525))) (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))))) -((-2713 (((-3 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) "failed") |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) 35) (((-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525))) 32)) (-3933 (((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525))) 30) (((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-385 (-525))) 26) (((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) 28) (((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1|) 24))) -(((-950 |#1|) (-10 -7 (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1|)) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525)))) (-15 -2713 ((-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525)))) (-15 -2713 ((-3 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) "failed") |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))))) (-1147 (-385 (-525)))) (T -950)) -((-2713 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) (-5 *1 (-950 *3)) (-4 *3 (-1147 (-385 (-525)))))) (-2713 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-950 *3)) (-4 *3 (-1147 *4)))) (-3933 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-591 (-2 (|:| -3178 *5) (|:| -3192 *5)))) (-5 *1 (-950 *3)) (-4 *3 (-1147 *5)) (-5 *4 (-2 (|:| -3178 *5) (|:| -3192 *5))))) (-3933 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-5 *2 (-591 (-2 (|:| -3178 *4) (|:| -3192 *4)))) (-5 *1 (-950 *3)) (-4 *3 (-1147 *4)))) (-3933 (*1 *2 *3 *4) (-12 (-5 *2 (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-5 *1 (-950 *3)) (-4 *3 (-1147 (-385 (-525)))) (-5 *4 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-5 *1 (-950 *3)) (-4 *3 (-1147 (-385 (-525))))))) -(-10 -7 (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1|)) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -3933 ((-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525)))) (-15 -2713 ((-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-385 (-525)))) (-15 -2713 ((-3 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) "failed") |#1| (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))) (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))))) -((-1300 (((-205) $) 6) (((-357) $) 9))) -(((-951) (-131)) (T -951)) -NIL -(-13 (-566 (-205)) (-566 (-357))) -(((-566 (-205)) . T) ((-566 (-357)) . T)) -((-2751 (((-591 (-357)) (-885 (-525)) (-357)) 28) (((-591 (-357)) (-885 (-385 (-525))) (-357)) 27)) (-1919 (((-591 (-591 (-357))) (-591 (-885 (-525))) (-591 (-1089)) (-357)) 37))) -(((-952) (-10 -7 (-15 -2751 ((-591 (-357)) (-885 (-385 (-525))) (-357))) (-15 -2751 ((-591 (-357)) (-885 (-525)) (-357))) (-15 -1919 ((-591 (-591 (-357))) (-591 (-885 (-525))) (-591 (-1089)) (-357))))) (T -952)) -((-1919 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-591 (-1089))) (-5 *2 (-591 (-591 (-357)))) (-5 *1 (-952)) (-5 *5 (-357)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-525))) (-5 *2 (-591 (-357))) (-5 *1 (-952)) (-5 *4 (-357)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-385 (-525)))) (-5 *2 (-591 (-357))) (-5 *1 (-952)) (-5 *4 (-357))))) -(-10 -7 (-15 -2751 ((-591 (-357)) (-885 (-385 (-525))) (-357))) (-15 -2751 ((-591 (-357)) (-885 (-525)) (-357))) (-15 -1919 ((-591 (-591 (-357))) (-591 (-885 (-525))) (-591 (-1089)) (-357)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 70)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-2551 (($ $) NIL) (($ $ (-712)) NIL) (($ (-385 (-525))) NIL) (($ (-525)) NIL)) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) 65)) (-2055 (($) NIL T CONST)) (-1254 (((-3 $ "failed") (-1085 $) (-854) (-796)) NIL) (((-3 $ "failed") (-1085 $) (-854)) 50)) (-4174 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 (-525)) (-966 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-525) "failed") $) NIL (-3150 (|has| (-385 (-525)) (-966 (-525))) (|has| |#1| (-966 (-525)))))) (-3341 (((-385 (-525)) $) 15 (|has| (-385 (-525)) (-966 (-385 (-525))))) (((-385 (-525)) $) 15) ((|#1| $) 108) (((-525) $) NIL (-3150 (|has| (-385 (-525)) (-966 (-525))) (|has| |#1| (-966 (-525)))))) (-1859 (($ $ (-796)) 42)) (-2536 (($ $ (-796)) 43)) (-3265 (($ $ $) NIL)) (-1953 (((-385 (-525)) $ $) 19)) (-1522 (((-3 $ "failed") $) 83)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-3489 (((-108) $) 61)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL)) (-2256 (((-108) $) 64)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-3338 (((-3 (-1085 $) "failed") $) 78)) (-1226 (((-3 (-796) "failed") $) 77)) (-1852 (((-3 (-1085 $) "failed") $) 75)) (-3198 (((-3 (-985 $ (-1085 $)) "failed") $) 73)) (-2081 (($ (-591 $)) NIL) (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 84)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ (-591 $)) NIL) (($ $ $) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2686 (((-796) $) 82) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) 58) (($ (-385 (-525))) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 110)) (-3425 (((-712)) NIL)) (-1724 (((-108) $ $) NIL)) (-4173 (((-385 (-525)) $ $) 25)) (-1634 (((-591 $) (-1085 $)) 56) (((-591 $) (-1085 (-385 (-525)))) NIL) (((-591 $) (-1085 (-525))) NIL) (((-591 $) (-885 $)) NIL) (((-591 $) (-885 (-385 (-525)))) NIL) (((-591 $) (-885 (-525))) NIL)) (-2245 (($ (-985 $ (-1085 $)) (-796)) 41)) (-1460 (($ $) 20)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL)) (-1830 (($) 29 T CONST)) (-1839 (($) 35 T CONST)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 71)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 22)) (-4059 (($ $ $) 33)) (-4047 (($ $) 34) (($ $ $) 69)) (-4036 (($ $ $) 103)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 91) (($ $ $) 96) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ (-525) $) 91) (($ $ (-525)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-953 |#1|) (-13 (-942) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -2245 ($ (-985 $ (-1085 $)) (-796))) (-15 -3198 ((-3 (-985 $ (-1085 $)) "failed") $)) (-15 -1953 ((-385 (-525)) $ $)))) (-13 (-786) (-341) (-951))) (T -953)) -((-2245 (*1 *1 *2 *3) (-12 (-5 *2 (-985 (-953 *4) (-1085 (-953 *4)))) (-5 *3 (-796)) (-5 *1 (-953 *4)) (-4 *4 (-13 (-786) (-341) (-951))))) (-3198 (*1 *2 *1) (|partial| -12 (-5 *2 (-985 (-953 *3) (-1085 (-953 *3)))) (-5 *1 (-953 *3)) (-4 *3 (-13 (-786) (-341) (-951))))) (-1953 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-953 *3)) (-4 *3 (-13 (-786) (-341) (-951)))))) -(-13 (-942) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -2245 ($ (-985 $ (-1085 $)) (-796))) (-15 -3198 ((-3 (-985 $ (-1085 $)) "failed") $)) (-15 -1953 ((-385 (-525)) $ $)))) -((-2554 (((-2 (|:| -2203 |#2|) (|:| -3854 (-591 |#1|))) |#2| (-591 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-954 |#1| |#2|) (-10 -7 (-15 -2554 (|#2| |#2| |#1|)) (-15 -2554 ((-2 (|:| -2203 |#2|) (|:| -3854 (-591 |#1|))) |#2| (-591 |#1|)))) (-341) (-601 |#1|)) (T -954)) -((-2554 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -2203 *3) (|:| -3854 (-591 *5)))) (-5 *1 (-954 *5 *3)) (-5 *4 (-591 *5)) (-4 *3 (-601 *5)))) (-2554 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-954 *3 *2)) (-4 *2 (-601 *3))))) -(-10 -7 (-15 -2554 (|#2| |#2| |#1|)) (-15 -2554 ((-2 (|:| -2203 |#2|) (|:| -3854 (-591 |#1|))) |#2| (-591 |#1|)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2251 ((|#1| $ |#1|) 14)) (-2847 ((|#1| $ |#1|) 12)) (-1819 (($ |#1|) 10)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-1881 ((|#1| $) 11)) (-1727 ((|#1| $) 13)) (-2686 (((-796) $) 21 (|has| |#1| (-1018)))) (-3944 (((-108) $ $) 9))) -(((-955 |#1|) (-13 (-1125) (-10 -8 (-15 -1819 ($ |#1|)) (-15 -1881 (|#1| $)) (-15 -2847 (|#1| $ |#1|)) (-15 -1727 (|#1| $)) (-15 -2251 (|#1| $ |#1|)) (-15 -3944 ((-108) $ $)) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|))) (-1125)) (T -955)) -((-1819 (*1 *1 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125)))) (-1881 (*1 *2 *1) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125)))) (-2847 (*1 *2 *1 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125)))) (-1727 (*1 *2 *1) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125)))) (-2251 (*1 *2 *1 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125)))) (-3944 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-955 *3)) (-4 *3 (-1125))))) -(-13 (-1125) (-10 -8 (-15 -1819 ($ |#1|)) (-15 -1881 (|#1| $)) (-15 -2847 (|#1| $ |#1|)) (-15 -1727 (|#1| $)) (-15 -2251 (|#1| $ |#1|)) (-15 -3944 ((-108) $ $)) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |#4|)))) (-591 |#4|)) NIL)) (-3227 (((-591 $) (-591 |#4|)) 105) (((-591 $) (-591 |#4|) (-108)) 106) (((-591 $) (-591 |#4|) (-108) (-108)) 104) (((-591 $) (-591 |#4|) (-108) (-108) (-108) (-108)) 107)) (-1444 (((-591 |#3|) $) NIL)) (-3713 (((-108) $) NIL)) (-1996 (((-108) $) NIL (|has| |#1| (-517)))) (-3750 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4123 ((|#4| |#4| $) NIL)) (-1720 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| $) 99)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2467 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250))) (((-3 |#4| "failed") $ |#3|) 54)) (-2055 (($) NIL T CONST)) (-3435 (((-108) $) 26 (|has| |#1| (-517)))) (-2342 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2605 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2167 (((-108) $) NIL (|has| |#1| (-517)))) (-2699 (((-591 |#4|) (-591 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1533 (((-591 |#4|) (-591 |#4|) $) NIL (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) NIL (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) NIL)) (-3341 (($ (-591 |#4|)) NIL)) (-2884 (((-3 $ "failed") $) 39)) (-2302 ((|#4| |#4| $) 57)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-2537 (($ |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-517)))) (-3797 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2490 ((|#4| |#4| $) NIL)) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4250))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2082 (((-2 (|:| -1269 (-591 |#4|)) (|:| -1472 (-591 |#4|))) $) NIL)) (-1987 (((-108) |#4| $) NIL)) (-1949 (((-108) |#4| $) NIL)) (-3256 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2092 (((-2 (|:| |val| (-591 |#4|)) (|:| |towers| (-591 $))) (-591 |#4|) (-108) (-108)) 119)) (-2916 (((-591 |#4|) $) 16 (|has| $ (-6 -4250)))) (-2040 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3998 ((|#3| $) 33)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#4|) $) 17 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-4192 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 21)) (-3520 (((-591 |#3|) $) NIL)) (-1574 (((-108) |#3| $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2001 (((-3 |#4| (-591 $)) |#4| |#4| $) NIL)) (-2456 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| |#4| $) 97)) (-2555 (((-3 |#4| "failed") $) 37)) (-3783 (((-591 $) |#4| $) 80)) (-1929 (((-3 (-108) (-591 $)) |#4| $) NIL)) (-3433 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-2318 (((-591 $) |#4| $) 102) (((-591 $) (-591 |#4|) $) NIL) (((-591 $) (-591 |#4|) (-591 $)) 103) (((-591 $) |#4| (-591 $)) NIL)) (-2502 (((-591 $) (-591 |#4|) (-108) (-108) (-108)) 114)) (-1832 (($ |#4| $) 70) (($ (-591 |#4|) $) 71) (((-591 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-3664 (((-591 |#4|) $) NIL)) (-1307 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3022 ((|#4| |#4| $) NIL)) (-3300 (((-108) $ $) NIL)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3255 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2246 ((|#4| |#4| $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 (((-3 |#4| "failed") $) 35)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1591 (((-3 $ "failed") $ |#4|) 48)) (-1618 (($ $ |#4|) NIL) (((-591 $) |#4| $) 82) (((-591 $) |#4| (-591 $)) NIL) (((-591 $) (-591 |#4|) $) NIL) (((-591 $) (-591 |#4|) (-591 $)) 77)) (-3465 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 15)) (-3164 (($) 13)) (-2743 (((-712) $) NIL)) (-2960 (((-712) |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (((-712) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) 12)) (-1300 (((-501) $) NIL (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) 20)) (-3786 (($ $ |#3|) 42)) (-2794 (($ $ |#3|) 44)) (-1656 (($ $) NIL)) (-1918 (($ $ |#3|) NIL)) (-2686 (((-796) $) 31) (((-591 |#4|) $) 40)) (-3311 (((-712) $) NIL (|has| |#3| (-346)))) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3747 (((-108) $ (-1 (-108) |#4| (-591 |#4|))) NIL)) (-3996 (((-591 $) |#4| $) 79) (((-591 $) |#4| (-591 $)) NIL) (((-591 $) (-591 |#4|) $) NIL) (((-591 $) (-591 |#4|) (-591 $)) NIL)) (-1475 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1669 (((-591 |#3|) $) NIL)) (-3744 (((-108) |#4| $) NIL)) (-2588 (((-108) |#3| $) 53)) (-3944 (((-108) $ $) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-956 |#1| |#2| |#3| |#4|) (-13 (-994 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1832 ((-591 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3227 ((-591 $) (-591 |#4|) (-108) (-108))) (-15 -3227 ((-591 $) (-591 |#4|) (-108) (-108) (-108) (-108))) (-15 -2502 ((-591 $) (-591 |#4|) (-108) (-108) (-108))) (-15 -2092 ((-2 (|:| |val| (-591 |#4|)) (|:| |towers| (-591 $))) (-591 |#4|) (-108) (-108))))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|)) (T -956)) -((-1832 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 (-956 *5 *6 *7 *3))) (-5 *1 (-956 *5 *6 *7 *3)) (-4 *3 (-989 *5 *6 *7)))) (-3227 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 (-956 *5 *6 *7 *8))) (-5 *1 (-956 *5 *6 *7 *8)))) (-3227 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 (-956 *5 *6 *7 *8))) (-5 *1 (-956 *5 *6 *7 *8)))) (-2502 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 (-956 *5 *6 *7 *8))) (-5 *1 (-956 *5 *6 *7 *8)))) (-2092 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-591 *8)) (|:| |towers| (-591 (-956 *5 *6 *7 *8))))) (-5 *1 (-956 *5 *6 *7 *8)) (-5 *3 (-591 *8))))) -(-13 (-994 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1832 ((-591 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3227 ((-591 $) (-591 |#4|) (-108) (-108))) (-15 -3227 ((-591 $) (-591 |#4|) (-108) (-108) (-108) (-108))) (-15 -2502 ((-591 $) (-591 |#4|) (-108) (-108) (-108))) (-15 -2092 ((-2 (|:| |val| (-591 |#4|)) (|:| |towers| (-591 $))) (-591 |#4|) (-108) (-108))))) -((-1891 (((-591 (-631 |#1|)) (-591 (-631 |#1|))) 57) (((-631 |#1|) (-631 |#1|)) 56) (((-591 (-631 |#1|)) (-591 (-631 |#1|)) (-591 (-631 |#1|))) 55) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 52)) (-1812 (((-591 (-631 |#1|)) (-591 (-631 |#1|)) (-854)) 51) (((-631 |#1|) (-631 |#1|) (-854)) 50)) (-3007 (((-591 (-631 (-525))) (-591 (-591 (-525)))) 67) (((-591 (-631 (-525))) (-591 (-838 (-525))) (-525)) 66) (((-631 (-525)) (-591 (-525))) 63) (((-631 (-525)) (-838 (-525)) (-525)) 62)) (-1768 (((-631 (-885 |#1|)) (-712)) 80)) (-3070 (((-591 (-631 |#1|)) (-591 (-631 |#1|)) (-854)) 36 (|has| |#1| (-6 (-4252 "*")))) (((-631 |#1|) (-631 |#1|) (-854)) 34 (|has| |#1| (-6 (-4252 "*")))))) -(((-957 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4252 "*"))) (-15 -3070 ((-631 |#1|) (-631 |#1|) (-854))) |%noBranch|) (IF (|has| |#1| (-6 (-4252 "*"))) (-15 -3070 ((-591 (-631 |#1|)) (-591 (-631 |#1|)) (-854))) |%noBranch|) (-15 -1768 ((-631 (-885 |#1|)) (-712))) (-15 -1812 ((-631 |#1|) (-631 |#1|) (-854))) (-15 -1812 ((-591 (-631 |#1|)) (-591 (-631 |#1|)) (-854))) (-15 -1891 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1891 ((-591 (-631 |#1|)) (-591 (-631 |#1|)) (-591 (-631 |#1|)))) (-15 -1891 ((-631 |#1|) (-631 |#1|))) (-15 -1891 ((-591 (-631 |#1|)) (-591 (-631 |#1|)))) (-15 -3007 ((-631 (-525)) (-838 (-525)) (-525))) (-15 -3007 ((-631 (-525)) (-591 (-525)))) (-15 -3007 ((-591 (-631 (-525))) (-591 (-838 (-525))) (-525))) (-15 -3007 ((-591 (-631 (-525))) (-591 (-591 (-525)))))) (-975)) (T -957)) -((-3007 (*1 *2 *3) (-12 (-5 *3 (-591 (-591 (-525)))) (-5 *2 (-591 (-631 (-525)))) (-5 *1 (-957 *4)) (-4 *4 (-975)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-838 (-525)))) (-5 *4 (-525)) (-5 *2 (-591 (-631 *4))) (-5 *1 (-957 *5)) (-4 *5 (-975)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-631 (-525))) (-5 *1 (-957 *4)) (-4 *4 (-975)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-838 (-525))) (-5 *4 (-525)) (-5 *2 (-631 *4)) (-5 *1 (-957 *5)) (-4 *5 (-975)))) (-1891 (*1 *2 *2) (-12 (-5 *2 (-591 (-631 *3))) (-4 *3 (-975)) (-5 *1 (-957 *3)))) (-1891 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-957 *3)))) (-1891 (*1 *2 *2 *2) (-12 (-5 *2 (-591 (-631 *3))) (-4 *3 (-975)) (-5 *1 (-957 *3)))) (-1891 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-957 *3)))) (-1812 (*1 *2 *2 *3) (-12 (-5 *2 (-591 (-631 *4))) (-5 *3 (-854)) (-4 *4 (-975)) (-5 *1 (-957 *4)))) (-1812 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-854)) (-4 *4 (-975)) (-5 *1 (-957 *4)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-631 (-885 *4))) (-5 *1 (-957 *4)) (-4 *4 (-975)))) (-3070 (*1 *2 *2 *3) (-12 (-5 *2 (-591 (-631 *4))) (-5 *3 (-854)) (|has| *4 (-6 (-4252 "*"))) (-4 *4 (-975)) (-5 *1 (-957 *4)))) (-3070 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-854)) (|has| *4 (-6 (-4252 "*"))) (-4 *4 (-975)) (-5 *1 (-957 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4252 "*"))) (-15 -3070 ((-631 |#1|) (-631 |#1|) (-854))) |%noBranch|) (IF (|has| |#1| (-6 (-4252 "*"))) (-15 -3070 ((-591 (-631 |#1|)) (-591 (-631 |#1|)) (-854))) |%noBranch|) (-15 -1768 ((-631 (-885 |#1|)) (-712))) (-15 -1812 ((-631 |#1|) (-631 |#1|) (-854))) (-15 -1812 ((-591 (-631 |#1|)) (-591 (-631 |#1|)) (-854))) (-15 -1891 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1891 ((-591 (-631 |#1|)) (-591 (-631 |#1|)) (-591 (-631 |#1|)))) (-15 -1891 ((-631 |#1|) (-631 |#1|))) (-15 -1891 ((-591 (-631 |#1|)) (-591 (-631 |#1|)))) (-15 -3007 ((-631 (-525)) (-838 (-525)) (-525))) (-15 -3007 ((-631 (-525)) (-591 (-525)))) (-15 -3007 ((-591 (-631 (-525))) (-591 (-838 (-525))) (-525))) (-15 -3007 ((-591 (-631 (-525))) (-591 (-591 (-525)))))) -((-1607 (((-631 |#1|) (-591 (-631 |#1|)) (-1171 |#1|)) 51 (|has| |#1| (-286)))) (-1645 (((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-1171 (-1171 |#1|))) 75 (|has| |#1| (-341))) (((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-1171 |#1|)) 73 (|has| |#1| (-341)))) (-4102 (((-1171 |#1|) (-591 (-1171 |#1|)) (-525)) 77 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-3080 (((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-854)) 82 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-108)) 80 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|))) 79 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-108) (-525) (-525)) 78 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-1920 (((-108) (-591 (-631 |#1|))) 71 (|has| |#1| (-341))) (((-108) (-591 (-631 |#1|)) (-525)) 70 (|has| |#1| (-341)))) (-3766 (((-1171 (-1171 |#1|)) (-591 (-631 |#1|)) (-1171 |#1|)) 49 (|has| |#1| (-286)))) (-2954 (((-631 |#1|) (-591 (-631 |#1|)) (-631 |#1|)) 34)) (-1558 (((-631 |#1|) (-1171 (-1171 |#1|))) 31)) (-2924 (((-631 |#1|) (-591 (-631 |#1|)) (-591 (-631 |#1|)) (-525)) 66 (|has| |#1| (-341))) (((-631 |#1|) (-591 (-631 |#1|)) (-591 (-631 |#1|))) 65 (|has| |#1| (-341))) (((-631 |#1|) (-591 (-631 |#1|)) (-591 (-631 |#1|)) (-108) (-525)) 64 (|has| |#1| (-341))))) -(((-958 |#1|) (-10 -7 (-15 -1558 ((-631 |#1|) (-1171 (-1171 |#1|)))) (-15 -2954 ((-631 |#1|) (-591 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -3766 ((-1171 (-1171 |#1|)) (-591 (-631 |#1|)) (-1171 |#1|))) (-15 -1607 ((-631 |#1|) (-591 (-631 |#1|)) (-1171 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -2924 ((-631 |#1|) (-591 (-631 |#1|)) (-591 (-631 |#1|)) (-108) (-525))) (-15 -2924 ((-631 |#1|) (-591 (-631 |#1|)) (-591 (-631 |#1|)))) (-15 -2924 ((-631 |#1|) (-591 (-631 |#1|)) (-591 (-631 |#1|)) (-525))) (-15 -1920 ((-108) (-591 (-631 |#1|)) (-525))) (-15 -1920 ((-108) (-591 (-631 |#1|)))) (-15 -1645 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-1171 |#1|))) (-15 -1645 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-1171 (-1171 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -3080 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-108) (-525) (-525))) (-15 -3080 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)))) (-15 -3080 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-108))) (-15 -3080 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-854))) (-15 -4102 ((-1171 |#1|) (-591 (-1171 |#1|)) (-525)))) |%noBranch|) |%noBranch|)) (-975)) (T -958)) -((-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-1171 *5))) (-5 *4 (-525)) (-5 *2 (-1171 *5)) (-5 *1 (-958 *5)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-975)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-854)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-975)) (-5 *2 (-591 (-591 (-631 *5)))) (-5 *1 (-958 *5)) (-5 *3 (-591 (-631 *5))))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-975)) (-5 *2 (-591 (-591 (-631 *5)))) (-5 *1 (-958 *5)) (-5 *3 (-591 (-631 *5))))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-975)) (-5 *2 (-591 (-591 (-631 *4)))) (-5 *1 (-958 *4)) (-5 *3 (-591 (-631 *4))))) (-3080 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346)) (-4 *6 (-975)) (-5 *2 (-591 (-591 (-631 *6)))) (-5 *1 (-958 *6)) (-5 *3 (-591 (-631 *6))))) (-1645 (*1 *2 *3 *4) (-12 (-5 *4 (-1171 (-1171 *5))) (-4 *5 (-341)) (-4 *5 (-975)) (-5 *2 (-591 (-591 (-631 *5)))) (-5 *1 (-958 *5)) (-5 *3 (-591 (-631 *5))))) (-1645 (*1 *2 *3 *4) (-12 (-5 *4 (-1171 *5)) (-4 *5 (-341)) (-4 *5 (-975)) (-5 *2 (-591 (-591 (-631 *5)))) (-5 *1 (-958 *5)) (-5 *3 (-591 (-631 *5))))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-591 (-631 *4))) (-4 *4 (-341)) (-4 *4 (-975)) (-5 *2 (-108)) (-5 *1 (-958 *4)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-631 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-975)) (-5 *2 (-108)) (-5 *1 (-958 *5)))) (-2924 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-591 (-631 *5))) (-5 *4 (-525)) (-5 *2 (-631 *5)) (-5 *1 (-958 *5)) (-4 *5 (-341)) (-4 *5 (-975)))) (-2924 (*1 *2 *3 *3) (-12 (-5 *3 (-591 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-958 *4)) (-4 *4 (-341)) (-4 *4 (-975)))) (-2924 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-591 (-631 *6))) (-5 *4 (-108)) (-5 *5 (-525)) (-5 *2 (-631 *6)) (-5 *1 (-958 *6)) (-4 *6 (-341)) (-4 *6 (-975)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-631 *5))) (-5 *4 (-1171 *5)) (-4 *5 (-286)) (-4 *5 (-975)) (-5 *2 (-631 *5)) (-5 *1 (-958 *5)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-631 *5))) (-4 *5 (-286)) (-4 *5 (-975)) (-5 *2 (-1171 (-1171 *5))) (-5 *1 (-958 *5)) (-5 *4 (-1171 *5)))) (-2954 (*1 *2 *3 *2) (-12 (-5 *3 (-591 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-975)) (-5 *1 (-958 *4)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-1171 (-1171 *4))) (-4 *4 (-975)) (-5 *2 (-631 *4)) (-5 *1 (-958 *4))))) -(-10 -7 (-15 -1558 ((-631 |#1|) (-1171 (-1171 |#1|)))) (-15 -2954 ((-631 |#1|) (-591 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -3766 ((-1171 (-1171 |#1|)) (-591 (-631 |#1|)) (-1171 |#1|))) (-15 -1607 ((-631 |#1|) (-591 (-631 |#1|)) (-1171 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -2924 ((-631 |#1|) (-591 (-631 |#1|)) (-591 (-631 |#1|)) (-108) (-525))) (-15 -2924 ((-631 |#1|) (-591 (-631 |#1|)) (-591 (-631 |#1|)))) (-15 -2924 ((-631 |#1|) (-591 (-631 |#1|)) (-591 (-631 |#1|)) (-525))) (-15 -1920 ((-108) (-591 (-631 |#1|)) (-525))) (-15 -1920 ((-108) (-591 (-631 |#1|)))) (-15 -1645 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-1171 |#1|))) (-15 -1645 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-1171 (-1171 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -3080 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-108) (-525) (-525))) (-15 -3080 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)))) (-15 -3080 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-108))) (-15 -3080 ((-591 (-591 (-631 |#1|))) (-591 (-631 |#1|)) (-854))) (-15 -4102 ((-1171 |#1|) (-591 (-1171 |#1|)) (-525)))) |%noBranch|) |%noBranch|)) -((-1313 ((|#1| (-854) |#1|) 9))) -(((-959 |#1|) (-10 -7 (-15 -1313 (|#1| (-854) |#1|))) (-13 (-1018) (-10 -8 (-15 -4036 ($ $ $))))) (T -959)) -((-1313 (*1 *2 *3 *2) (-12 (-5 *3 (-854)) (-5 *1 (-959 *2)) (-4 *2 (-13 (-1018) (-10 -8 (-15 -4036 ($ $ $)))))))) -(-10 -7 (-15 -1313 (|#1| (-854) |#1|))) -((-1889 (((-591 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-591 (-631 (-294 (-525))))))) (-631 (-385 (-885 (-525))))) 59)) (-2930 (((-591 (-631 (-294 (-525)))) (-294 (-525)) (-631 (-385 (-885 (-525))))) 48)) (-1838 (((-591 (-294 (-525))) (-631 (-385 (-885 (-525))))) 41)) (-3940 (((-591 (-631 (-294 (-525)))) (-631 (-385 (-885 (-525))))) 69)) (-2591 (((-631 (-294 (-525))) (-631 (-294 (-525)))) 34)) (-1822 (((-591 (-631 (-294 (-525)))) (-591 (-631 (-294 (-525))))) 62)) (-2026 (((-3 (-631 (-294 (-525))) "failed") (-631 (-385 (-885 (-525))))) 66))) -(((-960) (-10 -7 (-15 -1889 ((-591 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-591 (-631 (-294 (-525))))))) (-631 (-385 (-885 (-525)))))) (-15 -2930 ((-591 (-631 (-294 (-525)))) (-294 (-525)) (-631 (-385 (-885 (-525)))))) (-15 -1838 ((-591 (-294 (-525))) (-631 (-385 (-885 (-525)))))) (-15 -2026 ((-3 (-631 (-294 (-525))) "failed") (-631 (-385 (-885 (-525)))))) (-15 -2591 ((-631 (-294 (-525))) (-631 (-294 (-525))))) (-15 -1822 ((-591 (-631 (-294 (-525)))) (-591 (-631 (-294 (-525)))))) (-15 -3940 ((-591 (-631 (-294 (-525)))) (-631 (-385 (-885 (-525)))))))) (T -960)) -((-3940 (*1 *2 *3) (-12 (-5 *3 (-631 (-385 (-885 (-525))))) (-5 *2 (-591 (-631 (-294 (-525))))) (-5 *1 (-960)))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-591 (-631 (-294 (-525))))) (-5 *1 (-960)))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-631 (-294 (-525)))) (-5 *1 (-960)))) (-2026 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 (-385 (-885 (-525))))) (-5 *2 (-631 (-294 (-525)))) (-5 *1 (-960)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-631 (-385 (-885 (-525))))) (-5 *2 (-591 (-294 (-525)))) (-5 *1 (-960)))) (-2930 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-385 (-885 (-525))))) (-5 *2 (-591 (-631 (-294 (-525))))) (-5 *1 (-960)) (-5 *3 (-294 (-525))))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-631 (-385 (-885 (-525))))) (-5 *2 (-591 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-591 (-631 (-294 (-525)))))))) (-5 *1 (-960))))) -(-10 -7 (-15 -1889 ((-591 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-591 (-631 (-294 (-525))))))) (-631 (-385 (-885 (-525)))))) (-15 -2930 ((-591 (-631 (-294 (-525)))) (-294 (-525)) (-631 (-385 (-885 (-525)))))) (-15 -1838 ((-591 (-294 (-525))) (-631 (-385 (-885 (-525)))))) (-15 -2026 ((-3 (-631 (-294 (-525))) "failed") (-631 (-385 (-885 (-525)))))) (-15 -2591 ((-631 (-294 (-525))) (-631 (-294 (-525))))) (-15 -1822 ((-591 (-631 (-294 (-525)))) (-591 (-631 (-294 (-525)))))) (-15 -3940 ((-591 (-631 (-294 (-525)))) (-631 (-385 (-885 (-525))))))) -((-2063 ((|#1| |#1| (-854)) 9))) -(((-961 |#1|) (-10 -7 (-15 -2063 (|#1| |#1| (-854)))) (-13 (-1018) (-10 -8 (-15 * ($ $ $))))) (T -961)) -((-2063 (*1 *2 *2 *3) (-12 (-5 *3 (-854)) (-5 *1 (-961 *2)) (-4 *2 (-13 (-1018) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2063 (|#1| |#1| (-854)))) -((-2686 ((|#1| (-290)) 11) (((-1176) |#1|) 9))) -(((-962 |#1|) (-10 -7 (-15 -2686 ((-1176) |#1|)) (-15 -2686 (|#1| (-290)))) (-1125)) (T -962)) -((-2686 (*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-962 *2)) (-4 *2 (-1125)))) (-2686 (*1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *1 (-962 *3)) (-4 *3 (-1125))))) -(-10 -7 (-15 -2686 ((-1176) |#1|)) (-15 -2686 (|#1| (-290)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-3618 (($ |#4|) 25)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-3610 ((|#4| $) 27)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 46) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3425 (((-712)) 43)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 21 T CONST)) (-1839 (($) 23 T CONST)) (-3944 (((-108) $ $) 40)) (-4047 (($ $) 31) (($ $ $) NIL)) (-4036 (($ $ $) 29)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-963 |#1| |#2| |#3| |#4| |#5|) (-13 (-160) (-37 |#1|) (-10 -8 (-15 -3618 ($ |#4|)) (-15 -2686 ($ |#4|)) (-15 -3610 (|#4| $)))) (-341) (-734) (-788) (-882 |#1| |#2| |#3|) (-591 |#4|)) (T -963)) -((-3618 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-963 *3 *4 *5 *2 *6)) (-4 *2 (-882 *3 *4 *5)) (-14 *6 (-591 *2)))) (-2686 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-963 *3 *4 *5 *2 *6)) (-4 *2 (-882 *3 *4 *5)) (-14 *6 (-591 *2)))) (-3610 (*1 *2 *1) (-12 (-4 *2 (-882 *3 *4 *5)) (-5 *1 (-963 *3 *4 *5 *2 *6)) (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-14 *6 (-591 *2))))) -(-13 (-160) (-37 |#1|) (-10 -8 (-15 -3618 ($ |#4|)) (-15 -2686 ($ |#4|)) (-15 -3610 (|#4| $)))) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL)) (-3832 (((-1176) $ (-1089) (-1089)) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-1433 (((-108) (-108)) 39)) (-1898 (((-108) (-108)) 38)) (-2847 (((-51) $ (-1089) (-51)) NIL)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 (-51) "failed") (-1089) $) NIL)) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-3844 (($ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-3 (-51) "failed") (-1089) $) NIL)) (-2537 (($ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-4205 (((-51) $ (-1089) (-51)) NIL (|has| $ (-6 -4251)))) (-4121 (((-51) $ (-1089)) NIL)) (-2916 (((-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-591 (-51)) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-1089) $) NIL (|has| (-1089) (-788)))) (-4207 (((-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-591 (-51)) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-51) (-1018))))) (-1826 (((-1089) $) NIL (|has| (-1089) (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4251))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-2159 (((-591 (-1089)) $) 34)) (-1628 (((-108) (-1089) $) NIL)) (-3949 (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL)) (-1520 (($ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL)) (-3761 (((-591 (-1089)) $) NIL)) (-1675 (((-108) (-1089) $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-2872 (((-51) $) NIL (|has| (-1089) (-788)))) (-2714 (((-3 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) "failed") (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL)) (-1858 (($ $ (-51)) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))))) NIL (-12 (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ $ (-273 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL (-12 (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ $ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) NIL (-12 (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ $ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL (-12 (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ $ (-591 (-51)) (-591 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018)))) (($ $ (-591 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-51) (-1018))))) (-2998 (((-591 (-51)) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 (((-51) $ (-1089)) 35) (((-51) $ (-1089) (-51)) NIL)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (((-712) (-51) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-51) (-1018)))) (((-712) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL)) (-2686 (((-796) $) 37 (-3150 (|has| (-51) (-565 (-796))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-964) (-13 (-1102 (-1089) (-51)) (-10 -7 (-15 -1433 ((-108) (-108))) (-15 -1898 ((-108) (-108))) (-6 -4250)))) (T -964)) -((-1433 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-964)))) (-1898 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-964))))) -(-13 (-1102 (-1089) (-51)) (-10 -7 (-15 -1433 ((-108) (-108))) (-15 -1898 ((-108) (-108))) (-6 -4250))) -((-3341 ((|#2| $) 10))) -(((-965 |#1| |#2|) (-10 -8 (-15 -3341 (|#2| |#1|))) (-966 |#2|) (-1125)) (T -965)) -NIL -(-10 -8 (-15 -3341 (|#2| |#1|))) -((-4174 (((-3 |#1| "failed") $) 7)) (-3341 ((|#1| $) 8)) (-2686 (($ |#1|) 6))) -(((-966 |#1|) (-131) (-1125)) (T -966)) -((-3341 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1125)))) (-4174 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *2)) (-4 *2 (-1125)))) (-2686 (*1 *1 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1125))))) -(-13 (-10 -8 (-15 -2686 ($ |t#1|)) (-15 -4174 ((-3 |t#1| "failed") $)) (-15 -3341 (|t#1| $)))) -((-2518 (((-591 (-591 (-273 (-385 (-885 |#2|))))) (-591 (-885 |#2|)) (-591 (-1089))) 38))) -(((-967 |#1| |#2|) (-10 -7 (-15 -2518 ((-591 (-591 (-273 (-385 (-885 |#2|))))) (-591 (-885 |#2|)) (-591 (-1089))))) (-517) (-13 (-517) (-966 |#1|))) (T -967)) -((-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-885 *6))) (-5 *4 (-591 (-1089))) (-4 *6 (-13 (-517) (-966 *5))) (-4 *5 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *6)))))) (-5 *1 (-967 *5 *6))))) -(-10 -7 (-15 -2518 ((-591 (-591 (-273 (-385 (-885 |#2|))))) (-591 (-885 |#2|)) (-591 (-1089))))) -((-3455 (((-357)) 15)) (-3158 (((-1 (-357)) (-357) (-357)) 20)) (-2744 (((-1 (-357)) (-712)) 43)) (-3036 (((-357)) 34)) (-3749 (((-1 (-357)) (-357) (-357)) 35)) (-2384 (((-357)) 26)) (-2730 (((-1 (-357)) (-357)) 27)) (-2260 (((-357) (-712)) 38)) (-2648 (((-1 (-357)) (-712)) 39)) (-1730 (((-1 (-357)) (-712) (-712)) 42)) (-3408 (((-1 (-357)) (-712) (-712)) 40))) -(((-968) (-10 -7 (-15 -3455 ((-357))) (-15 -3036 ((-357))) (-15 -2384 ((-357))) (-15 -2260 ((-357) (-712))) (-15 -3158 ((-1 (-357)) (-357) (-357))) (-15 -3749 ((-1 (-357)) (-357) (-357))) (-15 -2730 ((-1 (-357)) (-357))) (-15 -2648 ((-1 (-357)) (-712))) (-15 -3408 ((-1 (-357)) (-712) (-712))) (-15 -1730 ((-1 (-357)) (-712) (-712))) (-15 -2744 ((-1 (-357)) (-712))))) (T -968)) -((-2744 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1 (-357))) (-5 *1 (-968)))) (-1730 (*1 *2 *3 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1 (-357))) (-5 *1 (-968)))) (-3408 (*1 *2 *3 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1 (-357))) (-5 *1 (-968)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1 (-357))) (-5 *1 (-968)))) (-2730 (*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-968)) (-5 *3 (-357)))) (-3749 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-968)) (-5 *3 (-357)))) (-3158 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-968)) (-5 *3 (-357)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-357)) (-5 *1 (-968)))) (-2384 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-968)))) (-3036 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-968)))) (-3455 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-968))))) -(-10 -7 (-15 -3455 ((-357))) (-15 -3036 ((-357))) (-15 -2384 ((-357))) (-15 -2260 ((-357) (-712))) (-15 -3158 ((-1 (-357)) (-357) (-357))) (-15 -3749 ((-1 (-357)) (-357) (-357))) (-15 -2730 ((-1 (-357)) (-357))) (-15 -2648 ((-1 (-357)) (-712))) (-15 -3408 ((-1 (-357)) (-712) (-712))) (-15 -1730 ((-1 (-357)) (-712) (-712))) (-15 -2744 ((-1 (-357)) (-712)))) -((-2542 (((-396 |#1|) |#1|) 33))) -(((-969 |#1|) (-10 -7 (-15 -2542 ((-396 |#1|) |#1|))) (-1147 (-385 (-885 (-525))))) (T -969)) -((-2542 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-969 *3)) (-4 *3 (-1147 (-385 (-885 (-525)))))))) -(-10 -7 (-15 -2542 ((-396 |#1|) |#1|))) -((-1649 (((-385 (-396 (-885 |#1|))) (-385 (-885 |#1|))) 14))) -(((-970 |#1|) (-10 -7 (-15 -1649 ((-385 (-396 (-885 |#1|))) (-385 (-885 |#1|))))) (-286)) (T -970)) -((-1649 (*1 *2 *3) (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-286)) (-5 *2 (-385 (-396 (-885 *4)))) (-5 *1 (-970 *4))))) -(-10 -7 (-15 -1649 ((-385 (-396 (-885 |#1|))) (-385 (-885 |#1|))))) -((-1444 (((-591 (-1089)) (-385 (-885 |#1|))) 17)) (-2514 (((-385 (-1085 (-385 (-885 |#1|)))) (-385 (-885 |#1|)) (-1089)) 24)) (-1434 (((-385 (-885 |#1|)) (-385 (-1085 (-385 (-885 |#1|)))) (-1089)) 26)) (-3027 (((-3 (-1089) "failed") (-385 (-885 |#1|))) 20)) (-1980 (((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-591 (-273 (-385 (-885 |#1|))))) 32) (((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|)))) 33) (((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-591 (-1089)) (-591 (-385 (-885 |#1|)))) 28) (((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-1089) (-385 (-885 |#1|))) 29)) (-2686 (((-385 (-885 |#1|)) |#1|) 11))) -(((-971 |#1|) (-10 -7 (-15 -1444 ((-591 (-1089)) (-385 (-885 |#1|)))) (-15 -3027 ((-3 (-1089) "failed") (-385 (-885 |#1|)))) (-15 -2514 ((-385 (-1085 (-385 (-885 |#1|)))) (-385 (-885 |#1|)) (-1089))) (-15 -1434 ((-385 (-885 |#1|)) (-385 (-1085 (-385 (-885 |#1|)))) (-1089))) (-15 -1980 ((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-1089) (-385 (-885 |#1|)))) (-15 -1980 ((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-591 (-1089)) (-591 (-385 (-885 |#1|))))) (-15 -1980 ((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|))))) (-15 -1980 ((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-591 (-273 (-385 (-885 |#1|)))))) (-15 -2686 ((-385 (-885 |#1|)) |#1|))) (-517)) (T -971)) -((-2686 (*1 *2 *3) (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-971 *3)) (-4 *3 (-517)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *3 (-591 (-273 (-385 (-885 *4))))) (-5 *2 (-385 (-885 *4))) (-4 *4 (-517)) (-5 *1 (-971 *4)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *3 (-273 (-385 (-885 *4)))) (-5 *2 (-385 (-885 *4))) (-4 *4 (-517)) (-5 *1 (-971 *4)))) (-1980 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-591 (-1089))) (-5 *4 (-591 (-385 (-885 *5)))) (-5 *2 (-385 (-885 *5))) (-4 *5 (-517)) (-5 *1 (-971 *5)))) (-1980 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-385 (-885 *4))) (-5 *3 (-1089)) (-4 *4 (-517)) (-5 *1 (-971 *4)))) (-1434 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1085 (-385 (-885 *5))))) (-5 *4 (-1089)) (-5 *2 (-385 (-885 *5))) (-5 *1 (-971 *5)) (-4 *5 (-517)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-517)) (-5 *2 (-385 (-1085 (-385 (-885 *5))))) (-5 *1 (-971 *5)) (-5 *3 (-385 (-885 *5))))) (-3027 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) (-5 *2 (-1089)) (-5 *1 (-971 *4)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) (-5 *2 (-591 (-1089))) (-5 *1 (-971 *4))))) -(-10 -7 (-15 -1444 ((-591 (-1089)) (-385 (-885 |#1|)))) (-15 -3027 ((-3 (-1089) "failed") (-385 (-885 |#1|)))) (-15 -2514 ((-385 (-1085 (-385 (-885 |#1|)))) (-385 (-885 |#1|)) (-1089))) (-15 -1434 ((-385 (-885 |#1|)) (-385 (-1085 (-385 (-885 |#1|)))) (-1089))) (-15 -1980 ((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-1089) (-385 (-885 |#1|)))) (-15 -1980 ((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-591 (-1089)) (-591 (-385 (-885 |#1|))))) (-15 -1980 ((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-273 (-385 (-885 |#1|))))) (-15 -1980 ((-385 (-885 |#1|)) (-385 (-885 |#1|)) (-591 (-273 (-385 (-885 |#1|)))))) (-15 -2686 ((-385 (-885 |#1|)) |#1|))) -((-2673 (((-108) $ $) NIL)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 (-721 |#1| (-798 |#2|)))))) (-591 (-721 |#1| (-798 |#2|)))) NIL)) (-3227 (((-591 $) (-591 (-721 |#1| (-798 |#2|)))) NIL) (((-591 $) (-591 (-721 |#1| (-798 |#2|))) (-108)) NIL) (((-591 $) (-591 (-721 |#1| (-798 |#2|))) (-108) (-108)) NIL)) (-1444 (((-591 (-798 |#2|)) $) NIL)) (-3713 (((-108) $) NIL)) (-1996 (((-108) $) NIL (|has| |#1| (-517)))) (-3750 (((-108) (-721 |#1| (-798 |#2|)) $) NIL) (((-108) $) NIL)) (-4123 (((-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) $) NIL)) (-1720 (((-591 (-2 (|:| |val| (-721 |#1| (-798 |#2|))) (|:| -3585 $))) (-721 |#1| (-798 |#2|)) $) NIL)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ (-798 |#2|)) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2467 (($ (-1 (-108) (-721 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-3 (-721 |#1| (-798 |#2|)) "failed") $ (-798 |#2|)) NIL)) (-2055 (($) NIL T CONST)) (-3435 (((-108) $) NIL (|has| |#1| (-517)))) (-2342 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2605 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2167 (((-108) $) NIL (|has| |#1| (-517)))) (-2699 (((-591 (-721 |#1| (-798 |#2|))) (-591 (-721 |#1| (-798 |#2|))) $ (-1 (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|))) (-1 (-108) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)))) NIL)) (-1533 (((-591 (-721 |#1| (-798 |#2|))) (-591 (-721 |#1| (-798 |#2|))) $) NIL (|has| |#1| (-517)))) (-2978 (((-591 (-721 |#1| (-798 |#2|))) (-591 (-721 |#1| (-798 |#2|))) $) NIL (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 (-721 |#1| (-798 |#2|)))) NIL)) (-3341 (($ (-591 (-721 |#1| (-798 |#2|)))) NIL)) (-2884 (((-3 $ "failed") $) NIL)) (-2302 (((-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-721 |#1| (-798 |#2|)) (-1018))))) (-2537 (($ (-721 |#1| (-798 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-721 |#1| (-798 |#2|)) (-1018)))) (($ (-1 (-108) (-721 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-721 |#1| (-798 |#2|))) (|:| |den| |#1|)) (-721 |#1| (-798 |#2|)) $) NIL (|has| |#1| (-517)))) (-3797 (((-108) (-721 |#1| (-798 |#2|)) $ (-1 (-108) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)))) NIL)) (-2490 (((-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) $) NIL)) (-3618 (((-721 |#1| (-798 |#2|)) (-1 (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|))) $ (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-721 |#1| (-798 |#2|)) (-1018)))) (((-721 |#1| (-798 |#2|)) (-1 (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|))) $ (-721 |#1| (-798 |#2|))) NIL (|has| $ (-6 -4250))) (((-721 |#1| (-798 |#2|)) (-1 (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) $ (-1 (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|))) (-1 (-108) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)))) NIL)) (-2082 (((-2 (|:| -1269 (-591 (-721 |#1| (-798 |#2|)))) (|:| -1472 (-591 (-721 |#1| (-798 |#2|))))) $) NIL)) (-1987 (((-108) (-721 |#1| (-798 |#2|)) $) NIL)) (-1949 (((-108) (-721 |#1| (-798 |#2|)) $) NIL)) (-3256 (((-108) (-721 |#1| (-798 |#2|)) $) NIL) (((-108) $) NIL)) (-2916 (((-591 (-721 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2040 (((-108) (-721 |#1| (-798 |#2|)) $) NIL) (((-108) $) NIL)) (-3998 (((-798 |#2|) $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 (-721 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-721 |#1| (-798 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-721 |#1| (-798 |#2|)) (-1018))))) (-4192 (($ (-1 (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|))) $) NIL)) (-3520 (((-591 (-798 |#2|)) $) NIL)) (-1574 (((-108) (-798 |#2|) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2001 (((-3 (-721 |#1| (-798 |#2|)) (-591 $)) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) $) NIL)) (-2456 (((-591 (-2 (|:| |val| (-721 |#1| (-798 |#2|))) (|:| -3585 $))) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) $) NIL)) (-2555 (((-3 (-721 |#1| (-798 |#2|)) "failed") $) NIL)) (-3783 (((-591 $) (-721 |#1| (-798 |#2|)) $) NIL)) (-1929 (((-3 (-108) (-591 $)) (-721 |#1| (-798 |#2|)) $) NIL)) (-3433 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 $))) (-721 |#1| (-798 |#2|)) $) NIL) (((-108) (-721 |#1| (-798 |#2|)) $) NIL)) (-2318 (((-591 $) (-721 |#1| (-798 |#2|)) $) NIL) (((-591 $) (-591 (-721 |#1| (-798 |#2|))) $) NIL) (((-591 $) (-591 (-721 |#1| (-798 |#2|))) (-591 $)) NIL) (((-591 $) (-721 |#1| (-798 |#2|)) (-591 $)) NIL)) (-1832 (($ (-721 |#1| (-798 |#2|)) $) NIL) (($ (-591 (-721 |#1| (-798 |#2|))) $) NIL)) (-3664 (((-591 (-721 |#1| (-798 |#2|))) $) NIL)) (-1307 (((-108) (-721 |#1| (-798 |#2|)) $) NIL) (((-108) $) NIL)) (-3022 (((-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) $) NIL)) (-3300 (((-108) $ $) NIL)) (-2499 (((-2 (|:| |num| (-721 |#1| (-798 |#2|))) (|:| |den| |#1|)) (-721 |#1| (-798 |#2|)) $) NIL (|has| |#1| (-517)))) (-3255 (((-108) (-721 |#1| (-798 |#2|)) $) NIL) (((-108) $) NIL)) (-2246 (((-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)) $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 (((-3 (-721 |#1| (-798 |#2|)) "failed") $) NIL)) (-2714 (((-3 (-721 |#1| (-798 |#2|)) "failed") (-1 (-108) (-721 |#1| (-798 |#2|))) $) NIL)) (-1591 (((-3 $ "failed") $ (-721 |#1| (-798 |#2|))) NIL)) (-1618 (($ $ (-721 |#1| (-798 |#2|))) NIL) (((-591 $) (-721 |#1| (-798 |#2|)) $) NIL) (((-591 $) (-721 |#1| (-798 |#2|)) (-591 $)) NIL) (((-591 $) (-591 (-721 |#1| (-798 |#2|))) $) NIL) (((-591 $) (-591 (-721 |#1| (-798 |#2|))) (-591 $)) NIL)) (-3465 (((-108) (-1 (-108) (-721 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-721 |#1| (-798 |#2|))) (-591 (-721 |#1| (-798 |#2|)))) NIL (-12 (|has| (-721 |#1| (-798 |#2|)) (-288 (-721 |#1| (-798 |#2|)))) (|has| (-721 |#1| (-798 |#2|)) (-1018)))) (($ $ (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|))) NIL (-12 (|has| (-721 |#1| (-798 |#2|)) (-288 (-721 |#1| (-798 |#2|)))) (|has| (-721 |#1| (-798 |#2|)) (-1018)))) (($ $ (-273 (-721 |#1| (-798 |#2|)))) NIL (-12 (|has| (-721 |#1| (-798 |#2|)) (-288 (-721 |#1| (-798 |#2|)))) (|has| (-721 |#1| (-798 |#2|)) (-1018)))) (($ $ (-591 (-273 (-721 |#1| (-798 |#2|))))) NIL (-12 (|has| (-721 |#1| (-798 |#2|)) (-288 (-721 |#1| (-798 |#2|)))) (|has| (-721 |#1| (-798 |#2|)) (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-2743 (((-712) $) NIL)) (-2960 (((-712) (-721 |#1| (-798 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-721 |#1| (-798 |#2|)) (-1018)))) (((-712) (-1 (-108) (-721 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-721 |#1| (-798 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-721 |#1| (-798 |#2|)))) NIL)) (-3786 (($ $ (-798 |#2|)) NIL)) (-2794 (($ $ (-798 |#2|)) NIL)) (-1656 (($ $) NIL)) (-1918 (($ $ (-798 |#2|)) NIL)) (-2686 (((-796) $) NIL) (((-591 (-721 |#1| (-798 |#2|))) $) NIL)) (-3311 (((-712) $) NIL (|has| (-798 |#2|) (-346)))) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 (-721 |#1| (-798 |#2|))))) "failed") (-591 (-721 |#1| (-798 |#2|))) (-1 (-108) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 (-721 |#1| (-798 |#2|))))) "failed") (-591 (-721 |#1| (-798 |#2|))) (-1 (-108) (-721 |#1| (-798 |#2|))) (-1 (-108) (-721 |#1| (-798 |#2|)) (-721 |#1| (-798 |#2|)))) NIL)) (-3747 (((-108) $ (-1 (-108) (-721 |#1| (-798 |#2|)) (-591 (-721 |#1| (-798 |#2|))))) NIL)) (-3996 (((-591 $) (-721 |#1| (-798 |#2|)) $) NIL) (((-591 $) (-721 |#1| (-798 |#2|)) (-591 $)) NIL) (((-591 $) (-591 (-721 |#1| (-798 |#2|))) $) NIL) (((-591 $) (-591 (-721 |#1| (-798 |#2|))) (-591 $)) NIL)) (-1475 (((-108) (-1 (-108) (-721 |#1| (-798 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-1669 (((-591 (-798 |#2|)) $) NIL)) (-3744 (((-108) (-721 |#1| (-798 |#2|)) $) NIL)) (-2588 (((-108) (-798 |#2|) $) NIL)) (-3944 (((-108) $ $) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-972 |#1| |#2|) (-13 (-994 |#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|))) (-10 -8 (-15 -3227 ((-591 $) (-591 (-721 |#1| (-798 |#2|))) (-108) (-108))))) (-429) (-591 (-1089))) (T -972)) -((-3227 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-591 (-1089))) (-5 *2 (-591 (-972 *5 *6))) (-5 *1 (-972 *5 *6))))) -(-13 (-994 |#1| (-497 (-798 |#2|)) (-798 |#2|) (-721 |#1| (-798 |#2|))) (-10 -8 (-15 -3227 ((-591 $) (-591 (-721 |#1| (-798 |#2|))) (-108) (-108))))) -((-3158 (((-1 (-525)) (-1013 (-525))) 33)) (-4020 (((-525) (-525) (-525) (-525) (-525)) 30)) (-2766 (((-1 (-525)) |RationalNumber|) NIL)) (-3593 (((-1 (-525)) |RationalNumber|) NIL)) (-3808 (((-1 (-525)) (-525) |RationalNumber|) NIL))) -(((-973) (-10 -7 (-15 -3158 ((-1 (-525)) (-1013 (-525)))) (-15 -3808 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -2766 ((-1 (-525)) |RationalNumber|)) (-15 -3593 ((-1 (-525)) |RationalNumber|)) (-15 -4020 ((-525) (-525) (-525) (-525) (-525))))) (T -973)) -((-4020 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-973)))) (-3593 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-973)))) (-2766 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-973)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-973)) (-5 *3 (-525)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-1013 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-973))))) -(-10 -7 (-15 -3158 ((-1 (-525)) (-1013 (-525)))) (-15 -3808 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -2766 ((-1 (-525)) |RationalNumber|)) (-15 -3593 ((-1 (-525)) |RationalNumber|)) (-15 -4020 ((-525) (-525) (-525) (-525) (-525)))) -((-2686 (((-796) $) NIL) (($ (-525)) 10))) -(((-974 |#1|) (-10 -8 (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) (-975)) (T -974)) -NIL -(-10 -8 (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-975) (-131)) (T -975)) -((-3425 (*1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-712)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-975))))) -(-13 (-982) (-668) (-593 $) (-10 -8 (-15 -3425 ((-712))) (-15 -2686 ($ (-525))) (-6 -4247))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 $) . T) ((-668) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-3813 (((-385 (-885 |#2|)) (-591 |#2|) (-591 |#2|) (-712) (-712)) 45))) -(((-976 |#1| |#2|) (-10 -7 (-15 -3813 ((-385 (-885 |#2|)) (-591 |#2|) (-591 |#2|) (-712) (-712)))) (-1089) (-341)) (T -976)) -((-3813 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-591 *6)) (-5 *4 (-712)) (-4 *6 (-341)) (-5 *2 (-385 (-885 *6))) (-5 *1 (-976 *5 *6)) (-14 *5 (-1089))))) -(-10 -7 (-15 -3813 ((-385 (-885 |#2|)) (-591 |#2|) (-591 |#2|) (-712) (-712)))) -((-1711 (((-108) $) 29)) (-1478 (((-108) $) 16)) (-4127 (((-712) $) 13)) (-4140 (((-712) $) 14)) (-2348 (((-108) $) 26)) (-1986 (((-108) $) 31))) -(((-977 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4140 ((-712) |#1|)) (-15 -4127 ((-712) |#1|)) (-15 -1986 ((-108) |#1|)) (-15 -1711 ((-108) |#1|)) (-15 -2348 ((-108) |#1|)) (-15 -1478 ((-108) |#1|))) (-978 |#2| |#3| |#4| |#5| |#6|) (-712) (-712) (-975) (-218 |#3| |#4|) (-218 |#2| |#4|)) (T -977)) -NIL -(-10 -8 (-15 -4140 ((-712) |#1|)) (-15 -4127 ((-712) |#1|)) (-15 -1986 ((-108) |#1|)) (-15 -1711 ((-108) |#1|)) (-15 -2348 ((-108) |#1|)) (-15 -1478 ((-108) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1711 (((-108) $) 51)) (-3332 (((-3 $ "failed") $ $) 19)) (-1478 (((-108) $) 53)) (-3727 (((-108) $ (-712)) 61)) (-2055 (($) 17 T CONST)) (-1352 (($ $) 34 (|has| |#3| (-286)))) (-2578 ((|#4| $ (-525)) 39)) (-2193 (((-712) $) 33 (|has| |#3| (-517)))) (-4121 ((|#3| $ (-525) (-525)) 41)) (-2916 (((-591 |#3|) $) 68 (|has| $ (-6 -4250)))) (-1613 (((-712) $) 32 (|has| |#3| (-517)))) (-2523 (((-591 |#5|) $) 31 (|has| |#3| (-517)))) (-4127 (((-712) $) 45)) (-4140 (((-712) $) 44)) (-3491 (((-108) $ (-712)) 60)) (-3142 (((-525) $) 49)) (-3660 (((-525) $) 47)) (-4207 (((-591 |#3|) $) 69 (|has| $ (-6 -4250)))) (-3956 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1018)) (|has| $ (-6 -4250))))) (-3882 (((-525) $) 48)) (-2494 (((-525) $) 46)) (-1572 (($ (-591 (-591 |#3|))) 54)) (-4192 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3093 (((-591 (-591 |#3|)) $) 43)) (-3295 (((-108) $ (-712)) 59)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3210 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-517)))) (-3465 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#3|) (-591 |#3|)) 75 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ (-273 |#3|)) 73 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ (-591 (-273 |#3|))) 72 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018))))) (-2023 (((-108) $ $) 55)) (-2077 (((-108) $) 58)) (-3164 (($) 57)) (-1881 ((|#3| $ (-525) (-525)) 42) ((|#3| $ (-525) (-525) |#3|) 40)) (-2348 (((-108) $) 52)) (-2960 (((-712) |#3| $) 70 (-12 (|has| |#3| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4250)))) (-2873 (($ $) 56)) (-1256 ((|#5| $ (-525)) 38)) (-2686 (((-796) $) 11)) (-1475 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4250)))) (-1986 (((-108) $) 50)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#3|) 35 (|has| |#3| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2028 (((-712) $) 62 (|has| $ (-6 -4250))))) -(((-978 |#1| |#2| |#3| |#4| |#5|) (-131) (-712) (-712) (-975) (-218 |t#2| |t#3|) (-218 |t#1| |t#3|)) (T -978)) -((-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 *5))) (-4 *5 (-975)) (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-2348 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-3882 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-712)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-712)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-591 (-591 *5))))) (-1881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-975)))) (-4121 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-975)))) (-1881 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *2 *6 *7)) (-4 *2 (-975)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)))) (-2578 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *6 *2 *7)) (-4 *6 (-975)) (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))) (-1256 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *6 *7 *2)) (-4 *6 (-975)) (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))) (-1257 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-3210 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-978 *3 *4 *2 *5 *6)) (-4 *2 (-975)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517)))) (-4059 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5 *6)) (-4 *2 (-975)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-341)))) (-1352 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-712)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-712)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-591 *7))))) -(-13 (-107 |t#3| |t#3|) (-464 |t#3|) (-10 -8 (-6 -4250) (IF (|has| |t#3| (-160)) (-6 (-659 |t#3|)) |%noBranch|) (-15 -1572 ($ (-591 (-591 |t#3|)))) (-15 -1478 ((-108) $)) (-15 -2348 ((-108) $)) (-15 -1711 ((-108) $)) (-15 -1986 ((-108) $)) (-15 -3142 ((-525) $)) (-15 -3882 ((-525) $)) (-15 -3660 ((-525) $)) (-15 -2494 ((-525) $)) (-15 -4127 ((-712) $)) (-15 -4140 ((-712) $)) (-15 -3093 ((-591 (-591 |t#3|)) $)) (-15 -1881 (|t#3| $ (-525) (-525))) (-15 -4121 (|t#3| $ (-525) (-525))) (-15 -1881 (|t#3| $ (-525) (-525) |t#3|)) (-15 -2578 (|t#4| $ (-525))) (-15 -1256 (|t#5| $ (-525))) (-15 -1257 ($ (-1 |t#3| |t#3|) $)) (-15 -1257 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-517)) (-15 -3210 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-341)) (-15 -4059 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-286)) (-15 -1352 ($ $)) |%noBranch|) (IF (|has| |t#3| (-517)) (PROGN (-15 -2193 ((-712) $)) (-15 -1613 ((-712) $)) (-15 -2523 ((-591 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-126) . T) ((-565 (-796)) . T) ((-288 |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018))) ((-464 |#3|) . T) ((-486 |#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018))) ((-593 |#3|) . T) ((-659 |#3|) |has| |#3| (-160)) ((-981 |#3|) . T) ((-1018) . T) ((-1125) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1711 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-1478 (((-108) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2055 (($) NIL T CONST)) (-1352 (($ $) 43 (|has| |#3| (-286)))) (-2578 (((-220 |#2| |#3|) $ (-525)) 32)) (-2007 (($ (-631 |#3|)) 41)) (-2193 (((-712) $) 45 (|has| |#3| (-517)))) (-4121 ((|#3| $ (-525) (-525)) NIL)) (-2916 (((-591 |#3|) $) NIL (|has| $ (-6 -4250)))) (-1613 (((-712) $) 47 (|has| |#3| (-517)))) (-2523 (((-591 (-220 |#1| |#3|)) $) 51 (|has| |#3| (-517)))) (-4127 (((-712) $) NIL)) (-4140 (((-712) $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-3142 (((-525) $) NIL)) (-3660 (((-525) $) NIL)) (-4207 (((-591 |#3|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#3| (-1018))))) (-3882 (((-525) $) NIL)) (-2494 (((-525) $) NIL)) (-1572 (($ (-591 (-591 |#3|))) 27)) (-4192 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3093 (((-591 (-591 |#3|)) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3210 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-517)))) (-3465 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#3|) (-591 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ (-591 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#3| $ (-525) (-525)) NIL) ((|#3| $ (-525) (-525) |#3|) NIL)) (-3840 (((-128)) 54 (|has| |#3| (-341)))) (-2348 (((-108) $) NIL)) (-2960 (((-712) |#3| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#3| (-1018)))) (((-712) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) 63 (|has| |#3| (-566 (-501))))) (-1256 (((-220 |#1| |#3|) $ (-525)) 36)) (-2686 (((-796) $) 16) (((-631 |#3|) $) 38)) (-1475 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4250)))) (-1986 (((-108) $) NIL)) (-1830 (($) 13 T CONST)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-979 |#1| |#2| |#3|) (-13 (-978 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-565 (-631 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1178 |#3|)) |%noBranch|) (IF (|has| |#3| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (-15 -2007 ($ (-631 |#3|))) (-15 -2686 ((-631 |#3|) $)))) (-712) (-712) (-975)) (T -979)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-631 *5)) (-5 *1 (-979 *3 *4 *5)) (-14 *3 (-712)) (-14 *4 (-712)) (-4 *5 (-975)))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-975)) (-5 *1 (-979 *3 *4 *5)) (-14 *3 (-712)) (-14 *4 (-712))))) -(-13 (-978 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-565 (-631 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1178 |#3|)) |%noBranch|) (IF (|has| |#3| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|) (-15 -2007 ($ (-631 |#3|))) (-15 -2686 ((-631 |#3|) $)))) -((-3618 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1257 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-980 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1257 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3618 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-712) (-712) (-975) (-218 |#2| |#3|) (-218 |#1| |#3|) (-978 |#1| |#2| |#3| |#4| |#5|) (-975) (-218 |#2| |#7|) (-218 |#1| |#7|) (-978 |#1| |#2| |#7| |#8| |#9|)) (T -980)) -((-3618 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-975)) (-4 *2 (-975)) (-14 *5 (-712)) (-14 *6 (-712)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2)) (-5 *1 (-980 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-978 *5 *6 *7 *8 *9)) (-4 *12 (-978 *5 *6 *2 *10 *11)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-975)) (-4 *10 (-975)) (-14 *5 (-712)) (-14 *6 (-712)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *2 (-978 *5 *6 *10 *11 *12)) (-5 *1 (-980 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-978 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10)) (-4 *12 (-218 *5 *10))))) -(-10 -7 (-15 -1257 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3618 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ |#1|) 23))) -(((-981 |#1|) (-131) (-982)) (T -981)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-981 *2)) (-4 *2 (-982))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4225 (((-592 (-525)) $) 54)) (-3674 (($ (-592 (-525))) 62)) (-4094 (((-525) $) 40 (|has| (-525) (-286)))) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL (|has| (-525) (-762)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) 49) (((-3 (-1090) "failed") $) NIL (|has| (-525) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) 47 (|has| (-525) (-967 (-525)))) (((-3 (-525) "failed") $) 49 (|has| (-525) (-967 (-525))))) (-2068 (((-525) $) NIL) (((-1090) $) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-525) (-967 (-525)))) (((-525) $) NIL (|has| (-525) (-967 (-525))))) (-2720 (($ $ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-1527 (($) NIL (|has| (-525) (-510)))) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-3983 (((-592 (-525)) $) 60)) (-2973 (((-108) $) NIL (|has| (-525) (-762)))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-525) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-525) (-820 (-357))))) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL)) (-1936 (((-525) $) 37)) (-1978 (((-3 $ "failed") $) NIL (|has| (-525) (-1066)))) (-3721 (((-108) $) NIL (|has| (-525) (-762)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| (-525) (-789)))) (-2868 (($ (-1 (-525) (-525)) $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL)) (-2039 (($) NIL (|has| (-525) (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1341 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) 42)) (-1204 (((-1071 (-525)) $) 59)) (-2915 (($ (-592 (-525)) (-592 (-525))) 63)) (-2473 (((-525) $) 53 (|has| (-525) (-510)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2961 (((-396 $) $) NIL)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2168 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1090)) (-592 (-525))) NIL (|has| (-525) (-486 (-1090) (-525)))) (($ $ (-1090) (-525)) NIL (|has| (-525) (-486 (-1090) (-525))))) (-2824 (((-713) $) NIL)) (-1496 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $) 11 (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-1987 (($ $) NIL)) (-1945 (((-525) $) 39)) (-2347 (((-592 (-525)) $) 61)) (-2923 (((-826 (-525)) $) NIL (|has| (-525) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-525) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-952))) (((-205) $) NIL (|has| (-525) (-952)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-843))))) (-4044 (((-797) $) 77) (($ (-525)) 43) (($ $) NIL) (($ (-385 (-525))) 20) (($ (-525)) 43) (($ (-1090)) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) 18)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| (-525) (-843))) (|has| (-525) (-136))))) (-2502 (((-713)) 9)) (-1448 (((-525) $) 51 (|has| (-525) (-510)))) (-3787 (((-108) $ $) NIL)) (-2053 (($ $) NIL (|has| (-525) (-762)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 10 T CONST)) (-1449 (($) 12 T CONST)) (-1990 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-3973 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3899 (((-108) $ $) 14)) (-3959 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3928 (((-108) $ $) 33 (|has| (-525) (-789)))) (-4047 (($ $ $) 29) (($ (-525) (-525)) 31)) (-4033 (($ $) 15) (($ $ $) 23)) (-4017 (($ $ $) 21)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 25) (($ $ $) 27) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) 25) (($ $ (-525)) NIL))) +(((-935 |#1|) (-13 (-924 (-525)) (-10 -8 (-15 -4044 ((-385 (-525)) $)) (-15 -1341 ((-385 (-525)) $)) (-15 -4225 ((-592 (-525)) $)) (-15 -1204 ((-1071 (-525)) $)) (-15 -3983 ((-592 (-525)) $)) (-15 -2347 ((-592 (-525)) $)) (-15 -3674 ($ (-592 (-525)))) (-15 -2915 ($ (-592 (-525)) (-592 (-525)))))) (-525)) (T -935)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-1204 (*1 *2 *1) (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-2915 (*1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525))))) +(-13 (-924 (-525)) (-10 -8 (-15 -4044 ((-385 (-525)) $)) (-15 -1341 ((-385 (-525)) $)) (-15 -4225 ((-592 (-525)) $)) (-15 -1204 ((-1071 (-525)) $)) (-15 -3983 ((-592 (-525)) $)) (-15 -2347 ((-592 (-525)) $)) (-15 -3674 ($ (-592 (-525)))) (-15 -2915 ($ (-592 (-525)) (-592 (-525)))))) +((-2565 (((-51) (-385 (-525)) (-525)) 9))) +(((-936) (-10 -7 (-15 -2565 ((-51) (-385 (-525)) (-525))))) (T -936)) +((-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51)) (-5 *1 (-936))))) +(-10 -7 (-15 -2565 ((-51) (-385 (-525)) (-525)))) +((-1651 (((-525)) 13)) (-2552 (((-525)) 16)) (-1938 (((-1177) (-525)) 15)) (-2106 (((-525) (-525)) 17) (((-525)) 12))) +(((-937) (-10 -7 (-15 -2106 ((-525))) (-15 -1651 ((-525))) (-15 -2106 ((-525) (-525))) (-15 -1938 ((-1177) (-525))) (-15 -2552 ((-525))))) (T -937)) +((-2552 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-937)))) (-2106 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))) (-1651 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))) (-2106 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937))))) +(-10 -7 (-15 -2106 ((-525))) (-15 -1651 ((-525))) (-15 -2106 ((-525) (-525))) (-15 -1938 ((-1177) (-525))) (-15 -2552 ((-525)))) +((-3167 (((-396 |#1|) |#1|) 41)) (-2961 (((-396 |#1|) |#1|) 40))) +(((-938 |#1|) (-10 -7 (-15 -2961 ((-396 |#1|) |#1|)) (-15 -3167 ((-396 |#1|) |#1|))) (-1148 (-385 (-525)))) (T -938)) +((-3167 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-938 *3)) (-4 *3 (-1148 (-385 (-525)))))) (-2961 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-938 *3)) (-4 *3 (-1148 (-385 (-525))))))) +(-10 -7 (-15 -2961 ((-396 |#1|) |#1|)) (-15 -3167 ((-396 |#1|) |#1|))) +((-2132 (((-3 (-385 (-525)) "failed") |#1|) 15)) (-3748 (((-108) |#1|) 14)) (-1675 (((-385 (-525)) |#1|) 10))) +(((-939 |#1|) (-10 -7 (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|))) (-967 (-385 (-525)))) (T -939)) +((-2132 (*1 *2 *3) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-939 *3)) (-4 *3 (-967 *2)))) (-3748 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-939 *3)) (-4 *3 (-967 (-385 (-525)))))) (-1675 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-939 *3)) (-4 *3 (-967 *2))))) +(-10 -7 (-15 -1675 ((-385 (-525)) |#1|)) (-15 -3748 ((-108) |#1|)) (-15 -2132 ((-3 (-385 (-525)) "failed") |#1|))) +((-1230 ((|#2| $ "value" |#2|) 12)) (-1496 ((|#2| $ "value") 10)) (-2086 (((-108) $ $) 18))) +(((-940 |#1| |#2|) (-10 -8 (-15 -1230 (|#2| |#1| "value" |#2|)) (-15 -2086 ((-108) |#1| |#1|)) (-15 -1496 (|#2| |#1| "value"))) (-941 |#2|) (-1126)) (T -940)) +NIL +(-10 -8 (-15 -1230 (|#2| |#1| "value" |#2|)) (-15 -2086 ((-108) |#1| |#1|)) (-15 -1496 (|#2| |#1| "value"))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3067 ((|#1| $) 48)) (-2583 (((-108) $ (-713)) 8)) (-2325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1957 (($) 7 T CONST)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 50)) (-2983 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-2401 (((-592 |#1|) $) 45)) (-3260 (((-108) $) 49)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ "value") 47)) (-3612 (((-525) $ $) 44)) (-3105 (((-108) $) 46)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) 51)) (-2086 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-941 |#1|) (-131) (-1126)) (T -941)) +((-2180 (*1 *2 *1) (-12 (-4 *3 (-1126)) (-5 *2 (-592 *1)) (-4 *1 (-941 *3)))) (-2850 (*1 *2 *1) (-12 (-4 *3 (-1126)) (-5 *2 (-592 *1)) (-4 *1 (-941 *3)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-1126)))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-941 *2)) (-4 *2 (-1126)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-592 *3)))) (-3612 (*1 *2 *1 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-525)))) (-2086 (*1 *2 *1 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-2983 (*1 *2 *1 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-2614 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4255)) (-4 *1 (-941 *3)) (-4 *3 (-1126)))) (-1230 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4255)) (-4 *1 (-941 *2)) (-4 *2 (-1126)))) (-2325 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-941 *2)) (-4 *2 (-1126))))) +(-13 (-464 |t#1|) (-10 -8 (-15 -2180 ((-592 $) $)) (-15 -2850 ((-592 $) $)) (-15 -3260 ((-108) $)) (-15 -3067 (|t#1| $)) (-15 -1496 (|t#1| $ "value")) (-15 -3105 ((-108) $)) (-15 -2401 ((-592 |t#1|) $)) (-15 -3612 ((-525) $ $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -2086 ((-108) $ $)) (-15 -2983 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4255)) (PROGN (-15 -2614 ($ $ (-592 $))) (-15 -1230 (|t#1| $ "value" |t#1|)) (-15 -2325 (|t#1| $ |t#1|))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-2975 (($ $) 9) (($ $ (-713)) 43) (($ (-385 (-525))) 13) (($ (-525)) 15)) (-2539 (((-3 $ "failed") (-1086 $) (-855) (-797)) 23) (((-3 $ "failed") (-1086 $) (-855)) 28)) (-2581 (($ $ (-525)) 49)) (-2502 (((-713)) 16)) (-4068 (((-592 $) (-1086 $)) NIL) (((-592 $) (-1086 (-385 (-525)))) 54) (((-592 $) (-1086 (-525))) 59) (((-592 $) (-886 $)) 63) (((-592 $) (-886 (-385 (-525)))) 67) (((-592 $) (-886 (-525))) 71)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 47))) +(((-942 |#1|) (-10 -8 (-15 -2975 (|#1| (-525))) (-15 -2975 (|#1| (-385 (-525)))) (-15 -2975 (|#1| |#1| (-713))) (-15 -4068 ((-592 |#1|) (-886 (-525)))) (-15 -4068 ((-592 |#1|) (-886 (-385 (-525))))) (-15 -4068 ((-592 |#1|) (-886 |#1|))) (-15 -4068 ((-592 |#1|) (-1086 (-525)))) (-15 -4068 ((-592 |#1|) (-1086 (-385 (-525))))) (-15 -4068 ((-592 |#1|) (-1086 |#1|))) (-15 -2539 ((-3 |#1| "failed") (-1086 |#1|) (-855))) (-15 -2539 ((-3 |#1| "failed") (-1086 |#1|) (-855) (-797))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2581 (|#1| |#1| (-525))) (-15 -2975 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2502 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855)))) (-943)) (T -942)) +((-2502 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) +(-10 -8 (-15 -2975 (|#1| (-525))) (-15 -2975 (|#1| (-385 (-525)))) (-15 -2975 (|#1| |#1| (-713))) (-15 -4068 ((-592 |#1|) (-886 (-525)))) (-15 -4068 ((-592 |#1|) (-886 (-385 (-525))))) (-15 -4068 ((-592 |#1|) (-886 |#1|))) (-15 -4068 ((-592 |#1|) (-1086 (-525)))) (-15 -4068 ((-592 |#1|) (-1086 (-385 (-525))))) (-15 -4068 ((-592 |#1|) (-1086 |#1|))) (-15 -2539 ((-3 |#1| "failed") (-1086 |#1|) (-855))) (-15 -2539 ((-3 |#1| "failed") (-1086 |#1|) (-855) (-797))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2581 (|#1| |#1| (-525))) (-15 -2975 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2502 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 89)) (-2609 (($ $) 90)) (-1220 (((-108) $) 92)) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 109)) (-1259 (((-396 $) $) 110)) (-2975 (($ $) 73) (($ $ (-713)) 59) (($ (-385 (-525))) 58) (($ (-525)) 57)) (-1700 (((-108) $ $) 100)) (-2780 (((-525) $) 127)) (-1957 (($) 17 T CONST)) (-2539 (((-3 $ "failed") (-1086 $) (-855) (-797)) 67) (((-3 $ "failed") (-1086 $) (-855)) 66)) (-2769 (((-3 (-525) "failed") $) 85 (|has| (-385 (-525)) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 83 (|has| (-385 (-525)) (-967 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) 81)) (-2068 (((-525) $) 86 (|has| (-385 (-525)) (-967 (-525)))) (((-385 (-525)) $) 84 (|has| (-385 (-525)) (-967 (-385 (-525))))) (((-385 (-525)) $) 80)) (-3992 (($ $ (-797)) 56)) (-2000 (($ $ (-797)) 55)) (-2720 (($ $ $) 104)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 103)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 98)) (-2069 (((-108) $) 111)) (-2973 (((-108) $) 125)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 72)) (-3721 (((-108) $) 126)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 107)) (-1260 (($ $ $) 124)) (-2154 (($ $ $) 123)) (-2761 (((-3 (-1086 $) "failed") $) 68)) (-2705 (((-3 (-797) "failed") $) 70)) (-1541 (((-3 (-1086 $) "failed") $) 69)) (-2226 (($ (-592 $)) 96) (($ $ $) 95)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 112)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 97)) (-2262 (($ (-592 $)) 94) (($ $ $) 93)) (-2961 (((-396 $) $) 108)) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 105)) (-2675 (((-3 $ "failed") $ $) 88)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 99)) (-2824 (((-713) $) 101)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 102)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 117) (($ $) 87) (($ (-385 (-525))) 82) (($ (-525)) 79) (($ (-385 (-525))) 76)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 91)) (-2371 (((-385 (-525)) $ $) 54)) (-4068 (((-592 $) (-1086 $)) 65) (((-592 $) (-1086 (-385 (-525)))) 64) (((-592 $) (-1086 (-525))) 63) (((-592 $) (-886 $)) 62) (((-592 $) (-886 (-385 (-525)))) 61) (((-592 $) (-886 (-525))) 60)) (-2053 (($ $) 128)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 113)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3973 (((-108) $ $) 121)) (-3944 (((-108) $ $) 120)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 122)) (-3928 (((-108) $ $) 119)) (-4047 (($ $ $) 118)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 114) (($ $ (-385 (-525))) 71)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 116) (($ $ (-385 (-525))) 115) (($ (-525) $) 78) (($ $ (-525)) 77) (($ (-385 (-525)) $) 75) (($ $ (-385 (-525))) 74))) +(((-943) (-131)) (T -943)) +((-2975 (*1 *1 *1) (-4 *1 (-943))) (-2705 (*1 *2 *1) (|partial| -12 (-4 *1 (-943)) (-5 *2 (-797)))) (-1541 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-943)))) (-2761 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-943)))) (-2539 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-855)) (-5 *4 (-797)) (-4 *1 (-943)))) (-2539 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-855)) (-4 *1 (-943)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-943)) (-5 *2 (-592 *1)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-1086 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-1086 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-943)) (-5 *2 (-592 *1)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-886 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) (-2975 (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-713)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-943)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-943)))) (-3992 (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-797)))) (-2000 (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-797)))) (-2371 (*1 *2 *1 *1) (-12 (-4 *1 (-943)) (-5 *2 (-385 (-525)))))) +(-13 (-138) (-787) (-160) (-341) (-389 (-385 (-525))) (-37 (-525)) (-37 (-385 (-525))) (-933) (-10 -8 (-15 -2705 ((-3 (-797) "failed") $)) (-15 -1541 ((-3 (-1086 $) "failed") $)) (-15 -2761 ((-3 (-1086 $) "failed") $)) (-15 -2539 ((-3 $ "failed") (-1086 $) (-855) (-797))) (-15 -2539 ((-3 $ "failed") (-1086 $) (-855))) (-15 -4068 ((-592 $) (-1086 $))) (-15 -4068 ((-592 $) (-1086 (-385 (-525))))) (-15 -4068 ((-592 $) (-1086 (-525)))) (-15 -4068 ((-592 $) (-886 $))) (-15 -4068 ((-592 $) (-886 (-385 (-525))))) (-15 -4068 ((-592 $) (-886 (-525)))) (-15 -2975 ($ $ (-713))) (-15 -2975 ($ $)) (-15 -2975 ($ (-385 (-525)))) (-15 -2975 ($ (-525))) (-15 -3992 ($ $ (-797))) (-15 -2000 ($ $ (-797))) (-15 -2371 ((-385 (-525)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 #1=(-525)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-389 (-385 (-525))) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 #1#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-854) . T) ((-933) . T) ((-967 (-385 (-525))) . T) ((-967 (-525)) |has| (-385 (-525)) (-967 (-525))) ((-982 #0#) . T) ((-982 #1#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T)) +((-2920 (((-2 (|:| |ans| |#2|) (|:| -3356 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-944 |#1| |#2|) (-10 -7 (-15 -2920 ((-2 (|:| |ans| |#2|) (|:| -3356 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-27) (-408 |#1|))) (T -944)) +((-2920 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3081 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1112) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-967 *3) (-588 *3))) (-5 *3 (-525)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3356 *4) (|:| |sol?| (-108)))) (-5 *1 (-944 *8 *4))))) +(-10 -7 (-15 -2920 ((-2 (|:| |ans| |#2|) (|:| -3356 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2165 (((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-945 |#1| |#2|) (-10 -7 (-15 -2165 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-27) (-408 |#1|))) (T -945)) +((-2165 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3081 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1112) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-967 *3) (-588 *3))) (-5 *3 (-525)) (-5 *2 (-592 *4)) (-5 *1 (-945 *8 *4))))) +(-10 -7 (-15 -2165 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -3081 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3717 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3941 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)) 30)) (-3576 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -2858 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 58)) (-3028 (((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|)) 63))) +(((-946 |#1| |#2|) (-10 -7 (-15 -3576 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -2858 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -3028 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -3717 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3941 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)))) (-13 (-341) (-138) (-967 (-525))) (-1148 |#1|)) (T -946)) +((-3717 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1148 *6)) (-4 *6 (-13 (-341) (-138) (-967 *4))) (-5 *4 (-525)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -3941 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-946 *6 *3)))) (-3028 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108)))) (-5 *1 (-946 *4 *5)) (-5 *3 (-385 *5)))) (-3576 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6)) (|:| -2858 *6))) (-5 *1 (-946 *5 *6)) (-5 *3 (-385 *6))))) +(-10 -7 (-15 -3576 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -2858 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -3028 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -3717 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3941 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)))) +((-3536 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -2858 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 22)) (-3282 (((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 33))) +(((-947 |#1| |#2|) (-10 -7 (-15 -3536 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -2858 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -3282 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)))) (-13 (-341) (-138) (-967 (-525))) (-1148 |#1|)) (T -947)) +((-3282 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-947 *4 *5)) (-5 *3 (-385 *5)))) (-3536 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6) (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -2858 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6))))) +(-10 -7 (-15 -3536 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -2858 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -3282 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)))) +((-4173 (((-1 |#1|) (-592 (-2 (|:| -3067 |#1|) (|:| -2147 (-525))))) 37)) (-1918 (((-1 |#1|) (-1021 |#1|)) 45)) (-2320 (((-1 |#1|) (-1172 |#1|) (-1172 (-525)) (-525)) 34))) +(((-948 |#1|) (-10 -7 (-15 -1918 ((-1 |#1|) (-1021 |#1|))) (-15 -4173 ((-1 |#1|) (-592 (-2 (|:| -3067 |#1|) (|:| -2147 (-525)))))) (-15 -2320 ((-1 |#1|) (-1172 |#1|) (-1172 (-525)) (-525)))) (-1019)) (T -948)) +((-2320 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1172 *6)) (-5 *4 (-1172 (-525))) (-5 *5 (-525)) (-4 *6 (-1019)) (-5 *2 (-1 *6)) (-5 *1 (-948 *6)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3067 *4) (|:| -2147 (-525))))) (-4 *4 (-1019)) (-5 *2 (-1 *4)) (-5 *1 (-948 *4)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-1021 *4)) (-4 *4 (-1019)) (-5 *2 (-1 *4)) (-5 *1 (-948 *4))))) +(-10 -7 (-15 -1918 ((-1 |#1|) (-1021 |#1|))) (-15 -4173 ((-1 |#1|) (-592 (-2 (|:| -3067 |#1|) (|:| -2147 (-525)))))) (-15 -2320 ((-1 |#1|) (-1172 |#1|) (-1172 (-525)) (-525)))) +((-2158 (((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2158 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-13 (-346) (-341))) (T -949)) +((-2158 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-4 *4 (-1148 (-385 *7))) (-4 *8 (-320 *6 *7 *4)) (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713)) (-5 *1 (-949 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -2158 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3563 (((-3 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) "failed") |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) 31) (((-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525))) 28)) (-2938 (((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525))) 33) (((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-385 (-525))) 29) (((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) 32) (((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1|) 27)) (-2924 (((-592 (-385 (-525))) (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) 19)) (-2984 (((-385 (-525)) (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) 16))) +(((-950 |#1|) (-10 -7 (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1|)) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525)))) (-15 -3563 ((-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525)))) (-15 -3563 ((-3 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) "failed") |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-15 -2984 ((-385 (-525)) (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-15 -2924 ((-592 (-385 (-525))) (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))))) (-1148 (-525))) (T -950)) +((-2924 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-950 *4)) (-4 *4 (-1148 (-525))))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) (-5 *2 (-385 (-525))) (-5 *1 (-950 *4)) (-4 *4 (-1148 (-525))))) (-3563 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))))) (-3563 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))))) (-2938 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3347 *5) (|:| -3356 *5)))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-2 (|:| -3347 *5) (|:| -3356 *5))))) (-2938 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-385 (-525))))) (-2938 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))))) (-2938 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525)))))) +(-10 -7 (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1|)) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525)))) (-15 -3563 ((-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525)))) (-15 -3563 ((-3 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) "failed") |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-15 -2984 ((-385 (-525)) (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-15 -2924 ((-592 (-385 (-525))) (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))))) +((-3563 (((-3 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) "failed") |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) 35) (((-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525))) 32)) (-2938 (((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525))) 30) (((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-385 (-525))) 26) (((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) 28) (((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1|) 24))) +(((-951 |#1|) (-10 -7 (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1|)) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525)))) (-15 -3563 ((-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525)))) (-15 -3563 ((-3 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) "failed") |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))))) (-1148 (-385 (-525)))) (T -951)) +((-3563 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))))) (-3563 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-951 *3)) (-4 *3 (-1148 *4)))) (-2938 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3347 *5) (|:| -3356 *5)))) (-5 *1 (-951 *3)) (-4 *3 (-1148 *5)) (-5 *4 (-2 (|:| -3347 *5) (|:| -3356 *5))))) (-2938 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3347 *4) (|:| -3356 *4)))) (-5 *1 (-951 *3)) (-4 *3 (-1148 *4)))) (-2938 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))) (-5 *4 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))))) (-2938 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525))))))) +(-10 -7 (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1|)) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2938 ((-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525)))) (-15 -3563 ((-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-385 (-525)))) (-15 -3563 ((-3 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) "failed") |#1| (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))) (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))))) +((-2923 (((-205) $) 6) (((-357) $) 9))) +(((-952) (-131)) (T -952)) +NIL +(-13 (-567 (-205)) (-567 (-357))) +(((-567 (-205)) . T) ((-567 (-357)) . T)) +((-1932 (((-592 (-357)) (-886 (-525)) (-357)) 28) (((-592 (-357)) (-886 (-385 (-525))) (-357)) 27)) (-4150 (((-592 (-592 (-357))) (-592 (-886 (-525))) (-592 (-1090)) (-357)) 37))) +(((-953) (-10 -7 (-15 -1932 ((-592 (-357)) (-886 (-385 (-525))) (-357))) (-15 -1932 ((-592 (-357)) (-886 (-525)) (-357))) (-15 -4150 ((-592 (-592 (-357))) (-592 (-886 (-525))) (-592 (-1090)) (-357))))) (T -953)) +((-4150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-592 (-1090))) (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-953)) (-5 *5 (-357)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-525))) (-5 *2 (-592 (-357))) (-5 *1 (-953)) (-5 *4 (-357)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *2 (-592 (-357))) (-5 *1 (-953)) (-5 *4 (-357))))) +(-10 -7 (-15 -1932 ((-592 (-357)) (-886 (-385 (-525))) (-357))) (-15 -1932 ((-592 (-357)) (-886 (-525)) (-357))) (-15 -4150 ((-592 (-592 (-357))) (-592 (-886 (-525))) (-592 (-1090)) (-357)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 70)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-2975 (($ $) NIL) (($ $ (-713)) NIL) (($ (-385 (-525))) NIL) (($ (-525)) NIL)) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) 65)) (-1957 (($) NIL T CONST)) (-2539 (((-3 $ "failed") (-1086 $) (-855) (-797)) NIL) (((-3 $ "failed") (-1086 $) (-855)) 50)) (-2769 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 (-525)) (-967 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-525) "failed") $) NIL (-3215 (|has| (-385 (-525)) (-967 (-525))) (|has| |#1| (-967 (-525)))))) (-2068 (((-385 (-525)) $) 15 (|has| (-385 (-525)) (-967 (-385 (-525))))) (((-385 (-525)) $) 15) ((|#1| $) 108) (((-525) $) NIL (-3215 (|has| (-385 (-525)) (-967 (-525))) (|has| |#1| (-967 (-525)))))) (-3992 (($ $ (-797)) 42)) (-2000 (($ $ (-797)) 43)) (-2720 (($ $ $) NIL)) (-3281 (((-385 (-525)) $ $) 19)) (-1645 (((-3 $ "failed") $) 83)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2973 (((-108) $) 61)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL)) (-3721 (((-108) $) 64)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-2761 (((-3 (-1086 $) "failed") $) 78)) (-2705 (((-3 (-797) "failed") $) 77)) (-1541 (((-3 (-1086 $) "failed") $) 75)) (-3382 (((-3 (-986 $ (-1086 $)) "failed") $) 73)) (-2226 (($ (-592 $)) NIL) (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 84)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-4044 (((-797) $) 82) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) 58) (($ (-385 (-525))) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 110)) (-2502 (((-713)) NIL)) (-3787 (((-108) $ $) NIL)) (-2371 (((-385 (-525)) $ $) 25)) (-4068 (((-592 $) (-1086 $)) 56) (((-592 $) (-1086 (-385 (-525)))) NIL) (((-592 $) (-1086 (-525))) NIL) (((-592 $) (-886 $)) NIL) (((-592 $) (-886 (-385 (-525)))) NIL) (((-592 $) (-886 (-525))) NIL)) (-3166 (($ (-986 $ (-1086 $)) (-797)) 41)) (-2053 (($ $) 20)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-1436 (($) 29 T CONST)) (-1449 (($) 35 T CONST)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 71)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 22)) (-4047 (($ $ $) 33)) (-4033 (($ $) 34) (($ $ $) 69)) (-4017 (($ $ $) 103)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 91) (($ $ $) 96) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ (-525) $) 91) (($ $ (-525)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-954 |#1|) (-13 (-943) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -3166 ($ (-986 $ (-1086 $)) (-797))) (-15 -3382 ((-3 (-986 $ (-1086 $)) "failed") $)) (-15 -3281 ((-385 (-525)) $ $)))) (-13 (-787) (-341) (-952))) (T -954)) +((-3166 (*1 *1 *2 *3) (-12 (-5 *2 (-986 (-954 *4) (-1086 (-954 *4)))) (-5 *3 (-797)) (-5 *1 (-954 *4)) (-4 *4 (-13 (-787) (-341) (-952))))) (-3382 (*1 *2 *1) (|partial| -12 (-5 *2 (-986 (-954 *3) (-1086 (-954 *3)))) (-5 *1 (-954 *3)) (-4 *3 (-13 (-787) (-341) (-952))))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-954 *3)) (-4 *3 (-13 (-787) (-341) (-952)))))) +(-13 (-943) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -3166 ($ (-986 $ (-1086 $)) (-797))) (-15 -3382 ((-3 (-986 $ (-1086 $)) "failed") $)) (-15 -3281 ((-385 (-525)) $ $)))) +((-4144 (((-2 (|:| -3941 |#2|) (|:| -3892 (-592 |#1|))) |#2| (-592 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-955 |#1| |#2|) (-10 -7 (-15 -4144 (|#2| |#2| |#1|)) (-15 -4144 ((-2 (|:| -3941 |#2|) (|:| -3892 (-592 |#1|))) |#2| (-592 |#1|)))) (-341) (-602 |#1|)) (T -955)) +((-4144 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -3941 *3) (|:| -3892 (-592 *5)))) (-5 *1 (-955 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5)))) (-4144 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-955 *3 *2)) (-4 *2 (-602 *3))))) +(-10 -7 (-15 -4144 (|#2| |#2| |#1|)) (-15 -4144 ((-2 (|:| -3941 |#2|) (|:| -3892 (-592 |#1|))) |#2| (-592 |#1|)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2192 ((|#1| $ |#1|) 14)) (-1230 ((|#1| $ |#1|) 12)) (-2615 (($ |#1|) 10)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1496 ((|#1| $) 11)) (-4197 ((|#1| $) 13)) (-4044 (((-797) $) 21 (|has| |#1| (-1019)))) (-3899 (((-108) $ $) 9))) +(((-956 |#1|) (-13 (-1126) (-10 -8 (-15 -2615 ($ |#1|)) (-15 -1496 (|#1| $)) (-15 -1230 (|#1| $ |#1|)) (-15 -4197 (|#1| $)) (-15 -2192 (|#1| $ |#1|)) (-15 -3899 ((-108) $ $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|))) (-1126)) (T -956)) +((-2615 (*1 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-1496 (*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-1230 (*1 *2 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-4197 (*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-2192 (*1 *2 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-3899 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-956 *3)) (-4 *3 (-1126))))) +(-13 (-1126) (-10 -8 (-15 -2615 ($ |#1|)) (-15 -1496 (|#1| $)) (-15 -1230 (|#1| $ |#1|)) (-15 -4197 (|#1| $)) (-15 -2192 (|#1| $ |#1|)) (-15 -3899 ((-108) $ $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |#4|)))) (-592 |#4|)) NIL)) (-2713 (((-592 $) (-592 |#4|)) 105) (((-592 $) (-592 |#4|) (-108)) 106) (((-592 $) (-592 |#4|) (-108) (-108)) 104) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 107)) (-3122 (((-592 |#3|) $) NIL)) (-4037 (((-108) $) NIL)) (-3410 (((-108) $) NIL (|has| |#1| (-517)))) (-2576 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1792 ((|#4| |#4| $) NIL)) (-2701 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| $) 99)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1249 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 54)) (-1957 (($) NIL T CONST)) (-4164 (((-108) $) 26 (|has| |#1| (-517)))) (-1333 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3508 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3364 (((-108) $) NIL (|has| |#1| (-517)))) (-3722 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2523 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) NIL)) (-2068 (($ (-592 |#4|)) NIL)) (-1693 (((-3 $ "failed") $) 39)) (-4092 ((|#4| |#4| $) 57)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-517)))) (-2175 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3025 ((|#4| |#4| $) NIL)) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2884 (((-2 (|:| -3671 (-592 |#4|)) (|:| -3864 (-592 |#4|))) $) NIL)) (-3875 (((-108) |#4| $) NIL)) (-2751 (((-108) |#4| $) NIL)) (-1591 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3514 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 119)) (-3781 (((-592 |#4|) $) 16 (|has| $ (-6 -4254)))) (-1695 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3632 ((|#3| $) 33)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#4|) $) 17 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2540 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 21)) (-4210 (((-592 |#3|) $) NIL)) (-1506 (((-108) |#3| $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2686 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-1503 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| |#4| $) 97)) (-2618 (((-3 |#4| "failed") $) 37)) (-3509 (((-592 $) |#4| $) 80)) (-2709 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-3854 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-2021 (((-592 $) |#4| $) 102) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 103) (((-592 $) |#4| (-592 $)) NIL)) (-2528 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 114)) (-1476 (($ |#4| $) 70) (($ (-592 |#4|) $) 71) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-2338 (((-592 |#4|) $) NIL)) (-2616 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1803 ((|#4| |#4| $) NIL)) (-1826 (((-108) $ $) NIL)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-1483 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2342 ((|#4| |#4| $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 (((-3 |#4| "failed") $) 35)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2750 (((-3 $ "failed") $ |#4|) 48)) (-1539 (($ $ |#4|) NIL) (((-592 $) |#4| $) 82) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 77)) (-3669 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 15)) (-3266 (($) 13)) (-1486 (((-713) $) NIL)) (-3053 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) 12)) (-2923 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) 20)) (-2484 (($ $ |#3|) 42)) (-4016 (($ $ |#3|) 44)) (-1287 (($ $) NIL)) (-3967 (($ $ |#3|) NIL)) (-4044 (((-797) $) 31) (((-592 |#4|) $) 40)) (-2665 (((-713) $) NIL (|has| |#3| (-346)))) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2125 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3493 (((-592 $) |#4| $) 79) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-2443 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2396 (((-592 |#3|) $) NIL)) (-4032 (((-108) |#4| $) NIL)) (-2238 (((-108) |#3| $) 53)) (-3899 (((-108) $ $) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-957 |#1| |#2| |#3| |#4|) (-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1476 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2713 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -2713 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -2528 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -3514 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -957)) +((-1476 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-957 *5 *6 *7 *3))) (-5 *1 (-957 *5 *6 *7 *3)) (-4 *3 (-990 *5 *6 *7)))) (-2713 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8)))) (-2713 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8)))) (-2528 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8)))) (-3514 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-957 *5 *6 *7 *8))))) (-5 *1 (-957 *5 *6 *7 *8)) (-5 *3 (-592 *8))))) +(-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1476 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2713 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -2713 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -2528 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -3514 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) +((-4211 (((-592 (-632 |#1|)) (-592 (-632 |#1|))) 57) (((-632 |#1|) (-632 |#1|)) 56) (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 55) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 52)) (-4086 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855)) 51) (((-632 |#1|) (-632 |#1|) (-855)) 50)) (-1583 (((-592 (-632 (-525))) (-592 (-592 (-525)))) 67) (((-592 (-632 (-525))) (-592 (-839 (-525))) (-525)) 66) (((-632 (-525)) (-592 (-525))) 63) (((-632 (-525)) (-839 (-525)) (-525)) 62)) (-3447 (((-632 (-886 |#1|)) (-713)) 80)) (-1422 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855)) 36 (|has| |#1| (-6 (-4256 "*")))) (((-632 |#1|) (-632 |#1|) (-855)) 34 (|has| |#1| (-6 (-4256 "*")))))) +(((-958 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4256 "*"))) (-15 -1422 ((-632 |#1|) (-632 |#1|) (-855))) |%noBranch|) (IF (|has| |#1| (-6 (-4256 "*"))) (-15 -1422 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855))) |%noBranch|) (-15 -3447 ((-632 (-886 |#1|)) (-713))) (-15 -4086 ((-632 |#1|) (-632 |#1|) (-855))) (-15 -4086 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855))) (-15 -4211 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4211 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -4211 ((-632 |#1|) (-632 |#1|))) (-15 -4211 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1583 ((-632 (-525)) (-839 (-525)) (-525))) (-15 -1583 ((-632 (-525)) (-592 (-525)))) (-15 -1583 ((-592 (-632 (-525))) (-592 (-839 (-525))) (-525))) (-15 -1583 ((-592 (-632 (-525))) (-592 (-592 (-525)))))) (-976)) (T -958)) +((-1583 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-958 *4)) (-4 *4 (-976)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-839 (-525)))) (-5 *4 (-525)) (-5 *2 (-592 (-632 *4))) (-5 *1 (-958 *5)) (-4 *5 (-976)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-958 *4)) (-4 *4 (-976)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-839 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4)) (-5 *1 (-958 *5)) (-4 *5 (-976)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-976)) (-5 *1 (-958 *3)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-958 *3)))) (-4211 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-976)) (-5 *1 (-958 *3)))) (-4211 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-958 *3)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-855)) (-4 *4 (-976)) (-5 *1 (-958 *4)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-855)) (-4 *4 (-976)) (-5 *1 (-958 *4)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-632 (-886 *4))) (-5 *1 (-958 *4)) (-4 *4 (-976)))) (-1422 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-855)) (|has| *4 (-6 (-4256 "*"))) (-4 *4 (-976)) (-5 *1 (-958 *4)))) (-1422 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-855)) (|has| *4 (-6 (-4256 "*"))) (-4 *4 (-976)) (-5 *1 (-958 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4256 "*"))) (-15 -1422 ((-632 |#1|) (-632 |#1|) (-855))) |%noBranch|) (IF (|has| |#1| (-6 (-4256 "*"))) (-15 -1422 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855))) |%noBranch|) (-15 -3447 ((-632 (-886 |#1|)) (-713))) (-15 -4086 ((-632 |#1|) (-632 |#1|) (-855))) (-15 -4086 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855))) (-15 -4211 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4211 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -4211 ((-632 |#1|) (-632 |#1|))) (-15 -4211 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1583 ((-632 (-525)) (-839 (-525)) (-525))) (-15 -1583 ((-632 (-525)) (-592 (-525)))) (-15 -1583 ((-592 (-632 (-525))) (-592 (-839 (-525))) (-525))) (-15 -1583 ((-592 (-632 (-525))) (-592 (-592 (-525)))))) +((-3987 (((-632 |#1|) (-592 (-632 |#1|)) (-1172 |#1|)) 51 (|has| |#1| (-286)))) (-3114 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 (-1172 |#1|))) 75 (|has| |#1| (-341))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 |#1|)) 73 (|has| |#1| (-341)))) (-2145 (((-1172 |#1|) (-592 (-1172 |#1|)) (-525)) 77 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-4083 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-855)) 82 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108)) 80 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|))) 79 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525)) 78 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-3030 (((-108) (-592 (-632 |#1|))) 71 (|has| |#1| (-341))) (((-108) (-592 (-632 |#1|)) (-525)) 70 (|has| |#1| (-341)))) (-1744 (((-1172 (-1172 |#1|)) (-592 (-632 |#1|)) (-1172 |#1|)) 49 (|has| |#1| (-286)))) (-4003 (((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|)) 34)) (-1861 (((-632 |#1|) (-1172 (-1172 |#1|))) 31)) (-3225 (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525)) 66 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 65 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525)) 64 (|has| |#1| (-341))))) +(((-959 |#1|) (-10 -7 (-15 -1861 ((-632 |#1|) (-1172 (-1172 |#1|)))) (-15 -4003 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -1744 ((-1172 (-1172 |#1|)) (-592 (-632 |#1|)) (-1172 |#1|))) (-15 -3987 ((-632 |#1|) (-592 (-632 |#1|)) (-1172 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3225 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -3225 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3225 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -3030 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -3030 ((-108) (-592 (-632 |#1|)))) (-15 -3114 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 |#1|))) (-15 -3114 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 (-1172 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -4083 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -4083 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -4083 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -4083 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-855))) (-15 -2145 ((-1172 |#1|) (-592 (-1172 |#1|)) (-525)))) |%noBranch|) |%noBranch|)) (-976)) (T -959)) +((-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1172 *5))) (-5 *4 (-525)) (-5 *2 (-1172 *5)) (-5 *1 (-959 *5)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) (-5 *3 (-592 (-632 *5))))) (-4083 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) (-5 *3 (-592 (-632 *5))))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-976)) (-5 *2 (-592 (-592 (-632 *4)))) (-5 *1 (-959 *4)) (-5 *3 (-592 (-632 *4))))) (-4083 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346)) (-4 *6 (-976)) (-5 *2 (-592 (-592 (-632 *6)))) (-5 *1 (-959 *6)) (-5 *3 (-592 (-632 *6))))) (-3114 (*1 *2 *3 *4) (-12 (-5 *4 (-1172 (-1172 *5))) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) (-5 *3 (-592 (-632 *5))))) (-3114 (*1 *2 *3 *4) (-12 (-5 *4 (-1172 *5)) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) (-5 *3 (-592 (-632 *5))))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-976)) (-5 *2 (-108)) (-5 *1 (-959 *4)))) (-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-108)) (-5 *1 (-959 *5)))) (-3225 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-5 *2 (-632 *5)) (-5 *1 (-959 *5)) (-4 *5 (-341)) (-4 *5 (-976)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-959 *4)) (-4 *4 (-341)) (-4 *4 (-976)))) (-3225 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-632 *6))) (-5 *4 (-108)) (-5 *5 (-525)) (-5 *2 (-632 *6)) (-5 *1 (-959 *6)) (-4 *6 (-341)) (-4 *6 (-976)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1172 *5)) (-4 *5 (-286)) (-4 *5 (-976)) (-5 *2 (-632 *5)) (-5 *1 (-959 *5)))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-976)) (-5 *2 (-1172 (-1172 *5))) (-5 *1 (-959 *5)) (-5 *4 (-1172 *5)))) (-4003 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-976)) (-5 *1 (-959 *4)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-1172 (-1172 *4))) (-4 *4 (-976)) (-5 *2 (-632 *4)) (-5 *1 (-959 *4))))) +(-10 -7 (-15 -1861 ((-632 |#1|) (-1172 (-1172 |#1|)))) (-15 -4003 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -1744 ((-1172 (-1172 |#1|)) (-592 (-632 |#1|)) (-1172 |#1|))) (-15 -3987 ((-632 |#1|) (-592 (-632 |#1|)) (-1172 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3225 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -3225 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3225 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -3030 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -3030 ((-108) (-592 (-632 |#1|)))) (-15 -3114 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 |#1|))) (-15 -3114 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 (-1172 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -4083 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -4083 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -4083 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -4083 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-855))) (-15 -2145 ((-1172 |#1|) (-592 (-1172 |#1|)) (-525)))) |%noBranch|) |%noBranch|)) +((-2937 ((|#1| (-855) |#1|) 9))) +(((-960 |#1|) (-10 -7 (-15 -2937 (|#1| (-855) |#1|))) (-13 (-1019) (-10 -8 (-15 -4017 ($ $ $))))) (T -960)) +((-2937 (*1 *2 *3 *2) (-12 (-5 *3 (-855)) (-5 *1 (-960 *2)) (-4 *2 (-13 (-1019) (-10 -8 (-15 -4017 ($ $ $)))))))) +(-10 -7 (-15 -2937 (|#1| (-855) |#1|))) +((-3879 (((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-886 (-525))))) 59)) (-2454 (((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-886 (-525))))) 48)) (-3701 (((-592 (-294 (-525))) (-632 (-385 (-886 (-525))))) 41)) (-2437 (((-592 (-632 (-294 (-525)))) (-632 (-385 (-886 (-525))))) 69)) (-1899 (((-632 (-294 (-525))) (-632 (-294 (-525)))) 34)) (-2862 (((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525))))) 62)) (-2658 (((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-886 (-525))))) 66))) +(((-961) (-10 -7 (-15 -3879 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-886 (-525)))))) (-15 -2454 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-886 (-525)))))) (-15 -3701 ((-592 (-294 (-525))) (-632 (-385 (-886 (-525)))))) (-15 -2658 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-886 (-525)))))) (-15 -1899 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -2862 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -2437 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-886 (-525)))))))) (T -961)) +((-2437 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961)))) (-2862 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961)))) (-1899 (*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-961)))) (-2658 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-961)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-294 (-525)))) (-5 *1 (-961)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961)) (-5 *3 (-294 (-525))))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525)))))))) (-5 *1 (-961))))) +(-10 -7 (-15 -3879 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-886 (-525)))))) (-15 -2454 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-886 (-525)))))) (-15 -3701 ((-592 (-294 (-525))) (-632 (-385 (-886 (-525)))))) (-15 -2658 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-886 (-525)))))) (-15 -1899 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -2862 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -2437 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-886 (-525))))))) +((-4111 ((|#1| |#1| (-855)) 9))) +(((-962 |#1|) (-10 -7 (-15 -4111 (|#1| |#1| (-855)))) (-13 (-1019) (-10 -8 (-15 * ($ $ $))))) (T -962)) +((-4111 (*1 *2 *2 *3) (-12 (-5 *3 (-855)) (-5 *1 (-962 *2)) (-4 *2 (-13 (-1019) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -4111 (|#1| |#1| (-855)))) +((-4044 ((|#1| (-290)) 11) (((-1177) |#1|) 9))) +(((-963 |#1|) (-10 -7 (-15 -4044 ((-1177) |#1|)) (-15 -4044 (|#1| (-290)))) (-1126)) (T -963)) +((-4044 (*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-963 *2)) (-4 *2 (-1126)))) (-4044 (*1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *1 (-963 *3)) (-4 *3 (-1126))))) +(-10 -7 (-15 -4044 ((-1177) |#1|)) (-15 -4044 (|#1| (-290)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-3336 (($ |#4|) 25)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-3325 ((|#4| $) 27)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 46) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2502 (((-713)) 43)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 21 T CONST)) (-1449 (($) 23 T CONST)) (-3899 (((-108) $ $) 40)) (-4033 (($ $) 31) (($ $ $) NIL)) (-4017 (($ $ $) 29)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-964 |#1| |#2| |#3| |#4| |#5|) (-13 (-160) (-37 |#1|) (-10 -8 (-15 -3336 ($ |#4|)) (-15 -4044 ($ |#4|)) (-15 -3325 (|#4| $)))) (-341) (-735) (-789) (-883 |#1| |#2| |#3|) (-592 |#4|)) (T -964)) +((-3336 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *2 (-883 *3 *4 *5)) (-14 *6 (-592 *2)))) (-4044 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *2 (-883 *3 *4 *5)) (-14 *6 (-592 *2)))) (-3325 (*1 *2 *1) (-12 (-4 *2 (-883 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2))))) +(-13 (-160) (-37 |#1|) (-10 -8 (-15 -3336 ($ |#4|)) (-15 -4044 ($ |#4|)) (-15 -3325 (|#4| $)))) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL)) (-2792 (((-1177) $ (-1090) (-1090)) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-3797 (((-108) (-108)) 39)) (-4113 (((-108) (-108)) 38)) (-1230 (((-51) $ (-1090) (-51)) NIL)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 (-51) "failed") (-1090) $) NIL)) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-1640 (($ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-3 (-51) "failed") (-1090) $) NIL)) (-2591 (($ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-2549 (((-51) $ (-1090) (-51)) NIL (|has| $ (-6 -4255)))) (-2488 (((-51) $ (-1090)) NIL)) (-3781 (((-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-1090) $) NIL (|has| (-1090) (-789)))) (-2679 (((-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-2112 (((-1090) $) NIL (|has| (-1090) (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-2183 (((-592 (-1090)) $) 34)) (-2781 (((-108) (-1090) $) NIL)) (-2434 (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL)) (-4157 (($ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL)) (-2379 (((-592 (-1090)) $) NIL)) (-2030 (((-108) (-1090) $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-1683 (((-51) $) NIL (|has| (-1090) (-789)))) (-3611 (((-3 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) "failed") (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL)) (-1614 (($ $ (-51)) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))))) NIL (-12 (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ $ (-273 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL (-12 (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ $ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) NIL (-12 (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ $ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL (-12 (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-4100 (((-592 (-51)) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 (((-51) $ (-1090)) 35) (((-51) $ (-1090) (-51)) NIL)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL)) (-4044 (((-797) $) 37 (-3215 (|has| (-51) (-566 (-797))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-965) (-13 (-1103 (-1090) (-51)) (-10 -7 (-15 -3797 ((-108) (-108))) (-15 -4113 ((-108) (-108))) (-6 -4254)))) (T -965)) +((-3797 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-965)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-965))))) +(-13 (-1103 (-1090) (-51)) (-10 -7 (-15 -3797 ((-108) (-108))) (-15 -4113 ((-108) (-108))) (-6 -4254))) +((-2068 ((|#2| $) 10))) +(((-966 |#1| |#2|) (-10 -8 (-15 -2068 (|#2| |#1|))) (-967 |#2|) (-1126)) (T -966)) +NIL +(-10 -8 (-15 -2068 (|#2| |#1|))) +((-2769 (((-3 |#1| "failed") $) 7)) (-2068 ((|#1| $) 8)) (-4044 (($ |#1|) 6))) +(((-967 |#1|) (-131) (-1126)) (T -967)) +((-2068 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1126)))) (-2769 (*1 *2 *1) (|partial| -12 (-4 *1 (-967 *2)) (-4 *2 (-1126)))) (-4044 (*1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1126))))) +(-13 (-10 -8 (-15 -4044 ($ |t#1|)) (-15 -2769 ((-3 |t#1| "failed") $)) (-15 -2068 (|t#1| $)))) +((-1897 (((-592 (-592 (-273 (-385 (-886 |#2|))))) (-592 (-886 |#2|)) (-592 (-1090))) 38))) +(((-968 |#1| |#2|) (-10 -7 (-15 -1897 ((-592 (-592 (-273 (-385 (-886 |#2|))))) (-592 (-886 |#2|)) (-592 (-1090))))) (-517) (-13 (-517) (-967 |#1|))) (T -968)) +((-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-4 *6 (-13 (-517) (-967 *5))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *6)))))) (-5 *1 (-968 *5 *6))))) +(-10 -7 (-15 -1897 ((-592 (-592 (-273 (-385 (-886 |#2|))))) (-592 (-886 |#2|)) (-592 (-1090))))) +((-2271 (((-357)) 15)) (-1918 (((-1 (-357)) (-357) (-357)) 20)) (-2858 (((-1 (-357)) (-713)) 43)) (-3361 (((-357)) 34)) (-2357 (((-1 (-357)) (-357) (-357)) 35)) (-2589 (((-357)) 26)) (-2393 (((-1 (-357)) (-357)) 27)) (-4041 (((-357) (-713)) 38)) (-4008 (((-1 (-357)) (-713)) 39)) (-1896 (((-1 (-357)) (-713) (-713)) 42)) (-1208 (((-1 (-357)) (-713) (-713)) 40))) +(((-969) (-10 -7 (-15 -2271 ((-357))) (-15 -3361 ((-357))) (-15 -2589 ((-357))) (-15 -4041 ((-357) (-713))) (-15 -1918 ((-1 (-357)) (-357) (-357))) (-15 -2357 ((-1 (-357)) (-357) (-357))) (-15 -2393 ((-1 (-357)) (-357))) (-15 -4008 ((-1 (-357)) (-713))) (-15 -1208 ((-1 (-357)) (-713) (-713))) (-15 -1896 ((-1 (-357)) (-713) (-713))) (-15 -2858 ((-1 (-357)) (-713))))) (T -969)) +((-2858 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))) (-1896 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))) (-1208 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))) (-4008 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))) (-2393 (*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357)))) (-2357 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357)))) (-1918 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-969)))) (-2589 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969)))) (-3361 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969)))) (-2271 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969))))) +(-10 -7 (-15 -2271 ((-357))) (-15 -3361 ((-357))) (-15 -2589 ((-357))) (-15 -4041 ((-357) (-713))) (-15 -1918 ((-1 (-357)) (-357) (-357))) (-15 -2357 ((-1 (-357)) (-357) (-357))) (-15 -2393 ((-1 (-357)) (-357))) (-15 -4008 ((-1 (-357)) (-713))) (-15 -1208 ((-1 (-357)) (-713) (-713))) (-15 -1896 ((-1 (-357)) (-713) (-713))) (-15 -2858 ((-1 (-357)) (-713)))) +((-2961 (((-396 |#1|) |#1|) 33))) +(((-970 |#1|) (-10 -7 (-15 -2961 ((-396 |#1|) |#1|))) (-1148 (-385 (-886 (-525))))) (T -970)) +((-2961 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-970 *3)) (-4 *3 (-1148 (-385 (-886 (-525)))))))) +(-10 -7 (-15 -2961 ((-396 |#1|) |#1|))) +((-4149 (((-385 (-396 (-886 |#1|))) (-385 (-886 |#1|))) 14))) +(((-971 |#1|) (-10 -7 (-15 -4149 ((-385 (-396 (-886 |#1|))) (-385 (-886 |#1|))))) (-286)) (T -971)) +((-4149 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-286)) (-5 *2 (-385 (-396 (-886 *4)))) (-5 *1 (-971 *4))))) +(-10 -7 (-15 -4149 ((-385 (-396 (-886 |#1|))) (-385 (-886 |#1|))))) +((-3122 (((-592 (-1090)) (-385 (-886 |#1|))) 17)) (-1315 (((-385 (-1086 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090)) 24)) (-3110 (((-385 (-886 |#1|)) (-385 (-1086 (-385 (-886 |#1|)))) (-1090)) 26)) (-3869 (((-3 (-1090) "failed") (-385 (-886 |#1|))) 20)) (-2168 (((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-273 (-385 (-886 |#1|))))) 32) (((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|)))) 33) (((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-1090)) (-592 (-385 (-886 |#1|)))) 28) (((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|))) 29)) (-4044 (((-385 (-886 |#1|)) |#1|) 11))) +(((-972 |#1|) (-10 -7 (-15 -3122 ((-592 (-1090)) (-385 (-886 |#1|)))) (-15 -3869 ((-3 (-1090) "failed") (-385 (-886 |#1|)))) (-15 -1315 ((-385 (-1086 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090))) (-15 -3110 ((-385 (-886 |#1|)) (-385 (-1086 (-385 (-886 |#1|)))) (-1090))) (-15 -2168 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)))) (-15 -2168 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-1090)) (-592 (-385 (-886 |#1|))))) (-15 -2168 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -2168 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -4044 ((-385 (-886 |#1|)) |#1|))) (-517)) (T -972)) +((-4044 (*1 *2 *3) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-972 *3)) (-4 *3 (-517)))) (-2168 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-273 (-385 (-886 *4))))) (-5 *2 (-385 (-886 *4))) (-4 *4 (-517)) (-5 *1 (-972 *4)))) (-2168 (*1 *2 *2 *3) (-12 (-5 *3 (-273 (-385 (-886 *4)))) (-5 *2 (-385 (-886 *4))) (-4 *4 (-517)) (-5 *1 (-972 *4)))) (-2168 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-1090))) (-5 *4 (-592 (-385 (-886 *5)))) (-5 *2 (-385 (-886 *5))) (-4 *5 (-517)) (-5 *1 (-972 *5)))) (-2168 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-1090)) (-4 *4 (-517)) (-5 *1 (-972 *4)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1086 (-385 (-886 *5))))) (-5 *4 (-1090)) (-5 *2 (-385 (-886 *5))) (-5 *1 (-972 *5)) (-4 *5 (-517)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-517)) (-5 *2 (-385 (-1086 (-385 (-886 *5))))) (-5 *1 (-972 *5)) (-5 *3 (-385 (-886 *5))))) (-3869 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-1090)) (-5 *1 (-972 *4)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1090))) (-5 *1 (-972 *4))))) +(-10 -7 (-15 -3122 ((-592 (-1090)) (-385 (-886 |#1|)))) (-15 -3869 ((-3 (-1090) "failed") (-385 (-886 |#1|)))) (-15 -1315 ((-385 (-1086 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090))) (-15 -3110 ((-385 (-886 |#1|)) (-385 (-1086 (-385 (-886 |#1|)))) (-1090))) (-15 -2168 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)))) (-15 -2168 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-1090)) (-592 (-385 (-886 |#1|))))) (-15 -2168 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -2168 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -4044 ((-385 (-886 |#1|)) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 (-722 |#1| (-799 |#2|)))))) (-592 (-722 |#1| (-799 |#2|)))) NIL)) (-2713 (((-592 $) (-592 (-722 |#1| (-799 |#2|)))) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-108)) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-108) (-108)) NIL)) (-3122 (((-592 (-799 |#2|)) $) NIL)) (-4037 (((-108) $) NIL)) (-3410 (((-108) $) NIL (|has| |#1| (-517)))) (-2576 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-1792 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-2701 (((-592 (-2 (|:| |val| (-722 |#1| (-799 |#2|))) (|:| -2249 $))) (-722 |#1| (-799 |#2|)) $) NIL)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ (-799 |#2|)) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1249 (($ (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 (-722 |#1| (-799 |#2|)) "failed") $ (-799 |#2|)) NIL)) (-1957 (($) NIL T CONST)) (-4164 (((-108) $) NIL (|has| |#1| (-517)))) (-1333 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3508 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3364 (((-108) $) NIL (|has| |#1| (-517)))) (-3722 (((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))) $ (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL)) (-2523 (((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))) $) NIL (|has| |#1| (-517)))) (-1241 (((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))) $) NIL (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 (-722 |#1| (-799 |#2|)))) NIL)) (-2068 (($ (-592 (-722 |#1| (-799 |#2|)))) NIL)) (-1693 (((-3 $ "failed") $) NIL)) (-4092 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019))))) (-2591 (($ (-722 |#1| (-799 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (($ (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-722 |#1| (-799 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-799 |#2|)) $) NIL (|has| |#1| (-517)))) (-2175 (((-108) (-722 |#1| (-799 |#2|)) $ (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL)) (-3025 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-3336 (((-722 |#1| (-799 |#2|)) (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $ (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (((-722 |#1| (-799 |#2|)) (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $ (-722 |#1| (-799 |#2|))) NIL (|has| $ (-6 -4254))) (((-722 |#1| (-799 |#2|)) (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $ (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL)) (-2884 (((-2 (|:| -3671 (-592 (-722 |#1| (-799 |#2|)))) (|:| -3864 (-592 (-722 |#1| (-799 |#2|))))) $) NIL)) (-3875 (((-108) (-722 |#1| (-799 |#2|)) $) NIL)) (-2751 (((-108) (-722 |#1| (-799 |#2|)) $) NIL)) (-1591 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-3781 (((-592 (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1695 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-3632 (((-799 |#2|) $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-722 |#1| (-799 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019))))) (-2540 (($ (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $) NIL)) (-4210 (((-592 (-799 |#2|)) $) NIL)) (-1506 (((-108) (-799 |#2|) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2686 (((-3 (-722 |#1| (-799 |#2|)) (-592 $)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-1503 (((-592 (-2 (|:| |val| (-722 |#1| (-799 |#2|))) (|:| -2249 $))) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-2618 (((-3 (-722 |#1| (-799 |#2|)) "failed") $) NIL)) (-3509 (((-592 $) (-722 |#1| (-799 |#2|)) $) NIL)) (-2709 (((-3 (-108) (-592 $)) (-722 |#1| (-799 |#2|)) $) NIL)) (-3854 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 $))) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) (-722 |#1| (-799 |#2|)) $) NIL)) (-2021 (((-592 $) (-722 |#1| (-799 |#2|)) $) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-592 $)) NIL) (((-592 $) (-722 |#1| (-799 |#2|)) (-592 $)) NIL)) (-1476 (($ (-722 |#1| (-799 |#2|)) $) NIL) (($ (-592 (-722 |#1| (-799 |#2|))) $) NIL)) (-2338 (((-592 (-722 |#1| (-799 |#2|))) $) NIL)) (-2616 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-1803 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-1826 (((-108) $ $) NIL)) (-3415 (((-2 (|:| |num| (-722 |#1| (-799 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-799 |#2|)) $) NIL (|has| |#1| (-517)))) (-1483 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-2342 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 (((-3 (-722 |#1| (-799 |#2|)) "failed") $) NIL)) (-3611 (((-3 (-722 |#1| (-799 |#2|)) "failed") (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL)) (-2750 (((-3 $ "failed") $ (-722 |#1| (-799 |#2|))) NIL)) (-1539 (($ $ (-722 |#1| (-799 |#2|))) NIL) (((-592 $) (-722 |#1| (-799 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-799 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-592 $)) NIL)) (-3669 (((-108) (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|)))) NIL (-12 (|has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (($ $ (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) NIL (-12 (|has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (($ $ (-273 (-722 |#1| (-799 |#2|)))) NIL (-12 (|has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (($ $ (-592 (-273 (-722 |#1| (-799 |#2|))))) NIL (-12 (|has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))) (|has| (-722 |#1| (-799 |#2|)) (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1486 (((-713) $) NIL)) (-3053 (((-713) (-722 |#1| (-799 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (((-713) (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-722 |#1| (-799 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-722 |#1| (-799 |#2|)))) NIL)) (-2484 (($ $ (-799 |#2|)) NIL)) (-4016 (($ $ (-799 |#2|)) NIL)) (-1287 (($ $) NIL)) (-3967 (($ $ (-799 |#2|)) NIL)) (-4044 (((-797) $) NIL) (((-592 (-722 |#1| (-799 |#2|))) $) NIL)) (-2665 (((-713) $) NIL (|has| (-799 |#2|) (-346)))) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 (-722 |#1| (-799 |#2|))))) "failed") (-592 (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 (-722 |#1| (-799 |#2|))))) "failed") (-592 (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL)) (-2125 (((-108) $ (-1 (-108) (-722 |#1| (-799 |#2|)) (-592 (-722 |#1| (-799 |#2|))))) NIL)) (-3493 (((-592 $) (-722 |#1| (-799 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-799 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-592 $)) NIL)) (-2443 (((-108) (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2396 (((-592 (-799 |#2|)) $) NIL)) (-4032 (((-108) (-722 |#1| (-799 |#2|)) $) NIL)) (-2238 (((-108) (-799 |#2|) $) NIL)) (-3899 (((-108) $ $) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-973 |#1| |#2|) (-13 (-995 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) (-10 -8 (-15 -2713 ((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-108) (-108))))) (-429) (-592 (-1090))) (T -973)) +((-2713 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-973 *5 *6))))) +(-13 (-995 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) (-10 -8 (-15 -2713 ((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-108) (-108))))) +((-1918 (((-1 (-525)) (-1014 (-525))) 33)) (-2939 (((-525) (-525) (-525) (-525) (-525)) 30)) (-3569 (((-1 (-525)) |RationalNumber|) NIL)) (-2186 (((-1 (-525)) |RationalNumber|) NIL)) (-3738 (((-1 (-525)) (-525) |RationalNumber|) NIL))) +(((-974) (-10 -7 (-15 -1918 ((-1 (-525)) (-1014 (-525)))) (-15 -3738 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -3569 ((-1 (-525)) |RationalNumber|)) (-15 -2186 ((-1 (-525)) |RationalNumber|)) (-15 -2939 ((-525) (-525) (-525) (-525) (-525))))) (T -974)) +((-2939 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-974)))) (-2186 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974)))) (-3569 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974)) (-5 *3 (-525)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-1014 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-974))))) +(-10 -7 (-15 -1918 ((-1 (-525)) (-1014 (-525)))) (-15 -3738 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -3569 ((-1 (-525)) |RationalNumber|)) (-15 -2186 ((-1 (-525)) |RationalNumber|)) (-15 -2939 ((-525) (-525) (-525) (-525) (-525)))) +((-4044 (((-797) $) NIL) (($ (-525)) 10))) +(((-975 |#1|) (-10 -8 (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) (-976)) (T -975)) +NIL +(-10 -8 (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-976) (-131)) (T -976)) +((-2502 (*1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-713)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-976))))) +(-13 (-983) (-669) (-594 $) (-10 -8 (-15 -2502 ((-713))) (-15 -4044 ($ (-525))) (-6 -4251))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-1633 (((-385 (-886 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)) 45))) +(((-977 |#1| |#2|) (-10 -7 (-15 -1633 ((-385 (-886 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)))) (-1090) (-341)) (T -977)) +((-1633 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341)) (-5 *2 (-385 (-886 *6))) (-5 *1 (-977 *5 *6)) (-14 *5 (-1090))))) +(-10 -7 (-15 -1633 ((-385 (-886 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)))) +((-3714 (((-108) $) 29)) (-2882 (((-108) $) 16)) (-1431 (((-713) $) 13)) (-1444 (((-713) $) 14)) (-2804 (((-108) $) 26)) (-3773 (((-108) $) 31))) +(((-978 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1444 ((-713) |#1|)) (-15 -1431 ((-713) |#1|)) (-15 -3773 ((-108) |#1|)) (-15 -3714 ((-108) |#1|)) (-15 -2804 ((-108) |#1|)) (-15 -2882 ((-108) |#1|))) (-979 |#2| |#3| |#4| |#5| |#6|) (-713) (-713) (-976) (-218 |#3| |#4|) (-218 |#2| |#4|)) (T -978)) +NIL +(-10 -8 (-15 -1444 ((-713) |#1|)) (-15 -1431 ((-713) |#1|)) (-15 -3773 ((-108) |#1|)) (-15 -3714 ((-108) |#1|)) (-15 -2804 ((-108) |#1|)) (-15 -2882 ((-108) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3714 (((-108) $) 51)) (-3004 (((-3 $ "failed") $ $) 19)) (-2882 (((-108) $) 53)) (-2583 (((-108) $ (-713)) 61)) (-1957 (($) 17 T CONST)) (-2384 (($ $) 34 (|has| |#3| (-286)))) (-2914 ((|#4| $ (-525)) 39)) (-3439 (((-713) $) 33 (|has| |#3| (-517)))) (-2488 ((|#3| $ (-525) (-525)) 41)) (-3781 (((-592 |#3|) $) 68 (|has| $ (-6 -4254)))) (-2372 (((-713) $) 32 (|has| |#3| (-517)))) (-4151 (((-592 |#5|) $) 31 (|has| |#3| (-517)))) (-1431 (((-713) $) 45)) (-1444 (((-713) $) 44)) (-2010 (((-108) $ (-713)) 60)) (-3533 (((-525) $) 49)) (-3054 (((-525) $) 47)) (-2679 (((-592 |#3|) $) 69 (|has| $ (-6 -4254)))) (-1883 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1019)) (|has| $ (-6 -4254))))) (-2487 (((-525) $) 48)) (-4220 (((-525) $) 46)) (-1521 (($ (-592 (-592 |#3|))) 54)) (-2540 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2972 (((-592 (-592 |#3|)) $) 43)) (-2350 (((-108) $ (-713)) 59)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2675 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-517)))) (-3669 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#3|) (-592 |#3|)) 75 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-273 |#3|)) 73 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-592 (-273 |#3|))) 72 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))) (-3063 (((-108) $ $) 55)) (-3086 (((-108) $) 58)) (-3266 (($) 57)) (-1496 ((|#3| $ (-525) (-525)) 42) ((|#3| $ (-525) (-525) |#3|) 40)) (-2804 (((-108) $) 52)) (-3053 (((-713) |#3| $) 70 (-12 (|has| |#3| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4254)))) (-1261 (($ $) 56)) (-2738 ((|#5| $ (-525)) 38)) (-4044 (((-797) $) 11)) (-2443 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4254)))) (-3773 (((-108) $) 50)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#3|) 35 (|has| |#3| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-1696 (((-713) $) 62 (|has| $ (-6 -4254))))) +(((-979 |#1| |#2| |#3| |#4| |#5|) (-131) (-713) (-713) (-976) (-218 |t#2| |t#3|) (-218 |t#1| |t#3|)) (T -979)) +((-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-976)) (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-2972 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5))))) (-1496 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-976)))) (-2488 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-976)))) (-1496 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) (-4 *2 (-976)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)))) (-2914 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *6 *2 *7)) (-4 *6 (-976)) (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))) (-2738 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *6 *7 *2)) (-4 *6 (-976)) (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))) (-2868 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-2675 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-979 *3 *4 *2 *5 *6)) (-4 *2 (-976)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2 *5 *6)) (-4 *2 (-976)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-341)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-592 *7))))) +(-13 (-107 |t#3| |t#3|) (-464 |t#3|) (-10 -8 (-6 -4254) (IF (|has| |t#3| (-160)) (-6 (-660 |t#3|)) |%noBranch|) (-15 -1521 ($ (-592 (-592 |t#3|)))) (-15 -2882 ((-108) $)) (-15 -2804 ((-108) $)) (-15 -3714 ((-108) $)) (-15 -3773 ((-108) $)) (-15 -3533 ((-525) $)) (-15 -2487 ((-525) $)) (-15 -3054 ((-525) $)) (-15 -4220 ((-525) $)) (-15 -1431 ((-713) $)) (-15 -1444 ((-713) $)) (-15 -2972 ((-592 (-592 |t#3|)) $)) (-15 -1496 (|t#3| $ (-525) (-525))) (-15 -2488 (|t#3| $ (-525) (-525))) (-15 -1496 (|t#3| $ (-525) (-525) |t#3|)) (-15 -2914 (|t#4| $ (-525))) (-15 -2738 (|t#5| $ (-525))) (-15 -2868 ($ (-1 |t#3| |t#3|) $)) (-15 -2868 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-517)) (-15 -2675 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-341)) (-15 -4047 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-286)) (-15 -2384 ($ $)) |%noBranch|) (IF (|has| |t#3| (-517)) (PROGN (-15 -3439 ((-713) $)) (-15 -2372 ((-713) $)) (-15 -4151 ((-592 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-126) . T) ((-566 (-797)) . T) ((-288 |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))) ((-464 |#3|) . T) ((-486 |#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))) ((-594 |#3|) . T) ((-660 |#3|) |has| |#3| (-160)) ((-982 |#3|) . T) ((-1019) . T) ((-1126) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3714 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2882 (((-108) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1957 (($) NIL T CONST)) (-2384 (($ $) 43 (|has| |#3| (-286)))) (-2914 (((-220 |#2| |#3|) $ (-525)) 32)) (-2283 (($ (-632 |#3|)) 41)) (-3439 (((-713) $) 45 (|has| |#3| (-517)))) (-2488 ((|#3| $ (-525) (-525)) NIL)) (-3781 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-2372 (((-713) $) 47 (|has| |#3| (-517)))) (-4151 (((-592 (-220 |#1| |#3|)) $) 51 (|has| |#3| (-517)))) (-1431 (((-713) $) NIL)) (-1444 (((-713) $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-3533 (((-525) $) NIL)) (-3054 (((-525) $) NIL)) (-2679 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-2487 (((-525) $) NIL)) (-4220 (((-525) $) NIL)) (-1521 (($ (-592 (-592 |#3|))) 27)) (-2540 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2972 (((-592 (-592 |#3|)) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2675 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-517)))) (-3669 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#3| $ (-525) (-525)) NIL) ((|#3| $ (-525) (-525) |#3|) NIL)) (-2374 (((-128)) 54 (|has| |#3| (-341)))) (-2804 (((-108) $) NIL)) (-3053 (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019)))) (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) 63 (|has| |#3| (-567 (-501))))) (-2738 (((-220 |#1| |#3|) $ (-525)) 36)) (-4044 (((-797) $) 16) (((-632 |#3|) $) 38)) (-2443 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-3773 (((-108) $) NIL)) (-1436 (($) 13 T CONST)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-980 |#1| |#2| |#3|) (-13 (-979 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1179 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -2283 ($ (-632 |#3|))) (-15 -4044 ((-632 |#3|) $)))) (-713) (-713) (-976)) (T -980)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-632 *5)) (-5 *1 (-980 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-976)))) (-2283 (*1 *1 *2) (-12 (-5 *2 (-632 *5)) (-4 *5 (-976)) (-5 *1 (-980 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713))))) +(-13 (-979 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1179 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -2283 ($ (-632 |#3|))) (-15 -4044 ((-632 |#3|) $)))) +((-3336 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2868 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-981 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2868 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3336 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-713) (-713) (-976) (-218 |#2| |#3|) (-218 |#1| |#3|) (-979 |#1| |#2| |#3| |#4| |#5|) (-976) (-218 |#2| |#7|) (-218 |#1| |#7|) (-979 |#1| |#2| |#7| |#8| |#9|)) (T -981)) +((-3336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-976)) (-4 *2 (-976)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2)) (-5 *1 (-981 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-979 *5 *6 *7 *8 *9)) (-4 *12 (-979 *5 *6 *2 *10 *11)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-976)) (-4 *10 (-976)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *2 (-979 *5 *6 *10 *11 *12)) (-5 *1 (-981 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-979 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10)) (-4 *12 (-218 *5 *10))))) +(-10 -7 (-15 -2868 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3336 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ |#1|) 23))) +(((-982 |#1|) (-131) (-983)) (T -982)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-983))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1401 (($ $ (-854)) 26)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-982) (-131)) (T -982)) -NIL -(-13 (-21) (-1030)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-565 (-796)) . T) ((-1030) . T) ((-1018) . T)) -((-3328 (($ $) 16)) (-3032 (($ $) 22)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 49)) (-1525 (($ $) 24)) (-1583 (($ $) 11)) (-2767 (($ $) 38)) (-1300 (((-357) $) NIL) (((-205) $) NIL) (((-825 (-357)) $) 33)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 28) (($ (-525)) NIL) (($ (-385 (-525))) 28)) (-3425 (((-712)) 8)) (-1584 (($ $) 39))) -(((-983 |#1|) (-10 -8 (-15 -3032 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -4018 ((-822 (-357) |#1|) |#1| (-825 (-357)) (-822 (-357) |#1|))) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| (-525))) (-15 -1300 ((-205) |#1|)) (-15 -1300 ((-357) |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 -2686 ((-796) |#1|))) (-984)) (T -983)) -((-3425 (*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-983 *3)) (-4 *3 (-984))))) -(-10 -8 (-15 -3032 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -4018 ((-822 (-357) |#1|) |#1| (-825 (-357)) (-822 (-357) |#1|))) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| (-525))) (-15 -1300 ((-205) |#1|)) (-15 -1300 ((-357) |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| (-525))) (-15 -3425 ((-712))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2314 (((-525) $) 89)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3328 (($ $) 87)) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-2551 (($ $) 97)) (-1965 (((-108) $ $) 59)) (-4188 (((-525) $) 114)) (-2055 (($) 17 T CONST)) (-3032 (($ $) 86)) (-4174 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-3341 (((-525) $) 101) (((-385 (-525)) $) 98)) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-2393 (((-108) $) 71)) (-3489 (((-108) $) 112)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 93)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 96)) (-1525 (($ $) 92)) (-2256 (((-108) $) 113)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-1923 (($ $ $) 111)) (-3475 (($ $ $) 110)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 70)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-1583 (($ $) 88)) (-2767 (($ $) 90)) (-2542 (((-396 $) $) 74)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-1300 (((-357) $) 105) (((-205) $) 104) (((-825 (-357)) $) 94)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-3425 (((-712)) 29)) (-1584 (($ $) 91)) (-1724 (((-108) $ $) 39)) (-1460 (($ $) 115)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-4004 (((-108) $ $) 108)) (-3982 (((-108) $ $) 107)) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 109)) (-3971 (((-108) $ $) 106)) (-4059 (($ $ $) 64)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) -(((-984) (-131)) (T -984)) -((-1460 (*1 *1 *1) (-4 *1 (-984))) (-1525 (*1 *1 *1) (-4 *1 (-984))) (-1584 (*1 *1 *1) (-4 *1 (-984))) (-2767 (*1 *1 *1) (-4 *1 (-984))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-525)))) (-1583 (*1 *1 *1) (-4 *1 (-984))) (-3328 (*1 *1 *1) (-4 *1 (-984))) (-3032 (*1 *1 *1) (-4 *1 (-984)))) -(-13 (-341) (-786) (-951) (-966 (-525)) (-966 (-385 (-525))) (-932) (-566 (-825 (-357))) (-819 (-357)) (-138) (-10 -8 (-15 -1525 ($ $)) (-15 -1584 ($ $)) (-15 -2767 ($ $)) (-15 -2314 ((-525) $)) (-15 -1583 ($ $)) (-15 -3328 ($ $)) (-15 -3032 ($ $)) (-15 -1460 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-565 (-796)) . T) ((-160) . T) ((-566 (-205)) . T) ((-566 (-357)) . T) ((-566 (-825 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-593 #0#) . T) ((-593 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-668) . T) ((-732) . T) ((-733) . T) ((-735) . T) ((-736) . T) ((-786) . T) ((-788) . T) ((-819 (-357)) . T) ((-853) . T) ((-932) . T) ((-951) . T) ((-966 (-385 (-525))) . T) ((-966 (-525)) . T) ((-981 #0#) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) |#2| $) 23)) (-2834 ((|#1| $) 10)) (-4188 (((-525) |#2| $) 88)) (-1254 (((-3 $ "failed") |#2| (-854)) 57)) (-3192 ((|#1| $) 28)) (-1953 ((|#1| |#2| $ |#1|) 37)) (-2713 (($ $) 25)) (-1522 (((-3 |#2| "failed") |#2| $) 87)) (-3489 (((-108) |#2| $) NIL)) (-2256 (((-108) |#2| $) NIL)) (-2229 (((-108) |#2| $) 24)) (-2446 ((|#1| $) 89)) (-3178 ((|#1| $) 27)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1341 ((|#2| $) 79)) (-2686 (((-796) $) 70)) (-4173 ((|#1| |#2| $ |#1|) 38)) (-1634 (((-591 $) |#2|) 59)) (-3944 (((-108) $ $) 74))) -(((-985 |#1| |#2|) (-13 (-991 |#1| |#2|) (-10 -8 (-15 -3178 (|#1| $)) (-15 -3192 (|#1| $)) (-15 -2834 (|#1| $)) (-15 -2446 (|#1| $)) (-15 -2713 ($ $)) (-15 -2229 ((-108) |#2| $)) (-15 -1953 (|#1| |#2| $ |#1|)))) (-13 (-786) (-341)) (-1147 |#1|)) (T -985)) -((-1953 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) (-4 *3 (-1147 *2)))) (-3178 (*1 *2 *1) (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) (-4 *3 (-1147 *2)))) (-3192 (*1 *2 *1) (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) (-4 *3 (-1147 *2)))) (-2834 (*1 *2 *1) (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) (-4 *3 (-1147 *2)))) (-2446 (*1 *2 *1) (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) (-4 *3 (-1147 *2)))) (-2713 (*1 *1 *1) (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) (-4 *3 (-1147 *2)))) (-2229 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-786) (-341))) (-5 *2 (-108)) (-5 *1 (-985 *4 *3)) (-4 *3 (-1147 *4))))) -(-13 (-991 |#1| |#2|) (-10 -8 (-15 -3178 (|#1| $)) (-15 -3192 (|#1| $)) (-15 -2834 (|#1| $)) (-15 -2446 (|#1| $)) (-15 -2713 ($ $)) (-15 -2229 ((-108) |#2| $)) (-15 -1953 (|#1| |#2| $ |#1|)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3517 (($ $ $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-3329 (($ $ $ $) NIL)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL)) (-3423 (($ $ $) NIL)) (-2055 (($) NIL T CONST)) (-1943 (($ (-1089)) 10) (($ (-525)) 7)) (-4174 (((-3 (-525) "failed") $) NIL)) (-3341 (((-525) $) NIL)) (-3265 (($ $ $) NIL)) (-3925 (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-631 (-525)) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2350 (((-3 (-385 (-525)) "failed") $) NIL)) (-2157 (((-108) $) NIL)) (-3184 (((-385 (-525)) $) NIL)) (-1325 (($) NIL) (($ $) NIL)) (-3239 (($ $ $) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-1493 (($ $ $ $) NIL)) (-2283 (($ $ $) NIL)) (-3489 (((-108) $) NIL)) (-4142 (($ $ $) NIL)) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL)) (-3865 (((-108) $) NIL)) (-2116 (((-108) $) NIL)) (-2115 (((-3 $ "failed") $) NIL)) (-2256 (((-108) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3480 (($ $ $ $) NIL)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1576 (($ $) NIL)) (-2445 (($ $) NIL)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-3222 (($ $ $) NIL)) (-3492 (($) NIL T CONST)) (-4025 (($ $) NIL)) (-2937 (((-1036) $) NIL) (($ $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2106 (($ $) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2882 (((-108) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-2209 (($ $ (-712)) NIL) (($ $) NIL)) (-1853 (($ $) NIL)) (-2873 (($ $) NIL)) (-1300 (((-525) $) 16) (((-501) $) NIL) (((-825 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL) (($ (-1089)) 9)) (-2686 (((-796) $) 20) (($ (-525)) 6) (($ $) NIL) (($ (-525)) 6)) (-3425 (((-712)) NIL)) (-3760 (((-108) $ $) NIL)) (-3808 (($ $ $) NIL)) (-3523 (($) NIL)) (-1724 (((-108) $ $) NIL)) (-1825 (($ $ $ $) NIL)) (-1460 (($ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) NIL)) (-4047 (($ $) 19) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL))) -(((-986) (-13 (-510) (-10 -8 (-6 -4237) (-6 -4242) (-6 -4238) (-15 -1300 ($ (-1089))) (-15 -1943 ($ (-1089))) (-15 -1943 ($ (-525)))))) (T -986)) -((-1300 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-986)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-986)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-986))))) -(-13 (-510) (-10 -8 (-6 -4237) (-6 -4242) (-6 -4238) (-15 -1300 ($ (-1089))) (-15 -1943 ($ (-1089))) (-15 -1943 ($ (-525))))) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL)) (-3832 (((-1176) $ (-1089) (-1089)) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2506 (($) 9)) (-2847 (((-51) $ (-1089) (-51)) NIL)) (-1948 (($ $) 30)) (-3073 (($ $) 28)) (-1299 (($ $) 27)) (-1650 (($ $) 29)) (-3728 (($ $) 32)) (-3162 (($ $) 33)) (-3943 (($ $) 26)) (-3803 (($ $) 31)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) 25 (|has| $ (-6 -4250)))) (-2429 (((-3 (-51) "failed") (-1089) $) 40)) (-2055 (($) NIL T CONST)) (-2076 (($) 7)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-3844 (($ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) 50 (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-3 (-51) "failed") (-1089) $) NIL)) (-2537 (($ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250)))) (-3086 (((-3 (-1072) "failed") $ (-1072) (-525)) 59)) (-4205 (((-51) $ (-1089) (-51)) NIL (|has| $ (-6 -4251)))) (-4121 (((-51) $ (-1089)) NIL)) (-2916 (((-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-591 (-51)) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-1089) $) NIL (|has| (-1089) (-788)))) (-4207 (((-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) 35 (|has| $ (-6 -4250))) (((-591 (-51)) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-51) (-1018))))) (-1826 (((-1089) $) NIL (|has| (-1089) (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4251))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-2159 (((-591 (-1089)) $) NIL)) (-1628 (((-108) (-1089) $) NIL)) (-3949 (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL)) (-1520 (($ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) 43)) (-3761 (((-591 (-1089)) $) NIL)) (-1675 (((-108) (-1089) $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-2645 (((-357) $ (-1089)) 49)) (-1441 (((-591 (-1072)) $ (-1072)) 60)) (-2872 (((-51) $) NIL (|has| (-1089) (-788)))) (-2714 (((-3 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) "failed") (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL)) (-1858 (($ $ (-51)) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))))) NIL (-12 (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ $ (-273 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL (-12 (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ $ (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) NIL (-12 (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ $ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL (-12 (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-288 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (($ $ (-591 (-51)) (-591 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018)))) (($ $ (-591 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-51) (-1018))))) (-2998 (((-591 (-51)) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 (((-51) $ (-1089)) NIL) (((-51) $ (-1089) (-51)) NIL)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL)) (-3053 (($ $ (-1089)) 51)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018)))) (((-712) (-51) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-51) (-1018)))) (((-712) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) 37)) (-1624 (($ $ $) 38)) (-2686 (((-796) $) NIL (-3150 (|has| (-51) (-565 (-796))) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-565 (-796)))))) (-3796 (($ $ (-1089) (-357)) 47)) (-3315 (($ $ (-1089) (-357)) 48)) (-2453 (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 (-1089)) (|:| -1568 (-51)))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-51) (-1018)) (|has| (-2 (|:| -1265 (-1089)) (|:| -1568 (-51))) (-1018))))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-987) (-13 (-1102 (-1089) (-51)) (-10 -8 (-15 -1624 ($ $ $)) (-15 -2076 ($)) (-15 -3943 ($ $)) (-15 -1299 ($ $)) (-15 -3073 ($ $)) (-15 -1650 ($ $)) (-15 -3803 ($ $)) (-15 -1948 ($ $)) (-15 -3728 ($ $)) (-15 -3162 ($ $)) (-15 -3796 ($ $ (-1089) (-357))) (-15 -3315 ($ $ (-1089) (-357))) (-15 -2645 ((-357) $ (-1089))) (-15 -1441 ((-591 (-1072)) $ (-1072))) (-15 -3053 ($ $ (-1089))) (-15 -2506 ($)) (-15 -3086 ((-3 (-1072) "failed") $ (-1072) (-525))) (-6 -4250)))) (T -987)) -((-1624 (*1 *1 *1 *1) (-5 *1 (-987))) (-2076 (*1 *1) (-5 *1 (-987))) (-3943 (*1 *1 *1) (-5 *1 (-987))) (-1299 (*1 *1 *1) (-5 *1 (-987))) (-3073 (*1 *1 *1) (-5 *1 (-987))) (-1650 (*1 *1 *1) (-5 *1 (-987))) (-3803 (*1 *1 *1) (-5 *1 (-987))) (-1948 (*1 *1 *1) (-5 *1 (-987))) (-3728 (*1 *1 *1) (-5 *1 (-987))) (-3162 (*1 *1 *1) (-5 *1 (-987))) (-3796 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-357)) (-5 *1 (-987)))) (-3315 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-357)) (-5 *1 (-987)))) (-2645 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-357)) (-5 *1 (-987)))) (-1441 (*1 *2 *1 *3) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-987)) (-5 *3 (-1072)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-987)))) (-2506 (*1 *1) (-5 *1 (-987))) (-3086 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1072)) (-5 *3 (-525)) (-5 *1 (-987))))) -(-13 (-1102 (-1089) (-51)) (-10 -8 (-15 -1624 ($ $ $)) (-15 -2076 ($)) (-15 -3943 ($ $)) (-15 -1299 ($ $)) (-15 -3073 ($ $)) (-15 -1650 ($ $)) (-15 -3803 ($ $)) (-15 -1948 ($ $)) (-15 -3728 ($ $)) (-15 -3162 ($ $)) (-15 -3796 ($ $ (-1089) (-357))) (-15 -3315 ($ $ (-1089) (-357))) (-15 -2645 ((-357) $ (-1089))) (-15 -1441 ((-591 (-1072)) $ (-1072))) (-15 -3053 ($ $ (-1089))) (-15 -2506 ($)) (-15 -3086 ((-3 (-1072) "failed") $ (-1072) (-525))) (-6 -4250))) -((-3856 (($ $) 45)) (-1843 (((-108) $ $) 74)) (-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-885 (-385 (-525)))) 227) (((-3 $ "failed") (-885 (-525))) 226) (((-3 $ "failed") (-885 |#2|)) 229)) (-3341 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) NIL) (($ (-885 (-385 (-525)))) 215) (($ (-885 (-525))) 211) (($ (-885 |#2|)) 231)) (-1575 (($ $) NIL) (($ $ |#4|) 43)) (-3797 (((-108) $ $) 112) (((-108) $ (-591 $)) 113)) (-3731 (((-108) $) 56)) (-1627 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 107)) (-3286 (($ $) 138)) (-2585 (($ $) 134)) (-3002 (($ $) 133)) (-2717 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1778 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2040 (((-108) $ $) 121) (((-108) $ (-591 $)) 122)) (-3998 ((|#4| $) 33)) (-1941 (($ $ $) 110)) (-4160 (((-108) $) 55)) (-4037 (((-712) $) 35)) (-2740 (($ $) 152)) (-2468 (($ $) 149)) (-3723 (((-591 $) $) 68)) (-3350 (($ $) 57)) (-1585 (($ $) 145)) (-3247 (((-591 $) $) 65)) (-3672 (($ $) 59)) (-1556 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3804 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2362 (-712))) $ $) 111)) (-1641 (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $) 108) (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $ |#4|) 109)) (-3899 (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2449 $)) $ $) 104) (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2449 $)) $ $ |#4|) 105)) (-3393 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1861 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1722 (((-591 $) $) 51)) (-1307 (((-108) $ $) 118) (((-108) $ (-591 $)) 119)) (-3022 (($ $ $) 103)) (-3492 (($ $) 37)) (-3300 (((-108) $ $) 72)) (-3255 (((-108) $ $) 114) (((-108) $ (-591 $)) 116)) (-2246 (($ $ $) 101)) (-1455 (($ $) 40)) (-2124 ((|#2| |#2| $) 142) (($ (-591 $)) NIL) (($ $ $) NIL)) (-4056 (($ $ |#2|) NIL) (($ $ $) 131)) (-2558 (($ $ |#2|) 126) (($ $ $) 129)) (-3906 (($ $) 48)) (-1958 (($ $) 52)) (-1300 (((-825 (-357)) $) NIL) (((-825 (-525)) $) NIL) (((-501) $) NIL) (($ (-885 (-385 (-525)))) 217) (($ (-885 (-525))) 213) (($ (-885 |#2|)) 228) (((-1072) $) 250) (((-885 |#2|) $) 162)) (-2686 (((-796) $) 30) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-885 |#2|) $) 163) (($ (-385 (-525))) NIL) (($ $) NIL)) (-2970 (((-3 (-108) "failed") $ $) 71))) -(((-988 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2686 (|#1| |#1|)) (-15 -2124 (|#1| |#1| |#1|)) (-15 -2124 (|#1| (-591 |#1|))) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 ((-885 |#2|) |#1|)) (-15 -1300 ((-885 |#2|) |#1|)) (-15 -1300 ((-1072) |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -3286 (|#1| |#1|)) (-15 -2124 (|#2| |#2| |#1|)) (-15 -4056 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1| |#1|)) (-15 -4056 (|#1| |#1| |#2|)) (-15 -2558 (|#1| |#1| |#2|)) (-15 -2585 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -1300 (|#1| (-885 |#2|))) (-15 -3341 (|#1| (-885 |#2|))) (-15 -4174 ((-3 |#1| "failed") (-885 |#2|))) (-15 -1300 (|#1| (-885 (-525)))) (-15 -3341 (|#1| (-885 (-525)))) (-15 -4174 ((-3 |#1| "failed") (-885 (-525)))) (-15 -1300 (|#1| (-885 (-385 (-525))))) (-15 -3341 (|#1| (-885 (-385 (-525))))) (-15 -4174 ((-3 |#1| "failed") (-885 (-385 (-525))))) (-15 -3022 (|#1| |#1| |#1|)) (-15 -2246 (|#1| |#1| |#1|)) (-15 -3804 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2362 (-712))) |#1| |#1|)) (-15 -1941 (|#1| |#1| |#1|)) (-15 -1627 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -1641 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1| |#4|)) (-15 -1641 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3899 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2449 |#1|)) |#1| |#1| |#4|)) (-15 -3899 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -1861 (|#1| |#1| |#1| |#4|)) (-15 -3393 (|#1| |#1| |#1| |#4|)) (-15 -1861 (|#1| |#1| |#1|)) (-15 -3393 (|#1| |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1| |#4|)) (-15 -2717 (|#1| |#1| |#1| |#4|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -2717 (|#1| |#1| |#1|)) (-15 -2040 ((-108) |#1| (-591 |#1|))) (-15 -2040 ((-108) |#1| |#1|)) (-15 -1307 ((-108) |#1| (-591 |#1|))) (-15 -1307 ((-108) |#1| |#1|)) (-15 -3255 ((-108) |#1| (-591 |#1|))) (-15 -3255 ((-108) |#1| |#1|)) (-15 -3797 ((-108) |#1| (-591 |#1|))) (-15 -3797 ((-108) |#1| |#1|)) (-15 -1843 ((-108) |#1| |#1|)) (-15 -3300 ((-108) |#1| |#1|)) (-15 -2970 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3723 ((-591 |#1|) |#1|)) (-15 -3247 ((-591 |#1|) |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -3731 ((-108) |#1|)) (-15 -4160 ((-108) |#1|)) (-15 -1575 (|#1| |#1| |#4|)) (-15 -1556 (|#1| |#1| |#4|)) (-15 -1958 (|#1| |#1|)) (-15 -1722 ((-591 |#1|) |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -4037 ((-712) |#1|)) (-15 -3998 (|#4| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -3341 (|#4| |#1|)) (-15 -4174 ((-3 |#4| "failed") |#1|)) (-15 -2686 (|#1| |#4|)) (-15 -1556 (|#2| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) (-989 |#2| |#3| |#4|) (-975) (-734) (-788)) (T -988)) -NIL -(-10 -8 (-15 -2686 (|#1| |#1|)) (-15 -2124 (|#1| |#1| |#1|)) (-15 -2124 (|#1| (-591 |#1|))) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 ((-885 |#2|) |#1|)) (-15 -1300 ((-885 |#2|) |#1|)) (-15 -1300 ((-1072) |#1|)) (-15 -2740 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -3286 (|#1| |#1|)) (-15 -2124 (|#2| |#2| |#1|)) (-15 -4056 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1| |#1|)) (-15 -4056 (|#1| |#1| |#2|)) (-15 -2558 (|#1| |#1| |#2|)) (-15 -2585 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -1300 (|#1| (-885 |#2|))) (-15 -3341 (|#1| (-885 |#2|))) (-15 -4174 ((-3 |#1| "failed") (-885 |#2|))) (-15 -1300 (|#1| (-885 (-525)))) (-15 -3341 (|#1| (-885 (-525)))) (-15 -4174 ((-3 |#1| "failed") (-885 (-525)))) (-15 -1300 (|#1| (-885 (-385 (-525))))) (-15 -3341 (|#1| (-885 (-385 (-525))))) (-15 -4174 ((-3 |#1| "failed") (-885 (-385 (-525))))) (-15 -3022 (|#1| |#1| |#1|)) (-15 -2246 (|#1| |#1| |#1|)) (-15 -3804 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2362 (-712))) |#1| |#1|)) (-15 -1941 (|#1| |#1| |#1|)) (-15 -1627 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -1641 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1| |#4|)) (-15 -1641 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3899 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2449 |#1|)) |#1| |#1| |#4|)) (-15 -3899 ((-2 (|:| -2976 |#1|) (|:| |gap| (-712)) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -1861 (|#1| |#1| |#1| |#4|)) (-15 -3393 (|#1| |#1| |#1| |#4|)) (-15 -1861 (|#1| |#1| |#1|)) (-15 -3393 (|#1| |#1| |#1|)) (-15 -1778 (|#1| |#1| |#1| |#4|)) (-15 -2717 (|#1| |#1| |#1| |#4|)) (-15 -1778 (|#1| |#1| |#1|)) (-15 -2717 (|#1| |#1| |#1|)) (-15 -2040 ((-108) |#1| (-591 |#1|))) (-15 -2040 ((-108) |#1| |#1|)) (-15 -1307 ((-108) |#1| (-591 |#1|))) (-15 -1307 ((-108) |#1| |#1|)) (-15 -3255 ((-108) |#1| (-591 |#1|))) (-15 -3255 ((-108) |#1| |#1|)) (-15 -3797 ((-108) |#1| (-591 |#1|))) (-15 -3797 ((-108) |#1| |#1|)) (-15 -1843 ((-108) |#1| |#1|)) (-15 -3300 ((-108) |#1| |#1|)) (-15 -2970 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3723 ((-591 |#1|) |#1|)) (-15 -3247 ((-591 |#1|) |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -3731 ((-108) |#1|)) (-15 -4160 ((-108) |#1|)) (-15 -1575 (|#1| |#1| |#4|)) (-15 -1556 (|#1| |#1| |#4|)) (-15 -1958 (|#1| |#1|)) (-15 -1722 ((-591 |#1|) |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -4037 ((-712) |#1|)) (-15 -3998 (|#4| |#1|)) (-15 -1300 ((-501) |#1|)) (-15 -1300 ((-825 (-525)) |#1|)) (-15 -1300 ((-825 (-357)) |#1|)) (-15 -3341 (|#4| |#1|)) (-15 -4174 ((-3 |#4| "failed") |#1|)) (-15 -2686 (|#1| |#4|)) (-15 -1556 (|#2| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1444 (((-591 |#3|) $) 110)) (-2514 (((-1085 $) $ |#3|) 125) (((-1085 |#1|) $) 124)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3641 (($ $) 88 (|has| |#1| (-517)))) (-3077 (((-108) $) 90 (|has| |#1| (-517)))) (-1978 (((-712) $) 112) (((-712) $ (-591 |#3|)) 111)) (-3856 (($ $) 271)) (-1843 (((-108) $ $) 257)) (-3332 (((-3 $ "failed") $ $) 19)) (-2584 (($ $ $) 216 (|has| |#1| (-517)))) (-3842 (((-591 $) $ $) 211 (|has| |#1| (-517)))) (-2179 (((-396 (-1085 $)) (-1085 $)) 100 (|has| |#1| (-842)))) (-1720 (($ $) 98 (|has| |#1| (-429)))) (-3898 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 103 (|has| |#1| (-842)))) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-966 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-885 (-385 (-525)))) 231 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-566 (-1089))))) (((-3 $ "failed") (-885 (-525))) 228 (-3150 (-12 (-3389 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-566 (-1089)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-566 (-1089)))))) (((-3 $ "failed") (-885 |#1|)) 225 (-3150 (-12 (-3389 (|has| |#1| (-37 (-385 (-525))))) (-3389 (|has| |#1| (-37 (-525)))) (|has| |#3| (-566 (-1089)))) (-12 (-3389 (|has| |#1| (-510))) (-3389 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-566 (-1089)))) (-12 (-3389 (|has| |#1| (-923 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-566 (-1089))))))) (-3341 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-966 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-966 (-525)))) ((|#3| $) 135) (($ (-885 (-385 (-525)))) 230 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-566 (-1089))))) (($ (-885 (-525))) 227 (-3150 (-12 (-3389 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-566 (-1089)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-566 (-1089)))))) (($ (-885 |#1|)) 224 (-3150 (-12 (-3389 (|has| |#1| (-37 (-385 (-525))))) (-3389 (|has| |#1| (-37 (-525)))) (|has| |#3| (-566 (-1089)))) (-12 (-3389 (|has| |#1| (-510))) (-3389 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-566 (-1089)))) (-12 (-3389 (|has| |#1| (-923 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-566 (-1089))))))) (-1788 (($ $ $ |#3|) 108 (|has| |#1| (-160))) (($ $ $) 212 (|has| |#1| (-517)))) (-1575 (($ $) 154) (($ $ |#3|) 266)) (-3925 (((-631 (-525)) (-631 $)) 134 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 133 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 132) (((-631 |#1|) (-631 $)) 131)) (-3797 (((-108) $ $) 256) (((-108) $ (-591 $)) 255)) (-1522 (((-3 $ "failed") $) 34)) (-3731 (((-108) $) 264)) (-1627 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 236)) (-3286 (($ $) 205 (|has| |#1| (-429)))) (-3153 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-1564 (((-591 $) $) 109)) (-2393 (((-108) $) 96 (|has| |#1| (-842)))) (-2585 (($ $) 221 (|has| |#1| (-517)))) (-3002 (($ $) 222 (|has| |#1| (-517)))) (-2717 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1778 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2615 (($ $ |#1| |#2| $) 172)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 84 (-12 (|has| |#3| (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 83 (-12 (|has| |#3| (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-3865 (((-108) $) 31)) (-3667 (((-712) $) 169)) (-2040 (((-108) $ $) 250) (((-108) $ (-591 $)) 249)) (-1348 (($ $ $ $ $) 207 (|has| |#1| (-517)))) (-3998 ((|#3| $) 275)) (-1434 (($ (-1085 |#1|) |#3|) 117) (($ (-1085 $) |#3|) 116)) (-2987 (((-591 $) $) 126)) (-3802 (((-108) $) 152)) (-1422 (($ |#1| |#2|) 153) (($ $ |#3| (-712)) 119) (($ $ (-591 |#3|) (-591 (-712))) 118)) (-1941 (($ $ $) 235)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ |#3|) 120)) (-4160 (((-108) $) 265)) (-3629 ((|#2| $) 170) (((-712) $ |#3|) 122) (((-591 (-712)) $ (-591 |#3|)) 121)) (-1923 (($ $ $) 79 (|has| |#1| (-788)))) (-4037 (((-712) $) 274)) (-3475 (($ $ $) 78 (|has| |#1| (-788)))) (-2508 (($ (-1 |#2| |#2|) $) 171)) (-1257 (($ (-1 |#1| |#1|) $) 151)) (-3027 (((-3 |#3| "failed") $) 123)) (-2740 (($ $) 202 (|has| |#1| (-429)))) (-2468 (($ $) 203 (|has| |#1| (-429)))) (-3723 (((-591 $) $) 260)) (-3350 (($ $) 263)) (-1585 (($ $) 204 (|has| |#1| (-429)))) (-3247 (((-591 $) $) 261)) (-3672 (($ $) 262)) (-1548 (($ $) 149)) (-1556 ((|#1| $) 148) (($ $ |#3|) 267)) (-2081 (($ (-591 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-3804 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2362 (-712))) $ $) 234)) (-1641 (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $) 238) (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $ |#3|) 237)) (-3899 (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2449 $)) $ $) 240) (((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2449 $)) $ $ |#3|) 239)) (-3393 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1861 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2621 (((-1072) $) 9)) (-2456 (($ $ $) 210 (|has| |#1| (-517)))) (-1722 (((-591 $) $) 269)) (-3401 (((-3 (-591 $) "failed") $) 114)) (-4008 (((-3 (-591 $) "failed") $) 115)) (-3410 (((-3 (-2 (|:| |var| |#3|) (|:| -3987 (-712))) "failed") $) 113)) (-1307 (((-108) $ $) 252) (((-108) $ (-591 $)) 251)) (-3022 (($ $ $) 232)) (-3492 (($ $) 273)) (-3300 (((-108) $ $) 258)) (-3255 (((-108) $ $) 254) (((-108) $ (-591 $)) 253)) (-2246 (($ $ $) 233)) (-1455 (($ $) 272)) (-2937 (((-1036) $) 10)) (-3071 (((-2 (|:| -2124 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-517)))) (-1715 (((-2 (|:| -2124 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-517)))) (-1531 (((-108) $) 166)) (-1540 ((|#1| $) 167)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 95 (|has| |#1| (-429)))) (-2124 ((|#1| |#1| $) 206 (|has| |#1| (-429))) (($ (-591 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) 102 (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) 101 (|has| |#1| (-842)))) (-2542 (((-396 $) $) 99 (|has| |#1| (-842)))) (-2497 (((-2 (|:| -2124 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-517)))) (-3210 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-4056 (($ $ |#1|) 219 (|has| |#1| (-517))) (($ $ $) 217 (|has| |#1| (-517)))) (-2558 (($ $ |#1|) 220 (|has| |#1| (-517))) (($ $ $) 218 (|has| |#1| (-517)))) (-1980 (($ $ (-591 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-591 $) (-591 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-591 |#3|) (-591 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-591 |#3|) (-591 $)) 138)) (-2858 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-2209 (($ $ |#3|) 42) (($ $ (-591 |#3|)) 41) (($ $ |#3| (-712)) 40) (($ $ (-591 |#3|) (-591 (-712))) 39)) (-2743 ((|#2| $) 150) (((-712) $ |#3|) 130) (((-591 (-712)) $ (-591 |#3|)) 129)) (-3906 (($ $) 270)) (-1958 (($ $) 268)) (-1300 (((-825 (-357)) $) 82 (-12 (|has| |#3| (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) 81 (-12 (|has| |#3| (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-566 (-501))) (|has| |#1| (-566 (-501))))) (($ (-885 (-385 (-525)))) 229 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-566 (-1089))))) (($ (-885 (-525))) 226 (-3150 (-12 (-3389 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-566 (-1089)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-566 (-1089)))))) (($ (-885 |#1|)) 223 (|has| |#3| (-566 (-1089)))) (((-1072) $) 201 (-12 (|has| |#1| (-966 (-525))) (|has| |#3| (-566 (-1089))))) (((-885 |#1|) $) 200 (|has| |#3| (-566 (-1089))))) (-2827 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 104 (-3543 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-885 |#1|) $) 199 (|has| |#3| (-566 (-1089)))) (($ (-385 (-525))) 72 (-3150 (|has| |#1| (-966 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) 168)) (-1263 ((|#1| $ |#2|) 155) (($ $ |#3| (-712)) 128) (($ $ (-591 |#3|) (-591 (-712))) 127)) (-3751 (((-3 $ "failed") $) 73 (-3150 (-3543 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) 29)) (-2931 (($ $ $ (-712)) 173 (|has| |#1| (-160)))) (-1724 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-2970 (((-3 (-108) "failed") $ $) 259)) (-1839 (($) 30 T CONST)) (-4035 (($ $ $ $ (-712)) 208 (|has| |#1| (-517)))) (-3243 (($ $ $ (-712)) 209 (|has| |#1| (-517)))) (-1796 (($ $ |#3|) 38) (($ $ (-591 |#3|)) 37) (($ $ |#3| (-712)) 36) (($ $ (-591 |#3|) (-591 (-712))) 35)) (-4004 (((-108) $ $) 76 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 75 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 77 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 74 (|has| |#1| (-788)))) (-4059 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-989 |#1| |#2| |#3|) (-131) (-975) (-734) (-788)) (T -989)) -((-3998 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-712)))) (-3492 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-1455 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-3906 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-1722 (*1 *2 *1) (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-989 *3 *4 *5)))) (-1958 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-1556 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)))) (-1575 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)))) (-3350 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-3672 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-3247 (*1 *2 *1) (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-989 *3 *4 *5)))) (-3723 (*1 *2 *1) (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-989 *3 *4 *5)))) (-2970 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)))) (-3300 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)))) (-1843 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)))) (-3797 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)))) (-3255 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)))) (-3255 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)))) (-1307 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)))) (-1307 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)))) (-2040 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)))) (-2040 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)))) (-2717 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-1778 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-2717 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)))) (-1778 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)))) (-3393 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-1861 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-3393 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)))) (-1861 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *2 (-788)))) (-3899 (*1 *2 *1 *1) (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-2 (|:| -2976 *1) (|:| |gap| (-712)) (|:| -2449 *1))) (-4 *1 (-989 *3 *4 *5)))) (-3899 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) (-5 *2 (-2 (|:| -2976 *1) (|:| |gap| (-712)) (|:| -2449 *1))) (-4 *1 (-989 *4 *5 *3)))) (-1641 (*1 *2 *1 *1) (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-2 (|:| -2976 *1) (|:| |gap| (-712)) (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-989 *3 *4 *5)))) (-1641 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) (-5 *2 (-2 (|:| -2976 *1) (|:| |gap| (-712)) (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-989 *4 *5 *3)))) (-1627 (*1 *2 *1 *1) (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-989 *3 *4 *5)))) (-1941 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-3804 (*1 *2 *1 *1) (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2362 (-712)))) (-4 *1 (-989 *3 *4 *5)))) (-2246 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)))) (-4174 (*1 *1 *2) (|partial| -12 (-5 *2 (-885 (-385 (-525)))) (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089))) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-885 (-385 (-525)))) (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089))) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-885 (-385 (-525)))) (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089))) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)))) (-4174 (*1 *1 *2) (|partial| -3150 (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))) (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))))) (-3341 (*1 *1 *2) (-3150 (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))) (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))))) (-1300 (*1 *1 *2) (-3150 (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))) (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))))) (-4174 (*1 *1 *2) (|partial| -3150 (-12 (-5 *2 (-885 *3)) (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) (-3389 (-4 *3 (-37 (-525)))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) (-4 *5 (-788))) (-12 (-5 *2 (-885 *3)) (-12 (-3389 (-4 *3 (-510))) (-3389 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) (-4 *5 (-788))) (-12 (-5 *2 (-885 *3)) (-12 (-3389 (-4 *3 (-923 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) (-4 *5 (-788))))) (-3341 (*1 *1 *2) (-3150 (-12 (-5 *2 (-885 *3)) (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) (-3389 (-4 *3 (-37 (-525)))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) (-4 *5 (-788))) (-12 (-5 *2 (-885 *3)) (-12 (-3389 (-4 *3 (-510))) (-3389 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) (-4 *5 (-788))) (-12 (-5 *2 (-885 *3)) (-12 (-3389 (-4 *3 (-923 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089)))) (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) (-4 *5 (-788))))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-885 *3)) (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *5 (-566 (-1089))) (-4 *4 (-734)) (-4 *5 (-788)))) (-3002 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-2585 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-2558 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-4056 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-2558 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-4056 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-2584 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-2497 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-2 (|:| -2124 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-989 *3 *4 *5)))) (-1715 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-2 (|:| -2124 *1) (|:| |coef1| *1))) (-4 *1 (-989 *3 *4 *5)))) (-3071 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-2 (|:| -2124 *1) (|:| |coef2| *1))) (-4 *1 (-989 *3 *4 *5)))) (-1788 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-3842 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-989 *3 *4 *5)))) (-2456 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-3243 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *3 (-517)))) (-4035 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *3 (-517)))) (-1348 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-517)))) (-2124 (*1 *2 *2 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-429)))) (-3286 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-429)))) (-1585 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-429)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-429)))) (-2740 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-429))))) -(-13 (-882 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3998 (|t#3| $)) (-15 -4037 ((-712) $)) (-15 -3492 ($ $)) (-15 -1455 ($ $)) (-15 -3856 ($ $)) (-15 -3906 ($ $)) (-15 -1722 ((-591 $) $)) (-15 -1958 ($ $)) (-15 -1556 ($ $ |t#3|)) (-15 -1575 ($ $ |t#3|)) (-15 -4160 ((-108) $)) (-15 -3731 ((-108) $)) (-15 -3350 ($ $)) (-15 -3672 ($ $)) (-15 -3247 ((-591 $) $)) (-15 -3723 ((-591 $) $)) (-15 -2970 ((-3 (-108) "failed") $ $)) (-15 -3300 ((-108) $ $)) (-15 -1843 ((-108) $ $)) (-15 -3797 ((-108) $ $)) (-15 -3797 ((-108) $ (-591 $))) (-15 -3255 ((-108) $ $)) (-15 -3255 ((-108) $ (-591 $))) (-15 -1307 ((-108) $ $)) (-15 -1307 ((-108) $ (-591 $))) (-15 -2040 ((-108) $ $)) (-15 -2040 ((-108) $ (-591 $))) (-15 -2717 ($ $ $)) (-15 -1778 ($ $ $)) (-15 -2717 ($ $ $ |t#3|)) (-15 -1778 ($ $ $ |t#3|)) (-15 -3393 ($ $ $)) (-15 -1861 ($ $ $)) (-15 -3393 ($ $ $ |t#3|)) (-15 -1861 ($ $ $ |t#3|)) (-15 -3899 ((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2449 $)) $ $)) (-15 -3899 ((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2449 $)) $ $ |t#3|)) (-15 -1641 ((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -1641 ((-2 (|:| -2976 $) (|:| |gap| (-712)) (|:| -2746 $) (|:| -2449 $)) $ $ |t#3|)) (-15 -1627 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -1941 ($ $ $)) (-15 -3804 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2362 (-712))) $ $)) (-15 -2246 ($ $ $)) (-15 -3022 ($ $ $)) (IF (|has| |t#3| (-566 (-1089))) (PROGN (-6 (-565 (-885 |t#1|))) (-6 (-566 (-885 |t#1|))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -4174 ((-3 $ "failed") (-885 (-385 (-525))))) (-15 -3341 ($ (-885 (-385 (-525))))) (-15 -1300 ($ (-885 (-385 (-525))))) (-15 -4174 ((-3 $ "failed") (-885 (-525)))) (-15 -3341 ($ (-885 (-525)))) (-15 -1300 ($ (-885 (-525)))) (IF (|has| |t#1| (-923 (-525))) |%noBranch| (PROGN (-15 -4174 ((-3 $ "failed") (-885 |t#1|))) (-15 -3341 ($ (-885 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -4174 ((-3 $ "failed") (-885 (-525)))) (-15 -3341 ($ (-885 (-525)))) (-15 -1300 ($ (-885 (-525)))) (IF (|has| |t#1| (-510)) |%noBranch| (PROGN (-15 -4174 ((-3 $ "failed") (-885 |t#1|))) (-15 -3341 ($ (-885 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) |%noBranch| (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -4174 ((-3 $ "failed") (-885 |t#1|))) (-15 -3341 ($ (-885 |t#1|)))))) (-15 -1300 ($ (-885 |t#1|))) (IF (|has| |t#1| (-966 (-525))) (-6 (-566 (-1072))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -3002 ($ $)) (-15 -2585 ($ $)) (-15 -2558 ($ $ |t#1|)) (-15 -4056 ($ $ |t#1|)) (-15 -2558 ($ $ $)) (-15 -4056 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2497 ((-2 (|:| -2124 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1715 ((-2 (|:| -2124 $) (|:| |coef1| $)) $ $)) (-15 -3071 ((-2 (|:| -2124 $) (|:| |coef2| $)) $ $)) (-15 -1788 ($ $ $)) (-15 -3842 ((-591 $) $ $)) (-15 -2456 ($ $ $)) (-15 -3243 ($ $ $ (-712))) (-15 -4035 ($ $ $ $ (-712))) (-15 -1348 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2124 (|t#1| |t#1| $)) (-15 -3286 ($ $)) (-15 -1585 ($ $)) (-15 -2468 ($ $)) (-15 -2740 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-565 (-885 |#1|)) |has| |#3| (-566 (-1089))) ((-160) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-566 (-501)) -12 (|has| |#1| (-566 (-501))) (|has| |#3| (-566 (-501)))) ((-566 (-825 (-357))) -12 (|has| |#1| (-566 (-825 (-357)))) (|has| |#3| (-566 (-825 (-357))))) ((-566 (-825 (-525))) -12 (|has| |#1| (-566 (-825 (-525)))) (|has| |#3| (-566 (-825 (-525))))) ((-566 (-885 |#1|)) |has| |#3| (-566 (-1089))) ((-566 (-1072)) -12 (|has| |#1| (-966 (-525))) (|has| |#3| (-566 (-1089)))) ((-269) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3150 (|has| |#1| (-842)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-593 #0#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-587 (-525)) |has| |#1| (-587 (-525))) ((-587 |#1|) . T) ((-659 #0#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-668) . T) ((-788) |has| |#1| (-788)) ((-833 |#3|) . T) ((-819 (-357)) -12 (|has| |#1| (-819 (-357))) (|has| |#3| (-819 (-357)))) ((-819 (-525)) -12 (|has| |#1| (-819 (-525))) (|has| |#3| (-819 (-525)))) ((-882 |#1| |#2| |#3|) . T) ((-842) |has| |#1| (-842)) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 |#1|) . T) ((-966 |#3|) . T) ((-981 #0#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) |has| |#1| (-842))) -((-1306 (((-108) |#3| $) 13)) (-1254 (((-3 $ "failed") |#3| (-854)) 23)) (-1522 (((-3 |#3| "failed") |#3| $) 38)) (-3489 (((-108) |#3| $) 16)) (-2256 (((-108) |#3| $) 14))) -(((-990 |#1| |#2| |#3|) (-10 -8 (-15 -1254 ((-3 |#1| "failed") |#3| (-854))) (-15 -1522 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3489 ((-108) |#3| |#1|)) (-15 -2256 ((-108) |#3| |#1|)) (-15 -1306 ((-108) |#3| |#1|))) (-991 |#2| |#3|) (-13 (-786) (-341)) (-1147 |#2|)) (T -990)) -NIL -(-10 -8 (-15 -1254 ((-3 |#1| "failed") |#3| (-854))) (-15 -1522 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3489 ((-108) |#3| |#1|)) (-15 -2256 ((-108) |#3| |#1|)) (-15 -1306 ((-108) |#3| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) |#2| $) 21)) (-4188 (((-525) |#2| $) 22)) (-1254 (((-3 $ "failed") |#2| (-854)) 15)) (-1953 ((|#1| |#2| $ |#1|) 13)) (-1522 (((-3 |#2| "failed") |#2| $) 18)) (-3489 (((-108) |#2| $) 19)) (-2256 (((-108) |#2| $) 20)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-1341 ((|#2| $) 17)) (-2686 (((-796) $) 11)) (-4173 ((|#1| |#2| $ |#1|) 14)) (-1634 (((-591 $) |#2|) 16)) (-3944 (((-108) $ $) 6))) -(((-991 |#1| |#2|) (-131) (-13 (-786) (-341)) (-1147 |t#1|)) (T -991)) -((-4188 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *3)) (-4 *4 (-13 (-786) (-341))) (-4 *3 (-1147 *4)) (-5 *2 (-525)))) (-1306 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *3)) (-4 *4 (-13 (-786) (-341))) (-4 *3 (-1147 *4)) (-5 *2 (-108)))) (-2256 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *3)) (-4 *4 (-13 (-786) (-341))) (-4 *3 (-1147 *4)) (-5 *2 (-108)))) (-3489 (*1 *2 *3 *1) (-12 (-4 *1 (-991 *4 *3)) (-4 *4 (-13 (-786) (-341))) (-4 *3 (-1147 *4)) (-5 *2 (-108)))) (-1522 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-991 *3 *2)) (-4 *3 (-13 (-786) (-341))) (-4 *2 (-1147 *3)))) (-1341 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *2)) (-4 *3 (-13 (-786) (-341))) (-4 *2 (-1147 *3)))) (-1634 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-341))) (-4 *3 (-1147 *4)) (-5 *2 (-591 *1)) (-4 *1 (-991 *4 *3)))) (-1254 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-854)) (-4 *4 (-13 (-786) (-341))) (-4 *1 (-991 *4 *2)) (-4 *2 (-1147 *4)))) (-4173 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-991 *2 *3)) (-4 *2 (-13 (-786) (-341))) (-4 *3 (-1147 *2)))) (-1953 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-991 *2 *3)) (-4 *2 (-13 (-786) (-341))) (-4 *3 (-1147 *2))))) -(-13 (-1018) (-10 -8 (-15 -4188 ((-525) |t#2| $)) (-15 -1306 ((-108) |t#2| $)) (-15 -2256 ((-108) |t#2| $)) (-15 -3489 ((-108) |t#2| $)) (-15 -1522 ((-3 |t#2| "failed") |t#2| $)) (-15 -1341 (|t#2| $)) (-15 -1634 ((-591 $) |t#2|)) (-15 -1254 ((-3 $ "failed") |t#2| (-854))) (-15 -4173 (|t#1| |t#2| $ |t#1|)) (-15 -1953 (|t#1| |t#2| $ |t#1|)))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-3119 (((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 |#4|) (-591 |#5|) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-712)) 96)) (-3983 (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712)) 56)) (-3137 (((-1176) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-712)) 87)) (-1205 (((-712) (-591 |#4|) (-591 |#5|)) 27)) (-4085 (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712)) 58) (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712) (-108)) 60)) (-3601 (((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108)) 79)) (-1300 (((-1072) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) 82)) (-3409 (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-108)) 55)) (-2138 (((-712) (-591 |#4|) (-591 |#5|)) 19))) -(((-992 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2138 ((-712) (-591 |#4|) (-591 |#5|))) (-15 -1205 ((-712) (-591 |#4|) (-591 |#5|))) (-15 -3409 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-108))) (-15 -3983 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712))) (-15 -3983 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712) (-108))) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712))) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -3601 ((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108))) (-15 -3601 ((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3119 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 |#4|) (-591 |#5|) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-712))) (-15 -1300 ((-1072) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) (-15 -3137 ((-1176) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-712)))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|) (-994 |#1| |#2| |#3| |#4|)) (T -992)) -((-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-2 (|:| |val| (-591 *8)) (|:| -3585 *9)))) (-5 *4 (-712)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-1176)) (-5 *1 (-992 *5 *6 *7 *8 *9)))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-591 *7)) (|:| -3585 *8))) (-4 *7 (-989 *4 *5 *6)) (-4 *8 (-994 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1072)) (-5 *1 (-992 *4 *5 *6 *7 *8)))) (-3119 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-591 *11)) (|:| |todo| (-591 (-2 (|:| |val| *3) (|:| -3585 *11)))))) (-5 *6 (-712)) (-5 *2 (-591 (-2 (|:| |val| (-591 *10)) (|:| -3585 *11)))) (-5 *3 (-591 *10)) (-5 *4 (-591 *11)) (-4 *10 (-989 *7 *8 *9)) (-4 *11 (-994 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-734)) (-4 *9 (-788)) (-5 *1 (-992 *7 *8 *9 *10 *11)))) (-3601 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-591 *9)) (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-992 *5 *6 *7 *8 *9)))) (-3601 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-591 *9)) (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-992 *5 *6 *7 *8 *9)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-992 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-712)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *3 (-989 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-992 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) (-4085 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-712)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-734)) (-4 *9 (-788)) (-4 *3 (-989 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-992 *7 *8 *9 *3 *4)) (-4 *4 (-994 *7 *8 *9 *3)))) (-3983 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-992 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-3983 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-712)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *3 (-989 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-992 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *3 (-989 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-992 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) (-1205 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *9)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-712)) (-5 *1 (-992 *5 *6 *7 *8 *9)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *9)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-712)) (-5 *1 (-992 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2138 ((-712) (-591 |#4|) (-591 |#5|))) (-15 -1205 ((-712) (-591 |#4|) (-591 |#5|))) (-15 -3409 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-108))) (-15 -3983 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712))) (-15 -3983 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712) (-108))) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712))) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -3601 ((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108))) (-15 -3601 ((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3119 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 |#4|) (-591 |#5|) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-712))) (-15 -1300 ((-1072) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) (-15 -3137 ((-1176) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-712)))) -((-1987 (((-108) |#5| $) 21)) (-1949 (((-108) |#5| $) 24)) (-3256 (((-108) |#5| $) 16) (((-108) $) 45)) (-2318 (((-591 $) |#5| $) NIL) (((-591 $) (-591 |#5|) $) 77) (((-591 $) (-591 |#5|) (-591 $)) 75) (((-591 $) |#5| (-591 $)) 78)) (-1618 (($ $ |#5|) NIL) (((-591 $) |#5| $) NIL) (((-591 $) |#5| (-591 $)) 60) (((-591 $) (-591 |#5|) $) 62) (((-591 $) (-591 |#5|) (-591 $)) 64)) (-3996 (((-591 $) |#5| $) NIL) (((-591 $) |#5| (-591 $)) 54) (((-591 $) (-591 |#5|) $) 56) (((-591 $) (-591 |#5|) (-591 $)) 58)) (-3744 (((-108) |#5| $) 27))) -(((-993 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1618 ((-591 |#1|) (-591 |#5|) (-591 |#1|))) (-15 -1618 ((-591 |#1|) (-591 |#5|) |#1|)) (-15 -1618 ((-591 |#1|) |#5| (-591 |#1|))) (-15 -1618 ((-591 |#1|) |#5| |#1|)) (-15 -3996 ((-591 |#1|) (-591 |#5|) (-591 |#1|))) (-15 -3996 ((-591 |#1|) (-591 |#5|) |#1|)) (-15 -3996 ((-591 |#1|) |#5| (-591 |#1|))) (-15 -3996 ((-591 |#1|) |#5| |#1|)) (-15 -2318 ((-591 |#1|) |#5| (-591 |#1|))) (-15 -2318 ((-591 |#1|) (-591 |#5|) (-591 |#1|))) (-15 -2318 ((-591 |#1|) (-591 |#5|) |#1|)) (-15 -2318 ((-591 |#1|) |#5| |#1|)) (-15 -1949 ((-108) |#5| |#1|)) (-15 -3256 ((-108) |#1|)) (-15 -3744 ((-108) |#5| |#1|)) (-15 -1987 ((-108) |#5| |#1|)) (-15 -3256 ((-108) |#5| |#1|)) (-15 -1618 (|#1| |#1| |#5|))) (-994 |#2| |#3| |#4| |#5|) (-429) (-734) (-788) (-989 |#2| |#3| |#4|)) (T -993)) -NIL -(-10 -8 (-15 -1618 ((-591 |#1|) (-591 |#5|) (-591 |#1|))) (-15 -1618 ((-591 |#1|) (-591 |#5|) |#1|)) (-15 -1618 ((-591 |#1|) |#5| (-591 |#1|))) (-15 -1618 ((-591 |#1|) |#5| |#1|)) (-15 -3996 ((-591 |#1|) (-591 |#5|) (-591 |#1|))) (-15 -3996 ((-591 |#1|) (-591 |#5|) |#1|)) (-15 -3996 ((-591 |#1|) |#5| (-591 |#1|))) (-15 -3996 ((-591 |#1|) |#5| |#1|)) (-15 -2318 ((-591 |#1|) |#5| (-591 |#1|))) (-15 -2318 ((-591 |#1|) (-591 |#5|) (-591 |#1|))) (-15 -2318 ((-591 |#1|) (-591 |#5|) |#1|)) (-15 -2318 ((-591 |#1|) |#5| |#1|)) (-15 -1949 ((-108) |#5| |#1|)) (-15 -3256 ((-108) |#1|)) (-15 -3744 ((-108) |#5| |#1|)) (-15 -1987 ((-108) |#5| |#1|)) (-15 -3256 ((-108) |#5| |#1|)) (-15 -1618 (|#1| |#1| |#5|))) -((-2673 (((-108) $ $) 7)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |#4|)))) (-591 |#4|)) 85)) (-3227 (((-591 $) (-591 |#4|)) 86) (((-591 $) (-591 |#4|) (-108)) 111)) (-1444 (((-591 |#3|) $) 33)) (-3713 (((-108) $) 26)) (-1996 (((-108) $) 17 (|has| |#1| (-517)))) (-3750 (((-108) |#4| $) 101) (((-108) $) 97)) (-4123 ((|#4| |#4| $) 92)) (-1720 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| $) 126)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) 27)) (-3727 (((-108) $ (-712)) 44)) (-2467 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4250))) (((-3 |#4| "failed") $ |#3|) 79)) (-2055 (($) 45 T CONST)) (-3435 (((-108) $) 22 (|has| |#1| (-517)))) (-2342 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2605 (((-108) $ $) 23 (|has| |#1| (-517)))) (-2167 (((-108) $) 25 (|has| |#1| (-517)))) (-2699 (((-591 |#4|) (-591 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1533 (((-591 |#4|) (-591 |#4|) $) 18 (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) 19 (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) 36)) (-3341 (($ (-591 |#4|)) 35)) (-2884 (((-3 $ "failed") $) 82)) (-2302 ((|#4| |#4| $) 89)) (-2908 (($ $) 68 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#4| $) 67 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3797 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2490 ((|#4| |#4| $) 87)) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4250))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2082 (((-2 (|:| -1269 (-591 |#4|)) (|:| -1472 (-591 |#4|))) $) 105)) (-1987 (((-108) |#4| $) 136)) (-1949 (((-108) |#4| $) 133)) (-3256 (((-108) |#4| $) 137) (((-108) $) 134)) (-2916 (((-591 |#4|) $) 52 (|has| $ (-6 -4250)))) (-2040 (((-108) |#4| $) 104) (((-108) $) 103)) (-3998 ((|#3| $) 34)) (-3491 (((-108) $ (-712)) 43)) (-4207 (((-591 |#4|) $) 53 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 47)) (-3520 (((-591 |#3|) $) 32)) (-1574 (((-108) |#3| $) 31)) (-3295 (((-108) $ (-712)) 42)) (-2621 (((-1072) $) 9)) (-2001 (((-3 |#4| (-591 $)) |#4| |#4| $) 128)) (-2456 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| |#4| $) 127)) (-2555 (((-3 |#4| "failed") $) 83)) (-3783 (((-591 $) |#4| $) 129)) (-1929 (((-3 (-108) (-591 $)) |#4| $) 132)) (-3433 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2318 (((-591 $) |#4| $) 125) (((-591 $) (-591 |#4|) $) 124) (((-591 $) (-591 |#4|) (-591 $)) 123) (((-591 $) |#4| (-591 $)) 122)) (-1832 (($ |#4| $) 117) (($ (-591 |#4|) $) 116)) (-3664 (((-591 |#4|) $) 107)) (-1307 (((-108) |#4| $) 99) (((-108) $) 95)) (-3022 ((|#4| |#4| $) 90)) (-3300 (((-108) $ $) 110)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-3255 (((-108) |#4| $) 100) (((-108) $) 96)) (-2246 ((|#4| |#4| $) 91)) (-2937 (((-1036) $) 10)) (-2872 (((-3 |#4| "failed") $) 84)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1591 (((-3 $ "failed") $ |#4|) 78)) (-1618 (($ $ |#4|) 77) (((-591 $) |#4| $) 115) (((-591 $) |#4| (-591 $)) 114) (((-591 $) (-591 |#4|) $) 113) (((-591 $) (-591 |#4|) (-591 $)) 112)) (-3465 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) 38)) (-2077 (((-108) $) 41)) (-3164 (($) 40)) (-2743 (((-712) $) 106)) (-2960 (((-712) |#4| $) 54 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4250)))) (-2873 (($ $) 39)) (-1300 (((-501) $) 69 (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) 60)) (-3786 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-1656 (($ $) 88)) (-1918 (($ $ |#3|) 29)) (-2686 (((-796) $) 11) (((-591 |#4|) $) 37)) (-3311 (((-712) $) 76 (|has| |#3| (-346)))) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3747 (((-108) $ (-1 (-108) |#4| (-591 |#4|))) 98)) (-3996 (((-591 $) |#4| $) 121) (((-591 $) |#4| (-591 $)) 120) (((-591 $) (-591 |#4|) $) 119) (((-591 $) (-591 |#4|) (-591 $)) 118)) (-1475 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4250)))) (-1669 (((-591 |#3|) $) 81)) (-3744 (((-108) |#4| $) 135)) (-2588 (((-108) |#3| $) 80)) (-3944 (((-108) $ $) 6)) (-2028 (((-712) $) 46 (|has| $ (-6 -4250))))) -(((-994 |#1| |#2| |#3| |#4|) (-131) (-429) (-734) (-788) (-989 |t#1| |t#2| |t#3|)) (T -994)) -((-3256 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-1987 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-3744 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) (-1949 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-1929 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-3 (-108) (-591 *1))) (-4 *1 (-994 *4 *5 *6 *3)))) (-3433 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *1)))) (-4 *1 (-994 *4 *5 *6 *3)))) (-3433 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-3783 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)))) (-2001 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-3 *3 (-591 *1))) (-4 *1 (-994 *4 *5 *6 *3)))) (-2456 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *1)))) (-4 *1 (-994 *4 *5 *6 *3)))) (-1720 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *1)))) (-4 *1 (-994 *4 *5 *6 *3)))) (-2318 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)))) (-2318 (*1 *2 *3 *1) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *7)))) (-2318 (*1 *2 *3 *2) (-12 (-5 *2 (-591 *1)) (-5 *3 (-591 *7)) (-4 *1 (-994 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)))) (-2318 (*1 *2 *3 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)))) (-3996 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)))) (-3996 (*1 *2 *3 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)))) (-3996 (*1 *2 *3 *1) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *7)))) (-3996 (*1 *2 *3 *2) (-12 (-5 *2 (-591 *1)) (-5 *3 (-591 *7)) (-4 *1 (-994 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)))) (-1832 (*1 *1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-1832 (*1 *1 *2 *1) (-12 (-5 *2 (-591 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)))) (-1618 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)))) (-1618 (*1 *2 *3 *1) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *7)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-591 *1)) (-5 *3 (-591 *7)) (-4 *1 (-994 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-994 *5 *6 *7 *8))))) -(-13 (-1119 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3256 ((-108) |t#4| $)) (-15 -1987 ((-108) |t#4| $)) (-15 -3744 ((-108) |t#4| $)) (-15 -3256 ((-108) $)) (-15 -1949 ((-108) |t#4| $)) (-15 -1929 ((-3 (-108) (-591 $)) |t#4| $)) (-15 -3433 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 $))) |t#4| $)) (-15 -3433 ((-108) |t#4| $)) (-15 -3783 ((-591 $) |t#4| $)) (-15 -2001 ((-3 |t#4| (-591 $)) |t#4| |t#4| $)) (-15 -2456 ((-591 (-2 (|:| |val| |t#4|) (|:| -3585 $))) |t#4| |t#4| $)) (-15 -1720 ((-591 (-2 (|:| |val| |t#4|) (|:| -3585 $))) |t#4| $)) (-15 -2318 ((-591 $) |t#4| $)) (-15 -2318 ((-591 $) (-591 |t#4|) $)) (-15 -2318 ((-591 $) (-591 |t#4|) (-591 $))) (-15 -2318 ((-591 $) |t#4| (-591 $))) (-15 -3996 ((-591 $) |t#4| $)) (-15 -3996 ((-591 $) |t#4| (-591 $))) (-15 -3996 ((-591 $) (-591 |t#4|) $)) (-15 -3996 ((-591 $) (-591 |t#4|) (-591 $))) (-15 -1832 ($ |t#4| $)) (-15 -1832 ($ (-591 |t#4|) $)) (-15 -1618 ((-591 $) |t#4| $)) (-15 -1618 ((-591 $) |t#4| (-591 $))) (-15 -1618 ((-591 $) (-591 |t#4|) $)) (-15 -1618 ((-591 $) (-591 |t#4|) (-591 $))) (-15 -3227 ((-591 $) (-591 |t#4|) (-108))))) -(((-33) . T) ((-97) . T) ((-565 (-591 |#4|)) . T) ((-565 (-796)) . T) ((-142 |#4|) . T) ((-566 (-501)) |has| |#4| (-566 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-907 |#1| |#2| |#3| |#4|) . T) ((-1018) . T) ((-1119 |#1| |#2| |#3| |#4|) . T) ((-1125) . T)) -((-1951 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#5|) 81)) (-3541 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|) 113)) (-1717 (((-591 |#5|) |#4| |#5|) 70)) (-3904 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-2552 (((-1176)) 37)) (-3368 (((-1176)) 26)) (-3718 (((-1176) (-1072) (-1072) (-1072)) 33)) (-2835 (((-1176) (-1072) (-1072) (-1072)) 22)) (-2338 (((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#4| |#4| |#5|) 96)) (-2956 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#3| (-108)) 107) (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-2140 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|) 102))) -(((-995 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2835 ((-1176) (-1072) (-1072) (-1072))) (-15 -3368 ((-1176))) (-15 -3718 ((-1176) (-1072) (-1072) (-1072))) (-15 -2552 ((-1176))) (-15 -2338 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -2956 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2956 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#3| (-108))) (-15 -2140 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -3541 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -3904 ((-108) |#4| |#5|)) (-15 -3904 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -1717 ((-591 |#5|) |#4| |#5|)) (-15 -1951 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#5|))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|) (-994 |#1| |#2| |#3| |#4|)) (T -995)) -((-1951 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-1717 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 *4)) (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-3904 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-3904 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-3541 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-2140 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 (-2 (|:| |val| (-591 *8)) (|:| -3585 *9)))) (-5 *5 (-108)) (-4 *8 (-989 *6 *7 *4)) (-4 *9 (-994 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *4 (-788)) (-5 *2 (-591 (-2 (|:| |val| *8) (|:| -3585 *9)))) (-5 *1 (-995 *6 *7 *4 *8 *9)))) (-2956 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *3 (-989 *6 *7 *8)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-995 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) (-2338 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))) (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-2552 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-995 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6)))) (-3718 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-995 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-3368 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-995 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6)))) (-2835 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-995 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) -(-10 -7 (-15 -2835 ((-1176) (-1072) (-1072) (-1072))) (-15 -3368 ((-1176))) (-15 -3718 ((-1176) (-1072) (-1072) (-1072))) (-15 -2552 ((-1176))) (-15 -2338 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -2956 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2956 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#3| (-108))) (-15 -2140 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -3541 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -3904 ((-108) |#4| |#5|)) (-15 -3904 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -1717 ((-591 |#5|) |#4| |#5|)) (-15 -1951 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#5|))) -((-2673 (((-108) $ $) NIL)) (-3419 (((-1089) $) 8)) (-2621 (((-1072) $) 16)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 13))) -(((-996 |#1|) (-13 (-1018) (-10 -8 (-15 -3419 ((-1089) $)))) (-1089)) (T -996)) -((-3419 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-996 *3)) (-14 *3 *2)))) -(-13 (-1018) (-10 -8 (-15 -3419 ((-1089) $)))) -((-2673 (((-108) $ $) NIL)) (-1261 (($ $ (-591 (-1089)) (-1 (-108) (-591 |#3|))) 33)) (-4026 (($ |#3| |#3|) 22) (($ |#3| |#3| (-591 (-1089))) 20)) (-4165 ((|#3| $) 13)) (-4174 (((-3 (-273 |#3|) "failed") $) 58)) (-3341 (((-273 |#3|) $) NIL)) (-3954 (((-591 (-1089)) $) 16)) (-3631 (((-825 |#1|) $) 11)) (-4151 ((|#3| $) 12)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1881 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-854)) 39)) (-2686 (((-796) $) 86) (($ (-273 |#3|)) 21)) (-3944 (((-108) $ $) 36))) -(((-997 |#1| |#2| |#3|) (-13 (-1018) (-265 |#3| |#3|) (-966 (-273 |#3|)) (-10 -8 (-15 -4026 ($ |#3| |#3|)) (-15 -4026 ($ |#3| |#3| (-591 (-1089)))) (-15 -1261 ($ $ (-591 (-1089)) (-1 (-108) (-591 |#3|)))) (-15 -3631 ((-825 |#1|) $)) (-15 -4151 (|#3| $)) (-15 -4165 (|#3| $)) (-15 -1881 (|#3| $ |#3| (-854))) (-15 -3954 ((-591 (-1089)) $)))) (-1018) (-13 (-975) (-819 |#1|) (-788) (-566 (-825 |#1|))) (-13 (-408 |#2|) (-819 |#1|) (-566 (-825 |#1|)))) (T -997)) -((-4026 (*1 *1 *2 *2) (-12 (-4 *3 (-1018)) (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))) (-5 *1 (-997 *3 *4 *2)) (-4 *2 (-13 (-408 *4) (-819 *3) (-566 (-825 *3)))))) (-4026 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-591 (-1089))) (-4 *4 (-1018)) (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) (-5 *1 (-997 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))))) (-1261 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-1 (-108) (-591 *6))) (-4 *6 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))) (-4 *4 (-1018)) (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) (-5 *1 (-997 *4 *5 *6)))) (-3631 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 *2))) (-5 *2 (-825 *3)) (-5 *1 (-997 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-819 *3) (-566 *2))))) (-4151 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *2 (-13 (-408 *4) (-819 *3) (-566 (-825 *3)))) (-5 *1 (-997 *3 *4 *2)) (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))))) (-4165 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *2 (-13 (-408 *4) (-819 *3) (-566 (-825 *3)))) (-5 *1 (-997 *3 *4 *2)) (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))))) (-1881 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-854)) (-4 *4 (-1018)) (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) (-5 *1 (-997 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))))) (-3954 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))) (-5 *2 (-591 (-1089))) (-5 *1 (-997 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-819 *3) (-566 (-825 *3))))))) -(-13 (-1018) (-265 |#3| |#3|) (-966 (-273 |#3|)) (-10 -8 (-15 -4026 ($ |#3| |#3|)) (-15 -4026 ($ |#3| |#3| (-591 (-1089)))) (-15 -1261 ($ $ (-591 (-1089)) (-1 (-108) (-591 |#3|)))) (-15 -3631 ((-825 |#1|) $)) (-15 -4151 (|#3| $)) (-15 -4165 (|#3| $)) (-15 -1881 (|#3| $ |#3| (-854))) (-15 -3954 ((-591 (-1089)) $)))) -((-2673 (((-108) $ $) NIL)) (-1236 (($ (-591 (-997 |#1| |#2| |#3|))) 13)) (-2404 (((-591 (-997 |#1| |#2| |#3|)) $) 20)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1881 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-854)) 26)) (-2686 (((-796) $) 16)) (-3944 (((-108) $ $) 19))) -(((-998 |#1| |#2| |#3|) (-13 (-1018) (-265 |#3| |#3|) (-10 -8 (-15 -1236 ($ (-591 (-997 |#1| |#2| |#3|)))) (-15 -2404 ((-591 (-997 |#1| |#2| |#3|)) $)) (-15 -1881 (|#3| $ |#3| (-854))))) (-1018) (-13 (-975) (-819 |#1|) (-788) (-566 (-825 |#1|))) (-13 (-408 |#2|) (-819 |#1|) (-566 (-825 |#1|)))) (T -998)) -((-1236 (*1 *1 *2) (-12 (-5 *2 (-591 (-997 *3 *4 *5))) (-4 *3 (-1018)) (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))) (-4 *5 (-13 (-408 *4) (-819 *3) (-566 (-825 *3)))) (-5 *1 (-998 *3 *4 *5)))) (-2404 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))) (-5 *2 (-591 (-997 *3 *4 *5))) (-5 *1 (-998 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-819 *3) (-566 (-825 *3)))))) (-1881 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-854)) (-4 *4 (-1018)) (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) (-5 *1 (-998 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4))))))) -(-13 (-1018) (-265 |#3| |#3|) (-10 -8 (-15 -1236 ($ (-591 (-997 |#1| |#2| |#3|)))) (-15 -2404 ((-591 (-997 |#1| |#2| |#3|)) $)) (-15 -1881 (|#3| $ |#3| (-854))))) -((-3181 (((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108) (-108)) 75) (((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|))) 77) (((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108)) 76))) -(((-999 |#1| |#2|) (-10 -7 (-15 -3181 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108))) (-15 -3181 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)))) (-15 -3181 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108) (-108)))) (-13 (-286) (-138)) (-591 (-1089))) (T -999)) -((-3181 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) (-5 *1 (-999 *5 *6)) (-5 *3 (-591 (-885 *5))) (-14 *6 (-591 (-1089))))) (-3181 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-5 *2 (-591 (-2 (|:| -3237 (-1085 *4)) (|:| -1671 (-591 (-885 *4)))))) (-5 *1 (-999 *4 *5)) (-5 *3 (-591 (-885 *4))) (-14 *5 (-591 (-1089))))) (-3181 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) (-5 *1 (-999 *5 *6)) (-5 *3 (-591 (-885 *5))) (-14 *6 (-591 (-1089)))))) -(-10 -7 (-15 -3181 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108))) (-15 -3181 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)))) (-15 -3181 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108) (-108)))) -((-2542 (((-396 |#3|) |#3|) 18))) -(((-1000 |#1| |#2| |#3|) (-10 -7 (-15 -2542 ((-396 |#3|) |#3|))) (-1147 (-385 (-525))) (-13 (-341) (-138) (-666 (-385 (-525)) |#1|)) (-1147 |#2|)) (T -1000)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-1147 (-385 (-525)))) (-4 *5 (-13 (-341) (-138) (-666 (-385 (-525)) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1000 *4 *5 *3)) (-4 *3 (-1147 *5))))) -(-10 -7 (-15 -2542 ((-396 |#3|) |#3|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 126)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-341)))) (-3641 (($ $) NIL (|has| |#1| (-341)))) (-3077 (((-108) $) NIL (|has| |#1| (-341)))) (-1712 (((-631 |#1|) (-1171 $)) NIL) (((-631 |#1|)) 115)) (-1481 ((|#1| $) 119)) (-2666 (((-1099 (-854) (-712)) (-525)) NIL (|has| |#1| (-327)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| |#1| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2834 (((-712)) 40 (|has| |#1| (-346)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL)) (-1554 (($ (-1171 |#1|) (-1171 $)) NIL) (($ (-1171 |#1|)) 43)) (-3640 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-4054 (((-631 |#1|) $ (-1171 $)) NIL) (((-631 |#1|) $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 106) (((-631 |#1|) (-631 $)) 101)) (-3618 (($ |#2|) 61) (((-3 $ "failed") (-385 |#2|)) NIL (|has| |#1| (-341)))) (-1522 (((-3 $ "failed") $) NIL)) (-2193 (((-854)) 77)) (-1325 (($) 44 (|has| |#1| (-346)))) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-1268 (($) NIL (|has| |#1| (-327)))) (-2096 (((-108) $) NIL (|has| |#1| (-327)))) (-3477 (($ $ (-712)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-2393 (((-108) $) NIL (|has| |#1| (-341)))) (-1676 (((-854) $) NIL (|has| |#1| (-327))) (((-774 (-854)) $) NIL (|has| |#1| (-327)))) (-3865 (((-108) $) NIL)) (-1525 ((|#1| $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3205 ((|#2| $) 84 (|has| |#1| (-341)))) (-1970 (((-854) $) 131 (|has| |#1| (-346)))) (-3610 ((|#2| $) 58)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-3492 (($) NIL (|has| |#1| (-327)) CONST)) (-3229 (($ (-854)) 125 (|has| |#1| (-346)))) (-2937 (((-1036) $) NIL)) (-3965 (($) 121)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4107 (((-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525))))) NIL (|has| |#1| (-327)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2858 ((|#1| (-1171 $)) NIL) ((|#1|) 109)) (-2652 (((-712) $) NIL (|has| |#1| (-327))) (((-3 (-712) "failed") $ $) NIL (|has| |#1| (-327)))) (-2209 (($ $) NIL (-3150 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-712)) NIL (-3150 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))))) (($ $ (-1 |#1| |#1|) (-712)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-3206 (((-631 |#1|) (-1171 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-1341 ((|#2|) 73)) (-3560 (($) NIL (|has| |#1| (-327)))) (-1671 (((-1171 |#1|) $ (-1171 $)) 89) (((-631 |#1|) (-1171 $) (-1171 $)) NIL) (((-1171 |#1|) $) 71) (((-631 |#1|) (-1171 $)) 85)) (-1300 (((-1171 |#1|) $) NIL) (($ (-1171 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (|has| |#1| (-327)))) (-2686 (((-796) $) 57) (($ (-525)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-341))) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-341)) (|has| |#1| (-966 (-385 (-525))))))) (-3751 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2173 ((|#2| $) 82)) (-3425 (((-712)) 75)) (-3612 (((-1171 $)) 81)) (-1724 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) 30 T CONST)) (-1839 (($) 19 T CONST)) (-1796 (($ $) NIL (-3150 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-712)) NIL (-3150 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-833 (-1089))))) (($ $ (-1 |#1| |#1|) (-712)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-3944 (((-108) $ $) 63)) (-4059 (($ $ $) NIL (|has| |#1| (-341)))) (-4047 (($ $) 67) (($ $ $) NIL)) (-4036 (($ $ $) 65)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))))) -(((-1001 |#1| |#2| |#3|) (-666 |#1| |#2|) (-160) (-1147 |#1|) |#2|) (T -1001)) -NIL -(-666 |#1| |#2|) -((-2542 (((-396 |#3|) |#3|) 19))) -(((-1002 |#1| |#2| |#3|) (-10 -7 (-15 -2542 ((-396 |#3|) |#3|))) (-1147 (-385 (-885 (-525)))) (-13 (-341) (-138) (-666 (-385 (-885 (-525))) |#1|)) (-1147 |#2|)) (T -1002)) -((-2542 (*1 *2 *3) (-12 (-4 *4 (-1147 (-385 (-885 (-525))))) (-4 *5 (-13 (-341) (-138) (-666 (-385 (-885 (-525))) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1002 *4 *5 *3)) (-4 *3 (-1147 *5))))) -(-10 -7 (-15 -2542 ((-396 |#3|) |#3|))) -((-2673 (((-108) $ $) NIL)) (-1923 (($ $ $) 14)) (-3475 (($ $ $) 15)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1682 (($) 6)) (-1300 (((-1089) $) 18)) (-2686 (((-796) $) 12)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 13)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 8))) -(((-1003) (-13 (-788) (-10 -8 (-15 -1682 ($)) (-15 -1300 ((-1089) $))))) (T -1003)) -((-1682 (*1 *1) (-5 *1 (-1003))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1003))))) -(-13 (-788) (-10 -8 (-15 -1682 ($)) (-15 -1300 ((-1089) $)))) -((-3859 ((|#1| |#1| (-1 (-525) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-1690 (((-1176)) 15)) (-2346 (((-591 |#1|)) 9))) -(((-1004 |#1|) (-10 -7 (-15 -1690 ((-1176))) (-15 -2346 ((-591 |#1|))) (-15 -3859 (|#1| |#1| (-1 (-108) |#1|))) (-15 -3859 (|#1| |#1| (-1 (-525) |#1| |#1|)))) (-127)) (T -1004)) -((-3859 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1004 *2)))) (-3859 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1004 *2)))) (-2346 (*1 *2) (-12 (-5 *2 (-591 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-127)))) (-1690 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1004 *3)) (-4 *3 (-127))))) -(-10 -7 (-15 -1690 ((-1176))) (-15 -2346 ((-591 |#1|))) (-15 -3859 (|#1| |#1| (-1 (-108) |#1|))) (-15 -3859 (|#1| |#1| (-1 (-525) |#1| |#1|)))) -((-4038 (($ (-104) $) 15)) (-1786 (((-3 (-104) "failed") (-1089) $) 14)) (-3164 (($) 6)) (-3504 (($) 16)) (-3283 (($) 17)) (-1917 (((-591 (-162)) $) 9)) (-2686 (((-796) $) 20))) -(((-1005) (-13 (-565 (-796)) (-10 -8 (-15 -3164 ($)) (-15 -1917 ((-591 (-162)) $)) (-15 -1786 ((-3 (-104) "failed") (-1089) $)) (-15 -4038 ($ (-104) $)) (-15 -3504 ($)) (-15 -3283 ($))))) (T -1005)) -((-3164 (*1 *1) (-5 *1 (-1005))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-591 (-162))) (-5 *1 (-1005)))) (-1786 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1089)) (-5 *2 (-104)) (-5 *1 (-1005)))) (-4038 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1005)))) (-3504 (*1 *1) (-5 *1 (-1005))) (-3283 (*1 *1) (-5 *1 (-1005)))) -(-13 (-565 (-796)) (-10 -8 (-15 -3164 ($)) (-15 -1917 ((-591 (-162)) $)) (-15 -1786 ((-3 (-104) "failed") (-1089) $)) (-15 -4038 ($ (-104) $)) (-15 -3504 ($)) (-15 -3283 ($)))) -((-2010 (((-1171 (-631 |#1|)) (-591 (-631 |#1|))) 42) (((-1171 (-631 (-885 |#1|))) (-591 (-1089)) (-631 (-885 |#1|))) 63) (((-1171 (-631 (-385 (-885 |#1|)))) (-591 (-1089)) (-631 (-385 (-885 |#1|)))) 79)) (-1671 (((-1171 |#1|) (-631 |#1|) (-591 (-631 |#1|))) 36))) -(((-1006 |#1|) (-10 -7 (-15 -2010 ((-1171 (-631 (-385 (-885 |#1|)))) (-591 (-1089)) (-631 (-385 (-885 |#1|))))) (-15 -2010 ((-1171 (-631 (-885 |#1|))) (-591 (-1089)) (-631 (-885 |#1|)))) (-15 -2010 ((-1171 (-631 |#1|)) (-591 (-631 |#1|)))) (-15 -1671 ((-1171 |#1|) (-631 |#1|) (-591 (-631 |#1|))))) (-341)) (T -1006)) -((-1671 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-341)) (-5 *2 (-1171 *5)) (-5 *1 (-1006 *5)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-591 (-631 *4))) (-4 *4 (-341)) (-5 *2 (-1171 (-631 *4))) (-5 *1 (-1006 *4)))) (-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-1089))) (-4 *5 (-341)) (-5 *2 (-1171 (-631 (-885 *5)))) (-5 *1 (-1006 *5)) (-5 *4 (-631 (-885 *5))))) (-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-1089))) (-4 *5 (-341)) (-5 *2 (-1171 (-631 (-385 (-885 *5))))) (-5 *1 (-1006 *5)) (-5 *4 (-631 (-385 (-885 *5))))))) -(-10 -7 (-15 -2010 ((-1171 (-631 (-385 (-885 |#1|)))) (-591 (-1089)) (-631 (-385 (-885 |#1|))))) (-15 -2010 ((-1171 (-631 (-885 |#1|))) (-591 (-1089)) (-631 (-885 |#1|)))) (-15 -2010 ((-1171 (-631 |#1|)) (-591 (-631 |#1|)))) (-15 -1671 ((-1171 |#1|) (-631 |#1|) (-591 (-631 |#1|))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3827 (((-591 (-712)) $) NIL) (((-591 (-712)) $ (-1089)) NIL)) (-1314 (((-712) $) NIL) (((-712) $ (-1089)) NIL)) (-1444 (((-591 (-1008 (-1089))) $) NIL)) (-2514 (((-1085 $) $ (-1008 (-1089))) NIL) (((-1085 |#1|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-1008 (-1089)))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1720 (($ $) NIL (|has| |#1| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2243 (($ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-1008 (-1089)) "failed") $) NIL) (((-3 (-1089) "failed") $) NIL) (((-3 (-1041 |#1| (-1089)) "failed") $) NIL)) (-3341 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-1008 (-1089)) $) NIL) (((-1089) $) NIL) (((-1041 |#1| (-1089)) $) NIL)) (-1788 (($ $ $ (-1008 (-1089))) NIL (|has| |#1| (-160)))) (-1575 (($ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1008 (-1089))) NIL (|has| |#1| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#1| (-842)))) (-2615 (($ $ |#1| (-497 (-1008 (-1089))) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-1008 (-1089)) (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-1008 (-1089)) (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-1676 (((-712) $ (-1089)) NIL) (((-712) $) NIL)) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-1434 (($ (-1085 |#1|) (-1008 (-1089))) NIL) (($ (-1085 $) (-1008 (-1089))) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-497 (-1008 (-1089)))) NIL) (($ $ (-1008 (-1089)) (-712)) NIL) (($ $ (-591 (-1008 (-1089))) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-1008 (-1089))) NIL)) (-3629 (((-497 (-1008 (-1089))) $) NIL) (((-712) $ (-1008 (-1089))) NIL) (((-591 (-712)) $ (-591 (-1008 (-1089)))) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2508 (($ (-1 (-497 (-1008 (-1089))) (-497 (-1008 (-1089)))) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1695 (((-1 $ (-712)) (-1089)) NIL) (((-1 $ (-712)) $) NIL (|has| |#1| (-213)))) (-3027 (((-3 (-1008 (-1089)) "failed") $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-3574 (((-1008 (-1089)) $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2621 (((-1072) $) NIL)) (-4156 (((-108) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-1008 (-1089))) (|:| -3987 (-712))) "failed") $) NIL)) (-2233 (($ $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#1| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-842)))) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-1008 (-1089)) |#1|) NIL) (($ $ (-591 (-1008 (-1089))) (-591 |#1|)) NIL) (($ $ (-1008 (-1089)) $) NIL) (($ $ (-591 (-1008 (-1089))) (-591 $)) NIL) (($ $ (-1089) $) NIL (|has| |#1| (-213))) (($ $ (-591 (-1089)) (-591 $)) NIL (|has| |#1| (-213))) (($ $ (-1089) |#1|) NIL (|has| |#1| (-213))) (($ $ (-591 (-1089)) (-591 |#1|)) NIL (|has| |#1| (-213)))) (-2858 (($ $ (-1008 (-1089))) NIL (|has| |#1| (-160)))) (-2209 (($ $ (-1008 (-1089))) NIL) (($ $ (-591 (-1008 (-1089)))) NIL) (($ $ (-1008 (-1089)) (-712)) NIL) (($ $ (-591 (-1008 (-1089))) (-591 (-712))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1277 (((-591 (-1089)) $) NIL)) (-2743 (((-497 (-1008 (-1089))) $) NIL) (((-712) $ (-1008 (-1089))) NIL) (((-591 (-712)) $ (-591 (-1008 (-1089)))) NIL) (((-712) $ (-1089)) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-1008 (-1089)) (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-1008 (-1089)) (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-1008 (-1089)) (-566 (-501))) (|has| |#1| (-566 (-501)))))) (-2827 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1008 (-1089))) NIL (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1008 (-1089))) NIL) (($ (-1089)) NIL) (($ (-1041 |#1| (-1089))) NIL) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-497 (-1008 (-1089)))) NIL) (($ $ (-1008 (-1089)) (-712)) NIL) (($ $ (-591 (-1008 (-1089))) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#1| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-1008 (-1089))) NIL) (($ $ (-591 (-1008 (-1089)))) NIL) (($ $ (-1008 (-1089)) (-712)) NIL) (($ $ (-591 (-1008 (-1089))) (-591 (-712))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-712)) NIL (|has| |#1| (-213))) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1007 |#1|) (-13 (-232 |#1| (-1089) (-1008 (-1089)) (-497 (-1008 (-1089)))) (-966 (-1041 |#1| (-1089)))) (-975)) (T -1007)) -NIL -(-13 (-232 |#1| (-1089) (-1008 (-1089)) (-497 (-1008 (-1089)))) (-966 (-1041 |#1| (-1089)))) -((-2673 (((-108) $ $) NIL)) (-1314 (((-712) $) NIL)) (-1592 ((|#1| $) 10)) (-4174 (((-3 |#1| "failed") $) NIL)) (-3341 ((|#1| $) NIL)) (-1676 (((-712) $) 11)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-1695 (($ |#1| (-712)) 9)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2209 (($ $) NIL) (($ $ (-712)) NIL)) (-2686 (((-796) $) NIL) (($ |#1|) NIL)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 15))) -(((-1008 |#1|) (-245 |#1|) (-788)) (T -1008)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1594 (($ $ (-855)) 26)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-983) (-131)) (T -983)) +NIL +(-13 (-21) (-1031)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1031) . T) ((-1019) . T)) +((-3948 (($ $) 16)) (-1325 (($ $) 22)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 49)) (-2281 (($ $) 24)) (-1341 (($ $) 11)) (-2473 (($ $) 38)) (-2923 (((-357) $) NIL) (((-205) $) NIL) (((-826 (-357)) $) 33)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 28) (($ (-525)) NIL) (($ (-385 (-525))) 28)) (-2502 (((-713)) 8)) (-1448 (($ $) 39))) +(((-984 |#1|) (-10 -8 (-15 -1325 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -1341 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -1448 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2029 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| (-525))) (-15 -2923 ((-205) |#1|)) (-15 -2923 ((-357) |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| |#1|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 -4044 ((-797) |#1|))) (-985)) (T -984)) +((-2502 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-984 *3)) (-4 *3 (-985))))) +(-10 -8 (-15 -1325 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -1341 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -1448 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2029 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| (-525))) (-15 -2923 ((-205) |#1|)) (-15 -2923 ((-357) |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| |#1|)) (-15 -4044 (|#1| (-525))) (-15 -2502 ((-713))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-4094 (((-525) $) 89)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3948 (($ $) 87)) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-2975 (($ $) 97)) (-1700 (((-108) $ $) 59)) (-2780 (((-525) $) 114)) (-1957 (($) 17 T CONST)) (-1325 (($ $) 86)) (-2769 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-2068 (((-525) $) 101) (((-385 (-525)) $) 98)) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-2069 (((-108) $) 71)) (-2973 (((-108) $) 112)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 93)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 96)) (-2281 (($ $) 92)) (-3721 (((-108) $) 113)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-1260 (($ $ $) 111)) (-2154 (($ $ $) 110)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 70)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-1341 (($ $) 88)) (-2473 (($ $) 90)) (-2961 (((-396 $) $) 74)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-2923 (((-357) $) 105) (((-205) $) 104) (((-826 (-357)) $) 94)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-2502 (((-713)) 29)) (-1448 (($ $) 91)) (-3787 (((-108) $ $) 39)) (-2053 (($ $) 115)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3973 (((-108) $ $) 108)) (-3944 (((-108) $ $) 107)) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 109)) (-3928 (((-108) $ $) 106)) (-4047 (($ $ $) 64)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66))) +(((-985) (-131)) (T -985)) +((-2053 (*1 *1 *1) (-4 *1 (-985))) (-2281 (*1 *1 *1) (-4 *1 (-985))) (-1448 (*1 *1 *1) (-4 *1 (-985))) (-2473 (*1 *1 *1) (-4 *1 (-985))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-525)))) (-1341 (*1 *1 *1) (-4 *1 (-985))) (-3948 (*1 *1 *1) (-4 *1 (-985))) (-1325 (*1 *1 *1) (-4 *1 (-985)))) +(-13 (-341) (-787) (-952) (-967 (-525)) (-967 (-385 (-525))) (-933) (-567 (-826 (-357))) (-820 (-357)) (-138) (-10 -8 (-15 -2281 ($ $)) (-15 -1448 ($ $)) (-15 -2473 ($ $)) (-15 -4094 ((-525) $)) (-15 -1341 ($ $)) (-15 -3948 ($ $)) (-15 -1325 ($ $)) (-15 -2053 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-826 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-820 (-357)) . T) ((-854) . T) ((-933) . T) ((-952) . T) ((-967 (-385 (-525))) . T) ((-967 (-525)) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) |#2| $) 23)) (-1651 ((|#1| $) 10)) (-2780 (((-525) |#2| $) 88)) (-2539 (((-3 $ "failed") |#2| (-855)) 57)) (-3356 ((|#1| $) 28)) (-3281 ((|#1| |#2| $ |#1|) 37)) (-3563 (($ $) 25)) (-1645 (((-3 |#2| "failed") |#2| $) 87)) (-2973 (((-108) |#2| $) NIL)) (-3721 (((-108) |#2| $) NIL)) (-2771 (((-108) |#2| $) 24)) (-1954 ((|#1| $) 89)) (-3347 ((|#1| $) 27)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2775 ((|#2| $) 79)) (-4044 (((-797) $) 70)) (-2371 ((|#1| |#2| $ |#1|) 38)) (-4068 (((-592 $) |#2|) 59)) (-3899 (((-108) $ $) 74))) +(((-986 |#1| |#2|) (-13 (-992 |#1| |#2|) (-10 -8 (-15 -3347 (|#1| $)) (-15 -3356 (|#1| $)) (-15 -1651 (|#1| $)) (-15 -1954 (|#1| $)) (-15 -3563 ($ $)) (-15 -2771 ((-108) |#2| $)) (-15 -3281 (|#1| |#2| $ |#1|)))) (-13 (-787) (-341)) (-1148 |#1|)) (T -986)) +((-3281 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-3347 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-3356 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-1651 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-1954 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-3563 (*1 *1 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-2771 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-986 *4 *3)) (-4 *3 (-1148 *4))))) +(-13 (-992 |#1| |#2|) (-10 -8 (-15 -3347 (|#1| $)) (-15 -3356 (|#1| $)) (-15 -1651 (|#1| $)) (-15 -1954 (|#1| $)) (-15 -3563 ($ $)) (-15 -2771 ((-108) |#2| $)) (-15 -3281 (|#1| |#2| $ |#1|)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3775 (($ $ $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-4065 (($ $ $ $) NIL)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL)) (-4162 (($ $ $) NIL)) (-1957 (($) NIL T CONST)) (-1268 (($ (-1090)) 10) (($ (-525)) 7)) (-2769 (((-3 (-525) "failed") $) NIL)) (-2068 (((-525) $) NIL)) (-2720 (($ $ $) NIL)) (-1307 (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2132 (((-3 (-385 (-525)) "failed") $) NIL)) (-3748 (((-108) $) NIL)) (-1675 (((-385 (-525)) $) NIL)) (-1527 (($) NIL) (($ $) NIL)) (-2699 (($ $ $) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2491 (($ $ $ $) NIL)) (-1514 (($ $ $) NIL)) (-2973 (((-108) $) NIL)) (-2635 (($ $ $) NIL)) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL)) (-2507 (((-108) $) NIL)) (-2057 (((-108) $) NIL)) (-1978 (((-3 $ "failed") $) NIL)) (-3721 (((-108) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3520 (($ $ $ $) NIL)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-3309 (($ $) NIL)) (-2520 (($ $) NIL)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-2169 (($ $ $) NIL)) (-2039 (($) NIL T CONST)) (-2640 (($ $) NIL)) (-3027 (((-1037) $) NIL) (($ $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3444 (($ $) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3524 (((-108) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-1576 (($ $ (-713)) NIL) (($ $) NIL)) (-1216 (($ $) NIL)) (-1261 (($ $) NIL)) (-2923 (((-525) $) 16) (((-501) $) NIL) (((-826 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL) (($ (-1090)) 9)) (-4044 (((-797) $) 20) (($ (-525)) 6) (($ $) NIL) (($ (-525)) 6)) (-2502 (((-713)) NIL)) (-2301 (((-108) $ $) NIL)) (-3738 (($ $ $) NIL)) (-3758 (($) NIL)) (-3787 (((-108) $ $) NIL)) (-2009 (($ $ $ $) NIL)) (-2053 (($ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) NIL)) (-4033 (($ $) 19) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL))) +(((-987) (-13 (-510) (-10 -8 (-6 -4241) (-6 -4246) (-6 -4242) (-15 -2923 ($ (-1090))) (-15 -1268 ($ (-1090))) (-15 -1268 ($ (-525)))))) (T -987)) +((-2923 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-987)))) (-1268 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-987)))) (-1268 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-987))))) +(-13 (-510) (-10 -8 (-6 -4241) (-6 -4246) (-6 -4242) (-15 -2923 ($ (-1090))) (-15 -1268 ($ (-1090))) (-15 -1268 ($ (-525))))) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL)) (-2792 (((-1177) $ (-1090) (-1090)) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-2965 (($) 9)) (-1230 (((-51) $ (-1090) (-51)) NIL)) (-2610 (($ $) 30)) (-2910 (($ $) 28)) (-4023 (($ $) 27)) (-3598 (($ $) 29)) (-2740 (($ $) 32)) (-4178 (($ $) 33)) (-2904 (($ $) 26)) (-1528 (($ $) 31)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) 25 (|has| $ (-6 -4254)))) (-2504 (((-3 (-51) "failed") (-1090) $) 40)) (-1957 (($) NIL T CONST)) (-1914 (($) 7)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-1640 (($ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) 50 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-3 (-51) "failed") (-1090) $) NIL)) (-2591 (($ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-3436 (((-3 (-1073) "failed") $ (-1073) (-525)) 59)) (-2549 (((-51) $ (-1090) (-51)) NIL (|has| $ (-6 -4255)))) (-2488 (((-51) $ (-1090)) NIL)) (-3781 (((-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-1090) $) NIL (|has| (-1090) (-789)))) (-2679 (((-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) 35 (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-2112 (((-1090) $) NIL (|has| (-1090) (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-2183 (((-592 (-1090)) $) NIL)) (-2781 (((-108) (-1090) $) NIL)) (-2434 (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL)) (-4157 (($ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) 43)) (-2379 (((-592 (-1090)) $) NIL)) (-2030 (((-108) (-1090) $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-1667 (((-357) $ (-1090)) 49)) (-1905 (((-592 (-1073)) $ (-1073)) 60)) (-1683 (((-51) $) NIL (|has| (-1090) (-789)))) (-3611 (((-3 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) "failed") (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL)) (-1614 (($ $ (-51)) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))))) NIL (-12 (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ $ (-273 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL (-12 (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ $ (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) NIL (-12 (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ $ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL (-12 (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-288 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-4100 (((-592 (-51)) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 (((-51) $ (-1090)) NIL) (((-51) $ (-1090) (-51)) NIL)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL)) (-2083 (($ $ (-1090)) 51)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) 37)) (-1810 (($ $ $) 38)) (-4044 (((-797) $) NIL (-3215 (|has| (-51) (-566 (-797))) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-566 (-797)))))) (-2115 (($ $ (-1090) (-357)) 47)) (-2067 (($ $ (-1090) (-357)) 48)) (-1326 (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 (-1090)) (|:| -3978 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-51) (-1019)) (|has| (-2 (|:| -3160 (-1090)) (|:| -3978 (-51))) (-1019))))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-988) (-13 (-1103 (-1090) (-51)) (-10 -8 (-15 -1810 ($ $ $)) (-15 -1914 ($)) (-15 -2904 ($ $)) (-15 -4023 ($ $)) (-15 -2910 ($ $)) (-15 -3598 ($ $)) (-15 -1528 ($ $)) (-15 -2610 ($ $)) (-15 -2740 ($ $)) (-15 -4178 ($ $)) (-15 -2115 ($ $ (-1090) (-357))) (-15 -2067 ($ $ (-1090) (-357))) (-15 -1667 ((-357) $ (-1090))) (-15 -1905 ((-592 (-1073)) $ (-1073))) (-15 -2083 ($ $ (-1090))) (-15 -2965 ($)) (-15 -3436 ((-3 (-1073) "failed") $ (-1073) (-525))) (-6 -4254)))) (T -988)) +((-1810 (*1 *1 *1 *1) (-5 *1 (-988))) (-1914 (*1 *1) (-5 *1 (-988))) (-2904 (*1 *1 *1) (-5 *1 (-988))) (-4023 (*1 *1 *1) (-5 *1 (-988))) (-2910 (*1 *1 *1) (-5 *1 (-988))) (-3598 (*1 *1 *1) (-5 *1 (-988))) (-1528 (*1 *1 *1) (-5 *1 (-988))) (-2610 (*1 *1 *1) (-5 *1 (-988))) (-2740 (*1 *1 *1) (-5 *1 (-988))) (-4178 (*1 *1 *1) (-5 *1 (-988))) (-2115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-357)) (-5 *1 (-988)))) (-2067 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-357)) (-5 *1 (-988)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-357)) (-5 *1 (-988)))) (-1905 (*1 *2 *1 *3) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-988)) (-5 *3 (-1073)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-988)))) (-2965 (*1 *1) (-5 *1 (-988))) (-3436 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-988))))) +(-13 (-1103 (-1090) (-51)) (-10 -8 (-15 -1810 ($ $ $)) (-15 -1914 ($)) (-15 -2904 ($ $)) (-15 -4023 ($ $)) (-15 -2910 ($ $)) (-15 -3598 ($ $)) (-15 -1528 ($ $)) (-15 -2610 ($ $)) (-15 -2740 ($ $)) (-15 -4178 ($ $)) (-15 -2115 ($ $ (-1090) (-357))) (-15 -2067 ($ $ (-1090) (-357))) (-15 -1667 ((-357) $ (-1090))) (-15 -1905 ((-592 (-1073)) $ (-1073))) (-15 -2083 ($ $ (-1090))) (-15 -2965 ($)) (-15 -3436 ((-3 (-1073) "failed") $ (-1073) (-525))) (-6 -4254))) +((-3134 (($ $) 45)) (-4158 (((-108) $ $) 74)) (-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-886 (-385 (-525)))) 227) (((-3 $ "failed") (-886 (-525))) 226) (((-3 $ "failed") (-886 |#2|)) 229)) (-2068 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) NIL) (($ (-886 (-385 (-525)))) 215) (($ (-886 (-525))) 211) (($ (-886 |#2|)) 231)) (-3306 (($ $) NIL) (($ $ |#4|) 43)) (-2175 (((-108) $ $) 112) (((-108) $ (-592 $)) 113)) (-3034 (((-108) $) 56)) (-2683 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 107)) (-2458 (($ $) 138)) (-3065 (($ $) 134)) (-2492 (($ $) 133)) (-2630 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3542 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1695 (((-108) $ $) 121) (((-108) $ (-592 $)) 122)) (-3632 ((|#4| $) 33)) (-3918 (($ $ $) 110)) (-1747 (((-108) $) 55)) (-3958 (((-713) $) 35)) (-3863 (($ $) 152)) (-3822 (($ $) 149)) (-2582 (((-592 $) $) 68)) (-2555 (($ $) 57)) (-2836 (($ $) 145)) (-2822 (((-592 $) $) 65)) (-4096 (($ $) 59)) (-3286 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1631 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1870 (-713))) $ $) 111)) (-2655 (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $) 108) (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $ |#4|) 109)) (-3180 (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2097 $)) $ $) 104) (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2097 $)) $ $ |#4|) 105)) (-1868 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1222 (($ $ $) 90) (($ $ $ |#4|) 96)) (-4212 (((-592 $) $) 51)) (-2616 (((-108) $ $) 118) (((-108) $ (-592 $)) 119)) (-1803 (($ $ $) 103)) (-2039 (($ $) 37)) (-1826 (((-108) $ $) 72)) (-1483 (((-108) $ $) 114) (((-108) $ (-592 $)) 116)) (-2342 (($ $ $) 101)) (-3596 (($ $) 40)) (-2262 ((|#2| |#2| $) 142) (($ (-592 $)) NIL) (($ $ $) NIL)) (-3971 (($ $ |#2|) NIL) (($ $ $) 131)) (-3202 (($ $ |#2|) 126) (($ $ $) 129)) (-2813 (($ $) 48)) (-1778 (($ $) 52)) (-2923 (((-826 (-357)) $) NIL) (((-826 (-525)) $) NIL) (((-501) $) NIL) (($ (-886 (-385 (-525)))) 217) (($ (-886 (-525))) 213) (($ (-886 |#2|)) 228) (((-1073) $) 250) (((-886 |#2|) $) 162)) (-4044 (((-797) $) 30) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-886 |#2|) $) 163) (($ (-385 (-525))) NIL) (($ $) NIL)) (-4143 (((-3 (-108) "failed") $ $) 71))) +(((-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4044 (|#1| |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2262 (|#1| (-592 |#1|))) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 ((-886 |#2|) |#1|)) (-15 -2923 ((-886 |#2|) |#1|)) (-15 -2923 ((-1073) |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2262 (|#2| |#2| |#1|)) (-15 -3971 (|#1| |#1| |#1|)) (-15 -3202 (|#1| |#1| |#1|)) (-15 -3971 (|#1| |#1| |#2|)) (-15 -3202 (|#1| |#1| |#2|)) (-15 -3065 (|#1| |#1|)) (-15 -2492 (|#1| |#1|)) (-15 -2923 (|#1| (-886 |#2|))) (-15 -2068 (|#1| (-886 |#2|))) (-15 -2769 ((-3 |#1| "failed") (-886 |#2|))) (-15 -2923 (|#1| (-886 (-525)))) (-15 -2068 (|#1| (-886 (-525)))) (-15 -2769 ((-3 |#1| "failed") (-886 (-525)))) (-15 -2923 (|#1| (-886 (-385 (-525))))) (-15 -2068 (|#1| (-886 (-385 (-525))))) (-15 -2769 ((-3 |#1| "failed") (-886 (-385 (-525))))) (-15 -1803 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -1631 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1870 (-713))) |#1| |#1|)) (-15 -3918 (|#1| |#1| |#1|)) (-15 -2683 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2655 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1| |#4|)) (-15 -2655 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -3180 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2097 |#1|)) |#1| |#1| |#4|)) (-15 -3180 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -1222 (|#1| |#1| |#1| |#4|)) (-15 -1868 (|#1| |#1| |#1| |#4|)) (-15 -1222 (|#1| |#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -3542 (|#1| |#1| |#1| |#4|)) (-15 -2630 (|#1| |#1| |#1| |#4|)) (-15 -3542 (|#1| |#1| |#1|)) (-15 -2630 (|#1| |#1| |#1|)) (-15 -1695 ((-108) |#1| (-592 |#1|))) (-15 -1695 ((-108) |#1| |#1|)) (-15 -2616 ((-108) |#1| (-592 |#1|))) (-15 -2616 ((-108) |#1| |#1|)) (-15 -1483 ((-108) |#1| (-592 |#1|))) (-15 -1483 ((-108) |#1| |#1|)) (-15 -2175 ((-108) |#1| (-592 |#1|))) (-15 -2175 ((-108) |#1| |#1|)) (-15 -4158 ((-108) |#1| |#1|)) (-15 -1826 ((-108) |#1| |#1|)) (-15 -4143 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2582 ((-592 |#1|) |#1|)) (-15 -2822 ((-592 |#1|) |#1|)) (-15 -4096 (|#1| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3034 ((-108) |#1|)) (-15 -1747 ((-108) |#1|)) (-15 -3306 (|#1| |#1| |#4|)) (-15 -3286 (|#1| |#1| |#4|)) (-15 -1778 (|#1| |#1|)) (-15 -4212 ((-592 |#1|) |#1|)) (-15 -2813 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3596 (|#1| |#1|)) (-15 -2039 (|#1| |#1|)) (-15 -3958 ((-713) |#1|)) (-15 -3632 (|#4| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2068 (|#4| |#1|)) (-15 -2769 ((-3 |#4| "failed") |#1|)) (-15 -4044 (|#1| |#4|)) (-15 -3286 (|#2| |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) (-990 |#2| |#3| |#4|) (-976) (-735) (-789)) (T -989)) +NIL +(-10 -8 (-15 -4044 (|#1| |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2262 (|#1| (-592 |#1|))) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 ((-886 |#2|) |#1|)) (-15 -2923 ((-886 |#2|) |#1|)) (-15 -2923 ((-1073) |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2262 (|#2| |#2| |#1|)) (-15 -3971 (|#1| |#1| |#1|)) (-15 -3202 (|#1| |#1| |#1|)) (-15 -3971 (|#1| |#1| |#2|)) (-15 -3202 (|#1| |#1| |#2|)) (-15 -3065 (|#1| |#1|)) (-15 -2492 (|#1| |#1|)) (-15 -2923 (|#1| (-886 |#2|))) (-15 -2068 (|#1| (-886 |#2|))) (-15 -2769 ((-3 |#1| "failed") (-886 |#2|))) (-15 -2923 (|#1| (-886 (-525)))) (-15 -2068 (|#1| (-886 (-525)))) (-15 -2769 ((-3 |#1| "failed") (-886 (-525)))) (-15 -2923 (|#1| (-886 (-385 (-525))))) (-15 -2068 (|#1| (-886 (-385 (-525))))) (-15 -2769 ((-3 |#1| "failed") (-886 (-385 (-525))))) (-15 -1803 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -1631 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1870 (-713))) |#1| |#1|)) (-15 -3918 (|#1| |#1| |#1|)) (-15 -2683 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2655 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1| |#4|)) (-15 -2655 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -3180 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2097 |#1|)) |#1| |#1| |#4|)) (-15 -3180 ((-2 (|:| -2059 |#1|) (|:| |gap| (-713)) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -1222 (|#1| |#1| |#1| |#4|)) (-15 -1868 (|#1| |#1| |#1| |#4|)) (-15 -1222 (|#1| |#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -3542 (|#1| |#1| |#1| |#4|)) (-15 -2630 (|#1| |#1| |#1| |#4|)) (-15 -3542 (|#1| |#1| |#1|)) (-15 -2630 (|#1| |#1| |#1|)) (-15 -1695 ((-108) |#1| (-592 |#1|))) (-15 -1695 ((-108) |#1| |#1|)) (-15 -2616 ((-108) |#1| (-592 |#1|))) (-15 -2616 ((-108) |#1| |#1|)) (-15 -1483 ((-108) |#1| (-592 |#1|))) (-15 -1483 ((-108) |#1| |#1|)) (-15 -2175 ((-108) |#1| (-592 |#1|))) (-15 -2175 ((-108) |#1| |#1|)) (-15 -4158 ((-108) |#1| |#1|)) (-15 -1826 ((-108) |#1| |#1|)) (-15 -4143 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2582 ((-592 |#1|) |#1|)) (-15 -2822 ((-592 |#1|) |#1|)) (-15 -4096 (|#1| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3034 ((-108) |#1|)) (-15 -1747 ((-108) |#1|)) (-15 -3306 (|#1| |#1| |#4|)) (-15 -3286 (|#1| |#1| |#4|)) (-15 -1778 (|#1| |#1|)) (-15 -4212 ((-592 |#1|) |#1|)) (-15 -2813 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3596 (|#1| |#1|)) (-15 -2039 (|#1| |#1|)) (-15 -3958 ((-713) |#1|)) (-15 -3632 (|#4| |#1|)) (-15 -2923 ((-501) |#1|)) (-15 -2923 ((-826 (-525)) |#1|)) (-15 -2923 ((-826 (-357)) |#1|)) (-15 -2068 (|#4| |#1|)) (-15 -2769 ((-3 |#4| "failed") |#1|)) (-15 -4044 (|#1| |#4|)) (-15 -3286 (|#2| |#1|)) (-15 -3306 (|#1| |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3122 (((-592 |#3|) $) 110)) (-1315 (((-1086 $) $ |#3|) 125) (((-1086 |#1|) $) 124)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-2609 (($ $) 88 (|has| |#1| (-517)))) (-1220 (((-108) $) 90 (|has| |#1| (-517)))) (-2874 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-3134 (($ $) 271)) (-4158 (((-108) $ $) 257)) (-3004 (((-3 $ "failed") $ $) 19)) (-2481 (($ $ $) 216 (|has| |#1| (-517)))) (-1482 (((-592 $) $ $) 211 (|has| |#1| (-517)))) (-1426 (((-396 (-1086 $)) (-1086 $)) 100 (|has| |#1| (-843)))) (-2701 (($ $) 98 (|has| |#1| (-429)))) (-1259 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-843)))) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-967 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-886 (-385 (-525)))) 231 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))) (((-3 $ "failed") (-886 (-525))) 228 (-3215 (-12 (-2823 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090)))))) (((-3 $ "failed") (-886 |#1|)) 225 (-3215 (-12 (-2823 (|has| |#1| (-37 (-385 (-525))))) (-2823 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1090)))) (-12 (-2823 (|has| |#1| (-510))) (-2823 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (-2823 (|has| |#1| (-924 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))))) (-2068 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-967 (-525)))) ((|#3| $) 135) (($ (-886 (-385 (-525)))) 230 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))) (($ (-886 (-525))) 227 (-3215 (-12 (-2823 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090)))))) (($ (-886 |#1|)) 224 (-3215 (-12 (-2823 (|has| |#1| (-37 (-385 (-525))))) (-2823 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1090)))) (-12 (-2823 (|has| |#1| (-510))) (-2823 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (-2823 (|has| |#1| (-924 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))))) (-3048 (($ $ $ |#3|) 108 (|has| |#1| (-160))) (($ $ $) 212 (|has| |#1| (-517)))) (-3306 (($ $) 154) (($ $ |#3|) 266)) (-1307 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-2175 (((-108) $ $) 256) (((-108) $ (-592 $)) 255)) (-1645 (((-3 $ "failed") $) 34)) (-3034 (((-108) $) 264)) (-2683 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 236)) (-2458 (($ $) 205 (|has| |#1| (-429)))) (-2319 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-3295 (((-592 $) $) 109)) (-2069 (((-108) $) 96 (|has| |#1| (-843)))) (-3065 (($ $) 221 (|has| |#1| (-517)))) (-2492 (($ $) 222 (|has| |#1| (-517)))) (-2630 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3542 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2187 (($ $ |#1| |#2| $) 172)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84 (-12 (|has| |#3| (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 83 (-12 (|has| |#3| (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2507 (((-108) $) 31)) (-3682 (((-713) $) 169)) (-1695 (((-108) $ $) 250) (((-108) $ (-592 $)) 249)) (-2092 (($ $ $ $ $) 207 (|has| |#1| (-517)))) (-3632 ((|#3| $) 275)) (-3110 (($ (-1086 |#1|) |#3|) 117) (($ (-1086 $) |#3|) 116)) (-1585 (((-592 $) $) 126)) (-1432 (((-108) $) 152)) (-3097 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-3918 (($ $ $) 235)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ |#3|) 120)) (-1747 (((-108) $) 265)) (-3762 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-1260 (($ $ $) 79 (|has| |#1| (-789)))) (-3958 (((-713) $) 274)) (-2154 (($ $ $) 78 (|has| |#1| (-789)))) (-2078 (($ (-1 |#2| |#2|) $) 171)) (-2868 (($ (-1 |#1| |#1|) $) 151)) (-3869 (((-3 |#3| "failed") $) 123)) (-3863 (($ $) 202 (|has| |#1| (-429)))) (-3822 (($ $) 203 (|has| |#1| (-429)))) (-2582 (((-592 $) $) 260)) (-2555 (($ $) 263)) (-2836 (($ $) 204 (|has| |#1| (-429)))) (-2822 (((-592 $) $) 261)) (-4096 (($ $) 262)) (-3277 (($ $) 149)) (-3286 ((|#1| $) 148) (($ $ |#3|) 267)) (-2226 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-1631 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1870 (-713))) $ $) 234)) (-2655 (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $) 238) (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $ |#3|) 237)) (-3180 (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2097 $)) $ $) 240) (((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2097 $)) $ $ |#3|) 239)) (-1868 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1222 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1707 (((-1073) $) 9)) (-1503 (($ $ $) 210 (|has| |#1| (-517)))) (-4212 (((-592 $) $) 269)) (-3466 (((-3 (-592 $) "failed") $) 114)) (-4103 (((-3 (-592 $) "failed") $) 115)) (-1850 (((-3 (-2 (|:| |var| |#3|) (|:| -1737 (-713))) "failed") $) 113)) (-2616 (((-108) $ $) 252) (((-108) $ (-592 $)) 251)) (-1803 (($ $ $) 232)) (-2039 (($ $) 273)) (-1826 (((-108) $ $) 258)) (-1483 (((-108) $ $) 254) (((-108) $ (-592 $)) 253)) (-2342 (($ $ $) 233)) (-3596 (($ $) 272)) (-3027 (((-1037) $) 10)) (-1582 (((-2 (|:| -2262 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-517)))) (-3211 (((-2 (|:| -2262 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-517)))) (-3256 (((-108) $) 166)) (-3267 ((|#1| $) 167)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 95 (|has| |#1| (-429)))) (-2262 ((|#1| |#1| $) 206 (|has| |#1| (-429))) (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) 101 (|has| |#1| (-843)))) (-2961 (((-396 $) $) 99 (|has| |#1| (-843)))) (-3183 (((-2 (|:| -2262 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-517)))) (-2675 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-3971 (($ $ |#1|) 219 (|has| |#1| (-517))) (($ $ $) 217 (|has| |#1| (-517)))) (-3202 (($ $ |#1|) 220 (|has| |#1| (-517))) (($ $ $) 218 (|has| |#1| (-517)))) (-2168 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-2257 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-1576 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-1486 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-2813 (($ $) 270)) (-1778 (($ $) 268)) (-2923 (((-826 (-357)) $) 82 (-12 (|has| |#3| (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) 81 (-12 (|has| |#3| (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501))))) (($ (-886 (-385 (-525)))) 229 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))) (($ (-886 (-525))) 226 (-3215 (-12 (-2823 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090)))))) (($ (-886 |#1|)) 223 (|has| |#3| (-567 (-1090)))) (((-1073) $) 201 (-12 (|has| |#1| (-967 (-525))) (|has| |#3| (-567 (-1090))))) (((-886 |#1|) $) 200 (|has| |#3| (-567 (-1090))))) (-2758 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 104 (-2385 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-886 |#1|) $) 199 (|has| |#3| (-567 (-1090)))) (($ (-385 (-525))) 72 (-3215 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) 168)) (-2100 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-1279 (((-3 $ "failed") $) 73 (-3215 (-2385 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) 29)) (-2541 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3787 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-4143 (((-3 (-108) "failed") $ $) 259)) (-1449 (($) 30 T CONST)) (-1785 (($ $ $ $ (-713)) 208 (|has| |#1| (-517)))) (-2408 (($ $ $ (-713)) 209 (|has| |#1| (-517)))) (-1990 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-3973 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4047 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-990 |#1| |#2| |#3|) (-131) (-976) (-735) (-789)) (T -990)) +((-3632 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3958 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-2039 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3596 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2813 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-4212 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5)))) (-1778 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3286 (*1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3306 (*1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3034 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2555 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-4096 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5)))) (-2582 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5)))) (-4143 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1826 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-4158 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2175 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2175 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-1483 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1483 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2616 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2616 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-1695 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1695 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2630 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3542 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2630 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3542 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1868 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1222 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1868 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1222 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3180 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2059 *1) (|:| |gap| (-713)) (|:| -2097 *1))) (-4 *1 (-990 *3 *4 *5)))) (-3180 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -2059 *1) (|:| |gap| (-713)) (|:| -2097 *1))) (-4 *1 (-990 *4 *5 *3)))) (-2655 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2059 *1) (|:| |gap| (-713)) (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-990 *3 *4 *5)))) (-2655 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -2059 *1) (|:| |gap| (-713)) (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-990 *4 *5 *3)))) (-2683 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-990 *3 *4 *5)))) (-3918 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1631 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1870 (-713)))) (-4 *1 (-990 *3 *4 *5)))) (-2342 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1803 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))) (-2769 (*1 *1 *2) (|partial| -3215 (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2068 (*1 *1 *2) (-3215 (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2923 (*1 *1 *2) (-3215 (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2769 (*1 *1 *2) (|partial| -3215 (-12 (-5 *2 (-886 *3)) (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) (-2823 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 *3)) (-12 (-2823 (-4 *3 (-510))) (-2823 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 *3)) (-12 (-2823 (-4 *3 (-924 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2068 (*1 *1 *2) (-3215 (-12 (-5 *2 (-886 *3)) (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) (-2823 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 *3)) (-12 (-2823 (-4 *3 (-510))) (-2823 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 *3)) (-12 (-2823 (-4 *3 (-924 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *5 (-567 (-1090))) (-4 *4 (-735)) (-4 *5 (-789)))) (-2492 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3065 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3202 (*1 *1 *1 *2) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3971 (*1 *1 *1 *2) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3202 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3971 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2481 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3183 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2262 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-990 *3 *4 *5)))) (-3211 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2262 *1) (|:| |coef1| *1))) (-4 *1 (-990 *3 *4 *5)))) (-1582 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2262 *1) (|:| |coef2| *1))) (-4 *1 (-990 *3 *4 *5)))) (-3048 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1482 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5)))) (-1503 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2408 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-1785 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-2092 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2262 (*1 *2 *2 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2458 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2836 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3822 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3863 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429))))) +(-13 (-883 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3632 (|t#3| $)) (-15 -3958 ((-713) $)) (-15 -2039 ($ $)) (-15 -3596 ($ $)) (-15 -3134 ($ $)) (-15 -2813 ($ $)) (-15 -4212 ((-592 $) $)) (-15 -1778 ($ $)) (-15 -3286 ($ $ |t#3|)) (-15 -3306 ($ $ |t#3|)) (-15 -1747 ((-108) $)) (-15 -3034 ((-108) $)) (-15 -2555 ($ $)) (-15 -4096 ($ $)) (-15 -2822 ((-592 $) $)) (-15 -2582 ((-592 $) $)) (-15 -4143 ((-3 (-108) "failed") $ $)) (-15 -1826 ((-108) $ $)) (-15 -4158 ((-108) $ $)) (-15 -2175 ((-108) $ $)) (-15 -2175 ((-108) $ (-592 $))) (-15 -1483 ((-108) $ $)) (-15 -1483 ((-108) $ (-592 $))) (-15 -2616 ((-108) $ $)) (-15 -2616 ((-108) $ (-592 $))) (-15 -1695 ((-108) $ $)) (-15 -1695 ((-108) $ (-592 $))) (-15 -2630 ($ $ $)) (-15 -3542 ($ $ $)) (-15 -2630 ($ $ $ |t#3|)) (-15 -3542 ($ $ $ |t#3|)) (-15 -1868 ($ $ $)) (-15 -1222 ($ $ $)) (-15 -1868 ($ $ $ |t#3|)) (-15 -1222 ($ $ $ |t#3|)) (-15 -3180 ((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2097 $)) $ $)) (-15 -3180 ((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2097 $)) $ $ |t#3|)) (-15 -2655 ((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -2655 ((-2 (|:| -2059 $) (|:| |gap| (-713)) (|:| -2877 $) (|:| -2097 $)) $ $ |t#3|)) (-15 -2683 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -3918 ($ $ $)) (-15 -1631 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1870 (-713))) $ $)) (-15 -2342 ($ $ $)) (-15 -1803 ($ $ $)) (IF (|has| |t#3| (-567 (-1090))) (PROGN (-6 (-566 (-886 |t#1|))) (-6 (-567 (-886 |t#1|))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2769 ((-3 $ "failed") (-886 (-385 (-525))))) (-15 -2068 ($ (-886 (-385 (-525))))) (-15 -2923 ($ (-886 (-385 (-525))))) (-15 -2769 ((-3 $ "failed") (-886 (-525)))) (-15 -2068 ($ (-886 (-525)))) (-15 -2923 ($ (-886 (-525)))) (IF (|has| |t#1| (-924 (-525))) |%noBranch| (PROGN (-15 -2769 ((-3 $ "failed") (-886 |t#1|))) (-15 -2068 ($ (-886 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -2769 ((-3 $ "failed") (-886 (-525)))) (-15 -2068 ($ (-886 (-525)))) (-15 -2923 ($ (-886 (-525)))) (IF (|has| |t#1| (-510)) |%noBranch| (PROGN (-15 -2769 ((-3 $ "failed") (-886 |t#1|))) (-15 -2068 ($ (-886 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) |%noBranch| (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -2769 ((-3 $ "failed") (-886 |t#1|))) (-15 -2068 ($ (-886 |t#1|)))))) (-15 -2923 ($ (-886 |t#1|))) (IF (|has| |t#1| (-967 (-525))) (-6 (-567 (-1073))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -2492 ($ $)) (-15 -3065 ($ $)) (-15 -3202 ($ $ |t#1|)) (-15 -3971 ($ $ |t#1|)) (-15 -3202 ($ $ $)) (-15 -3971 ($ $ $)) (-15 -2481 ($ $ $)) (-15 -3183 ((-2 (|:| -2262 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3211 ((-2 (|:| -2262 $) (|:| |coef1| $)) $ $)) (-15 -1582 ((-2 (|:| -2262 $) (|:| |coef2| $)) $ $)) (-15 -3048 ($ $ $)) (-15 -1482 ((-592 $) $ $)) (-15 -1503 ($ $ $)) (-15 -2408 ($ $ $ (-713))) (-15 -1785 ($ $ $ $ (-713))) (-15 -2092 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2262 (|t#1| |t#1| $)) (-15 -2458 ($ $)) (-15 -2836 ($ $)) (-15 -3822 ($ $)) (-15 -3863 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-566 (-886 |#1|)) |has| |#3| (-567 (-1090))) ((-160) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525))))) ((-567 (-886 |#1|)) |has| |#3| (-567 (-1090))) ((-567 (-1073)) -12 (|has| |#1| (-967 (-525))) (|has| |#3| (-567 (-1090)))) ((-269) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3215 (|has| |#1| (-843)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 |#3|) . T) ((-820 (-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357)))) ((-820 (-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))) ((-883 |#1| |#2| |#3|) . T) ((-843) |has| |#1| (-843)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-967 |#3|) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) |has| |#1| (-843))) +((-2464 (((-108) |#3| $) 13)) (-2539 (((-3 $ "failed") |#3| (-855)) 23)) (-1645 (((-3 |#3| "failed") |#3| $) 38)) (-2973 (((-108) |#3| $) 16)) (-3721 (((-108) |#3| $) 14))) +(((-991 |#1| |#2| |#3|) (-10 -8 (-15 -2539 ((-3 |#1| "failed") |#3| (-855))) (-15 -1645 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2973 ((-108) |#3| |#1|)) (-15 -3721 ((-108) |#3| |#1|)) (-15 -2464 ((-108) |#3| |#1|))) (-992 |#2| |#3|) (-13 (-787) (-341)) (-1148 |#2|)) (T -991)) +NIL +(-10 -8 (-15 -2539 ((-3 |#1| "failed") |#3| (-855))) (-15 -1645 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2973 ((-108) |#3| |#1|)) (-15 -3721 ((-108) |#3| |#1|)) (-15 -2464 ((-108) |#3| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) |#2| $) 21)) (-2780 (((-525) |#2| $) 22)) (-2539 (((-3 $ "failed") |#2| (-855)) 15)) (-3281 ((|#1| |#2| $ |#1|) 13)) (-1645 (((-3 |#2| "failed") |#2| $) 18)) (-2973 (((-108) |#2| $) 19)) (-3721 (((-108) |#2| $) 20)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2775 ((|#2| $) 17)) (-4044 (((-797) $) 11)) (-2371 ((|#1| |#2| $ |#1|) 14)) (-4068 (((-592 $) |#2|) 16)) (-3899 (((-108) $ $) 6))) +(((-992 |#1| |#2|) (-131) (-13 (-787) (-341)) (-1148 |t#1|)) (T -992)) +((-2780 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-525)))) (-2464 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-108)))) (-3721 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-108)))) (-2973 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-108)))) (-1645 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-992 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1148 *3)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1148 *3)))) (-4068 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-592 *1)) (-4 *1 (-992 *4 *3)))) (-2539 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-855)) (-4 *4 (-13 (-787) (-341))) (-4 *1 (-992 *4 *2)) (-4 *2 (-1148 *4)))) (-2371 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-992 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1148 *2)))) (-3281 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-992 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1148 *2))))) +(-13 (-1019) (-10 -8 (-15 -2780 ((-525) |t#2| $)) (-15 -2464 ((-108) |t#2| $)) (-15 -3721 ((-108) |t#2| $)) (-15 -2973 ((-108) |t#2| $)) (-15 -1645 ((-3 |t#2| "failed") |t#2| $)) (-15 -2775 (|t#2| $)) (-15 -4068 ((-592 $) |t#2|)) (-15 -2539 ((-3 $ "failed") |t#2| (-855))) (-15 -2371 (|t#1| |t#2| $ |t#1|)) (-15 -3281 (|t#1| |t#2| $ |t#1|)))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-3354 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-713)) 96)) (-2373 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713)) 56)) (-3470 (((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-713)) 87)) (-2214 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-3491 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713)) 58) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713) (-108)) 60)) (-3756 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 79)) (-2923 (((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) 82)) (-1411 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-108)) 55)) (-4101 (((-713) (-592 |#4|) (-592 |#5|)) 19))) +(((-993 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4101 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2214 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -1411 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-108))) (-15 -2373 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713))) (-15 -2373 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713))) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -3756 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3756 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3354 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-713))) (-15 -2923 ((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) (-15 -3470 ((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-713)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -993)) +((-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2249 *9)))) (-5 *4 (-713)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1177)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2249 *8))) (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1073)) (-5 *1 (-993 *4 *5 *6 *7 *8)))) (-3354 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -2249 *11)))))) (-5 *6 (-713)) (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -2249 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-990 *7 *8 *9)) (-4 *11 (-995 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-993 *7 *8 *9 *10 *11)))) (-3756 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) (-3756 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) (-3491 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3491 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-3491 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-990 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-993 *7 *8 *9 *3 *4)) (-4 *4 (-995 *7 *8 *9 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2373 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-1411 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-2214 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) (-4101 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-993 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4101 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2214 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -1411 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-108))) (-15 -2373 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713))) (-15 -2373 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713))) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -3756 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3756 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3354 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-713))) (-15 -2923 ((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) (-15 -3470 ((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-713)))) +((-3875 (((-108) |#5| $) 21)) (-2751 (((-108) |#5| $) 24)) (-1591 (((-108) |#5| $) 16) (((-108) $) 45)) (-2021 (((-592 $) |#5| $) NIL) (((-592 $) (-592 |#5|) $) 77) (((-592 $) (-592 |#5|) (-592 $)) 75) (((-592 $) |#5| (-592 $)) 78)) (-1539 (($ $ |#5|) NIL) (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 60) (((-592 $) (-592 |#5|) $) 62) (((-592 $) (-592 |#5|) (-592 $)) 64)) (-3493 (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 54) (((-592 $) (-592 |#5|) $) 56) (((-592 $) (-592 |#5|) (-592 $)) 58)) (-4032 (((-108) |#5| $) 27))) +(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1539 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -1539 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -1539 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -1539 ((-592 |#1|) |#5| |#1|)) (-15 -3493 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3493 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3493 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3493 ((-592 |#1|) |#5| |#1|)) (-15 -2021 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2021 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2021 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2021 ((-592 |#1|) |#5| |#1|)) (-15 -2751 ((-108) |#5| |#1|)) (-15 -1591 ((-108) |#1|)) (-15 -4032 ((-108) |#5| |#1|)) (-15 -3875 ((-108) |#5| |#1|)) (-15 -1591 ((-108) |#5| |#1|)) (-15 -1539 (|#1| |#1| |#5|))) (-995 |#2| |#3| |#4| |#5|) (-429) (-735) (-789) (-990 |#2| |#3| |#4|)) (T -994)) +NIL +(-10 -8 (-15 -1539 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -1539 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -1539 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -1539 ((-592 |#1|) |#5| |#1|)) (-15 -3493 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3493 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3493 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3493 ((-592 |#1|) |#5| |#1|)) (-15 -2021 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2021 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2021 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2021 ((-592 |#1|) |#5| |#1|)) (-15 -2751 ((-108) |#5| |#1|)) (-15 -1591 ((-108) |#1|)) (-15 -4032 ((-108) |#5| |#1|)) (-15 -3875 ((-108) |#5| |#1|)) (-15 -1591 ((-108) |#5| |#1|)) (-15 -1539 (|#1| |#1| |#5|))) +((-4028 (((-108) $ $) 7)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |#4|)))) (-592 |#4|)) 85)) (-2713 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-3122 (((-592 |#3|) $) 33)) (-4037 (((-108) $) 26)) (-3410 (((-108) $) 17 (|has| |#1| (-517)))) (-2576 (((-108) |#4| $) 101) (((-108) $) 97)) (-1792 ((|#4| |#4| $) 92)) (-2701 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| $) 126)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) 27)) (-2583 (((-108) $ (-713)) 44)) (-1249 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1957 (($) 45 T CONST)) (-4164 (((-108) $) 22 (|has| |#1| (-517)))) (-1333 (((-108) $ $) 24 (|has| |#1| (-517)))) (-3508 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3364 (((-108) $) 25 (|has| |#1| (-517)))) (-3722 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2523 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) 36)) (-2068 (($ (-592 |#4|)) 35)) (-1693 (((-3 $ "failed") $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1716 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-2175 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3025 ((|#4| |#4| $) 87)) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2884 (((-2 (|:| -3671 (-592 |#4|)) (|:| -3864 (-592 |#4|))) $) 105)) (-3875 (((-108) |#4| $) 136)) (-2751 (((-108) |#4| $) 133)) (-1591 (((-108) |#4| $) 137) (((-108) $) 134)) (-3781 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-1695 (((-108) |#4| $) 104) (((-108) $) 103)) (-3632 ((|#3| $) 34)) (-2010 (((-108) $ (-713)) 43)) (-2679 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 47)) (-4210 (((-592 |#3|) $) 32)) (-1506 (((-108) |#3| $) 31)) (-2350 (((-108) $ (-713)) 42)) (-1707 (((-1073) $) 9)) (-2686 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-1503 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| |#4| $) 127)) (-2618 (((-3 |#4| "failed") $) 83)) (-3509 (((-592 $) |#4| $) 129)) (-2709 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3854 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2021 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-1476 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-2338 (((-592 |#4|) $) 107)) (-2616 (((-108) |#4| $) 99) (((-108) $) 95)) (-1803 ((|#4| |#4| $) 90)) (-1826 (((-108) $ $) 110)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-1483 (((-108) |#4| $) 100) (((-108) $) 96)) (-2342 ((|#4| |#4| $) 91)) (-3027 (((-1037) $) 10)) (-1683 (((-3 |#4| "failed") $) 84)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2750 (((-3 $ "failed") $ |#4|) 78)) (-1539 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3669 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) 38)) (-3086 (((-108) $) 41)) (-3266 (($) 40)) (-1486 (((-713) $) 106)) (-3053 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-1261 (($ $) 39)) (-2923 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) 60)) (-2484 (($ $ |#3|) 28)) (-4016 (($ $ |#3|) 30)) (-1287 (($ $) 88)) (-3967 (($ $ |#3|) 29)) (-4044 (((-797) $) 11) (((-592 |#4|) $) 37)) (-2665 (((-713) $) 76 (|has| |#3| (-346)))) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2125 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3493 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2443 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2396 (((-592 |#3|) $) 81)) (-4032 (((-108) |#4| $) 135)) (-2238 (((-108) |#3| $) 80)) (-3899 (((-108) $ $) 6)) (-1696 (((-713) $) 46 (|has| $ (-6 -4254))))) +(((-995 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -995)) +((-1591 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-3875 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-4032 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-2751 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-2709 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1))) (-4 *1 (-995 *4 *5 *6 *3)))) (-3854 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *1)))) (-4 *1 (-995 *4 *5 *6 *3)))) (-3854 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-3509 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)))) (-2686 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1))) (-4 *1 (-995 *4 *5 *6 *3)))) (-1503 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *1)))) (-4 *1 (-995 *4 *5 *6 *3)))) (-2701 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *1)))) (-4 *1 (-995 *4 *5 *6 *3)))) (-2021 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)))) (-2021 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *7)))) (-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)))) (-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)))) (-3493 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)))) (-3493 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)))) (-3493 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *7)))) (-3493 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)))) (-1476 (*1 *1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-1476 (*1 *1 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)))) (-1539 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)))) (-1539 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)))) (-1539 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *7)))) (-1539 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-995 *5 *6 *7 *8))))) +(-13 (-1120 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1591 ((-108) |t#4| $)) (-15 -3875 ((-108) |t#4| $)) (-15 -4032 ((-108) |t#4| $)) (-15 -1591 ((-108) $)) (-15 -2751 ((-108) |t#4| $)) (-15 -2709 ((-3 (-108) (-592 $)) |t#4| $)) (-15 -3854 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 $))) |t#4| $)) (-15 -3854 ((-108) |t#4| $)) (-15 -3509 ((-592 $) |t#4| $)) (-15 -2686 ((-3 |t#4| (-592 $)) |t#4| |t#4| $)) (-15 -1503 ((-592 (-2 (|:| |val| |t#4|) (|:| -2249 $))) |t#4| |t#4| $)) (-15 -2701 ((-592 (-2 (|:| |val| |t#4|) (|:| -2249 $))) |t#4| $)) (-15 -2021 ((-592 $) |t#4| $)) (-15 -2021 ((-592 $) (-592 |t#4|) $)) (-15 -2021 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -2021 ((-592 $) |t#4| (-592 $))) (-15 -3493 ((-592 $) |t#4| $)) (-15 -3493 ((-592 $) |t#4| (-592 $))) (-15 -3493 ((-592 $) (-592 |t#4|) $)) (-15 -3493 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -1476 ($ |t#4| $)) (-15 -1476 ($ (-592 |t#4|) $)) (-15 -1539 ((-592 $) |t#4| $)) (-15 -1539 ((-592 $) |t#4| (-592 $))) (-15 -1539 ((-592 $) (-592 |t#4|) $)) (-15 -1539 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -2713 ((-592 $) (-592 |t#4|) (-108))))) +(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-908 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1126) . T)) +((-2578 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#5|) 81)) (-1429 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|) 113)) (-3538 (((-592 |#5|) |#4| |#5|) 70)) (-2525 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-3888 (((-1177)) 37)) (-3920 (((-1177)) 26)) (-4215 (((-1177) (-1073) (-1073) (-1073)) 33)) (-2369 (((-1177) (-1073) (-1073) (-1073)) 22)) (-1534 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#4| |#4| |#5|) 96)) (-3421 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#3| (-108)) 107) (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-3088 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|) 102))) +(((-996 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2369 ((-1177) (-1073) (-1073) (-1073))) (-15 -3920 ((-1177))) (-15 -4215 ((-1177) (-1073) (-1073) (-1073))) (-15 -3888 ((-1177))) (-15 -1534 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -3421 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3421 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#3| (-108))) (-15 -3088 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -1429 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -2525 ((-108) |#4| |#5|)) (-15 -2525 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -3538 ((-592 |#5|) |#4| |#5|)) (-15 -2578 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -996)) +((-2578 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3538 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1429 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3088 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2249 *9)))) (-5 *5 (-108)) (-4 *8 (-990 *6 *7 *4)) (-4 *9 (-995 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -2249 *9)))) (-5 *1 (-996 *6 *7 *4 *8 *9)))) (-3421 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-996 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-1534 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3888 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-4215 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-3920 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-2369 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) +(-10 -7 (-15 -2369 ((-1177) (-1073) (-1073) (-1073))) (-15 -3920 ((-1177))) (-15 -4215 ((-1177) (-1073) (-1073) (-1073))) (-15 -3888 ((-1177))) (-15 -1534 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -3421 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3421 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#3| (-108))) (-15 -3088 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -1429 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -2525 ((-108) |#4| |#5|)) (-15 -2525 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -3538 ((-592 |#5|) |#4| |#5|)) (-15 -2578 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#5|))) +((-4028 (((-108) $ $) NIL)) (-3515 (((-1090) $) 8)) (-1707 (((-1073) $) 16)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 13))) +(((-997 |#1|) (-13 (-1019) (-10 -8 (-15 -3515 ((-1090) $)))) (-1090)) (T -997)) +((-3515 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-997 *3)) (-14 *3 *2)))) +(-13 (-1019) (-10 -8 (-15 -3515 ((-1090) $)))) +((-4028 (((-108) $ $) NIL)) (-4169 (($ $ (-592 (-1090)) (-1 (-108) (-592 |#3|))) 33)) (-2643 (($ |#3| |#3|) 22) (($ |#3| |#3| (-592 (-1090))) 20)) (-1804 ((|#3| $) 13)) (-2769 (((-3 (-273 |#3|) "failed") $) 58)) (-2068 (((-273 |#3|) $) NIL)) (-2294 (((-592 (-1090)) $) 16)) (-2509 (((-826 |#1|) $) 11)) (-1795 ((|#3| $) 12)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1496 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-855)) 39)) (-4044 (((-797) $) 86) (($ (-273 |#3|)) 21)) (-3899 (((-108) $ $) 36))) +(((-998 |#1| |#2| |#3|) (-13 (-1019) (-265 |#3| |#3|) (-967 (-273 |#3|)) (-10 -8 (-15 -2643 ($ |#3| |#3|)) (-15 -2643 ($ |#3| |#3| (-592 (-1090)))) (-15 -4169 ($ $ (-592 (-1090)) (-1 (-108) (-592 |#3|)))) (-15 -2509 ((-826 |#1|) $)) (-15 -1795 (|#3| $)) (-15 -1804 (|#3| $)) (-15 -1496 (|#3| $ |#3| (-855))) (-15 -2294 ((-592 (-1090)) $)))) (-1019) (-13 (-976) (-820 |#1|) (-789) (-567 (-826 |#1|))) (-13 (-408 |#2|) (-820 |#1|) (-567 (-826 |#1|)))) (T -998)) +((-2643 (*1 *1 *2 *2) (-12 (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) (-5 *1 (-998 *3 *4 *2)) (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))) (-2643 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-998 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))) (-4169 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-1 (-108) (-592 *6))) (-4 *6 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-998 *4 *5 *6)))) (-2509 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 *2))) (-5 *2 (-826 *3)) (-5 *1 (-998 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-820 *3) (-567 *2))))) (-1795 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))) (-5 *1 (-998 *3 *4 *2)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))))) (-1804 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))) (-5 *1 (-998 *3 *4 *2)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))))) (-1496 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-855)) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-998 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))) (-2294 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) (-5 *2 (-592 (-1090))) (-5 *1 (-998 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3))))))) +(-13 (-1019) (-265 |#3| |#3|) (-967 (-273 |#3|)) (-10 -8 (-15 -2643 ($ |#3| |#3|)) (-15 -2643 ($ |#3| |#3| (-592 (-1090)))) (-15 -4169 ($ $ (-592 (-1090)) (-1 (-108) (-592 |#3|)))) (-15 -2509 ((-826 |#1|) $)) (-15 -1795 (|#3| $)) (-15 -1804 (|#3| $)) (-15 -1496 (|#3| $ |#3| (-855))) (-15 -2294 ((-592 (-1090)) $)))) +((-4028 (((-108) $ $) NIL)) (-4128 (($ (-592 (-998 |#1| |#2| |#3|))) 13)) (-4195 (((-592 (-998 |#1| |#2| |#3|)) $) 20)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1496 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-855)) 26)) (-4044 (((-797) $) 16)) (-3899 (((-108) $ $) 19))) +(((-999 |#1| |#2| |#3|) (-13 (-1019) (-265 |#3| |#3|) (-10 -8 (-15 -4128 ($ (-592 (-998 |#1| |#2| |#3|)))) (-15 -4195 ((-592 (-998 |#1| |#2| |#3|)) $)) (-15 -1496 (|#3| $ |#3| (-855))))) (-1019) (-13 (-976) (-820 |#1|) (-789) (-567 (-826 |#1|))) (-13 (-408 |#2|) (-820 |#1|) (-567 (-826 |#1|)))) (T -999)) +((-4128 (*1 *1 *2) (-12 (-5 *2 (-592 (-998 *3 *4 *5))) (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))) (-5 *1 (-999 *3 *4 *5)))) (-4195 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) (-5 *2 (-592 (-998 *3 *4 *5))) (-5 *1 (-999 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))) (-1496 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-855)) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-999 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4))))))) +(-13 (-1019) (-265 |#3| |#3|) (-10 -8 (-15 -4128 ($ (-592 (-998 |#1| |#2| |#3|)))) (-15 -4195 ((-592 (-998 |#1| |#2| |#3|)) $)) (-15 -1496 (|#3| $ |#3| (-855))))) +((-2439 (((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108)) 75) (((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|))) 77) (((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108)) 76))) +(((-1000 |#1| |#2|) (-10 -7 (-15 -2439 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108))) (-15 -2439 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -2439 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108)))) (-13 (-286) (-138)) (-592 (-1090))) (T -1000)) +((-2439 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) (-5 *1 (-1000 *5 *6)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090))))) (-2439 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -3162 (-1086 *4)) (|:| -1625 (-592 (-886 *4)))))) (-5 *1 (-1000 *4 *5)) (-5 *3 (-592 (-886 *4))) (-14 *5 (-592 (-1090))))) (-2439 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) (-5 *1 (-1000 *5 *6)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090)))))) +(-10 -7 (-15 -2439 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108))) (-15 -2439 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -2439 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108)))) +((-2961 (((-396 |#3|) |#3|) 18))) +(((-1001 |#1| |#2| |#3|) (-10 -7 (-15 -2961 ((-396 |#3|) |#3|))) (-1148 (-385 (-525))) (-13 (-341) (-138) (-667 (-385 (-525)) |#1|)) (-1148 |#2|)) (T -1001)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1001 *4 *5 *3)) (-4 *3 (-1148 *5))))) +(-10 -7 (-15 -2961 ((-396 |#3|) |#3|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 126)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-341)))) (-2609 (($ $) NIL (|has| |#1| (-341)))) (-1220 (((-108) $) NIL (|has| |#1| (-341)))) (-3852 (((-632 |#1|) (-1172 $)) NIL) (((-632 |#1|)) 115)) (-3942 ((|#1| $) 119)) (-1207 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| |#1| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-341)))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1651 (((-713)) 40 (|has| |#1| (-346)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1689 (($ (-1172 |#1|) (-1172 $)) NIL) (($ (-1172 |#1|)) 43)) (-4045 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3198 (((-632 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 106) (((-632 |#1|) (-632 $)) 101)) (-3336 (($ |#2|) 61) (((-3 $ "failed") (-385 |#2|)) NIL (|has| |#1| (-341)))) (-1645 (((-3 $ "failed") $) NIL)) (-3439 (((-855)) 77)) (-1527 (($) 44 (|has| |#1| (-346)))) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2376 (($) NIL (|has| |#1| (-327)))) (-3703 (((-108) $) NIL (|has| |#1| (-327)))) (-3351 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-2069 (((-108) $) NIL (|has| |#1| (-341)))) (-2158 (((-855) $) NIL (|has| |#1| (-327))) (((-775 (-855)) $) NIL (|has| |#1| (-327)))) (-2507 (((-108) $) NIL)) (-2281 ((|#1| $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3800 ((|#2| $) 84 (|has| |#1| (-341)))) (-2111 (((-855) $) 131 (|has| |#1| (-346)))) (-3325 ((|#2| $) 58)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-2039 (($) NIL (|has| |#1| (-327)) CONST)) (-3381 (($ (-855)) 125 (|has| |#1| (-346)))) (-3027 (((-1037) $) NIL)) (-3258 (($) 121)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1472 (((-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525))))) NIL (|has| |#1| (-327)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-2257 ((|#1| (-1172 $)) NIL) ((|#1|) 109)) (-2729 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-1576 (($ $) NIL (-3215 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-3215 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-1410 (((-632 |#1|) (-1172 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2775 ((|#2|) 73)) (-3405 (($) NIL (|has| |#1| (-327)))) (-1625 (((-1172 |#1|) $ (-1172 $)) 89) (((-632 |#1|) (-1172 $) (-1172 $)) NIL) (((-1172 |#1|) $) 71) (((-632 |#1|) (-1172 $)) 85)) (-2923 (((-1172 |#1|) $) NIL) (($ (-1172 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-327)))) (-4044 (((-797) $) 57) (($ (-525)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-341))) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525))))))) (-1279 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2867 ((|#2| $) 82)) (-2502 (((-713)) 75)) (-2734 (((-1172 $)) 81)) (-3787 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) 30 T CONST)) (-1449 (($) 19 T CONST)) (-1990 (($ $) NIL (-3215 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-3215 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-3899 (((-108) $ $) 63)) (-4047 (($ $ $) NIL (|has| |#1| (-341)))) (-4033 (($ $) 67) (($ $ $) NIL)) (-4017 (($ $ $) 65)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))))) +(((-1002 |#1| |#2| |#3|) (-667 |#1| |#2|) (-160) (-1148 |#1|) |#2|) (T -1002)) +NIL +(-667 |#1| |#2|) +((-2961 (((-396 |#3|) |#3|) 19))) +(((-1003 |#1| |#2| |#3|) (-10 -7 (-15 -2961 ((-396 |#3|) |#3|))) (-1148 (-385 (-886 (-525)))) (-13 (-341) (-138) (-667 (-385 (-886 (-525))) |#1|)) (-1148 |#2|)) (T -1003)) +((-2961 (*1 *2 *3) (-12 (-4 *4 (-1148 (-385 (-886 (-525))))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-886 (-525))) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1003 *4 *5 *3)) (-4 *3 (-1148 *5))))) +(-10 -7 (-15 -2961 ((-396 |#3|) |#3|))) +((-4028 (((-108) $ $) NIL)) (-1260 (($ $ $) 14)) (-2154 (($ $ $) 15)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1653 (($) 6)) (-2923 (((-1090) $) 18)) (-4044 (((-797) $) 12)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 13)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 8))) +(((-1004) (-13 (-789) (-10 -8 (-15 -1653 ($)) (-15 -2923 ((-1090) $))))) (T -1004)) +((-1653 (*1 *1) (-5 *1 (-1004))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1004))))) +(-13 (-789) (-10 -8 (-15 -1653 ($)) (-15 -2923 ((-1090) $)))) +((-3307 ((|#1| |#1| (-1 (-525) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-3429 (((-1177)) 15)) (-2430 (((-592 |#1|)) 9))) +(((-1005 |#1|) (-10 -7 (-15 -3429 ((-1177))) (-15 -2430 ((-592 |#1|))) (-15 -3307 (|#1| |#1| (-1 (-108) |#1|))) (-15 -3307 (|#1| |#1| (-1 (-525) |#1| |#1|)))) (-127)) (T -1005)) +((-3307 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1005 *2)))) (-3307 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1005 *2)))) (-2430 (*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-127)))) (-3429 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1005 *3)) (-4 *3 (-127))))) +(-10 -7 (-15 -3429 ((-1177))) (-15 -2430 ((-592 |#1|))) (-15 -3307 (|#1| |#1| (-1 (-108) |#1|))) (-15 -3307 (|#1| |#1| (-1 (-525) |#1| |#1|)))) +((-4126 (($ (-104) $) 15)) (-3044 (((-3 (-104) "failed") (-1090) $) 14)) (-3266 (($) 6)) (-1939 (($) 16)) (-3458 (($) 17)) (-3867 (((-592 (-162)) $) 9)) (-4044 (((-797) $) 20))) +(((-1006) (-13 (-566 (-797)) (-10 -8 (-15 -3266 ($)) (-15 -3867 ((-592 (-162)) $)) (-15 -3044 ((-3 (-104) "failed") (-1090) $)) (-15 -4126 ($ (-104) $)) (-15 -1939 ($)) (-15 -3458 ($))))) (T -1006)) +((-3266 (*1 *1) (-5 *1 (-1006))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1006)))) (-3044 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-104)) (-5 *1 (-1006)))) (-4126 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1006)))) (-1939 (*1 *1) (-5 *1 (-1006))) (-3458 (*1 *1) (-5 *1 (-1006)))) +(-13 (-566 (-797)) (-10 -8 (-15 -3266 ($)) (-15 -3867 ((-592 (-162)) $)) (-15 -3044 ((-3 (-104) "failed") (-1090) $)) (-15 -4126 ($ (-104) $)) (-15 -1939 ($)) (-15 -3458 ($)))) +((-1545 (((-1172 (-632 |#1|)) (-592 (-632 |#1|))) 42) (((-1172 (-632 (-886 |#1|))) (-592 (-1090)) (-632 (-886 |#1|))) 63) (((-1172 (-632 (-385 (-886 |#1|)))) (-592 (-1090)) (-632 (-385 (-886 |#1|)))) 79)) (-1625 (((-1172 |#1|) (-632 |#1|) (-592 (-632 |#1|))) 36))) +(((-1007 |#1|) (-10 -7 (-15 -1545 ((-1172 (-632 (-385 (-886 |#1|)))) (-592 (-1090)) (-632 (-385 (-886 |#1|))))) (-15 -1545 ((-1172 (-632 (-886 |#1|))) (-592 (-1090)) (-632 (-886 |#1|)))) (-15 -1545 ((-1172 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1625 ((-1172 |#1|) (-632 |#1|) (-592 (-632 |#1|))))) (-341)) (T -1007)) +((-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-1172 *5)) (-5 *1 (-1007 *5)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-1007 *4)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1090))) (-4 *5 (-341)) (-5 *2 (-1172 (-632 (-886 *5)))) (-5 *1 (-1007 *5)) (-5 *4 (-632 (-886 *5))))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1090))) (-4 *5 (-341)) (-5 *2 (-1172 (-632 (-385 (-886 *5))))) (-5 *1 (-1007 *5)) (-5 *4 (-632 (-385 (-886 *5))))))) +(-10 -7 (-15 -1545 ((-1172 (-632 (-385 (-886 |#1|)))) (-592 (-1090)) (-632 (-385 (-886 |#1|))))) (-15 -1545 ((-1172 (-632 (-886 |#1|))) (-592 (-1090)) (-632 (-886 |#1|)))) (-15 -1545 ((-1172 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1625 ((-1172 |#1|) (-632 |#1|) (-592 (-632 |#1|))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3453 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1090)) NIL)) (-2147 (((-713) $) NIL) (((-713) $ (-1090)) NIL)) (-3122 (((-592 (-1009 (-1090))) $) NIL)) (-1315 (((-1086 $) $ (-1009 (-1090))) NIL) (((-1086 |#1|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-1009 (-1090)))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2701 (($ $) NIL (|has| |#1| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2945 (($ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1009 (-1090)) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL) (((-3 (-1042 |#1| (-1090)) "failed") $) NIL)) (-2068 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1009 (-1090)) $) NIL) (((-1090) $) NIL) (((-1042 |#1| (-1090)) $) NIL)) (-3048 (($ $ $ (-1009 (-1090))) NIL (|has| |#1| (-160)))) (-3306 (($ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1009 (-1090))) NIL (|has| |#1| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#1| (-843)))) (-2187 (($ $ |#1| (-497 (-1009 (-1090))) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1009 (-1090)) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1009 (-1090)) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2158 (((-713) $ (-1090)) NIL) (((-713) $) NIL)) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-3110 (($ (-1086 |#1|) (-1009 (-1090))) NIL) (($ (-1086 $) (-1009 (-1090))) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-497 (-1009 (-1090)))) NIL) (($ $ (-1009 (-1090)) (-713)) NIL) (($ $ (-592 (-1009 (-1090))) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-1009 (-1090))) NIL)) (-3762 (((-497 (-1009 (-1090))) $) NIL) (((-713) $ (-1009 (-1090))) NIL) (((-592 (-713)) $ (-592 (-1009 (-1090)))) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2078 (($ (-1 (-497 (-1009 (-1090))) (-497 (-1009 (-1090)))) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3485 (((-1 $ (-713)) (-1090)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-3869 (((-3 (-1009 (-1090)) "failed") $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2241 (((-1009 (-1090)) $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1707 (((-1073) $) NIL)) (-1441 (((-108) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-1009 (-1090))) (|:| -1737 (-713))) "failed") $) NIL)) (-3980 (($ $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#1| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1009 (-1090)) |#1|) NIL) (($ $ (-592 (-1009 (-1090))) (-592 |#1|)) NIL) (($ $ (-1009 (-1090)) $) NIL) (($ $ (-592 (-1009 (-1090))) (-592 $)) NIL) (($ $ (-1090) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1090)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-2257 (($ $ (-1009 (-1090))) NIL (|has| |#1| (-160)))) (-1576 (($ $ (-1009 (-1090))) NIL) (($ $ (-592 (-1009 (-1090)))) NIL) (($ $ (-1009 (-1090)) (-713)) NIL) (($ $ (-592 (-1009 (-1090))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3706 (((-592 (-1090)) $) NIL)) (-1486 (((-497 (-1009 (-1090))) $) NIL) (((-713) $ (-1009 (-1090))) NIL) (((-592 (-713)) $ (-592 (-1009 (-1090)))) NIL) (((-713) $ (-1090)) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-1009 (-1090)) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1009 (-1090)) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1009 (-1090)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2758 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1009 (-1090))) NIL (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1009 (-1090))) NIL) (($ (-1090)) NIL) (($ (-1042 |#1| (-1090))) NIL) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-497 (-1009 (-1090)))) NIL) (($ $ (-1009 (-1090)) (-713)) NIL) (($ $ (-592 (-1009 (-1090))) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-1009 (-1090))) NIL) (($ $ (-592 (-1009 (-1090)))) NIL) (($ $ (-1009 (-1090)) (-713)) NIL) (($ $ (-592 (-1009 (-1090))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1008 |#1|) (-13 (-232 |#1| (-1090) (-1009 (-1090)) (-497 (-1009 (-1090)))) (-967 (-1042 |#1| (-1090)))) (-976)) (T -1008)) +NIL +(-13 (-232 |#1| (-1090) (-1009 (-1090)) (-497 (-1009 (-1090)))) (-967 (-1042 |#1| (-1090)))) +((-4028 (((-108) $ $) NIL)) (-2147 (((-713) $) NIL)) (-2818 ((|#1| $) 10)) (-2769 (((-3 |#1| "failed") $) NIL)) (-2068 ((|#1| $) NIL)) (-2158 (((-713) $) 11)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-3485 (($ |#1| (-713)) 9)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1576 (($ $) NIL) (($ $ (-713)) NIL)) (-4044 (((-797) $) NIL) (($ |#1|) NIL)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 15))) +(((-1009 |#1|) (-245 |#1|) (-789)) (T -1009)) NIL (-245 |#1|) -((-1257 (((-591 |#2|) (-1 |#2| |#1|) (-1013 |#1|)) 24 (|has| |#1| (-786))) (((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|)) 14))) -(((-1009 |#1| |#2|) (-10 -7 (-15 -1257 ((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|))) (IF (|has| |#1| (-786)) (-15 -1257 ((-591 |#2|) (-1 |#2| |#1|) (-1013 |#1|))) |%noBranch|)) (-1125) (-1125)) (T -1009)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1013 *5)) (-4 *5 (-786)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-591 *6)) (-5 *1 (-1009 *5 *6)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1013 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1013 *6)) (-5 *1 (-1009 *5 *6))))) -(-10 -7 (-15 -1257 ((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|))) (IF (|has| |#1| (-786)) (-15 -1257 ((-591 |#2|) (-1 |#2| |#1|) (-1013 |#1|))) |%noBranch|)) -((-1257 (((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|)) 19))) -(((-1010 |#1| |#2|) (-10 -7 (-15 -1257 ((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|)))) (-1125) (-1125)) (T -1010)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1011 *6)) (-5 *1 (-1010 *5 *6))))) -(-10 -7 (-15 -1257 ((-1011 |#2|) (-1 |#2| |#1|) (-1011 |#1|)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1592 (((-1089) $) 11)) (-1503 (((-1013 |#1|) $) 12)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3045 (($ (-1089) (-1013 |#1|)) 10)) (-2686 (((-796) $) 20 (|has| |#1| (-1018)))) (-3944 (((-108) $ $) 15 (|has| |#1| (-1018))))) -(((-1011 |#1|) (-13 (-1125) (-10 -8 (-15 -3045 ($ (-1089) (-1013 |#1|))) (-15 -1592 ((-1089) $)) (-15 -1503 ((-1013 |#1|) $)) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|))) (-1125)) (T -1011)) -((-3045 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1013 *4)) (-4 *4 (-1125)) (-5 *1 (-1011 *4)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1011 *3)) (-4 *3 (-1125)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-1011 *3)) (-4 *3 (-1125))))) -(-13 (-1125) (-10 -8 (-15 -3045 ($ (-1089) (-1013 |#1|))) (-15 -1592 ((-1089) $)) (-15 -1503 ((-1013 |#1|) $)) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|))) -((-1503 (($ |#1| |#1|) 7)) (-4171 ((|#1| $) 10)) (-4053 ((|#1| $) 12)) (-4067 (((-525) $) 8)) (-1924 ((|#1| $) 9)) (-4080 ((|#1| $) 11)) (-1300 (($ |#1|) 6)) (-2513 (($ |#1| |#1|) 14)) (-3712 (($ $ (-525)) 13))) -(((-1012 |#1|) (-131) (-1125)) (T -1012)) -((-2513 (*1 *1 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125)))) (-3712 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1012 *3)) (-4 *3 (-1125)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1125)) (-5 *2 (-525)))) (-1503 (*1 *1 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125)))) (-1300 (*1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125))))) -(-13 (-1125) (-10 -8 (-15 -2513 ($ |t#1| |t#1|)) (-15 -3712 ($ $ (-525))) (-15 -4053 (|t#1| $)) (-15 -4080 (|t#1| $)) (-15 -4171 (|t#1| $)) (-15 -1924 (|t#1| $)) (-15 -4067 ((-525) $)) (-15 -1503 ($ |t#1| |t#1|)) (-15 -1300 ($ |t#1|)))) -(((-1125) . T)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1503 (($ |#1| |#1|) 15)) (-1257 (((-591 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-786)))) (-4171 ((|#1| $) 10)) (-4053 ((|#1| $) 9)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-4067 (((-525) $) 14)) (-1924 ((|#1| $) 12)) (-4080 ((|#1| $) 11)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2431 (((-591 |#1|) $) 36 (|has| |#1| (-786))) (((-591 |#1|) (-591 $)) 35 (|has| |#1| (-786)))) (-1300 (($ |#1|) 26)) (-2686 (((-796) $) 25 (|has| |#1| (-1018)))) (-2513 (($ |#1| |#1|) 8)) (-3712 (($ $ (-525)) 16)) (-3944 (((-108) $ $) 19 (|has| |#1| (-1018))))) -(((-1013 |#1|) (-13 (-1012 |#1|) (-10 -7 (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-786)) (-6 (-1014 |#1| (-591 |#1|))) |%noBranch|))) (-1125)) (T -1013)) -NIL -(-13 (-1012 |#1|) (-10 -7 (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-786)) (-6 (-1014 |#1| (-591 |#1|))) |%noBranch|))) -((-1503 (($ |#1| |#1|) 7)) (-1257 ((|#2| (-1 |#1| |#1|) $) 16)) (-4171 ((|#1| $) 10)) (-4053 ((|#1| $) 12)) (-4067 (((-525) $) 8)) (-1924 ((|#1| $) 9)) (-4080 ((|#1| $) 11)) (-2431 ((|#2| (-591 $)) 18) ((|#2| $) 17)) (-1300 (($ |#1|) 6)) (-2513 (($ |#1| |#1|) 14)) (-3712 (($ $ (-525)) 13))) -(((-1014 |#1| |#2|) (-131) (-786) (-1063 |t#1|)) (T -1014)) -((-2431 (*1 *2 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-1014 *4 *2)) (-4 *4 (-786)) (-4 *2 (-1063 *4)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *2)) (-4 *3 (-786)) (-4 *2 (-1063 *3)))) (-1257 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1014 *4 *2)) (-4 *4 (-786)) (-4 *2 (-1063 *4))))) -(-13 (-1012 |t#1|) (-10 -8 (-15 -2431 (|t#2| (-591 $))) (-15 -2431 (|t#2| $)) (-15 -1257 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1012 |#1|) . T) ((-1125) . T)) -((-2141 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3772 (($ $ $) 10)) (-1614 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1015 |#1| |#2|) (-10 -8 (-15 -2141 (|#1| |#2| |#1|)) (-15 -2141 (|#1| |#1| |#2|)) (-15 -2141 (|#1| |#1| |#1|)) (-15 -3772 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#2|)) (-15 -1614 (|#1| |#1| |#1|))) (-1016 |#2|) (-1018)) (T -1015)) -NIL -(-10 -8 (-15 -2141 (|#1| |#2| |#1|)) (-15 -2141 (|#1| |#1| |#2|)) (-15 -2141 (|#1| |#1| |#1|)) (-15 -3772 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#2|)) (-15 -1614 (|#1| |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-2141 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3772 (($ $ $) 20)) (-3218 (((-108) $ $) 19)) (-3727 (((-108) $ (-712)) 35)) (-1373 (($) 25) (($ (-591 |#1|)) 24)) (-2467 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4250)))) (-2055 (($) 36 T CONST)) (-2908 (($ $) 59 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#1| $) 58 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4250)))) (-2916 (((-591 |#1|) $) 43 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 34)) (-4207 (((-591 |#1|) $) 44 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 38)) (-3295 (((-108) $ (-712)) 33)) (-2621 (((-1072) $) 9)) (-2318 (($ $ $) 23)) (-2937 (((-1036) $) 10)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-3465 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#1|) (-591 |#1|)) 50 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 48 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 (-273 |#1|))) 47 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 29)) (-2077 (((-108) $) 32)) (-3164 (($) 31)) (-1614 (($ $ $) 22) (($ $ |#1|) 21)) (-2960 (((-712) |#1| $) 45 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4250)))) (-2873 (($ $) 30)) (-1300 (((-501) $) 60 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 51)) (-2686 (((-796) $) 11)) (-2892 (($) 27) (($ (-591 |#1|)) 26)) (-1475 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 6)) (-3971 (((-108) $ $) 28)) (-2028 (((-712) $) 37 (|has| $ (-6 -4250))))) -(((-1016 |#1|) (-131) (-1018)) (T -1016)) -((-3971 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1018)) (-5 *2 (-108)))) (-2892 (*1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-4 *1 (-1016 *3)))) (-1373 (*1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) (-1373 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-4 *1 (-1016 *3)))) (-2318 (*1 *1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) (-1614 (*1 *1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) (-1614 (*1 *1 *1 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) (-3772 (*1 *1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) (-3218 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1018)) (-5 *2 (-108)))) (-2141 (*1 *1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) (-2141 (*1 *1 *1 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) (-2141 (*1 *1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018))))) -(-13 (-1018) (-142 |t#1|) (-10 -8 (-6 -4240) (-15 -3971 ((-108) $ $)) (-15 -2892 ($)) (-15 -2892 ($ (-591 |t#1|))) (-15 -1373 ($)) (-15 -1373 ($ (-591 |t#1|))) (-15 -2318 ($ $ $)) (-15 -1614 ($ $ $)) (-15 -1614 ($ $ |t#1|)) (-15 -3772 ($ $ $)) (-15 -3218 ((-108) $ $)) (-15 -2141 ($ $ $)) (-15 -2141 ($ $ |t#1|)) (-15 -2141 ($ |t#1| $)))) -(((-33) . T) ((-97) . T) ((-565 (-796)) . T) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) . T) ((-1125) . T)) -((-2621 (((-1072) $) 10)) (-2937 (((-1036) $) 8))) -(((-1017 |#1|) (-10 -8 (-15 -2621 ((-1072) |#1|)) (-15 -2937 ((-1036) |#1|))) (-1018)) (T -1017)) -NIL -(-10 -8 (-15 -2621 ((-1072) |#1|)) (-15 -2937 ((-1036) |#1|))) -((-2673 (((-108) $ $) 7)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 6))) -(((-1018) (-131)) (T -1018)) -((-2937 (*1 *2 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-1036)))) (-2621 (*1 *2 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-1072))))) -(-13 (-97) (-565 (-796)) (-10 -8 (-15 -2937 ((-1036) $)) (-15 -2621 ((-1072) $)))) -(((-97) . T) ((-565 (-796)) . T)) -((-2673 (((-108) $ $) NIL)) (-2834 (((-712)) 30)) (-2270 (($ (-591 (-854))) 52)) (-3835 (((-3 $ "failed") $ (-854) (-854)) 58)) (-1325 (($) 32)) (-3956 (((-108) (-854) $) 35)) (-1970 (((-854) $) 50)) (-2621 (((-1072) $) NIL)) (-3229 (($ (-854)) 31)) (-2268 (((-3 $ "failed") $ (-854)) 55)) (-2937 (((-1036) $) NIL)) (-3352 (((-1171 $)) 40)) (-1959 (((-591 (-854)) $) 24)) (-3970 (((-712) $ (-854) (-854)) 56)) (-2686 (((-796) $) 29)) (-3944 (((-108) $ $) 21))) -(((-1019 |#1| |#2|) (-13 (-346) (-10 -8 (-15 -2268 ((-3 $ "failed") $ (-854))) (-15 -3835 ((-3 $ "failed") $ (-854) (-854))) (-15 -1959 ((-591 (-854)) $)) (-15 -2270 ($ (-591 (-854)))) (-15 -3352 ((-1171 $))) (-15 -3956 ((-108) (-854) $)) (-15 -3970 ((-712) $ (-854) (-854))))) (-854) (-854)) (T -1019)) -((-2268 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-854)) (-5 *1 (-1019 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3835 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-854)) (-5 *1 (-1019 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-591 (-854))) (-5 *1 (-1019 *3 *4)) (-14 *3 (-854)) (-14 *4 (-854)))) (-2270 (*1 *1 *2) (-12 (-5 *2 (-591 (-854))) (-5 *1 (-1019 *3 *4)) (-14 *3 (-854)) (-14 *4 (-854)))) (-3352 (*1 *2) (-12 (-5 *2 (-1171 (-1019 *3 *4))) (-5 *1 (-1019 *3 *4)) (-14 *3 (-854)) (-14 *4 (-854)))) (-3956 (*1 *2 *3 *1) (-12 (-5 *3 (-854)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3970 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-854)) (-5 *2 (-712)) (-5 *1 (-1019 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-346) (-10 -8 (-15 -2268 ((-3 $ "failed") $ (-854))) (-15 -3835 ((-3 $ "failed") $ (-854) (-854))) (-15 -1959 ((-591 (-854)) $)) (-15 -2270 ($ (-591 (-854)))) (-15 -3352 ((-1171 $))) (-15 -3956 ((-108) (-854) $)) (-15 -3970 ((-712) $ (-854) (-854))))) -((-2673 (((-108) $ $) NIL)) (-2011 (($) NIL (|has| |#1| (-346)))) (-2141 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3772 (($ $ $) 72)) (-3218 (((-108) $ $) 73)) (-3727 (((-108) $ (-712)) NIL)) (-2834 (((-712)) NIL (|has| |#1| (-346)))) (-1373 (($ (-591 |#1|)) NIL) (($) 13)) (-1288 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3844 (($ |#1| $) 67 (|has| $ (-6 -4250))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4250)))) (-1325 (($) NIL (|has| |#1| (-346)))) (-2916 (((-591 |#1|) $) 19 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-1923 ((|#1| $) 57 (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-3475 ((|#1| $) 55 (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 34)) (-1970 (((-854) $) NIL (|has| |#1| (-346)))) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2318 (($ $ $) 70)) (-3949 ((|#1| $) 25)) (-1520 (($ |#1| $) 65)) (-3229 (($ (-854)) NIL (|has| |#1| (-346)))) (-2937 (((-1036) $) NIL)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-4166 ((|#1| $) 27)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 21)) (-3164 (($) 11)) (-1614 (($ $ |#1|) NIL) (($ $ $) 71)) (-3583 (($) NIL) (($ (-591 |#1|)) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) 16)) (-1300 (((-501) $) 52 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 61)) (-2103 (($ $) NIL (|has| |#1| (-346)))) (-2686 (((-796) $) NIL)) (-3770 (((-712) $) NIL)) (-2892 (($ (-591 |#1|)) NIL) (($) 12)) (-2453 (($ (-591 |#1|)) NIL)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 54)) (-3971 (((-108) $ $) NIL)) (-2028 (((-712) $) 10 (|has| $ (-6 -4250))))) -(((-1020 |#1|) (-403 |#1|) (-1018)) (T -1020)) +((-2868 (((-592 |#2|) (-1 |#2| |#1|) (-1014 |#1|)) 24 (|has| |#1| (-787))) (((-1014 |#2|) (-1 |#2| |#1|) (-1014 |#1|)) 14))) +(((-1010 |#1| |#2|) (-10 -7 (-15 -2868 ((-1014 |#2|) (-1 |#2| |#1|) (-1014 |#1|))) (IF (|has| |#1| (-787)) (-15 -2868 ((-592 |#2|) (-1 |#2| |#1|) (-1014 |#1|))) |%noBranch|)) (-1126) (-1126)) (T -1010)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1014 *5)) (-4 *5 (-787)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-592 *6)) (-5 *1 (-1010 *5 *6)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1014 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1014 *6)) (-5 *1 (-1010 *5 *6))))) +(-10 -7 (-15 -2868 ((-1014 |#2|) (-1 |#2| |#1|) (-1014 |#1|))) (IF (|has| |#1| (-787)) (-15 -2868 ((-592 |#2|) (-1 |#2| |#1|) (-1014 |#1|))) |%noBranch|)) +((-2868 (((-1012 |#2|) (-1 |#2| |#1|) (-1012 |#1|)) 19))) +(((-1011 |#1| |#2|) (-10 -7 (-15 -2868 ((-1012 |#2|) (-1 |#2| |#1|) (-1012 |#1|)))) (-1126) (-1126)) (T -1011)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1012 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1012 *6)) (-5 *1 (-1011 *5 *6))))) +(-10 -7 (-15 -2868 ((-1012 |#2|) (-1 |#2| |#1|) (-1012 |#1|)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2818 (((-1090) $) 11)) (-3212 (((-1014 |#1|) $) 12)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-2360 (($ (-1090) (-1014 |#1|)) 10)) (-4044 (((-797) $) 20 (|has| |#1| (-1019)))) (-3899 (((-108) $ $) 15 (|has| |#1| (-1019))))) +(((-1012 |#1|) (-13 (-1126) (-10 -8 (-15 -2360 ($ (-1090) (-1014 |#1|))) (-15 -2818 ((-1090) $)) (-15 -3212 ((-1014 |#1|) $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|))) (-1126)) (T -1012)) +((-2360 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1014 *4)) (-4 *4 (-1126)) (-5 *1 (-1012 *4)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1012 *3)) (-4 *3 (-1126)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-1014 *3)) (-5 *1 (-1012 *3)) (-4 *3 (-1126))))) +(-13 (-1126) (-10 -8 (-15 -2360 ($ (-1090) (-1014 |#1|))) (-15 -2818 ((-1090) $)) (-15 -3212 ((-1014 |#1|) $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|))) +((-3212 (($ |#1| |#1|) 7)) (-4171 ((|#1| $) 10)) (-3335 ((|#1| $) 12)) (-4001 (((-525) $) 8)) (-3480 ((|#1| $) 9)) (-4015 ((|#1| $) 11)) (-2923 (($ |#1|) 6)) (-2956 (($ |#1| |#1|) 14)) (-3666 (($ $ (-525)) 13))) +(((-1013 |#1|) (-131) (-1126)) (T -1013)) +((-2956 (*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-3666 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1013 *3)) (-4 *3 (-1126)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1126)) (-5 *2 (-525)))) (-3212 (*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-2923 (*1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126))))) +(-13 (-1126) (-10 -8 (-15 -2956 ($ |t#1| |t#1|)) (-15 -3666 ($ $ (-525))) (-15 -3335 (|t#1| $)) (-15 -4015 (|t#1| $)) (-15 -4171 (|t#1| $)) (-15 -3480 (|t#1| $)) (-15 -4001 ((-525) $)) (-15 -3212 ($ |t#1| |t#1|)) (-15 -2923 ($ |t#1|)))) +(((-1126) . T)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3212 (($ |#1| |#1|) 15)) (-2868 (((-592 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-787)))) (-4171 ((|#1| $) 10)) (-3335 ((|#1| $) 9)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-4001 (((-525) $) 14)) (-3480 ((|#1| $) 12)) (-4015 ((|#1| $) 11)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1203 (((-592 |#1|) $) 36 (|has| |#1| (-787))) (((-592 |#1|) (-592 $)) 35 (|has| |#1| (-787)))) (-2923 (($ |#1|) 26)) (-4044 (((-797) $) 25 (|has| |#1| (-1019)))) (-2956 (($ |#1| |#1|) 8)) (-3666 (($ $ (-525)) 16)) (-3899 (((-108) $ $) 19 (|has| |#1| (-1019))))) +(((-1014 |#1|) (-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1015 |#1| (-592 |#1|))) |%noBranch|))) (-1126)) (T -1014)) +NIL +(-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1015 |#1| (-592 |#1|))) |%noBranch|))) +((-3212 (($ |#1| |#1|) 7)) (-2868 ((|#2| (-1 |#1| |#1|) $) 16)) (-4171 ((|#1| $) 10)) (-3335 ((|#1| $) 12)) (-4001 (((-525) $) 8)) (-3480 ((|#1| $) 9)) (-4015 ((|#1| $) 11)) (-1203 ((|#2| (-592 $)) 18) ((|#2| $) 17)) (-2923 (($ |#1|) 6)) (-2956 (($ |#1| |#1|) 14)) (-3666 (($ $ (-525)) 13))) +(((-1015 |#1| |#2|) (-131) (-787) (-1064 |t#1|)) (T -1015)) +((-1203 (*1 *2 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-1015 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1064 *4)))) (-1203 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-787)) (-4 *2 (-1064 *3)))) (-2868 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1015 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1064 *4))))) +(-13 (-1013 |t#1|) (-10 -8 (-15 -1203 (|t#2| (-592 $))) (-15 -1203 (|t#2| $)) (-15 -2868 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1013 |#1|) . T) ((-1126) . T)) +((-2272 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3893 (($ $ $) 10)) (-2472 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1016 |#1| |#2|) (-10 -8 (-15 -2272 (|#1| |#2| |#1|)) (-15 -2272 (|#1| |#1| |#2|)) (-15 -2272 (|#1| |#1| |#1|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -2472 (|#1| |#1| |#2|)) (-15 -2472 (|#1| |#1| |#1|))) (-1017 |#2|) (-1019)) (T -1016)) +NIL +(-10 -8 (-15 -2272 (|#1| |#2| |#1|)) (-15 -2272 (|#1| |#1| |#2|)) (-15 -2272 (|#1| |#1| |#1|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -2472 (|#1| |#1| |#2|)) (-15 -2472 (|#1| |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2272 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3893 (($ $ $) 20)) (-2398 (((-108) $ $) 19)) (-2583 (((-108) $ (-713)) 35)) (-3792 (($) 25) (($ (-592 |#1|)) 24)) (-1249 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4254)))) (-1957 (($) 36 T CONST)) (-1716 (($ $) 59 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#1| $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4254)))) (-3781 (((-592 |#1|) $) 43 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 34)) (-2679 (((-592 |#1|) $) 44 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 38)) (-2350 (((-108) $ (-713)) 33)) (-1707 (((-1073) $) 9)) (-2021 (($ $ $) 23)) (-3027 (((-1037) $) 10)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-3669 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#1|) (-592 |#1|)) 50 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 48 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 (-273 |#1|))) 47 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 29)) (-3086 (((-108) $) 32)) (-3266 (($) 31)) (-2472 (($ $ $) 22) (($ $ |#1|) 21)) (-3053 (((-713) |#1| $) 45 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4254)))) (-1261 (($ $) 30)) (-2923 (((-501) $) 60 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 51)) (-4044 (((-797) $) 11)) (-3012 (($) 27) (($ (-592 |#1|)) 26)) (-2443 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 6)) (-3928 (((-108) $ $) 28)) (-1696 (((-713) $) 37 (|has| $ (-6 -4254))))) +(((-1017 |#1|) (-131) (-1019)) (T -1017)) +((-3928 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-3012 (*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-1017 *3)))) (-3792 (*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-1017 *3)))) (-2021 (*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-2472 (*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-2472 (*1 *1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-3893 (*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-2398 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-2272 (*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-2272 (*1 *1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-2272 (*1 *1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))) +(-13 (-1019) (-142 |t#1|) (-10 -8 (-6 -4244) (-15 -3928 ((-108) $ $)) (-15 -3012 ($)) (-15 -3012 ($ (-592 |t#1|))) (-15 -3792 ($)) (-15 -3792 ($ (-592 |t#1|))) (-15 -2021 ($ $ $)) (-15 -2472 ($ $ $)) (-15 -2472 ($ $ |t#1|)) (-15 -3893 ($ $ $)) (-15 -2398 ((-108) $ $)) (-15 -2272 ($ $ $)) (-15 -2272 ($ $ |t#1|)) (-15 -2272 ($ |t#1| $)))) +(((-33) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) . T) ((-1126) . T)) +((-1707 (((-1073) $) 10)) (-3027 (((-1037) $) 8))) +(((-1018 |#1|) (-10 -8 (-15 -1707 ((-1073) |#1|)) (-15 -3027 ((-1037) |#1|))) (-1019)) (T -1018)) +NIL +(-10 -8 (-15 -1707 ((-1073) |#1|)) (-15 -3027 ((-1037) |#1|))) +((-4028 (((-108) $ $) 7)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 6))) +(((-1019) (-131)) (T -1019)) +((-3027 (*1 *2 *1) (-12 (-4 *1 (-1019)) (-5 *2 (-1037)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-1019)) (-5 *2 (-1073))))) +(-13 (-97) (-566 (-797)) (-10 -8 (-15 -3027 ((-1037) $)) (-15 -1707 ((-1073) $)))) +(((-97) . T) ((-566 (-797)) . T)) +((-4028 (((-108) $ $) NIL)) (-1651 (((-713)) 30)) (-2436 (($ (-592 (-855))) 52)) (-1998 (((-3 $ "failed") $ (-855) (-855)) 58)) (-1527 (($) 32)) (-1883 (((-108) (-855) $) 35)) (-2111 (((-855) $) 50)) (-1707 (((-1073) $) NIL)) (-3381 (($ (-855)) 31)) (-3461 (((-3 $ "failed") $ (-855)) 55)) (-3027 (((-1037) $) NIL)) (-2970 (((-1172 $)) 40)) (-3789 (((-592 (-855)) $) 24)) (-1880 (((-713) $ (-855) (-855)) 56)) (-4044 (((-797) $) 29)) (-3899 (((-108) $ $) 21))) +(((-1020 |#1| |#2|) (-13 (-346) (-10 -8 (-15 -3461 ((-3 $ "failed") $ (-855))) (-15 -1998 ((-3 $ "failed") $ (-855) (-855))) (-15 -3789 ((-592 (-855)) $)) (-15 -2436 ($ (-592 (-855)))) (-15 -2970 ((-1172 $))) (-15 -1883 ((-108) (-855) $)) (-15 -1880 ((-713) $ (-855) (-855))))) (-855) (-855)) (T -1020)) +((-3461 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-855)) (-5 *1 (-1020 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1998 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-855)) (-5 *1 (-1020 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-2436 (*1 *1 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-2970 (*1 *2) (-12 (-5 *2 (-1172 (-1020 *3 *4))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-1883 (*1 *2 *3 *1) (-12 (-5 *3 (-855)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1880 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-713)) (-5 *1 (-1020 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-346) (-10 -8 (-15 -3461 ((-3 $ "failed") $ (-855))) (-15 -1998 ((-3 $ "failed") $ (-855) (-855))) (-15 -3789 ((-592 (-855)) $)) (-15 -2436 ($ (-592 (-855)))) (-15 -2970 ((-1172 $))) (-15 -1883 ((-108) (-855) $)) (-15 -1880 ((-713) $ (-855) (-855))))) +((-4028 (((-108) $ $) NIL)) (-1674 (($) NIL (|has| |#1| (-346)))) (-2272 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3893 (($ $ $) 72)) (-2398 (((-108) $ $) 73)) (-2583 (((-108) $ (-713)) NIL)) (-1651 (((-713)) NIL (|has| |#1| (-346)))) (-3792 (($ (-592 |#1|)) NIL) (($) 13)) (-2696 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1640 (($ |#1| $) 67 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4254)))) (-1527 (($) NIL (|has| |#1| (-346)))) (-3781 (((-592 |#1|) $) 19 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-1260 ((|#1| $) 57 (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2154 ((|#1| $) 55 (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 34)) (-2111 (((-855) $) NIL (|has| |#1| (-346)))) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2021 (($ $ $) 70)) (-2434 ((|#1| $) 25)) (-4157 (($ |#1| $) 65)) (-3381 (($ (-855)) NIL (|has| |#1| (-346)))) (-3027 (((-1037) $) NIL)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-3672 ((|#1| $) 27)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 21)) (-3266 (($) 11)) (-2472 (($ $ |#1|) NIL) (($ $ $) 71)) (-3607 (($) NIL) (($ (-592 |#1|)) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) 16)) (-2923 (((-501) $) 52 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 61)) (-3128 (($ $) NIL (|has| |#1| (-346)))) (-4044 (((-797) $) NIL)) (-3713 (((-713) $) NIL)) (-3012 (($ (-592 |#1|)) NIL) (($) 12)) (-1326 (($ (-592 |#1|)) NIL)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 54)) (-3928 (((-108) $ $) NIL)) (-1696 (((-713) $) 10 (|has| $ (-6 -4254))))) +(((-1021 |#1|) (-403 |#1|) (-1019)) (T -1021)) NIL (-403 |#1|) -((-2673 (((-108) $ $) 7)) (-2697 (((-108) $) 32)) (-2123 ((|#2| $) 27)) (-3127 (((-108) $) 33)) (-2610 ((|#1| $) 28)) (-2269 (((-108) $) 35)) (-1362 (((-108) $) 37)) (-2698 (((-108) $) 34)) (-2621 (((-1072) $) 9)) (-2809 (((-108) $) 31)) (-2158 ((|#3| $) 26)) (-2937 (((-1036) $) 10)) (-2148 (((-108) $) 30)) (-2925 ((|#4| $) 25)) (-1555 ((|#5| $) 24)) (-2203 (((-108) $ $) 38)) (-1881 (($ $ (-525)) 14) (($ $ (-591 (-525))) 13)) (-2601 (((-591 $) $) 29)) (-1300 (($ (-591 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2686 (((-796) $) 11)) (-2775 (($ $) 16)) (-2763 (($ $) 17)) (-1739 (((-108) $) 36)) (-3944 (((-108) $ $) 6)) (-2028 (((-525) $) 15))) -(((-1021 |#1| |#2| |#3| |#4| |#5|) (-131) (-1018) (-1018) (-1018) (-1018) (-1018)) (T -1021)) -((-2203 (*1 *2 *1 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108)))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108)))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108)))) (-2601 (*1 *2 *1) (-12 (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-591 *1)) (-4 *1 (-1021 *3 *4 *5 *6 *7)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *2 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018)))) (-1555 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *2)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)))) (-1300 (*1 *1 *2) (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *2 (-1018)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)))) (-1300 (*1 *1 *2) (-12 (-4 *1 (-1021 *3 *2 *4 *5 *6)) (-4 *3 (-1018)) (-4 *2 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)))) (-1300 (*1 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *2 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)))) (-1300 (*1 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *5 *2 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *2 (-1018)) (-4 *6 (-1018)))) (-1300 (*1 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *2)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018)))) (-2763 (*1 *1 *1) (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *2 (-1018)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)))) (-2775 (*1 *1 *1) (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *2 (-1018)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-525)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018))))) -(-13 (-1018) (-10 -8 (-15 -2203 ((-108) $ $)) (-15 -1362 ((-108) $)) (-15 -1739 ((-108) $)) (-15 -2269 ((-108) $)) (-15 -2698 ((-108) $)) (-15 -3127 ((-108) $)) (-15 -2697 ((-108) $)) (-15 -2809 ((-108) $)) (-15 -2148 ((-108) $)) (-15 -2601 ((-591 $) $)) (-15 -2610 (|t#1| $)) (-15 -2123 (|t#2| $)) (-15 -2158 (|t#3| $)) (-15 -2925 (|t#4| $)) (-15 -1555 (|t#5| $)) (-15 -1300 ($ (-591 $))) (-15 -1300 ($ |t#1|)) (-15 -1300 ($ |t#2|)) (-15 -1300 ($ |t#3|)) (-15 -1300 ($ |t#4|)) (-15 -1300 ($ |t#5|)) (-15 -2763 ($ $)) (-15 -2775 ($ $)) (-15 -2028 ((-525) $)) (-15 -1881 ($ $ (-525))) (-15 -1881 ($ $ (-591 (-525)))))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL)) (-2697 (((-108) $) NIL)) (-2123 (((-1089) $) NIL)) (-3127 (((-108) $) NIL)) (-2610 (((-1072) $) NIL)) (-2269 (((-108) $) NIL)) (-1362 (((-108) $) NIL)) (-2698 (((-108) $) NIL)) (-2621 (((-1072) $) NIL)) (-2809 (((-108) $) NIL)) (-2158 (((-525) $) NIL)) (-2937 (((-1036) $) NIL)) (-2148 (((-108) $) NIL)) (-2925 (((-205) $) NIL)) (-1555 (((-796) $) NIL)) (-2203 (((-108) $ $) NIL)) (-1881 (($ $ (-525)) NIL) (($ $ (-591 (-525))) NIL)) (-2601 (((-591 $) $) NIL)) (-1300 (($ (-591 $)) NIL) (($ (-1072)) NIL) (($ (-1089)) NIL) (($ (-525)) NIL) (($ (-205)) NIL) (($ (-796)) NIL)) (-2686 (((-796) $) NIL)) (-2775 (($ $) NIL)) (-2763 (($ $) NIL)) (-1739 (((-108) $) NIL)) (-3944 (((-108) $ $) NIL)) (-2028 (((-525) $) NIL))) -(((-1022) (-1021 (-1072) (-1089) (-525) (-205) (-796))) (T -1022)) -NIL -(-1021 (-1072) (-1089) (-525) (-205) (-796)) -((-2673 (((-108) $ $) NIL)) (-2697 (((-108) $) 38)) (-2123 ((|#2| $) 42)) (-3127 (((-108) $) 37)) (-2610 ((|#1| $) 41)) (-2269 (((-108) $) 35)) (-1362 (((-108) $) 14)) (-2698 (((-108) $) 36)) (-2621 (((-1072) $) NIL)) (-2809 (((-108) $) 39)) (-2158 ((|#3| $) 44)) (-2937 (((-1036) $) NIL)) (-2148 (((-108) $) 40)) (-2925 ((|#4| $) 43)) (-1555 ((|#5| $) 45)) (-2203 (((-108) $ $) 34)) (-1881 (($ $ (-525)) 56) (($ $ (-591 (-525))) 58)) (-2601 (((-591 $) $) 22)) (-1300 (($ (-591 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2686 (((-796) $) 23)) (-2775 (($ $) 21)) (-2763 (($ $) 52)) (-1739 (((-108) $) 18)) (-3944 (((-108) $ $) 33)) (-2028 (((-525) $) 54))) -(((-1023 |#1| |#2| |#3| |#4| |#5|) (-1021 |#1| |#2| |#3| |#4| |#5|) (-1018) (-1018) (-1018) (-1018) (-1018)) (T -1023)) -NIL -(-1021 |#1| |#2| |#3| |#4| |#5|) -((-2163 (((-1176) $) 23)) (-2512 (($ (-1089) (-412) |#2|) 11)) (-2686 (((-796) $) 16))) -(((-1024 |#1| |#2|) (-13 (-373) (-10 -8 (-15 -2512 ($ (-1089) (-412) |#2|)))) (-788) (-408 |#1|)) (T -1024)) -((-2512 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-412)) (-4 *5 (-788)) (-5 *1 (-1024 *5 *4)) (-4 *4 (-408 *5))))) -(-13 (-373) (-10 -8 (-15 -2512 ($ (-1089) (-412) |#2|)))) -((-3969 (((-108) |#5| |#5|) 38)) (-3232 (((-108) |#5| |#5|) 52)) (-2800 (((-108) |#5| (-591 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-1759 (((-108) (-591 |#4|) (-591 |#4|)) 58)) (-2311 (((-108) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) 63)) (-1336 (((-1176)) 33)) (-4079 (((-1176) (-1072) (-1072) (-1072)) 29)) (-2896 (((-591 |#5|) (-591 |#5|)) 82)) (-2017 (((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) 80)) (-3801 (((-591 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|)))) (-591 |#4|) (-591 |#5|) (-108) (-108)) 102)) (-2572 (((-108) |#5| |#5|) 47)) (-2107 (((-3 (-108) "failed") |#5| |#5|) 71)) (-1412 (((-108) (-591 |#4|) (-591 |#4|)) 57)) (-2357 (((-108) (-591 |#4|) (-591 |#4|)) 59)) (-3300 (((-108) (-591 |#4|) (-591 |#4|)) 60)) (-2632 (((-3 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|))) "failed") (-591 |#4|) |#5| (-591 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-4001 (((-591 |#5|) (-591 |#5|)) 43))) -(((-1025 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4079 ((-1176) (-1072) (-1072) (-1072))) (-15 -1336 ((-1176))) (-15 -3969 ((-108) |#5| |#5|)) (-15 -4001 ((-591 |#5|) (-591 |#5|))) (-15 -2572 ((-108) |#5| |#5|)) (-15 -3232 ((-108) |#5| |#5|)) (-15 -1759 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -1412 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -2357 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -3300 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -2107 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2800 ((-108) |#5| |#5|)) (-15 -2800 ((-108) |#5| (-591 |#5|))) (-15 -2896 ((-591 |#5|) (-591 |#5|))) (-15 -2311 ((-108) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) (-15 -2017 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-15 -3801 ((-591 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|)))) (-591 |#4|) (-591 |#5|) (-108) (-108))) (-15 -2632 ((-3 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|))) "failed") (-591 |#4|) |#5| (-591 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|) (-994 |#1| |#2| |#3| |#4|)) (T -1025)) -((-2632 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *9 (-989 *6 *7 *8)) (-5 *2 (-2 (|:| -2203 (-591 *9)) (|:| -3585 *4) (|:| |ineq| (-591 *9)))) (-5 *1 (-1025 *6 *7 *8 *9 *4)) (-5 *3 (-591 *9)) (-4 *4 (-994 *6 *7 *8 *9)))) (-3801 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-591 *10)) (-5 *5 (-108)) (-4 *10 (-994 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *9 (-989 *6 *7 *8)) (-5 *2 (-591 (-2 (|:| -2203 (-591 *9)) (|:| -3585 *10) (|:| |ineq| (-591 *9))))) (-5 *1 (-1025 *6 *7 *8 *9 *10)) (-5 *3 (-591 *9)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-591 (-2 (|:| |val| (-591 *6)) (|:| -3585 *7)))) (-4 *6 (-989 *3 *4 *5)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-1025 *3 *4 *5 *6 *7)))) (-2311 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-591 *7)) (|:| -3585 *8))) (-4 *7 (-989 *4 *5 *6)) (-4 *8 (-994 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *8)))) (-2896 (*1 *2 *2) (-12 (-5 *2 (-591 *7)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *1 (-1025 *3 *4 *5 *6 *7)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1025 *5 *6 *7 *8 *3)))) (-2800 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-2107 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-3300 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-2357 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-1412 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-1759 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-3232 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-2572 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-591 *7)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *1 (-1025 *3 *4 *5 *6 *7)))) (-3969 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) (-1336 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6)))) (-4079 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) -(-10 -7 (-15 -4079 ((-1176) (-1072) (-1072) (-1072))) (-15 -1336 ((-1176))) (-15 -3969 ((-108) |#5| |#5|)) (-15 -4001 ((-591 |#5|) (-591 |#5|))) (-15 -2572 ((-108) |#5| |#5|)) (-15 -3232 ((-108) |#5| |#5|)) (-15 -1759 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -1412 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -2357 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -3300 ((-108) (-591 |#4|) (-591 |#4|))) (-15 -2107 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2800 ((-108) |#5| |#5|)) (-15 -2800 ((-108) |#5| (-591 |#5|))) (-15 -2896 ((-591 |#5|) (-591 |#5|))) (-15 -2311 ((-108) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) (-15 -2017 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-15 -3801 ((-591 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|)))) (-591 |#4|) (-591 |#5|) (-108) (-108))) (-15 -2632 ((-3 (-2 (|:| -2203 (-591 |#4|)) (|:| -3585 |#5|) (|:| |ineq| (-591 |#4|))) "failed") (-591 |#4|) |#5| (-591 |#4|) (-108) (-108) (-108) (-108) (-108)))) -((-3920 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#5|) 96)) (-3579 (((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#4| |#4| |#5|) 72)) (-4194 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|) 90)) (-3871 (((-591 |#5|) |#4| |#5|) 110)) (-2812 (((-591 |#5|) |#4| |#5|) 117)) (-3788 (((-591 |#5|) |#4| |#5|) 118)) (-3299 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|) 97)) (-1406 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|) 116)) (-4228 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-1338 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#3| (-108)) 84) (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-2012 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|) 79)) (-2552 (((-1176)) 37)) (-3368 (((-1176)) 26)) (-3718 (((-1176) (-1072) (-1072) (-1072)) 33)) (-2835 (((-1176) (-1072) (-1072) (-1072)) 22))) -(((-1026 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2835 ((-1176) (-1072) (-1072) (-1072))) (-15 -3368 ((-1176))) (-15 -3718 ((-1176) (-1072) (-1072) (-1072))) (-15 -2552 ((-1176))) (-15 -3579 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -1338 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1338 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#3| (-108))) (-15 -2012 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -4194 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -4228 ((-108) |#4| |#5|)) (-15 -3299 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -3871 ((-591 |#5|) |#4| |#5|)) (-15 -1406 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -2812 ((-591 |#5|) |#4| |#5|)) (-15 -4228 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -3788 ((-591 |#5|) |#4| |#5|)) (-15 -3920 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#5|))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|) (-994 |#1| |#2| |#3| |#4|)) (T -1026)) -((-3920 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-3788 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 *4)) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-4228 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-2812 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 *4)) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-1406 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-3871 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 *4)) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-3299 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-4228 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-4194 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-2012 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-1338 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 (-2 (|:| |val| (-591 *8)) (|:| -3585 *9)))) (-5 *5 (-108)) (-4 *8 (-989 *6 *7 *4)) (-4 *9 (-994 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *4 (-788)) (-5 *2 (-591 (-2 (|:| |val| *8) (|:| -3585 *9)))) (-5 *1 (-1026 *6 *7 *4 *8 *9)))) (-1338 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *3 (-989 *6 *7 *8)) (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-1026 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) (-3579 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))) (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) (-2552 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6)))) (-3718 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) (-3368 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) (-5 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6)))) (-2835 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) -(-10 -7 (-15 -2835 ((-1176) (-1072) (-1072) (-1072))) (-15 -3368 ((-1176))) (-15 -3718 ((-1176) (-1072) (-1072) (-1072))) (-15 -2552 ((-1176))) (-15 -3579 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -1338 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1338 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) |#3| (-108))) (-15 -2012 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -4194 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#4| |#5|)) (-15 -4228 ((-108) |#4| |#5|)) (-15 -3299 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -3871 ((-591 |#5|) |#4| |#5|)) (-15 -1406 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -2812 ((-591 |#5|) |#4| |#5|)) (-15 -4228 ((-591 (-2 (|:| |val| (-108)) (|:| -3585 |#5|))) |#4| |#5|)) (-15 -3788 ((-591 |#5|) |#4| |#5|)) (-15 -3920 ((-591 (-2 (|:| |val| |#4|) (|:| -3585 |#5|))) |#4| |#5|))) -((-2673 (((-108) $ $) 7)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |#4|)))) (-591 |#4|)) 85)) (-3227 (((-591 $) (-591 |#4|)) 86) (((-591 $) (-591 |#4|) (-108)) 111)) (-1444 (((-591 |#3|) $) 33)) (-3713 (((-108) $) 26)) (-1996 (((-108) $) 17 (|has| |#1| (-517)))) (-3750 (((-108) |#4| $) 101) (((-108) $) 97)) (-4123 ((|#4| |#4| $) 92)) (-1720 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| $) 126)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) 27)) (-3727 (((-108) $ (-712)) 44)) (-2467 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4250))) (((-3 |#4| "failed") $ |#3|) 79)) (-2055 (($) 45 T CONST)) (-3435 (((-108) $) 22 (|has| |#1| (-517)))) (-2342 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2605 (((-108) $ $) 23 (|has| |#1| (-517)))) (-2167 (((-108) $) 25 (|has| |#1| (-517)))) (-2699 (((-591 |#4|) (-591 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1533 (((-591 |#4|) (-591 |#4|) $) 18 (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) 19 (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) 36)) (-3341 (($ (-591 |#4|)) 35)) (-2884 (((-3 $ "failed") $) 82)) (-2302 ((|#4| |#4| $) 89)) (-2908 (($ $) 68 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#4| $) 67 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3797 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2490 ((|#4| |#4| $) 87)) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4250))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2082 (((-2 (|:| -1269 (-591 |#4|)) (|:| -1472 (-591 |#4|))) $) 105)) (-1987 (((-108) |#4| $) 136)) (-1949 (((-108) |#4| $) 133)) (-3256 (((-108) |#4| $) 137) (((-108) $) 134)) (-2916 (((-591 |#4|) $) 52 (|has| $ (-6 -4250)))) (-2040 (((-108) |#4| $) 104) (((-108) $) 103)) (-3998 ((|#3| $) 34)) (-3491 (((-108) $ (-712)) 43)) (-4207 (((-591 |#4|) $) 53 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 47)) (-3520 (((-591 |#3|) $) 32)) (-1574 (((-108) |#3| $) 31)) (-3295 (((-108) $ (-712)) 42)) (-2621 (((-1072) $) 9)) (-2001 (((-3 |#4| (-591 $)) |#4| |#4| $) 128)) (-2456 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| |#4| $) 127)) (-2555 (((-3 |#4| "failed") $) 83)) (-3783 (((-591 $) |#4| $) 129)) (-1929 (((-3 (-108) (-591 $)) |#4| $) 132)) (-3433 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2318 (((-591 $) |#4| $) 125) (((-591 $) (-591 |#4|) $) 124) (((-591 $) (-591 |#4|) (-591 $)) 123) (((-591 $) |#4| (-591 $)) 122)) (-1832 (($ |#4| $) 117) (($ (-591 |#4|) $) 116)) (-3664 (((-591 |#4|) $) 107)) (-1307 (((-108) |#4| $) 99) (((-108) $) 95)) (-3022 ((|#4| |#4| $) 90)) (-3300 (((-108) $ $) 110)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-3255 (((-108) |#4| $) 100) (((-108) $) 96)) (-2246 ((|#4| |#4| $) 91)) (-2937 (((-1036) $) 10)) (-2872 (((-3 |#4| "failed") $) 84)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1591 (((-3 $ "failed") $ |#4|) 78)) (-1618 (($ $ |#4|) 77) (((-591 $) |#4| $) 115) (((-591 $) |#4| (-591 $)) 114) (((-591 $) (-591 |#4|) $) 113) (((-591 $) (-591 |#4|) (-591 $)) 112)) (-3465 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) 38)) (-2077 (((-108) $) 41)) (-3164 (($) 40)) (-2743 (((-712) $) 106)) (-2960 (((-712) |#4| $) 54 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4250)))) (-2873 (($ $) 39)) (-1300 (((-501) $) 69 (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) 60)) (-3786 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-1656 (($ $) 88)) (-1918 (($ $ |#3|) 29)) (-2686 (((-796) $) 11) (((-591 |#4|) $) 37)) (-3311 (((-712) $) 76 (|has| |#3| (-346)))) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3747 (((-108) $ (-1 (-108) |#4| (-591 |#4|))) 98)) (-3996 (((-591 $) |#4| $) 121) (((-591 $) |#4| (-591 $)) 120) (((-591 $) (-591 |#4|) $) 119) (((-591 $) (-591 |#4|) (-591 $)) 118)) (-1475 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4250)))) (-1669 (((-591 |#3|) $) 81)) (-3744 (((-108) |#4| $) 135)) (-2588 (((-108) |#3| $) 80)) (-3944 (((-108) $ $) 6)) (-2028 (((-712) $) 46 (|has| $ (-6 -4250))))) -(((-1027 |#1| |#2| |#3| |#4|) (-131) (-429) (-734) (-788) (-989 |t#1| |t#2| |t#3|)) (T -1027)) -NIL -(-13 (-994 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-565 (-591 |#4|)) . T) ((-565 (-796)) . T) ((-142 |#4|) . T) ((-566 (-501)) |has| |#4| (-566 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-907 |#1| |#2| |#3| |#4|) . T) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1018) . T) ((-1119 |#1| |#2| |#3| |#4|) . T) ((-1125) . T)) -((-1450 (((-591 (-525)) (-525) (-525) (-525)) 22)) (-2086 (((-591 (-525)) (-525) (-525) (-525)) 12)) (-2183 (((-591 (-525)) (-525) (-525) (-525)) 18)) (-2721 (((-525) (-525) (-525)) 9)) (-3698 (((-1171 (-525)) (-591 (-525)) (-1171 (-525)) (-525)) 46) (((-1171 (-525)) (-1171 (-525)) (-1171 (-525)) (-525)) 41)) (-4161 (((-591 (-525)) (-591 (-525)) (-591 (-525)) (-108)) 28)) (-3038 (((-631 (-525)) (-591 (-525)) (-591 (-525)) (-631 (-525))) 45)) (-1322 (((-631 (-525)) (-591 (-525)) (-591 (-525))) 33)) (-4083 (((-591 (-631 (-525))) (-591 (-525))) 35)) (-1633 (((-591 (-525)) (-591 (-525)) (-591 (-525)) (-631 (-525))) 49)) (-1991 (((-631 (-525)) (-591 (-525)) (-591 (-525)) (-591 (-525))) 57))) -(((-1028) (-10 -7 (-15 -1991 ((-631 (-525)) (-591 (-525)) (-591 (-525)) (-591 (-525)))) (-15 -1633 ((-591 (-525)) (-591 (-525)) (-591 (-525)) (-631 (-525)))) (-15 -4083 ((-591 (-631 (-525))) (-591 (-525)))) (-15 -1322 ((-631 (-525)) (-591 (-525)) (-591 (-525)))) (-15 -3038 ((-631 (-525)) (-591 (-525)) (-591 (-525)) (-631 (-525)))) (-15 -4161 ((-591 (-525)) (-591 (-525)) (-591 (-525)) (-108))) (-15 -3698 ((-1171 (-525)) (-1171 (-525)) (-1171 (-525)) (-525))) (-15 -3698 ((-1171 (-525)) (-591 (-525)) (-1171 (-525)) (-525))) (-15 -2721 ((-525) (-525) (-525))) (-15 -2183 ((-591 (-525)) (-525) (-525) (-525))) (-15 -2086 ((-591 (-525)) (-525) (-525) (-525))) (-15 -1450 ((-591 (-525)) (-525) (-525) (-525))))) (T -1028)) -((-1450 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-1028)) (-5 *3 (-525)))) (-2086 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-1028)) (-5 *3 (-525)))) (-2183 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-1028)) (-5 *3 (-525)))) (-2721 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1028)))) (-3698 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1171 (-525))) (-5 *3 (-591 (-525))) (-5 *4 (-525)) (-5 *1 (-1028)))) (-3698 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1171 (-525))) (-5 *3 (-525)) (-5 *1 (-1028)))) (-4161 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-591 (-525))) (-5 *3 (-108)) (-5 *1 (-1028)))) (-3038 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-631 (-525))) (-5 *3 (-591 (-525))) (-5 *1 (-1028)))) (-1322 (*1 *2 *3 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-631 (-525))) (-5 *1 (-1028)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-591 (-631 (-525)))) (-5 *1 (-1028)))) (-1633 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-591 (-525))) (-5 *3 (-631 (-525))) (-5 *1 (-1028)))) (-1991 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-631 (-525))) (-5 *1 (-1028))))) -(-10 -7 (-15 -1991 ((-631 (-525)) (-591 (-525)) (-591 (-525)) (-591 (-525)))) (-15 -1633 ((-591 (-525)) (-591 (-525)) (-591 (-525)) (-631 (-525)))) (-15 -4083 ((-591 (-631 (-525))) (-591 (-525)))) (-15 -1322 ((-631 (-525)) (-591 (-525)) (-591 (-525)))) (-15 -3038 ((-631 (-525)) (-591 (-525)) (-591 (-525)) (-631 (-525)))) (-15 -4161 ((-591 (-525)) (-591 (-525)) (-591 (-525)) (-108))) (-15 -3698 ((-1171 (-525)) (-1171 (-525)) (-1171 (-525)) (-525))) (-15 -3698 ((-1171 (-525)) (-591 (-525)) (-1171 (-525)) (-525))) (-15 -2721 ((-525) (-525) (-525))) (-15 -2183 ((-591 (-525)) (-525) (-525) (-525))) (-15 -2086 ((-591 (-525)) (-525) (-525) (-525))) (-15 -1450 ((-591 (-525)) (-525) (-525) (-525)))) -((-1401 (($ $ (-854)) 12)) (** (($ $ (-854)) 10))) -(((-1029 |#1|) (-10 -8 (-15 -1401 (|#1| |#1| (-854))) (-15 ** (|#1| |#1| (-854)))) (-1030)) (T -1029)) -NIL -(-10 -8 (-15 -1401 (|#1| |#1| (-854))) (-15 ** (|#1| |#1| (-854)))) -((-2673 (((-108) $ $) 7)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-1401 (($ $ (-854)) 13)) (-3944 (((-108) $ $) 6)) (** (($ $ (-854)) 14)) (* (($ $ $) 15))) -(((-1030) (-131)) (T -1030)) -((* (*1 *1 *1 *1) (-4 *1 (-1030))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-854)))) (-1401 (*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-854))))) -(-13 (-1018) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-854))) (-15 -1401 ($ $ (-854))))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-2673 (((-108) $ $) NIL (|has| |#3| (-1018)))) (-1306 (((-108) $) NIL (|has| |#3| (-126)))) (-2191 (($ (-854)) NIL (|has| |#3| (-975)))) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3343 (($ $ $) NIL (|has| |#3| (-734)))) (-3332 (((-3 $ "failed") $ $) NIL (|has| |#3| (-126)))) (-3727 (((-108) $ (-712)) NIL)) (-2834 (((-712)) NIL (|has| |#3| (-346)))) (-4188 (((-525) $) NIL (|has| |#3| (-786)))) (-2847 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-966 (-525))) (|has| |#3| (-1018)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-966 (-385 (-525)))) (|has| |#3| (-1018)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1018)))) (-3341 (((-525) $) NIL (-12 (|has| |#3| (-966 (-525))) (|has| |#3| (-1018)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-966 (-385 (-525)))) (|has| |#3| (-1018)))) ((|#3| $) NIL (|has| |#3| (-1018)))) (-3925 (((-631 (-525)) (-631 $)) NIL (-12 (|has| |#3| (-587 (-525))) (|has| |#3| (-975)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| |#3| (-587 (-525))) (|has| |#3| (-975)))) (((-2 (|:| -2928 (-631 |#3|)) (|:| |vec| (-1171 |#3|))) (-631 $) (-1171 $)) NIL (|has| |#3| (-975))) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-975)))) (-1522 (((-3 $ "failed") $) NIL (|has| |#3| (-975)))) (-1325 (($) NIL (|has| |#3| (-346)))) (-4205 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#3| $ (-525)) 12)) (-3489 (((-108) $) NIL (|has| |#3| (-786)))) (-2916 (((-591 |#3|) $) NIL (|has| $ (-6 -4250)))) (-3865 (((-108) $) NIL (|has| |#3| (-975)))) (-2256 (((-108) $) NIL (|has| |#3| (-786)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-4207 (((-591 |#3|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#3| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-4192 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#3| |#3|) $) NIL)) (-1970 (((-854) $) NIL (|has| |#3| (-346)))) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#3| (-1018)))) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-3229 (($ (-854)) NIL (|has| |#3| (-346)))) (-2937 (((-1036) $) NIL (|has| |#3| (-1018)))) (-2872 ((|#3| $) NIL (|has| (-525) (-788)))) (-1858 (($ $ |#3|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018)))) (($ $ (-591 |#3|) (-591 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#3| (-1018))))) (-2998 (((-591 |#3|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) NIL)) (-3183 ((|#3| $ $) NIL (|has| |#3| (-975)))) (-2580 (($ (-1171 |#3|)) NIL)) (-3840 (((-128)) NIL (|has| |#3| (-341)))) (-2209 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-1 |#3| |#3|) (-712)) NIL (|has| |#3| (-975))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-975)))) (-2960 (((-712) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4250))) (((-712) |#3| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#3| (-1018))))) (-2873 (($ $) NIL)) (-2686 (((-1171 |#3|) $) NIL) (($ (-525)) NIL (-3150 (-12 (|has| |#3| (-966 (-525))) (|has| |#3| (-1018))) (|has| |#3| (-975)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-966 (-385 (-525)))) (|has| |#3| (-1018)))) (($ |#3|) NIL (|has| |#3| (-1018))) (((-796) $) NIL (|has| |#3| (-565 (-796))))) (-3425 (((-712)) NIL (|has| |#3| (-975)))) (-1475 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4250)))) (-1460 (($ $) NIL (|has| |#3| (-786)))) (-1401 (($ $ (-712)) NIL (|has| |#3| (-975))) (($ $ (-854)) NIL (|has| |#3| (-975)))) (-1830 (($) NIL (|has| |#3| (-126)) CONST)) (-1839 (($) NIL (|has| |#3| (-975)) CONST)) (-1796 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-975)))) (($ $ (-712)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-975)))) (($ $ (-1089)) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#3| (-833 (-1089))) (|has| |#3| (-975)))) (($ $ (-1 |#3| |#3|) (-712)) NIL (|has| |#3| (-975))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-975)))) (-4004 (((-108) $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-3982 (((-108) $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-3944 (((-108) $ $) NIL (|has| |#3| (-1018)))) (-3994 (((-108) $ $) NIL (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-3971 (((-108) $ $) 17 (-3150 (|has| |#3| (-734)) (|has| |#3| (-786))))) (-4059 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4047 (($ $ $) NIL (|has| |#3| (-975))) (($ $) NIL (|has| |#3| (-975)))) (-4036 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-712)) NIL (|has| |#3| (-975))) (($ $ (-854)) NIL (|has| |#3| (-975)))) (* (($ $ $) NIL (|has| |#3| (-975))) (($ (-525) $) NIL (|has| |#3| (-975))) (($ $ |#3|) NIL (|has| |#3| (-668))) (($ |#3| $) NIL (|has| |#3| (-668))) (($ (-712) $) NIL (|has| |#3| (-126))) (($ (-854) $) NIL (|has| |#3| (-25)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1031 |#1| |#2| |#3|) (-218 |#1| |#3|) (-712) (-712) (-734)) (T -1031)) +((-4028 (((-108) $ $) 7)) (-1837 (((-108) $) 32)) (-2855 ((|#2| $) 27)) (-2691 (((-108) $) 33)) (-2717 ((|#1| $) 28)) (-3552 (((-108) $) 35)) (-1468 (((-108) $) 37)) (-1898 (((-108) $) 34)) (-1707 (((-1073) $) 9)) (-2714 (((-108) $) 31)) (-2876 ((|#3| $) 26)) (-3027 (((-1037) $) 10)) (-3503 (((-108) $) 30)) (-3024 ((|#4| $) 25)) (-2778 ((|#5| $) 24)) (-3941 (((-108) $ $) 38)) (-1496 (($ $ (-525)) 14) (($ $ (-592 (-525))) 13)) (-3049 (((-592 $) $) 29)) (-2923 (($ (-592 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4044 (((-797) $) 11)) (-1575 (($ $) 16)) (-1565 (($ $) 17)) (-2942 (((-108) $) 36)) (-3899 (((-108) $ $) 6)) (-1696 (((-525) $) 15))) +(((-1022 |#1| |#2| |#3| |#4| |#5|) (-131) (-1019) (-1019) (-1019) (-1019) (-1019)) (T -1022)) +((-3941 (*1 *2 *1 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-1468 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-1898 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-2714 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-3049 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-592 *1)) (-4 *1 (-1022 *3 *4 *5 *6 *7)))) (-2717 (*1 *2 *1) (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *2 *4 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *2 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *2 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *2)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)))) (-2923 (*1 *1 *2) (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-2923 (*1 *1 *2) (-12 (-4 *1 (-1022 *3 *2 *4 *5 *6)) (-4 *3 (-1019)) (-4 *2 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-2923 (*1 *1 *2) (-12 (-4 *1 (-1022 *3 *4 *2 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *2 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-2923 (*1 *1 *2) (-12 (-4 *1 (-1022 *3 *4 *5 *2 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *2 (-1019)) (-4 *6 (-1019)))) (-2923 (*1 *1 *2) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *2)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-1565 (*1 *1 *1) (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-1575 (*1 *1 *1) (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-525)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019))))) +(-13 (-1019) (-10 -8 (-15 -3941 ((-108) $ $)) (-15 -1468 ((-108) $)) (-15 -2942 ((-108) $)) (-15 -3552 ((-108) $)) (-15 -1898 ((-108) $)) (-15 -2691 ((-108) $)) (-15 -1837 ((-108) $)) (-15 -2714 ((-108) $)) (-15 -3503 ((-108) $)) (-15 -3049 ((-592 $) $)) (-15 -2717 (|t#1| $)) (-15 -2855 (|t#2| $)) (-15 -2876 (|t#3| $)) (-15 -3024 (|t#4| $)) (-15 -2778 (|t#5| $)) (-15 -2923 ($ (-592 $))) (-15 -2923 ($ |t#1|)) (-15 -2923 ($ |t#2|)) (-15 -2923 ($ |t#3|)) (-15 -2923 ($ |t#4|)) (-15 -2923 ($ |t#5|)) (-15 -1565 ($ $)) (-15 -1575 ($ $)) (-15 -1696 ((-525) $)) (-15 -1496 ($ $ (-525))) (-15 -1496 ($ $ (-592 (-525)))))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL)) (-1837 (((-108) $) NIL)) (-2855 (((-1090) $) NIL)) (-2691 (((-108) $) NIL)) (-2717 (((-1073) $) NIL)) (-3552 (((-108) $) NIL)) (-1468 (((-108) $) NIL)) (-1898 (((-108) $) NIL)) (-1707 (((-1073) $) NIL)) (-2714 (((-108) $) NIL)) (-2876 (((-525) $) NIL)) (-3027 (((-1037) $) NIL)) (-3503 (((-108) $) NIL)) (-3024 (((-205) $) NIL)) (-2778 (((-797) $) NIL)) (-3941 (((-108) $ $) NIL)) (-1496 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-3049 (((-592 $) $) NIL)) (-2923 (($ (-592 $)) NIL) (($ (-1073)) NIL) (($ (-1090)) NIL) (($ (-525)) NIL) (($ (-205)) NIL) (($ (-797)) NIL)) (-4044 (((-797) $) NIL)) (-1575 (($ $) NIL)) (-1565 (($ $) NIL)) (-2942 (((-108) $) NIL)) (-3899 (((-108) $ $) NIL)) (-1696 (((-525) $) NIL))) +(((-1023) (-1022 (-1073) (-1090) (-525) (-205) (-797))) (T -1023)) +NIL +(-1022 (-1073) (-1090) (-525) (-205) (-797)) +((-4028 (((-108) $ $) NIL)) (-1837 (((-108) $) 38)) (-2855 ((|#2| $) 42)) (-2691 (((-108) $) 37)) (-2717 ((|#1| $) 41)) (-3552 (((-108) $) 35)) (-1468 (((-108) $) 14)) (-1898 (((-108) $) 36)) (-1707 (((-1073) $) NIL)) (-2714 (((-108) $) 39)) (-2876 ((|#3| $) 44)) (-3027 (((-1037) $) NIL)) (-3503 (((-108) $) 40)) (-3024 ((|#4| $) 43)) (-2778 ((|#5| $) 45)) (-3941 (((-108) $ $) 34)) (-1496 (($ $ (-525)) 56) (($ $ (-592 (-525))) 58)) (-3049 (((-592 $) $) 22)) (-2923 (($ (-592 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4044 (((-797) $) 23)) (-1575 (($ $) 21)) (-1565 (($ $) 52)) (-2942 (((-108) $) 18)) (-3899 (((-108) $ $) 33)) (-1696 (((-525) $) 54))) +(((-1024 |#1| |#2| |#3| |#4| |#5|) (-1022 |#1| |#2| |#3| |#4| |#5|) (-1019) (-1019) (-1019) (-1019) (-1019)) (T -1024)) +NIL +(-1022 |#1| |#2| |#3| |#4| |#5|) +((-3153 (((-1177) $) 23)) (-2093 (($ (-1090) (-412) |#2|) 11)) (-4044 (((-797) $) 16))) +(((-1025 |#1| |#2|) (-13 (-373) (-10 -8 (-15 -2093 ($ (-1090) (-412) |#2|)))) (-789) (-408 |#1|)) (T -1025)) +((-2093 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-412)) (-4 *5 (-789)) (-5 *1 (-1025 *5 *4)) (-4 *4 (-408 *5))))) +(-13 (-373) (-10 -8 (-15 -2093 ($ (-1090) (-412) |#2|)))) +((-3481 (((-108) |#5| |#5|) 38)) (-3880 (((-108) |#5| |#5|) 52)) (-3316 (((-108) |#5| (-592 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-1599 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-1722 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) 63)) (-2465 (((-1177)) 33)) (-3254 (((-1177) (-1073) (-1073) (-1073)) 29)) (-2579 (((-592 |#5|) (-592 |#5|)) 82)) (-3438 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) 80)) (-2403 (((-592 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 102)) (-1329 (((-108) |#5| |#5|) 47)) (-3561 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3245 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-1520 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-1826 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-3599 (((-3 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-4006 (((-592 |#5|) (-592 |#5|)) 43))) +(((-1026 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3254 ((-1177) (-1073) (-1073) (-1073))) (-15 -2465 ((-1177))) (-15 -3481 ((-108) |#5| |#5|)) (-15 -4006 ((-592 |#5|) (-592 |#5|))) (-15 -1329 ((-108) |#5| |#5|)) (-15 -3880 ((-108) |#5| |#5|)) (-15 -1599 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3245 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1520 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1826 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3561 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3316 ((-108) |#5| |#5|)) (-15 -3316 ((-108) |#5| (-592 |#5|))) (-15 -2579 ((-592 |#5|) (-592 |#5|))) (-15 -1722 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) (-15 -3438 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-15 -2403 ((-592 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3599 ((-3 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -1026)) +((-3599 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| -3941 (-592 *9)) (|:| -2249 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-1026 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-995 *6 *7 *8 *9)))) (-2403 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-995 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -3941 (-592 *9)) (|:| -2249 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-1026 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -2249 *7)))) (-4 *6 (-990 *3 *4 *5)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1026 *3 *4 *5 *6 *7)))) (-1722 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2249 *8))) (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-1026 *3 *4 *5 *6 *7)))) (-3316 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1026 *5 *6 *7 *8 *3)))) (-3316 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-3561 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-1826 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-1520 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-3245 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-1599 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-3880 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-1329 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-1026 *3 *4 *5 *6 *7)))) (-3481 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-2465 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-3254 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) +(-10 -7 (-15 -3254 ((-1177) (-1073) (-1073) (-1073))) (-15 -2465 ((-1177))) (-15 -3481 ((-108) |#5| |#5|)) (-15 -4006 ((-592 |#5|) (-592 |#5|))) (-15 -1329 ((-108) |#5| |#5|)) (-15 -3880 ((-108) |#5| |#5|)) (-15 -1599 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3245 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1520 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1826 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3561 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3316 ((-108) |#5| |#5|)) (-15 -3316 ((-108) |#5| (-592 |#5|))) (-15 -2579 ((-592 |#5|) (-592 |#5|))) (-15 -1722 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) (-15 -3438 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-15 -2403 ((-592 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3599 ((-3 (-2 (|:| -3941 (-592 |#4|)) (|:| -2249 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) +((-3739 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#5|) 96)) (-3201 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#4| |#4| |#5|) 72)) (-1991 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|) 90)) (-2966 (((-592 |#5|) |#4| |#5|) 110)) (-2980 (((-592 |#5|) |#4| |#5|) 117)) (-2642 (((-592 |#5|) |#4| |#5|) 118)) (-1703 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|) 97)) (-2223 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|) 116)) (-2475 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-2531 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#3| (-108)) 84) (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-1756 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|) 79)) (-3888 (((-1177)) 37)) (-3920 (((-1177)) 26)) (-4215 (((-1177) (-1073) (-1073) (-1073)) 33)) (-2369 (((-1177) (-1073) (-1073) (-1073)) 22))) +(((-1027 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2369 ((-1177) (-1073) (-1073) (-1073))) (-15 -3920 ((-1177))) (-15 -4215 ((-1177) (-1073) (-1073) (-1073))) (-15 -3888 ((-1177))) (-15 -3201 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -2531 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2531 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#3| (-108))) (-15 -1756 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -1991 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -2475 ((-108) |#4| |#5|)) (-15 -1703 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -2966 ((-592 |#5|) |#4| |#5|)) (-15 -2223 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -2980 ((-592 |#5|) |#4| |#5|)) (-15 -2475 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -2642 ((-592 |#5|) |#4| |#5|)) (-15 -3739 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -1027)) +((-3739 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2642 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2475 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2980 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2223 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2966 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1703 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2475 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1991 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1756 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2249 *9)))) (-5 *5 (-108)) (-4 *8 (-990 *6 *7 *4)) (-4 *9 (-995 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -2249 *9)))) (-5 *1 (-1027 *6 *7 *4 *8 *9)))) (-2531 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-1027 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3888 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-4215 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-3920 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-2369 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) +(-10 -7 (-15 -2369 ((-1177) (-1073) (-1073) (-1073))) (-15 -3920 ((-1177))) (-15 -4215 ((-1177) (-1073) (-1073) (-1073))) (-15 -3888 ((-1177))) (-15 -3201 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -2531 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2531 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) |#3| (-108))) (-15 -1756 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -1991 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#4| |#5|)) (-15 -2475 ((-108) |#4| |#5|)) (-15 -1703 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -2966 ((-592 |#5|) |#4| |#5|)) (-15 -2223 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -2980 ((-592 |#5|) |#4| |#5|)) (-15 -2475 ((-592 (-2 (|:| |val| (-108)) (|:| -2249 |#5|))) |#4| |#5|)) (-15 -2642 ((-592 |#5|) |#4| |#5|)) (-15 -3739 ((-592 (-2 (|:| |val| |#4|) (|:| -2249 |#5|))) |#4| |#5|))) +((-4028 (((-108) $ $) 7)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |#4|)))) (-592 |#4|)) 85)) (-2713 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-3122 (((-592 |#3|) $) 33)) (-4037 (((-108) $) 26)) (-3410 (((-108) $) 17 (|has| |#1| (-517)))) (-2576 (((-108) |#4| $) 101) (((-108) $) 97)) (-1792 ((|#4| |#4| $) 92)) (-2701 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| $) 126)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) 27)) (-2583 (((-108) $ (-713)) 44)) (-1249 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1957 (($) 45 T CONST)) (-4164 (((-108) $) 22 (|has| |#1| (-517)))) (-1333 (((-108) $ $) 24 (|has| |#1| (-517)))) (-3508 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3364 (((-108) $) 25 (|has| |#1| (-517)))) (-3722 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2523 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) 36)) (-2068 (($ (-592 |#4|)) 35)) (-1693 (((-3 $ "failed") $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1716 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-2175 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3025 ((|#4| |#4| $) 87)) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2884 (((-2 (|:| -3671 (-592 |#4|)) (|:| -3864 (-592 |#4|))) $) 105)) (-3875 (((-108) |#4| $) 136)) (-2751 (((-108) |#4| $) 133)) (-1591 (((-108) |#4| $) 137) (((-108) $) 134)) (-3781 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-1695 (((-108) |#4| $) 104) (((-108) $) 103)) (-3632 ((|#3| $) 34)) (-2010 (((-108) $ (-713)) 43)) (-2679 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 47)) (-4210 (((-592 |#3|) $) 32)) (-1506 (((-108) |#3| $) 31)) (-2350 (((-108) $ (-713)) 42)) (-1707 (((-1073) $) 9)) (-2686 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-1503 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| |#4| $) 127)) (-2618 (((-3 |#4| "failed") $) 83)) (-3509 (((-592 $) |#4| $) 129)) (-2709 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3854 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2021 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-1476 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-2338 (((-592 |#4|) $) 107)) (-2616 (((-108) |#4| $) 99) (((-108) $) 95)) (-1803 ((|#4| |#4| $) 90)) (-1826 (((-108) $ $) 110)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-1483 (((-108) |#4| $) 100) (((-108) $) 96)) (-2342 ((|#4| |#4| $) 91)) (-3027 (((-1037) $) 10)) (-1683 (((-3 |#4| "failed") $) 84)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2750 (((-3 $ "failed") $ |#4|) 78)) (-1539 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3669 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) 38)) (-3086 (((-108) $) 41)) (-3266 (($) 40)) (-1486 (((-713) $) 106)) (-3053 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-1261 (($ $) 39)) (-2923 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) 60)) (-2484 (($ $ |#3|) 28)) (-4016 (($ $ |#3|) 30)) (-1287 (($ $) 88)) (-3967 (($ $ |#3|) 29)) (-4044 (((-797) $) 11) (((-592 |#4|) $) 37)) (-2665 (((-713) $) 76 (|has| |#3| (-346)))) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2125 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3493 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2443 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2396 (((-592 |#3|) $) 81)) (-4032 (((-108) |#4| $) 135)) (-2238 (((-108) |#3| $) 80)) (-3899 (((-108) $ $) 6)) (-1696 (((-713) $) 46 (|has| $ (-6 -4254))))) +(((-1028 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -1028)) +NIL +(-13 (-995 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-908 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1126) . T)) +((-4027 (((-592 (-525)) (-525) (-525) (-525)) 22)) (-2128 (((-592 (-525)) (-525) (-525) (-525)) 12)) (-3685 (((-592 (-525)) (-525) (-525) (-525)) 18)) (-2852 (((-525) (-525) (-525)) 9)) (-1772 (((-1172 (-525)) (-592 (-525)) (-1172 (-525)) (-525)) 46) (((-1172 (-525)) (-1172 (-525)) (-1172 (-525)) (-525)) 41)) (-1821 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108)) 28)) (-3483 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 45)) (-1510 (((-632 (-525)) (-592 (-525)) (-592 (-525))) 33)) (-3370 (((-592 (-632 (-525))) (-592 (-525))) 35)) (-1296 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 49)) (-1347 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525))) 57))) +(((-1029) (-10 -7 (-15 -1347 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -1296 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -3370 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -1510 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -3483 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -1821 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -1772 ((-1172 (-525)) (-1172 (-525)) (-1172 (-525)) (-525))) (-15 -1772 ((-1172 (-525)) (-592 (-525)) (-1172 (-525)) (-525))) (-15 -2852 ((-525) (-525) (-525))) (-15 -3685 ((-592 (-525)) (-525) (-525) (-525))) (-15 -2128 ((-592 (-525)) (-525) (-525) (-525))) (-15 -4027 ((-592 (-525)) (-525) (-525) (-525))))) (T -1029)) +((-4027 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525)))) (-2128 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525)))) (-2852 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1029)))) (-1772 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1172 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525)) (-5 *1 (-1029)))) (-1772 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1172 (-525))) (-5 *3 (-525)) (-5 *1 (-1029)))) (-1821 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1029)))) (-3483 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1029)))) (-1510 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1029)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-1029)))) (-1296 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1029)))) (-1347 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1029))))) +(-10 -7 (-15 -1347 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -1296 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -3370 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -1510 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -3483 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -1821 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -1772 ((-1172 (-525)) (-1172 (-525)) (-1172 (-525)) (-525))) (-15 -1772 ((-1172 (-525)) (-592 (-525)) (-1172 (-525)) (-525))) (-15 -2852 ((-525) (-525) (-525))) (-15 -3685 ((-592 (-525)) (-525) (-525) (-525))) (-15 -2128 ((-592 (-525)) (-525) (-525) (-525))) (-15 -4027 ((-592 (-525)) (-525) (-525) (-525)))) +((-1594 (($ $ (-855)) 12)) (** (($ $ (-855)) 10))) +(((-1030 |#1|) (-10 -8 (-15 -1594 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855)))) (-1031)) (T -1030)) +NIL +(-10 -8 (-15 -1594 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855)))) +((-4028 (((-108) $ $) 7)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-1594 (($ $ (-855)) 13)) (-3899 (((-108) $ $) 6)) (** (($ $ (-855)) 14)) (* (($ $ $) 15))) +(((-1031) (-131)) (T -1031)) +((* (*1 *1 *1 *1) (-4 *1 (-1031))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-855)))) (-1594 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-855))))) +(-13 (-1019) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-855))) (-15 -1594 ($ $ (-855))))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-4028 (((-108) $ $) NIL (|has| |#3| (-1019)))) (-2464 (((-108) $) NIL (|has| |#3| (-126)))) (-3510 (($ (-855)) NIL (|has| |#3| (-976)))) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3207 (($ $ $) NIL (|has| |#3| (-735)))) (-3004 (((-3 $ "failed") $ $) NIL (|has| |#3| (-126)))) (-2583 (((-108) $ (-713)) NIL)) (-1651 (((-713)) NIL (|has| |#3| (-346)))) (-2780 (((-525) $) NIL (|has| |#3| (-787)))) (-1230 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1019)))) (-2068 (((-525) $) NIL (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019)))) ((|#3| $) NIL (|has| |#3| (-1019)))) (-1307 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976)))) (((-2 (|:| -3471 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 $) (-1172 $)) NIL (|has| |#3| (-976))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-976)))) (-1645 (((-3 $ "failed") $) NIL (|has| |#3| (-976)))) (-1527 (($) NIL (|has| |#3| (-346)))) (-2549 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#3| $ (-525)) 12)) (-2973 (((-108) $) NIL (|has| |#3| (-787)))) (-3781 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-2507 (((-108) $) NIL (|has| |#3| (-976)))) (-3721 (((-108) $) NIL (|has| |#3| (-787)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2679 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2540 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#3| |#3|) $) NIL)) (-2111 (((-855) $) NIL (|has| |#3| (-346)))) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#3| (-1019)))) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3381 (($ (-855)) NIL (|has| |#3| (-346)))) (-3027 (((-1037) $) NIL (|has| |#3| (-1019)))) (-1683 ((|#3| $) NIL (|has| (-525) (-789)))) (-1614 (($ $ |#3|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-4100 (((-592 |#3|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) NIL)) (-1580 ((|#3| $ $) NIL (|has| |#3| (-976)))) (-3020 (($ (-1172 |#3|)) NIL)) (-2374 (((-128)) NIL (|has| |#3| (-341)))) (-1576 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-976))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-976)))) (-3053 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-1261 (($ $) NIL)) (-4044 (((-1172 |#3|) $) NIL) (($ (-525)) NIL (-3215 (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019))) (|has| |#3| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019)))) (($ |#3|) NIL (|has| |#3| (-1019))) (((-797) $) NIL (|has| |#3| (-566 (-797))))) (-2502 (((-713)) NIL (|has| |#3| (-976)))) (-2443 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-2053 (($ $) NIL (|has| |#3| (-787)))) (-1594 (($ $ (-713)) NIL (|has| |#3| (-976))) (($ $ (-855)) NIL (|has| |#3| (-976)))) (-1436 (($) NIL (|has| |#3| (-126)) CONST)) (-1449 (($) NIL (|has| |#3| (-976)) CONST)) (-1990 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-976))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-976)))) (-3973 (((-108) $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3944 (((-108) $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3899 (((-108) $ $) NIL (|has| |#3| (-1019)))) (-3959 (((-108) $ $) NIL (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3928 (((-108) $ $) 17 (-3215 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4047 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4033 (($ $ $) NIL (|has| |#3| (-976))) (($ $) NIL (|has| |#3| (-976)))) (-4017 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-713)) NIL (|has| |#3| (-976))) (($ $ (-855)) NIL (|has| |#3| (-976)))) (* (($ $ $) NIL (|has| |#3| (-976))) (($ (-525) $) NIL (|has| |#3| (-976))) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ (-713) $) NIL (|has| |#3| (-126))) (($ (-855) $) NIL (|has| |#3| (-25)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1032 |#1| |#2| |#3|) (-218 |#1| |#3|) (-713) (-713) (-735)) (T -1032)) NIL (-218 |#1| |#3|) -((-2321 (((-591 (-1144 |#2| |#1|)) (-1144 |#2| |#1|) (-1144 |#2| |#1|)) 37)) (-1706 (((-525) (-1144 |#2| |#1|)) 68 (|has| |#1| (-429)))) (-2516 (((-525) (-1144 |#2| |#1|)) 54)) (-1805 (((-591 (-1144 |#2| |#1|)) (-1144 |#2| |#1|) (-1144 |#2| |#1|)) 45)) (-3081 (((-525) (-1144 |#2| |#1|) (-1144 |#2| |#1|)) 56 (|has| |#1| (-429)))) (-3084 (((-591 |#1|) (-1144 |#2| |#1|) (-1144 |#2| |#1|)) 48)) (-4097 (((-525) (-1144 |#2| |#1|) (-1144 |#2| |#1|)) 53))) -(((-1032 |#1| |#2|) (-10 -7 (-15 -2321 ((-591 (-1144 |#2| |#1|)) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -1805 ((-591 (-1144 |#2| |#1|)) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -3084 ((-591 |#1|) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -4097 ((-525) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -2516 ((-525) (-1144 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3081 ((-525) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -1706 ((-525) (-1144 |#2| |#1|)))) |%noBranch|)) (-761) (-1089)) (T -1032)) -((-1706 (*1 *2 *3) (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-429)) (-4 *4 (-761)) (-14 *5 (-1089)) (-5 *2 (-525)) (-5 *1 (-1032 *4 *5)))) (-3081 (*1 *2 *3 *3) (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-429)) (-4 *4 (-761)) (-14 *5 (-1089)) (-5 *2 (-525)) (-5 *1 (-1032 *4 *5)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-761)) (-14 *5 (-1089)) (-5 *2 (-525)) (-5 *1 (-1032 *4 *5)))) (-4097 (*1 *2 *3 *3) (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-761)) (-14 *5 (-1089)) (-5 *2 (-525)) (-5 *1 (-1032 *4 *5)))) (-3084 (*1 *2 *3 *3) (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-761)) (-14 *5 (-1089)) (-5 *2 (-591 *4)) (-5 *1 (-1032 *4 *5)))) (-1805 (*1 *2 *3 *3) (-12 (-4 *4 (-761)) (-14 *5 (-1089)) (-5 *2 (-591 (-1144 *5 *4))) (-5 *1 (-1032 *4 *5)) (-5 *3 (-1144 *5 *4)))) (-2321 (*1 *2 *3 *3) (-12 (-4 *4 (-761)) (-14 *5 (-1089)) (-5 *2 (-591 (-1144 *5 *4))) (-5 *1 (-1032 *4 *5)) (-5 *3 (-1144 *5 *4))))) -(-10 -7 (-15 -2321 ((-591 (-1144 |#2| |#1|)) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -1805 ((-591 (-1144 |#2| |#1|)) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -3084 ((-591 |#1|) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -4097 ((-525) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -2516 ((-525) (-1144 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3081 ((-525) (-1144 |#2| |#1|) (-1144 |#2| |#1|))) (-15 -1706 ((-525) (-1144 |#2| |#1|)))) |%noBranch|)) -((-4188 (((-3 (-525) "failed") |#2| (-1089) |#2| (-1072)) 17) (((-3 (-525) "failed") |#2| (-1089) (-781 |#2|)) 15) (((-3 (-525) "failed") |#2|) 54))) -(((-1033 |#1| |#2|) (-10 -7 (-15 -4188 ((-3 (-525) "failed") |#2|)) (-15 -4188 ((-3 (-525) "failed") |#2| (-1089) (-781 |#2|))) (-15 -4188 ((-3 (-525) "failed") |#2| (-1089) |#2| (-1072)))) (-13 (-517) (-788) (-966 (-525)) (-587 (-525)) (-429)) (-13 (-27) (-1111) (-408 |#1|))) (T -1033)) -((-4188 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-13 (-517) (-788) (-966 *2) (-587 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1033 *6 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *6))))) (-4188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-781 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *6))) (-4 *6 (-13 (-517) (-788) (-966 *2) (-587 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1033 *6 *3)))) (-4188 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-788) (-966 *2) (-587 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1033 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *4)))))) -(-10 -7 (-15 -4188 ((-3 (-525) "failed") |#2|)) (-15 -4188 ((-3 (-525) "failed") |#2| (-1089) (-781 |#2|))) (-15 -4188 ((-3 (-525) "failed") |#2| (-1089) |#2| (-1072)))) -((-4188 (((-3 (-525) "failed") (-385 (-885 |#1|)) (-1089) (-385 (-885 |#1|)) (-1072)) 35) (((-3 (-525) "failed") (-385 (-885 |#1|)) (-1089) (-781 (-385 (-885 |#1|)))) 30) (((-3 (-525) "failed") (-385 (-885 |#1|))) 13))) -(((-1034 |#1|) (-10 -7 (-15 -4188 ((-3 (-525) "failed") (-385 (-885 |#1|)))) (-15 -4188 ((-3 (-525) "failed") (-385 (-885 |#1|)) (-1089) (-781 (-385 (-885 |#1|))))) (-15 -4188 ((-3 (-525) "failed") (-385 (-885 |#1|)) (-1089) (-385 (-885 |#1|)) (-1072)))) (-429)) (T -1034)) -((-4188 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-385 (-885 *6))) (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1034 *6)))) (-4188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-781 (-385 (-885 *6)))) (-5 *3 (-385 (-885 *6))) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1034 *6)))) (-4188 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-429)) (-5 *2 (-525)) (-5 *1 (-1034 *4))))) -(-10 -7 (-15 -4188 ((-3 (-525) "failed") (-385 (-885 |#1|)))) (-15 -4188 ((-3 (-525) "failed") (-385 (-885 |#1|)) (-1089) (-781 (-385 (-885 |#1|))))) (-15 -4188 ((-3 (-525) "failed") (-385 (-885 |#1|)) (-1089) (-385 (-885 |#1|)) (-1072)))) -((-3421 (((-294 (-525)) (-47)) 12))) -(((-1035) (-10 -7 (-15 -3421 ((-294 (-525)) (-47))))) (T -1035)) -((-3421 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1035))))) -(-10 -7 (-15 -3421 ((-294 (-525)) (-47)))) -((-2673 (((-108) $ $) NIL)) (-1426 (($ $) 41)) (-1306 (((-108) $) 65)) (-2216 (($ $ $) 48)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 85)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3517 (($ $ $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-3329 (($ $ $ $) 74)) (-1720 (($ $) NIL)) (-3898 (((-396 $) $) NIL)) (-1965 (((-108) $ $) NIL)) (-4188 (((-525) $) NIL)) (-3423 (($ $ $) 71)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL)) (-3341 (((-525) $) NIL)) (-3265 (($ $ $) 59)) (-3925 (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 79) (((-631 (-525)) (-631 $)) 28)) (-1522 (((-3 $ "failed") $) NIL)) (-2350 (((-3 (-385 (-525)) "failed") $) NIL)) (-2157 (((-108) $) NIL)) (-3184 (((-385 (-525)) $) NIL)) (-1325 (($) 82) (($ $) 83)) (-3239 (($ $ $) 58)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL)) (-2393 (((-108) $) NIL)) (-1493 (($ $ $ $) NIL)) (-2283 (($ $ $) 80)) (-3489 (((-108) $) NIL)) (-4142 (($ $ $) NIL)) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL)) (-3865 (((-108) $) 66)) (-2116 (((-108) $) 64)) (-3389 (($ $) 42)) (-2115 (((-3 $ "failed") $) NIL)) (-2256 (((-108) $) 75)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-3480 (($ $ $ $) 72)) (-1923 (($ $ $) 68) (($) 39)) (-3475 (($ $ $) 67) (($) 38)) (-1576 (($ $) NIL)) (-2445 (($ $) 70)) (-2081 (($ $ $) NIL) (($ (-591 $)) NIL)) (-2621 (((-1072) $) NIL)) (-3222 (($ $ $) NIL)) (-3492 (($) NIL T CONST)) (-4025 (($ $) 50)) (-2937 (((-1036) $) NIL) (($ $) 69)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL)) (-2124 (($ $ $) 62) (($ (-591 $)) NIL)) (-2106 (($ $) NIL)) (-2542 (((-396 $) $) NIL)) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL)) (-3210 (((-3 $ "failed") $ $) NIL)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL)) (-2882 (((-108) $) NIL)) (-3048 (((-712) $) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 61)) (-2209 (($ $ (-712)) NIL) (($ $) NIL)) (-1853 (($ $) 51)) (-2873 (($ $) NIL)) (-1300 (((-525) $) 32) (((-501) $) NIL) (((-825 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL)) (-2686 (((-796) $) 31) (($ (-525)) 81) (($ $) NIL) (($ (-525)) 81)) (-3425 (((-712)) NIL)) (-3760 (((-108) $ $) NIL)) (-3808 (($ $ $) NIL)) (-3523 (($) 37)) (-1724 (((-108) $ $) NIL)) (-1825 (($ $ $ $) 73)) (-1460 (($ $) 63)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-3691 (($ $ $) 44)) (-1830 (($) 35 T CONST)) (-3589 (($ $ $) 47)) (-1839 (($) 36 T CONST)) (-3042 (((-1072) $) 21) (((-1072) $ (-108)) 23) (((-1176) (-763) $) 24) (((-1176) (-763) $ (-108)) 25)) (-3598 (($ $) 45)) (-1796 (($ $ (-712)) NIL) (($ $) NIL)) (-3578 (($ $ $) 46)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 40)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 49)) (-3677 (($ $ $) 43)) (-4047 (($ $) 52) (($ $ $) 54)) (-4036 (($ $ $) 53)) (** (($ $ (-854)) NIL) (($ $ (-712)) 57)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 34) (($ $ $) 55))) -(((-1036) (-13 (-510) (-606) (-769) (-10 -8 (-6 -4237) (-6 -4242) (-6 -4238) (-15 -3475 ($)) (-15 -1923 ($)) (-15 -3389 ($ $)) (-15 -1426 ($ $)) (-15 -3677 ($ $ $)) (-15 -3691 ($ $ $)) (-15 -2216 ($ $ $)) (-15 -3598 ($ $)) (-15 -3578 ($ $ $)) (-15 -3589 ($ $ $))))) (T -1036)) -((-3691 (*1 *1 *1 *1) (-5 *1 (-1036))) (-3677 (*1 *1 *1 *1) (-5 *1 (-1036))) (-1426 (*1 *1 *1) (-5 *1 (-1036))) (-3475 (*1 *1) (-5 *1 (-1036))) (-1923 (*1 *1) (-5 *1 (-1036))) (-3389 (*1 *1 *1) (-5 *1 (-1036))) (-2216 (*1 *1 *1 *1) (-5 *1 (-1036))) (-3598 (*1 *1 *1) (-5 *1 (-1036))) (-3578 (*1 *1 *1 *1) (-5 *1 (-1036))) (-3589 (*1 *1 *1 *1) (-5 *1 (-1036)))) -(-13 (-510) (-606) (-769) (-10 -8 (-6 -4237) (-6 -4242) (-6 -4238) (-15 -3475 ($)) (-15 -1923 ($)) (-15 -3389 ($ $)) (-15 -1426 ($ $)) (-15 -3677 ($ $ $)) (-15 -3691 ($ $ $)) (-15 -2216 ($ $ $)) (-15 -3598 ($ $)) (-15 -3578 ($ $ $)) (-15 -3589 ($ $ $)))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-1505 ((|#1| $) 44)) (-3727 (((-108) $ (-712)) 8)) (-2055 (($) 7 T CONST)) (-1593 ((|#1| |#1| $) 46)) (-1473 ((|#1| $) 45)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-3949 ((|#1| $) 39)) (-1520 (($ |#1| $) 40)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-4166 ((|#1| $) 41)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-2333 (((-712) $) 43)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) 42)) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-1037 |#1|) (-131) (-1125)) (T -1037)) -((-1593 (*1 *2 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1125)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1125)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1125)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-1125)) (-5 *2 (-712))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4250) (-15 -1593 (|t#1| |t#1| $)) (-15 -1473 (|t#1| $)) (-15 -1505 (|t#1| $)) (-15 -2333 ((-712) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-1481 ((|#3| $) 76)) (-4174 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3341 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#3| $) 37)) (-3925 (((-631 (-525)) (-631 $)) NIL) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL) (((-2 (|:| -2928 (-631 |#3|)) (|:| |vec| (-1171 |#3|))) (-631 $) (-1171 $)) 73) (((-631 |#3|) (-631 $)) 65)) (-2209 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089)) NIL) (($ $ (-712)) NIL) (($ $) NIL)) (-2102 ((|#3| $) 78)) (-3030 ((|#4| $) 32)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#3|) 16)) (** (($ $ (-854)) NIL) (($ $ (-712)) 15) (($ $ (-525)) 82))) -(((-1038 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -2102 (|#3| |#1|)) (-15 -1481 (|#3| |#1|)) (-15 -3030 (|#4| |#1|)) (-15 -3925 ((-631 |#3|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#3|)) (|:| |vec| (-1171 |#3|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3341 (|#3| |#1|)) (-15 -4174 ((-3 |#3| "failed") |#1|)) (-15 -2686 (|#1| |#3|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|) (-712))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2686 (|#1| (-525))) (-15 ** (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-854))) (-15 -2686 ((-796) |#1|))) (-1039 |#2| |#3| |#4| |#5|) (-712) (-975) (-218 |#2| |#3|) (-218 |#2| |#3|)) (T -1038)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -2102 (|#3| |#1|)) (-15 -1481 (|#3| |#1|)) (-15 -3030 (|#4| |#1|)) (-15 -3925 ((-631 |#3|) (-631 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 |#3|)) (|:| |vec| (-1171 |#3|))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 |#1|) (-1171 |#1|))) (-15 -3925 ((-631 (-525)) (-631 |#1|))) (-15 -3341 (|#3| |#1|)) (-15 -4174 ((-3 |#3| "failed") |#1|)) (-15 -2686 (|#1| |#3|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-525) |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|) (-712))) (-15 -2209 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2686 (|#1| (-525))) (-15 ** (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-854))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1481 ((|#2| $) 72)) (-1711 (((-108) $) 112)) (-3332 (((-3 $ "failed") $ $) 19)) (-1478 (((-108) $) 110)) (-3727 (((-108) $ (-712)) 102)) (-1416 (($ |#2|) 75)) (-2055 (($) 17 T CONST)) (-1352 (($ $) 129 (|has| |#2| (-286)))) (-2578 ((|#3| $ (-525)) 124)) (-4174 (((-3 (-525) "failed") $) 86 (|has| |#2| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) 84 (|has| |#2| (-966 (-385 (-525))))) (((-3 |#2| "failed") $) 81)) (-3341 (((-525) $) 87 (|has| |#2| (-966 (-525)))) (((-385 (-525)) $) 85 (|has| |#2| (-966 (-385 (-525))))) ((|#2| $) 80)) (-3925 (((-631 (-525)) (-631 $)) 79 (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 78 (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) 77) (((-631 |#2|) (-631 $)) 76)) (-1522 (((-3 $ "failed") $) 34)) (-2193 (((-712) $) 130 (|has| |#2| (-517)))) (-4121 ((|#2| $ (-525) (-525)) 122)) (-2916 (((-591 |#2|) $) 95 (|has| $ (-6 -4250)))) (-3865 (((-108) $) 31)) (-1613 (((-712) $) 131 (|has| |#2| (-517)))) (-2523 (((-591 |#4|) $) 132 (|has| |#2| (-517)))) (-4127 (((-712) $) 118)) (-4140 (((-712) $) 119)) (-3491 (((-108) $ (-712)) 103)) (-1806 ((|#2| $) 67 (|has| |#2| (-6 (-4252 "*"))))) (-3142 (((-525) $) 114)) (-3660 (((-525) $) 116)) (-4207 (((-591 |#2|) $) 94 (|has| $ (-6 -4250)))) (-3956 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250))))) (-3882 (((-525) $) 115)) (-2494 (((-525) $) 117)) (-1572 (($ (-591 (-591 |#2|))) 109)) (-4192 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3093 (((-591 (-591 |#2|)) $) 120)) (-3295 (((-108) $ (-712)) 104)) (-2621 (((-1072) $) 9)) (-2902 (((-3 $ "failed") $) 66 (|has| |#2| (-341)))) (-2937 (((-1036) $) 10)) (-3210 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-517)))) (-3465 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#2|))) 91 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) 90 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) 88 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) 108)) (-2077 (((-108) $) 105)) (-3164 (($) 106)) (-1881 ((|#2| $ (-525) (-525) |#2|) 123) ((|#2| $ (-525) (-525)) 121)) (-2209 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-712)) 51) (($ $ (-591 (-1089)) (-591 (-712))) 44 (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) 43 (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) 42 (|has| |#2| (-833 (-1089)))) (($ $ (-1089)) 41 (|has| |#2| (-833 (-1089)))) (($ $ (-712)) 39 (|has| |#2| (-213))) (($ $) 37 (|has| |#2| (-213)))) (-2102 ((|#2| $) 71)) (-1968 (($ (-591 |#2|)) 74)) (-2348 (((-108) $) 111)) (-3030 ((|#3| $) 73)) (-4145 ((|#2| $) 68 (|has| |#2| (-6 (-4252 "*"))))) (-2960 (((-712) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4250))) (((-712) |#2| $) 93 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 107)) (-1256 ((|#4| $ (-525)) 125)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 83 (|has| |#2| (-966 (-385 (-525))))) (($ |#2|) 82)) (-3425 (((-712)) 29)) (-1475 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4250)))) (-1986 (((-108) $) 113)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-712)) 49) (($ $ (-591 (-1089)) (-591 (-712))) 48 (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) 47 (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) 46 (|has| |#2| (-833 (-1089)))) (($ $ (-1089)) 45 (|has| |#2| (-833 (-1089)))) (($ $ (-712)) 40 (|has| |#2| (-213))) (($ $) 38 (|has| |#2| (-213)))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#2|) 128 (|has| |#2| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 65 (|has| |#2| (-341)))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2028 (((-712) $) 101 (|has| $ (-6 -4250))))) -(((-1039 |#1| |#2| |#3| |#4|) (-131) (-712) (-975) (-218 |t#1| |t#2|) (-218 |t#1| |t#2|)) (T -1039)) -((-1416 (*1 *1 *2) (-12 (-4 *2 (-975)) (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-591 *4)) (-4 *4 (-975)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-975)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-975)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-975)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *5 *2)) (-4 *4 (-975)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-975)) (-4 *2 (-218 *3 *4)) (-4 *5 (-218 *3 *4)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4252 "*"))) (-4 *2 (-975)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4252 "*"))) (-4 *2 (-975)))) (-2902 (*1 *1 *1) (|partial| -12 (-4 *1 (-1039 *2 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *4 (-975)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341))))) -(-13 (-211 |t#2|) (-107 |t#2| |t#2|) (-978 |t#1| |t#1| |t#2| |t#3| |t#4|) (-389 |t#2|) (-355 |t#2|) (-10 -8 (IF (|has| |t#2| (-160)) (-6 (-659 |t#2|)) |%noBranch|) (-15 -1416 ($ |t#2|)) (-15 -1968 ($ (-591 |t#2|))) (-15 -3030 (|t#3| $)) (-15 -1481 (|t#2| $)) (-15 -2102 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4252 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -4145 (|t#2| $)) (-15 -1806 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-341)) (PROGN (-15 -2902 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4252 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-565 (-796)) . T) ((-211 |#2|) . T) ((-213) |has| |#2| (-213)) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-355 |#2|) . T) ((-389 |#2|) . T) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-593 |#2|) . T) ((-593 $) . T) ((-587 (-525)) |has| |#2| (-587 (-525))) ((-587 |#2|) . T) ((-659 |#2|) -3150 (|has| |#2| (-160)) (|has| |#2| (-6 (-4252 "*")))) ((-668) . T) ((-833 (-1089)) |has| |#2| (-833 (-1089))) ((-978 |#1| |#1| |#2| |#3| |#4|) . T) ((-966 (-385 (-525))) |has| |#2| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#2| (-966 (-525))) ((-966 |#2|) . T) ((-981 |#2|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1125) . T)) -((-2331 ((|#4| |#4|) 70)) (-3773 ((|#4| |#4|) 65)) (-2131 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3612 (-591 |#3|))) |#4| |#3|) 78)) (-2169 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1410 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1040 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3773 (|#4| |#4|)) (-15 -1410 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2331 (|#4| |#4|)) (-15 -2169 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2131 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3612 (-591 |#3|))) |#4| |#3|))) (-286) (-351 |#1|) (-351 |#1|) (-629 |#1| |#2| |#3|)) (T -1040)) -((-2131 (*1 *2 *3 *4) (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) (-5 *1 (-1040 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) (-2169 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) (-3773 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -(-10 -7 (-15 -3773 (|#4| |#4|)) (-15 -1410 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2331 (|#4| |#4|)) (-15 -2169 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2131 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3612 (-591 |#3|))) |#4| |#3|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 17)) (-1444 (((-591 |#2|) $) 161)) (-2514 (((-1085 $) $ |#2|) 54) (((-1085 |#1|) $) 43)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 110 (|has| |#1| (-517)))) (-3641 (($ $) 112 (|has| |#1| (-517)))) (-3077 (((-108) $) 114 (|has| |#1| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 |#2|)) 194)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-1720 (($ $) NIL (|has| |#1| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) 158) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 |#2| "failed") $) NIL)) (-3341 ((|#1| $) 156) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) ((|#2| $) NIL)) (-1788 (($ $ $ |#2|) NIL (|has| |#1| (-160)))) (-1575 (($ $) 198)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) 82)) (-3153 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#1| (-842)))) (-2615 (($ $ |#1| (-497 |#2|) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| |#1| (-819 (-357))) (|has| |#2| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| |#1| (-819 (-525))) (|has| |#2| (-819 (-525)))))) (-3865 (((-108) $) 19)) (-3667 (((-712) $) 26)) (-1434 (($ (-1085 |#1|) |#2|) 48) (($ (-1085 $) |#2|) 64)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) 32)) (-1422 (($ |#1| (-497 |#2|)) 71) (($ $ |#2| (-712)) 52) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ |#2|) NIL)) (-3629 (((-497 |#2|) $) 188) (((-712) $ |#2|) 189) (((-591 (-712)) $ (-591 |#2|)) 190)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2508 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) 122)) (-3027 (((-3 |#2| "failed") $) 163)) (-1548 (($ $) 197)) (-1556 ((|#1| $) 37)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2621 (((-1072) $) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| |#2|) (|:| -3987 (-712))) "failed") $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) 33)) (-1540 ((|#1| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 140 (|has| |#1| (-429)))) (-2124 (($ (-591 $)) 145 (|has| |#1| (-429))) (($ $ $) 132 (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-842)))) (-3210 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-517)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-591 |#2|) (-591 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-591 |#2|) (-591 $)) 178)) (-2858 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-2209 (($ $ |#2|) 196) (($ $ (-591 |#2|)) NIL) (($ $ |#2| (-712)) NIL) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-2743 (((-497 |#2|) $) 184) (((-712) $ |#2|) 180) (((-591 (-712)) $ (-591 |#2|)) 182)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| |#1| (-566 (-825 (-357)))) (|has| |#2| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| |#1| (-566 (-825 (-525)))) (|has| |#2| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-566 (-501))) (|has| |#2| (-566 (-501)))))) (-2827 ((|#1| $) 128 (|has| |#1| (-429))) (($ $ |#2|) 131 (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2686 (((-796) $) 151) (($ (-525)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525))))))) (-3109 (((-591 |#1|) $) 154)) (-1263 ((|#1| $ (-497 |#2|)) 73) (($ $ |#2| (-712)) NIL) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) 79)) (-2931 (($ $ $ (-712)) NIL (|has| |#1| (-160)))) (-1724 (((-108) $ $) 117 (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 102) (($ $ (-712)) 104)) (-1830 (($) 12 T CONST)) (-1839 (($) 14 T CONST)) (-1796 (($ $ |#2|) NIL) (($ $ (-591 |#2|)) NIL) (($ $ |#2| (-712)) NIL) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) 97)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ |#1|) 126 (|has| |#1| (-341)))) (-4047 (($ $) 85) (($ $ $) 95)) (-4036 (($ $ $) 49)) (** (($ $ (-854)) 103) (($ $ (-712)) 100)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 88) (($ $ $) 65) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1041 |#1| |#2|) (-882 |#1| (-497 |#2|) |#2|) (-975) (-788)) (T -1041)) -NIL -(-882 |#1| (-497 |#2|) |#2|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 |#2|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-4087 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4058 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-4109 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3298 (((-885 |#1|) $ (-712)) NIL) (((-885 |#1|) $ (-712) (-712)) NIL)) (-1795 (((-108) $) NIL)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-712) $ |#2|) NIL) (((-712) $ |#2| (-712)) NIL)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3802 (((-108) $) NIL)) (-1422 (($ $ (-591 |#2|) (-591 (-497 |#2|))) NIL) (($ $ |#2| (-497 |#2|)) NIL) (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-712)) 58) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2452 (($ $ |#2|) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-385 (-525)))))) (-2937 (((-1036) $) NIL)) (-2402 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-385 (-525)))))) (-1618 (($ $ (-712)) 15)) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2288 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (($ $ |#2| $) 97) (($ $ (-591 |#2|) (-591 $)) 90) (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL)) (-2209 (($ $ |#2|) 100) (($ $ (-591 |#2|)) NIL) (($ $ |#2| (-712)) NIL) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-2743 (((-497 |#2|) $) NIL)) (-1563 (((-1 (-1070 |#3|) |#3|) (-591 |#2|) (-591 (-1070 |#3|))) 79)) (-4122 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) 17)) (-2686 (((-796) $) 182) (($ (-525)) NIL) (($ |#1|) 44 (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#2|) 65) (($ |#3|) 63)) (-1263 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-712)) NIL) (($ $ (-591 |#2|) (-591 (-712))) NIL) ((|#3| $ (-712)) 42)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-4163 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-1234 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 18 T CONST)) (-1839 (($) 10 T CONST)) (-1796 (($ $ |#2|) NIL) (($ $ (-591 |#2|)) NIL) (($ $ |#2| (-712)) NIL) (($ $ (-591 |#2|) (-591 (-712))) NIL)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#1|) 184 (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 61)) (** (($ $ (-854)) NIL) (($ $ (-712)) 70) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 103 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 60) (($ $ (-385 (-525))) 108 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 106 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) -(((-1042 |#1| |#2| |#3|) (-13 (-682 |#1| |#2|) (-10 -8 (-15 -1263 (|#3| $ (-712))) (-15 -2686 ($ |#2|)) (-15 -2686 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1563 ((-1 (-1070 |#3|) |#3|) (-591 |#2|) (-591 (-1070 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $ |#2| |#1|)) (-15 -2402 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-975) (-788) (-882 |#1| (-497 |#2|) |#2|)) (T -1042)) -((-1263 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *2 (-882 *4 (-497 *5) *5)) (-5 *1 (-1042 *4 *5 *2)) (-4 *4 (-975)) (-4 *5 (-788)))) (-2686 (*1 *1 *2) (-12 (-4 *3 (-975)) (-4 *2 (-788)) (-5 *1 (-1042 *3 *2 *4)) (-4 *4 (-882 *3 (-497 *2) *2)))) (-2686 (*1 *1 *2) (-12 (-4 *3 (-975)) (-4 *4 (-788)) (-5 *1 (-1042 *3 *4 *2)) (-4 *2 (-882 *3 (-497 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-975)) (-4 *4 (-788)) (-5 *1 (-1042 *3 *4 *2)) (-4 *2 (-882 *3 (-497 *4) *4)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6)) (-5 *4 (-591 (-1070 *7))) (-4 *6 (-788)) (-4 *7 (-882 *5 (-497 *6) *6)) (-4 *5 (-975)) (-5 *2 (-1 (-1070 *7) *7)) (-5 *1 (-1042 *5 *6 *7)))) (-2452 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-4 *2 (-788)) (-5 *1 (-1042 *3 *2 *4)) (-4 *4 (-882 *3 (-497 *2) *2)))) (-2402 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1042 *4 *3 *5))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-975)) (-4 *3 (-788)) (-5 *1 (-1042 *4 *3 *5)) (-4 *5 (-882 *4 (-497 *3) *3))))) -(-13 (-682 |#1| |#2|) (-10 -8 (-15 -1263 (|#3| $ (-712))) (-15 -2686 ($ |#2|)) (-15 -2686 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1563 ((-1 (-1070 |#3|) |#3|) (-591 |#2|) (-591 (-1070 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $ |#2| |#1|)) (-15 -2402 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2673 (((-108) $ $) 7)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |#4|)))) (-591 |#4|)) 85)) (-3227 (((-591 $) (-591 |#4|)) 86) (((-591 $) (-591 |#4|) (-108)) 111)) (-1444 (((-591 |#3|) $) 33)) (-3713 (((-108) $) 26)) (-1996 (((-108) $) 17 (|has| |#1| (-517)))) (-3750 (((-108) |#4| $) 101) (((-108) $) 97)) (-4123 ((|#4| |#4| $) 92)) (-1720 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| $) 126)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) 27)) (-3727 (((-108) $ (-712)) 44)) (-2467 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4250))) (((-3 |#4| "failed") $ |#3|) 79)) (-2055 (($) 45 T CONST)) (-3435 (((-108) $) 22 (|has| |#1| (-517)))) (-2342 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2605 (((-108) $ $) 23 (|has| |#1| (-517)))) (-2167 (((-108) $) 25 (|has| |#1| (-517)))) (-2699 (((-591 |#4|) (-591 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1533 (((-591 |#4|) (-591 |#4|) $) 18 (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) 19 (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) 36)) (-3341 (($ (-591 |#4|)) 35)) (-2884 (((-3 $ "failed") $) 82)) (-2302 ((|#4| |#4| $) 89)) (-2908 (($ $) 68 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#4| $) 67 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3797 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2490 ((|#4| |#4| $) 87)) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4250))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2082 (((-2 (|:| -1269 (-591 |#4|)) (|:| -1472 (-591 |#4|))) $) 105)) (-1987 (((-108) |#4| $) 136)) (-1949 (((-108) |#4| $) 133)) (-3256 (((-108) |#4| $) 137) (((-108) $) 134)) (-2916 (((-591 |#4|) $) 52 (|has| $ (-6 -4250)))) (-2040 (((-108) |#4| $) 104) (((-108) $) 103)) (-3998 ((|#3| $) 34)) (-3491 (((-108) $ (-712)) 43)) (-4207 (((-591 |#4|) $) 53 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 47)) (-3520 (((-591 |#3|) $) 32)) (-1574 (((-108) |#3| $) 31)) (-3295 (((-108) $ (-712)) 42)) (-2621 (((-1072) $) 9)) (-2001 (((-3 |#4| (-591 $)) |#4| |#4| $) 128)) (-2456 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| |#4| $) 127)) (-2555 (((-3 |#4| "failed") $) 83)) (-3783 (((-591 $) |#4| $) 129)) (-1929 (((-3 (-108) (-591 $)) |#4| $) 132)) (-3433 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2318 (((-591 $) |#4| $) 125) (((-591 $) (-591 |#4|) $) 124) (((-591 $) (-591 |#4|) (-591 $)) 123) (((-591 $) |#4| (-591 $)) 122)) (-1832 (($ |#4| $) 117) (($ (-591 |#4|) $) 116)) (-3664 (((-591 |#4|) $) 107)) (-1307 (((-108) |#4| $) 99) (((-108) $) 95)) (-3022 ((|#4| |#4| $) 90)) (-3300 (((-108) $ $) 110)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-3255 (((-108) |#4| $) 100) (((-108) $) 96)) (-2246 ((|#4| |#4| $) 91)) (-2937 (((-1036) $) 10)) (-2872 (((-3 |#4| "failed") $) 84)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1591 (((-3 $ "failed") $ |#4|) 78)) (-1618 (($ $ |#4|) 77) (((-591 $) |#4| $) 115) (((-591 $) |#4| (-591 $)) 114) (((-591 $) (-591 |#4|) $) 113) (((-591 $) (-591 |#4|) (-591 $)) 112)) (-3465 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) 38)) (-2077 (((-108) $) 41)) (-3164 (($) 40)) (-2743 (((-712) $) 106)) (-2960 (((-712) |#4| $) 54 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4250)))) (-2873 (($ $) 39)) (-1300 (((-501) $) 69 (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) 60)) (-3786 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-1656 (($ $) 88)) (-1918 (($ $ |#3|) 29)) (-2686 (((-796) $) 11) (((-591 |#4|) $) 37)) (-3311 (((-712) $) 76 (|has| |#3| (-346)))) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3747 (((-108) $ (-1 (-108) |#4| (-591 |#4|))) 98)) (-3996 (((-591 $) |#4| $) 121) (((-591 $) |#4| (-591 $)) 120) (((-591 $) (-591 |#4|) $) 119) (((-591 $) (-591 |#4|) (-591 $)) 118)) (-1475 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4250)))) (-1669 (((-591 |#3|) $) 81)) (-3744 (((-108) |#4| $) 135)) (-2588 (((-108) |#3| $) 80)) (-3944 (((-108) $ $) 6)) (-2028 (((-712) $) 46 (|has| $ (-6 -4250))))) -(((-1043 |#1| |#2| |#3| |#4|) (-131) (-429) (-734) (-788) (-989 |t#1| |t#2| |t#3|)) (T -1043)) -NIL -(-13 (-1027 |t#1| |t#2| |t#3| |t#4|) (-725 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-565 (-591 |#4|)) . T) ((-565 (-796)) . T) ((-142 |#4|) . T) ((-566 (-501)) |has| |#4| (-566 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-725 |#1| |#2| |#3| |#4|) . T) ((-907 |#1| |#2| |#3| |#4|) . T) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1018) . T) ((-1027 |#1| |#2| |#3| |#4|) . T) ((-1119 |#1| |#2| |#3| |#4|) . T) ((-1125) . T)) -((-2751 (((-591 |#2|) |#1|) 12)) (-4063 (((-591 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-591 |#2|) |#1|) 49)) (-3112 (((-591 |#2|) |#2| |#2| |#2|) 36) (((-591 |#2|) |#1|) 47)) (-2285 ((|#2| |#1|) 43)) (-3753 (((-2 (|:| |solns| (-591 |#2|)) (|:| |maps| (-591 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3272 (((-591 |#2|) |#2| |#2|) 35) (((-591 |#2|) |#1|) 46)) (-1844 (((-591 |#2|) |#2| |#2| |#2| |#2|) 37) (((-591 |#2|) |#1|) 48)) (-4175 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-1877 ((|#2| |#2| |#2| |#2|) 40)) (-2125 ((|#2| |#2| |#2|) 39)) (-3481 ((|#2| |#2| |#2| |#2| |#2|) 41))) -(((-1044 |#1| |#2|) (-10 -7 (-15 -2751 ((-591 |#2|) |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -3753 ((-2 (|:| |solns| (-591 |#2|)) (|:| |maps| (-591 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3272 ((-591 |#2|) |#1|)) (-15 -3112 ((-591 |#2|) |#1|)) (-15 -1844 ((-591 |#2|) |#1|)) (-15 -4063 ((-591 |#2|) |#1|)) (-15 -3272 ((-591 |#2|) |#2| |#2|)) (-15 -3112 ((-591 |#2|) |#2| |#2| |#2|)) (-15 -1844 ((-591 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4063 ((-591 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2125 (|#2| |#2| |#2|)) (-15 -1877 (|#2| |#2| |#2| |#2|)) (-15 -3481 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4175 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1147 |#2|) (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (T -1044)) -((-4175 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2)))) (-3481 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2)))) (-1877 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2)))) (-2125 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2)))) (-4063 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-591 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1147 *3)))) (-1844 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-591 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1147 *3)))) (-3112 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-591 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1147 *3)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-591 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1147 *3)))) (-4063 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4)))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4)))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4)))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-2 (|:| |solns| (-591 *5)) (|:| |maps| (-591 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1044 *3 *5)) (-4 *3 (-1147 *5)))) (-2285 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2)))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -2751 ((-591 |#2|) |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -3753 ((-2 (|:| |solns| (-591 |#2|)) (|:| |maps| (-591 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3272 ((-591 |#2|) |#1|)) (-15 -3112 ((-591 |#2|) |#1|)) (-15 -1844 ((-591 |#2|) |#1|)) (-15 -4063 ((-591 |#2|) |#1|)) (-15 -3272 ((-591 |#2|) |#2| |#2|)) (-15 -3112 ((-591 |#2|) |#2| |#2| |#2|)) (-15 -1844 ((-591 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4063 ((-591 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2125 (|#2| |#2| |#2|)) (-15 -1877 (|#2| |#2| |#2| |#2|)) (-15 -3481 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4175 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-1278 (((-591 (-591 (-273 (-294 |#1|)))) (-591 (-273 (-385 (-885 |#1|))))) 95) (((-591 (-591 (-273 (-294 |#1|)))) (-591 (-273 (-385 (-885 |#1|)))) (-591 (-1089))) 94) (((-591 (-591 (-273 (-294 |#1|)))) (-591 (-385 (-885 |#1|)))) 92) (((-591 (-591 (-273 (-294 |#1|)))) (-591 (-385 (-885 |#1|))) (-591 (-1089))) 90) (((-591 (-273 (-294 |#1|))) (-273 (-385 (-885 |#1|)))) 75) (((-591 (-273 (-294 |#1|))) (-273 (-385 (-885 |#1|))) (-1089)) 76) (((-591 (-273 (-294 |#1|))) (-385 (-885 |#1|))) 70) (((-591 (-273 (-294 |#1|))) (-385 (-885 |#1|)) (-1089)) 59)) (-2009 (((-591 (-591 (-294 |#1|))) (-591 (-385 (-885 |#1|))) (-591 (-1089))) 88) (((-591 (-294 |#1|)) (-385 (-885 |#1|)) (-1089)) 43)) (-1761 (((-1079 (-591 (-294 |#1|)) (-591 (-273 (-294 |#1|)))) (-385 (-885 |#1|)) (-1089)) 98) (((-1079 (-591 (-294 |#1|)) (-591 (-273 (-294 |#1|)))) (-273 (-385 (-885 |#1|))) (-1089)) 97))) -(((-1045 |#1|) (-10 -7 (-15 -1278 ((-591 (-273 (-294 |#1|))) (-385 (-885 |#1|)) (-1089))) (-15 -1278 ((-591 (-273 (-294 |#1|))) (-385 (-885 |#1|)))) (-15 -1278 ((-591 (-273 (-294 |#1|))) (-273 (-385 (-885 |#1|))) (-1089))) (-15 -1278 ((-591 (-273 (-294 |#1|))) (-273 (-385 (-885 |#1|))))) (-15 -1278 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-385 (-885 |#1|))) (-591 (-1089)))) (-15 -1278 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-385 (-885 |#1|))))) (-15 -1278 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-273 (-385 (-885 |#1|)))) (-591 (-1089)))) (-15 -1278 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-273 (-385 (-885 |#1|)))))) (-15 -2009 ((-591 (-294 |#1|)) (-385 (-885 |#1|)) (-1089))) (-15 -2009 ((-591 (-591 (-294 |#1|))) (-591 (-385 (-885 |#1|))) (-591 (-1089)))) (-15 -1761 ((-1079 (-591 (-294 |#1|)) (-591 (-273 (-294 |#1|)))) (-273 (-385 (-885 |#1|))) (-1089))) (-15 -1761 ((-1079 (-591 (-294 |#1|)) (-591 (-273 (-294 |#1|)))) (-385 (-885 |#1|)) (-1089)))) (-13 (-286) (-788) (-138))) (T -1045)) -((-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-1079 (-591 (-294 *5)) (-591 (-273 (-294 *5))))) (-5 *1 (-1045 *5)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-885 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-1079 (-591 (-294 *5)) (-591 (-273 (-294 *5))))) (-5 *1 (-1045 *5)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-385 (-885 *5)))) (-5 *4 (-591 (-1089))) (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-591 (-294 *5)))) (-5 *1 (-1045 *5)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-294 *5))) (-5 *1 (-1045 *5)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-591 (-273 (-385 (-885 *4))))) (-4 *4 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-591 (-273 (-294 *4))))) (-5 *1 (-1045 *4)))) (-1278 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-273 (-385 (-885 *5))))) (-5 *4 (-591 (-1089))) (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-591 (-273 (-294 *5))))) (-5 *1 (-1045 *5)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-591 (-385 (-885 *4)))) (-4 *4 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-591 (-273 (-294 *4))))) (-5 *1 (-1045 *4)))) (-1278 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-385 (-885 *5)))) (-5 *4 (-591 (-1089))) (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-591 (-273 (-294 *5))))) (-5 *1 (-1045 *5)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-273 (-385 (-885 *4)))) (-4 *4 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-273 (-294 *4)))) (-5 *1 (-1045 *4)))) (-1278 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-885 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-273 (-294 *5)))) (-5 *1 (-1045 *5)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-273 (-294 *4)))) (-5 *1 (-1045 *4)))) (-1278 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-273 (-294 *5)))) (-5 *1 (-1045 *5))))) -(-10 -7 (-15 -1278 ((-591 (-273 (-294 |#1|))) (-385 (-885 |#1|)) (-1089))) (-15 -1278 ((-591 (-273 (-294 |#1|))) (-385 (-885 |#1|)))) (-15 -1278 ((-591 (-273 (-294 |#1|))) (-273 (-385 (-885 |#1|))) (-1089))) (-15 -1278 ((-591 (-273 (-294 |#1|))) (-273 (-385 (-885 |#1|))))) (-15 -1278 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-385 (-885 |#1|))) (-591 (-1089)))) (-15 -1278 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-385 (-885 |#1|))))) (-15 -1278 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-273 (-385 (-885 |#1|)))) (-591 (-1089)))) (-15 -1278 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-273 (-385 (-885 |#1|)))))) (-15 -2009 ((-591 (-294 |#1|)) (-385 (-885 |#1|)) (-1089))) (-15 -2009 ((-591 (-591 (-294 |#1|))) (-591 (-385 (-885 |#1|))) (-591 (-1089)))) (-15 -1761 ((-1079 (-591 (-294 |#1|)) (-591 (-273 (-294 |#1|)))) (-273 (-385 (-885 |#1|))) (-1089))) (-15 -1761 ((-1079 (-591 (-294 |#1|)) (-591 (-273 (-294 |#1|)))) (-385 (-885 |#1|)) (-1089)))) -((-1273 (((-385 (-1085 (-294 |#1|))) (-1171 (-294 |#1|)) (-385 (-1085 (-294 |#1|))) (-525)) 29)) (-1718 (((-385 (-1085 (-294 |#1|))) (-385 (-1085 (-294 |#1|))) (-385 (-1085 (-294 |#1|))) (-385 (-1085 (-294 |#1|)))) 40))) -(((-1046 |#1|) (-10 -7 (-15 -1718 ((-385 (-1085 (-294 |#1|))) (-385 (-1085 (-294 |#1|))) (-385 (-1085 (-294 |#1|))) (-385 (-1085 (-294 |#1|))))) (-15 -1273 ((-385 (-1085 (-294 |#1|))) (-1171 (-294 |#1|)) (-385 (-1085 (-294 |#1|))) (-525)))) (-13 (-517) (-788))) (T -1046)) -((-1273 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-385 (-1085 (-294 *5)))) (-5 *3 (-1171 (-294 *5))) (-5 *4 (-525)) (-4 *5 (-13 (-517) (-788))) (-5 *1 (-1046 *5)))) (-1718 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-385 (-1085 (-294 *3)))) (-4 *3 (-13 (-517) (-788))) (-5 *1 (-1046 *3))))) -(-10 -7 (-15 -1718 ((-385 (-1085 (-294 |#1|))) (-385 (-1085 (-294 |#1|))) (-385 (-1085 (-294 |#1|))) (-385 (-1085 (-294 |#1|))))) (-15 -1273 ((-385 (-1085 (-294 |#1|))) (-1171 (-294 |#1|)) (-385 (-1085 (-294 |#1|))) (-525)))) -((-2751 (((-591 (-591 (-273 (-294 |#1|)))) (-591 (-273 (-294 |#1|))) (-591 (-1089))) 222) (((-591 (-273 (-294 |#1|))) (-294 |#1|) (-1089)) 20) (((-591 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1089)) 26) (((-591 (-273 (-294 |#1|))) (-273 (-294 |#1|))) 25) (((-591 (-273 (-294 |#1|))) (-294 |#1|)) 21))) -(((-1047 |#1|) (-10 -7 (-15 -2751 ((-591 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -2751 ((-591 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -2751 ((-591 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1089))) (-15 -2751 ((-591 (-273 (-294 |#1|))) (-294 |#1|) (-1089))) (-15 -2751 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-273 (-294 |#1|))) (-591 (-1089))))) (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (T -1047)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-1089))) (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-591 (-591 (-273 (-294 *5))))) (-5 *1 (-1047 *5)) (-5 *3 (-591 (-273 (-294 *5)))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-591 (-273 (-294 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-294 *5)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-591 (-273 (-294 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-273 (-294 *5))))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-591 (-273 (-294 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-273 (-294 *4))))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) (-5 *2 (-591 (-273 (-294 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-294 *4))))) -(-10 -7 (-15 -2751 ((-591 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -2751 ((-591 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -2751 ((-591 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1089))) (-15 -2751 ((-591 (-273 (-294 |#1|))) (-294 |#1|) (-1089))) (-15 -2751 ((-591 (-591 (-273 (-294 |#1|)))) (-591 (-273 (-294 |#1|))) (-591 (-1089))))) -((-1815 ((|#2| |#2|) 20 (|has| |#1| (-788))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 17)) (-1955 ((|#2| |#2|) 19 (|has| |#1| (-788))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16))) -(((-1048 |#1| |#2|) (-10 -7 (-15 -1955 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -1815 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-788)) (PROGN (-15 -1955 (|#2| |#2|)) (-15 -1815 (|#2| |#2|))) |%noBranch|)) (-1125) (-13 (-558 (-525) |#1|) (-10 -7 (-6 -4250) (-6 -4251)))) (T -1048)) -((-1815 (*1 *2 *2) (-12 (-4 *3 (-788)) (-4 *3 (-1125)) (-5 *1 (-1048 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4250) (-6 -4251)))))) (-1955 (*1 *2 *2) (-12 (-4 *3 (-788)) (-4 *3 (-1125)) (-5 *1 (-1048 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4250) (-6 -4251)))))) (-1815 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-1048 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4250) (-6 -4251)))))) (-1955 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-1048 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4250) (-6 -4251))))))) -(-10 -7 (-15 -1955 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -1815 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-788)) (PROGN (-15 -1955 (|#2| |#2|)) (-15 -1815 (|#2| |#2|))) |%noBranch|)) -((-2673 (((-108) $ $) NIL)) (-2749 (((-1078 3 |#1|) $) 108)) (-3282 (((-108) $) 72)) (-1935 (($ $ (-591 (-876 |#1|))) 20) (($ $ (-591 (-591 |#1|))) 75) (($ (-591 (-876 |#1|))) 74) (((-591 (-876 |#1|)) $) 73)) (-1376 (((-108) $) 41)) (-1867 (($ $ (-876 |#1|)) 46) (($ $ (-591 |#1|)) 51) (($ $ (-712)) 53) (($ (-876 |#1|)) 47) (((-876 |#1|) $) 45)) (-3513 (((-2 (|:| -3175 (-712)) (|:| |curves| (-712)) (|:| |polygons| (-712)) (|:| |constructs| (-712))) $) 106)) (-2877 (((-712) $) 26)) (-3340 (((-712) $) 25)) (-2195 (($ $ (-712) (-876 |#1|)) 39)) (-2231 (((-108) $) 82)) (-3980 (($ $ (-591 (-591 (-876 |#1|))) (-591 (-159)) (-159)) 89) (($ $ (-591 (-591 (-591 |#1|))) (-591 (-159)) (-159)) 91) (($ $ (-591 (-591 (-876 |#1|))) (-108) (-108)) 85) (($ $ (-591 (-591 (-591 |#1|))) (-108) (-108)) 93) (($ (-591 (-591 (-876 |#1|)))) 86) (($ (-591 (-591 (-876 |#1|))) (-108) (-108)) 87) (((-591 (-591 (-876 |#1|))) $) 84)) (-3459 (($ (-591 $)) 28) (($ $ $) 29)) (-3873 (((-591 (-159)) $) 103)) (-1928 (((-591 (-876 |#1|)) $) 97)) (-1878 (((-591 (-591 (-159))) $) 102)) (-2887 (((-591 (-591 (-591 (-876 |#1|)))) $) NIL)) (-3174 (((-591 (-591 (-591 (-712)))) $) 100)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3362 (((-712) $ (-591 (-876 |#1|))) 37)) (-1617 (((-108) $) 54)) (-4118 (($ $ (-591 (-876 |#1|))) 56) (($ $ (-591 (-591 |#1|))) 62) (($ (-591 (-876 |#1|))) 57) (((-591 (-876 |#1|)) $) 55)) (-4010 (($) 23) (($ (-1078 3 |#1|)) 24)) (-2873 (($ $) 35)) (-3942 (((-591 $) $) 34)) (-2037 (($ (-591 $)) 31)) (-2237 (((-591 $) $) 33)) (-2686 (((-796) $) 112)) (-1521 (((-108) $) 64)) (-2305 (($ $ (-591 (-876 |#1|))) 66) (($ $ (-591 (-591 |#1|))) 69) (($ (-591 (-876 |#1|))) 67) (((-591 (-876 |#1|)) $) 65)) (-2412 (($ $) 107)) (-3944 (((-108) $ $) NIL))) -(((-1049 |#1|) (-1050 |#1|) (-975)) (T -1049)) -NIL -(-1050 |#1|) -((-2673 (((-108) $ $) 7)) (-2749 (((-1078 3 |#1|) $) 13)) (-3282 (((-108) $) 29)) (-1935 (($ $ (-591 (-876 |#1|))) 33) (($ $ (-591 (-591 |#1|))) 32) (($ (-591 (-876 |#1|))) 31) (((-591 (-876 |#1|)) $) 30)) (-1376 (((-108) $) 44)) (-1867 (($ $ (-876 |#1|)) 49) (($ $ (-591 |#1|)) 48) (($ $ (-712)) 47) (($ (-876 |#1|)) 46) (((-876 |#1|) $) 45)) (-3513 (((-2 (|:| -3175 (-712)) (|:| |curves| (-712)) (|:| |polygons| (-712)) (|:| |constructs| (-712))) $) 15)) (-2877 (((-712) $) 58)) (-3340 (((-712) $) 59)) (-2195 (($ $ (-712) (-876 |#1|)) 50)) (-2231 (((-108) $) 21)) (-3980 (($ $ (-591 (-591 (-876 |#1|))) (-591 (-159)) (-159)) 28) (($ $ (-591 (-591 (-591 |#1|))) (-591 (-159)) (-159)) 27) (($ $ (-591 (-591 (-876 |#1|))) (-108) (-108)) 26) (($ $ (-591 (-591 (-591 |#1|))) (-108) (-108)) 25) (($ (-591 (-591 (-876 |#1|)))) 24) (($ (-591 (-591 (-876 |#1|))) (-108) (-108)) 23) (((-591 (-591 (-876 |#1|))) $) 22)) (-3459 (($ (-591 $)) 57) (($ $ $) 56)) (-3873 (((-591 (-159)) $) 16)) (-1928 (((-591 (-876 |#1|)) $) 20)) (-1878 (((-591 (-591 (-159))) $) 17)) (-2887 (((-591 (-591 (-591 (-876 |#1|)))) $) 18)) (-3174 (((-591 (-591 (-591 (-712)))) $) 19)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3362 (((-712) $ (-591 (-876 |#1|))) 51)) (-1617 (((-108) $) 39)) (-4118 (($ $ (-591 (-876 |#1|))) 43) (($ $ (-591 (-591 |#1|))) 42) (($ (-591 (-876 |#1|))) 41) (((-591 (-876 |#1|)) $) 40)) (-4010 (($) 61) (($ (-1078 3 |#1|)) 60)) (-2873 (($ $) 52)) (-3942 (((-591 $) $) 53)) (-2037 (($ (-591 $)) 55)) (-2237 (((-591 $) $) 54)) (-2686 (((-796) $) 11)) (-1521 (((-108) $) 34)) (-2305 (($ $ (-591 (-876 |#1|))) 38) (($ $ (-591 (-591 |#1|))) 37) (($ (-591 (-876 |#1|))) 36) (((-591 (-876 |#1|)) $) 35)) (-2412 (($ $) 14)) (-3944 (((-108) $ $) 6))) -(((-1050 |#1|) (-131) (-975)) (T -1050)) -((-2686 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-796)))) (-4010 (*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-975)))) (-4010 (*1 *1 *2) (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-3459 (*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-975)))) (-2037 (*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-2237 (*1 *2 *1) (-12 (-4 *3 (-975)) (-5 *2 (-591 *1)) (-4 *1 (-1050 *3)))) (-3942 (*1 *2 *1) (-12 (-4 *3 (-975)) (-5 *2 (-591 *1)) (-4 *1 (-1050 *3)))) (-2873 (*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-975)))) (-3362 (*1 *2 *1 *3) (-12 (-5 *3 (-591 (-876 *4))) (-4 *1 (-1050 *4)) (-4 *4 (-975)) (-5 *2 (-712)))) (-2195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-712)) (-5 *3 (-876 *4)) (-4 *1 (-1050 *4)) (-4 *4 (-975)))) (-1867 (*1 *1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-1867 (*1 *1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-1867 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-1867 (*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-876 *3)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-876 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-591 (-876 *3))) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-876 *3))))) (-1617 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-876 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-2305 (*1 *1 *2) (-12 (-5 *2 (-591 (-876 *3))) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-876 *3))))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108)))) (-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-876 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) (-1935 (*1 *1 *2) (-12 (-5 *2 (-591 (-876 *3))) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-876 *3))))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108)))) (-3980 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-591 (-591 (-876 *5)))) (-5 *3 (-591 (-159))) (-5 *4 (-159)) (-4 *1 (-1050 *5)) (-4 *5 (-975)))) (-3980 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-591 (-591 (-591 *5)))) (-5 *3 (-591 (-159))) (-5 *4 (-159)) (-4 *1 (-1050 *5)) (-4 *5 (-975)))) (-3980 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-591 (-591 (-876 *4)))) (-5 *3 (-108)) (-4 *1 (-1050 *4)) (-4 *4 (-975)))) (-3980 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-591 (-591 (-591 *4)))) (-5 *3 (-108)) (-4 *1 (-1050 *4)) (-4 *4 (-975)))) (-3980 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 (-876 *3)))) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) (-3980 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-591 (-591 (-876 *4)))) (-5 *3 (-108)) (-4 *4 (-975)) (-4 *1 (-1050 *4)))) (-3980 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-591 (-876 *3)))))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-876 *3))))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-591 (-591 (-712))))))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-591 (-591 (-876 *3))))))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-591 (-159)))))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-159))))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-2 (|:| -3175 (-712)) (|:| |curves| (-712)) (|:| |polygons| (-712)) (|:| |constructs| (-712)))))) (-2412 (*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-975)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-1078 3 *3))))) -(-13 (-1018) (-10 -8 (-15 -4010 ($)) (-15 -4010 ($ (-1078 3 |t#1|))) (-15 -3340 ((-712) $)) (-15 -2877 ((-712) $)) (-15 -3459 ($ (-591 $))) (-15 -3459 ($ $ $)) (-15 -2037 ($ (-591 $))) (-15 -2237 ((-591 $) $)) (-15 -3942 ((-591 $) $)) (-15 -2873 ($ $)) (-15 -3362 ((-712) $ (-591 (-876 |t#1|)))) (-15 -2195 ($ $ (-712) (-876 |t#1|))) (-15 -1867 ($ $ (-876 |t#1|))) (-15 -1867 ($ $ (-591 |t#1|))) (-15 -1867 ($ $ (-712))) (-15 -1867 ($ (-876 |t#1|))) (-15 -1867 ((-876 |t#1|) $)) (-15 -1376 ((-108) $)) (-15 -4118 ($ $ (-591 (-876 |t#1|)))) (-15 -4118 ($ $ (-591 (-591 |t#1|)))) (-15 -4118 ($ (-591 (-876 |t#1|)))) (-15 -4118 ((-591 (-876 |t#1|)) $)) (-15 -1617 ((-108) $)) (-15 -2305 ($ $ (-591 (-876 |t#1|)))) (-15 -2305 ($ $ (-591 (-591 |t#1|)))) (-15 -2305 ($ (-591 (-876 |t#1|)))) (-15 -2305 ((-591 (-876 |t#1|)) $)) (-15 -1521 ((-108) $)) (-15 -1935 ($ $ (-591 (-876 |t#1|)))) (-15 -1935 ($ $ (-591 (-591 |t#1|)))) (-15 -1935 ($ (-591 (-876 |t#1|)))) (-15 -1935 ((-591 (-876 |t#1|)) $)) (-15 -3282 ((-108) $)) (-15 -3980 ($ $ (-591 (-591 (-876 |t#1|))) (-591 (-159)) (-159))) (-15 -3980 ($ $ (-591 (-591 (-591 |t#1|))) (-591 (-159)) (-159))) (-15 -3980 ($ $ (-591 (-591 (-876 |t#1|))) (-108) (-108))) (-15 -3980 ($ $ (-591 (-591 (-591 |t#1|))) (-108) (-108))) (-15 -3980 ($ (-591 (-591 (-876 |t#1|))))) (-15 -3980 ($ (-591 (-591 (-876 |t#1|))) (-108) (-108))) (-15 -3980 ((-591 (-591 (-876 |t#1|))) $)) (-15 -2231 ((-108) $)) (-15 -1928 ((-591 (-876 |t#1|)) $)) (-15 -3174 ((-591 (-591 (-591 (-712)))) $)) (-15 -2887 ((-591 (-591 (-591 (-876 |t#1|)))) $)) (-15 -1878 ((-591 (-591 (-159))) $)) (-15 -3873 ((-591 (-159)) $)) (-15 -3513 ((-2 (|:| -3175 (-712)) (|:| |curves| (-712)) (|:| |polygons| (-712)) (|:| |constructs| (-712))) $)) (-15 -2412 ($ $)) (-15 -2749 ((-1078 3 |t#1|) $)) (-15 -2686 ((-796) $)))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-1315 (((-591 (-1094)) (-1072)) 9))) -(((-1051) (-10 -7 (-15 -1315 ((-591 (-1094)) (-1072))))) (T -1051)) -((-1315 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-591 (-1094))) (-5 *1 (-1051))))) -(-10 -7 (-15 -1315 ((-591 (-1094)) (-1072)))) -((-1359 (((-1176) (-591 (-796))) 23) (((-1176) (-796)) 22)) (-3466 (((-1176) (-591 (-796))) 21) (((-1176) (-796)) 20)) (-2163 (((-1176) (-591 (-796))) 19) (((-1176) (-796)) 11) (((-1176) (-1072) (-796)) 17))) -(((-1052) (-10 -7 (-15 -2163 ((-1176) (-1072) (-796))) (-15 -2163 ((-1176) (-796))) (-15 -3466 ((-1176) (-796))) (-15 -1359 ((-1176) (-796))) (-15 -2163 ((-1176) (-591 (-796)))) (-15 -3466 ((-1176) (-591 (-796)))) (-15 -1359 ((-1176) (-591 (-796)))))) (T -1052)) -((-1359 (*1 *2 *3) (-12 (-5 *3 (-591 (-796))) (-5 *2 (-1176)) (-5 *1 (-1052)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-591 (-796))) (-5 *2 (-1176)) (-5 *1 (-1052)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-591 (-796))) (-5 *2 (-1176)) (-5 *1 (-1052)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-1052)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-1052)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-1052)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-796)) (-5 *2 (-1176)) (-5 *1 (-1052))))) -(-10 -7 (-15 -2163 ((-1176) (-1072) (-796))) (-15 -2163 ((-1176) (-796))) (-15 -3466 ((-1176) (-796))) (-15 -1359 ((-1176) (-796))) (-15 -2163 ((-1176) (-591 (-796)))) (-15 -3466 ((-1176) (-591 (-796)))) (-15 -1359 ((-1176) (-591 (-796))))) -((-3548 (($ $ $) 10)) (-3333 (($ $) 9)) (-3196 (($ $ $) 13)) (-1925 (($ $ $) 15)) (-2306 (($ $ $) 12)) (-1827 (($ $ $) 14)) (-2753 (($ $) 17)) (-2369 (($ $) 16)) (-1460 (($ $) 6)) (-1353 (($ $ $) 11) (($ $) 7)) (-3408 (($ $ $) 8))) -(((-1053) (-131)) (T -1053)) -((-2753 (*1 *1 *1) (-4 *1 (-1053))) (-2369 (*1 *1 *1) (-4 *1 (-1053))) (-1925 (*1 *1 *1 *1) (-4 *1 (-1053))) (-1827 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3196 (*1 *1 *1 *1) (-4 *1 (-1053))) (-2306 (*1 *1 *1 *1) (-4 *1 (-1053))) (-1353 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3548 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3333 (*1 *1 *1) (-4 *1 (-1053))) (-3408 (*1 *1 *1 *1) (-4 *1 (-1053))) (-1353 (*1 *1 *1) (-4 *1 (-1053))) (-1460 (*1 *1 *1) (-4 *1 (-1053)))) -(-13 (-10 -8 (-15 -1460 ($ $)) (-15 -1353 ($ $)) (-15 -3408 ($ $ $)) (-15 -3333 ($ $)) (-15 -3548 ($ $ $)) (-15 -1353 ($ $ $)) (-15 -2306 ($ $ $)) (-15 -3196 ($ $ $)) (-15 -1827 ($ $ $)) (-15 -1925 ($ $ $)) (-15 -2369 ($ $)) (-15 -2753 ($ $)))) -((-2673 (((-108) $ $) 41)) (-2940 ((|#1| $) 15)) (-2320 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2680 (((-108) $) 17)) (-3875 (($ $ |#1|) 28)) (-1709 (($ $ (-108)) 30)) (-3458 (($ $) 31)) (-3791 (($ $ |#2|) 29)) (-2621 (((-1072) $) NIL)) (-1880 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-2937 (((-1036) $) NIL)) (-2077 (((-108) $) 14)) (-3164 (($) 10)) (-2873 (($ $) 27)) (-2695 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3585 |#2|))) 21) (((-591 $) (-591 (-2 (|:| |val| |#1|) (|:| -3585 |#2|)))) 24) (((-591 $) |#1| (-591 |#2|)) 26)) (-1213 ((|#2| $) 16)) (-2686 (((-796) $) 50)) (-3944 (((-108) $ $) 39))) -(((-1054 |#1| |#2|) (-13 (-1018) (-10 -8 (-15 -3164 ($)) (-15 -2077 ((-108) $)) (-15 -2940 (|#1| $)) (-15 -1213 (|#2| $)) (-15 -2680 ((-108) $)) (-15 -2695 ($ |#1| |#2| (-108))) (-15 -2695 ($ |#1| |#2|)) (-15 -2695 ($ (-2 (|:| |val| |#1|) (|:| -3585 |#2|)))) (-15 -2695 ((-591 $) (-591 (-2 (|:| |val| |#1|) (|:| -3585 |#2|))))) (-15 -2695 ((-591 $) |#1| (-591 |#2|))) (-15 -2873 ($ $)) (-15 -3875 ($ $ |#1|)) (-15 -3791 ($ $ |#2|)) (-15 -1709 ($ $ (-108))) (-15 -3458 ($ $)) (-15 -1880 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2320 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1018) (-33)) (-13 (-1018) (-33))) (T -1054)) -((-3164 (*1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))))) (-2940 (*1 *2 *1) (-12 (-4 *2 (-13 (-1018) (-33))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-13 (-1018) (-33))))) (-1213 (*1 *2 *1) (-12 (-4 *2 (-13 (-1018) (-33))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1018) (-33))))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))))) (-2695 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) (-2695 (*1 *1 *2 *3) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3585 *4))) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))) (-5 *1 (-1054 *3 *4)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-591 (-2 (|:| |val| *4) (|:| -3585 *5)))) (-4 *4 (-13 (-1018) (-33))) (-4 *5 (-13 (-1018) (-33))) (-5 *2 (-591 (-1054 *4 *5))) (-5 *1 (-1054 *4 *5)))) (-2695 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *5)) (-4 *5 (-13 (-1018) (-33))) (-5 *2 (-591 (-1054 *3 *5))) (-5 *1 (-1054 *3 *5)) (-4 *3 (-13 (-1018) (-33))))) (-2873 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) (-3875 (*1 *1 *1 *2) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) (-3791 (*1 *1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1018) (-33))) (-4 *2 (-13 (-1018) (-33))))) (-1709 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))))) (-3458 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) (-1880 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1018) (-33))) (-4 *6 (-13 (-1018) (-33))) (-5 *2 (-108)) (-5 *1 (-1054 *5 *6)))) (-2320 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1018) (-33))) (-5 *2 (-108)) (-5 *1 (-1054 *4 *5)) (-4 *4 (-13 (-1018) (-33)))))) -(-13 (-1018) (-10 -8 (-15 -3164 ($)) (-15 -2077 ((-108) $)) (-15 -2940 (|#1| $)) (-15 -1213 (|#2| $)) (-15 -2680 ((-108) $)) (-15 -2695 ($ |#1| |#2| (-108))) (-15 -2695 ($ |#1| |#2|)) (-15 -2695 ($ (-2 (|:| |val| |#1|) (|:| -3585 |#2|)))) (-15 -2695 ((-591 $) (-591 (-2 (|:| |val| |#1|) (|:| -3585 |#2|))))) (-15 -2695 ((-591 $) |#1| (-591 |#2|))) (-15 -2873 ($ $)) (-15 -3875 ($ $ |#1|)) (-15 -3791 ($ $ |#2|)) (-15 -1709 ($ $ (-108))) (-15 -3458 ($ $)) (-15 -1880 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2320 ((-108) $ $ (-1 (-108) |#2| |#2|))))) -((-2673 (((-108) $ $) NIL (|has| (-1054 |#1| |#2|) (-1018)))) (-2940 (((-1054 |#1| |#2|) $) 25)) (-3193 (($ $) 76)) (-3855 (((-108) (-1054 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-2388 (($ $ $ (-591 (-1054 |#1| |#2|))) 90) (($ $ $ (-591 (-1054 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-3727 (((-108) $ (-712)) NIL)) (-3912 (((-1054 |#1| |#2|) $ (-1054 |#1| |#2|)) 43 (|has| $ (-6 -4251)))) (-2847 (((-1054 |#1| |#2|) $ "value" (-1054 |#1| |#2|)) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 41 (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-3709 (((-591 (-2 (|:| |val| |#1|) (|:| -3585 |#2|))) $) 80)) (-3844 (($ (-1054 |#1| |#2|) $) 39)) (-2537 (($ (-1054 |#1| |#2|) $) 31)) (-2916 (((-591 (-1054 |#1| |#2|)) $) NIL (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 51)) (-2623 (((-108) (-1054 |#1| |#2|) $) 82)) (-3219 (((-108) $ $) NIL (|has| (-1054 |#1| |#2|) (-1018)))) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 (-1054 |#1| |#2|)) $) 55 (|has| $ (-6 -4250)))) (-3956 (((-108) (-1054 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-1054 |#1| |#2|) (-1018))))) (-4192 (($ (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $) 47 (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $) 46)) (-3295 (((-108) $ (-712)) NIL)) (-2065 (((-591 (-1054 |#1| |#2|)) $) 53)) (-2878 (((-108) $) 42)) (-2621 (((-1072) $) NIL (|has| (-1054 |#1| |#2|) (-1018)))) (-2937 (((-1036) $) NIL (|has| (-1054 |#1| |#2|) (-1018)))) (-1871 (((-3 $ "failed") $) 75)) (-3465 (((-108) (-1 (-108) (-1054 |#1| |#2|)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-1054 |#1| |#2|)))) NIL (-12 (|has| (-1054 |#1| |#2|) (-288 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1018)))) (($ $ (-273 (-1054 |#1| |#2|))) NIL (-12 (|has| (-1054 |#1| |#2|) (-288 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1018)))) (($ $ (-1054 |#1| |#2|) (-1054 |#1| |#2|)) NIL (-12 (|has| (-1054 |#1| |#2|) (-288 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1018)))) (($ $ (-591 (-1054 |#1| |#2|)) (-591 (-1054 |#1| |#2|))) NIL (-12 (|has| (-1054 |#1| |#2|) (-288 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1018))))) (-2023 (((-108) $ $) 50)) (-2077 (((-108) $) 22)) (-3164 (($) 24)) (-1881 (((-1054 |#1| |#2|) $ "value") NIL)) (-2194 (((-525) $ $) NIL)) (-4133 (((-108) $) 44)) (-2960 (((-712) (-1 (-108) (-1054 |#1| |#2|)) $) NIL (|has| $ (-6 -4250))) (((-712) (-1054 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-1054 |#1| |#2|) (-1018))))) (-2873 (($ $) 49)) (-2695 (($ (-1054 |#1| |#2|)) 9) (($ |#1| |#2| (-591 $)) 12) (($ |#1| |#2| (-591 (-1054 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-591 |#2|)) 17)) (-2129 (((-591 |#2|) $) 81)) (-2686 (((-796) $) 73 (|has| (-1054 |#1| |#2|) (-565 (-796))))) (-1567 (((-591 $) $) 28)) (-3592 (((-108) $ $) NIL (|has| (-1054 |#1| |#2|) (-1018)))) (-1475 (((-108) (-1 (-108) (-1054 |#1| |#2|)) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 64 (|has| (-1054 |#1| |#2|) (-1018)))) (-2028 (((-712) $) 58 (|has| $ (-6 -4250))))) -(((-1055 |#1| |#2|) (-13 (-940 (-1054 |#1| |#2|)) (-10 -8 (-6 -4251) (-6 -4250) (-15 -1871 ((-3 $ "failed") $)) (-15 -3193 ($ $)) (-15 -2695 ($ (-1054 |#1| |#2|))) (-15 -2695 ($ |#1| |#2| (-591 $))) (-15 -2695 ($ |#1| |#2| (-591 (-1054 |#1| |#2|)))) (-15 -2695 ($ |#1| |#2| |#1| (-591 |#2|))) (-15 -2129 ((-591 |#2|) $)) (-15 -3709 ((-591 (-2 (|:| |val| |#1|) (|:| -3585 |#2|))) $)) (-15 -2623 ((-108) (-1054 |#1| |#2|) $)) (-15 -3855 ((-108) (-1054 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2537 ($ (-1054 |#1| |#2|) $)) (-15 -3844 ($ (-1054 |#1| |#2|) $)) (-15 -2388 ($ $ $ (-591 (-1054 |#1| |#2|)))) (-15 -2388 ($ $ $ (-591 (-1054 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1018) (-33)) (-13 (-1018) (-33))) (T -1055)) -((-1871 (*1 *1 *1) (|partial| -12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) (-3193 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))) (-5 *1 (-1055 *3 *4)))) (-2695 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-591 (-1055 *2 *3))) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) (-2695 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-591 (-1054 *2 *3))) (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))) (-5 *1 (-1055 *2 *3)))) (-2695 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-1018) (-33))) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1018) (-33))))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-591 *4)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))))) (-2623 (*1 *2 *3 *1) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-1018) (-33))) (-4 *5 (-13 (-1018) (-33))) (-5 *2 (-108)) (-5 *1 (-1055 *4 *5)))) (-3855 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1054 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1018) (-33))) (-4 *6 (-13 (-1018) (-33))) (-5 *2 (-108)) (-5 *1 (-1055 *5 *6)))) (-2537 (*1 *1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))) (-5 *1 (-1055 *3 *4)))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))) (-5 *1 (-1055 *3 *4)))) (-2388 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-591 (-1054 *3 *4))) (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))) (-5 *1 (-1055 *3 *4)))) (-2388 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-1054 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1018) (-33))) (-4 *5 (-13 (-1018) (-33))) (-5 *1 (-1055 *4 *5))))) -(-13 (-940 (-1054 |#1| |#2|)) (-10 -8 (-6 -4251) (-6 -4250) (-15 -1871 ((-3 $ "failed") $)) (-15 -3193 ($ $)) (-15 -2695 ($ (-1054 |#1| |#2|))) (-15 -2695 ($ |#1| |#2| (-591 $))) (-15 -2695 ($ |#1| |#2| (-591 (-1054 |#1| |#2|)))) (-15 -2695 ($ |#1| |#2| |#1| (-591 |#2|))) (-15 -2129 ((-591 |#2|) $)) (-15 -3709 ((-591 (-2 (|:| |val| |#1|) (|:| -3585 |#2|))) $)) (-15 -2623 ((-108) (-1054 |#1| |#2|) $)) (-15 -3855 ((-108) (-1054 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2537 ($ (-1054 |#1| |#2|) $)) (-15 -3844 ($ (-1054 |#1| |#2|) $)) (-15 -2388 ($ $ $ (-591 (-1054 |#1| |#2|)))) (-15 -2388 ($ $ $ (-591 (-1054 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1616 (($ $) NIL)) (-1481 ((|#2| $) NIL)) (-1711 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2099 (($ (-631 |#2|)) 47)) (-1478 (((-108) $) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-1416 (($ |#2|) 9)) (-2055 (($) NIL T CONST)) (-1352 (($ $) 60 (|has| |#2| (-286)))) (-2578 (((-220 |#1| |#2|) $ (-525)) 34)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#2| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#2| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-966 (-385 (-525))))) ((|#2| $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL) (((-631 |#2|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) 74)) (-2193 (((-712) $) 62 (|has| |#2| (-517)))) (-4121 ((|#2| $ (-525) (-525)) NIL)) (-2916 (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3865 (((-108) $) NIL)) (-1613 (((-712) $) 64 (|has| |#2| (-517)))) (-2523 (((-591 (-220 |#1| |#2|)) $) 68 (|has| |#2| (-517)))) (-4127 (((-712) $) NIL)) (-4140 (((-712) $) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-1806 ((|#2| $) 58 (|has| |#2| (-6 (-4252 "*"))))) (-3142 (((-525) $) NIL)) (-3660 (((-525) $) NIL)) (-4207 (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-3882 (((-525) $) NIL)) (-2494 (((-525) $) NIL)) (-1572 (($ (-591 (-591 |#2|))) 29)) (-4192 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3093 (((-591 (-591 |#2|)) $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2902 (((-3 $ "failed") $) 71 (|has| |#2| (-341)))) (-2937 (((-1036) $) NIL)) (-3210 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3465 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) NIL)) (-2209 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-712)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2102 ((|#2| $) NIL)) (-1968 (($ (-591 |#2|)) 42)) (-2348 (((-108) $) NIL)) (-3030 (((-220 |#1| |#2|) $) NIL)) (-4145 ((|#2| $) 56 (|has| |#2| (-6 (-4252 "*"))))) (-2960 (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2873 (($ $) NIL)) (-1300 (((-501) $) 83 (|has| |#2| (-566 (-501))))) (-1256 (((-220 |#1| |#2|) $ (-525)) 36)) (-2686 (((-796) $) 39) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-966 (-385 (-525))))) (($ |#2|) NIL) (((-631 |#2|) $) 44)) (-3425 (((-712)) 17)) (-1475 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1986 (((-108) $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 11 T CONST)) (-1839 (($) 14 T CONST)) (-1796 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-712)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) 54) (($ $ (-525)) 73 (|has| |#2| (-341)))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) 50) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) 52)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1056 |#1| |#2|) (-13 (-1039 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-565 (-631 |#2|)) (-10 -8 (-15 -1616 ($ $)) (-15 -2099 ($ (-631 |#2|))) (-15 -2686 ((-631 |#2|) $)) (IF (|has| |#2| (-6 (-4252 "*"))) (-6 -4239) |%noBranch|) (IF (|has| |#2| (-6 (-4252 "*"))) (IF (|has| |#2| (-6 -4247)) (-6 -4247) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|))) (-712) (-975)) (T -1056)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-631 *4)) (-5 *1 (-1056 *3 *4)) (-14 *3 (-712)) (-4 *4 (-975)))) (-1616 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-14 *2 (-712)) (-4 *3 (-975)))) (-2099 (*1 *1 *2) (-12 (-5 *2 (-631 *4)) (-4 *4 (-975)) (-5 *1 (-1056 *3 *4)) (-14 *3 (-712))))) -(-13 (-1039 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-565 (-631 |#2|)) (-10 -8 (-15 -1616 ($ $)) (-15 -2099 ($ (-631 |#2|))) (-15 -2686 ((-631 |#2|) $)) (IF (|has| |#2| (-6 (-4252 "*"))) (-6 -4239) |%noBranch|) (IF (|has| |#2| (-6 (-4252 "*"))) (IF (|has| |#2| (-6 -4247)) (-6 -4247) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-566 (-501))) (-6 (-566 (-501))) |%noBranch|))) -((-1462 (($ $) 19)) (-2150 (($ $ (-135)) 10) (($ $ (-132)) 14)) (-2639 (((-108) $ $) 24)) (-3779 (($ $) 17)) (-1881 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1138 (-525))) NIL) (($ $ $) 29)) (-2686 (($ (-135)) 27) (((-796) $) NIL))) -(((-1057 |#1|) (-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -1881 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| (-132))) (-15 -2150 (|#1| |#1| (-135))) (-15 -2686 (|#1| (-135))) (-15 -2639 ((-108) |#1| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -1881 (|#1| |#1| (-1138 (-525)))) (-15 -1881 ((-135) |#1| (-525))) (-15 -1881 ((-135) |#1| (-525) (-135)))) (-1058)) (T -1057)) -NIL -(-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -1881 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| (-132))) (-15 -2150 (|#1| |#1| (-135))) (-15 -2686 (|#1| (-135))) (-15 -2639 ((-108) |#1| |#1|)) (-15 -1462 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -1881 (|#1| |#1| (-1138 (-525)))) (-15 -1881 ((-135) |#1| (-525))) (-15 -1881 ((-135) |#1| (-525) (-135)))) -((-2673 (((-108) $ $) 19 (|has| (-135) (-1018)))) (-2779 (($ $) 120)) (-1462 (($ $) 121)) (-2150 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-3832 (((-1176) $ (-525) (-525)) 40 (|has| $ (-6 -4251)))) (-2619 (((-108) $ $) 118)) (-2598 (((-108) $ $ (-525)) 117)) (-1645 (((-591 $) $ (-135)) 110) (((-591 $) $ (-132)) 109)) (-3110 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-788)))) (-2613 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4251))) (($ $) 88 (-12 (|has| (-135) (-788)) (|has| $ (-6 -4251))))) (-1282 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-788)))) (-3727 (((-108) $ (-712)) 8)) (-2847 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4251))) (((-135) $ (-1138 (-525)) (-135)) 58 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-2519 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-3405 (($ $) 90 (|has| $ (-6 -4251)))) (-2747 (($ $) 100)) (-1862 (($ $ (-1138 (-525)) $) 114)) (-2908 (($ $) 78 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ (-135) $) 77 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4250)))) (-3618 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4250))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4250)))) (-4205 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4251)))) (-4121 (((-135) $ (-525)) 51)) (-2639 (((-108) $ $) 119)) (-1734 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1018))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1018))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-2916 (((-591 (-135)) $) 30 (|has| $ (-6 -4250)))) (-1316 (($ (-712) (-135)) 69)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 43 (|has| (-525) (-788)))) (-1923 (($ $ $) 87 (|has| (-135) (-788)))) (-3459 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-788)))) (-4207 (((-591 (-135)) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 44 (|has| (-525) (-788)))) (-3475 (($ $ $) 86 (|has| (-135) (-788)))) (-3039 (((-108) $ $ (-135)) 115)) (-2147 (((-712) $ $ (-135)) 116)) (-4192 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-2869 (($ $) 122)) (-3779 (($ $) 123)) (-3295 (((-108) $ (-712)) 10)) (-2528 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-2621 (((-1072) $) 22 (|has| (-135) (-1018)))) (-2059 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-3761 (((-591 (-525)) $) 46)) (-1675 (((-108) (-525) $) 47)) (-2937 (((-1036) $) 21 (|has| (-135) (-1018)))) (-2872 (((-135) $) 42 (|has| (-525) (-788)))) (-2714 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-1858 (($ $ (-135)) 41 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-591 (-135)) (-591 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-2998 (((-591 (-135)) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1138 (-525))) 63) (($ $ $) 102)) (-3226 (($ $ (-525)) 62) (($ $ (-1138 (-525))) 61)) (-2960 (((-712) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4250))) (((-712) (-135) $) 28 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250))))) (-2992 (($ $ $ (-525)) 91 (|has| $ (-6 -4251)))) (-2873 (($ $) 13)) (-1300 (((-501) $) 79 (|has| (-135) (-566 (-501))))) (-2695 (($ (-591 (-135))) 70)) (-1624 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-591 $)) 65)) (-2686 (($ (-135)) 111) (((-796) $) 18 (|has| (-135) (-565 (-796))))) (-1475 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) 84 (|has| (-135) (-788)))) (-3982 (((-108) $ $) 83 (|has| (-135) (-788)))) (-3944 (((-108) $ $) 20 (|has| (-135) (-1018)))) (-3994 (((-108) $ $) 85 (|has| (-135) (-788)))) (-3971 (((-108) $ $) 82 (|has| (-135) (-788)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-1058) (-131)) (T -1058)) -((-3779 (*1 *1 *1) (-4 *1 (-1058))) (-2869 (*1 *1 *1) (-4 *1 (-1058))) (-1462 (*1 *1 *1) (-4 *1 (-1058))) (-2779 (*1 *1 *1) (-4 *1 (-1058))) (-2639 (*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-108)))) (-2619 (*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-108)))) (-2598 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-525)) (-5 *2 (-108)))) (-2147 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-135)) (-5 *2 (-712)))) (-3039 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-135)) (-5 *2 (-108)))) (-1862 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-1138 (-525))))) (-1734 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-525)))) (-1734 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-525)) (-5 *3 (-132)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1058)))) (-1645 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-591 *1)) (-4 *1 (-1058)))) (-1645 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-591 *1)) (-4 *1 (-1058)))) (-2150 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-135)))) (-2150 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-132)))) (-2528 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-135)))) (-2528 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-132)))) (-2519 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-135)))) (-2519 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-132)))) (-1881 (*1 *1 *1 *1) (-4 *1 (-1058)))) -(-13 (-19 (-135)) (-10 -8 (-15 -3779 ($ $)) (-15 -2869 ($ $)) (-15 -1462 ($ $)) (-15 -2779 ($ $)) (-15 -2639 ((-108) $ $)) (-15 -2619 ((-108) $ $)) (-15 -2598 ((-108) $ $ (-525))) (-15 -2147 ((-712) $ $ (-135))) (-15 -3039 ((-108) $ $ (-135))) (-15 -1862 ($ $ (-1138 (-525)) $)) (-15 -1734 ((-525) $ $ (-525))) (-15 -1734 ((-525) (-132) $ (-525))) (-15 -2686 ($ (-135))) (-15 -1645 ((-591 $) $ (-135))) (-15 -1645 ((-591 $) $ (-132))) (-15 -2150 ($ $ (-135))) (-15 -2150 ($ $ (-132))) (-15 -2528 ($ $ (-135))) (-15 -2528 ($ $ (-132))) (-15 -2519 ($ $ (-135))) (-15 -2519 ($ $ (-132))) (-15 -1881 ($ $ $)))) -(((-33) . T) ((-97) -3150 (|has| (-135) (-1018)) (|has| (-135) (-788))) ((-565 (-796)) -3150 (|has| (-135) (-1018)) (|has| (-135) (-788)) (|has| (-135) (-565 (-796)))) ((-142 #0=(-135)) . T) ((-566 (-501)) |has| (-135) (-566 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018))) ((-596 #0#) . T) ((-19 #0#) . T) ((-788) |has| (-135) (-788)) ((-1018) -3150 (|has| (-135) (-1018)) (|has| (-135) (-788))) ((-1125) . T)) -((-3119 (((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 |#4|) (-591 |#5|) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-712)) 94)) (-3983 (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712)) 54)) (-3137 (((-1176) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-712)) 85)) (-1205 (((-712) (-591 |#4|) (-591 |#5|)) 27)) (-4085 (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712)) 56) (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712) (-108)) 58)) (-3601 (((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108)) 77)) (-1300 (((-1072) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) 80)) (-3409 (((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|) 53)) (-2138 (((-712) (-591 |#4|) (-591 |#5|)) 19))) -(((-1059 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2138 ((-712) (-591 |#4|) (-591 |#5|))) (-15 -1205 ((-712) (-591 |#4|) (-591 |#5|))) (-15 -3409 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -3983 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712))) (-15 -3983 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712) (-108))) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712))) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -3601 ((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108))) (-15 -3601 ((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3119 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 |#4|) (-591 |#5|) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-712))) (-15 -1300 ((-1072) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) (-15 -3137 ((-1176) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-712)))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|) (-1027 |#1| |#2| |#3| |#4|)) (T -1059)) -((-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-2 (|:| |val| (-591 *8)) (|:| -3585 *9)))) (-5 *4 (-712)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-1027 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-1176)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-591 *7)) (|:| -3585 *8))) (-4 *7 (-989 *4 *5 *6)) (-4 *8 (-1027 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1072)) (-5 *1 (-1059 *4 *5 *6 *7 *8)))) (-3119 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-591 *11)) (|:| |todo| (-591 (-2 (|:| |val| *3) (|:| -3585 *11)))))) (-5 *6 (-712)) (-5 *2 (-591 (-2 (|:| |val| (-591 *10)) (|:| -3585 *11)))) (-5 *3 (-591 *10)) (-5 *4 (-591 *11)) (-4 *10 (-989 *7 *8 *9)) (-4 *11 (-1027 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-734)) (-4 *9 (-788)) (-5 *1 (-1059 *7 *8 *9 *10 *11)))) (-3601 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-591 *9)) (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-1027 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3601 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-591 *9)) (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-1027 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1027 *5 *6 *7 *3)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-712)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *3 (-989 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1027 *6 *7 *8 *3)))) (-4085 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-712)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-734)) (-4 *9 (-788)) (-4 *3 (-989 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-1059 *7 *8 *9 *3 *4)) (-4 *4 (-1027 *7 *8 *9 *3)))) (-3983 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1027 *5 *6 *7 *3)))) (-3983 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-712)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *3 (-989 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1027 *6 *7 *8 *3)))) (-3409 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-591 *4)) (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1027 *5 *6 *7 *3)))) (-1205 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *9)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-1027 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-712)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *9)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-1027 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-712)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2138 ((-712) (-591 |#4|) (-591 |#5|))) (-15 -1205 ((-712) (-591 |#4|) (-591 |#5|))) (-15 -3409 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -3983 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712))) (-15 -3983 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712) (-108))) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5| (-712))) (-15 -4085 ((-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) |#4| |#5|)) (-15 -3601 ((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108))) (-15 -3601 ((-591 |#5|) (-591 |#4|) (-591 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3119 ((-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-591 |#4|) (-591 |#5|) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-2 (|:| |done| (-591 |#5|)) (|:| |todo| (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))))) (-712))) (-15 -1300 ((-1072) (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|)))) (-15 -3137 ((-1176) (-591 (-2 (|:| |val| (-591 |#4|)) (|:| -3585 |#5|))) (-712)))) -((-2673 (((-108) $ $) NIL)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |#4|)))) (-591 |#4|)) NIL)) (-3227 (((-591 $) (-591 |#4|)) 110) (((-591 $) (-591 |#4|) (-108)) 111) (((-591 $) (-591 |#4|) (-108) (-108)) 109) (((-591 $) (-591 |#4|) (-108) (-108) (-108) (-108)) 112)) (-1444 (((-591 |#3|) $) NIL)) (-3713 (((-108) $) NIL)) (-1996 (((-108) $) NIL (|has| |#1| (-517)))) (-3750 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4123 ((|#4| |#4| $) NIL)) (-1720 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| $) 84)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2467 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250))) (((-3 |#4| "failed") $ |#3|) 62)) (-2055 (($) NIL T CONST)) (-3435 (((-108) $) 26 (|has| |#1| (-517)))) (-2342 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2605 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2167 (((-108) $) NIL (|has| |#1| (-517)))) (-2699 (((-591 |#4|) (-591 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1533 (((-591 |#4|) (-591 |#4|) $) NIL (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) NIL (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) NIL)) (-3341 (($ (-591 |#4|)) NIL)) (-2884 (((-3 $ "failed") $) 39)) (-2302 ((|#4| |#4| $) 65)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-2537 (($ |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-517)))) (-3797 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2490 ((|#4| |#4| $) NIL)) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4250))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2082 (((-2 (|:| -1269 (-591 |#4|)) (|:| -1472 (-591 |#4|))) $) NIL)) (-1987 (((-108) |#4| $) NIL)) (-1949 (((-108) |#4| $) NIL)) (-3256 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2092 (((-2 (|:| |val| (-591 |#4|)) (|:| |towers| (-591 $))) (-591 |#4|) (-108) (-108)) 124)) (-2916 (((-591 |#4|) $) 16 (|has| $ (-6 -4250)))) (-2040 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3998 ((|#3| $) 33)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#4|) $) 17 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-4192 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 21)) (-3520 (((-591 |#3|) $) NIL)) (-1574 (((-108) |#3| $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2001 (((-3 |#4| (-591 $)) |#4| |#4| $) NIL)) (-2456 (((-591 (-2 (|:| |val| |#4|) (|:| -3585 $))) |#4| |#4| $) 103)) (-2555 (((-3 |#4| "failed") $) 37)) (-3783 (((-591 $) |#4| $) 88)) (-1929 (((-3 (-108) (-591 $)) |#4| $) NIL)) (-3433 (((-591 (-2 (|:| |val| (-108)) (|:| -3585 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-2318 (((-591 $) |#4| $) 107) (((-591 $) (-591 |#4|) $) NIL) (((-591 $) (-591 |#4|) (-591 $)) 108) (((-591 $) |#4| (-591 $)) NIL)) (-2502 (((-591 $) (-591 |#4|) (-108) (-108) (-108)) 119)) (-1832 (($ |#4| $) 75) (($ (-591 |#4|) $) 76) (((-591 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-3664 (((-591 |#4|) $) NIL)) (-1307 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3022 ((|#4| |#4| $) NIL)) (-3300 (((-108) $ $) NIL)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3255 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2246 ((|#4| |#4| $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 (((-3 |#4| "failed") $) 35)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1591 (((-3 $ "failed") $ |#4|) 48)) (-1618 (($ $ |#4|) NIL) (((-591 $) |#4| $) 90) (((-591 $) |#4| (-591 $)) NIL) (((-591 $) (-591 |#4|) $) NIL) (((-591 $) (-591 |#4|) (-591 $)) 86)) (-3465 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 15)) (-3164 (($) 13)) (-2743 (((-712) $) NIL)) (-2960 (((-712) |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (((-712) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) 12)) (-1300 (((-501) $) NIL (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) 20)) (-3786 (($ $ |#3|) 42)) (-2794 (($ $ |#3|) 44)) (-1656 (($ $) NIL)) (-1918 (($ $ |#3|) NIL)) (-2686 (((-796) $) 31) (((-591 |#4|) $) 40)) (-3311 (((-712) $) NIL (|has| |#3| (-346)))) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3747 (((-108) $ (-1 (-108) |#4| (-591 |#4|))) NIL)) (-3996 (((-591 $) |#4| $) 54) (((-591 $) |#4| (-591 $)) NIL) (((-591 $) (-591 |#4|) $) NIL) (((-591 $) (-591 |#4|) (-591 $)) NIL)) (-1475 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1669 (((-591 |#3|) $) NIL)) (-3744 (((-108) |#4| $) NIL)) (-2588 (((-108) |#3| $) 61)) (-3944 (((-108) $ $) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1060 |#1| |#2| |#3| |#4|) (-13 (-1027 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1832 ((-591 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3227 ((-591 $) (-591 |#4|) (-108) (-108))) (-15 -3227 ((-591 $) (-591 |#4|) (-108) (-108) (-108) (-108))) (-15 -2502 ((-591 $) (-591 |#4|) (-108) (-108) (-108))) (-15 -2092 ((-2 (|:| |val| (-591 |#4|)) (|:| |towers| (-591 $))) (-591 |#4|) (-108) (-108))))) (-429) (-734) (-788) (-989 |#1| |#2| |#3|)) (T -1060)) -((-1832 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 (-1060 *5 *6 *7 *3))) (-5 *1 (-1060 *5 *6 *7 *3)) (-4 *3 (-989 *5 *6 *7)))) (-3227 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3227 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-2502 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-2092 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-591 *8)) (|:| |towers| (-591 (-1060 *5 *6 *7 *8))))) (-5 *1 (-1060 *5 *6 *7 *8)) (-5 *3 (-591 *8))))) -(-13 (-1027 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1832 ((-591 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3227 ((-591 $) (-591 |#4|) (-108) (-108))) (-15 -3227 ((-591 $) (-591 |#4|) (-108) (-108) (-108) (-108))) (-15 -2502 ((-591 $) (-591 |#4|) (-108) (-108) (-108))) (-15 -2092 ((-2 (|:| |val| (-591 |#4|)) (|:| |towers| (-591 $))) (-591 |#4|) (-108) (-108))))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1505 ((|#1| $) 34)) (-2066 (($ (-591 |#1|)) 39)) (-3727 (((-108) $ (-712)) NIL)) (-2055 (($) NIL T CONST)) (-1593 ((|#1| |#1| $) 36)) (-1473 ((|#1| $) 32)) (-2916 (((-591 |#1|) $) 18 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 22)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-3949 ((|#1| $) 35)) (-1520 (($ |#1| $) 37)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-4166 ((|#1| $) 33)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 31)) (-3164 (($) 38)) (-2333 (((-712) $) 29)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) 27)) (-2686 (((-796) $) 14 (|has| |#1| (-565 (-796))))) (-2453 (($ (-591 |#1|)) NIL)) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 17 (|has| |#1| (-1018)))) (-2028 (((-712) $) 30 (|has| $ (-6 -4250))))) -(((-1061 |#1|) (-13 (-1037 |#1|) (-10 -8 (-15 -2066 ($ (-591 |#1|))))) (-1125)) (T -1061)) -((-2066 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-1061 *3))))) -(-13 (-1037 |#1|) (-10 -8 (-15 -2066 ($ (-591 |#1|))))) -((-2847 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1138 (-525)) |#2|) 44) ((|#2| $ (-525) |#2|) 41)) (-4139 (((-108) $) 12)) (-4192 (($ (-1 |#2| |#2|) $) 39)) (-2872 ((|#2| $) NIL) (($ $ (-712)) 17)) (-1858 (($ $ |#2|) 40)) (-1622 (((-108) $) 11)) (-1881 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1138 (-525))) 31) ((|#2| $ (-525)) 23) ((|#2| $ (-525) |#2|) NIL)) (-3729 (($ $ $) 47) (($ $ |#2|) NIL)) (-1624 (($ $ $) 33) (($ |#2| $) NIL) (($ (-591 $)) 36) (($ $ |#2|) NIL))) -(((-1062 |#1| |#2|) (-10 -8 (-15 -4139 ((-108) |#1|)) (-15 -1622 ((-108) |#1|)) (-15 -2847 (|#2| |#1| (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525))) (-15 -1858 (|#1| |#1| |#2|)) (-15 -1624 (|#1| |#1| |#2|)) (-15 -1624 (|#1| (-591 |#1|))) (-15 -1881 (|#1| |#1| (-1138 (-525)))) (-15 -2847 (|#2| |#1| (-1138 (-525)) |#2|)) (-15 -2847 (|#2| |#1| "last" |#2|)) (-15 -2847 (|#1| |#1| "rest" |#1|)) (-15 -2847 (|#2| |#1| "first" |#2|)) (-15 -3729 (|#1| |#1| |#2|)) (-15 -3729 (|#1| |#1| |#1|)) (-15 -1881 (|#2| |#1| "last")) (-15 -1881 (|#1| |#1| "rest")) (-15 -2872 (|#1| |#1| (-712))) (-15 -1881 (|#2| |#1| "first")) (-15 -2872 (|#2| |#1|)) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#1|)) (-15 -2847 (|#2| |#1| "value" |#2|)) (-15 -1881 (|#2| |#1| "value")) (-15 -4192 (|#1| (-1 |#2| |#2|) |#1|))) (-1063 |#2|) (-1125)) (T -1062)) -NIL -(-10 -8 (-15 -4139 ((-108) |#1|)) (-15 -1622 ((-108) |#1|)) (-15 -2847 (|#2| |#1| (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525) |#2|)) (-15 -1881 (|#2| |#1| (-525))) (-15 -1858 (|#1| |#1| |#2|)) (-15 -1624 (|#1| |#1| |#2|)) (-15 -1624 (|#1| (-591 |#1|))) (-15 -1881 (|#1| |#1| (-1138 (-525)))) (-15 -2847 (|#2| |#1| (-1138 (-525)) |#2|)) (-15 -2847 (|#2| |#1| "last" |#2|)) (-15 -2847 (|#1| |#1| "rest" |#1|)) (-15 -2847 (|#2| |#1| "first" |#2|)) (-15 -3729 (|#1| |#1| |#2|)) (-15 -3729 (|#1| |#1| |#1|)) (-15 -1881 (|#2| |#1| "last")) (-15 -1881 (|#1| |#1| "rest")) (-15 -2872 (|#1| |#1| (-712))) (-15 -1881 (|#2| |#1| "first")) (-15 -2872 (|#2| |#1|)) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#1|)) (-15 -2847 (|#2| |#1| "value" |#2|)) (-15 -1881 (|#2| |#1| "value")) (-15 -4192 (|#1| (-1 |#2| |#2|) |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-2940 ((|#1| $) 48)) (-2434 ((|#1| $) 65)) (-3856 (($ $) 67)) (-3832 (((-1176) $ (-525) (-525)) 97 (|has| $ (-6 -4251)))) (-2983 (($ $ (-525)) 52 (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) 8)) (-3912 ((|#1| $ |#1|) 39 (|has| $ (-6 -4251)))) (-3191 (($ $ $) 56 (|has| $ (-6 -4251)))) (-2568 ((|#1| $ |#1|) 54 (|has| $ (-6 -4251)))) (-2756 ((|#1| $ |#1|) 58 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4251))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4251))) (($ $ "rest" $) 55 (|has| $ (-6 -4251))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 117 (|has| $ (-6 -4251))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 41 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4250)))) (-2424 ((|#1| $) 66)) (-2055 (($) 7 T CONST)) (-2884 (($ $) 73) (($ $ (-712)) 71)) (-2908 (($ $) 99 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4250))) (($ |#1| $) 100 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4205 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 87)) (-4139 (((-108) $) 83)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 50)) (-3219 (((-108) $ $) 42 (|has| |#1| (-1018)))) (-1316 (($ (-712) |#1|) 108)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 95 (|has| (-525) (-788)))) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 94 (|has| (-525) (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3295 (((-108) $ (-712)) 10)) (-2065 (((-591 |#1|) $) 45)) (-2878 (((-108) $) 49)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2555 ((|#1| $) 70) (($ $ (-712)) 68)) (-2059 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-3761 (((-591 (-525)) $) 92)) (-1675 (((-108) (-525) $) 91)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2872 ((|#1| $) 76) (($ $ (-712)) 74)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1858 (($ $ |#1|) 96 (|has| $ (-6 -4251)))) (-1622 (((-108) $) 84)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) 90)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1138 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-2194 (((-525) $ $) 44)) (-3226 (($ $ (-1138 (-525))) 114) (($ $ (-525)) 113)) (-4133 (((-108) $) 46)) (-2349 (($ $) 62)) (-3494 (($ $) 59 (|has| $ (-6 -4251)))) (-1248 (((-712) $) 63)) (-3249 (($ $) 64)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-1300 (((-501) $) 98 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 107)) (-3729 (($ $ $) 61 (|has| $ (-6 -4251))) (($ $ |#1|) 60 (|has| $ (-6 -4251)))) (-1624 (($ $ $) 78) (($ |#1| $) 77) (($ (-591 $)) 110) (($ $ |#1|) 109)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) 51)) (-3592 (((-108) $ $) 43 (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-1063 |#1|) (-131) (-1125)) (T -1063)) -((-1622 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1125)) (-5 *2 (-108)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1125)) (-5 *2 (-108))))) -(-13 (-1159 |t#1|) (-596 |t#1|) (-10 -8 (-15 -1622 ((-108) $)) (-15 -4139 ((-108) $)))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-596 |#1|) . T) ((-940 |#1|) . T) ((-1018) |has| |#1| (-1018)) ((-1125) . T) ((-1159 |#1|) . T)) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-3832 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#2| $ |#1| |#2|) NIL)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 |#2| "failed") |#1| $) NIL)) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) NIL)) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) NIL)) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 ((|#1| $) NIL (|has| |#1| (-788)))) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-1826 ((|#1| $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4251))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2159 (((-591 |#1|) $) NIL)) (-1628 (((-108) |#1| $) NIL)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3761 (((-591 |#1|) $) NIL)) (-1675 (((-108) |#1| $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2872 ((|#2| $) NIL (|has| |#1| (-788)))) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2686 (((-796) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796))) (|has| |#2| (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1064 |#1| |#2| |#3|) (-1102 |#1| |#2|) (-1018) (-1018) |#2|) (T -1064)) -NIL -(-1102 |#1| |#2|) -((-2673 (((-108) $ $) 7)) (-2115 (((-3 $ "failed") $) 13)) (-2621 (((-1072) $) 9)) (-3492 (($) 14 T CONST)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11)) (-3944 (((-108) $ $) 6))) -(((-1065) (-131)) (T -1065)) -((-3492 (*1 *1) (-4 *1 (-1065))) (-2115 (*1 *1 *1) (|partial| -4 *1 (-1065)))) -(-13 (-1018) (-10 -8 (-15 -3492 ($) -2277) (-15 -2115 ((-3 $ "failed") $)))) -(((-97) . T) ((-565 (-796)) . T) ((-1018) . T)) -((-3451 (((-1070 |#1|) (-1070 |#1|)) 17)) (-4006 (((-1070 |#1|) (-1070 |#1|)) 13)) (-3429 (((-1070 |#1|) (-1070 |#1|) (-525) (-525)) 20)) (-3811 (((-1070 |#1|) (-1070 |#1|)) 15))) -(((-1066 |#1|) (-10 -7 (-15 -4006 ((-1070 |#1|) (-1070 |#1|))) (-15 -3811 ((-1070 |#1|) (-1070 |#1|))) (-15 -3451 ((-1070 |#1|) (-1070 |#1|))) (-15 -3429 ((-1070 |#1|) (-1070 |#1|) (-525) (-525)))) (-13 (-517) (-138))) (T -1066)) -((-3429 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1066 *4)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1066 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1066 *3)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1066 *3))))) -(-10 -7 (-15 -4006 ((-1070 |#1|) (-1070 |#1|))) (-15 -3811 ((-1070 |#1|) (-1070 |#1|))) (-15 -3451 ((-1070 |#1|) (-1070 |#1|))) (-15 -3429 ((-1070 |#1|) (-1070 |#1|) (-525) (-525)))) -((-1624 (((-1070 |#1|) (-1070 (-1070 |#1|))) 15))) -(((-1067 |#1|) (-10 -7 (-15 -1624 ((-1070 |#1|) (-1070 (-1070 |#1|))))) (-1125)) (T -1067)) -((-1624 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1067 *4)) (-4 *4 (-1125))))) -(-10 -7 (-15 -1624 ((-1070 |#1|) (-1070 (-1070 |#1|))))) -((-1350 (((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 25)) (-3618 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 26)) (-1257 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 16))) -(((-1068 |#1| |#2|) (-10 -7 (-15 -1257 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (-15 -1350 ((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|))) (-15 -3618 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)))) (-1125) (-1125)) (T -1068)) -((-3618 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1125)) (-4 *2 (-1125)) (-5 *1 (-1068 *5 *2)))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1125)) (-4 *3 (-1125)) (-5 *2 (-1070 *3)) (-5 *1 (-1068 *6 *3)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1070 *6)) (-5 *1 (-1068 *5 *6))))) -(-10 -7 (-15 -1257 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (-15 -1350 ((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|))) (-15 -3618 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)))) -((-1257 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)) 21))) -(((-1069 |#1| |#2| |#3|) (-10 -7 (-15 -1257 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)))) (-1125) (-1125) (-1125)) (T -1069)) -((-1257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-1070 *8)) (-5 *1 (-1069 *6 *7 *8))))) -(-10 -7 (-15 -1257 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) NIL)) (-2434 ((|#1| $) NIL)) (-3856 (($ $) 49)) (-3832 (((-1176) $ (-525) (-525)) 74 (|has| $ (-6 -4251)))) (-2983 (($ $ (-525)) 108 (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2846 (((-796) $) 38 (|has| |#1| (-1018)))) (-1210 (((-108)) 39 (|has| |#1| (-1018)))) (-3912 ((|#1| $ |#1|) NIL (|has| $ (-6 -4251)))) (-3191 (($ $ $) 96 (|has| $ (-6 -4251))) (($ $ (-525) $) 119)) (-2568 ((|#1| $ |#1|) 105 (|has| $ (-6 -4251)))) (-2756 ((|#1| $ |#1|) 100 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4251))) (($ $ "rest" $) 104 (|has| $ (-6 -4251))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 87 (|has| $ (-6 -4251))) ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) 56)) (-2424 ((|#1| $) NIL)) (-2055 (($) NIL T CONST)) (-3051 (($ $) 14)) (-2884 (($ $) 29) (($ $ (-712)) 86)) (-1506 (((-108) (-591 |#1|) $) 114 (|has| |#1| (-1018)))) (-1658 (($ (-591 |#1|)) 110)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) 55)) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-4139 (((-108) $) NIL)) (-2916 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-1488 (((-1176) (-525) $) 118 (|has| |#1| (-1018)))) (-1689 (((-712) $) 116)) (-2275 (((-591 $) $) NIL)) (-3219 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1316 (($ (-712) |#1|) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3295 (((-108) $ (-712)) NIL)) (-2065 (((-591 |#1|) $) NIL)) (-2878 (((-108) $) NIL)) (-1385 (($ $) 88)) (-4011 (((-108) $) 13)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2555 ((|#1| $) NIL) (($ $ (-712)) NIL)) (-2059 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) 72)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2399 (($ (-1 |#1|)) 121) (($ (-1 |#1| |#1|) |#1|) 122)) (-3297 ((|#1| $) 10)) (-2872 ((|#1| $) 28) (($ $ (-712)) 47)) (-2170 (((-2 (|:| |cycle?| (-108)) (|:| -3023 (-712)) (|:| |period| (-712))) (-712) $) 25)) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2442 (($ (-1 (-108) |#1|) $) 123)) (-2455 (($ (-1 (-108) |#1|) $) 124)) (-1858 (($ $ |#1|) 66 (|has| $ (-6 -4251)))) (-1618 (($ $ (-525)) 32)) (-1622 (((-108) $) 70)) (-2182 (((-108) $) 12)) (-2720 (((-108) $) 115)) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 20)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) 15)) (-3164 (($) 41)) (-1881 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1138 (-525))) NIL) ((|#1| $ (-525)) 52) ((|#1| $ (-525) |#1|) NIL)) (-2194 (((-525) $ $) 46)) (-3226 (($ $ (-1138 (-525))) NIL) (($ $ (-525)) NIL)) (-2051 (($ (-1 $)) 45)) (-4133 (((-108) $) 67)) (-2349 (($ $) 68)) (-3494 (($ $) 97 (|has| $ (-6 -4251)))) (-1248 (((-712) $) NIL)) (-3249 (($ $) NIL)) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) 42)) (-1300 (((-501) $) NIL (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 51)) (-2737 (($ |#1| $) 95)) (-3729 (($ $ $) 98 (|has| $ (-6 -4251))) (($ $ |#1|) 99 (|has| $ (-6 -4251)))) (-1624 (($ $ $) 76) (($ |#1| $) 43) (($ (-591 $)) 81) (($ $ |#1|) 75)) (-1664 (($ $) 48)) (-2686 (($ (-591 |#1|)) 109) (((-796) $) 40 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) NIL)) (-3592 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 112 (|has| |#1| (-1018)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1070 |#1|) (-13 (-618 |#1|) (-10 -8 (-6 -4251) (-15 -2686 ($ (-591 |#1|))) (-15 -1658 ($ (-591 |#1|))) (IF (|has| |#1| (-1018)) (-15 -1506 ((-108) (-591 |#1|) $)) |%noBranch|) (-15 -2170 ((-2 (|:| |cycle?| (-108)) (|:| -3023 (-712)) (|:| |period| (-712))) (-712) $)) (-15 -2051 ($ (-1 $))) (-15 -2737 ($ |#1| $)) (IF (|has| |#1| (-1018)) (PROGN (-15 -1488 ((-1176) (-525) $)) (-15 -2846 ((-796) $)) (-15 -1210 ((-108)))) |%noBranch|) (-15 -3191 ($ $ (-525) $)) (-15 -2399 ($ (-1 |#1|))) (-15 -2399 ($ (-1 |#1| |#1|) |#1|)) (-15 -2442 ($ (-1 (-108) |#1|) $)) (-15 -2455 ($ (-1 (-108) |#1|) $)))) (-1125)) (T -1070)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3)))) (-1658 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3)))) (-1506 (*1 *2 *3 *1) (-12 (-5 *3 (-591 *4)) (-4 *4 (-1018)) (-4 *4 (-1125)) (-5 *2 (-108)) (-5 *1 (-1070 *4)))) (-2170 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3023 (-712)) (|:| |period| (-712)))) (-5 *1 (-1070 *4)) (-4 *4 (-1125)) (-5 *3 (-712)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1125)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1125)))) (-1488 (*1 *2 *3 *1) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-1070 *4)) (-4 *4 (-1018)) (-4 *4 (-1125)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-1070 *3)) (-4 *3 (-1018)) (-4 *3 (-1125)))) (-1210 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1070 *3)) (-4 *3 (-1018)) (-4 *3 (-1125)))) (-3191 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1070 *3)) (-4 *3 (-1125)))) (-2399 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3)))) (-2399 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3)))) (-2442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3)))) (-2455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3))))) -(-13 (-618 |#1|) (-10 -8 (-6 -4251) (-15 -2686 ($ (-591 |#1|))) (-15 -1658 ($ (-591 |#1|))) (IF (|has| |#1| (-1018)) (-15 -1506 ((-108) (-591 |#1|) $)) |%noBranch|) (-15 -2170 ((-2 (|:| |cycle?| (-108)) (|:| -3023 (-712)) (|:| |period| (-712))) (-712) $)) (-15 -2051 ($ (-1 $))) (-15 -2737 ($ |#1| $)) (IF (|has| |#1| (-1018)) (PROGN (-15 -1488 ((-1176) (-525) $)) (-15 -2846 ((-796) $)) (-15 -1210 ((-108)))) |%noBranch|) (-15 -3191 ($ $ (-525) $)) (-15 -2399 ($ (-1 |#1|))) (-15 -2399 ($ (-1 |#1| |#1|) |#1|)) (-15 -2442 ($ (-1 (-108) |#1|) $)) (-15 -2455 ($ (-1 (-108) |#1|) $)))) -((-2673 (((-108) $ $) 19)) (-2779 (($ $) 120)) (-1462 (($ $) 121)) (-2150 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-3832 (((-1176) $ (-525) (-525)) 40 (|has| $ (-6 -4251)))) (-2619 (((-108) $ $) 118)) (-2598 (((-108) $ $ (-525)) 117)) (-2610 (($ (-525)) 127)) (-1645 (((-591 $) $ (-135)) 110) (((-591 $) $ (-132)) 109)) (-3110 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-788)))) (-2613 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4251))) (($ $) 88 (-12 (|has| (-135) (-788)) (|has| $ (-6 -4251))))) (-1282 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-788)))) (-3727 (((-108) $ (-712)) 8)) (-2847 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4251))) (((-135) $ (-1138 (-525)) (-135)) 58 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-2519 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-3405 (($ $) 90 (|has| $ (-6 -4251)))) (-2747 (($ $) 100)) (-1862 (($ $ (-1138 (-525)) $) 114)) (-2908 (($ $) 78 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ (-135) $) 77 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4250)))) (-3618 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4250))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4250)))) (-4205 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4251)))) (-4121 (((-135) $ (-525)) 51)) (-2639 (((-108) $ $) 119)) (-1734 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1018))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1018))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-2916 (((-591 (-135)) $) 30 (|has| $ (-6 -4250)))) (-1316 (($ (-712) (-135)) 69)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 43 (|has| (-525) (-788)))) (-1923 (($ $ $) 87 (|has| (-135) (-788)))) (-3459 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-788)))) (-4207 (((-591 (-135)) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 44 (|has| (-525) (-788)))) (-3475 (($ $ $) 86 (|has| (-135) (-788)))) (-3039 (((-108) $ $ (-135)) 115)) (-2147 (((-712) $ $ (-135)) 116)) (-4192 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-2869 (($ $) 122)) (-3779 (($ $) 123)) (-3295 (((-108) $ (-712)) 10)) (-2528 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-2621 (((-1072) $) 22)) (-2059 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-3761 (((-591 (-525)) $) 46)) (-1675 (((-108) (-525) $) 47)) (-2937 (((-1036) $) 21)) (-2872 (((-135) $) 42 (|has| (-525) (-788)))) (-2714 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-1858 (($ $ (-135)) 41 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-591 (-135)) (-591 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-2998 (((-591 (-135)) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1138 (-525))) 63) (($ $ $) 102)) (-3226 (($ $ (-525)) 62) (($ $ (-1138 (-525))) 61)) (-2960 (((-712) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4250))) (((-712) (-135) $) 28 (-12 (|has| (-135) (-1018)) (|has| $ (-6 -4250))))) (-2992 (($ $ $ (-525)) 91 (|has| $ (-6 -4251)))) (-2873 (($ $) 13)) (-1300 (((-501) $) 79 (|has| (-135) (-566 (-501))))) (-2695 (($ (-591 (-135))) 70)) (-1624 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-591 $)) 65)) (-2686 (($ (-135)) 111) (((-796) $) 18)) (-1475 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4250)))) (-3042 (((-1072) $) 131) (((-1072) $ (-108)) 130) (((-1176) (-763) $) 129) (((-1176) (-763) $ (-108)) 128)) (-4004 (((-108) $ $) 84 (|has| (-135) (-788)))) (-3982 (((-108) $ $) 83 (|has| (-135) (-788)))) (-3944 (((-108) $ $) 20)) (-3994 (((-108) $ $) 85 (|has| (-135) (-788)))) (-3971 (((-108) $ $) 82 (|has| (-135) (-788)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-1071) (-131)) (T -1071)) -((-2610 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1071))))) -(-13 (-1058) (-1018) (-769) (-10 -8 (-15 -2610 ($ (-525))))) -(((-33) . T) ((-97) . T) ((-565 (-796)) . T) ((-142 #0=(-135)) . T) ((-566 (-501)) |has| (-135) (-566 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018))) ((-596 #0#) . T) ((-19 #0#) . T) ((-769) . T) ((-788) |has| (-135) (-788)) ((-1018) . T) ((-1058) . T) ((-1125) . T)) -((-2673 (((-108) $ $) NIL)) (-2779 (($ $) NIL)) (-1462 (($ $) NIL)) (-2150 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-2619 (((-108) $ $) NIL)) (-2598 (((-108) $ $ (-525)) NIL)) (-2610 (($ (-525)) 7)) (-1645 (((-591 $) $ (-135)) NIL) (((-591 $) $ (-132)) NIL)) (-3110 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-788)))) (-2613 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| (-135) (-788))))) (-1282 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4251))) (((-135) $ (-1138 (-525)) (-135)) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-2519 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-1862 (($ $ (-1138 (-525)) $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-2537 (($ (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4250))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4250)))) (-4205 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4251)))) (-4121 (((-135) $ (-525)) NIL)) (-2639 (((-108) $ $) NIL)) (-1734 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1018))) (((-525) (-135) $ (-525)) NIL (|has| (-135) (-1018))) (((-525) $ $ (-525)) NIL) (((-525) (-132) $ (-525)) NIL)) (-2916 (((-591 (-135)) $) NIL (|has| $ (-6 -4250)))) (-1316 (($ (-712) (-135)) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| (-135) (-788)))) (-3459 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-788)))) (-4207 (((-591 (-135)) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| (-135) (-788)))) (-3039 (((-108) $ $ (-135)) NIL)) (-2147 (((-712) $ $ (-135)) NIL)) (-4192 (($ (-1 (-135) (-135)) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-2869 (($ $) NIL)) (-3779 (($ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2528 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-2621 (((-1072) $) NIL)) (-2059 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 (((-135) $) NIL (|has| (-525) (-788)))) (-2714 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-1858 (($ $ (-135)) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018)))) (($ $ (-591 (-135)) (-591 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-2998 (((-591 (-135)) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1138 (-525))) NIL) (($ $ $) NIL)) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-2960 (((-712) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250))) (((-712) (-135) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-135) (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-135) (-566 (-501))))) (-2695 (($ (-591 (-135))) NIL)) (-1624 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) NIL) (($ (-591 $)) NIL)) (-2686 (($ (-135)) NIL) (((-796) $) NIL)) (-1475 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4250)))) (-3042 (((-1072) $) 18) (((-1072) $ (-108)) 20) (((-1176) (-763) $) 21) (((-1176) (-763) $ (-108)) 22)) (-4004 (((-108) $ $) NIL (|has| (-135) (-788)))) (-3982 (((-108) $ $) NIL (|has| (-135) (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| (-135) (-788)))) (-3971 (((-108) $ $) NIL (|has| (-135) (-788)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1072) (-1071)) (T -1072)) -NIL -(-1071) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)) (|has| |#1| (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL)) (-3832 (((-1176) $ (-1072) (-1072)) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-1072) |#1|) NIL)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 |#1| "failed") (-1072) $) NIL)) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018))))) (-3844 (($ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250))) (((-3 |#1| "failed") (-1072) $) NIL)) (-2537 (($ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-1072)) NIL)) (-2916 (((-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-1072) $) NIL (|has| (-1072) (-788)))) (-4207 (((-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-1072) $) NIL (|has| (-1072) (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4251))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)) (|has| |#1| (-1018))))) (-2159 (((-591 (-1072)) $) NIL)) (-1628 (((-108) (-1072) $) NIL)) (-3949 (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL)) (-1520 (($ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL)) (-3761 (((-591 (-1072)) $) NIL)) (-1675 (((-108) (-1072) $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)) (|has| |#1| (-1018))))) (-2872 ((|#1| $) NIL (|has| (-1072) (-788)))) (-2714 (((-3 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) "failed") (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (($ $ (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL (-12 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-288 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-1072)) NIL) ((|#1| $ (-1072) |#1|) NIL)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL)) (-2686 (((-796) $) NIL (-3150 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-565 (-796))) (|has| |#1| (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 (-1072)) (|:| -1568 |#1|)) (-1018)) (|has| |#1| (-1018))))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1073 |#1|) (-13 (-1102 (-1072) |#1|) (-10 -7 (-6 -4250))) (-1018)) (T -1073)) -NIL -(-13 (-1102 (-1072) |#1|) (-10 -7 (-6 -4250))) -((-3967 (((-1070 |#1|) (-1070 |#1|)) 77)) (-1522 (((-3 (-1070 |#1|) "failed") (-1070 |#1|)) 37)) (-1615 (((-1070 |#1|) (-385 (-525)) (-1070 |#1|)) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2362 (((-1070 |#1|) |#1| (-1070 |#1|)) 122 (|has| |#1| (-341)))) (-4141 (((-1070 |#1|) (-1070 |#1|)) 90)) (-1879 (((-1070 (-525)) (-525)) 57)) (-1340 (((-1070 |#1|) (-1070 (-1070 |#1|))) 108 (|has| |#1| (-37 (-385 (-525)))))) (-3258 (((-1070 |#1|) (-525) (-525) (-1070 |#1|)) 95)) (-2990 (((-1070 |#1|) |#1| (-525)) 45)) (-3134 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 60)) (-3468 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 119 (|has| |#1| (-341)))) (-1972 (((-1070 |#1|) |#1| (-1 (-1070 |#1|))) 107 (|has| |#1| (-37 (-385 (-525)))))) (-2548 (((-1070 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1070 |#1|))) 120 (|has| |#1| (-341)))) (-3089 (((-1070 |#1|) (-1070 |#1|)) 89)) (-2949 (((-1070 |#1|) (-1070 |#1|)) 76)) (-3503 (((-1070 |#1|) (-525) (-525) (-1070 |#1|)) 96)) (-2452 (((-1070 |#1|) |#1| (-1070 |#1|)) 105 (|has| |#1| (-37 (-385 (-525)))))) (-3349 (((-1070 (-525)) (-525)) 56)) (-1421 (((-1070 |#1|) |#1|) 59)) (-4049 (((-1070 |#1|) (-1070 |#1|) (-525) (-525)) 92)) (-4045 (((-1070 |#1|) (-1 |#1| (-525)) (-1070 |#1|)) 66)) (-3210 (((-3 (-1070 |#1|) "failed") (-1070 |#1|) (-1070 |#1|)) 35)) (-2609 (((-1070 |#1|) (-1070 |#1|)) 91)) (-1980 (((-1070 |#1|) (-1070 |#1|) |#1|) 71)) (-2061 (((-1070 |#1|) (-1070 |#1|)) 62)) (-1435 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 72)) (-2686 (((-1070 |#1|) |#1|) 67)) (-3558 (((-1070 |#1|) (-1070 (-1070 |#1|))) 82)) (-4059 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 36)) (-4047 (((-1070 |#1|) (-1070 |#1|)) 21) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 23)) (-4036 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 17)) (* (((-1070 |#1|) (-1070 |#1|) |#1|) 29) (((-1070 |#1|) |#1| (-1070 |#1|)) 26) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 27))) -(((-1074 |#1|) (-10 -7 (-15 -4036 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -4047 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -4047 ((-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3210 ((-3 (-1070 |#1|) "failed") (-1070 |#1|) (-1070 |#1|))) (-15 -4059 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -1522 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -2990 ((-1070 |#1|) |#1| (-525))) (-15 -3349 ((-1070 (-525)) (-525))) (-15 -1879 ((-1070 (-525)) (-525))) (-15 -1421 ((-1070 |#1|) |#1|)) (-15 -3134 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2061 ((-1070 |#1|) (-1070 |#1|))) (-15 -4045 ((-1070 |#1|) (-1 |#1| (-525)) (-1070 |#1|))) (-15 -2686 ((-1070 |#1|) |#1|)) (-15 -1980 ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -1435 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2949 ((-1070 |#1|) (-1070 |#1|))) (-15 -3967 ((-1070 |#1|) (-1070 |#1|))) (-15 -3558 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3089 ((-1070 |#1|) (-1070 |#1|))) (-15 -4141 ((-1070 |#1|) (-1070 |#1|))) (-15 -2609 ((-1070 |#1|) (-1070 |#1|))) (-15 -4049 ((-1070 |#1|) (-1070 |#1|) (-525) (-525))) (-15 -3258 ((-1070 |#1|) (-525) (-525) (-1070 |#1|))) (-15 -3503 ((-1070 |#1|) (-525) (-525) (-1070 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 -1972 ((-1070 |#1|) |#1| (-1 (-1070 |#1|)))) (-15 -1340 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -1615 ((-1070 |#1|) (-385 (-525)) (-1070 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3468 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2548 ((-1070 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1070 |#1|)))) (-15 -2362 ((-1070 |#1|) |#1| (-1070 |#1|)))) |%noBranch|)) (-975)) (T -1074)) -((-2362 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-341)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-2548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-341)) (-4 *4 (-975)) (-5 *2 (-1070 *4)) (-5 *1 (-1074 *4)))) (-3468 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-341)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-1615 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-37 *3)) (-4 *4 (-975)) (-5 *3 (-385 (-525))) (-5 *1 (-1074 *4)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-975)))) (-1972 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)))) (-2452 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-3503 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-525)) (-4 *4 (-975)) (-5 *1 (-1074 *4)))) (-3258 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-525)) (-4 *4 (-975)) (-5 *1 (-1074 *4)))) (-4049 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-525)) (-4 *4 (-975)) (-5 *1 (-1074 *4)))) (-2609 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-3089 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-975)))) (-3967 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-2949 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-1435 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-2686 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-975)))) (-4045 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-975)) (-5 *1 (-1074 *4)))) (-2061 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-3134 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-1421 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-975)))) (-1879 (*1 *2 *3) (-12 (-5 *2 (-1070 (-525))) (-5 *1 (-1074 *4)) (-4 *4 (-975)) (-5 *3 (-525)))) (-3349 (*1 *2 *3) (-12 (-5 *2 (-1070 (-525))) (-5 *1 (-1074 *4)) (-4 *4 (-975)) (-5 *3 (-525)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-1070 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-975)))) (-1522 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-4059 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-3210 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-4047 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-4047 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) (-4036 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3))))) -(-10 -7 (-15 -4036 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -4047 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -4047 ((-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3210 ((-3 (-1070 |#1|) "failed") (-1070 |#1|) (-1070 |#1|))) (-15 -4059 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -1522 ((-3 (-1070 |#1|) "failed") (-1070 |#1|))) (-15 -2990 ((-1070 |#1|) |#1| (-525))) (-15 -3349 ((-1070 (-525)) (-525))) (-15 -1879 ((-1070 (-525)) (-525))) (-15 -1421 ((-1070 |#1|) |#1|)) (-15 -3134 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2061 ((-1070 |#1|) (-1070 |#1|))) (-15 -4045 ((-1070 |#1|) (-1 |#1| (-525)) (-1070 |#1|))) (-15 -2686 ((-1070 |#1|) |#1|)) (-15 -1980 ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -1435 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2949 ((-1070 |#1|) (-1070 |#1|))) (-15 -3967 ((-1070 |#1|) (-1070 |#1|))) (-15 -3558 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3089 ((-1070 |#1|) (-1070 |#1|))) (-15 -4141 ((-1070 |#1|) (-1070 |#1|))) (-15 -2609 ((-1070 |#1|) (-1070 |#1|))) (-15 -4049 ((-1070 |#1|) (-1070 |#1|) (-525) (-525))) (-15 -3258 ((-1070 |#1|) (-525) (-525) (-1070 |#1|))) (-15 -3503 ((-1070 |#1|) (-525) (-525) (-1070 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 -1972 ((-1070 |#1|) |#1| (-1 (-1070 |#1|)))) (-15 -1340 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -1615 ((-1070 |#1|) (-385 (-525)) (-1070 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3468 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2548 ((-1070 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1070 |#1|)))) (-15 -2362 ((-1070 |#1|) |#1| (-1070 |#1|)))) |%noBranch|)) -((-4087 (((-1070 |#1|) (-1070 |#1|)) 57)) (-2381 (((-1070 |#1|) (-1070 |#1|)) 39)) (-4058 (((-1070 |#1|) (-1070 |#1|)) 53)) (-2360 (((-1070 |#1|) (-1070 |#1|)) 35)) (-4109 (((-1070 |#1|) (-1070 |#1|)) 60)) (-2400 (((-1070 |#1|) (-1070 |#1|)) 42)) (-2356 (((-1070 |#1|) (-1070 |#1|)) 31)) (-2288 (((-1070 |#1|) (-1070 |#1|)) 27)) (-4122 (((-1070 |#1|) (-1070 |#1|)) 61)) (-2410 (((-1070 |#1|) (-1070 |#1|)) 43)) (-4098 (((-1070 |#1|) (-1070 |#1|)) 58)) (-2391 (((-1070 |#1|) (-1070 |#1|)) 40)) (-4073 (((-1070 |#1|) (-1070 |#1|)) 55)) (-2370 (((-1070 |#1|) (-1070 |#1|)) 37)) (-4163 (((-1070 |#1|) (-1070 |#1|)) 65)) (-2457 (((-1070 |#1|) (-1070 |#1|)) 47)) (-4137 (((-1070 |#1|) (-1070 |#1|)) 63)) (-2432 (((-1070 |#1|) (-1070 |#1|)) 45)) (-4193 (((-1070 |#1|) (-1070 |#1|)) 68)) (-2477 (((-1070 |#1|) (-1070 |#1|)) 50)) (-1234 (((-1070 |#1|) (-1070 |#1|)) 69)) (-2495 (((-1070 |#1|) (-1070 |#1|)) 51)) (-4179 (((-1070 |#1|) (-1070 |#1|)) 67)) (-2469 (((-1070 |#1|) (-1070 |#1|)) 49)) (-4149 (((-1070 |#1|) (-1070 |#1|)) 66)) (-2444 (((-1070 |#1|) (-1070 |#1|)) 48)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 33))) -(((-1075 |#1|) (-10 -7 (-15 -2288 ((-1070 |#1|) (-1070 |#1|))) (-15 -2356 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2360 ((-1070 |#1|) (-1070 |#1|))) (-15 -2370 ((-1070 |#1|) (-1070 |#1|))) (-15 -2381 ((-1070 |#1|) (-1070 |#1|))) (-15 -2391 ((-1070 |#1|) (-1070 |#1|))) (-15 -2400 ((-1070 |#1|) (-1070 |#1|))) (-15 -2410 ((-1070 |#1|) (-1070 |#1|))) (-15 -2432 ((-1070 |#1|) (-1070 |#1|))) (-15 -2444 ((-1070 |#1|) (-1070 |#1|))) (-15 -2457 ((-1070 |#1|) (-1070 |#1|))) (-15 -2469 ((-1070 |#1|) (-1070 |#1|))) (-15 -2477 ((-1070 |#1|) (-1070 |#1|))) (-15 -2495 ((-1070 |#1|) (-1070 |#1|))) (-15 -4058 ((-1070 |#1|) (-1070 |#1|))) (-15 -4073 ((-1070 |#1|) (-1070 |#1|))) (-15 -4087 ((-1070 |#1|) (-1070 |#1|))) (-15 -4098 ((-1070 |#1|) (-1070 |#1|))) (-15 -4109 ((-1070 |#1|) (-1070 |#1|))) (-15 -4122 ((-1070 |#1|) (-1070 |#1|))) (-15 -4137 ((-1070 |#1|) (-1070 |#1|))) (-15 -4149 ((-1070 |#1|) (-1070 |#1|))) (-15 -4163 ((-1070 |#1|) (-1070 |#1|))) (-15 -4179 ((-1070 |#1|) (-1070 |#1|))) (-15 -4193 ((-1070 |#1|) (-1070 |#1|))) (-15 -1234 ((-1070 |#1|) (-1070 |#1|)))) (-37 (-385 (-525)))) (T -1075)) -((-1234 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4193 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4179 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4122 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4073 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2477 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2381 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3)))) (-2288 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1075 *3))))) -(-10 -7 (-15 -2288 ((-1070 |#1|) (-1070 |#1|))) (-15 -2356 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2360 ((-1070 |#1|) (-1070 |#1|))) (-15 -2370 ((-1070 |#1|) (-1070 |#1|))) (-15 -2381 ((-1070 |#1|) (-1070 |#1|))) (-15 -2391 ((-1070 |#1|) (-1070 |#1|))) (-15 -2400 ((-1070 |#1|) (-1070 |#1|))) (-15 -2410 ((-1070 |#1|) (-1070 |#1|))) (-15 -2432 ((-1070 |#1|) (-1070 |#1|))) (-15 -2444 ((-1070 |#1|) (-1070 |#1|))) (-15 -2457 ((-1070 |#1|) (-1070 |#1|))) (-15 -2469 ((-1070 |#1|) (-1070 |#1|))) (-15 -2477 ((-1070 |#1|) (-1070 |#1|))) (-15 -2495 ((-1070 |#1|) (-1070 |#1|))) (-15 -4058 ((-1070 |#1|) (-1070 |#1|))) (-15 -4073 ((-1070 |#1|) (-1070 |#1|))) (-15 -4087 ((-1070 |#1|) (-1070 |#1|))) (-15 -4098 ((-1070 |#1|) (-1070 |#1|))) (-15 -4109 ((-1070 |#1|) (-1070 |#1|))) (-15 -4122 ((-1070 |#1|) (-1070 |#1|))) (-15 -4137 ((-1070 |#1|) (-1070 |#1|))) (-15 -4149 ((-1070 |#1|) (-1070 |#1|))) (-15 -4163 ((-1070 |#1|) (-1070 |#1|))) (-15 -4179 ((-1070 |#1|) (-1070 |#1|))) (-15 -4193 ((-1070 |#1|) (-1070 |#1|))) (-15 -1234 ((-1070 |#1|) (-1070 |#1|)))) -((-4087 (((-1070 |#1|) (-1070 |#1|)) 100)) (-2381 (((-1070 |#1|) (-1070 |#1|)) 64)) (-1756 (((-2 (|:| -4058 (-1070 |#1|)) (|:| -4073 (-1070 |#1|))) (-1070 |#1|)) 96)) (-4058 (((-1070 |#1|) (-1070 |#1|)) 97)) (-2044 (((-2 (|:| -2360 (-1070 |#1|)) (|:| -2370 (-1070 |#1|))) (-1070 |#1|)) 53)) (-2360 (((-1070 |#1|) (-1070 |#1|)) 54)) (-4109 (((-1070 |#1|) (-1070 |#1|)) 102)) (-2400 (((-1070 |#1|) (-1070 |#1|)) 71)) (-2356 (((-1070 |#1|) (-1070 |#1|)) 39)) (-2288 (((-1070 |#1|) (-1070 |#1|)) 36)) (-4122 (((-1070 |#1|) (-1070 |#1|)) 103)) (-2410 (((-1070 |#1|) (-1070 |#1|)) 72)) (-4098 (((-1070 |#1|) (-1070 |#1|)) 101)) (-2391 (((-1070 |#1|) (-1070 |#1|)) 67)) (-4073 (((-1070 |#1|) (-1070 |#1|)) 98)) (-2370 (((-1070 |#1|) (-1070 |#1|)) 55)) (-4163 (((-1070 |#1|) (-1070 |#1|)) 111)) (-2457 (((-1070 |#1|) (-1070 |#1|)) 86)) (-4137 (((-1070 |#1|) (-1070 |#1|)) 105)) (-2432 (((-1070 |#1|) (-1070 |#1|)) 82)) (-4193 (((-1070 |#1|) (-1070 |#1|)) 115)) (-2477 (((-1070 |#1|) (-1070 |#1|)) 90)) (-1234 (((-1070 |#1|) (-1070 |#1|)) 117)) (-2495 (((-1070 |#1|) (-1070 |#1|)) 92)) (-4179 (((-1070 |#1|) (-1070 |#1|)) 113)) (-2469 (((-1070 |#1|) (-1070 |#1|)) 88)) (-4149 (((-1070 |#1|) (-1070 |#1|)) 107)) (-2444 (((-1070 |#1|) (-1070 |#1|)) 84)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 40))) -(((-1076 |#1|) (-10 -7 (-15 -2288 ((-1070 |#1|) (-1070 |#1|))) (-15 -2356 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2044 ((-2 (|:| -2360 (-1070 |#1|)) (|:| -2370 (-1070 |#1|))) (-1070 |#1|))) (-15 -2360 ((-1070 |#1|) (-1070 |#1|))) (-15 -2370 ((-1070 |#1|) (-1070 |#1|))) (-15 -2381 ((-1070 |#1|) (-1070 |#1|))) (-15 -2391 ((-1070 |#1|) (-1070 |#1|))) (-15 -2400 ((-1070 |#1|) (-1070 |#1|))) (-15 -2410 ((-1070 |#1|) (-1070 |#1|))) (-15 -2432 ((-1070 |#1|) (-1070 |#1|))) (-15 -2444 ((-1070 |#1|) (-1070 |#1|))) (-15 -2457 ((-1070 |#1|) (-1070 |#1|))) (-15 -2469 ((-1070 |#1|) (-1070 |#1|))) (-15 -2477 ((-1070 |#1|) (-1070 |#1|))) (-15 -2495 ((-1070 |#1|) (-1070 |#1|))) (-15 -1756 ((-2 (|:| -4058 (-1070 |#1|)) (|:| -4073 (-1070 |#1|))) (-1070 |#1|))) (-15 -4058 ((-1070 |#1|) (-1070 |#1|))) (-15 -4073 ((-1070 |#1|) (-1070 |#1|))) (-15 -4087 ((-1070 |#1|) (-1070 |#1|))) (-15 -4098 ((-1070 |#1|) (-1070 |#1|))) (-15 -4109 ((-1070 |#1|) (-1070 |#1|))) (-15 -4122 ((-1070 |#1|) (-1070 |#1|))) (-15 -4137 ((-1070 |#1|) (-1070 |#1|))) (-15 -4149 ((-1070 |#1|) (-1070 |#1|))) (-15 -4163 ((-1070 |#1|) (-1070 |#1|))) (-15 -4179 ((-1070 |#1|) (-1070 |#1|))) (-15 -4193 ((-1070 |#1|) (-1070 |#1|))) (-15 -1234 ((-1070 |#1|) (-1070 |#1|)))) (-37 (-385 (-525)))) (T -1076)) -((-1234 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4193 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4179 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4122 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4073 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-1756 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -4058 (-1070 *4)) (|:| -4073 (-1070 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-1070 *4)))) (-2495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2477 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2381 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2044 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -2360 (-1070 *4)) (|:| -2370 (-1070 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-1070 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2288 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3))))) -(-10 -7 (-15 -2288 ((-1070 |#1|) (-1070 |#1|))) (-15 -2356 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -2044 ((-2 (|:| -2360 (-1070 |#1|)) (|:| -2370 (-1070 |#1|))) (-1070 |#1|))) (-15 -2360 ((-1070 |#1|) (-1070 |#1|))) (-15 -2370 ((-1070 |#1|) (-1070 |#1|))) (-15 -2381 ((-1070 |#1|) (-1070 |#1|))) (-15 -2391 ((-1070 |#1|) (-1070 |#1|))) (-15 -2400 ((-1070 |#1|) (-1070 |#1|))) (-15 -2410 ((-1070 |#1|) (-1070 |#1|))) (-15 -2432 ((-1070 |#1|) (-1070 |#1|))) (-15 -2444 ((-1070 |#1|) (-1070 |#1|))) (-15 -2457 ((-1070 |#1|) (-1070 |#1|))) (-15 -2469 ((-1070 |#1|) (-1070 |#1|))) (-15 -2477 ((-1070 |#1|) (-1070 |#1|))) (-15 -2495 ((-1070 |#1|) (-1070 |#1|))) (-15 -1756 ((-2 (|:| -4058 (-1070 |#1|)) (|:| -4073 (-1070 |#1|))) (-1070 |#1|))) (-15 -4058 ((-1070 |#1|) (-1070 |#1|))) (-15 -4073 ((-1070 |#1|) (-1070 |#1|))) (-15 -4087 ((-1070 |#1|) (-1070 |#1|))) (-15 -4098 ((-1070 |#1|) (-1070 |#1|))) (-15 -4109 ((-1070 |#1|) (-1070 |#1|))) (-15 -4122 ((-1070 |#1|) (-1070 |#1|))) (-15 -4137 ((-1070 |#1|) (-1070 |#1|))) (-15 -4149 ((-1070 |#1|) (-1070 |#1|))) (-15 -4163 ((-1070 |#1|) (-1070 |#1|))) (-15 -4179 ((-1070 |#1|) (-1070 |#1|))) (-15 -4193 ((-1070 |#1|) (-1070 |#1|))) (-15 -1234 ((-1070 |#1|) (-1070 |#1|)))) -((-2373 (((-890 |#2|) |#2| |#2|) 35)) (-3153 ((|#2| |#2| |#1|) 19 (|has| |#1| (-286))))) -(((-1077 |#1| |#2|) (-10 -7 (-15 -2373 ((-890 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -3153 (|#2| |#2| |#1|)) |%noBranch|)) (-517) (-1147 |#1|)) (T -1077)) -((-3153 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1077 *3 *2)) (-4 *2 (-1147 *3)))) (-2373 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-890 *3)) (-5 *1 (-1077 *4 *3)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -2373 ((-890 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -3153 (|#2| |#2| |#1|)) |%noBranch|)) -((-2673 (((-108) $ $) NIL)) (-4021 (($ $ (-591 (-712))) 67)) (-2749 (($) 26)) (-3693 (($ $) 42)) (-3374 (((-591 $) $) 51)) (-4150 (((-108) $) 16)) (-2132 (((-591 (-876 |#2|)) $) 74)) (-2064 (($ $) 68)) (-1979 (((-712) $) 37)) (-1316 (($) 25)) (-2441 (($ $ (-591 (-712)) (-876 |#2|)) 60) (($ $ (-591 (-712)) (-712)) 61) (($ $ (-712) (-876 |#2|)) 63)) (-3459 (($ $ $) 48) (($ (-591 $)) 50)) (-3083 (((-712) $) 75)) (-2878 (((-108) $) 15)) (-2621 (((-1072) $) NIL)) (-1388 (((-108) $) 18)) (-2937 (((-1036) $) NIL)) (-2624 (((-159) $) 73)) (-4075 (((-876 |#2|) $) 69)) (-2569 (((-712) $) 70)) (-3154 (((-108) $) 72)) (-2074 (($ $ (-591 (-712)) (-159)) 66)) (-2768 (($ $) 43)) (-2686 (((-796) $) 86)) (-3230 (($ $ (-591 (-712)) (-108)) 65)) (-1567 (((-591 $) $) 11)) (-1623 (($ $ (-712)) 36)) (-3163 (($ $) 32)) (-2511 (($ $ $ (-876 |#2|) (-712)) 56)) (-2503 (($ $ (-876 |#2|)) 55)) (-1204 (($ $ (-591 (-712)) (-876 |#2|)) 54) (($ $ (-591 (-712)) (-712)) 58) (((-712) $ (-876 |#2|)) 59)) (-3944 (((-108) $ $) 80))) -(((-1078 |#1| |#2|) (-13 (-1018) (-10 -8 (-15 -2878 ((-108) $)) (-15 -4150 ((-108) $)) (-15 -1388 ((-108) $)) (-15 -1316 ($)) (-15 -2749 ($)) (-15 -3163 ($ $)) (-15 -1623 ($ $ (-712))) (-15 -1567 ((-591 $) $)) (-15 -1979 ((-712) $)) (-15 -3693 ($ $)) (-15 -2768 ($ $)) (-15 -3459 ($ $ $)) (-15 -3459 ($ (-591 $))) (-15 -3374 ((-591 $) $)) (-15 -1204 ($ $ (-591 (-712)) (-876 |#2|))) (-15 -2503 ($ $ (-876 |#2|))) (-15 -2511 ($ $ $ (-876 |#2|) (-712))) (-15 -2441 ($ $ (-591 (-712)) (-876 |#2|))) (-15 -1204 ($ $ (-591 (-712)) (-712))) (-15 -2441 ($ $ (-591 (-712)) (-712))) (-15 -1204 ((-712) $ (-876 |#2|))) (-15 -2441 ($ $ (-712) (-876 |#2|))) (-15 -3230 ($ $ (-591 (-712)) (-108))) (-15 -2074 ($ $ (-591 (-712)) (-159))) (-15 -4021 ($ $ (-591 (-712)))) (-15 -4075 ((-876 |#2|) $)) (-15 -2569 ((-712) $)) (-15 -3154 ((-108) $)) (-15 -2624 ((-159) $)) (-15 -3083 ((-712) $)) (-15 -2064 ($ $)) (-15 -2132 ((-591 (-876 |#2|)) $)))) (-854) (-975)) (T -1078)) -((-2878 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-1316 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975)))) (-2749 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975)))) (-3163 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975)))) (-1623 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-591 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-3693 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975)))) (-2768 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975)))) (-3459 (*1 *1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-591 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-591 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-1204 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-712))) (-5 *3 (-876 *5)) (-4 *5 (-975)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)))) (-2503 (*1 *1 *1 *2) (-12 (-5 *2 (-876 *4)) (-4 *4 (-975)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)))) (-2511 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-876 *5)) (-5 *3 (-712)) (-4 *5 (-975)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)))) (-2441 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-712))) (-5 *3 (-876 *5)) (-4 *5 (-975)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)))) (-1204 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-712))) (-5 *3 (-712)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)) (-4 *5 (-975)))) (-2441 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-712))) (-5 *3 (-712)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)) (-4 *5 (-975)))) (-1204 (*1 *2 *1 *3) (-12 (-5 *3 (-876 *5)) (-4 *5 (-975)) (-5 *2 (-712)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)))) (-2441 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-712)) (-5 *3 (-876 *5)) (-4 *5 (-975)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)))) (-3230 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-712))) (-5 *3 (-108)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)) (-4 *5 (-975)))) (-2074 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-591 (-712))) (-5 *3 (-159)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)) (-4 *5 (-975)))) (-4021 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-712))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-876 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975)))) (-2064 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-591 (-876 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) (-4 *4 (-975))))) -(-13 (-1018) (-10 -8 (-15 -2878 ((-108) $)) (-15 -4150 ((-108) $)) (-15 -1388 ((-108) $)) (-15 -1316 ($)) (-15 -2749 ($)) (-15 -3163 ($ $)) (-15 -1623 ($ $ (-712))) (-15 -1567 ((-591 $) $)) (-15 -1979 ((-712) $)) (-15 -3693 ($ $)) (-15 -2768 ($ $)) (-15 -3459 ($ $ $)) (-15 -3459 ($ (-591 $))) (-15 -3374 ((-591 $) $)) (-15 -1204 ($ $ (-591 (-712)) (-876 |#2|))) (-15 -2503 ($ $ (-876 |#2|))) (-15 -2511 ($ $ $ (-876 |#2|) (-712))) (-15 -2441 ($ $ (-591 (-712)) (-876 |#2|))) (-15 -1204 ($ $ (-591 (-712)) (-712))) (-15 -2441 ($ $ (-591 (-712)) (-712))) (-15 -1204 ((-712) $ (-876 |#2|))) (-15 -2441 ($ $ (-712) (-876 |#2|))) (-15 -3230 ($ $ (-591 (-712)) (-108))) (-15 -2074 ($ $ (-591 (-712)) (-159))) (-15 -4021 ($ $ (-591 (-712)))) (-15 -4075 ((-876 |#2|) $)) (-15 -2569 ((-712) $)) (-15 -3154 ((-108) $)) (-15 -2624 ((-159) $)) (-15 -3083 ((-712) $)) (-15 -2064 ($ $)) (-15 -2132 ((-591 (-876 |#2|)) $)))) -((-2673 (((-108) $ $) NIL)) (-4165 ((|#2| $) 11)) (-4151 ((|#1| $) 10)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2695 (($ |#1| |#2|) 9)) (-2686 (((-796) $) 16)) (-3944 (((-108) $ $) NIL))) -(((-1079 |#1| |#2|) (-13 (-1018) (-10 -8 (-15 -2695 ($ |#1| |#2|)) (-15 -4151 (|#1| $)) (-15 -4165 (|#2| $)))) (-1018) (-1018)) (T -1079)) -((-2695 (*1 *1 *2 *3) (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) (-4151 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1018)))) (-4165 (*1 *2 *1) (-12 (-4 *2 (-1018)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1018))))) -(-13 (-1018) (-10 -8 (-15 -2695 ($ |#1| |#2|)) (-15 -4151 (|#1| $)) (-15 -4165 (|#2| $)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) 11)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3641 (($ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3077 (((-108) $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3328 (($ $ (-525)) NIL) (($ $ (-525) (-525)) 66)) (-3581 (((-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-2989 (((-1087 |#1| |#2| |#3|) $) 36)) (-3074 (((-3 (-1087 |#1| |#2| |#3|) "failed") $) 29)) (-1487 (((-1087 |#1| |#2| |#3|) $) 30)) (-4087 (($ $) 107 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-1720 (($ $) NIL (|has| |#1| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4058 (($ $) 103 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-4188 (((-525) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))))) (-1895 (($ (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-4109 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-1087 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1089) "failed") $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-966 (-1089))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341))))) (-3341 (((-1087 |#1| |#2| |#3|) $) 131) (((-1089) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-966 (-1089))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341))))) (-2742 (($ $) 34) (($ (-525) $) 35)) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) NIL)) (-3925 (((-631 (-1087 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -2928 (-631 (-1087 |#1| |#2| |#3|))) (|:| |vec| (-1171 (-1087 |#1| |#2| |#3|)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-587 (-525))) (|has| |#1| (-341)))) (((-631 (-525)) (-631 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-587 (-525))) (|has| |#1| (-341))))) (-1522 (((-3 $ "failed") $) 48)) (-3642 (((-385 (-885 |#1|)) $ (-525)) 65 (|has| |#1| (-517))) (((-385 (-885 |#1|)) $ (-525) (-525)) 67 (|has| |#1| (-517)))) (-1325 (($) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-2393 (((-108) $) NIL (|has| |#1| (-341)))) (-3489 (((-108) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))))) (-1795 (((-108) $) 25)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-819 (-525))) (|has| |#1| (-341)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-819 (-357))) (|has| |#1| (-341))))) (-1676 (((-525) $) NIL) (((-525) $ (-525)) 24)) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL (|has| |#1| (-341)))) (-1384 (((-1087 |#1| |#2| |#3|) $) 38 (|has| |#1| (-341)))) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2115 (((-3 $ "failed") $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-341))))) (-2256 (((-108) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))))) (-1698 (($ $ (-854)) NIL)) (-3619 (($ (-1 |#1| (-525)) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-525)) 18) (($ $ (-1003) (-525)) NIL) (($ $ (-591 (-1003)) (-591 (-525))) NIL)) (-1923 (($ $ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-3475 (($ $ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-2356 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1497 (($ (-525) (-1087 |#1| |#2| |#3|)) 33)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-2452 (($ $) 70 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111))))) (($ $ (-1167 |#2|)) 71 (|has| |#1| (-37 (-385 (-525)))))) (-3492 (($) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-341))) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1583 (($ $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2767 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-2542 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-1618 (($ $ (-525)) 145)) (-3210 (((-3 $ "failed") $ $) 49 (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2288 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1089) (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-486 (-1089) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-591 (-1089)) (-591 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-486 (-1089) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-591 (-273 (-1087 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-288 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-288 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-288 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-591 (-1087 |#1| |#2| |#3|)) (-591 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-288 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ (-525)) NIL) (($ $ $) 54 (|has| (-525) (-1030))) (($ $ (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-265 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2209 (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) (-712)) NIL (|has| |#1| (-341))) (($ $ (-1167 |#2|)) 51) (($ $ (-712)) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 50 (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089) (-712)) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-591 (-1089))) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))))) (-2774 (($ $) NIL (|has| |#1| (-341)))) (-1396 (((-1087 |#1| |#2| |#3|) $) 41 (|has| |#1| (-341)))) (-2743 (((-525) $) 37)) (-4122 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 109 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 105 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-1300 (((-501) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-566 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-951)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-951)) (|has| |#1| (-341)))) (((-825 (-357)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-566 (-825 (-357)))) (|has| |#1| (-341)))) (((-825 (-525)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-566 (-825 (-525)))) (|has| |#1| (-341))))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-1664 (($ $) NIL)) (-2686 (((-796) $) 149) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1087 |#1| |#2| |#3|)) 27) (($ (-1167 |#2|)) 23) (($ (-1089)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-966 (-1089))) (|has| |#1| (-341)))) (($ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-1263 ((|#1| $ (-525)) 68)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-1708 ((|#1| $) 12)) (-1584 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-4163 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 95 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-4137 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 99 (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 101 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 97 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-1460 (($ $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) 20 T CONST)) (-1839 (($) 16 T CONST)) (-1796 (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) (-712)) NIL (|has| |#1| (-341))) (($ $ (-712)) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089) (-712)) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-591 (-1089))) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))))) (-4004 (((-108) $ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-3982 (((-108) $ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-3971 (((-108) $ $) NIL (-3150 (-12 (|has| (-1087 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 44 (|has| |#1| (-341))) (($ (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) 45 (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 21)) (** (($ $ (-854)) NIL) (($ $ (-712)) 53) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) 74 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1087 |#1| |#2| |#3|)) 43 (|has| |#1| (-341))) (($ (-1087 |#1| |#2| |#3|) $) 42 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-1080 |#1| |#2| |#3|) (-13 (-1133 |#1| (-1087 |#1| |#2| |#3|)) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) (-975) (-1089) |#1|) (T -1080)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3)))) -(-13 (-1133 |#1| (-1087 |#1| |#2| |#3|)) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) -((-3173 ((|#2| |#2| (-1011 |#2|)) 26) ((|#2| |#2| (-1089)) 28))) -(((-1081 |#1| |#2|) (-10 -7 (-15 -3173 (|#2| |#2| (-1089))) (-15 -3173 (|#2| |#2| (-1011 |#2|)))) (-13 (-517) (-788) (-966 (-525)) (-587 (-525))) (-13 (-408 |#1|) (-149) (-27) (-1111))) (T -1081)) -((-3173 (*1 *2 *2 *3) (-12 (-5 *3 (-1011 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1111))) (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-1081 *4 *2)))) (-3173 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-1081 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1111)))))) -(-10 -7 (-15 -3173 (|#2| |#2| (-1089))) (-15 -3173 (|#2| |#2| (-1011 |#2|)))) -((-3173 (((-3 (-385 (-885 |#1|)) (-294 |#1|)) (-385 (-885 |#1|)) (-1011 (-385 (-885 |#1|)))) 31) (((-385 (-885 |#1|)) (-885 |#1|) (-1011 (-885 |#1|))) 44) (((-3 (-385 (-885 |#1|)) (-294 |#1|)) (-385 (-885 |#1|)) (-1089)) 33) (((-385 (-885 |#1|)) (-885 |#1|) (-1089)) 36))) -(((-1082 |#1|) (-10 -7 (-15 -3173 ((-385 (-885 |#1|)) (-885 |#1|) (-1089))) (-15 -3173 ((-3 (-385 (-885 |#1|)) (-294 |#1|)) (-385 (-885 |#1|)) (-1089))) (-15 -3173 ((-385 (-885 |#1|)) (-885 |#1|) (-1011 (-885 |#1|)))) (-15 -3173 ((-3 (-385 (-885 |#1|)) (-294 |#1|)) (-385 (-885 |#1|)) (-1011 (-385 (-885 |#1|)))))) (-13 (-517) (-788) (-966 (-525)))) (T -1082)) -((-3173 (*1 *2 *3 *4) (-12 (-5 *4 (-1011 (-385 (-885 *5)))) (-5 *3 (-385 (-885 *5))) (-4 *5 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-3 *3 (-294 *5))) (-5 *1 (-1082 *5)))) (-3173 (*1 *2 *3 *4) (-12 (-5 *4 (-1011 (-885 *5))) (-5 *3 (-885 *5)) (-4 *5 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-385 *3)) (-5 *1 (-1082 *5)))) (-3173 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-3 (-385 (-885 *5)) (-294 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-385 (-885 *5))))) (-3173 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-385 (-885 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-885 *5))))) -(-10 -7 (-15 -3173 ((-385 (-885 |#1|)) (-885 |#1|) (-1089))) (-15 -3173 ((-3 (-385 (-885 |#1|)) (-294 |#1|)) (-385 (-885 |#1|)) (-1089))) (-15 -3173 ((-385 (-885 |#1|)) (-885 |#1|) (-1011 (-885 |#1|)))) (-15 -3173 ((-3 (-385 (-885 |#1|)) (-294 |#1|)) (-385 (-885 |#1|)) (-1011 (-385 (-885 |#1|)))))) -((-1257 (((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)) 13))) -(((-1083 |#1| |#2|) (-10 -7 (-15 -1257 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) (-975) (-975)) (T -1083)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-975)) (-4 *6 (-975)) (-5 *2 (-1085 *6)) (-5 *1 (-1083 *5 *6))))) -(-10 -7 (-15 -1257 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) -((-3898 (((-396 (-1085 (-385 |#4|))) (-1085 (-385 |#4|))) 51)) (-2542 (((-396 (-1085 (-385 |#4|))) (-1085 (-385 |#4|))) 52))) -(((-1084 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2542 ((-396 (-1085 (-385 |#4|))) (-1085 (-385 |#4|)))) (-15 -3898 ((-396 (-1085 (-385 |#4|))) (-1085 (-385 |#4|))))) (-734) (-788) (-429) (-882 |#3| |#1| |#2|)) (T -1084)) -((-3898 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-429)) (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-396 (-1085 (-385 *7)))) (-5 *1 (-1084 *4 *5 *6 *7)) (-5 *3 (-1085 (-385 *7))))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-429)) (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-396 (-1085 (-385 *7)))) (-5 *1 (-1084 *4 *5 *6 *7)) (-5 *3 (-1085 (-385 *7)))))) -(-10 -7 (-15 -2542 ((-396 (-1085 (-385 |#4|))) (-1085 (-385 |#4|)))) (-15 -3898 ((-396 (-1085 (-385 |#4|))) (-1085 (-385 |#4|))))) -((-2673 (((-108) $ $) 139)) (-1306 (((-108) $) 30)) (-4135 (((-1171 |#1|) $ (-712)) NIL)) (-1444 (((-591 (-1003)) $) NIL)) (-3290 (($ (-1085 |#1|)) NIL)) (-2514 (((-1085 $) $ (-1003)) 60) (((-1085 |#1|) $) 49)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) 134 (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-1003))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2584 (($ $ $) 128 (|has| |#1| (-517)))) (-2179 (((-396 (-1085 $)) (-1085 $)) 73 (|has| |#1| (-842)))) (-1720 (($ $) NIL (|has| |#1| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 93 (|has| |#1| (-842)))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4069 (($ $ (-712)) 42)) (-3997 (($ $ (-712)) 43)) (-3374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-1003) "failed") $) NIL)) (-3341 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-1003) $) NIL)) (-1788 (($ $ $ (-1003)) NIL (|has| |#1| (-160))) ((|#1| $ $) 130 (|has| |#1| (-160)))) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) 58)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) NIL) (((-631 |#1|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1666 (($ $ $) 106)) (-3225 (($ $ $) NIL (|has| |#1| (-517)))) (-1627 (((-2 (|:| -2976 |#1|) (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-517)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-3153 (($ $) 135 (|has| |#1| (-429))) (($ $ (-1003)) NIL (|has| |#1| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#1| (-842)))) (-2615 (($ $ |#1| (-712) $) 47)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-1003) (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-1003) (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-3654 (((-796) $ (-796)) 119)) (-1676 (((-712) $ $) NIL (|has| |#1| (-517)))) (-3865 (((-108) $) 32)) (-3667 (((-712) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| |#1| (-1065)))) (-1434 (($ (-1085 |#1|) (-1003)) 51) (($ (-1085 $) (-1003)) 67)) (-1698 (($ $ (-712)) 34)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-712)) 65) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-1003)) NIL) (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 123)) (-3629 (((-712) $) NIL) (((-712) $ (-1003)) NIL) (((-591 (-712)) $ (-591 (-1003))) NIL)) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-2508 (($ (-1 (-712) (-712)) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2496 (((-1085 |#1|) $) NIL)) (-3027 (((-3 (-1003) "failed") $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) 54)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2621 (((-1072) $) NIL)) (-1400 (((-2 (|:| -2746 $) (|:| -2449 $)) $ (-712)) 41)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-1003)) (|:| -3987 (-712))) "failed") $) NIL)) (-2452 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3492 (($) NIL (|has| |#1| (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) 33)) (-1540 ((|#1| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 81 (|has| |#1| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-429))) (($ $ $) 137 (|has| |#1| (-429)))) (-3381 (($ $ (-712) |#1| $) 101)) (-3550 (((-396 (-1085 $)) (-1085 $)) 79 (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) 78 (|has| |#1| (-842)))) (-2542 (((-396 $) $) 86 (|has| |#1| (-842)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-3210 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-1003) |#1|) NIL) (($ $ (-591 (-1003)) (-591 |#1|)) NIL) (($ $ (-1003) $) NIL) (($ $ (-591 (-1003)) (-591 $)) NIL)) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-1725 (((-3 $ "failed") $ (-712)) 37)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 140 (|has| |#1| (-341)))) (-2858 (($ $ (-1003)) NIL (|has| |#1| (-160))) ((|#1| $) 126 (|has| |#1| (-160)))) (-2209 (($ $ (-1003)) NIL) (($ $ (-591 (-1003))) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL) (($ $ (-712)) NIL) (($ $) NIL) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2743 (((-712) $) 56) (((-712) $ (-1003)) NIL) (((-591 (-712)) $ (-591 (-1003))) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-1003) (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-1003) (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-1003) (-566 (-501))) (|has| |#1| (-566 (-501)))))) (-2827 ((|#1| $) 132 (|has| |#1| (-429))) (($ $ (-1003)) NIL (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-842))))) (-2037 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-2686 (((-796) $) 120) (($ (-525)) NIL) (($ |#1|) 55) (($ (-1003)) NIL) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-712)) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) 28 (|has| |#1| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 15) (($ $ (-712)) 16)) (-1830 (($) 17 T CONST)) (-1839 (($) 18 T CONST)) (-1796 (($ $ (-1003)) NIL) (($ $ (-591 (-1003))) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL) (($ $ (-712)) NIL) (($ $) NIL) (($ $ (-1089)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) 98)) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4059 (($ $ |#1|) 141 (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 68)) (** (($ $ (-854)) 14) (($ $ (-712)) 12)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 27) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 104) (($ $ |#1|) NIL))) -(((-1085 |#1|) (-13 (-1147 |#1|) (-10 -8 (-15 -3654 ((-796) $ (-796))) (-15 -3381 ($ $ (-712) |#1| $)))) (-975)) (T -1085)) -((-3654 (*1 *2 *1 *2) (-12 (-5 *2 (-796)) (-5 *1 (-1085 *3)) (-4 *3 (-975)))) (-3381 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-712)) (-5 *1 (-1085 *3)) (-4 *3 (-975))))) -(-13 (-1147 |#1|) (-10 -8 (-15 -3654 ((-796) $ (-796))) (-15 -3381 ($ $ (-712) |#1| $)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) 11)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3328 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-3581 (((-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-4087 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| |#1| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4058 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-712) (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-4109 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-1080 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1087 |#1| |#2| |#3|) "failed") $) 36)) (-3341 (((-1080 |#1| |#2| |#3|) $) NIL) (((-1087 |#1| |#2| |#3|) $) NIL)) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2975 (((-385 (-525)) $) 55)) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1507 (($ (-385 (-525)) (-1080 |#1| |#2| |#3|)) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-2393 (((-108) $) NIL (|has| |#1| (-341)))) (-1795 (((-108) $) NIL)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) NIL) (($ $ (-385 (-525))) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-385 (-525))) 20) (($ $ (-1003) (-385 (-525))) NIL) (($ $ (-591 (-1003)) (-591 (-385 (-525)))) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4057 (((-1080 |#1| |#2| |#3|) $) 41)) (-1896 (((-3 (-1080 |#1| |#2| |#3|) "failed") $) NIL)) (-1497 (((-1080 |#1| |#2| |#3|) $) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-2452 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111))))) (($ $ (-1167 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-1618 (($ $ (-385 (-525))) NIL)) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2288 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1030)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1167 |#2|)) 38)) (-2743 (((-385 (-525)) $) NIL)) (-4122 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) NIL)) (-2686 (((-796) $) 58) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1080 |#1| |#2| |#3|)) 30) (($ (-1087 |#1| |#2| |#3|)) 31) (($ (-1167 |#2|)) 26) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1263 ((|#1| $ (-385 (-525))) NIL)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1708 ((|#1| $) 12)) (-4163 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) 22 T CONST)) (-1839 (($) 16 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 24)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-1086 |#1| |#2| |#3|) (-13 (-1154 |#1| (-1080 |#1| |#2| |#3|)) (-966 (-1087 |#1| |#2| |#3|)) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) (-975) (-1089) |#1|) (T -1086)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3)))) -(-13 (-1154 |#1| (-1080 |#1| |#2| |#3|)) (-966 (-1087 |#1| |#2| |#3|)) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 125)) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) 116)) (-2856 (((-1144 |#2| |#1|) $ (-712)) 63)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3328 (($ $ (-712)) 79) (($ $ (-712) (-712)) 76)) (-3581 (((-1070 (-2 (|:| |k| (-712)) (|:| |c| |#1|))) $) 102)) (-4087 (($ $) 169 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4058 (($ $) 165 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-1070 (-2 (|:| |k| (-712)) (|:| |c| |#1|)))) 115) (($ (-1070 |#1|)) 110)) (-4109 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) 23)) (-1561 (($ $) 26)) (-3298 (((-885 |#1|) $ (-712)) 75) (((-885 |#1|) $ (-712) (-712)) 77)) (-1795 (((-108) $) 120)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-712) $) 122) (((-712) $ (-712)) 124)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) NIL)) (-3619 (($ (-1 |#1| (-525)) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-712)) 13) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2452 (($ $) 129 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111))))) (($ $ (-1167 |#2|)) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2937 (((-1036) $) NIL)) (-1618 (($ $ (-712)) 15)) (-3210 (((-3 $ "failed") $ $) 24 (|has| |#1| (-517)))) (-2288 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-712)))))) (-1881 ((|#1| $ (-712)) 119) (($ $ $) 128 (|has| (-712) (-1030)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-712) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-712) |#1|)))) (($ $ (-1167 |#2|)) 29)) (-2743 (((-712) $) NIL)) (-4122 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 167 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) NIL)) (-2686 (((-796) $) 201) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 126 (|has| |#1| (-160))) (($ (-1144 |#2| |#1|)) 51) (($ (-1167 |#2|)) 32)) (-3109 (((-1070 |#1|) $) 98)) (-1263 ((|#1| $ (-712)) 118)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1708 ((|#1| $) 54)) (-4163 (($ $) 181 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 185 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-712)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-712)))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 183 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 17 T CONST)) (-1839 (($) 19 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-712) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) 194)) (-4036 (($ $ $) 31)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ |#1|) 198 (|has| |#1| (-341))) (($ $ $) 134 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 137 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-1087 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-10 -8 (-15 -2686 ($ (-1144 |#2| |#1|))) (-15 -2856 ((-1144 |#2| |#1|) $ (-712))) (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) (-975) (-1089) |#1|) (T -1087)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1144 *4 *3)) (-4 *3 (-975)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1087 *3 *4 *5)))) (-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1144 *5 *4)) (-5 *1 (-1087 *4 *5 *6)) (-4 *4 (-975)) (-14 *5 (-1089)) (-14 *6 *4))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3)))) -(-13 (-1162 |#1|) (-10 -8 (-15 -2686 ($ (-1144 |#2| |#1|))) (-15 -2856 ((-1144 |#2| |#1|) $ (-712))) (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) -((-2686 (((-796) $) 27) (($ (-1089)) 29)) (-3150 (($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 40)) (-3139 (($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 33) (($ $) 34)) (-1833 (($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 35)) (-1823 (($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 37)) (-3014 (($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 36)) (-3005 (($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 38)) (-2473 (($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 39))) -(((-1088) (-13 (-565 (-796)) (-10 -8 (-15 -2686 ($ (-1089))) (-15 -1833 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3014 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -1823 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3005 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3150 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2473 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3139 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3139 ($ $))))) (T -1088)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1088)))) (-1833 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) (-5 *1 (-1088)))) (-3014 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) (-5 *1 (-1088)))) (-1823 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) (-5 *1 (-1088)))) (-3005 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) (-5 *1 (-1088)))) (-3150 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) (-5 *1 (-1088)))) (-2473 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) (-5 *1 (-1088)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) (-5 *1 (-1088)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) (-5 *1 (-1088)))) (-3139 (*1 *1 *1) (-5 *1 (-1088)))) -(-13 (-565 (-796)) (-10 -8 (-15 -2686 ($ (-1089))) (-15 -1833 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3014 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -1823 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3005 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3150 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2473 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3139 ($ (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3139 ($ $)))) -((-2673 (((-108) $ $) NIL)) (-3463 (($ $ (-591 (-796))) 59)) (-2127 (($ $ (-591 (-796))) 57)) (-2610 (((-1072) $) 84)) (-2458 (((-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) (|:| |args| (-591 (-796)))) $) 87)) (-3515 (((-108) $) 22)) (-2630 (($ $ (-591 (-591 (-796)))) 56) (($ $ (-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) (|:| |args| (-591 (-796))))) 82)) (-2055 (($) 124 T CONST)) (-3984 (((-1176)) 106)) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 66) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 73)) (-1316 (($) 95) (($ $) 101)) (-3419 (($ $) 83)) (-1923 (($ $ $) NIL)) (-3475 (($ $ $) NIL)) (-2750 (((-591 $) $) 107)) (-2621 (((-1072) $) 90)) (-2937 (((-1036) $) NIL)) (-1881 (($ $ (-591 (-796))) 58)) (-1300 (((-501) $) 46) (((-1089) $) 47) (((-825 (-525)) $) 77) (((-825 (-357)) $) 75)) (-2686 (((-796) $) 53) (($ (-1072)) 48)) (-1659 (($ $ (-591 (-796))) 60)) (-3042 (((-1072) $) 33) (((-1072) $ (-108)) 34) (((-1176) (-763) $) 35) (((-1176) (-763) $ (-108)) 36)) (-4004 (((-108) $ $) NIL)) (-3982 (((-108) $ $) NIL)) (-3944 (((-108) $ $) 49)) (-3994 (((-108) $ $) NIL)) (-3971 (((-108) $ $) 50))) -(((-1089) (-13 (-788) (-566 (-501)) (-769) (-566 (-1089)) (-566 (-825 (-525))) (-566 (-825 (-357))) (-819 (-525)) (-819 (-357)) (-10 -8 (-15 -1316 ($)) (-15 -1316 ($ $)) (-15 -3984 ((-1176))) (-15 -2686 ($ (-1072))) (-15 -3419 ($ $)) (-15 -3515 ((-108) $)) (-15 -2458 ((-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) (|:| |args| (-591 (-796)))) $)) (-15 -2630 ($ $ (-591 (-591 (-796))))) (-15 -2630 ($ $ (-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) (|:| |args| (-591 (-796)))))) (-15 -2127 ($ $ (-591 (-796)))) (-15 -3463 ($ $ (-591 (-796)))) (-15 -1659 ($ $ (-591 (-796)))) (-15 -1881 ($ $ (-591 (-796)))) (-15 -2610 ((-1072) $)) (-15 -2750 ((-591 $) $)) (-15 -2055 ($) -2277)))) (T -1089)) -((-1316 (*1 *1) (-5 *1 (-1089))) (-1316 (*1 *1 *1) (-5 *1 (-1089))) (-3984 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1089)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1089)))) (-3419 (*1 *1 *1) (-5 *1 (-1089))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) (|:| |args| (-591 (-796))))) (-5 *1 (-1089)))) (-2630 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-591 (-796)))) (-5 *1 (-1089)))) (-2630 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) (|:| |args| (-591 (-796))))) (-5 *1 (-1089)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-1089)))) (-3463 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-1089)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-1089)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-1089)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089)))) (-2750 (*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-1089)))) (-2055 (*1 *1) (-5 *1 (-1089)))) -(-13 (-788) (-566 (-501)) (-769) (-566 (-1089)) (-566 (-825 (-525))) (-566 (-825 (-357))) (-819 (-525)) (-819 (-357)) (-10 -8 (-15 -1316 ($)) (-15 -1316 ($ $)) (-15 -3984 ((-1176))) (-15 -2686 ($ (-1072))) (-15 -3419 ($ $)) (-15 -3515 ((-108) $)) (-15 -2458 ((-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) (|:| |args| (-591 (-796)))) $)) (-15 -2630 ($ $ (-591 (-591 (-796))))) (-15 -2630 ($ $ (-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) (|:| |args| (-591 (-796)))))) (-15 -2127 ($ $ (-591 (-796)))) (-15 -3463 ($ $ (-591 (-796)))) (-15 -1659 ($ $ (-591 (-796)))) (-15 -1881 ($ $ (-591 (-796)))) (-15 -2610 ((-1072) $)) (-15 -2750 ((-591 $) $)) (-15 -2055 ($) -2277))) -((-1829 (((-1171 |#1|) |#1| (-854)) 16) (((-1171 |#1|) (-591 |#1|)) 20))) -(((-1090 |#1|) (-10 -7 (-15 -1829 ((-1171 |#1|) (-591 |#1|))) (-15 -1829 ((-1171 |#1|) |#1| (-854)))) (-975)) (T -1090)) -((-1829 (*1 *2 *3 *4) (-12 (-5 *4 (-854)) (-5 *2 (-1171 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-975)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-591 *4)) (-4 *4 (-975)) (-5 *2 (-1171 *4)) (-5 *1 (-1090 *4))))) -(-10 -7 (-15 -1829 ((-1171 |#1|) (-591 |#1|))) (-15 -1829 ((-1171 |#1|) |#1| (-854)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| |#1| (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-966 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3341 (((-525) $) NIL (|has| |#1| (-966 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-966 (-385 (-525))))) ((|#1| $) NIL)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3153 (($ $) NIL (|has| |#1| (-429)))) (-2615 (($ $ |#1| (-902) $) NIL)) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-902)) NIL)) (-3629 (((-902) $) NIL)) (-2508 (($ (-1 (-902) (-902)) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#1| $) NIL)) (-3381 (($ $ (-902) |#1| $) NIL (-12 (|has| (-902) (-126)) (|has| |#1| (-517))))) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-2743 (((-902) $) NIL)) (-2827 ((|#1| $) NIL (|has| |#1| (-429)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3150 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-966 (-385 (-525))))))) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ (-902)) NIL)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#1| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 9 T CONST)) (-1839 (($) 14 T CONST)) (-3944 (((-108) $ $) 16)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 19)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-1091 |#1|) (-13 (-304 |#1| (-902)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-902) (-126)) (-15 -3381 ($ $ (-902) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4248)) (-6 -4248) |%noBranch|))) (-975)) (T -1091)) -((-3381 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-902)) (-4 *2 (-126)) (-5 *1 (-1091 *3)) (-4 *3 (-517)) (-4 *3 (-975))))) -(-13 (-304 |#1| (-902)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-902) (-126)) (-15 -3381 ($ $ (-902) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4248)) (-6 -4248) |%noBranch|))) -((-3966 (((-1093) (-1089) $) 25)) (-3293 (($) 29)) (-3738 (((-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-1089) $) 22)) (-2821 (((-1176) (-1089) (-3 (|:| |fst| (-412)) (|:| -1411 "void")) $) 41) (((-1176) (-1089) (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) 42) (((-1176) (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) 43)) (-3867 (((-1176) (-1089)) 58)) (-3050 (((-1176) (-1089) $) 55) (((-1176) (-1089)) 56) (((-1176)) 57)) (-3079 (((-1176) (-1089)) 37)) (-1936 (((-1089)) 36)) (-3164 (($) 34)) (-1377 (((-415) (-1089) (-415) (-1089) $) 45) (((-415) (-591 (-1089)) (-415) (-1089) $) 49) (((-415) (-1089) (-415)) 46) (((-415) (-1089) (-415) (-1089)) 50)) (-4132 (((-1089)) 35)) (-2686 (((-796) $) 28)) (-3805 (((-1176)) 30) (((-1176) (-1089)) 33)) (-3637 (((-591 (-1089)) (-1089) $) 24)) (-1913 (((-1176) (-1089) (-591 (-1089)) $) 38) (((-1176) (-1089) (-591 (-1089))) 39) (((-1176) (-591 (-1089))) 40))) -(((-1092) (-13 (-565 (-796)) (-10 -8 (-15 -3293 ($)) (-15 -3805 ((-1176))) (-15 -3805 ((-1176) (-1089))) (-15 -1377 ((-415) (-1089) (-415) (-1089) $)) (-15 -1377 ((-415) (-591 (-1089)) (-415) (-1089) $)) (-15 -1377 ((-415) (-1089) (-415))) (-15 -1377 ((-415) (-1089) (-415) (-1089))) (-15 -3079 ((-1176) (-1089))) (-15 -4132 ((-1089))) (-15 -1936 ((-1089))) (-15 -1913 ((-1176) (-1089) (-591 (-1089)) $)) (-15 -1913 ((-1176) (-1089) (-591 (-1089)))) (-15 -1913 ((-1176) (-591 (-1089)))) (-15 -2821 ((-1176) (-1089) (-3 (|:| |fst| (-412)) (|:| -1411 "void")) $)) (-15 -2821 ((-1176) (-1089) (-3 (|:| |fst| (-412)) (|:| -1411 "void")))) (-15 -2821 ((-1176) (-3 (|:| |fst| (-412)) (|:| -1411 "void")))) (-15 -3050 ((-1176) (-1089) $)) (-15 -3050 ((-1176) (-1089))) (-15 -3050 ((-1176))) (-15 -3867 ((-1176) (-1089))) (-15 -3164 ($)) (-15 -3738 ((-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-1089) $)) (-15 -3637 ((-591 (-1089)) (-1089) $)) (-15 -3966 ((-1093) (-1089) $))))) (T -1092)) -((-3293 (*1 *1) (-5 *1 (-1092))) (-3805 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1092)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-1377 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-1377 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-415)) (-5 *3 (-591 (-1089))) (-5 *4 (-1089)) (-5 *1 (-1092)))) (-1377 (*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-1377 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-415)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-4132 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-1936 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-1913 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-591 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-1913 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-591 (-1089))) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-2821 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-3050 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-3050 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1092)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) (-3164 (*1 *1) (-5 *1 (-1092))) (-3738 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *1 (-1092)))) (-3637 (*1 *2 *3 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089)))) (-3966 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092))))) -(-13 (-565 (-796)) (-10 -8 (-15 -3293 ($)) (-15 -3805 ((-1176))) (-15 -3805 ((-1176) (-1089))) (-15 -1377 ((-415) (-1089) (-415) (-1089) $)) (-15 -1377 ((-415) (-591 (-1089)) (-415) (-1089) $)) (-15 -1377 ((-415) (-1089) (-415))) (-15 -1377 ((-415) (-1089) (-415) (-1089))) (-15 -3079 ((-1176) (-1089))) (-15 -4132 ((-1089))) (-15 -1936 ((-1089))) (-15 -1913 ((-1176) (-1089) (-591 (-1089)) $)) (-15 -1913 ((-1176) (-1089) (-591 (-1089)))) (-15 -1913 ((-1176) (-591 (-1089)))) (-15 -2821 ((-1176) (-1089) (-3 (|:| |fst| (-412)) (|:| -1411 "void")) $)) (-15 -2821 ((-1176) (-1089) (-3 (|:| |fst| (-412)) (|:| -1411 "void")))) (-15 -2821 ((-1176) (-3 (|:| |fst| (-412)) (|:| -1411 "void")))) (-15 -3050 ((-1176) (-1089) $)) (-15 -3050 ((-1176) (-1089))) (-15 -3050 ((-1176))) (-15 -3867 ((-1176) (-1089))) (-15 -3164 ($)) (-15 -3738 ((-3 (|:| |fst| (-412)) (|:| -1411 "void")) (-1089) $)) (-15 -3637 ((-591 (-1089)) (-1089) $)) (-15 -3966 ((-1093) (-1089) $)))) -((-2210 (((-591 (-591 (-3 (|:| -3419 (-1089)) (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525))))))))) $) 59)) (-3763 (((-591 (-3 (|:| -3419 (-1089)) (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525)))))))) (-412) $) 43)) (-2098 (($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-415))))) 17)) (-3867 (((-1176) $) 67)) (-2642 (((-591 (-1089)) $) 22)) (-3516 (((-1022) $) 55)) (-2062 (((-415) (-1089) $) 27)) (-3732 (((-591 (-1089)) $) 30)) (-3164 (($) 19)) (-1377 (((-415) (-591 (-1089)) (-415) $) 25) (((-415) (-1089) (-415) $) 24)) (-2686 (((-796) $) 9) (((-1099 (-1089) (-415)) $) 13))) -(((-1093) (-13 (-565 (-796)) (-10 -8 (-15 -2686 ((-1099 (-1089) (-415)) $)) (-15 -3164 ($)) (-15 -1377 ((-415) (-591 (-1089)) (-415) $)) (-15 -1377 ((-415) (-1089) (-415) $)) (-15 -2062 ((-415) (-1089) $)) (-15 -2642 ((-591 (-1089)) $)) (-15 -3763 ((-591 (-3 (|:| -3419 (-1089)) (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525)))))))) (-412) $)) (-15 -3732 ((-591 (-1089)) $)) (-15 -2210 ((-591 (-591 (-3 (|:| -3419 (-1089)) (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525))))))))) $)) (-15 -3516 ((-1022) $)) (-15 -3867 ((-1176) $)) (-15 -2098 ($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-415))))))))) (T -1093)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-1099 (-1089) (-415))) (-5 *1 (-1093)))) (-3164 (*1 *1) (-5 *1 (-1093))) (-1377 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-591 (-1089))) (-5 *1 (-1093)))) (-1377 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1089)) (-5 *1 (-1093)))) (-2062 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-415)) (-5 *1 (-1093)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-1093)))) (-3763 (*1 *2 *3 *1) (-12 (-5 *3 (-412)) (-5 *2 (-591 (-3 (|:| -3419 (-1089)) (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525))))))))) (-5 *1 (-1093)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-1093)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-591 (-591 (-3 (|:| -3419 (-1089)) (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525)))))))))) (-5 *1 (-1093)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-1093)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1093)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-415))))) (-5 *1 (-1093))))) -(-13 (-565 (-796)) (-10 -8 (-15 -2686 ((-1099 (-1089) (-415)) $)) (-15 -3164 ($)) (-15 -1377 ((-415) (-591 (-1089)) (-415) $)) (-15 -1377 ((-415) (-1089) (-415) $)) (-15 -2062 ((-415) (-1089) $)) (-15 -2642 ((-591 (-1089)) $)) (-15 -3763 ((-591 (-3 (|:| -3419 (-1089)) (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525)))))))) (-412) $)) (-15 -3732 ((-591 (-1089)) $)) (-15 -2210 ((-591 (-591 (-3 (|:| -3419 (-1089)) (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525))))))))) $)) (-15 -3516 ((-1022) $)) (-15 -3867 ((-1176) $)) (-15 -2098 ($ (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-415)))))))) -((-2673 (((-108) $ $) NIL)) (-1733 (((-108) $) 42)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2898 (((-3 (-525) (-205) (-1089) (-1072) $) $) 50)) (-2711 (((-591 $) $) 55)) (-1300 (((-1022) $) 24) (($ (-1022)) 25)) (-2762 (((-108) $) 52)) (-2686 (((-796) $) NIL) (($ (-525)) 26) (((-525) $) 28) (($ (-205)) 29) (((-205) $) 31) (($ (-1089)) 32) (((-1089) $) 34) (($ (-1072)) 35) (((-1072) $) 37)) (-1820 (((-108) $ (|[\|\|]| (-525))) 11) (((-108) $ (|[\|\|]| (-205))) 15) (((-108) $ (|[\|\|]| (-1089))) 23) (((-108) $ (|[\|\|]| (-1072))) 19)) (-4110 (($ (-1089) (-591 $)) 39) (($ $ (-591 $)) 40)) (-2900 (((-525) $) 27) (((-205) $) 30) (((-1089) $) 33) (((-1072) $) 36)) (-3944 (((-108) $ $) 7))) -(((-1094) (-13 (-1166) (-1018) (-10 -8 (-15 -1300 ((-1022) $)) (-15 -1300 ($ (-1022))) (-15 -2686 ($ (-525))) (-15 -2686 ((-525) $)) (-15 -2900 ((-525) $)) (-15 -2686 ($ (-205))) (-15 -2686 ((-205) $)) (-15 -2900 ((-205) $)) (-15 -2686 ($ (-1089))) (-15 -2686 ((-1089) $)) (-15 -2900 ((-1089) $)) (-15 -2686 ($ (-1072))) (-15 -2686 ((-1072) $)) (-15 -2900 ((-1072) $)) (-15 -4110 ($ (-1089) (-591 $))) (-15 -4110 ($ $ (-591 $))) (-15 -1733 ((-108) $)) (-15 -2898 ((-3 (-525) (-205) (-1089) (-1072) $) $)) (-15 -2711 ((-591 $) $)) (-15 -2762 ((-108) $)) (-15 -1820 ((-108) $ (|[\|\|]| (-525)))) (-15 -1820 ((-108) $ (|[\|\|]| (-205)))) (-15 -1820 ((-108) $ (|[\|\|]| (-1089)))) (-15 -1820 ((-108) $ (|[\|\|]| (-1072))))))) (T -1094)) -((-1300 (*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-1094)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-1094)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1094)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1094)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1094)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1094)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1094)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1094)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1094)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1094)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1094)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-4110 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-1094))) (-5 *1 (-1094)))) (-4110 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-1094))) (-5 *1 (-1094)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1094)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-3 (-525) (-205) (-1089) (-1072) (-1094))) (-5 *1 (-1094)))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-591 (-1094))) (-5 *1 (-1094)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1094)))) (-1820 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1094)))) (-1820 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1094)))) (-1820 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-108)) (-5 *1 (-1094)))) (-1820 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-108)) (-5 *1 (-1094))))) -(-13 (-1166) (-1018) (-10 -8 (-15 -1300 ((-1022) $)) (-15 -1300 ($ (-1022))) (-15 -2686 ($ (-525))) (-15 -2686 ((-525) $)) (-15 -2900 ((-525) $)) (-15 -2686 ($ (-205))) (-15 -2686 ((-205) $)) (-15 -2900 ((-205) $)) (-15 -2686 ($ (-1089))) (-15 -2686 ((-1089) $)) (-15 -2900 ((-1089) $)) (-15 -2686 ($ (-1072))) (-15 -2686 ((-1072) $)) (-15 -2900 ((-1072) $)) (-15 -4110 ($ (-1089) (-591 $))) (-15 -4110 ($ $ (-591 $))) (-15 -1733 ((-108) $)) (-15 -2898 ((-3 (-525) (-205) (-1089) (-1072) $) $)) (-15 -2711 ((-591 $) $)) (-15 -2762 ((-108) $)) (-15 -1820 ((-108) $ (|[\|\|]| (-525)))) (-15 -1820 ((-108) $ (|[\|\|]| (-205)))) (-15 -1820 ((-108) $ (|[\|\|]| (-1089)))) (-15 -1820 ((-108) $ (|[\|\|]| (-1072)))))) -((-3307 (((-591 (-591 (-885 |#1|))) (-591 (-385 (-885 |#1|))) (-591 (-1089))) 57)) (-2751 (((-591 (-273 (-385 (-885 |#1|)))) (-273 (-385 (-885 |#1|)))) 69) (((-591 (-273 (-385 (-885 |#1|)))) (-385 (-885 |#1|))) 65) (((-591 (-273 (-385 (-885 |#1|)))) (-273 (-385 (-885 |#1|))) (-1089)) 70) (((-591 (-273 (-385 (-885 |#1|)))) (-385 (-885 |#1|)) (-1089)) 64) (((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-273 (-385 (-885 |#1|))))) 93) (((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-385 (-885 |#1|)))) 92) (((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-273 (-385 (-885 |#1|)))) (-591 (-1089))) 94) (((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-385 (-885 |#1|))) (-591 (-1089))) 91))) -(((-1095 |#1|) (-10 -7 (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-385 (-885 |#1|))) (-591 (-1089)))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-273 (-385 (-885 |#1|)))) (-591 (-1089)))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-385 (-885 |#1|))))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-273 (-385 (-885 |#1|)))))) (-15 -2751 ((-591 (-273 (-385 (-885 |#1|)))) (-385 (-885 |#1|)) (-1089))) (-15 -2751 ((-591 (-273 (-385 (-885 |#1|)))) (-273 (-385 (-885 |#1|))) (-1089))) (-15 -2751 ((-591 (-273 (-385 (-885 |#1|)))) (-385 (-885 |#1|)))) (-15 -2751 ((-591 (-273 (-385 (-885 |#1|)))) (-273 (-385 (-885 |#1|))))) (-15 -3307 ((-591 (-591 (-885 |#1|))) (-591 (-385 (-885 |#1|))) (-591 (-1089))))) (-517)) (T -1095)) -((-3307 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-385 (-885 *5)))) (-5 *4 (-591 (-1089))) (-4 *5 (-517)) (-5 *2 (-591 (-591 (-885 *5)))) (-5 *1 (-1095 *5)))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-591 (-273 (-385 (-885 *4))))) (-5 *1 (-1095 *4)) (-5 *3 (-273 (-385 (-885 *4)))))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-591 (-273 (-385 (-885 *4))))) (-5 *1 (-1095 *4)) (-5 *3 (-385 (-885 *4))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-517)) (-5 *2 (-591 (-273 (-385 (-885 *5))))) (-5 *1 (-1095 *5)) (-5 *3 (-273 (-385 (-885 *5)))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-517)) (-5 *2 (-591 (-273 (-385 (-885 *5))))) (-5 *1 (-1095 *5)) (-5 *3 (-385 (-885 *5))))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *4)))))) (-5 *1 (-1095 *4)) (-5 *3 (-591 (-273 (-385 (-885 *4))))))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-591 (-385 (-885 *4)))) (-4 *4 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *4)))))) (-5 *1 (-1095 *4)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-591 (-1089))) (-4 *5 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *5)))))) (-5 *1 (-1095 *5)) (-5 *3 (-591 (-273 (-385 (-885 *5))))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-385 (-885 *5)))) (-5 *4 (-591 (-1089))) (-4 *5 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *5)))))) (-5 *1 (-1095 *5))))) -(-10 -7 (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-385 (-885 |#1|))) (-591 (-1089)))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-273 (-385 (-885 |#1|)))) (-591 (-1089)))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-385 (-885 |#1|))))) (-15 -2751 ((-591 (-591 (-273 (-385 (-885 |#1|))))) (-591 (-273 (-385 (-885 |#1|)))))) (-15 -2751 ((-591 (-273 (-385 (-885 |#1|)))) (-385 (-885 |#1|)) (-1089))) (-15 -2751 ((-591 (-273 (-385 (-885 |#1|)))) (-273 (-385 (-885 |#1|))) (-1089))) (-15 -2751 ((-591 (-273 (-385 (-885 |#1|)))) (-385 (-885 |#1|)))) (-15 -2751 ((-591 (-273 (-385 (-885 |#1|)))) (-273 (-385 (-885 |#1|))))) (-15 -3307 ((-591 (-591 (-885 |#1|))) (-591 (-385 (-885 |#1|))) (-591 (-1089))))) -((-2181 (((-1072)) 7)) (-1449 (((-1072)) 9)) (-3690 (((-1176) (-1072)) 11)) (-2850 (((-1072)) 8))) -(((-1096) (-10 -7 (-15 -2181 ((-1072))) (-15 -2850 ((-1072))) (-15 -1449 ((-1072))) (-15 -3690 ((-1176) (-1072))))) (T -1096)) -((-3690 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1096)))) (-1449 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1096)))) (-2850 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1096)))) (-2181 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1096))))) -(-10 -7 (-15 -2181 ((-1072))) (-15 -2850 ((-1072))) (-15 -1449 ((-1072))) (-15 -3690 ((-1176) (-1072)))) -((-3768 (((-591 (-591 |#1|)) (-591 (-591 |#1|)) (-591 (-591 (-591 |#1|)))) 38)) (-2692 (((-591 (-591 (-591 |#1|))) (-591 (-591 |#1|))) 24)) (-3106 (((-1098 (-591 |#1|)) (-591 |#1|)) 34)) (-2649 (((-591 (-591 |#1|)) (-591 |#1|)) 30)) (-2731 (((-2 (|:| |f1| (-591 |#1|)) (|:| |f2| (-591 (-591 (-591 |#1|)))) (|:| |f3| (-591 (-591 |#1|))) (|:| |f4| (-591 (-591 (-591 |#1|))))) (-591 (-591 (-591 |#1|)))) 37)) (-2464 (((-2 (|:| |f1| (-591 |#1|)) (|:| |f2| (-591 (-591 (-591 |#1|)))) (|:| |f3| (-591 (-591 |#1|))) (|:| |f4| (-591 (-591 (-591 |#1|))))) (-591 |#1|) (-591 (-591 (-591 |#1|))) (-591 (-591 |#1|)) (-591 (-591 (-591 |#1|))) (-591 (-591 (-591 |#1|))) (-591 (-591 (-591 |#1|)))) 36)) (-2290 (((-591 (-591 |#1|)) (-591 (-591 |#1|))) 28)) (-2902 (((-591 |#1|) (-591 |#1|)) 31)) (-3624 (((-591 (-591 (-591 |#1|))) (-591 |#1|) (-591 (-591 (-591 |#1|)))) 18)) (-2232 (((-591 (-591 (-591 |#1|))) (-1 (-108) |#1| |#1|) (-591 |#1|) (-591 (-591 (-591 |#1|)))) 16)) (-2345 (((-2 (|:| |fs| (-108)) (|:| |sd| (-591 |#1|)) (|:| |td| (-591 (-591 |#1|)))) (-1 (-108) |#1| |#1|) (-591 |#1|) (-591 (-591 |#1|))) 14)) (-2240 (((-591 (-591 |#1|)) (-591 (-591 (-591 |#1|)))) 39)) (-1763 (((-591 (-591 |#1|)) (-1098 (-591 |#1|))) 41))) -(((-1097 |#1|) (-10 -7 (-15 -2345 ((-2 (|:| |fs| (-108)) (|:| |sd| (-591 |#1|)) (|:| |td| (-591 (-591 |#1|)))) (-1 (-108) |#1| |#1|) (-591 |#1|) (-591 (-591 |#1|)))) (-15 -2232 ((-591 (-591 (-591 |#1|))) (-1 (-108) |#1| |#1|) (-591 |#1|) (-591 (-591 (-591 |#1|))))) (-15 -3624 ((-591 (-591 (-591 |#1|))) (-591 |#1|) (-591 (-591 (-591 |#1|))))) (-15 -3768 ((-591 (-591 |#1|)) (-591 (-591 |#1|)) (-591 (-591 (-591 |#1|))))) (-15 -2240 ((-591 (-591 |#1|)) (-591 (-591 (-591 |#1|))))) (-15 -1763 ((-591 (-591 |#1|)) (-1098 (-591 |#1|)))) (-15 -2692 ((-591 (-591 (-591 |#1|))) (-591 (-591 |#1|)))) (-15 -3106 ((-1098 (-591 |#1|)) (-591 |#1|))) (-15 -2290 ((-591 (-591 |#1|)) (-591 (-591 |#1|)))) (-15 -2649 ((-591 (-591 |#1|)) (-591 |#1|))) (-15 -2902 ((-591 |#1|) (-591 |#1|))) (-15 -2464 ((-2 (|:| |f1| (-591 |#1|)) (|:| |f2| (-591 (-591 (-591 |#1|)))) (|:| |f3| (-591 (-591 |#1|))) (|:| |f4| (-591 (-591 (-591 |#1|))))) (-591 |#1|) (-591 (-591 (-591 |#1|))) (-591 (-591 |#1|)) (-591 (-591 (-591 |#1|))) (-591 (-591 (-591 |#1|))) (-591 (-591 (-591 |#1|))))) (-15 -2731 ((-2 (|:| |f1| (-591 |#1|)) (|:| |f2| (-591 (-591 (-591 |#1|)))) (|:| |f3| (-591 (-591 |#1|))) (|:| |f4| (-591 (-591 (-591 |#1|))))) (-591 (-591 (-591 |#1|)))))) (-788)) (T -1097)) -((-2731 (*1 *2 *3) (-12 (-4 *4 (-788)) (-5 *2 (-2 (|:| |f1| (-591 *4)) (|:| |f2| (-591 (-591 (-591 *4)))) (|:| |f3| (-591 (-591 *4))) (|:| |f4| (-591 (-591 (-591 *4)))))) (-5 *1 (-1097 *4)) (-5 *3 (-591 (-591 (-591 *4)))))) (-2464 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-788)) (-5 *3 (-591 *6)) (-5 *5 (-591 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-591 *5)) (|:| |f3| *5) (|:| |f4| (-591 *5)))) (-5 *1 (-1097 *6)) (-5 *4 (-591 *5)))) (-2902 (*1 *2 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-1097 *3)))) (-2649 (*1 *2 *3) (-12 (-4 *4 (-788)) (-5 *2 (-591 (-591 *4))) (-5 *1 (-1097 *4)) (-5 *3 (-591 *4)))) (-2290 (*1 *2 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-788)) (-5 *1 (-1097 *3)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-788)) (-5 *2 (-1098 (-591 *4))) (-5 *1 (-1097 *4)) (-5 *3 (-591 *4)))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-788)) (-5 *2 (-591 (-591 (-591 *4)))) (-5 *1 (-1097 *4)) (-5 *3 (-591 (-591 *4))))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1098 (-591 *4))) (-4 *4 (-788)) (-5 *2 (-591 (-591 *4))) (-5 *1 (-1097 *4)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-591 (-591 (-591 *4)))) (-5 *2 (-591 (-591 *4))) (-5 *1 (-1097 *4)) (-4 *4 (-788)))) (-3768 (*1 *2 *2 *3) (-12 (-5 *3 (-591 (-591 (-591 *4)))) (-5 *2 (-591 (-591 *4))) (-4 *4 (-788)) (-5 *1 (-1097 *4)))) (-3624 (*1 *2 *3 *2) (-12 (-5 *2 (-591 (-591 (-591 *4)))) (-5 *3 (-591 *4)) (-4 *4 (-788)) (-5 *1 (-1097 *4)))) (-2232 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-591 (-591 (-591 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-591 *5)) (-4 *5 (-788)) (-5 *1 (-1097 *5)))) (-2345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-788)) (-5 *4 (-591 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-591 *4)))) (-5 *1 (-1097 *6)) (-5 *5 (-591 *4))))) -(-10 -7 (-15 -2345 ((-2 (|:| |fs| (-108)) (|:| |sd| (-591 |#1|)) (|:| |td| (-591 (-591 |#1|)))) (-1 (-108) |#1| |#1|) (-591 |#1|) (-591 (-591 |#1|)))) (-15 -2232 ((-591 (-591 (-591 |#1|))) (-1 (-108) |#1| |#1|) (-591 |#1|) (-591 (-591 (-591 |#1|))))) (-15 -3624 ((-591 (-591 (-591 |#1|))) (-591 |#1|) (-591 (-591 (-591 |#1|))))) (-15 -3768 ((-591 (-591 |#1|)) (-591 (-591 |#1|)) (-591 (-591 (-591 |#1|))))) (-15 -2240 ((-591 (-591 |#1|)) (-591 (-591 (-591 |#1|))))) (-15 -1763 ((-591 (-591 |#1|)) (-1098 (-591 |#1|)))) (-15 -2692 ((-591 (-591 (-591 |#1|))) (-591 (-591 |#1|)))) (-15 -3106 ((-1098 (-591 |#1|)) (-591 |#1|))) (-15 -2290 ((-591 (-591 |#1|)) (-591 (-591 |#1|)))) (-15 -2649 ((-591 (-591 |#1|)) (-591 |#1|))) (-15 -2902 ((-591 |#1|) (-591 |#1|))) (-15 -2464 ((-2 (|:| |f1| (-591 |#1|)) (|:| |f2| (-591 (-591 (-591 |#1|)))) (|:| |f3| (-591 (-591 |#1|))) (|:| |f4| (-591 (-591 (-591 |#1|))))) (-591 |#1|) (-591 (-591 (-591 |#1|))) (-591 (-591 |#1|)) (-591 (-591 (-591 |#1|))) (-591 (-591 (-591 |#1|))) (-591 (-591 (-591 |#1|))))) (-15 -2731 ((-2 (|:| |f1| (-591 |#1|)) (|:| |f2| (-591 (-591 (-591 |#1|)))) (|:| |f3| (-591 (-591 |#1|))) (|:| |f4| (-591 (-591 (-591 |#1|))))) (-591 (-591 (-591 |#1|)))))) -((-4114 (($ (-591 (-591 |#1|))) 10)) (-3093 (((-591 (-591 |#1|)) $) 11)) (-2686 (((-796) $) 26))) -(((-1098 |#1|) (-10 -8 (-15 -4114 ($ (-591 (-591 |#1|)))) (-15 -3093 ((-591 (-591 |#1|)) $)) (-15 -2686 ((-796) $))) (-1018)) (T -1098)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-1098 *3)) (-4 *3 (-1018)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-591 (-591 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1018)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-5 *1 (-1098 *3))))) -(-10 -8 (-15 -4114 ($ (-591 (-591 |#1|)))) (-15 -3093 ((-591 (-591 |#1|)) $)) (-15 -2686 ((-796) $))) -((-2673 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-1308 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-3832 (((-1176) $ |#1| |#1|) NIL (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#2| $ |#1| |#2|) NIL)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-2429 (((-3 |#2| "failed") |#1| $) NIL)) (-2055 (($) NIL T CONST)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) NIL)) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) NIL)) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) NIL)) (-4152 ((|#1| $) NIL (|has| |#1| (-788)))) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-591 |#2|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-1826 ((|#1| $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4251))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2159 (((-591 |#1|) $) NIL)) (-1628 (((-108) |#1| $) NIL)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3761 (((-591 |#1|) $) NIL)) (-1675 (((-108) |#1| $) NIL)) (-2937 (((-1036) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2872 ((|#2| $) NIL (|has| |#1| (-788)))) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL)) (-1858 (($ $ |#2|) NIL (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3583 (($) NIL) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) NIL (-12 (|has| $ (-6 -4250)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (((-712) |#2| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018)))) (((-712) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-2686 (((-796) $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796))) (|has| |#2| (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) NIL)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) NIL (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) NIL (-3150 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| |#2| (-1018))))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1099 |#1| |#2|) (-13 (-1102 |#1| |#2|) (-10 -7 (-6 -4250))) (-1018) (-1018)) (T -1099)) -NIL -(-13 (-1102 |#1| |#2|) (-10 -7 (-6 -4250))) -((-2851 ((|#1| (-591 |#1|)) 32)) (-2211 ((|#1| |#1| (-525)) 18)) (-4169 (((-1085 |#1|) |#1| (-854)) 15))) -(((-1100 |#1|) (-10 -7 (-15 -2851 (|#1| (-591 |#1|))) (-15 -4169 ((-1085 |#1|) |#1| (-854))) (-15 -2211 (|#1| |#1| (-525)))) (-341)) (T -1100)) -((-2211 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1100 *2)) (-4 *2 (-341)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *4 (-854)) (-5 *2 (-1085 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-341)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-5 *1 (-1100 *2)) (-4 *2 (-341))))) -(-10 -7 (-15 -2851 (|#1| (-591 |#1|))) (-15 -4169 ((-1085 |#1|) |#1| (-854))) (-15 -2211 (|#1| |#1| (-525)))) -((-1308 (($) 10) (($ (-591 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)))) 14)) (-3844 (($ (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) $) 61) (($ (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2916 (((-591 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) $) 39) (((-591 |#3|) $) 41)) (-4192 (($ (-1 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-1257 (($ (-1 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3949 (((-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) $) 54)) (-1520 (($ (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) $) 16)) (-3761 (((-591 |#2|) $) 19)) (-1675 (((-108) |#2| $) 59)) (-2714 (((-3 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) "failed") (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) $) 58)) (-4166 (((-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) $) 63)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 67)) (-2998 (((-591 |#3|) $) 43)) (-1881 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) $) NIL) (((-712) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) $) NIL) (((-712) |#3| $) NIL) (((-712) (-1 (-108) |#3|) $) 68)) (-2686 (((-796) $) 27)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 65)) (-3944 (((-108) $ $) 49))) -(((-1101 |#1| |#2| |#3|) (-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -1257 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1308 (|#1| (-591 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))))) (-15 -1308 (|#1|)) (-15 -1257 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4192 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2960 ((-712) (-1 (-108) |#3|) |#1|)) (-15 -2916 ((-591 |#3|) |#1|)) (-15 -2960 ((-712) |#3| |#1|)) (-15 -1881 (|#3| |#1| |#2| |#3|)) (-15 -1881 (|#3| |#1| |#2|)) (-15 -2998 ((-591 |#3|) |#1|)) (-15 -1675 ((-108) |#2| |#1|)) (-15 -3761 ((-591 |#2|) |#1|)) (-15 -3844 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3844 (|#1| (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -3844 (|#1| (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -2714 ((-3 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) "failed") (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -3949 ((-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -1520 (|#1| (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -4166 ((-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -2960 ((-712) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -2916 ((-591 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -2960 ((-712) (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -3465 ((-108) (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -1475 ((-108) (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -4192 (|#1| (-1 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -1257 (|#1| (-1 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|))) (-1102 |#2| |#3|) (-1018) (-1018)) (T -1101)) -NIL -(-10 -8 (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -1257 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1308 (|#1| (-591 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))))) (-15 -1308 (|#1|)) (-15 -1257 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4192 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1475 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3465 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2960 ((-712) (-1 (-108) |#3|) |#1|)) (-15 -2916 ((-591 |#3|) |#1|)) (-15 -2960 ((-712) |#3| |#1|)) (-15 -1881 (|#3| |#1| |#2| |#3|)) (-15 -1881 (|#3| |#1| |#2|)) (-15 -2998 ((-591 |#3|) |#1|)) (-15 -1675 ((-108) |#2| |#1|)) (-15 -3761 ((-591 |#2|) |#1|)) (-15 -3844 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3844 (|#1| (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -3844 (|#1| (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -2714 ((-3 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) "failed") (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -3949 ((-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -1520 (|#1| (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -4166 ((-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -2960 ((-712) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) |#1|)) (-15 -2916 ((-591 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -2960 ((-712) (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -3465 ((-108) (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -1475 ((-108) (-1 (-108) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -4192 (|#1| (-1 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|)) (-15 -1257 (|#1| (-1 (-2 (|:| -1265 |#2|) (|:| -1568 |#3|)) (-2 (|:| -1265 |#2|) (|:| -1568 |#3|))) |#1|))) -((-2673 (((-108) $ $) 19 (-3150 (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-1308 (($) 72) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 71)) (-3832 (((-1176) $ |#1| |#1|) 99 (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) 8)) (-2847 ((|#2| $ |#1| |#2|) 73)) (-1288 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 45 (|has| $ (-6 -4250)))) (-2467 (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 55 (|has| $ (-6 -4250)))) (-2429 (((-3 |#2| "failed") |#1| $) 61)) (-2055 (($) 7 T CONST)) (-2908 (($ $) 58 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250))))) (-3844 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 47 (|has| $ (-6 -4250))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 46 (|has| $ (-6 -4250))) (((-3 |#2| "failed") |#1| $) 62)) (-2537 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 54 (|has| $ (-6 -4250)))) (-3618 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 56 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 53 (|has| $ (-6 -4250))) (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 52 (|has| $ (-6 -4250)))) (-4205 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4251)))) (-4121 ((|#2| $ |#1|) 88)) (-2916 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 30 (|has| $ (-6 -4250))) (((-591 |#2|) $) 79 (|has| $ (-6 -4250)))) (-3491 (((-108) $ (-712)) 9)) (-4152 ((|#1| $) 96 (|has| |#1| (-788)))) (-4207 (((-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 29 (|has| $ (-6 -4250))) (((-591 |#2|) $) 80 (|has| $ (-6 -4250)))) (-3956 (((-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250))))) (-1826 ((|#1| $) 95 (|has| |#1| (-788)))) (-4192 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 34 (|has| $ (-6 -4251))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4251)))) (-1257 (($ (-1 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3295 (((-108) $ (-712)) 10)) (-2621 (((-1072) $) 22 (-3150 (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2159 (((-591 |#1|) $) 63)) (-1628 (((-108) |#1| $) 64)) (-3949 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 39)) (-1520 (($ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 40)) (-3761 (((-591 |#1|) $) 93)) (-1675 (((-108) |#1| $) 92)) (-2937 (((-1036) $) 21 (-3150 (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2872 ((|#2| $) 97 (|has| |#1| (-788)))) (-2714 (((-3 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) "failed") (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 51)) (-1858 (($ $ |#2|) 98 (|has| $ (-6 -4251)))) (-4166 (((-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 41)) (-3465 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 32 (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))))) 26 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-273 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 25 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) 24 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 23 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)))) (($ $ (-591 |#2|) (-591 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018)))) (($ $ (-591 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4250)) (|has| |#2| (-1018))))) (-2998 (((-591 |#2|) $) 91)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3583 (($) 49) (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 48)) (-2960 (((-712) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 31 (|has| $ (-6 -4250))) (((-712) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| $ (-6 -4250)))) (((-712) |#2| $) 81 (-12 (|has| |#2| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4250)))) (-2873 (($ $) 13)) (-1300 (((-501) $) 59 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))))) (-2695 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 50)) (-2686 (((-796) $) 18 (-3150 (|has| |#2| (-565 (-796))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796)))))) (-2453 (($ (-591 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) 42)) (-1475 (((-108) (-1 (-108) (-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) $) 33 (|has| $ (-6 -4250))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (-3150 (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-1102 |#1| |#2|) (-131) (-1018) (-1018)) (T -1102)) -((-2847 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1102 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018)))) (-1308 (*1 *1) (-12 (-4 *1 (-1102 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) (-1308 (*1 *1 *2) (-12 (-5 *2 (-591 (-2 (|:| -1265 *3) (|:| -1568 *4)))) (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *1 (-1102 *3 *4)))) (-1257 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1102 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018))))) -(-13 (-562 |t#1| |t#2|) (-558 |t#1| |t#2|) (-10 -8 (-15 -2847 (|t#2| $ |t#1| |t#2|)) (-15 -1308 ($)) (-15 -1308 ($ (-591 (-2 (|:| -1265 |t#1|) (|:| -1568 |t#2|))))) (-15 -1257 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -1265 |#1|) (|:| -1568 |#2|))) . T) ((-97) -3150 (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) ((-565 (-796)) -3150 (|has| |#2| (-1018)) (|has| |#2| (-565 (-796))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-565 (-796)))) ((-142 #0#) . T) ((-566 (-501)) |has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-566 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 #0#) -12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-464 #0#) . T) ((-464 |#2|) . T) ((-558 |#1| |#2|) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-288 (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)))) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1018))) ((-562 |#1| |#2|) . T) ((-1018) -3150 (|has| |#2| (-1018)) (|has| (-2 (|:| -1265 |#1|) (|:| -1568 |#2|)) (-1018))) ((-1125) . T)) -((-1598 (((-108)) 24)) (-3745 (((-1176) (-1072)) 26)) (-3453 (((-108)) 36)) (-1332 (((-1176)) 34)) (-2443 (((-1176) (-1072) (-1072)) 25)) (-2764 (((-108)) 37)) (-1520 (((-1176) |#1| |#2|) 44)) (-3850 (((-1176)) 20)) (-1451 (((-3 |#2| "failed") |#1|) 42)) (-2030 (((-1176)) 35))) -(((-1103 |#1| |#2|) (-10 -7 (-15 -3850 ((-1176))) (-15 -2443 ((-1176) (-1072) (-1072))) (-15 -3745 ((-1176) (-1072))) (-15 -1332 ((-1176))) (-15 -2030 ((-1176))) (-15 -1598 ((-108))) (-15 -3453 ((-108))) (-15 -2764 ((-108))) (-15 -1451 ((-3 |#2| "failed") |#1|)) (-15 -1520 ((-1176) |#1| |#2|))) (-1018) (-1018)) (T -1103)) -((-1520 (*1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) (-1451 (*1 *2 *3) (|partial| -12 (-4 *2 (-1018)) (-5 *1 (-1103 *3 *2)) (-4 *3 (-1018)))) (-2764 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) (-3453 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) (-1598 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) (-2030 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) (-1332 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1103 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-1018)))) (-2443 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1103 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-1018)))) (-3850 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018))))) -(-10 -7 (-15 -3850 ((-1176))) (-15 -2443 ((-1176) (-1072) (-1072))) (-15 -3745 ((-1176) (-1072))) (-15 -1332 ((-1176))) (-15 -2030 ((-1176))) (-15 -1598 ((-108))) (-15 -3453 ((-108))) (-15 -2764 ((-108))) (-15 -1451 ((-3 |#2| "failed") |#1|)) (-15 -1520 ((-1176) |#1| |#2|))) -((-2678 (((-1072) (-1072)) 18)) (-4204 (((-51) (-1072)) 21))) -(((-1104) (-10 -7 (-15 -4204 ((-51) (-1072))) (-15 -2678 ((-1072) (-1072))))) (T -1104)) -((-2678 (*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1104)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-51)) (-5 *1 (-1104))))) -(-10 -7 (-15 -4204 ((-51) (-1072))) (-15 -2678 ((-1072) (-1072)))) -((-2686 (((-1106) |#1|) 11))) -(((-1105 |#1|) (-10 -7 (-15 -2686 ((-1106) |#1|))) (-1018)) (T -1105)) -((-2686 (*1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *1 (-1105 *3)) (-4 *3 (-1018))))) -(-10 -7 (-15 -2686 ((-1106) |#1|))) -((-2673 (((-108) $ $) NIL)) (-2660 (((-591 (-1072)) $) 34)) (-3907 (((-591 (-1072)) $ (-591 (-1072))) 37)) (-4106 (((-591 (-1072)) $ (-591 (-1072))) 36)) (-1279 (((-591 (-1072)) $ (-591 (-1072))) 38)) (-1716 (((-591 (-1072)) $) 33)) (-1316 (($) 22)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3992 (((-591 (-1072)) $) 35)) (-1285 (((-1176) $ (-525)) 29) (((-1176) $) 30)) (-1300 (($ (-796) (-525)) 26) (($ (-796) (-525) (-796)) NIL)) (-2686 (((-796) $) 40) (($ (-796)) 24)) (-3944 (((-108) $ $) NIL))) -(((-1106) (-13 (-1018) (-10 -8 (-15 -2686 ($ (-796))) (-15 -1300 ($ (-796) (-525))) (-15 -1300 ($ (-796) (-525) (-796))) (-15 -1285 ((-1176) $ (-525))) (-15 -1285 ((-1176) $)) (-15 -3992 ((-591 (-1072)) $)) (-15 -2660 ((-591 (-1072)) $)) (-15 -1316 ($)) (-15 -1716 ((-591 (-1072)) $)) (-15 -1279 ((-591 (-1072)) $ (-591 (-1072)))) (-15 -3907 ((-591 (-1072)) $ (-591 (-1072)))) (-15 -4106 ((-591 (-1072)) $ (-591 (-1072))))))) (T -1106)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-796)) (-5 *1 (-1106)))) (-1300 (*1 *1 *2 *3) (-12 (-5 *2 (-796)) (-5 *3 (-525)) (-5 *1 (-1106)))) (-1300 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-796)) (-5 *3 (-525)) (-5 *1 (-1106)))) (-1285 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-1106)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1106)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106)))) (-1316 (*1 *1) (-5 *1 (-1106))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106)))) (-1279 (*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106)))) (-3907 (*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106)))) (-4106 (*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106))))) -(-13 (-1018) (-10 -8 (-15 -2686 ($ (-796))) (-15 -1300 ($ (-796) (-525))) (-15 -1300 ($ (-796) (-525) (-796))) (-15 -1285 ((-1176) $ (-525))) (-15 -1285 ((-1176) $)) (-15 -3992 ((-591 (-1072)) $)) (-15 -2660 ((-591 (-1072)) $)) (-15 -1316 ($)) (-15 -1716 ((-591 (-1072)) $)) (-15 -1279 ((-591 (-1072)) $ (-591 (-1072)))) (-15 -3907 ((-591 (-1072)) $ (-591 (-1072)))) (-15 -4106 ((-591 (-1072)) $ (-591 (-1072)))))) -((-2673 (((-108) $ $) NIL)) (-2614 (((-1072) $ (-1072)) 17) (((-1072) $) 16)) (-3806 (((-1072) $ (-1072)) 15)) (-2375 (($ $ (-1072)) NIL)) (-3784 (((-3 (-1072) "failed") $) 11)) (-2165 (((-1072) $) 8)) (-3792 (((-3 (-1072) "failed") $) 12)) (-1608 (((-1072) $) 9)) (-1472 (($ (-366)) NIL) (($ (-366) (-1072)) NIL)) (-3419 (((-366) $) NIL)) (-2621 (((-1072) $) NIL)) (-4052 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3591 (((-108) $) 18)) (-2686 (((-796) $) NIL)) (-3236 (($ $) NIL)) (-3944 (((-108) $ $) NIL))) -(((-1107) (-13 (-342 (-366) (-1072)) (-10 -8 (-15 -2614 ((-1072) $ (-1072))) (-15 -2614 ((-1072) $)) (-15 -2165 ((-1072) $)) (-15 -3784 ((-3 (-1072) "failed") $)) (-15 -3792 ((-3 (-1072) "failed") $)) (-15 -3591 ((-108) $))))) (T -1107)) -((-2614 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1107)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1107)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1107)))) (-3784 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1107)))) (-3792 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1107)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1107))))) -(-13 (-342 (-366) (-1072)) (-10 -8 (-15 -2614 ((-1072) $ (-1072))) (-15 -2614 ((-1072) $)) (-15 -2165 ((-1072) $)) (-15 -3784 ((-3 (-1072) "failed") $)) (-15 -3792 ((-3 (-1072) "failed") $)) (-15 -3591 ((-108) $)))) -((-4188 (((-3 (-525) "failed") |#1|) 19)) (-1250 (((-3 (-525) "failed") |#1|) 14)) (-1287 (((-525) (-1072)) 28))) -(((-1108 |#1|) (-10 -7 (-15 -4188 ((-3 (-525) "failed") |#1|)) (-15 -1250 ((-3 (-525) "failed") |#1|)) (-15 -1287 ((-525) (-1072)))) (-975)) (T -1108)) -((-1287 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-525)) (-5 *1 (-1108 *4)) (-4 *4 (-975)))) (-1250 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1108 *3)) (-4 *3 (-975)))) (-4188 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1108 *3)) (-4 *3 (-975))))) -(-10 -7 (-15 -4188 ((-3 (-525) "failed") |#1|)) (-15 -1250 ((-3 (-525) "failed") |#1|)) (-15 -1287 ((-525) (-1072)))) -((-3114 (((-1049 (-205))) 9))) -(((-1109) (-10 -7 (-15 -3114 ((-1049 (-205)))))) (T -1109)) -((-3114 (*1 *2) (-12 (-5 *2 (-1049 (-205))) (-5 *1 (-1109))))) -(-10 -7 (-15 -3114 ((-1049 (-205))))) -((-1417 (($) 11)) (-4163 (($ $) 35)) (-4137 (($ $) 33)) (-2432 (($ $) 25)) (-4193 (($ $) 17)) (-1234 (($ $) 15)) (-4179 (($ $) 19)) (-2469 (($ $) 30)) (-4149 (($ $) 34)) (-2444 (($ $) 29))) -(((-1110 |#1|) (-10 -8 (-15 -1417 (|#1|)) (-15 -4163 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4193 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -4179 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 -2444 (|#1| |#1|))) (-1111)) (T -1110)) -NIL -(-10 -8 (-15 -1417 (|#1|)) (-15 -4163 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4193 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -4179 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 -2444 (|#1| |#1|))) -((-4087 (($ $) 26)) (-2381 (($ $) 11)) (-4058 (($ $) 27)) (-2360 (($ $) 10)) (-4109 (($ $) 28)) (-2400 (($ $) 9)) (-1417 (($) 16)) (-2356 (($ $) 19)) (-2288 (($ $) 18)) (-4122 (($ $) 29)) (-2410 (($ $) 8)) (-4098 (($ $) 30)) (-2391 (($ $) 7)) (-4073 (($ $) 31)) (-2370 (($ $) 6)) (-4163 (($ $) 20)) (-2457 (($ $) 32)) (-4137 (($ $) 21)) (-2432 (($ $) 33)) (-4193 (($ $) 22)) (-2477 (($ $) 34)) (-1234 (($ $) 23)) (-2495 (($ $) 35)) (-4179 (($ $) 24)) (-2469 (($ $) 36)) (-4149 (($ $) 25)) (-2444 (($ $) 37)) (** (($ $ $) 17))) -(((-1111) (-131)) (T -1111)) -((-1417 (*1 *1) (-4 *1 (-1111)))) -(-13 (-1114) (-91) (-466) (-34) (-263) (-10 -8 (-15 -1417 ($)))) -(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-1114) . T)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2940 ((|#1| $) 17)) (-3673 (($ |#1| (-591 $)) 23) (($ (-591 |#1|)) 27) (($ |#1|) 25)) (-3727 (((-108) $ (-712)) 48)) (-3912 ((|#1| $ |#1|) 14 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 13 (|has| $ (-6 -4251)))) (-2055 (($) NIL T CONST)) (-2916 (((-591 |#1|) $) 52 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 43)) (-3219 (((-108) $ $) 33 (|has| |#1| (-1018)))) (-3491 (((-108) $ (-712)) 41)) (-4207 (((-591 |#1|) $) 53 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-4192 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 22)) (-3295 (((-108) $ (-712)) 40)) (-2065 (((-591 |#1|) $) 37)) (-2878 (((-108) $) 36)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-3465 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 74)) (-2077 (((-108) $) 9)) (-3164 (($) 10)) (-1881 ((|#1| $ "value") NIL)) (-2194 (((-525) $ $) 32)) (-3528 (((-591 $) $) 59)) (-2422 (((-108) $ $) 77)) (-3211 (((-591 $) $) 72)) (-3860 (($ $) 73)) (-4133 (((-108) $) 56)) (-2960 (((-712) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4250))) (((-712) |#1| $) 16 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2873 (($ $) 58)) (-2686 (((-796) $) 61 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) 12)) (-3592 (((-108) $ $) 29 (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 28 (|has| |#1| (-1018)))) (-2028 (((-712) $) 39 (|has| $ (-6 -4250))))) -(((-1112 |#1|) (-13 (-940 |#1|) (-10 -8 (-6 -4250) (-6 -4251) (-15 -3673 ($ |#1| (-591 $))) (-15 -3673 ($ (-591 |#1|))) (-15 -3673 ($ |#1|)) (-15 -4133 ((-108) $)) (-15 -3860 ($ $)) (-15 -3211 ((-591 $) $)) (-15 -2422 ((-108) $ $)) (-15 -3528 ((-591 $) $)))) (-1018)) (T -1112)) -((-4133 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1112 *3)) (-4 *3 (-1018)))) (-3673 (*1 *1 *2 *3) (-12 (-5 *3 (-591 (-1112 *2))) (-5 *1 (-1112 *2)) (-4 *2 (-1018)))) (-3673 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-1112 *3)))) (-3673 (*1 *1 *2) (-12 (-5 *1 (-1112 *2)) (-4 *2 (-1018)))) (-3860 (*1 *1 *1) (-12 (-5 *1 (-1112 *2)) (-4 *2 (-1018)))) (-3211 (*1 *2 *1) (-12 (-5 *2 (-591 (-1112 *3))) (-5 *1 (-1112 *3)) (-4 *3 (-1018)))) (-2422 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1112 *3)) (-4 *3 (-1018)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-591 (-1112 *3))) (-5 *1 (-1112 *3)) (-4 *3 (-1018))))) -(-13 (-940 |#1|) (-10 -8 (-6 -4250) (-6 -4251) (-15 -3673 ($ |#1| (-591 $))) (-15 -3673 ($ (-591 |#1|))) (-15 -3673 ($ |#1|)) (-15 -4133 ((-108) $)) (-15 -3860 ($ $)) (-15 -3211 ((-591 $) $)) (-15 -2422 ((-108) $ $)) (-15 -3528 ((-591 $) $)))) -((-2381 (($ $) 15)) (-2400 (($ $) 12)) (-2410 (($ $) 10)) (-2391 (($ $) 17))) -(((-1113 |#1|) (-10 -8 (-15 -2391 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -2381 (|#1| |#1|))) (-1114)) (T -1113)) -NIL -(-10 -8 (-15 -2391 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -2381 (|#1| |#1|))) -((-2381 (($ $) 11)) (-2360 (($ $) 10)) (-2400 (($ $) 9)) (-2410 (($ $) 8)) (-2391 (($ $) 7)) (-2370 (($ $) 6))) -(((-1114) (-131)) (T -1114)) -((-2381 (*1 *1 *1) (-4 *1 (-1114))) (-2360 (*1 *1 *1) (-4 *1 (-1114))) (-2400 (*1 *1 *1) (-4 *1 (-1114))) (-2410 (*1 *1 *1) (-4 *1 (-1114))) (-2391 (*1 *1 *1) (-4 *1 (-1114))) (-2370 (*1 *1 *1) (-4 *1 (-1114)))) -(-13 (-10 -8 (-15 -2370 ($ $)) (-15 -2391 ($ $)) (-15 -2410 ($ $)) (-15 -2400 ($ $)) (-15 -2360 ($ $)) (-15 -2381 ($ $)))) -((-3622 ((|#2| |#2|) 88)) (-2174 (((-108) |#2|) 26)) (-2560 ((|#2| |#2|) 30)) (-2571 ((|#2| |#2|) 32)) (-2622 ((|#2| |#2| (-1089)) 83) ((|#2| |#2|) 84)) (-2324 (((-157 |#2|) |#2|) 28)) (-1694 ((|#2| |#2| (-1089)) 85) ((|#2| |#2|) 86))) -(((-1115 |#1| |#2|) (-10 -7 (-15 -2622 (|#2| |#2|)) (-15 -2622 (|#2| |#2| (-1089))) (-15 -1694 (|#2| |#2|)) (-15 -1694 (|#2| |#2| (-1089))) (-15 -3622 (|#2| |#2|)) (-15 -2560 (|#2| |#2|)) (-15 -2571 (|#2| |#2|)) (-15 -2174 ((-108) |#2|)) (-15 -2324 ((-157 |#2|) |#2|))) (-13 (-429) (-788) (-966 (-525)) (-587 (-525))) (-13 (-27) (-1111) (-408 |#1|))) (T -1115)) -((-2324 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-157 *3)) (-5 *1 (-1115 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *4))))) (-2174 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *2 (-108)) (-5 *1 (-1115 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *4))))) (-2571 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3))))) (-2560 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3))))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3))))) (-1694 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-1115 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4))))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3))))) (-2622 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-1115 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4))))) (-2622 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3)))))) -(-10 -7 (-15 -2622 (|#2| |#2|)) (-15 -2622 (|#2| |#2| (-1089))) (-15 -1694 (|#2| |#2|)) (-15 -1694 (|#2| |#2| (-1089))) (-15 -3622 (|#2| |#2|)) (-15 -2560 (|#2| |#2|)) (-15 -2571 (|#2| |#2|)) (-15 -2174 ((-108) |#2|)) (-15 -2324 ((-157 |#2|) |#2|))) -((-2945 ((|#4| |#4| |#1|) 27)) (-2803 ((|#4| |#4| |#1|) 28))) -(((-1116 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2945 (|#4| |#4| |#1|)) (-15 -2803 (|#4| |#4| |#1|))) (-517) (-351 |#1|) (-351 |#1|) (-629 |#1| |#2| |#3|)) (T -1116)) -((-2803 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) (-2945 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -(-10 -7 (-15 -2945 (|#4| |#4| |#1|)) (-15 -2803 (|#4| |#4| |#1|))) -((-1517 ((|#2| |#2|) 134)) (-2118 ((|#2| |#2|) 131)) (-4091 ((|#2| |#2|) 122)) (-1610 ((|#2| |#2|) 119)) (-1491 ((|#2| |#2|) 127)) (-1319 ((|#2| |#2|) 115)) (-1220 ((|#2| |#2|) 43)) (-3777 ((|#2| |#2|) 95)) (-3421 ((|#2| |#2|) 75)) (-2039 ((|#2| |#2|) 129)) (-3040 ((|#2| |#2|) 117)) (-3120 ((|#2| |#2|) 139)) (-2938 ((|#2| |#2|) 137)) (-2883 ((|#2| |#2|) 138)) (-2151 ((|#2| |#2|) 136)) (-2864 ((|#2| |#2|) 149)) (-3135 ((|#2| |#2|) 30 (-12 (|has| |#2| (-566 (-825 |#1|))) (|has| |#2| (-819 |#1|)) (|has| |#1| (-566 (-825 |#1|))) (|has| |#1| (-819 |#1|))))) (-3371 ((|#2| |#2|) 76)) (-2966 ((|#2| |#2|) 140)) (-2431 ((|#2| |#2|) 141)) (-2498 ((|#2| |#2|) 128)) (-2307 ((|#2| |#2|) 116)) (-2690 ((|#2| |#2|) 135)) (-4202 ((|#2| |#2|) 133)) (-1333 ((|#2| |#2|) 123)) (-1791 ((|#2| |#2|) 121)) (-3685 ((|#2| |#2|) 125)) (-2926 ((|#2| |#2|) 113))) -(((-1117 |#1| |#2|) (-10 -7 (-15 -2431 (|#2| |#2|)) (-15 -3421 (|#2| |#2|)) (-15 -2864 (|#2| |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -1220 (|#2| |#2|)) (-15 -3371 (|#2| |#2|)) (-15 -2966 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -3685 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -2690 (|#2| |#2|)) (-15 -2307 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -3040 (|#2| |#2|)) (-15 -2039 (|#2| |#2|)) (-15 -1319 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -2118 (|#2| |#2|)) (-15 -1791 (|#2| |#2|)) (-15 -4202 (|#2| |#2|)) (-15 -2151 (|#2| |#2|)) (-15 -2938 (|#2| |#2|)) (-15 -2883 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (IF (|has| |#1| (-819 |#1|)) (IF (|has| |#1| (-566 (-825 |#1|))) (IF (|has| |#2| (-566 (-825 |#1|))) (IF (|has| |#2| (-819 |#1|)) (-15 -3135 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-788) (-429)) (-13 (-408 |#1|) (-1111))) (T -1117)) -((-3135 (*1 *2 *2) (-12 (-4 *3 (-566 (-825 *3))) (-4 *3 (-819 *3)) (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-566 (-825 *3))) (-4 *2 (-819 *3)) (-4 *2 (-13 (-408 *3) (-1111))))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2883 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2938 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2151 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-4202 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-1791 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2118 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-1491 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-1319 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2039 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-3040 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2498 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2307 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2690 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-3685 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2966 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-3371 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-1220 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-3777 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2864 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-3421 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111))))) (-2431 (*1 *2 *2) (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-408 *3) (-1111)))))) -(-10 -7 (-15 -2431 (|#2| |#2|)) (-15 -3421 (|#2| |#2|)) (-15 -2864 (|#2| |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -1220 (|#2| |#2|)) (-15 -3371 (|#2| |#2|)) (-15 -2966 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -3685 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -2690 (|#2| |#2|)) (-15 -2307 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -3040 (|#2| |#2|)) (-15 -2039 (|#2| |#2|)) (-15 -1319 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -2118 (|#2| |#2|)) (-15 -1791 (|#2| |#2|)) (-15 -4202 (|#2| |#2|)) (-15 -2151 (|#2| |#2|)) (-15 -2938 (|#2| |#2|)) (-15 -2883 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (IF (|has| |#1| (-819 |#1|)) (IF (|has| |#1| (-566 (-825 |#1|))) (IF (|has| |#2| (-566 (-825 |#1|))) (IF (|has| |#2| (-819 |#1|)) (-15 -3135 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3750 (((-108) |#5| $) 60) (((-108) $) 102)) (-4123 ((|#5| |#5| $) 75)) (-2467 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2699 (((-591 |#5|) (-591 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-4174 (((-3 $ "failed") (-591 |#5|)) 126)) (-2884 (((-3 $ "failed") $) 112)) (-2302 ((|#5| |#5| $) 94)) (-3797 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-2490 ((|#5| |#5| $) 98)) (-3618 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-2082 (((-2 (|:| -1269 (-591 |#5|)) (|:| -1472 (-591 |#5|))) $) 55)) (-2040 (((-108) |#5| $) 58) (((-108) $) 103)) (-3998 ((|#4| $) 108)) (-2555 (((-3 |#5| "failed") $) 110)) (-3664 (((-591 |#5|) $) 49)) (-1307 (((-108) |#5| $) 67) (((-108) $) 107)) (-3022 ((|#5| |#5| $) 81)) (-3300 (((-108) $ $) 27)) (-3255 (((-108) |#5| $) 63) (((-108) $) 105)) (-2246 ((|#5| |#5| $) 78)) (-2872 (((-3 |#5| "failed") $) 109)) (-1618 (($ $ |#5|) 127)) (-2743 (((-712) $) 52)) (-2695 (($ (-591 |#5|)) 124)) (-3786 (($ $ |#4|) 122)) (-2794 (($ $ |#4|) 121)) (-1656 (($ $) 120)) (-2686 (((-796) $) NIL) (((-591 |#5|) $) 113)) (-3311 (((-712) $) 130)) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#5|))) "failed") (-591 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#5|))) "failed") (-591 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-3747 (((-108) $ (-1 (-108) |#5| (-591 |#5|))) 100)) (-1669 (((-591 |#4|) $) 115)) (-2588 (((-108) |#4| $) 118)) (-3944 (((-108) $ $) 19))) -(((-1118 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3311 ((-712) |#1|)) (-15 -1618 (|#1| |#1| |#5|)) (-15 -2467 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2588 ((-108) |#4| |#1|)) (-15 -1669 ((-591 |#4|) |#1|)) (-15 -2884 ((-3 |#1| "failed") |#1|)) (-15 -2555 ((-3 |#5| "failed") |#1|)) (-15 -2872 ((-3 |#5| "failed") |#1|)) (-15 -2490 (|#5| |#5| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -2302 (|#5| |#5| |#1|)) (-15 -3022 (|#5| |#5| |#1|)) (-15 -2246 (|#5| |#5| |#1|)) (-15 -4123 (|#5| |#5| |#1|)) (-15 -2699 ((-591 |#5|) (-591 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3618 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -1307 ((-108) |#1|)) (-15 -3255 ((-108) |#1|)) (-15 -3750 ((-108) |#1|)) (-15 -3747 ((-108) |#1| (-1 (-108) |#5| (-591 |#5|)))) (-15 -1307 ((-108) |#5| |#1|)) (-15 -3255 ((-108) |#5| |#1|)) (-15 -3750 ((-108) |#5| |#1|)) (-15 -3797 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2040 ((-108) |#1|)) (-15 -2040 ((-108) |#5| |#1|)) (-15 -2082 ((-2 (|:| -1269 (-591 |#5|)) (|:| -1472 (-591 |#5|))) |#1|)) (-15 -2743 ((-712) |#1|)) (-15 -3664 ((-591 |#5|) |#1|)) (-15 -3339 ((-3 (-2 (|:| |bas| |#1|) (|:| -1505 (-591 |#5|))) "failed") (-591 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3339 ((-3 (-2 (|:| |bas| |#1|) (|:| -1505 (-591 |#5|))) "failed") (-591 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3300 ((-108) |#1| |#1|)) (-15 -3786 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -3998 (|#4| |#1|)) (-15 -4174 ((-3 |#1| "failed") (-591 |#5|))) (-15 -2686 ((-591 |#5|) |#1|)) (-15 -2695 (|#1| (-591 |#5|))) (-15 -3618 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3618 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2467 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3618 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) (-1119 |#2| |#3| |#4| |#5|) (-517) (-734) (-788) (-989 |#2| |#3| |#4|)) (T -1118)) -NIL -(-10 -8 (-15 -3311 ((-712) |#1|)) (-15 -1618 (|#1| |#1| |#5|)) (-15 -2467 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2588 ((-108) |#4| |#1|)) (-15 -1669 ((-591 |#4|) |#1|)) (-15 -2884 ((-3 |#1| "failed") |#1|)) (-15 -2555 ((-3 |#5| "failed") |#1|)) (-15 -2872 ((-3 |#5| "failed") |#1|)) (-15 -2490 (|#5| |#5| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -2302 (|#5| |#5| |#1|)) (-15 -3022 (|#5| |#5| |#1|)) (-15 -2246 (|#5| |#5| |#1|)) (-15 -4123 (|#5| |#5| |#1|)) (-15 -2699 ((-591 |#5|) (-591 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3618 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -1307 ((-108) |#1|)) (-15 -3255 ((-108) |#1|)) (-15 -3750 ((-108) |#1|)) (-15 -3747 ((-108) |#1| (-1 (-108) |#5| (-591 |#5|)))) (-15 -1307 ((-108) |#5| |#1|)) (-15 -3255 ((-108) |#5| |#1|)) (-15 -3750 ((-108) |#5| |#1|)) (-15 -3797 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2040 ((-108) |#1|)) (-15 -2040 ((-108) |#5| |#1|)) (-15 -2082 ((-2 (|:| -1269 (-591 |#5|)) (|:| -1472 (-591 |#5|))) |#1|)) (-15 -2743 ((-712) |#1|)) (-15 -3664 ((-591 |#5|) |#1|)) (-15 -3339 ((-3 (-2 (|:| |bas| |#1|) (|:| -1505 (-591 |#5|))) "failed") (-591 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3339 ((-3 (-2 (|:| |bas| |#1|) (|:| -1505 (-591 |#5|))) "failed") (-591 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3300 ((-108) |#1| |#1|)) (-15 -3786 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -3998 (|#4| |#1|)) (-15 -4174 ((-3 |#1| "failed") (-591 |#5|))) (-15 -2686 ((-591 |#5|) |#1|)) (-15 -2695 (|#1| (-591 |#5|))) (-15 -3618 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3618 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2467 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3618 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2686 ((-796) |#1|)) (-15 -3944 ((-108) |#1| |#1|))) -((-2673 (((-108) $ $) 7)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |#4|)))) (-591 |#4|)) 85)) (-3227 (((-591 $) (-591 |#4|)) 86)) (-1444 (((-591 |#3|) $) 33)) (-3713 (((-108) $) 26)) (-1996 (((-108) $) 17 (|has| |#1| (-517)))) (-3750 (((-108) |#4| $) 101) (((-108) $) 97)) (-4123 ((|#4| |#4| $) 92)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) 27)) (-3727 (((-108) $ (-712)) 44)) (-2467 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4250))) (((-3 |#4| "failed") $ |#3|) 79)) (-2055 (($) 45 T CONST)) (-3435 (((-108) $) 22 (|has| |#1| (-517)))) (-2342 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2605 (((-108) $ $) 23 (|has| |#1| (-517)))) (-2167 (((-108) $) 25 (|has| |#1| (-517)))) (-2699 (((-591 |#4|) (-591 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1533 (((-591 |#4|) (-591 |#4|) $) 18 (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) 19 (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) 36)) (-3341 (($ (-591 |#4|)) 35)) (-2884 (((-3 $ "failed") $) 82)) (-2302 ((|#4| |#4| $) 89)) (-2908 (($ $) 68 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#4| $) 67 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3797 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2490 ((|#4| |#4| $) 87)) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4250))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2082 (((-2 (|:| -1269 (-591 |#4|)) (|:| -1472 (-591 |#4|))) $) 105)) (-2916 (((-591 |#4|) $) 52 (|has| $ (-6 -4250)))) (-2040 (((-108) |#4| $) 104) (((-108) $) 103)) (-3998 ((|#3| $) 34)) (-3491 (((-108) $ (-712)) 43)) (-4207 (((-591 |#4|) $) 53 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) 47)) (-3520 (((-591 |#3|) $) 32)) (-1574 (((-108) |#3| $) 31)) (-3295 (((-108) $ (-712)) 42)) (-2621 (((-1072) $) 9)) (-2555 (((-3 |#4| "failed") $) 83)) (-3664 (((-591 |#4|) $) 107)) (-1307 (((-108) |#4| $) 99) (((-108) $) 95)) (-3022 ((|#4| |#4| $) 90)) (-3300 (((-108) $ $) 110)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-3255 (((-108) |#4| $) 100) (((-108) $) 96)) (-2246 ((|#4| |#4| $) 91)) (-2937 (((-1036) $) 10)) (-2872 (((-3 |#4| "failed") $) 84)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1591 (((-3 $ "failed") $ |#4|) 78)) (-1618 (($ $ |#4|) 77)) (-3465 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) 38)) (-2077 (((-108) $) 41)) (-3164 (($) 40)) (-2743 (((-712) $) 106)) (-2960 (((-712) |#4| $) 54 (-12 (|has| |#4| (-1018)) (|has| $ (-6 -4250)))) (((-712) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4250)))) (-2873 (($ $) 39)) (-1300 (((-501) $) 69 (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) 60)) (-3786 (($ $ |#3|) 28)) (-2794 (($ $ |#3|) 30)) (-1656 (($ $) 88)) (-1918 (($ $ |#3|) 29)) (-2686 (((-796) $) 11) (((-591 |#4|) $) 37)) (-3311 (((-712) $) 76 (|has| |#3| (-346)))) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3747 (((-108) $ (-1 (-108) |#4| (-591 |#4|))) 98)) (-1475 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4250)))) (-1669 (((-591 |#3|) $) 81)) (-2588 (((-108) |#3| $) 80)) (-3944 (((-108) $ $) 6)) (-2028 (((-712) $) 46 (|has| $ (-6 -4250))))) -(((-1119 |#1| |#2| |#3| |#4|) (-131) (-517) (-734) (-788) (-989 |t#1| |t#2| |t#3|)) (T -1119)) -((-3300 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) (-3339 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1505 (-591 *8)))) (-5 *3 (-591 *8)) (-4 *1 (-1119 *5 *6 *7 *8)))) (-3339 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-989 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-734)) (-4 *8 (-788)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1505 (-591 *9)))) (-5 *3 (-591 *9)) (-4 *1 (-1119 *6 *7 *8 *9)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-591 *6)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-712)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-2 (|:| -1269 (-591 *6)) (|:| -1472 (-591 *6)))))) (-2040 (*1 *2 *3 *1) (-12 (-4 *1 (-1119 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) (-3797 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1119 *5 *6 *7 *3)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-108)))) (-3750 (*1 *2 *3 *1) (-12 (-4 *1 (-1119 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-3255 (*1 *2 *3 *1) (-12 (-4 *1 (-1119 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-1307 (*1 *2 *3 *1) (-12 (-4 *1 (-1119 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-3747 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-591 *7))) (-4 *1 (-1119 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) (-3618 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1119 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *2 (-989 *5 *6 *7)))) (-2699 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-591 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1119 *5 *6 *7 *8)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)))) (-4123 (*1 *2 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-2246 (*1 *2 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-3022 (*1 *2 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-2302 (*1 *2 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-1656 (*1 *1 *1) (-12 (-4 *1 (-1119 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-989 *2 *3 *4)))) (-2490 (*1 *2 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-3227 (*1 *2 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *1)) (-4 *1 (-1119 *4 *5 *6 *7)))) (-2313 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-591 (-2 (|:| -1269 *1) (|:| -1472 (-591 *7))))) (-5 *3 (-591 *7)) (-4 *1 (-1119 *4 *5 *6 *7)))) (-2872 (*1 *2 *1) (|partial| -12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-2884 (*1 *1 *1) (|partial| -12 (-4 *1 (-1119 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-989 *2 *3 *4)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-591 *5)))) (-2588 (*1 *2 *3 *1) (-12 (-4 *1 (-1119 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *3 (-788)) (-4 *6 (-989 *4 *5 *3)) (-5 *2 (-108)))) (-2467 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1119 *4 *5 *3 *2)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *3 (-788)) (-4 *2 (-989 *4 *5 *3)))) (-1591 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-1618 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *5 (-346)) (-5 *2 (-712))))) -(-13 (-907 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4250) (-6 -4251) (-15 -3300 ((-108) $ $)) (-15 -3339 ((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |t#4|))) "failed") (-591 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3339 ((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |t#4|))) "failed") (-591 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3664 ((-591 |t#4|) $)) (-15 -2743 ((-712) $)) (-15 -2082 ((-2 (|:| -1269 (-591 |t#4|)) (|:| -1472 (-591 |t#4|))) $)) (-15 -2040 ((-108) |t#4| $)) (-15 -2040 ((-108) $)) (-15 -3797 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -3750 ((-108) |t#4| $)) (-15 -3255 ((-108) |t#4| $)) (-15 -1307 ((-108) |t#4| $)) (-15 -3747 ((-108) $ (-1 (-108) |t#4| (-591 |t#4|)))) (-15 -3750 ((-108) $)) (-15 -3255 ((-108) $)) (-15 -1307 ((-108) $)) (-15 -3618 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2699 ((-591 |t#4|) (-591 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -4123 (|t#4| |t#4| $)) (-15 -2246 (|t#4| |t#4| $)) (-15 -3022 (|t#4| |t#4| $)) (-15 -2302 (|t#4| |t#4| $)) (-15 -1656 ($ $)) (-15 -2490 (|t#4| |t#4| $)) (-15 -3227 ((-591 $) (-591 |t#4|))) (-15 -2313 ((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |t#4|)))) (-591 |t#4|))) (-15 -2872 ((-3 |t#4| "failed") $)) (-15 -2555 ((-3 |t#4| "failed") $)) (-15 -2884 ((-3 $ "failed") $)) (-15 -1669 ((-591 |t#3|) $)) (-15 -2588 ((-108) |t#3| $)) (-15 -2467 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1591 ((-3 $ "failed") $ |t#4|)) (-15 -1618 ($ $ |t#4|)) (IF (|has| |t#3| (-346)) (-15 -3311 ((-712) $)) |%noBranch|))) -(((-33) . T) ((-97) . T) ((-565 (-591 |#4|)) . T) ((-565 (-796)) . T) ((-142 |#4|) . T) ((-566 (-501)) |has| |#4| (-566 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))) ((-907 |#1| |#2| |#3| |#4|) . T) ((-1018) . T) ((-1125) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-1089)) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-4087 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4058 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4109 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3298 (((-885 |#1|) $ (-712)) 17) (((-885 |#1|) $ (-712) (-712)) NIL)) (-1795 (((-108) $) NIL)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-712) $ (-1089)) NIL) (((-712) $ (-1089) (-712)) NIL)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3802 (((-108) $) NIL)) (-1422 (($ $ (-591 (-1089)) (-591 (-497 (-1089)))) NIL) (($ $ (-1089) (-497 (-1089))) NIL) (($ |#1| (-497 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2452 (($ $ (-1089)) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2937 (((-1036) $) NIL)) (-2402 (($ (-1 $) (-1089) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1618 (($ $ (-712)) NIL)) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2288 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1980 (($ $ (-1089) $) NIL) (($ $ (-591 (-1089)) (-591 $)) NIL) (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL)) (-2209 (($ $ (-1089)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL)) (-2743 (((-497 (-1089)) $) NIL)) (-4122 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-1089)) NIL) (($ (-885 |#1|)) NIL)) (-1263 ((|#1| $ (-497 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (((-885 |#1|) $ (-712)) NIL)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-4163 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) NIL T CONST)) (-1796 (($ $ (-1089)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1120 |#1|) (-13 (-682 |#1| (-1089)) (-10 -8 (-15 -1263 ((-885 |#1|) $ (-712))) (-15 -2686 ($ (-1089))) (-15 -2686 ($ (-885 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $ (-1089) |#1|)) (-15 -2402 ($ (-1 $) (-1089) |#1|))) |%noBranch|))) (-975)) (T -1120)) -((-1263 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *2 (-885 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-975)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1120 *3)) (-4 *3 (-975)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-885 *3)) (-4 *3 (-975)) (-5 *1 (-1120 *3)))) (-2452 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1120 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)))) (-2402 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4))) (-5 *3 (-1089)) (-5 *1 (-1120 *4)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-975))))) -(-13 (-682 |#1| (-1089)) (-10 -8 (-15 -1263 ((-885 |#1|) $ (-712))) (-15 -2686 ($ (-1089))) (-15 -2686 ($ (-885 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $ (-1089) |#1|)) (-15 -2402 ($ (-1 $) (-1089) |#1|))) |%noBranch|))) -((-3269 (($ |#1| (-591 (-591 (-876 (-205)))) (-108)) 19)) (-2114 (((-108) $ (-108)) 18)) (-3880 (((-108) $) 17)) (-3231 (((-591 (-591 (-876 (-205)))) $) 13)) (-1280 ((|#1| $) 8)) (-2152 (((-108) $) 15))) -(((-1121 |#1|) (-10 -8 (-15 -1280 (|#1| $)) (-15 -3231 ((-591 (-591 (-876 (-205)))) $)) (-15 -2152 ((-108) $)) (-15 -3880 ((-108) $)) (-15 -2114 ((-108) $ (-108))) (-15 -3269 ($ |#1| (-591 (-591 (-876 (-205)))) (-108)))) (-905)) (T -1121)) -((-3269 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-108)) (-5 *1 (-1121 *2)) (-4 *2 (-905)))) (-2114 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-905)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-905)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-905)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *1 (-1121 *3)) (-4 *3 (-905)))) (-1280 (*1 *2 *1) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-905))))) -(-10 -8 (-15 -1280 (|#1| $)) (-15 -3231 ((-591 (-591 (-876 (-205)))) $)) (-15 -2152 ((-108) $)) (-15 -3880 ((-108) $)) (-15 -2114 ((-108) $ (-108))) (-15 -3269 ($ |#1| (-591 (-591 (-876 (-205)))) (-108)))) -((-2191 (((-876 (-205)) (-876 (-205))) 25)) (-1867 (((-876 (-205)) (-205) (-205) (-205) (-205)) 10)) (-3931 (((-591 (-876 (-205))) (-876 (-205)) (-876 (-205)) (-876 (-205)) (-205) (-591 (-591 (-205)))) 37)) (-3183 (((-205) (-876 (-205)) (-876 (-205))) 21)) (-1804 (((-876 (-205)) (-876 (-205)) (-876 (-205))) 22)) (-2252 (((-591 (-591 (-205))) (-525)) 31)) (-4047 (((-876 (-205)) (-876 (-205)) (-876 (-205))) 20)) (-4036 (((-876 (-205)) (-876 (-205)) (-876 (-205))) 19)) (* (((-876 (-205)) (-205) (-876 (-205))) 18))) -(((-1122) (-10 -7 (-15 -1867 ((-876 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-876 (-205)) (-205) (-876 (-205)))) (-15 -4036 ((-876 (-205)) (-876 (-205)) (-876 (-205)))) (-15 -4047 ((-876 (-205)) (-876 (-205)) (-876 (-205)))) (-15 -3183 ((-205) (-876 (-205)) (-876 (-205)))) (-15 -1804 ((-876 (-205)) (-876 (-205)) (-876 (-205)))) (-15 -2191 ((-876 (-205)) (-876 (-205)))) (-15 -2252 ((-591 (-591 (-205))) (-525))) (-15 -3931 ((-591 (-876 (-205))) (-876 (-205)) (-876 (-205)) (-876 (-205)) (-205) (-591 (-591 (-205))))))) (T -1122)) -((-3931 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-591 (-591 (-205)))) (-5 *4 (-205)) (-5 *2 (-591 (-876 *4))) (-5 *1 (-1122)) (-5 *3 (-876 *4)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-591 (-591 (-205)))) (-5 *1 (-1122)))) (-2191 (*1 *2 *2) (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122)))) (-1804 (*1 *2 *2 *2) (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122)))) (-3183 (*1 *2 *3 *3) (-12 (-5 *3 (-876 (-205))) (-5 *2 (-205)) (-5 *1 (-1122)))) (-4047 (*1 *2 *2 *2) (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122)))) (-4036 (*1 *2 *2 *2) (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-876 (-205))) (-5 *3 (-205)) (-5 *1 (-1122)))) (-1867 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122)) (-5 *3 (-205))))) -(-10 -7 (-15 -1867 ((-876 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-876 (-205)) (-205) (-876 (-205)))) (-15 -4036 ((-876 (-205)) (-876 (-205)) (-876 (-205)))) (-15 -4047 ((-876 (-205)) (-876 (-205)) (-876 (-205)))) (-15 -3183 ((-205) (-876 (-205)) (-876 (-205)))) (-15 -1804 ((-876 (-205)) (-876 (-205)) (-876 (-205)))) (-15 -2191 ((-876 (-205)) (-876 (-205)))) (-15 -2252 ((-591 (-591 (-205))) (-525))) (-15 -3931 ((-591 (-876 (-205))) (-876 (-205)) (-876 (-205)) (-876 (-205)) (-205) (-591 (-591 (-205)))))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-2467 ((|#1| $ (-712)) 13)) (-2445 (((-712) $) 12)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2686 (((-890 |#1|) $) 10) (($ (-890 |#1|)) 9) (((-796) $) 23 (|has| |#1| (-565 (-796))))) (-3944 (((-108) $ $) 16 (|has| |#1| (-1018))))) -(((-1123 |#1|) (-13 (-565 (-890 |#1|)) (-10 -8 (-15 -2686 ($ (-890 |#1|))) (-15 -2467 (|#1| $ (-712))) (-15 -2445 ((-712) $)) (IF (|has| |#1| (-565 (-796))) (-6 (-565 (-796))) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|))) (-1125)) (T -1123)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-890 *3)) (-4 *3 (-1125)) (-5 *1 (-1123 *3)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *1 (-1123 *2)) (-4 *2 (-1125)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-1123 *3)) (-4 *3 (-1125))))) -(-13 (-565 (-890 |#1|)) (-10 -8 (-15 -2686 ($ (-890 |#1|))) (-15 -2467 (|#1| $ (-712))) (-15 -2445 ((-712) $)) (IF (|has| |#1| (-565 (-796))) (-6 (-565 (-796))) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|))) -((-3372 (((-396 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)) (-525)) 80)) (-3733 (((-396 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|))) 74)) (-1816 (((-396 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|))) 59))) -(((-1124 |#1|) (-10 -7 (-15 -3733 ((-396 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -1816 ((-396 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -3372 ((-396 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)) (-525)))) (-327)) (T -1124)) -((-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1085 (-1085 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-1085 (-1085 *5))))) (-1816 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1085 (-1085 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-1085 (-1085 *4))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1085 (-1085 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-1085 (-1085 *4)))))) -(-10 -7 (-15 -3733 ((-396 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -1816 ((-396 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -3372 ((-396 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)) (-525)))) -NIL -(((-1125) (-131)) (T -1125)) -NIL -(-13 (-10 -7 (-6 -4131))) -((-1707 (((-108)) 15)) (-1700 (((-1176) (-591 |#1|) (-591 |#1|)) 19) (((-1176) (-591 |#1|)) 20)) (-3491 (((-108) |#1| |#1|) 32 (|has| |#1| (-788)))) (-3295 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-2823 ((|#1| (-591 |#1|)) 33 (|has| |#1| (-788))) ((|#1| (-591 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-3939 (((-2 (|:| -4171 (-591 |#1|)) (|:| -1924 (-591 |#1|)))) 17))) -(((-1126 |#1|) (-10 -7 (-15 -1700 ((-1176) (-591 |#1|))) (-15 -1700 ((-1176) (-591 |#1|) (-591 |#1|))) (-15 -3939 ((-2 (|:| -4171 (-591 |#1|)) (|:| -1924 (-591 |#1|))))) (-15 -3295 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3295 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -2823 (|#1| (-591 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1707 ((-108))) (IF (|has| |#1| (-788)) (PROGN (-15 -2823 (|#1| (-591 |#1|))) (-15 -3491 ((-108) |#1| |#1|))) |%noBranch|)) (-1018)) (T -1126)) -((-3491 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1126 *3)) (-4 *3 (-788)) (-4 *3 (-1018)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-1018)) (-4 *2 (-788)) (-5 *1 (-1126 *2)))) (-1707 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-2823 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1126 *2)) (-4 *2 (-1018)))) (-3295 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1018)) (-5 *2 (-108)) (-5 *1 (-1126 *3)))) (-3295 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-3939 (*1 *2) (-12 (-5 *2 (-2 (|:| -4171 (-591 *3)) (|:| -1924 (-591 *3)))) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) (-1700 (*1 *2 *3 *3) (-12 (-5 *3 (-591 *4)) (-4 *4 (-1018)) (-5 *2 (-1176)) (-5 *1 (-1126 *4)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-591 *4)) (-4 *4 (-1018)) (-5 *2 (-1176)) (-5 *1 (-1126 *4))))) -(-10 -7 (-15 -1700 ((-1176) (-591 |#1|))) (-15 -1700 ((-1176) (-591 |#1|) (-591 |#1|))) (-15 -3939 ((-2 (|:| -4171 (-591 |#1|)) (|:| -1924 (-591 |#1|))))) (-15 -3295 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3295 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -2823 (|#1| (-591 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1707 ((-108))) (IF (|has| |#1| (-788)) (PROGN (-15 -2823 (|#1| (-591 |#1|))) (-15 -3491 ((-108) |#1| |#1|))) |%noBranch|)) -((-2036 (((-1176) (-591 (-1089)) (-591 (-1089))) 13) (((-1176) (-591 (-1089))) 11)) (-2230 (((-1176)) 14)) (-2724 (((-2 (|:| -1924 (-591 (-1089))) (|:| -4171 (-591 (-1089))))) 18))) -(((-1127) (-10 -7 (-15 -2036 ((-1176) (-591 (-1089)))) (-15 -2036 ((-1176) (-591 (-1089)) (-591 (-1089)))) (-15 -2724 ((-2 (|:| -1924 (-591 (-1089))) (|:| -4171 (-591 (-1089)))))) (-15 -2230 ((-1176))))) (T -1127)) -((-2230 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1127)))) (-2724 (*1 *2) (-12 (-5 *2 (-2 (|:| -1924 (-591 (-1089))) (|:| -4171 (-591 (-1089))))) (-5 *1 (-1127)))) (-2036 (*1 *2 *3 *3) (-12 (-5 *3 (-591 (-1089))) (-5 *2 (-1176)) (-5 *1 (-1127)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-591 (-1089))) (-5 *2 (-1176)) (-5 *1 (-1127))))) -(-10 -7 (-15 -2036 ((-1176) (-591 (-1089)))) (-15 -2036 ((-1176) (-591 (-1089)) (-591 (-1089)))) (-15 -2724 ((-2 (|:| -1924 (-591 (-1089))) (|:| -4171 (-591 (-1089)))))) (-15 -2230 ((-1176)))) -((-1720 (($ $) 17)) (-2393 (((-108) $) 24))) -(((-1128 |#1|) (-10 -8 (-15 -1720 (|#1| |#1|)) (-15 -2393 ((-108) |#1|))) (-1129)) (T -1128)) -NIL -(-10 -8 (-15 -1720 (|#1| |#1|)) (-15 -2393 ((-108) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 51)) (-3898 (((-396 $) $) 52)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-2393 (((-108) $) 53)) (-3865 (((-108) $) 31)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-2542 (((-396 $) $) 50)) (-3210 (((-3 $ "failed") $ $) 42)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43)) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24))) -(((-1129) (-131)) (T -1129)) -((-2393 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-108)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1129)))) (-1720 (*1 *1 *1) (-4 *1 (-1129))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1129))))) -(-13 (-429) (-10 -8 (-15 -2393 ((-108) $)) (-15 -3898 ((-396 $) $)) (-15 -1720 ($ $)) (-15 -2542 ((-396 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-565 (-796)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-593 $) . T) ((-659 $) . T) ((-668) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1257 (((-1135 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1135 |#1| |#3| |#5|)) 23))) -(((-1130 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1257 ((-1135 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1135 |#1| |#3| |#5|)))) (-975) (-975) (-1089) (-1089) |#1| |#2|) (T -1130)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5 *7 *9)) (-4 *5 (-975)) (-4 *6 (-975)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1135 *6 *8 *10)) (-5 *1 (-1130 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089))))) -(-10 -7 (-15 -1257 ((-1135 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1135 |#1| |#3| |#5|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1444 (((-591 (-1003)) $) 74)) (-1592 (((-1089) $) 103)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3641 (($ $) 52 (|has| |#1| (-517)))) (-3077 (((-108) $) 54 (|has| |#1| (-517)))) (-3328 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-3581 (((-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-4087 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 162 (|has| |#1| (-341)))) (-3898 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2551 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1965 (((-108) $ $) 153 (|has| |#1| (-341)))) (-4058 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-4109 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) 17 T CONST)) (-3265 (($ $ $) 157 (|has| |#1| (-341)))) (-1575 (($ $) 60)) (-1522 (((-3 $ "failed") $) 34)) (-3642 (((-385 (-885 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-885 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-3239 (($ $ $) 156 (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 151 (|has| |#1| (-341)))) (-2393 (((-108) $) 164 (|has| |#1| (-341)))) (-1795 (((-108) $) 73)) (-1417 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-525) $) 100) (((-525) $ (-525)) 99)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) 101)) (-3619 (($ (-1 |#1| (-525)) $) 173)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 160 (|has| |#1| (-341)))) (-3802 (((-108) $) 62)) (-1422 (($ |#1| (-525)) 61) (($ $ (-1003) (-525)) 76) (($ $ (-591 (-1003)) (-591 (-525))) 75)) (-1257 (($ (-1 |#1| |#1|) $) 63)) (-2356 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) 65)) (-1556 ((|#1| $) 66)) (-2081 (($ (-591 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2621 (((-1072) $) 9)) (-1523 (($ $) 165 (|has| |#1| (-341)))) (-2452 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) 169 (-3150 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-891)) (|has| |#1| (-1111)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 150 (|has| |#1| (-341)))) (-2124 (($ (-591 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2542 (((-396 $) $) 161 (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 158 (|has| |#1| (-341)))) (-1618 (($ $ (-525)) 95)) (-3210 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 152 (|has| |#1| (-341)))) (-2288 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-3048 (((-712) $) 154 (|has| |#1| (-341)))) (-1881 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1030)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 155 (|has| |#1| (-341)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) 89 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1089) (-712)) 88 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089))) 87 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1089)) 86 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-712)) 84 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-2743 (((-525) $) 64)) (-4122 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) 72)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1263 ((|#1| $ (-525)) 59)) (-3751 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1708 ((|#1| $) 102)) (-4163 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4137 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) 93 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1089) (-712)) 92 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089))) 91 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1089)) 90 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-712)) 85 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) -(((-1131 |#1|) (-131) (-975)) (T -1131)) -((-1895 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-975)) (-4 *1 (-1131 *3)))) (-3619 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1131 *3)) (-4 *3 (-975)))) (-3642 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1131 *4)) (-4 *4 (-975)) (-4 *4 (-517)) (-5 *2 (-385 (-885 *4))))) (-3642 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1131 *4)) (-4 *4 (-975)) (-4 *4 (-517)) (-5 *2 (-385 (-885 *4))))) (-2452 (*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-975)) (-4 *2 (-37 (-385 (-525)))))) (-2452 (*1 *1 *1 *2) (-3150 (-12 (-5 *2 (-1089)) (-4 *1 (-1131 *3)) (-4 *3 (-975)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-891)) (-4 *3 (-1111)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1131 *3)) (-4 *3 (-975)) (-12 (|has| *3 (-15 -1444 ((-591 *2) *3))) (|has| *3 (-15 -2452 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))) -(-13 (-1149 |t#1| (-525)) (-10 -8 (-15 -1895 ($ (-1070 (-2 (|:| |k| (-525)) (|:| |c| |t#1|))))) (-15 -3619 ($ (-1 |t#1| (-525)) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -3642 ((-385 (-885 |t#1|)) $ (-525))) (-15 -3642 ((-385 (-885 |t#1|)) $ (-525) (-525)))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $)) (IF (|has| |t#1| (-15 -2452 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -1444 ((-591 (-1089)) |t#1|))) (-15 -2452 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1111)) (IF (|has| |t#1| (-891)) (IF (|has| |t#1| (-29 (-525))) (-15 -2452 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-932)) (-6 (-1111))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-525) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-525) (-1030)) ((-269) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-593 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-668) . T) ((-833 (-1089)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))) ((-904 |#1| #0# (-1003)) . T) ((-853) |has| |#1| (-341)) ((-932) |has| |#1| (-37 (-385 (-525)))) ((-981 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1111) |has| |#1| (-37 (-385 (-525)))) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1129) |has| |#1| (-341)) ((-1149 |#1| #0#) . T)) -((-1306 (((-108) $) 12)) (-4174 (((-3 |#3| "failed") $) 17) (((-3 (-1089) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL)) (-3341 ((|#3| $) 14) (((-1089) $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL))) -(((-1132 |#1| |#2| |#3|) (-10 -8 (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-1089) |#1|)) (-15 -4174 ((-3 (-1089) "failed") |#1|)) (-15 -3341 (|#3| |#1|)) (-15 -4174 ((-3 |#3| "failed") |#1|)) (-15 -1306 ((-108) |#1|))) (-1133 |#2| |#3|) (-975) (-1162 |#2|)) (T -1132)) -NIL -(-10 -8 (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3341 ((-1089) |#1|)) (-15 -4174 ((-3 (-1089) "failed") |#1|)) (-15 -3341 (|#3| |#1|)) (-15 -4174 ((-3 |#3| "failed") |#1|)) (-15 -1306 ((-108) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2314 ((|#2| $) 231 (-3543 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-1444 (((-591 (-1003)) $) 74)) (-1592 (((-1089) $) 103)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3641 (($ $) 52 (|has| |#1| (-517)))) (-3077 (((-108) $) 54 (|has| |#1| (-517)))) (-3328 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-3581 (((-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-2989 ((|#2| $) 267)) (-3074 (((-3 |#2| "failed") $) 263)) (-1487 ((|#2| $) 264)) (-4087 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) 19)) (-2179 (((-396 (-1085 $)) (-1085 $)) 240 (-3543 (|has| |#2| (-842)) (|has| |#1| (-341))))) (-1720 (($ $) 162 (|has| |#1| (-341)))) (-3898 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2551 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 237 (-3543 (|has| |#2| (-842)) (|has| |#1| (-341))))) (-1965 (((-108) $ $) 153 (|has| |#1| (-341)))) (-4058 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-4188 (((-525) $) 249 (-3543 (|has| |#2| (-761)) (|has| |#1| (-341))))) (-1895 (($ (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-4109 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#2| "failed") $) 270) (((-3 (-525) "failed") $) 259 (-3543 (|has| |#2| (-966 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) 257 (-3543 (|has| |#2| (-966 (-525))) (|has| |#1| (-341)))) (((-3 (-1089) "failed") $) 242 (-3543 (|has| |#2| (-966 (-1089))) (|has| |#1| (-341))))) (-3341 ((|#2| $) 269) (((-525) $) 260 (-3543 (|has| |#2| (-966 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) 258 (-3543 (|has| |#2| (-966 (-525))) (|has| |#1| (-341)))) (((-1089) $) 243 (-3543 (|has| |#2| (-966 (-1089))) (|has| |#1| (-341))))) (-2742 (($ $) 266) (($ (-525) $) 265)) (-3265 (($ $ $) 157 (|has| |#1| (-341)))) (-1575 (($ $) 60)) (-3925 (((-631 |#2|) (-631 $)) 221 (|has| |#1| (-341))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) 220 (|has| |#1| (-341))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 219 (-3543 (|has| |#2| (-587 (-525))) (|has| |#1| (-341)))) (((-631 (-525)) (-631 $)) 218 (-3543 (|has| |#2| (-587 (-525))) (|has| |#1| (-341))))) (-1522 (((-3 $ "failed") $) 34)) (-3642 (((-385 (-885 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-885 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-1325 (($) 233 (-3543 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3239 (($ $ $) 156 (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 151 (|has| |#1| (-341)))) (-2393 (((-108) $) 164 (|has| |#1| (-341)))) (-3489 (((-108) $) 247 (-3543 (|has| |#2| (-761)) (|has| |#1| (-341))))) (-1795 (((-108) $) 73)) (-1417 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 225 (-3543 (|has| |#2| (-819 (-357))) (|has| |#1| (-341)))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 224 (-3543 (|has| |#2| (-819 (-525))) (|has| |#1| (-341))))) (-1676 (((-525) $) 100) (((-525) $ (-525)) 99)) (-3865 (((-108) $) 31)) (-2920 (($ $) 229 (|has| |#1| (-341)))) (-1384 ((|#2| $) 227 (|has| |#1| (-341)))) (-3126 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-2115 (((-3 $ "failed") $) 261 (-3543 (|has| |#2| (-1065)) (|has| |#1| (-341))))) (-2256 (((-108) $) 248 (-3543 (|has| |#2| (-761)) (|has| |#1| (-341))))) (-1698 (($ $ (-854)) 101)) (-3619 (($ (-1 |#1| (-525)) $) 173)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 160 (|has| |#1| (-341)))) (-3802 (((-108) $) 62)) (-1422 (($ |#1| (-525)) 61) (($ $ (-1003) (-525)) 76) (($ $ (-591 (-1003)) (-591 (-525))) 75)) (-1923 (($ $ $) 251 (-3543 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-3475 (($ $ $) 252 (-3543 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-1257 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-341)))) (-2356 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) 65)) (-1556 ((|#1| $) 66)) (-2081 (($ (-591 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-1497 (($ (-525) |#2|) 268)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 165 (|has| |#1| (-341)))) (-2452 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) 169 (-3150 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-891)) (|has| |#1| (-1111)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3492 (($) 262 (-3543 (|has| |#2| (-1065)) (|has| |#1| (-341))) CONST)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 150 (|has| |#1| (-341)))) (-2124 (($ (-591 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-1583 (($ $) 232 (-3543 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2767 ((|#2| $) 235 (-3543 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3550 (((-396 (-1085 $)) (-1085 $)) 238 (-3543 (|has| |#2| (-842)) (|has| |#1| (-341))))) (-3534 (((-396 (-1085 $)) (-1085 $)) 239 (-3543 (|has| |#2| (-842)) (|has| |#1| (-341))))) (-2542 (((-396 $) $) 161 (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 158 (|has| |#1| (-341)))) (-1618 (($ $ (-525)) 95)) (-3210 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 152 (|has| |#1| (-341)))) (-2288 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1089) |#2|) 212 (-3543 (|has| |#2| (-486 (-1089) |#2|)) (|has| |#1| (-341)))) (($ $ (-591 (-1089)) (-591 |#2|)) 211 (-3543 (|has| |#2| (-486 (-1089) |#2|)) (|has| |#1| (-341)))) (($ $ (-591 (-273 |#2|))) 210 (-3543 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) 209 (-3543 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) 208 (-3543 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-591 |#2|) (-591 |#2|)) 207 (-3543 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-3048 (((-712) $) 154 (|has| |#1| (-341)))) (-1881 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1030))) (($ $ |#2|) 206 (-3543 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 155 (|has| |#1| (-341)))) (-2209 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-712)) 216 (|has| |#1| (-341))) (($ $ (-712)) 84 (-3150 (-3543 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 82 (-3150 (-3543 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089)) (-591 (-712))) 89 (-3150 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1089) (-712)) 88 (-3150 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-591 (-1089))) 87 (-3150 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1089)) 86 (-3150 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-2774 (($ $) 230 (|has| |#1| (-341)))) (-1396 ((|#2| $) 228 (|has| |#1| (-341)))) (-2743 (((-525) $) 64)) (-4122 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1300 (((-205) $) 246 (-3543 (|has| |#2| (-951)) (|has| |#1| (-341)))) (((-357) $) 245 (-3543 (|has| |#2| (-951)) (|has| |#1| (-341)))) (((-501) $) 244 (-3543 (|has| |#2| (-566 (-501))) (|has| |#1| (-341)))) (((-825 (-357)) $) 223 (-3543 (|has| |#2| (-566 (-825 (-357)))) (|has| |#1| (-341)))) (((-825 (-525)) $) 222 (-3543 (|has| |#2| (-566 (-825 (-525)))) (|has| |#1| (-341))))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 236 (-3543 (-3543 (|has| $ (-136)) (|has| |#2| (-842))) (|has| |#1| (-341))))) (-1664 (($ $) 72)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 271) (($ (-1089)) 241 (-3543 (|has| |#2| (-966 (-1089))) (|has| |#1| (-341)))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1263 ((|#1| $ (-525)) 59)) (-3751 (((-3 $ "failed") $) 48 (-3150 (-3543 (-3150 (|has| |#2| (-136)) (-3543 (|has| $ (-136)) (|has| |#2| (-842)))) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-3425 (((-712)) 29)) (-1708 ((|#1| $) 102)) (-1584 ((|#2| $) 234 (-3543 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-4163 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4137 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1460 (($ $) 250 (-3543 (|has| |#2| (-761)) (|has| |#1| (-341))))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-712)) 214 (|has| |#1| (-341))) (($ $ (-712)) 85 (-3150 (-3543 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 83 (-3150 (-3543 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089)) (-591 (-712))) 93 (-3150 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1089) (-712)) 92 (-3150 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-591 (-1089))) 91 (-3150 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1089)) 90 (-3150 (-3543 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-4004 (((-108) $ $) 254 (-3543 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-3982 (((-108) $ $) 255 (-3543 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 253 (-3543 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-3971 (((-108) $ $) 256 (-3543 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-4059 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341))) (($ |#2| |#2|) 226 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-341))) (($ |#2| $) 204 (|has| |#1| (-341))) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) -(((-1133 |#1| |#2|) (-131) (-975) (-1162 |t#1|)) (T -1133)) -((-2743 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1162 *3)) (-5 *2 (-525)))) (-2686 (*1 *1 *2) (-12 (-4 *3 (-975)) (-4 *1 (-1133 *3 *2)) (-4 *2 (-1162 *3)))) (-1497 (*1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *4 (-975)) (-4 *1 (-1133 *4 *3)) (-4 *3 (-1162 *4)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1162 *3)))) (-2742 (*1 *1 *1) (-12 (-4 *1 (-1133 *2 *3)) (-4 *2 (-975)) (-4 *3 (-1162 *2)))) (-2742 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1133 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1162 *3)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1162 *3)))) (-3074 (*1 *2 *1) (|partial| -12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1162 *3))))) -(-13 (-1131 |t#1|) (-966 |t#2|) (-10 -8 (-15 -1497 ($ (-525) |t#2|)) (-15 -2743 ((-525) $)) (-15 -2989 (|t#2| $)) (-15 -2742 ($ $)) (-15 -2742 ($ (-525) $)) (-15 -2686 ($ |t#2|)) (-15 -1487 (|t#2| $)) (-15 -3074 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-341)) (-6 (-923 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 |#2|) |has| |#1| (-341)) ((-37 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-341)) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) -3150 (-12 (|has| |#1| (-341)) (|has| |#2| (-136))) (|has| |#1| (-136))) ((-138) -3150 (-12 (|has| |#1| (-341)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-566 (-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-951))) ((-566 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-951))) ((-566 (-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-566 (-501)))) ((-566 (-825 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-566 (-825 (-357))))) ((-566 (-825 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-566 (-825 (-525))))) ((-211 |#2|) |has| |#1| (-341)) ((-213) -3150 (-12 (|has| |#1| (-341)) (|has| |#2| (-213))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 |#2| $) -12 (|has| |#1| (-341)) (|has| |#2| (-265 |#2| |#2|))) ((-265 $ $) |has| (-525) (-1030)) ((-269) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-341) |has| |#1| (-341)) ((-316 |#2|) |has| |#1| (-341)) ((-355 |#2|) |has| |#1| (-341)) ((-378 |#2|) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 (-1089) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1089) |#2|))) ((-486 |#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-517) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-593 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-593 |#1|) . T) ((-593 |#2|) |has| |#1| (-341)) ((-593 $) . T) ((-587 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-587 (-525)))) ((-587 |#2|) |has| |#1| (-341)) ((-659 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-659 |#1|) |has| |#1| (-160)) ((-659 |#2|) |has| |#1| (-341)) ((-659 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-668) . T) ((-732) -12 (|has| |#1| (-341)) (|has| |#2| (-761))) ((-733) -12 (|has| |#1| (-341)) (|has| |#2| (-761))) ((-735) -12 (|has| |#1| (-341)) (|has| |#2| (-761))) ((-736) -12 (|has| |#1| (-341)) (|has| |#2| (-761))) ((-761) -12 (|has| |#1| (-341)) (|has| |#2| (-761))) ((-786) -12 (|has| |#1| (-341)) (|has| |#2| (-761))) ((-788) -3150 (-12 (|has| |#1| (-341)) (|has| |#2| (-788))) (-12 (|has| |#1| (-341)) (|has| |#2| (-761)))) ((-833 (-1089)) -3150 (-12 (|has| |#1| (-341)) (|has| |#2| (-833 (-1089)))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))) ((-819 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-819 (-357)))) ((-819 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-819 (-525)))) ((-817 |#2|) |has| |#1| (-341)) ((-842) -12 (|has| |#1| (-341)) (|has| |#2| (-842))) ((-904 |#1| #0# (-1003)) . T) ((-853) |has| |#1| (-341)) ((-923 |#2|) |has| |#1| (-341)) ((-932) |has| |#1| (-37 (-385 (-525)))) ((-951) -12 (|has| |#1| (-341)) (|has| |#2| (-951))) ((-966 (-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-966 (-525)))) ((-966 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-966 (-525)))) ((-966 (-1089)) -12 (|has| |#1| (-341)) (|has| |#2| (-966 (-1089)))) ((-966 |#2|) . T) ((-981 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-981 |#1|) . T) ((-981 |#2|) |has| |#1| (-341)) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1065) -12 (|has| |#1| (-341)) (|has| |#2| (-1065))) ((-1111) |has| |#1| (-37 (-385 (-525)))) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1125) |has| |#1| (-341)) ((-1129) |has| |#1| (-341)) ((-1131 |#1|) . T) ((-1149 |#1| #0#) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 70)) (-2314 ((|#2| $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) 88)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3328 (($ $ (-525)) 97) (($ $ (-525) (-525)) 99)) (-3581 (((-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 47)) (-2989 ((|#2| $) 11)) (-3074 (((-3 |#2| "failed") $) 30)) (-1487 ((|#2| $) 31)) (-4087 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-341))))) (-1720 (($ $) NIL (|has| |#1| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-341))))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4058 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-4188 (((-525) $) NIL (-12 (|has| |#2| (-761)) (|has| |#1| (-341))))) (-1895 (($ (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 57)) (-4109 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) 144) (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#1| (-341)))) (((-3 (-1089) "failed") $) NIL (-12 (|has| |#2| (-966 (-1089))) (|has| |#1| (-341))))) (-3341 ((|#2| $) 143) (((-525) $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-966 (-525))) (|has| |#1| (-341)))) (((-1089) $) NIL (-12 (|has| |#2| (-966 (-1089))) (|has| |#1| (-341))))) (-2742 (($ $) 61) (($ (-525) $) 24)) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) NIL)) (-3925 (((-631 |#2|) (-631 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| |#2| (-587 (-525))) (|has| |#1| (-341)))) (((-631 (-525)) (-631 $)) NIL (-12 (|has| |#2| (-587 (-525))) (|has| |#1| (-341))))) (-1522 (((-3 $ "failed") $) 77)) (-3642 (((-385 (-885 |#1|)) $ (-525)) 112 (|has| |#1| (-517))) (((-385 (-885 |#1|)) $ (-525) (-525)) 114 (|has| |#1| (-517)))) (-1325 (($) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-2393 (((-108) $) NIL (|has| |#1| (-341)))) (-3489 (((-108) $) NIL (-12 (|has| |#2| (-761)) (|has| |#1| (-341))))) (-1795 (((-108) $) 64)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| |#2| (-819 (-357))) (|has| |#1| (-341)))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| |#2| (-819 (-525))) (|has| |#1| (-341))))) (-1676 (((-525) $) 93) (((-525) $ (-525)) 95)) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL (|has| |#1| (-341)))) (-1384 ((|#2| $) 151 (|has| |#1| (-341)))) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2115 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1065)) (|has| |#1| (-341))))) (-2256 (((-108) $) NIL (-12 (|has| |#2| (-761)) (|has| |#1| (-341))))) (-1698 (($ $ (-854)) 136)) (-3619 (($ (-1 |#1| (-525)) $) 132)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-525)) 19) (($ $ (-1003) (-525)) NIL) (($ $ (-591 (-1003)) (-591 (-525))) NIL)) (-1923 (($ $ $) NIL (-12 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-3475 (($ $ $) NIL (-12 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-1257 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-341)))) (-2356 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1497 (($ (-525) |#2|) 10)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 145 (|has| |#1| (-341)))) (-2452 (($ $) 214 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) 219 (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111)))))) (-3492 (($) NIL (-12 (|has| |#2| (-1065)) (|has| |#1| (-341))) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1583 (($ $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2767 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-341))))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-341))))) (-2542 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-1618 (($ $ (-525)) 126)) (-3210 (((-3 $ "failed") $ $) 116 (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2288 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1089) |#2|) NIL (-12 (|has| |#2| (-486 (-1089) |#2|)) (|has| |#1| (-341)))) (($ $ (-591 (-1089)) (-591 |#2|)) NIL (-12 (|has| |#2| (-486 (-1089) |#2|)) (|has| |#1| (-341)))) (($ $ (-591 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-591 |#2|) (-591 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ (-525)) 91) (($ $ $) 79 (|has| (-525) (-1030))) (($ $ |#2|) NIL (-12 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2209 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-712)) NIL (|has| |#1| (-341))) (($ $ (-712)) NIL (-3150 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 137 (-3150 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-3150 (-12 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089) (-712)) NIL (-3150 (-12 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-591 (-1089))) NIL (-3150 (-12 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089)) 140 (-3150 (-12 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))))) (-2774 (($ $) NIL (|has| |#1| (-341)))) (-1396 ((|#2| $) 152 (|has| |#1| (-341)))) (-2743 (((-525) $) 12)) (-4122 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-1300 (((-205) $) NIL (-12 (|has| |#2| (-951)) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| |#2| (-951)) (|has| |#1| (-341)))) (((-501) $) NIL (-12 (|has| |#2| (-566 (-501))) (|has| |#1| (-341)))) (((-825 (-357)) $) NIL (-12 (|has| |#2| (-566 (-825 (-357)))) (|has| |#1| (-341)))) (((-825 (-525)) $) NIL (-12 (|has| |#2| (-566 (-825 (-525)))) (|has| |#1| (-341))))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-842)) (|has| |#1| (-341))))) (-1664 (($ $) 124)) (-2686 (((-796) $) 245) (($ (-525)) 23) (($ |#1|) 21 (|has| |#1| (-160))) (($ |#2|) 20) (($ (-1089)) NIL (-12 (|has| |#2| (-966 (-1089))) (|has| |#1| (-341)))) (($ (-385 (-525))) 155 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1263 ((|#1| $ (-525)) 74)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#2| (-842)) (|has| |#1| (-341))) (-12 (|has| |#2| (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-3425 (((-712)) 142)) (-1708 ((|#1| $) 90)) (-1584 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-4163 (($ $) 204 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) 200 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 208 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-525)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) 210 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 206 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 202 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-1460 (($ $) NIL (-12 (|has| |#2| (-761)) (|has| |#1| (-341))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) 13 T CONST)) (-1839 (($) 17 T CONST)) (-1796 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-712)) NIL (|has| |#1| (-341))) (($ $ (-712)) NIL (-3150 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3150 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-3150 (-12 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089) (-712)) NIL (-3150 (-12 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-591 (-1089))) NIL (-3150 (-12 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| |#2| (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))))) (-4004 (((-108) $ $) NIL (-12 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-3982 (((-108) $ $) NIL (-12 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-3944 (((-108) $ $) 63)) (-3994 (((-108) $ $) NIL (-12 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-3971 (((-108) $ $) NIL (-12 (|has| |#2| (-788)) (|has| |#1| (-341))))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 149 (|has| |#1| (-341))) (($ |#2| |#2|) 150 (|has| |#1| (-341)))) (-4047 (($ $) 213) (($ $ $) 68)) (-4036 (($ $ $) 66)) (** (($ $ (-854)) NIL) (($ $ (-712)) 73) (($ $ (-525)) 146 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-341))) (($ |#2| $) 147 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-1134 |#1| |#2|) (-1133 |#1| |#2|) (-975) (-1162 |#1|)) (T -1134)) -NIL -(-1133 |#1| |#2|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2314 (((-1163 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) 10)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3641 (($ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3077 (((-108) $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3328 (($ $ (-525)) NIL) (($ $ (-525) (-525)) NIL)) (-3581 (((-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-2989 (((-1163 |#1| |#2| |#3|) $) NIL)) (-3074 (((-3 (-1163 |#1| |#2| |#3|) "failed") $) NIL)) (-1487 (((-1163 |#1| |#2| |#3|) $) NIL)) (-4087 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-1720 (($ $) NIL (|has| |#1| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4058 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4188 (((-525) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))))) (-1895 (($ (-1070 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-4109 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-1163 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1089) "failed") $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-966 (-1089))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341))))) (-3341 (((-1163 |#1| |#2| |#3|) $) NIL) (((-1089) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-966 (-1089))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341))))) (-2742 (($ $) NIL) (($ (-525) $) NIL)) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) NIL)) (-3925 (((-631 (-1163 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -2928 (-631 (-1163 |#1| |#2| |#3|))) (|:| |vec| (-1171 (-1163 |#1| |#2| |#3|)))) (-631 $) (-1171 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-587 (-525))) (|has| |#1| (-341)))) (((-631 (-525)) (-631 $)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-587 (-525))) (|has| |#1| (-341))))) (-1522 (((-3 $ "failed") $) NIL)) (-3642 (((-385 (-885 |#1|)) $ (-525)) NIL (|has| |#1| (-517))) (((-385 (-885 |#1|)) $ (-525) (-525)) NIL (|has| |#1| (-517)))) (-1325 (($) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-2393 (((-108) $) NIL (|has| |#1| (-341)))) (-3489 (((-108) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))))) (-1795 (((-108) $) NIL)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-819 (-525))) (|has| |#1| (-341)))) (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-819 (-357))) (|has| |#1| (-341))))) (-1676 (((-525) $) NIL) (((-525) $ (-525)) NIL)) (-3865 (((-108) $) NIL)) (-2920 (($ $) NIL (|has| |#1| (-341)))) (-1384 (((-1163 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2115 (((-3 $ "failed") $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-341))))) (-2256 (((-108) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))))) (-1698 (($ $ (-854)) NIL)) (-3619 (($ (-1 |#1| (-525)) $) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-525)) 17) (($ $ (-1003) (-525)) NIL) (($ $ (-591 (-1003)) (-591 (-525))) NIL)) (-1923 (($ $ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-3475 (($ $ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-2356 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1497 (($ (-525) (-1163 |#1| |#2| |#3|)) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-2452 (($ $) 25 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111))))) (($ $ (-1167 |#2|)) 26 (|has| |#1| (-37 (-385 (-525)))))) (-3492 (($) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-341))) CONST)) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1583 (($ $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2767 (((-1163 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-2542 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-1618 (($ $ (-525)) NIL)) (-3210 (((-3 $ "failed") $ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2288 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1089) (-1163 |#1| |#2| |#3|)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-486 (-1089) (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-591 (-1089)) (-591 (-1163 |#1| |#2| |#3|))) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-486 (-1089) (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-591 (-273 (-1163 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-288 (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1163 |#1| |#2| |#3|))) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-288 (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-288 (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-591 (-1163 |#1| |#2| |#3|)) (-591 (-1163 |#1| |#2| |#3|))) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-288 (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ (-525)) NIL) (($ $ $) NIL (|has| (-525) (-1030))) (($ $ (-1163 |#1| |#2| |#3|)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-265 (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2209 (($ $ (-1 (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|)) (-712)) NIL (|has| |#1| (-341))) (($ $ (-1167 |#2|)) 24) (($ $ (-712)) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 23 (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089) (-712)) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-591 (-1089))) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))))) (-2774 (($ $) NIL (|has| |#1| (-341)))) (-1396 (((-1163 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-2743 (((-525) $) NIL)) (-4122 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1300 (((-501) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-566 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-951)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-951)) (|has| |#1| (-341)))) (((-825 (-357)) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-566 (-825 (-357)))) (|has| |#1| (-341)))) (((-825 (-525)) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-566 (-825 (-525)))) (|has| |#1| (-341))))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))))) (-1664 (($ $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1163 |#1| |#2| |#3|)) NIL) (($ (-1167 |#2|)) 22) (($ (-1089)) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-966 (-1089))) (|has| |#1| (-341)))) (($ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-966 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-1263 ((|#1| $ (-525)) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-3425 (((-712)) NIL)) (-1708 ((|#1| $) 11)) (-1584 (((-1163 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-4163 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-842)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-4137 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1460 (($ $) NIL (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) 19 T CONST)) (-1839 (($) 15 T CONST)) (-1796 (($ $ (-1 (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|)) (-712)) NIL (|has| |#1| (-341))) (($ $ (-712)) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089) (-712)) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-591 (-1089))) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089)))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-833 (-1089))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-833 (-1089))))))) (-4004 (((-108) $ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-3982 (((-108) $ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-3971 (((-108) $ $) NIL (-3150 (-12 (|has| (-1163 |#1| |#2| |#3|) (-761)) (|has| |#1| (-341))) (-12 (|has| (-1163 |#1| |#2| |#3|) (-788)) (|has| |#1| (-341)))))) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341))) (($ (-1163 |#1| |#2| |#3|) (-1163 |#1| |#2| |#3|)) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 20)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1163 |#1| |#2| |#3|)) NIL (|has| |#1| (-341))) (($ (-1163 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-1135 |#1| |#2| |#3|) (-13 (-1133 |#1| (-1163 |#1| |#2| |#3|)) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) (-975) (-1089) |#1|) (T -1135)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1135 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1135 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1135 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3)))) -(-13 (-1133 |#1| (-1163 |#1| |#2| |#3|)) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) -((-3960 (((-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))) |#1| (-108)) 12)) (-3033 (((-396 |#1|) |#1|) 22)) (-2542 (((-396 |#1|) |#1|) 21))) -(((-1136 |#1|) (-10 -7 (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3033 ((-396 |#1|) |#1|)) (-15 -3960 ((-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))) |#1| (-108)))) (-1147 (-525))) (T -1136)) -((-3960 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| *3) (|:| -3630 (-525))))))) (-5 *1 (-1136 *3)) (-4 *3 (-1147 (-525))))) (-3033 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1147 (-525))))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1147 (-525)))))) -(-10 -7 (-15 -2542 ((-396 |#1|) |#1|)) (-15 -3033 ((-396 |#1|) |#1|)) (-15 -3960 ((-2 (|:| |contp| (-525)) (|:| -1908 (-591 (-2 (|:| |irr| |#1|) (|:| -3630 (-525)))))) |#1| (-108)))) -((-1257 (((-1070 |#2|) (-1 |#2| |#1|) (-1138 |#1|)) 23 (|has| |#1| (-786))) (((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|)) 17))) -(((-1137 |#1| |#2|) (-10 -7 (-15 -1257 ((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|))) (IF (|has| |#1| (-786)) (-15 -1257 ((-1070 |#2|) (-1 |#2| |#1|) (-1138 |#1|))) |%noBranch|)) (-1125) (-1125)) (T -1137)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-786)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1070 *6)) (-5 *1 (-1137 *5 *6)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1138 *6)) (-5 *1 (-1137 *5 *6))))) -(-10 -7 (-15 -1257 ((-1138 |#2|) (-1 |#2| |#1|) (-1138 |#1|))) (IF (|has| |#1| (-786)) (-15 -1257 ((-1070 |#2|) (-1 |#2| |#1|) (-1138 |#1|))) |%noBranch|)) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-1503 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1257 (((-1070 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-786)))) (-4171 ((|#1| $) 14)) (-4053 ((|#1| $) 10)) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-4067 (((-525) $) 18)) (-1924 ((|#1| $) 17)) (-4080 ((|#1| $) 11)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2187 (((-108) $) 16)) (-2431 (((-1070 |#1|) $) 38 (|has| |#1| (-786))) (((-1070 |#1|) (-591 $)) 37 (|has| |#1| (-786)))) (-1300 (($ |#1|) 25)) (-2686 (($ (-1013 |#1|)) 24) (((-796) $) 34 (|has| |#1| (-1018)))) (-2513 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3712 (($ $ (-525)) 13)) (-3944 (((-108) $ $) 27 (|has| |#1| (-1018))))) -(((-1138 |#1|) (-13 (-1012 |#1|) (-10 -8 (-15 -2513 ($ |#1|)) (-15 -1503 ($ |#1|)) (-15 -2686 ($ (-1013 |#1|))) (-15 -2187 ((-108) $)) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-786)) (-6 (-1014 |#1| (-1070 |#1|))) |%noBranch|))) (-1125)) (T -1138)) -((-2513 (*1 *1 *2) (-12 (-5 *1 (-1138 *2)) (-4 *2 (-1125)))) (-1503 (*1 *1 *2) (-12 (-5 *1 (-1138 *2)) (-4 *2 (-1125)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1013 *3)) (-4 *3 (-1125)) (-5 *1 (-1138 *3)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1138 *3)) (-4 *3 (-1125))))) -(-13 (-1012 |#1|) (-10 -8 (-15 -2513 ($ |#1|)) (-15 -1503 ($ |#1|)) (-15 -2686 ($ (-1013 |#1|))) (-15 -2187 ((-108) $)) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-786)) (-6 (-1014 |#1| (-1070 |#1|))) |%noBranch|))) -((-1257 (((-1144 |#3| |#4|) (-1 |#4| |#2|) (-1144 |#1| |#2|)) 15))) -(((-1139 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 ((-1144 |#3| |#4|) (-1 |#4| |#2|) (-1144 |#1| |#2|)))) (-1089) (-975) (-1089) (-975)) (T -1139)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1144 *5 *6)) (-14 *5 (-1089)) (-4 *6 (-975)) (-4 *8 (-975)) (-5 *2 (-1144 *7 *8)) (-5 *1 (-1139 *5 *6 *7 *8)) (-14 *7 (-1089))))) -(-10 -7 (-15 -1257 ((-1144 |#3| |#4|) (-1 |#4| |#2|) (-1144 |#1| |#2|)))) -((-1221 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3993 ((|#1| |#3|) 13)) (-3717 ((|#3| |#3|) 19))) -(((-1140 |#1| |#2| |#3|) (-10 -7 (-15 -3993 (|#1| |#3|)) (-15 -3717 (|#3| |#3|)) (-15 -1221 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-923 |#1|) (-1147 |#2|)) (T -1140)) -((-1221 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-923 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1140 *4 *5 *3)) (-4 *3 (-1147 *5)))) (-3717 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-923 *3)) (-5 *1 (-1140 *3 *4 *2)) (-4 *2 (-1147 *4)))) (-3993 (*1 *2 *3) (-12 (-4 *4 (-923 *2)) (-4 *2 (-517)) (-5 *1 (-1140 *2 *4 *3)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -3993 (|#1| |#3|)) (-15 -3717 (|#3| |#3|)) (-15 -1221 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2296 (((-3 |#2| "failed") |#2| (-712) |#1|) 29)) (-4071 (((-3 |#2| "failed") |#2| (-712)) 30)) (-2674 (((-3 (-2 (|:| -3178 |#2|) (|:| -3192 |#2|)) "failed") |#2|) 43)) (-2708 (((-591 |#2|) |#2|) 45)) (-1469 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1141 |#1| |#2|) (-10 -7 (-15 -4071 ((-3 |#2| "failed") |#2| (-712))) (-15 -2296 ((-3 |#2| "failed") |#2| (-712) |#1|)) (-15 -1469 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2674 ((-3 (-2 (|:| -3178 |#2|) (|:| -3192 |#2|)) "failed") |#2|)) (-15 -2708 ((-591 |#2|) |#2|))) (-13 (-517) (-138)) (-1147 |#1|)) (T -1141)) -((-2708 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-591 *3)) (-5 *1 (-1141 *4 *3)) (-4 *3 (-1147 *4)))) (-2674 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-2 (|:| -3178 *3) (|:| -3192 *3))) (-5 *1 (-1141 *4 *3)) (-4 *3 (-1147 *4)))) (-1469 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1141 *3 *2)) (-4 *2 (-1147 *3)))) (-2296 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-712)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1141 *4 *2)) (-4 *2 (-1147 *4)))) (-4071 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-712)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1141 *4 *2)) (-4 *2 (-1147 *4))))) -(-10 -7 (-15 -4071 ((-3 |#2| "failed") |#2| (-712))) (-15 -2296 ((-3 |#2| "failed") |#2| (-712) |#1|)) (-15 -1469 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2674 ((-3 (-2 (|:| -3178 |#2|) (|:| -3192 |#2|)) "failed") |#2|)) (-15 -2708 ((-591 |#2|) |#2|))) -((-3883 (((-3 (-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) "failed") |#2| |#2|) 32))) -(((-1142 |#1| |#2|) (-10 -7 (-15 -3883 ((-3 (-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) "failed") |#2| |#2|))) (-517) (-1147 |#1|)) (T -1142)) -((-3883 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-1142 *4 *3)) (-4 *3 (-1147 *4))))) -(-10 -7 (-15 -3883 ((-3 (-2 (|:| -2746 |#2|) (|:| -2449 |#2|)) "failed") |#2| |#2|))) -((-3136 ((|#2| |#2| |#2|) 19)) (-1547 ((|#2| |#2| |#2|) 30)) (-3320 ((|#2| |#2| |#2| (-712) (-712)) 36))) -(((-1143 |#1| |#2|) (-10 -7 (-15 -3136 (|#2| |#2| |#2|)) (-15 -1547 (|#2| |#2| |#2|)) (-15 -3320 (|#2| |#2| |#2| (-712) (-712)))) (-975) (-1147 |#1|)) (T -1143)) -((-3320 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-712)) (-4 *4 (-975)) (-5 *1 (-1143 *4 *2)) (-4 *2 (-1147 *4)))) (-1547 (*1 *2 *2 *2) (-12 (-4 *3 (-975)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1147 *3)))) (-3136 (*1 *2 *2 *2) (-12 (-4 *3 (-975)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1147 *3))))) -(-10 -7 (-15 -3136 (|#2| |#2| |#2|)) (-15 -1547 (|#2| |#2| |#2|)) (-15 -3320 (|#2| |#2| |#2| (-712) (-712)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-4135 (((-1171 |#2|) $ (-712)) NIL)) (-1444 (((-591 (-1003)) $) NIL)) (-3290 (($ (-1085 |#2|)) NIL)) (-2514 (((-1085 $) $ (-1003)) NIL) (((-1085 |#2|) $) NIL)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3641 (($ $) NIL (|has| |#2| (-517)))) (-3077 (((-108) $) NIL (|has| |#2| (-517)))) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-1003))) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2584 (($ $ $) NIL (|has| |#2| (-517)))) (-2179 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-1720 (($ $) NIL (|has| |#2| (-429)))) (-3898 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-1965 (((-108) $ $) NIL (|has| |#2| (-341)))) (-4069 (($ $ (-712)) NIL)) (-3997 (($ $ (-712)) NIL)) (-3374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-429)))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-966 (-525)))) (((-3 (-1003) "failed") $) NIL)) (-3341 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-966 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-966 (-525)))) (((-1003) $) NIL)) (-1788 (($ $ $ (-1003)) NIL (|has| |#2| (-160))) ((|#2| $ $) NIL (|has| |#2| (-160)))) (-3265 (($ $ $) NIL (|has| |#2| (-341)))) (-1575 (($ $) NIL)) (-3925 (((-631 (-525)) (-631 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) NIL (|has| |#2| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#2|)) (|:| |vec| (-1171 |#2|))) (-631 $) (-1171 $)) NIL) (((-631 |#2|) (-631 $)) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3239 (($ $ $) NIL (|has| |#2| (-341)))) (-1666 (($ $ $) NIL)) (-3225 (($ $ $) NIL (|has| |#2| (-517)))) (-1627 (((-2 (|:| -2976 |#2|) (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#2| (-517)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#2| (-341)))) (-3153 (($ $) NIL (|has| |#2| (-429))) (($ $ (-1003)) NIL (|has| |#2| (-429)))) (-1564 (((-591 $) $) NIL)) (-2393 (((-108) $) NIL (|has| |#2| (-842)))) (-2615 (($ $ |#2| (-712) $) NIL)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) NIL (-12 (|has| (-1003) (-819 (-357))) (|has| |#2| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) NIL (-12 (|has| (-1003) (-819 (-525))) (|has| |#2| (-819 (-525)))))) (-1676 (((-712) $ $) NIL (|has| |#2| (-517)))) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-2115 (((-3 $ "failed") $) NIL (|has| |#2| (-1065)))) (-1434 (($ (-1085 |#2|) (-1003)) NIL) (($ (-1085 $) (-1003)) NIL)) (-1698 (($ $ (-712)) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#2| (-341)))) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-1422 (($ |#2| (-712)) 17) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-1003)) NIL) (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL)) (-3629 (((-712) $) NIL) (((-712) $ (-1003)) NIL) (((-591 (-712)) $ (-591 (-1003))) NIL)) (-1923 (($ $ $) NIL (|has| |#2| (-788)))) (-3475 (($ $ $) NIL (|has| |#2| (-788)))) (-2508 (($ (-1 (-712) (-712)) $) NIL)) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-2496 (((-1085 |#2|) $) NIL)) (-3027 (((-3 (-1003) "failed") $) NIL)) (-1548 (($ $) NIL)) (-1556 ((|#2| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2621 (((-1072) $) NIL)) (-1400 (((-2 (|:| -2746 $) (|:| -2449 $)) $ (-712)) NIL)) (-3401 (((-3 (-591 $) "failed") $) NIL)) (-4008 (((-3 (-591 $) "failed") $) NIL)) (-3410 (((-3 (-2 (|:| |var| (-1003)) (|:| -3987 (-712))) "failed") $) NIL)) (-2452 (($ $) NIL (|has| |#2| (-37 (-385 (-525)))))) (-3492 (($) NIL (|has| |#2| (-1065)) CONST)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 ((|#2| $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-429)))) (-2124 (($ (-591 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3381 (($ $ (-712) |#2| $) NIL)) (-3550 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-842)))) (-2542 (((-396 $) $) NIL (|has| |#2| (-842)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#2| (-341)))) (-3210 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#2| (-341)))) (-1980 (($ $ (-591 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-1003) |#2|) NIL) (($ $ (-591 (-1003)) (-591 |#2|)) NIL) (($ $ (-1003) $) NIL) (($ $ (-591 (-1003)) (-591 $)) NIL)) (-3048 (((-712) $) NIL (|has| |#2| (-341)))) (-1881 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#2| (-517))) ((|#2| (-385 $) |#2|) NIL (|has| |#2| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#2| (-517)))) (-1725 (((-3 $ "failed") $ (-712)) NIL)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#2| (-341)))) (-2858 (($ $ (-1003)) NIL (|has| |#2| (-160))) ((|#2| $) NIL (|has| |#2| (-160)))) (-2209 (($ $ (-1003)) NIL) (($ $ (-591 (-1003))) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL) (($ $ (-712)) NIL) (($ $) NIL) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2743 (((-712) $) NIL) (((-712) $ (-1003)) NIL) (((-591 (-712)) $ (-591 (-1003))) NIL)) (-1300 (((-825 (-357)) $) NIL (-12 (|has| (-1003) (-566 (-825 (-357)))) (|has| |#2| (-566 (-825 (-357)))))) (((-825 (-525)) $) NIL (-12 (|has| (-1003) (-566 (-825 (-525)))) (|has| |#2| (-566 (-825 (-525)))))) (((-501) $) NIL (-12 (|has| (-1003) (-566 (-501))) (|has| |#2| (-566 (-501)))))) (-2827 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-1003)) NIL (|has| |#2| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-842))))) (-2037 (((-3 $ "failed") $ $) NIL (|has| |#2| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#2| (-517)))) (-2686 (((-796) $) 13) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1003)) NIL) (($ (-1167 |#1|)) 19) (($ (-385 (-525))) NIL (-3150 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-966 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3109 (((-591 |#2|) $) NIL)) (-1263 ((|#2| $ (-712)) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-3751 (((-3 $ "failed") $) NIL (-3150 (-12 (|has| $ (-136)) (|has| |#2| (-842))) (|has| |#2| (-136))))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| |#2| (-160)))) (-1724 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-1839 (($) 14 T CONST)) (-1796 (($ $ (-1003)) NIL) (($ $ (-591 (-1003))) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL) (($ $ (-712)) NIL) (($ $) NIL) (($ $ (-1089)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1089) (-712)) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) NIL (|has| |#2| (-833 (-1089)))) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4004 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3944 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#2| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#2| (-788)))) (-4059 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1144 |#1| |#2|) (-13 (-1147 |#2|) (-10 -8 (-15 -2686 ($ (-1167 |#1|))) (-15 -3381 ($ $ (-712) |#2| $)))) (-1089) (-975)) (T -1144)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1167 *3)) (-14 *3 (-1089)) (-5 *1 (-1144 *3 *4)) (-4 *4 (-975)))) (-3381 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-712)) (-5 *1 (-1144 *4 *3)) (-14 *4 (-1089)) (-4 *3 (-975))))) -(-13 (-1147 |#2|) (-10 -8 (-15 -2686 ($ (-1167 |#1|))) (-15 -3381 ($ $ (-712) |#2| $)))) -((-1257 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 (|#4| (-1 |#3| |#1|) |#2|))) (-975) (-1147 |#1|) (-975) (-1147 |#3|)) (T -1145)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-975)) (-4 *6 (-975)) (-4 *2 (-1147 *6)) (-5 *1 (-1145 *5 *4 *6 *2)) (-4 *4 (-1147 *5))))) -(-10 -7 (-15 -1257 (|#4| (-1 |#3| |#1|) |#2|))) -((-4135 (((-1171 |#2|) $ (-712)) 114)) (-1444 (((-591 (-1003)) $) 15)) (-3290 (($ (-1085 |#2|)) 67)) (-1978 (((-712) $) NIL) (((-712) $ (-591 (-1003))) 18)) (-2179 (((-396 (-1085 $)) (-1085 $)) 185)) (-1720 (($ $) 175)) (-3898 (((-396 $) $) 173)) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 82)) (-4069 (($ $ (-712)) 71)) (-3997 (($ $ (-712)) 73)) (-3374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-4174 (((-3 |#2| "failed") $) 117) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-1003) "failed") $) NIL)) (-3341 ((|#2| $) 115) (((-385 (-525)) $) NIL) (((-525) $) NIL) (((-1003) $) NIL)) (-3225 (($ $ $) 151)) (-1627 (((-2 (|:| -2976 |#2|) (|:| -2746 $) (|:| -2449 $)) $ $) 153)) (-1676 (((-712) $ $) 170)) (-2115 (((-3 $ "failed") $) 123)) (-1422 (($ |#2| (-712)) NIL) (($ $ (-1003) (-712)) 47) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-3629 (((-712) $) NIL) (((-712) $ (-1003)) 42) (((-591 (-712)) $ (-591 (-1003))) 43)) (-2496 (((-1085 |#2|) $) 59)) (-3027 (((-3 (-1003) "failed") $) 40)) (-1400 (((-2 (|:| -2746 $) (|:| -2449 $)) $ (-712)) 70)) (-2452 (($ $) 197)) (-3492 (($) 119)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 182)) (-3550 (((-396 (-1085 $)) (-1085 $)) 88)) (-3534 (((-396 (-1085 $)) (-1085 $)) 86)) (-2542 (((-396 $) $) 107)) (-1980 (($ $ (-591 (-273 $))) 39) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-591 $) (-591 $)) NIL) (($ $ (-1003) |#2|) 31) (($ $ (-591 (-1003)) (-591 |#2|)) 28) (($ $ (-1003) $) 25) (($ $ (-591 (-1003)) (-591 $)) 23)) (-3048 (((-712) $) 188)) (-1881 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) 147) ((|#2| (-385 $) |#2|) 187) (((-385 $) $ (-385 $)) 169)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 191)) (-2209 (($ $ (-1003)) 140) (($ $ (-591 (-1003))) NIL) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL) (($ $ (-712)) NIL) (($ $) 138) (($ $ (-1089)) NIL) (($ $ (-591 (-1089))) NIL) (($ $ (-1089) (-712)) NIL) (($ $ (-591 (-1089)) (-591 (-712))) NIL) (($ $ (-1 |#2| |#2|) (-712)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2743 (((-712) $) NIL) (((-712) $ (-1003)) 16) (((-591 (-712)) $ (-591 (-1003))) 20)) (-2827 ((|#2| $) NIL) (($ $ (-1003)) 125)) (-2037 (((-3 $ "failed") $ $) 161) (((-3 (-385 $) "failed") (-385 $) $) 157)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1003)) 51) (($ (-385 (-525))) NIL) (($ $) NIL))) -(((-1146 |#1| |#2|) (-10 -8 (-15 -2686 (|#1| |#1|)) (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -3492 (|#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|)) (-15 -1881 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -3048 ((-712) |#1|)) (-15 -3576 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -1881 (|#2| (-385 |#1|) |#2|)) (-15 -3374 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1627 ((-2 (|:| -2976 |#2|) (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3225 (|#1| |#1| |#1|)) (-15 -2037 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -2037 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1676 ((-712) |#1| |#1|)) (-15 -1881 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3997 (|#1| |#1| (-712))) (-15 -4069 (|#1| |#1| (-712))) (-15 -1400 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| (-712))) (-15 -3290 (|#1| (-1085 |#2|))) (-15 -2496 ((-1085 |#2|) |#1|)) (-15 -4135 ((-1171 |#2|) |#1| (-712))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -1881 (|#1| |#1| |#1|)) (-15 -1881 (|#2| |#1| |#2|)) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -2179 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3534 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3550 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3008 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|))) (-15 -2827 (|#1| |#1| (-1003))) (-15 -1444 ((-591 (-1003)) |#1|)) (-15 -1978 ((-712) |#1| (-591 (-1003)))) (-15 -1978 ((-712) |#1|)) (-15 -1422 (|#1| |#1| (-591 (-1003)) (-591 (-712)))) (-15 -1422 (|#1| |#1| (-1003) (-712))) (-15 -3629 ((-591 (-712)) |#1| (-591 (-1003)))) (-15 -3629 ((-712) |#1| (-1003))) (-15 -3027 ((-3 (-1003) "failed") |#1|)) (-15 -2743 ((-591 (-712)) |#1| (-591 (-1003)))) (-15 -2743 ((-712) |#1| (-1003))) (-15 -3341 ((-1003) |#1|)) (-15 -4174 ((-3 (-1003) "failed") |#1|)) (-15 -2686 (|#1| (-1003))) (-15 -1980 (|#1| |#1| (-591 (-1003)) (-591 |#1|))) (-15 -1980 (|#1| |#1| (-1003) |#1|)) (-15 -1980 (|#1| |#1| (-591 (-1003)) (-591 |#2|))) (-15 -1980 (|#1| |#1| (-1003) |#2|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -2743 ((-712) |#1|)) (-15 -1422 (|#1| |#2| (-712))) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -3629 ((-712) |#1|)) (-15 -2827 (|#2| |#1|)) (-15 -2209 (|#1| |#1| (-591 (-1003)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1003) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1003)))) (-15 -2209 (|#1| |#1| (-1003))) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) (-1147 |#2|) (-975)) (T -1146)) -NIL -(-10 -8 (-15 -2686 (|#1| |#1|)) (-15 -3910 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3898 ((-396 |#1|) |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -3492 (|#1|)) (-15 -2115 ((-3 |#1| "failed") |#1|)) (-15 -1881 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -3048 ((-712) |#1|)) (-15 -3576 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -1881 (|#2| (-385 |#1|) |#2|)) (-15 -3374 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1627 ((-2 (|:| -2976 |#2|) (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| |#1|)) (-15 -3225 (|#1| |#1| |#1|)) (-15 -2037 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -2037 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1676 ((-712) |#1| |#1|)) (-15 -1881 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3997 (|#1| |#1| (-712))) (-15 -4069 (|#1| |#1| (-712))) (-15 -1400 ((-2 (|:| -2746 |#1|) (|:| -2449 |#1|)) |#1| (-712))) (-15 -3290 (|#1| (-1085 |#2|))) (-15 -2496 ((-1085 |#2|) |#1|)) (-15 -4135 ((-1171 |#2|) |#1| (-712))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2209 (|#1| |#1| (-1 |#2| |#2|) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1089) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1089)))) (-15 -2209 (|#1| |#1| (-1089))) (-15 -2209 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-712))) (-15 -1881 (|#1| |#1| |#1|)) (-15 -1881 (|#2| |#1| |#2|)) (-15 -2542 ((-396 |#1|) |#1|)) (-15 -2179 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3534 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3550 ((-396 (-1085 |#1|)) (-1085 |#1|))) (-15 -3008 ((-3 (-591 (-1085 |#1|)) "failed") (-591 (-1085 |#1|)) (-1085 |#1|))) (-15 -2827 (|#1| |#1| (-1003))) (-15 -1444 ((-591 (-1003)) |#1|)) (-15 -1978 ((-712) |#1| (-591 (-1003)))) (-15 -1978 ((-712) |#1|)) (-15 -1422 (|#1| |#1| (-591 (-1003)) (-591 (-712)))) (-15 -1422 (|#1| |#1| (-1003) (-712))) (-15 -3629 ((-591 (-712)) |#1| (-591 (-1003)))) (-15 -3629 ((-712) |#1| (-1003))) (-15 -3027 ((-3 (-1003) "failed") |#1|)) (-15 -2743 ((-591 (-712)) |#1| (-591 (-1003)))) (-15 -2743 ((-712) |#1| (-1003))) (-15 -3341 ((-1003) |#1|)) (-15 -4174 ((-3 (-1003) "failed") |#1|)) (-15 -2686 (|#1| (-1003))) (-15 -1980 (|#1| |#1| (-591 (-1003)) (-591 |#1|))) (-15 -1980 (|#1| |#1| (-1003) |#1|)) (-15 -1980 (|#1| |#1| (-591 (-1003)) (-591 |#2|))) (-15 -1980 (|#1| |#1| (-1003) |#2|)) (-15 -1980 (|#1| |#1| (-591 |#1|) (-591 |#1|))) (-15 -1980 (|#1| |#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-273 |#1|))) (-15 -1980 (|#1| |#1| (-591 (-273 |#1|)))) (-15 -2743 ((-712) |#1|)) (-15 -1422 (|#1| |#2| (-712))) (-15 -3341 ((-525) |#1|)) (-15 -4174 ((-3 (-525) "failed") |#1|)) (-15 -3341 ((-385 (-525)) |#1|)) (-15 -4174 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2686 (|#1| |#2|)) (-15 -4174 ((-3 |#2| "failed") |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -3629 ((-712) |#1|)) (-15 -2827 (|#2| |#1|)) (-15 -2209 (|#1| |#1| (-591 (-1003)) (-591 (-712)))) (-15 -2209 (|#1| |#1| (-1003) (-712))) (-15 -2209 (|#1| |#1| (-591 (-1003)))) (-15 -2209 (|#1| |#1| (-1003))) (-15 -2686 (|#1| (-525))) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-4135 (((-1171 |#1|) $ (-712)) 238)) (-1444 (((-591 (-1003)) $) 110)) (-3290 (($ (-1085 |#1|)) 236)) (-2514 (((-1085 $) $ (-1003)) 125) (((-1085 |#1|) $) 124)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3641 (($ $) 88 (|has| |#1| (-517)))) (-3077 (((-108) $) 90 (|has| |#1| (-517)))) (-1978 (((-712) $) 112) (((-712) $ (-591 (-1003))) 111)) (-3332 (((-3 $ "failed") $ $) 19)) (-2584 (($ $ $) 223 (|has| |#1| (-517)))) (-2179 (((-396 (-1085 $)) (-1085 $)) 100 (|has| |#1| (-842)))) (-1720 (($ $) 98 (|has| |#1| (-429)))) (-3898 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3008 (((-3 (-591 (-1085 $)) "failed") (-591 (-1085 $)) (-1085 $)) 103 (|has| |#1| (-842)))) (-1965 (((-108) $ $) 208 (|has| |#1| (-341)))) (-4069 (($ $ (-712)) 231)) (-3997 (($ $ (-712)) 230)) (-3374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-429)))) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-966 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-966 (-525)))) (((-3 (-1003) "failed") $) 136)) (-3341 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-966 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-966 (-525)))) (((-1003) $) 135)) (-1788 (($ $ $ (-1003)) 108 (|has| |#1| (-160))) ((|#1| $ $) 226 (|has| |#1| (-160)))) (-3265 (($ $ $) 212 (|has| |#1| (-341)))) (-1575 (($ $) 154)) (-3925 (((-631 (-525)) (-631 $)) 134 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 (-525))) (|:| |vec| (-1171 (-525)))) (-631 $) (-1171 $)) 133 (|has| |#1| (-587 (-525)))) (((-2 (|:| -2928 (-631 |#1|)) (|:| |vec| (-1171 |#1|))) (-631 $) (-1171 $)) 132) (((-631 |#1|) (-631 $)) 131)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 211 (|has| |#1| (-341)))) (-1666 (($ $ $) 229)) (-3225 (($ $ $) 220 (|has| |#1| (-517)))) (-1627 (((-2 (|:| -2976 |#1|) (|:| -2746 $) (|:| -2449 $)) $ $) 219 (|has| |#1| (-517)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 206 (|has| |#1| (-341)))) (-3153 (($ $) 176 (|has| |#1| (-429))) (($ $ (-1003)) 105 (|has| |#1| (-429)))) (-1564 (((-591 $) $) 109)) (-2393 (((-108) $) 96 (|has| |#1| (-842)))) (-2615 (($ $ |#1| (-712) $) 172)) (-4018 (((-822 (-357) $) $ (-825 (-357)) (-822 (-357) $)) 84 (-12 (|has| (-1003) (-819 (-357))) (|has| |#1| (-819 (-357))))) (((-822 (-525) $) $ (-825 (-525)) (-822 (-525) $)) 83 (-12 (|has| (-1003) (-819 (-525))) (|has| |#1| (-819 (-525)))))) (-1676 (((-712) $ $) 224 (|has| |#1| (-517)))) (-3865 (((-108) $) 31)) (-3667 (((-712) $) 169)) (-2115 (((-3 $ "failed") $) 204 (|has| |#1| (-1065)))) (-1434 (($ (-1085 |#1|) (-1003)) 117) (($ (-1085 $) (-1003)) 116)) (-1698 (($ $ (-712)) 235)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 215 (|has| |#1| (-341)))) (-2987 (((-591 $) $) 126)) (-3802 (((-108) $) 152)) (-1422 (($ |#1| (-712)) 153) (($ $ (-1003) (-712)) 119) (($ $ (-591 (-1003)) (-591 (-712))) 118)) (-3148 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $ (-1003)) 120) (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 233)) (-3629 (((-712) $) 170) (((-712) $ (-1003)) 122) (((-591 (-712)) $ (-591 (-1003))) 121)) (-1923 (($ $ $) 79 (|has| |#1| (-788)))) (-3475 (($ $ $) 78 (|has| |#1| (-788)))) (-2508 (($ (-1 (-712) (-712)) $) 171)) (-1257 (($ (-1 |#1| |#1|) $) 151)) (-2496 (((-1085 |#1|) $) 237)) (-3027 (((-3 (-1003) "failed") $) 123)) (-1548 (($ $) 149)) (-1556 ((|#1| $) 148)) (-2081 (($ (-591 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2621 (((-1072) $) 9)) (-1400 (((-2 (|:| -2746 $) (|:| -2449 $)) $ (-712)) 232)) (-3401 (((-3 (-591 $) "failed") $) 114)) (-4008 (((-3 (-591 $) "failed") $) 115)) (-3410 (((-3 (-2 (|:| |var| (-1003)) (|:| -3987 (-712))) "failed") $) 113)) (-2452 (($ $) 216 (|has| |#1| (-37 (-385 (-525)))))) (-3492 (($) 203 (|has| |#1| (-1065)) CONST)) (-2937 (((-1036) $) 10)) (-1531 (((-108) $) 166)) (-1540 ((|#1| $) 167)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 95 (|has| |#1| (-429)))) (-2124 (($ (-591 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3550 (((-396 (-1085 $)) (-1085 $)) 102 (|has| |#1| (-842)))) (-3534 (((-396 (-1085 $)) (-1085 $)) 101 (|has| |#1| (-842)))) (-2542 (((-396 $) $) 99 (|has| |#1| (-842)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 213 (|has| |#1| (-341)))) (-3210 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 207 (|has| |#1| (-341)))) (-1980 (($ $ (-591 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-591 $) (-591 $)) 142) (($ $ (-1003) |#1|) 141) (($ $ (-591 (-1003)) (-591 |#1|)) 140) (($ $ (-1003) $) 139) (($ $ (-591 (-1003)) (-591 $)) 138)) (-3048 (((-712) $) 209 (|has| |#1| (-341)))) (-1881 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-385 $) (-385 $) (-385 $)) 225 (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) 217 (|has| |#1| (-341))) (((-385 $) $ (-385 $)) 205 (|has| |#1| (-517)))) (-1725 (((-3 $ "failed") $ (-712)) 234)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 210 (|has| |#1| (-341)))) (-2858 (($ $ (-1003)) 107 (|has| |#1| (-160))) ((|#1| $) 227 (|has| |#1| (-160)))) (-2209 (($ $ (-1003)) 42) (($ $ (-591 (-1003))) 41) (($ $ (-1003) (-712)) 40) (($ $ (-591 (-1003)) (-591 (-712))) 39) (($ $ (-712)) 253) (($ $) 251) (($ $ (-1089)) 250 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 249 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 248 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) 247 (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2743 (((-712) $) 150) (((-712) $ (-1003)) 130) (((-591 (-712)) $ (-591 (-1003))) 129)) (-1300 (((-825 (-357)) $) 82 (-12 (|has| (-1003) (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357)))))) (((-825 (-525)) $) 81 (-12 (|has| (-1003) (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525)))))) (((-501) $) 80 (-12 (|has| (-1003) (-566 (-501))) (|has| |#1| (-566 (-501)))))) (-2827 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ (-1003)) 106 (|has| |#1| (-429)))) (-3124 (((-3 (-1171 $) "failed") (-631 $)) 104 (-3543 (|has| $ (-136)) (|has| |#1| (-842))))) (-2037 (((-3 $ "failed") $ $) 222 (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) 221 (|has| |#1| (-517)))) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ (-1003)) 137) (($ (-385 (-525))) 72 (-3150 (|has| |#1| (-966 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3109 (((-591 |#1|) $) 168)) (-1263 ((|#1| $ (-712)) 155) (($ $ (-1003) (-712)) 128) (($ $ (-591 (-1003)) (-591 (-712))) 127)) (-3751 (((-3 $ "failed") $) 73 (-3150 (-3543 (|has| $ (-136)) (|has| |#1| (-842))) (|has| |#1| (-136))))) (-3425 (((-712)) 29)) (-2931 (($ $ $ (-712)) 173 (|has| |#1| (-160)))) (-1724 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-1003)) 38) (($ $ (-591 (-1003))) 37) (($ $ (-1003) (-712)) 36) (($ $ (-591 (-1003)) (-591 (-712))) 35) (($ $ (-712)) 254) (($ $) 252) (($ $ (-1089)) 246 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089))) 245 (|has| |#1| (-833 (-1089)))) (($ $ (-1089) (-712)) 244 (|has| |#1| (-833 (-1089)))) (($ $ (-591 (-1089)) (-591 (-712))) 243 (|has| |#1| (-833 (-1089)))) (($ $ (-1 |#1| |#1|) (-712)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-4004 (((-108) $ $) 76 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 75 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 6)) (-3994 (((-108) $ $) 77 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 74 (|has| |#1| (-788)))) (-4059 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1147 |#1|) (-131) (-975)) (T -1147)) -((-4135 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *1 (-1147 *4)) (-4 *4 (-975)) (-5 *2 (-1171 *4)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-975)) (-5 *2 (-1085 *3)))) (-3290 (*1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-975)) (-4 *1 (-1147 *3)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1147 *3)) (-4 *3 (-975)))) (-1725 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-712)) (-4 *1 (-1147 *3)) (-4 *3 (-975)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *3 (-975)) (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-1147 *3)))) (-1400 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *4 (-975)) (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-1147 *4)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1147 *3)) (-4 *3 (-975)))) (-3997 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1147 *3)) (-4 *3 (-975)))) (-1666 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)))) (-2209 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-975)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-160)))) (-1788 (*1 *2 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-160)))) (-1881 (*1 *2 *2 *2) (-12 (-5 *2 (-385 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-975)) (-4 *3 (-517)))) (-1676 (*1 *2 *1 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-975)) (-4 *3 (-517)) (-5 *2 (-712)))) (-2584 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-517)))) (-2037 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-517)))) (-2037 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-975)) (-4 *3 (-517)))) (-3225 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-517)))) (-1627 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-5 *2 (-2 (|:| -2976 *3) (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-1147 *3)))) (-3374 (*1 *2 *1 *1) (-12 (-4 *3 (-429)) (-4 *3 (-975)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1147 *3)))) (-1881 (*1 *2 *3 *2) (-12 (-5 *3 (-385 *1)) (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-2452 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-37 (-385 (-525))))))) -(-13 (-882 |t#1| (-712) (-1003)) (-265 |t#1| |t#1|) (-265 $ $) (-213) (-211 |t#1|) (-10 -8 (-15 -4135 ((-1171 |t#1|) $ (-712))) (-15 -2496 ((-1085 |t#1|) $)) (-15 -3290 ($ (-1085 |t#1|))) (-15 -1698 ($ $ (-712))) (-15 -1725 ((-3 $ "failed") $ (-712))) (-15 -3148 ((-2 (|:| -2746 $) (|:| -2449 $)) $ $)) (-15 -1400 ((-2 (|:| -2746 $) (|:| -2449 $)) $ (-712))) (-15 -4069 ($ $ (-712))) (-15 -3997 ($ $ (-712))) (-15 -1666 ($ $ $)) (-15 -2209 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -2858 (|t#1| $)) (-15 -1788 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-265 (-385 $) (-385 $))) (-15 -1881 ((-385 $) (-385 $) (-385 $))) (-15 -1676 ((-712) $ $)) (-15 -2584 ($ $ $)) (-15 -2037 ((-3 $ "failed") $ $)) (-15 -2037 ((-3 (-385 $) "failed") (-385 $) $)) (-15 -3225 ($ $ $)) (-15 -1627 ((-2 (|:| -2976 |t#1|) (|:| -2746 $) (|:| -2449 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (-15 -3374 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-286)) (-6 -4246) (-15 -1881 (|t#1| (-385 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-15 -2452 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-712)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-566 (-501)) -12 (|has| (-1003) (-566 (-501))) (|has| |#1| (-566 (-501)))) ((-566 (-825 (-357))) -12 (|has| (-1003) (-566 (-825 (-357)))) (|has| |#1| (-566 (-825 (-357))))) ((-566 (-825 (-525))) -12 (|has| (-1003) (-566 (-825 (-525)))) (|has| |#1| (-566 (-825 (-525))))) ((-211 |#1|) . T) ((-213) . T) ((-265 (-385 $) (-385 $)) |has| |#1| (-517)) ((-265 |#1| |#1|) . T) ((-265 $ $) . T) ((-269) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 $) . T) ((-304 |#1| #0#) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3150 (|has| |#1| (-842)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-486 #2=(-1003) |#1|) . T) ((-486 #2# $) . T) ((-486 $ $) . T) ((-517) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-593 #1#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-587 (-525)) |has| |#1| (-587 (-525))) ((-587 |#1|) . T) ((-659 #1#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-668) . T) ((-788) |has| |#1| (-788)) ((-833 #2#) . T) ((-833 (-1089)) |has| |#1| (-833 (-1089))) ((-819 (-357)) -12 (|has| (-1003) (-819 (-357))) (|has| |#1| (-819 (-357)))) ((-819 (-525)) -12 (|has| (-1003) (-819 (-525))) (|has| |#1| (-819 (-525)))) ((-882 |#1| #0# #2#) . T) ((-842) |has| |#1| (-842)) ((-853) |has| |#1| (-341)) ((-966 (-385 (-525))) |has| |#1| (-966 (-385 (-525)))) ((-966 (-525)) |has| |#1| (-966 (-525))) ((-966 #2#) . T) ((-966 |#1|) . T) ((-981 #1#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-842)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1065) |has| |#1| (-1065)) ((-1129) |has| |#1| (-842))) -((-1444 (((-591 (-1003)) $) 28)) (-1575 (($ $) 25)) (-1422 (($ |#2| |#3|) NIL) (($ $ (-1003) |#3|) 22) (($ $ (-591 (-1003)) (-591 |#3|)) 21)) (-1548 (($ $) 14)) (-1556 ((|#2| $) 12)) (-2743 ((|#3| $) 10))) -(((-1148 |#1| |#2| |#3|) (-10 -8 (-15 -1444 ((-591 (-1003)) |#1|)) (-15 -1422 (|#1| |#1| (-591 (-1003)) (-591 |#3|))) (-15 -1422 (|#1| |#1| (-1003) |#3|)) (-15 -1575 (|#1| |#1|)) (-15 -1422 (|#1| |#2| |#3|)) (-15 -2743 (|#3| |#1|)) (-15 -1548 (|#1| |#1|)) (-15 -1556 (|#2| |#1|))) (-1149 |#2| |#3|) (-975) (-733)) (T -1148)) -NIL -(-10 -8 (-15 -1444 ((-591 (-1003)) |#1|)) (-15 -1422 (|#1| |#1| (-591 (-1003)) (-591 |#3|))) (-15 -1422 (|#1| |#1| (-1003) |#3|)) (-15 -1575 (|#1| |#1|)) (-15 -1422 (|#1| |#2| |#3|)) (-15 -2743 (|#3| |#1|)) (-15 -1548 (|#1| |#1|)) (-15 -1556 (|#2| |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1444 (((-591 (-1003)) $) 74)) (-1592 (((-1089) $) 103)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3641 (($ $) 52 (|has| |#1| (-517)))) (-3077 (((-108) $) 54 (|has| |#1| (-517)))) (-3328 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-3581 (((-1070 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1575 (($ $) 60)) (-1522 (((-3 $ "failed") $) 34)) (-1795 (((-108) $) 73)) (-1676 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-3865 (((-108) $) 31)) (-1698 (($ $ (-854)) 101)) (-3802 (((-108) $) 62)) (-1422 (($ |#1| |#2|) 61) (($ $ (-1003) |#2|) 76) (($ $ (-591 (-1003)) (-591 |#2|)) 75)) (-1257 (($ (-1 |#1| |#1|) $) 63)) (-1548 (($ $) 65)) (-1556 ((|#1| $) 66)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-1618 (($ $ |#2|) 95)) (-3210 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1980 (((-1070 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1881 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1030)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) 89 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1089) (-712)) 88 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-591 (-1089))) 87 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1089)) 86 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-712)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2743 ((|#2| $) 64)) (-1664 (($ $) 72)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1263 ((|#1| $ |#2|) 59)) (-3751 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1708 ((|#1| $) 102)) (-1724 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4173 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) 93 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1089) (-712)) 92 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-591 (-1089))) 91 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1089)) 90 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-712)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) -(((-1149 |#1| |#2|) (-131) (-975) (-733)) (T -1149)) -((-3581 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1881 (*1 *2 *1 *3) (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) (-5 *2 (-1089)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-854)) (-4 *1 (-1149 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) (-1676 (*1 *2 *1 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) (-3328 (*1 *1 *1 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) (-3328 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) (-4173 (*1 *2 *1 *3) (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-733)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2686 (*2 (-1089)))) (-4 *2 (-975)))) (-1618 (*1 *1 *1 *2) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) (-1980 (*1 *2 *1 *3) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3))))) -(-13 (-904 |t#1| |t#2| (-1003)) (-10 -8 (-15 -3581 ((-1070 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1881 (|t#1| $ |t#2|)) (-15 -1592 ((-1089) $)) (-15 -1708 (|t#1| $)) (-15 -1698 ($ $ (-854))) (-15 -1676 (|t#2| $)) (-15 -1676 (|t#2| $ |t#2|)) (-15 -3328 ($ $ |t#2|)) (-15 -3328 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2686 (|t#1| (-1089)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4173 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1618 ($ $ |t#2|)) (IF (|has| |t#2| (-1030)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-213)) (IF (|has| |t#1| (-833 (-1089))) (-6 (-833 (-1089))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1980 ((-1070 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-265 $ $) |has| |#2| (-1030)) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-593 #0#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #0#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) |has| |#1| (-517)) ((-668) . T) ((-833 (-1089)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-833 (-1089)))) ((-904 |#1| |#2| (-1003)) . T) ((-981 #0#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-1720 ((|#2| |#2|) 12)) (-3898 (((-396 |#2|) |#2|) 14)) (-2272 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))) 30))) -(((-1150 |#1| |#2|) (-10 -7 (-15 -3898 ((-396 |#2|) |#2|)) (-15 -1720 (|#2| |#2|)) (-15 -2272 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))))) (-517) (-13 (-1147 |#1|) (-517) (-10 -8 (-15 -2124 ($ $ $))))) (T -1150)) -((-2272 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-525)))) (-4 *4 (-13 (-1147 *3) (-517) (-10 -8 (-15 -2124 ($ $ $))))) (-4 *3 (-517)) (-5 *1 (-1150 *3 *4)))) (-1720 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-1150 *3 *2)) (-4 *2 (-13 (-1147 *3) (-517) (-10 -8 (-15 -2124 ($ $ $))))))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1150 *4 *3)) (-4 *3 (-13 (-1147 *4) (-517) (-10 -8 (-15 -2124 ($ $ $)))))))) -(-10 -7 (-15 -3898 ((-396 |#2|) |#2|)) (-15 -1720 (|#2| |#2|)) (-15 -2272 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))))) -((-1257 (((-1156 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1156 |#1| |#3| |#5|)) 24))) -(((-1151 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1257 ((-1156 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1156 |#1| |#3| |#5|)))) (-975) (-975) (-1089) (-1089) |#1| |#2|) (T -1151)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1156 *5 *7 *9)) (-4 *5 (-975)) (-4 *6 (-975)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1156 *6 *8 *10)) (-5 *1 (-1151 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089))))) -(-10 -7 (-15 -1257 ((-1156 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1156 |#1| |#3| |#5|)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1444 (((-591 (-1003)) $) 74)) (-1592 (((-1089) $) 103)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3641 (($ $) 52 (|has| |#1| (-517)))) (-3077 (((-108) $) 54 (|has| |#1| (-517)))) (-3328 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-3581 (((-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-4087 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 162 (|has| |#1| (-341)))) (-3898 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2551 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1965 (((-108) $ $) 153 (|has| |#1| (-341)))) (-4058 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-712) (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-4109 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) 17 T CONST)) (-3265 (($ $ $) 157 (|has| |#1| (-341)))) (-1575 (($ $) 60)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 156 (|has| |#1| (-341)))) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 151 (|has| |#1| (-341)))) (-2393 (((-108) $) 164 (|has| |#1| (-341)))) (-1795 (((-108) $) 73)) (-1417 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) 101) (($ $ (-385 (-525))) 171)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 160 (|has| |#1| (-341)))) (-3802 (((-108) $) 62)) (-1422 (($ |#1| (-385 (-525))) 61) (($ $ (-1003) (-385 (-525))) 76) (($ $ (-591 (-1003)) (-591 (-385 (-525)))) 75)) (-1257 (($ (-1 |#1| |#1|) $) 63)) (-2356 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) 65)) (-1556 ((|#1| $) 66)) (-2081 (($ (-591 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2621 (((-1072) $) 9)) (-1523 (($ $) 165 (|has| |#1| (-341)))) (-2452 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) 169 (-3150 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-891)) (|has| |#1| (-1111)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 150 (|has| |#1| (-341)))) (-2124 (($ (-591 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2542 (((-396 $) $) 161 (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 158 (|has| |#1| (-341)))) (-1618 (($ $ (-385 (-525))) 95)) (-3210 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 152 (|has| |#1| (-341)))) (-2288 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3048 (((-712) $) 154 (|has| |#1| (-341)))) (-1881 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1030)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 155 (|has| |#1| (-341)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) 89 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1089) (-712)) 88 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-591 (-1089))) 87 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1089)) 86 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-712)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2743 (((-385 (-525)) $) 64)) (-4122 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) 72)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1263 ((|#1| $ (-385 (-525))) 59)) (-3751 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1708 ((|#1| $) 102)) (-4163 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4137 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) 93 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1089) (-712)) 92 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-591 (-1089))) 91 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1089)) 90 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-712)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) -(((-1152 |#1|) (-131) (-975)) (T -1152)) -((-1895 (*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-5 *3 (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))) (-4 *4 (-975)) (-4 *1 (-1152 *4)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1152 *3)) (-4 *3 (-975)))) (-2452 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-975)) (-4 *2 (-37 (-385 (-525)))))) (-2452 (*1 *1 *1 *2) (-3150 (-12 (-5 *2 (-1089)) (-4 *1 (-1152 *3)) (-4 *3 (-975)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-891)) (-4 *3 (-1111)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1152 *3)) (-4 *3 (-975)) (-12 (|has| *3 (-15 -1444 ((-591 *2) *3))) (|has| *3 (-15 -2452 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))) -(-13 (-1149 |t#1| (-385 (-525))) (-10 -8 (-15 -1895 ($ (-712) (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |t#1|))))) (-15 -1698 ($ $ (-385 (-525)))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $)) (IF (|has| |t#1| (-15 -2452 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -1444 ((-591 (-1089)) |t#1|))) (-15 -2452 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1111)) (IF (|has| |t#1| (-891)) (IF (|has| |t#1| (-29 (-525))) (-15 -2452 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-932)) (-6 (-1111))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1030)) ((-269) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-593 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-668) . T) ((-833 (-1089)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089)))) ((-904 |#1| #0# (-1003)) . T) ((-853) |has| |#1| (-341)) ((-932) |has| |#1| (-37 (-385 (-525)))) ((-981 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1111) |has| |#1| (-37 (-385 (-525)))) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1129) |has| |#1| (-341)) ((-1149 |#1| #0#) . T)) -((-1306 (((-108) $) 12)) (-4174 (((-3 |#3| "failed") $) 17)) (-3341 ((|#3| $) 14))) -(((-1153 |#1| |#2| |#3|) (-10 -8 (-15 -3341 (|#3| |#1|)) (-15 -4174 ((-3 |#3| "failed") |#1|)) (-15 -1306 ((-108) |#1|))) (-1154 |#2| |#3|) (-975) (-1131 |#2|)) (T -1153)) -NIL -(-10 -8 (-15 -3341 (|#3| |#1|)) (-15 -4174 ((-3 |#3| "failed") |#1|)) (-15 -1306 ((-108) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1444 (((-591 (-1003)) $) 74)) (-1592 (((-1089) $) 103)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3641 (($ $) 52 (|has| |#1| (-517)))) (-3077 (((-108) $) 54 (|has| |#1| (-517)))) (-3328 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-3581 (((-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-4087 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 162 (|has| |#1| (-341)))) (-3898 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2551 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1965 (((-108) $ $) 153 (|has| |#1| (-341)))) (-4058 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-712) (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-4109 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#2| "failed") $) 183)) (-3341 ((|#2| $) 182)) (-3265 (($ $ $) 157 (|has| |#1| (-341)))) (-1575 (($ $) 60)) (-1522 (((-3 $ "failed") $) 34)) (-2975 (((-385 (-525)) $) 180)) (-3239 (($ $ $) 156 (|has| |#1| (-341)))) (-1507 (($ (-385 (-525)) |#2|) 181)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 151 (|has| |#1| (-341)))) (-2393 (((-108) $) 164 (|has| |#1| (-341)))) (-1795 (((-108) $) 73)) (-1417 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) 101) (($ $ (-385 (-525))) 171)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 160 (|has| |#1| (-341)))) (-3802 (((-108) $) 62)) (-1422 (($ |#1| (-385 (-525))) 61) (($ $ (-1003) (-385 (-525))) 76) (($ $ (-591 (-1003)) (-591 (-385 (-525)))) 75)) (-1257 (($ (-1 |#1| |#1|) $) 63)) (-2356 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) 65)) (-1556 ((|#1| $) 66)) (-2081 (($ (-591 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-4057 ((|#2| $) 179)) (-1896 (((-3 |#2| "failed") $) 177)) (-1497 ((|#2| $) 178)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 165 (|has| |#1| (-341)))) (-2452 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) 169 (-3150 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-891)) (|has| |#1| (-1111)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 150 (|has| |#1| (-341)))) (-2124 (($ (-591 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2542 (((-396 $) $) 161 (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 158 (|has| |#1| (-341)))) (-1618 (($ $ (-385 (-525))) 95)) (-3210 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 152 (|has| |#1| (-341)))) (-2288 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3048 (((-712) $) 154 (|has| |#1| (-341)))) (-1881 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1030)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 155 (|has| |#1| (-341)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) 89 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1089) (-712)) 88 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-591 (-1089))) 87 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1089)) 86 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-712)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2743 (((-385 (-525)) $) 64)) (-4122 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) 72)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 184) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1263 ((|#1| $ (-385 (-525))) 59)) (-3751 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1708 ((|#1| $) 102)) (-4163 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4137 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) 93 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1089) (-712)) 92 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-591 (-1089))) 91 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1089)) 90 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-712)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) -(((-1154 |#1| |#2|) (-131) (-975) (-1131 |t#1|)) (T -1154)) -((-2743 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1131 *3)) (-5 *2 (-385 (-525))))) (-2686 (*1 *1 *2) (-12 (-4 *3 (-975)) (-4 *1 (-1154 *3 *2)) (-4 *2 (-1131 *3)))) (-1507 (*1 *1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-4 *4 (-975)) (-4 *1 (-1154 *4 *3)) (-4 *3 (-1131 *4)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1131 *3)) (-5 *2 (-385 (-525))))) (-4057 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1131 *3)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1131 *3)))) (-1896 (*1 *2 *1) (|partial| -12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1131 *3))))) -(-13 (-1152 |t#1|) (-966 |t#2|) (-10 -8 (-15 -1507 ($ (-385 (-525)) |t#2|)) (-15 -2975 ((-385 (-525)) $)) (-15 -4057 (|t#2| $)) (-15 -2743 ((-385 (-525)) $)) (-15 -2686 ($ |t#2|)) (-15 -1497 (|t#2| $)) (-15 -1896 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1030)) ((-269) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-593 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-668) . T) ((-833 (-1089)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089)))) ((-904 |#1| #0# (-1003)) . T) ((-853) |has| |#1| (-341)) ((-932) |has| |#1| (-37 (-385 (-525)))) ((-966 |#2|) . T) ((-981 #1#) -3150 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1111) |has| |#1| (-37 (-385 (-525)))) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1129) |has| |#1| (-341)) ((-1149 |#1| #0#) . T) ((-1152 |#1|) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) 96)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3328 (($ $ (-385 (-525))) 106) (($ $ (-385 (-525)) (-385 (-525))) 108)) (-3581 (((-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 51)) (-4087 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 156 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| |#1| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4058 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 152 (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-712) (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 61)) (-4109 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) NIL)) (-3341 ((|#2| $) NIL)) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) 79)) (-2975 (((-385 (-525)) $) 13)) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1507 (($ (-385 (-525)) |#2|) 11)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-2393 (((-108) $) NIL (|has| |#1| (-341)))) (-1795 (((-108) $) 68)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-385 (-525)) $) 103) (((-385 (-525)) $ (-385 (-525))) 104)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) 120) (($ $ (-385 (-525))) 118)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-385 (-525))) 31) (($ $ (-1003) (-385 (-525))) NIL) (($ $ (-591 (-1003)) (-591 (-385 (-525)))) NIL)) (-1257 (($ (-1 |#1| |#1|) $) 115)) (-2356 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4057 ((|#2| $) 12)) (-1896 (((-3 |#2| "failed") $) 41)) (-1497 ((|#2| $) 42)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) 93 (|has| |#1| (-341)))) (-2452 (($ $) 135 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) 140 (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111)))))) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-1618 (($ $ (-385 (-525))) 112)) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2288 (($ $) 148 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ (-385 (-525))) 100) (($ $ $) 86 (|has| (-385 (-525)) (-1030)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) 127 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2743 (((-385 (-525)) $) 16)) (-4122 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 154 (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) 110)) (-2686 (((-796) $) NIL) (($ (-525)) 35) (($ |#1|) 27 (|has| |#1| (-160))) (($ |#2|) 32) (($ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1263 ((|#1| $ (-385 (-525))) 99)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) 117)) (-1708 ((|#1| $) 98)) (-4163 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) 21 T CONST)) (-1839 (($) 17 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3944 (((-108) $ $) 66)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 92 (|has| |#1| (-341)))) (-4047 (($ $) 131) (($ $ $) 72)) (-4036 (($ $ $) 70)) (** (($ $ (-854)) NIL) (($ $ (-712)) 76) (($ $ (-525)) 145 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 146 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-1155 |#1| |#2|) (-1154 |#1| |#2|) (-975) (-1131 |#1|)) (T -1155)) -NIL -(-1154 |#1| |#2|) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) 11)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) NIL (|has| |#1| (-517)))) (-3328 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-3581 (((-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-4087 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-1720 (($ $) NIL (|has| |#1| (-341)))) (-3898 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1965 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4058 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-712) (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-4109 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-1135 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1163 |#1| |#2| |#3|) "failed") $) 22)) (-3341 (((-1135 |#1| |#2| |#3|) $) NIL) (((-1163 |#1| |#2| |#3|) $) NIL)) (-3265 (($ $ $) NIL (|has| |#1| (-341)))) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-2975 (((-385 (-525)) $) 57)) (-3239 (($ $ $) NIL (|has| |#1| (-341)))) (-1507 (($ (-385 (-525)) (-1135 |#1| |#2| |#3|)) NIL)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) NIL (|has| |#1| (-341)))) (-2393 (((-108) $) NIL (|has| |#1| (-341)))) (-1795 (((-108) $) NIL)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-3865 (((-108) $) NIL)) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) NIL) (($ $ (-385 (-525))) NIL)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-385 (-525))) 30) (($ $ (-1003) (-385 (-525))) NIL) (($ $ (-591 (-1003)) (-591 (-385 (-525)))) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2081 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4057 (((-1135 |#1| |#2| |#3|) $) 60)) (-1896 (((-3 (-1135 |#1| |#2| |#3|) "failed") $) NIL)) (-1497 (((-1135 |#1| |#2| |#3|) $) NIL)) (-2621 (((-1072) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-341)))) (-2452 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) NIL (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111))))) (($ $ (-1167 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-2937 (((-1036) $) NIL)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-341)))) (-2124 (($ (-591 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2542 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3387 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) NIL (|has| |#1| (-341)))) (-1618 (($ $ (-385 (-525))) NIL)) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2018 (((-3 (-591 $) "failed") (-591 $) $) NIL (|has| |#1| (-341)))) (-2288 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-3048 (((-712) $) NIL (|has| |#1| (-341)))) (-1881 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1030)))) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) NIL (|has| |#1| (-341)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1167 |#2|)) 38)) (-2743 (((-385 (-525)) $) NIL)) (-4122 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) NIL)) (-2686 (((-796) $) 89) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1135 |#1| |#2| |#3|)) 16) (($ (-1163 |#1| |#2| |#3|)) 17) (($ (-1167 |#2|)) 36) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1263 ((|#1| $ (-385 (-525))) NIL)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1708 ((|#1| $) 12)) (-4163 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-385 (-525))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1830 (($) 32 T CONST)) (-1839 (($) 26 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 34)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-1156 |#1| |#2| |#3|) (-13 (-1154 |#1| (-1135 |#1| |#2| |#3|)) (-966 (-1163 |#1| |#2| |#3|)) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) (-975) (-1089) |#1|) (T -1156)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3)))) -(-13 (-1154 |#1| (-1135 |#1| |#2| |#3|)) (-966 (-1163 |#1| |#2| |#3|)) (-10 -8 (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 34)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL)) (-3641 (($ $) NIL)) (-3077 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 (-525) "failed") $) NIL (|has| (-1156 |#2| |#3| |#4|) (-966 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1156 |#2| |#3| |#4|) (-966 (-385 (-525))))) (((-3 (-1156 |#2| |#3| |#4|) "failed") $) 20)) (-3341 (((-525) $) NIL (|has| (-1156 |#2| |#3| |#4|) (-966 (-525)))) (((-385 (-525)) $) NIL (|has| (-1156 |#2| |#3| |#4|) (-966 (-385 (-525))))) (((-1156 |#2| |#3| |#4|) $) NIL)) (-1575 (($ $) 35)) (-1522 (((-3 $ "failed") $) 25)) (-3153 (($ $) NIL (|has| (-1156 |#2| |#3| |#4|) (-429)))) (-2615 (($ $ (-1156 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|) $) NIL)) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) 11)) (-3802 (((-108) $) NIL)) (-1422 (($ (-1156 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) 23)) (-3629 (((-297 |#2| |#3| |#4|) $) NIL)) (-2508 (($ (-1 (-297 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) $) NIL)) (-1257 (($ (-1 (-1156 |#2| |#3| |#4|) (-1156 |#2| |#3| |#4|)) $) NIL)) (-3015 (((-3 (-781 |#2|) "failed") $) 75)) (-1548 (($ $) NIL)) (-1556 (((-1156 |#2| |#3| |#4|) $) 18)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-1531 (((-108) $) NIL)) (-1540 (((-1156 |#2| |#3| |#4|) $) NIL)) (-3210 (((-3 $ "failed") $ (-1156 |#2| |#3| |#4|)) NIL (|has| (-1156 |#2| |#3| |#4|) (-517))) (((-3 $ "failed") $ $) NIL)) (-3043 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1156 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-591 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) "failed") $) 58)) (-2743 (((-297 |#2| |#3| |#4|) $) 14)) (-2827 (((-1156 |#2| |#3| |#4|) $) NIL (|has| (-1156 |#2| |#3| |#4|) (-429)))) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ (-1156 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL (-3150 (|has| (-1156 |#2| |#3| |#4|) (-37 (-385 (-525)))) (|has| (-1156 |#2| |#3| |#4|) (-966 (-385 (-525))))))) (-3109 (((-591 (-1156 |#2| |#3| |#4|)) $) NIL)) (-1263 (((-1156 |#2| |#3| |#4|) $ (-297 |#2| |#3| |#4|)) NIL)) (-3751 (((-3 $ "failed") $) NIL (|has| (-1156 |#2| |#3| |#4|) (-136)))) (-3425 (((-712)) NIL)) (-2931 (($ $ $ (-712)) NIL (|has| (-1156 |#2| |#3| |#4|) (-160)))) (-1724 (((-108) $ $) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 63 T CONST)) (-1839 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ (-1156 |#2| |#3| |#4|)) NIL (|has| (-1156 |#2| |#3| |#4|) (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-1156 |#2| |#3| |#4|)) NIL) (($ (-1156 |#2| |#3| |#4|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-1156 |#2| |#3| |#4|) (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| (-1156 |#2| |#3| |#4|) (-37 (-385 (-525))))))) -(((-1157 |#1| |#2| |#3| |#4|) (-13 (-304 (-1156 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -3015 ((-3 (-781 |#2|) "failed") $)) (-15 -3043 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1156 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-591 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) "failed") $)))) (-13 (-788) (-966 (-525)) (-587 (-525)) (-429)) (-13 (-27) (-1111) (-408 |#1|)) (-1089) |#2|) (T -1157)) -((-3015 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-788) (-966 (-525)) (-587 (-525)) (-429))) (-5 *2 (-781 *4)) (-5 *1 (-1157 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1111) (-408 *3))) (-14 *5 (-1089)) (-14 *6 *4))) (-3043 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-788) (-966 (-525)) (-587 (-525)) (-429))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1156 *4 *5 *6)) (|:| |%expon| (-297 *4 *5 *6)) (|:| |%expTerms| (-591 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))))) (|:| |%type| (-1072)))) (-5 *1 (-1157 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1111) (-408 *3))) (-14 *5 (-1089)) (-14 *6 *4)))) -(-13 (-304 (-1156 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -3015 ((-3 (-781 |#2|) "failed") $)) (-15 -3043 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1156 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-591 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) "failed") $)))) -((-2940 ((|#2| $) 29)) (-2434 ((|#2| $) 18)) (-3856 (($ $) 36)) (-2983 (($ $ (-525)) 64)) (-3727 (((-108) $ (-712)) 33)) (-3912 ((|#2| $ |#2|) 61)) (-2568 ((|#2| $ |#2|) 59)) (-2847 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3245 (($ $ (-591 $)) 60)) (-2424 ((|#2| $) 17)) (-2884 (($ $) NIL) (($ $ (-712)) 42)) (-2275 (((-591 $) $) 26)) (-3219 (((-108) $ $) 50)) (-3491 (((-108) $ (-712)) 32)) (-3295 (((-108) $ (-712)) 31)) (-2878 (((-108) $) 28)) (-2555 ((|#2| $) 24) (($ $ (-712)) 46)) (-1881 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4133 (((-108) $) 22)) (-2349 (($ $) 39)) (-3494 (($ $) 65)) (-1248 (((-712) $) 41)) (-3249 (($ $) 40)) (-1624 (($ $ $) 58) (($ |#2| $) NIL)) (-1567 (((-591 $) $) 27)) (-3944 (((-108) $ $) 48)) (-2028 (((-712) $) 35))) -(((-1158 |#1| |#2|) (-10 -8 (-15 -2983 (|#1| |#1| (-525))) (-15 -2847 (|#2| |#1| "last" |#2|)) (-15 -2568 (|#2| |#1| |#2|)) (-15 -2847 (|#1| |#1| "rest" |#1|)) (-15 -2847 (|#2| |#1| "first" |#2|)) (-15 -3494 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -1248 ((-712) |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -2434 (|#2| |#1|)) (-15 -2424 (|#2| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -2555 (|#1| |#1| (-712))) (-15 -1881 (|#2| |#1| "last")) (-15 -2555 (|#2| |#1|)) (-15 -2884 (|#1| |#1| (-712))) (-15 -1881 (|#1| |#1| "rest")) (-15 -2884 (|#1| |#1|)) (-15 -1881 (|#2| |#1| "first")) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#1|)) (-15 -3912 (|#2| |#1| |#2|)) (-15 -2847 (|#2| |#1| "value" |#2|)) (-15 -3245 (|#1| |#1| (-591 |#1|))) (-15 -3219 ((-108) |#1| |#1|)) (-15 -4133 ((-108) |#1|)) (-15 -1881 (|#2| |#1| "value")) (-15 -2940 (|#2| |#1|)) (-15 -2878 ((-108) |#1|)) (-15 -2275 ((-591 |#1|) |#1|)) (-15 -1567 ((-591 |#1|) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -2028 ((-712) |#1|)) (-15 -3727 ((-108) |#1| (-712))) (-15 -3491 ((-108) |#1| (-712))) (-15 -3295 ((-108) |#1| (-712)))) (-1159 |#2|) (-1125)) (T -1158)) -NIL -(-10 -8 (-15 -2983 (|#1| |#1| (-525))) (-15 -2847 (|#2| |#1| "last" |#2|)) (-15 -2568 (|#2| |#1| |#2|)) (-15 -2847 (|#1| |#1| "rest" |#1|)) (-15 -2847 (|#2| |#1| "first" |#2|)) (-15 -3494 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -1248 ((-712) |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -2434 (|#2| |#1|)) (-15 -2424 (|#2| |#1|)) (-15 -3856 (|#1| |#1|)) (-15 -2555 (|#1| |#1| (-712))) (-15 -1881 (|#2| |#1| "last")) (-15 -2555 (|#2| |#1|)) (-15 -2884 (|#1| |#1| (-712))) (-15 -1881 (|#1| |#1| "rest")) (-15 -2884 (|#1| |#1|)) (-15 -1881 (|#2| |#1| "first")) (-15 -1624 (|#1| |#2| |#1|)) (-15 -1624 (|#1| |#1| |#1|)) (-15 -3912 (|#2| |#1| |#2|)) (-15 -2847 (|#2| |#1| "value" |#2|)) (-15 -3245 (|#1| |#1| (-591 |#1|))) (-15 -3219 ((-108) |#1| |#1|)) (-15 -4133 ((-108) |#1|)) (-15 -1881 (|#2| |#1| "value")) (-15 -2940 (|#2| |#1|)) (-15 -2878 ((-108) |#1|)) (-15 -2275 ((-591 |#1|) |#1|)) (-15 -1567 ((-591 |#1|) |#1|)) (-15 -3944 ((-108) |#1| |#1|)) (-15 -2028 ((-712) |#1|)) (-15 -3727 ((-108) |#1| (-712))) (-15 -3491 ((-108) |#1| (-712))) (-15 -3295 ((-108) |#1| (-712)))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-2940 ((|#1| $) 48)) (-2434 ((|#1| $) 65)) (-3856 (($ $) 67)) (-2983 (($ $ (-525)) 52 (|has| $ (-6 -4251)))) (-3727 (((-108) $ (-712)) 8)) (-3912 ((|#1| $ |#1|) 39 (|has| $ (-6 -4251)))) (-3191 (($ $ $) 56 (|has| $ (-6 -4251)))) (-2568 ((|#1| $ |#1|) 54 (|has| $ (-6 -4251)))) (-2756 ((|#1| $ |#1|) 58 (|has| $ (-6 -4251)))) (-2847 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4251))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4251))) (($ $ "rest" $) 55 (|has| $ (-6 -4251))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4251)))) (-3245 (($ $ (-591 $)) 41 (|has| $ (-6 -4251)))) (-2424 ((|#1| $) 66)) (-2055 (($) 7 T CONST)) (-2884 (($ $) 73) (($ $ (-712)) 71)) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-2275 (((-591 $) $) 50)) (-3219 (((-108) $ $) 42 (|has| |#1| (-1018)))) (-3491 (((-108) $ (-712)) 9)) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35)) (-3295 (((-108) $ (-712)) 10)) (-2065 (((-591 |#1|) $) 45)) (-2878 (((-108) $) 49)) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2555 ((|#1| $) 70) (($ $ (-712)) 68)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2872 ((|#1| $) 76) (($ $ (-712)) 74)) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2194 (((-525) $ $) 44)) (-4133 (((-108) $) 46)) (-2349 (($ $) 62)) (-3494 (($ $) 59 (|has| $ (-6 -4251)))) (-1248 (((-712) $) 63)) (-3249 (($ $) 64)) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2873 (($ $) 13)) (-3729 (($ $ $) 61 (|has| $ (-6 -4251))) (($ $ |#1|) 60 (|has| $ (-6 -4251)))) (-1624 (($ $ $) 78) (($ |#1| $) 77)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1567 (((-591 $) $) 51)) (-3592 (((-108) $ $) 43 (|has| |#1| (-1018)))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-1159 |#1|) (-131) (-1125)) (T -1159)) -((-1624 (*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-1624 (*1 *1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1159 *3)) (-4 *3 (-1125)))) (-2884 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1159 *3)) (-4 *3 (-1125)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1159 *3)) (-4 *3 (-1125)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-1881 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2555 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1159 *3)) (-4 *3 (-1125)))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-3249 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-1248 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1125)) (-5 *2 (-712)))) (-2349 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-3729 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-3729 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-3494 (*1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2756 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2847 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-3191 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2847 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4251)) (-4 *1 (-1159 *3)) (-4 *3 (-1125)))) (-2568 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2847 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) (-2983 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4251)) (-4 *1 (-1159 *3)) (-4 *3 (-1125))))) -(-13 (-940 |t#1|) (-10 -8 (-15 -1624 ($ $ $)) (-15 -1624 ($ |t#1| $)) (-15 -2872 (|t#1| $)) (-15 -1881 (|t#1| $ "first")) (-15 -2872 ($ $ (-712))) (-15 -2884 ($ $)) (-15 -1881 ($ $ "rest")) (-15 -2884 ($ $ (-712))) (-15 -2555 (|t#1| $)) (-15 -1881 (|t#1| $ "last")) (-15 -2555 ($ $ (-712))) (-15 -3856 ($ $)) (-15 -2424 (|t#1| $)) (-15 -2434 (|t#1| $)) (-15 -3249 ($ $)) (-15 -1248 ((-712) $)) (-15 -2349 ($ $)) (IF (|has| $ (-6 -4251)) (PROGN (-15 -3729 ($ $ $)) (-15 -3729 ($ $ |t#1|)) (-15 -3494 ($ $)) (-15 -2756 (|t#1| $ |t#1|)) (-15 -2847 (|t#1| $ "first" |t#1|)) (-15 -3191 ($ $ $)) (-15 -2847 ($ $ "rest" $)) (-15 -2568 (|t#1| $ |t#1|)) (-15 -2847 (|t#1| $ "last" |t#1|)) (-15 -2983 ($ $ (-525)))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1018)) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-565 (-796)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-940 |#1|) . T) ((-1018) |has| |#1| (-1018)) ((-1125) . T)) -((-1257 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1160 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1257 (|#4| (-1 |#2| |#1|) |#3|))) (-975) (-975) (-1162 |#1|) (-1162 |#2|)) (T -1160)) -((-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-975)) (-4 *6 (-975)) (-4 *2 (-1162 *6)) (-5 *1 (-1160 *5 *6 *4 *2)) (-4 *4 (-1162 *5))))) -(-10 -7 (-15 -1257 (|#4| (-1 |#2| |#1|) |#3|))) -((-1306 (((-108) $) 15)) (-4087 (($ $) 92)) (-2381 (($ $) 68)) (-4058 (($ $) 88)) (-2360 (($ $) 64)) (-4109 (($ $) 96)) (-2400 (($ $) 72)) (-2356 (($ $) 62)) (-2288 (($ $) 60)) (-4122 (($ $) 98)) (-2410 (($ $) 74)) (-4098 (($ $) 94)) (-2391 (($ $) 70)) (-4073 (($ $) 90)) (-2370 (($ $) 66)) (-2686 (((-796) $) 48) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4163 (($ $) 104)) (-2457 (($ $) 80)) (-4137 (($ $) 100)) (-2432 (($ $) 76)) (-4193 (($ $) 108)) (-2477 (($ $) 84)) (-1234 (($ $) 110)) (-2495 (($ $) 86)) (-4179 (($ $) 106)) (-2469 (($ $) 82)) (-4149 (($ $) 102)) (-2444 (($ $) 78)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-385 (-525))) 58))) -(((-1161 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2381 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -2477 (|#1| |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -2457 (|#1| |#1|)) (-15 -4073 (|#1| |#1|)) (-15 -4098 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4179 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -4193 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4163 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| (-525))) (-15 ** (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-854))) (-15 -1306 ((-108) |#1|)) (-15 -2686 ((-796) |#1|))) (-1162 |#2|) (-975)) (T -1161)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2381 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -2477 (|#1| |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -2457 (|#1| |#1|)) (-15 -4073 (|#1| |#1|)) (-15 -4098 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4179 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -4193 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -4163 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2686 (|#1| |#2|)) (-15 -2686 (|#1| |#1|)) (-15 -2686 (|#1| (-385 (-525)))) (-15 -2686 (|#1| (-525))) (-15 ** (|#1| |#1| (-712))) (-15 ** (|#1| |#1| (-854))) (-15 -1306 ((-108) |#1|)) (-15 -2686 ((-796) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-1444 (((-591 (-1003)) $) 74)) (-1592 (((-1089) $) 103)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3641 (($ $) 52 (|has| |#1| (-517)))) (-3077 (((-108) $) 54 (|has| |#1| (-517)))) (-3328 (($ $ (-712)) 98) (($ $ (-712) (-712)) 97)) (-3581 (((-1070 (-2 (|:| |k| (-712)) (|:| |c| |#1|))) $) 105)) (-4087 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) 19)) (-2551 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-4058 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-1070 (-2 (|:| |k| (-712)) (|:| |c| |#1|)))) 155) (($ (-1070 |#1|)) 153)) (-4109 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) 17 T CONST)) (-1575 (($ $) 60)) (-1522 (((-3 $ "failed") $) 34)) (-1561 (($ $) 152)) (-3298 (((-885 |#1|) $ (-712)) 150) (((-885 |#1|) $ (-712) (-712)) 149)) (-1795 (((-108) $) 73)) (-1417 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-712) $) 100) (((-712) $ (-712)) 99)) (-3865 (((-108) $) 31)) (-3126 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $ (-854)) 101)) (-3619 (($ (-1 |#1| (-525)) $) 151)) (-3802 (((-108) $) 62)) (-1422 (($ |#1| (-712)) 61) (($ $ (-1003) (-712)) 76) (($ $ (-591 (-1003)) (-591 (-712))) 75)) (-1257 (($ (-1 |#1| |#1|) $) 63)) (-2356 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) 65)) (-1556 ((|#1| $) 66)) (-2621 (((-1072) $) 9)) (-2452 (($ $) 147 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) 146 (-3150 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-891)) (|has| |#1| (-1111)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2937 (((-1036) $) 10)) (-1618 (($ $ (-712)) 95)) (-3210 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2288 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-1980 (((-1070 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-712)))))) (-1881 ((|#1| $ (-712)) 104) (($ $ $) 81 (|has| (-712) (-1030)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) 89 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (($ $ (-1089) (-712)) 88 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (($ $ (-591 (-1089))) 87 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (($ $ (-1089)) 86 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (($ $ (-712)) 84 (|has| |#1| (-15 * (|#1| (-712) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (-2743 (((-712) $) 64)) (-4122 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) 72)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3109 (((-1070 |#1|) $) 154)) (-1263 ((|#1| $ (-712)) 59)) (-3751 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-3425 (((-712)) 29)) (-1708 ((|#1| $) 102)) (-4163 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4137 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-712)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-712)))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) 93 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (($ $ (-1089) (-712)) 92 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (($ $ (-591 (-1089))) 91 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (($ $ (-1089)) 90 (-12 (|has| |#1| (-833 (-1089))) (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (($ $ (-712)) 85 (|has| |#1| (-15 * (|#1| (-712) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ |#1|) 148 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) -(((-1162 |#1|) (-131) (-975)) (T -1162)) -((-1895 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-712)) (|:| |c| *3)))) (-4 *3 (-975)) (-4 *1 (-1162 *3)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-975)) (-5 *2 (-1070 *3)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-4 *1 (-1162 *3)))) (-1561 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-975)))) (-3619 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1162 *3)) (-4 *3 (-975)))) (-3298 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *1 (-1162 *4)) (-4 *4 (-975)) (-5 *2 (-885 *4)))) (-3298 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-712)) (-4 *1 (-1162 *4)) (-4 *4 (-975)) (-5 *2 (-885 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) (-2452 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-975)) (-4 *2 (-37 (-385 (-525)))))) (-2452 (*1 *1 *1 *2) (-3150 (-12 (-5 *2 (-1089)) (-4 *1 (-1162 *3)) (-4 *3 (-975)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-891)) (-4 *3 (-1111)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1162 *3)) (-4 *3 (-975)) (-12 (|has| *3 (-15 -1444 ((-591 *2) *3))) (|has| *3 (-15 -2452 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))) -(-13 (-1149 |t#1| (-712)) (-10 -8 (-15 -1895 ($ (-1070 (-2 (|:| |k| (-712)) (|:| |c| |t#1|))))) (-15 -3109 ((-1070 |t#1|) $)) (-15 -1895 ($ (-1070 |t#1|))) (-15 -1561 ($ $)) (-15 -3619 ($ (-1 |t#1| (-525)) $)) (-15 -3298 ((-885 |t#1|) $ (-712))) (-15 -3298 ((-885 |t#1|) $ (-712) (-712))) (IF (|has| |t#1| (-341)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2452 ($ $)) (IF (|has| |t#1| (-15 -2452 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -1444 ((-591 (-1089)) |t#1|))) (-15 -2452 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1111)) (IF (|has| |t#1| (-891)) (IF (|has| |t#1| (-29 (-525))) (-15 -2452 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-932)) (-6 (-1111))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-712)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-712) |#1|))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-712) (-1030)) ((-269) |has| |#1| (-517)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) |has| |#1| (-517)) ((-593 #1#) |has| |#1| (-37 (-385 (-525)))) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #1#) |has| |#1| (-37 (-385 (-525)))) ((-659 |#1|) |has| |#1| (-160)) ((-659 $) |has| |#1| (-517)) ((-668) . T) ((-833 (-1089)) -12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089)))) ((-904 |#1| #0# (-1003)) . T) ((-932) |has| |#1| (-37 (-385 (-525)))) ((-981 #1#) |has| |#1| (-37 (-385 (-525)))) ((-981 |#1|) . T) ((-981 $) -3150 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1111) |has| |#1| (-37 (-385 (-525)))) ((-1114) |has| |#1| (-37 (-385 (-525)))) ((-1149 |#1| #0#) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-1444 (((-591 (-1003)) $) NIL)) (-1592 (((-1089) $) 87)) (-2856 (((-1144 |#2| |#1|) $ (-712)) 73)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3641 (($ $) NIL (|has| |#1| (-517)))) (-3077 (((-108) $) 137 (|has| |#1| (-517)))) (-3328 (($ $ (-712)) 122) (($ $ (-712) (-712)) 124)) (-3581 (((-1070 (-2 (|:| |k| (-712)) (|:| |c| |#1|))) $) 42)) (-4087 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2381 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3332 (((-3 $ "failed") $ $) NIL)) (-2551 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4058 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1895 (($ (-1070 (-2 (|:| |k| (-712)) (|:| |c| |#1|)))) 53) (($ (-1070 |#1|)) NIL)) (-4109 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2400 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2055 (($) NIL T CONST)) (-3967 (($ $) 128)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-1561 (($ $) 135)) (-3298 (((-885 |#1|) $ (-712)) 63) (((-885 |#1|) $ (-712) (-712)) 65)) (-1795 (((-108) $) NIL)) (-1417 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1676 (((-712) $) NIL) (((-712) $ (-712)) NIL)) (-3865 (((-108) $) NIL)) (-4141 (($ $) 112)) (-3126 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3258 (($ (-525) (-525) $) 130)) (-1698 (($ $ (-854)) 134)) (-3619 (($ (-1 |#1| (-525)) $) 106)) (-3802 (((-108) $) NIL)) (-1422 (($ |#1| (-712)) 15) (($ $ (-1003) (-712)) NIL) (($ $ (-591 (-1003)) (-591 (-712))) NIL)) (-1257 (($ (-1 |#1| |#1|) $) 94)) (-2356 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1548 (($ $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-3089 (($ $) 110)) (-2949 (($ $) 108)) (-3503 (($ (-525) (-525) $) 132)) (-2452 (($ $) 145 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1089)) 151 (-3150 (-12 (|has| |#1| (-15 -2452 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -1444 ((-591 (-1089)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-891)) (|has| |#1| (-1111))))) (($ $ (-1167 |#2|)) 146 (|has| |#1| (-37 (-385 (-525)))))) (-2937 (((-1036) $) NIL)) (-4049 (($ $ (-525) (-525)) 116)) (-1618 (($ $ (-712)) 118)) (-3210 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2288 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2609 (($ $) 114)) (-1980 (((-1070 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-712)))))) (-1881 ((|#1| $ (-712)) 91) (($ $ $) 126 (|has| (-712) (-1030)))) (-2209 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) 103 (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-712) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-712) |#1|)))) (($ $ (-1167 |#2|)) 99)) (-2743 (((-712) $) NIL)) (-4122 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4098 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2391 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4073 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2370 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1664 (($ $) 120)) (-2686 (((-796) $) NIL) (($ (-525)) 24) (($ (-385 (-525))) 143 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 23 (|has| |#1| (-160))) (($ (-1144 |#2| |#1|)) 80) (($ (-1167 |#2|)) 20)) (-3109 (((-1070 |#1|) $) NIL)) (-1263 ((|#1| $ (-712)) 90)) (-3751 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-3425 (((-712)) NIL)) (-1708 ((|#1| $) 88)) (-4163 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2457 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1724 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4137 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2432 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2477 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4173 ((|#1| $ (-712)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-712)))) (|has| |#1| (-15 -2686 (|#1| (-1089))))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2495 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4179 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2469 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4149 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2444 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 17 T CONST)) (-1839 (($) 13 T CONST)) (-1796 (($ $ (-591 (-1089)) (-591 (-712))) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089) (-712)) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-591 (-1089))) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-1089)) NIL (-12 (|has| |#1| (-15 * (|#1| (-712) |#1|))) (|has| |#1| (-833 (-1089))))) (($ $ (-712)) NIL (|has| |#1| (-15 * (|#1| (-712) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-712) |#1|))))) (-3944 (((-108) $ $) NIL)) (-4059 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) 102)) (-4036 (($ $ $) 18)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL) (($ $ |#1|) 140 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) -(((-1163 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-10 -8 (-15 -2686 ($ (-1144 |#2| |#1|))) (-15 -2856 ((-1144 |#2| |#1|) $ (-712))) (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (-15 -2949 ($ $)) (-15 -3089 ($ $)) (-15 -4141 ($ $)) (-15 -2609 ($ $)) (-15 -4049 ($ $ (-525) (-525))) (-15 -3967 ($ $)) (-15 -3258 ($ (-525) (-525) $)) (-15 -3503 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) (-975) (-1089) |#1|) (T -1163)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1144 *4 *3)) (-4 *3 (-975)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1163 *3 *4 *5)))) (-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1144 *5 *4)) (-5 *1 (-1163 *4 *5 *6)) (-4 *4 (-975)) (-14 *5 (-1089)) (-14 *6 *4))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-975)) (-14 *5 *3))) (-2949 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) (-14 *4 *2))) (-3089 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) (-14 *4 *2))) (-4141 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) (-14 *4 *2))) (-2609 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) (-14 *4 *2))) (-4049 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-975)) (-14 *4 (-1089)) (-14 *5 *3))) (-3967 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) (-14 *4 *2))) (-3258 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-975)) (-14 *4 (-1089)) (-14 *5 *3))) (-3503 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-975)) (-14 *4 (-1089)) (-14 *5 *3))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3)))) -(-13 (-1162 |#1|) (-10 -8 (-15 -2686 ($ (-1144 |#2| |#1|))) (-15 -2856 ((-1144 |#2| |#1|) $ (-712))) (-15 -2686 ($ (-1167 |#2|))) (-15 -2209 ($ $ (-1167 |#2|))) (-15 -2949 ($ $)) (-15 -3089 ($ $)) (-15 -4141 ($ $)) (-15 -2609 ($ $)) (-15 -4049 ($ $ (-525) (-525))) (-15 -3967 ($ $)) (-15 -3258 ($ (-525) (-525) $)) (-15 -3503 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2452 ($ $ (-1167 |#2|))) |%noBranch|))) -((-3686 (((-1 (-1070 |#1|) (-591 (-1070 |#1|))) (-1 |#2| (-591 |#2|))) 24)) (-2903 (((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2322 (((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|)) 13)) (-3525 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2273 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2146 ((|#2| (-1 |#2| (-591 |#2|)) (-591 |#1|)) 54)) (-2638 (((-591 |#2|) (-591 |#1|) (-591 (-1 |#2| (-591 |#2|)))) 61)) (-3961 ((|#2| |#2| |#2|) 43))) -(((-1164 |#1| |#2|) (-10 -7 (-15 -2322 ((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|))) (-15 -2903 ((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3686 ((-1 (-1070 |#1|) (-591 (-1070 |#1|))) (-1 |#2| (-591 |#2|)))) (-15 -3961 (|#2| |#2| |#2|)) (-15 -2273 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3525 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2146 (|#2| (-1 |#2| (-591 |#2|)) (-591 |#1|))) (-15 -2638 ((-591 |#2|) (-591 |#1|) (-591 (-1 |#2| (-591 |#2|)))))) (-37 (-385 (-525))) (-1162 |#1|)) (T -1164)) -((-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 (-1 *6 (-591 *6)))) (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1162 *5)) (-5 *2 (-591 *6)) (-5 *1 (-1164 *5 *6)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-591 *2))) (-5 *4 (-591 *5)) (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1162 *5)) (-5 *1 (-1164 *5 *2)))) (-3525 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1162 *4)) (-5 *1 (-1164 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1162 *4)) (-5 *1 (-1164 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-3961 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1164 *3 *2)) (-4 *2 (-1162 *3)))) (-3686 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-591 *5))) (-4 *5 (-1162 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1070 *4) (-591 (-1070 *4)))) (-5 *1 (-1164 *4 *5)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1162 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1164 *4 *5)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1162 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1164 *4 *5))))) -(-10 -7 (-15 -2322 ((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|))) (-15 -2903 ((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3686 ((-1 (-1070 |#1|) (-591 (-1070 |#1|))) (-1 |#2| (-591 |#2|)))) (-15 -3961 (|#2| |#2| |#2|)) (-15 -2273 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3525 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2146 (|#2| (-1 |#2| (-591 |#2|)) (-591 |#1|))) (-15 -2638 ((-591 |#2|) (-591 |#1|) (-591 (-1 |#2| (-591 |#2|)))))) -((-1504 ((|#2| |#4| (-712)) 30)) (-1699 ((|#4| |#2|) 25)) (-1672 ((|#4| (-385 |#2|)) 52 (|has| |#1| (-517)))) (-2696 (((-1 |#4| (-591 |#4|)) |#3|) 46))) -(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1699 (|#4| |#2|)) (-15 -1504 (|#2| |#4| (-712))) (-15 -2696 ((-1 |#4| (-591 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -1672 (|#4| (-385 |#2|))) |%noBranch|)) (-975) (-1147 |#1|) (-601 |#2|) (-1162 |#1|)) (T -1165)) -((-1672 (*1 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-517)) (-4 *4 (-975)) (-4 *2 (-1162 *4)) (-5 *1 (-1165 *4 *5 *6 *2)) (-4 *6 (-601 *5)))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-975)) (-4 *5 (-1147 *4)) (-5 *2 (-1 *6 (-591 *6))) (-5 *1 (-1165 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1162 *4)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *4 (-712)) (-4 *5 (-975)) (-4 *2 (-1147 *5)) (-5 *1 (-1165 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1162 *5)))) (-1699 (*1 *2 *3) (-12 (-4 *4 (-975)) (-4 *3 (-1147 *4)) (-4 *2 (-1162 *4)) (-5 *1 (-1165 *4 *3 *5 *2)) (-4 *5 (-601 *3))))) -(-10 -7 (-15 -1699 (|#4| |#2|)) (-15 -1504 (|#2| |#4| (-712))) (-15 -2696 ((-1 |#4| (-591 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -1672 (|#4| (-385 |#2|))) |%noBranch|)) -NIL -(((-1166) (-131)) (T -1166)) -NIL -(-13 (-10 -7 (-6 -4131))) -((-2673 (((-108) $ $) NIL)) (-1592 (((-1089)) 12)) (-2621 (((-1072) $) 17)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 11) (((-1089) $) 8)) (-3944 (((-108) $ $) 14))) -(((-1167 |#1|) (-13 (-1018) (-565 (-1089)) (-10 -8 (-15 -2686 ((-1089) $)) (-15 -1592 ((-1089))))) (-1089)) (T -1167)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1167 *3)) (-14 *3 *2))) (-1592 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1167 *3)) (-14 *3 *2)))) -(-13 (-1018) (-565 (-1089)) (-10 -8 (-15 -2686 ((-1089) $)) (-15 -1592 ((-1089))))) -((-3559 (($ (-712)) 18)) (-2533 (((-631 |#2|) $ $) 40)) (-2380 ((|#2| $) 48)) (-2445 ((|#2| $) 47)) (-3183 ((|#2| $ $) 35)) (-1804 (($ $ $) 44)) (-4047 (($ $) 22) (($ $ $) 28)) (-4036 (($ $ $) 15)) (* (($ (-525) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1168 |#1| |#2|) (-10 -8 (-15 -2380 (|#2| |#1|)) (-15 -2445 (|#2| |#1|)) (-15 -1804 (|#1| |#1| |#1|)) (-15 -2533 ((-631 |#2|) |#1| |#1|)) (-15 -3183 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -3559 (|#1| (-712))) (-15 -4036 (|#1| |#1| |#1|))) (-1169 |#2|) (-1125)) (T -1168)) -NIL -(-10 -8 (-15 -2380 (|#2| |#1|)) (-15 -2445 (|#2| |#1|)) (-15 -1804 (|#1| |#1| |#1|)) (-15 -2533 ((-631 |#2|) |#1| |#1|)) (-15 -3183 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -3559 (|#1| (-712))) (-15 -4036 (|#1| |#1| |#1|))) -((-2673 (((-108) $ $) 19 (|has| |#1| (-1018)))) (-3559 (($ (-712)) 112 (|has| |#1| (-23)))) (-3832 (((-1176) $ (-525) (-525)) 40 (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4251))) (($ $) 88 (-12 (|has| |#1| (-788)) (|has| $ (-6 -4251))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) 8)) (-2847 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) 58 (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4250)))) (-2055 (($) 7 T CONST)) (-3405 (($ $) 90 (|has| $ (-6 -4251)))) (-2747 (($ $) 100)) (-2908 (($ $) 78 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2537 (($ |#1| $) 77 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) 51)) (-1734 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1018)))) (-2916 (((-591 |#1|) $) 30 (|has| $ (-6 -4250)))) (-2533 (((-631 |#1|) $ $) 105 (|has| |#1| (-975)))) (-1316 (($ (-712) |#1|) 69)) (-3491 (((-108) $ (-712)) 9)) (-4152 (((-525) $) 43 (|has| (-525) (-788)))) (-1923 (($ $ $) 87 (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-1826 (((-525) $) 44 (|has| (-525) (-788)))) (-3475 (($ $ $) 86 (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2380 ((|#1| $) 102 (-12 (|has| |#1| (-975)) (|has| |#1| (-932))))) (-3295 (((-108) $ (-712)) 10)) (-2445 ((|#1| $) 103 (-12 (|has| |#1| (-975)) (|has| |#1| (-932))))) (-2621 (((-1072) $) 22 (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3761 (((-591 (-525)) $) 46)) (-1675 (((-108) (-525) $) 47)) (-2937 (((-1036) $) 21 (|has| |#1| (-1018)))) (-2872 ((|#1| $) 42 (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1858 (($ $ |#1|) 41 (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) 14)) (-3384 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) 48)) (-2077 (((-108) $) 11)) (-3164 (($) 12)) (-1881 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1138 (-525))) 63)) (-3183 ((|#1| $ $) 106 (|has| |#1| (-975)))) (-3226 (($ $ (-525)) 62) (($ $ (-1138 (-525))) 61)) (-1804 (($ $ $) 104 (|has| |#1| (-975)))) (-2960 (((-712) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4250))) (((-712) |#1| $) 28 (-12 (|has| |#1| (-1018)) (|has| $ (-6 -4250))))) (-2992 (($ $ $ (-525)) 91 (|has| $ (-6 -4251)))) (-2873 (($ $) 13)) (-1300 (((-501) $) 79 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 70)) (-1624 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-591 $)) 65)) (-2686 (((-796) $) 18 (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) 84 (|has| |#1| (-788)))) (-3982 (((-108) $ $) 83 (|has| |#1| (-788)))) (-3944 (((-108) $ $) 20 (|has| |#1| (-1018)))) (-3994 (((-108) $ $) 85 (|has| |#1| (-788)))) (-3971 (((-108) $ $) 82 (|has| |#1| (-788)))) (-4047 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4036 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-668))) (($ $ |#1|) 107 (|has| |#1| (-668)))) (-2028 (((-712) $) 6 (|has| $ (-6 -4250))))) -(((-1169 |#1|) (-131) (-1125)) (T -1169)) -((-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-25)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1169 *3)) (-4 *3 (-23)) (-4 *3 (-1125)))) (-4047 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-21)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1169 *3)) (-4 *3 (-1125)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-668)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-668)))) (-3183 (*1 *2 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-975)))) (-2533 (*1 *2 *1 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1125)) (-4 *3 (-975)) (-5 *2 (-631 *3)))) (-1804 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-975)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-932)) (-4 *2 (-975)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-932)) (-4 *2 (-975))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4036 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3559 ($ (-712))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4047 ($ $)) (-15 -4047 ($ $ $)) (-15 * ($ (-525) $))) |%noBranch|) (IF (|has| |t#1| (-668)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-975)) (PROGN (-15 -3183 (|t#1| $ $)) (-15 -2533 ((-631 |t#1|) $ $)) (-15 -1804 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-932)) (IF (|has| |t#1| (-975)) (PROGN (-15 -2445 (|t#1| $)) (-15 -2380 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-33) . T) ((-97) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-565 (-796)) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788)) (|has| |#1| (-565 (-796)))) ((-142 |#1|) . T) ((-566 (-501)) |has| |#1| (-566 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))) ((-596 |#1|) . T) ((-19 |#1|) . T) ((-788) |has| |#1| (-788)) ((-1018) -3150 (|has| |#1| (-1018)) (|has| |#1| (-788))) ((-1125) . T)) -((-1350 (((-1171 |#2|) (-1 |#2| |#1| |#2|) (-1171 |#1|) |#2|) 13)) (-3618 ((|#2| (-1 |#2| |#1| |#2|) (-1171 |#1|) |#2|) 15)) (-1257 (((-3 (-1171 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1171 |#1|)) 28) (((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)) 18))) -(((-1170 |#1| |#2|) (-10 -7 (-15 -1350 ((-1171 |#2|) (-1 |#2| |#1| |#2|) (-1171 |#1|) |#2|)) (-15 -3618 (|#2| (-1 |#2| |#1| |#2|) (-1171 |#1|) |#2|)) (-15 -1257 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|))) (-15 -1257 ((-3 (-1171 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1171 |#1|)))) (-1125) (-1125)) (T -1170)) -((-1257 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1171 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1171 *6)) (-5 *1 (-1170 *5 *6)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1171 *6)) (-5 *1 (-1170 *5 *6)))) (-3618 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1171 *5)) (-4 *5 (-1125)) (-4 *2 (-1125)) (-5 *1 (-1170 *5 *2)))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1171 *6)) (-4 *6 (-1125)) (-4 *5 (-1125)) (-5 *2 (-1171 *5)) (-5 *1 (-1170 *6 *5))))) -(-10 -7 (-15 -1350 ((-1171 |#2|) (-1 |#2| |#1| |#2|) (-1171 |#1|) |#2|)) (-15 -3618 (|#2| (-1 |#2| |#1| |#2|) (-1171 |#1|) |#2|)) (-15 -1257 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|))) (-15 -1257 ((-3 (-1171 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1171 |#1|)))) -((-2673 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3559 (($ (-712)) NIL (|has| |#1| (-23)))) (-2192 (($ (-591 |#1|)) 9)) (-3832 (((-1176) $ (-525) (-525)) NIL (|has| $ (-6 -4251)))) (-3110 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-788)))) (-2613 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4251))) (($ $) NIL (-12 (|has| $ (-6 -4251)) (|has| |#1| (-788))))) (-1282 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-788)))) (-3727 (((-108) $ (-712)) NIL)) (-2847 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251))) ((|#1| $ (-1138 (-525)) |#1|) NIL (|has| $ (-6 -4251)))) (-2467 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-2055 (($) NIL T CONST)) (-3405 (($ $) NIL (|has| $ (-6 -4251)))) (-2747 (($ $) NIL)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2537 (($ |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-3618 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4250))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4250)))) (-4205 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4251)))) (-4121 ((|#1| $ (-525)) NIL)) (-1734 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1018))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1018)))) (-2916 (((-591 |#1|) $) 15 (|has| $ (-6 -4250)))) (-2533 (((-631 |#1|) $ $) NIL (|has| |#1| (-975)))) (-1316 (($ (-712) |#1|) NIL)) (-3491 (((-108) $ (-712)) NIL)) (-4152 (((-525) $) NIL (|has| (-525) (-788)))) (-1923 (($ $ $) NIL (|has| |#1| (-788)))) (-3459 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-788)))) (-4207 (((-591 |#1|) $) NIL (|has| $ (-6 -4250)))) (-3956 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-1826 (((-525) $) NIL (|has| (-525) (-788)))) (-3475 (($ $ $) NIL (|has| |#1| (-788)))) (-4192 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2380 ((|#1| $) NIL (-12 (|has| |#1| (-932)) (|has| |#1| (-975))))) (-3295 (((-108) $ (-712)) NIL)) (-2445 ((|#1| $) NIL (-12 (|has| |#1| (-932)) (|has| |#1| (-975))))) (-2621 (((-1072) $) NIL (|has| |#1| (-1018)))) (-2059 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3761 (((-591 (-525)) $) NIL)) (-1675 (((-108) (-525) $) NIL)) (-2937 (((-1036) $) NIL (|has| |#1| (-1018)))) (-2872 ((|#1| $) NIL (|has| (-525) (-788)))) (-2714 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1858 (($ $ |#1|) NIL (|has| $ (-6 -4251)))) (-3465 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018)))) (($ $ (-591 |#1|) (-591 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1018))))) (-2023 (((-108) $ $) NIL)) (-3384 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2998 (((-591 |#1|) $) NIL)) (-2077 (((-108) $) NIL)) (-3164 (($) NIL)) (-1881 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-3183 ((|#1| $ $) NIL (|has| |#1| (-975)))) (-3226 (($ $ (-525)) NIL) (($ $ (-1138 (-525))) NIL)) (-1804 (($ $ $) NIL (|has| |#1| (-975)))) (-2960 (((-712) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250))) (((-712) |#1| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#1| (-1018))))) (-2992 (($ $ $ (-525)) NIL (|has| $ (-6 -4251)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) 19 (|has| |#1| (-566 (-501))))) (-2695 (($ (-591 |#1|)) 8)) (-1624 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-591 $)) NIL)) (-2686 (((-796) $) NIL (|has| |#1| (-565 (-796))))) (-1475 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4250)))) (-4004 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-1018)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-788)))) (-3971 (((-108) $ $) NIL (|has| |#1| (-788)))) (-4047 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4036 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-668))) (($ $ |#1|) NIL (|has| |#1| (-668)))) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1171 |#1|) (-13 (-1169 |#1|) (-10 -8 (-15 -2192 ($ (-591 |#1|))))) (-1125)) (T -1171)) -((-2192 (*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-1171 *3))))) -(-13 (-1169 |#1|) (-10 -8 (-15 -2192 ($ (-591 |#1|))))) -((-2673 (((-108) $ $) NIL)) (-2395 (((-1072) $ (-1072)) 90) (((-1072) $ (-1072) (-1072)) 88) (((-1072) $ (-1072) (-591 (-1072))) 87)) (-1419 (($) 59)) (-1680 (((-1176) $ (-445) (-854)) 45)) (-3094 (((-1176) $ (-854) (-1072)) 73) (((-1176) $ (-854) (-807)) 74)) (-3278 (((-1176) $ (-854) (-357) (-357)) 48)) (-2264 (((-1176) $ (-1072)) 69)) (-1464 (((-1176) $ (-854) (-1072)) 78)) (-1735 (((-1176) $ (-854) (-357) (-357)) 49)) (-3580 (((-1176) $ (-854) (-854)) 46)) (-2376 (((-1176) $) 70)) (-3518 (((-1176) $ (-854) (-1072)) 77)) (-3798 (((-1176) $ (-445) (-854)) 31)) (-3175 (((-1176) $ (-854) (-1072)) 76)) (-1274 (((-591 (-242)) $) 23) (($ $ (-591 (-242))) 24)) (-3061 (((-1176) $ (-712) (-712)) 43)) (-3118 (($ $) 60) (($ (-445) (-591 (-242))) 61)) (-2621 (((-1072) $) NIL)) (-1265 (((-525) $) 38)) (-2937 (((-1036) $) NIL)) (-2491 (((-1171 (-3 (-445) "undefined")) $) 37)) (-1408 (((-1171 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3175 (-525)) (|:| -1320 (-525)) (|:| |spline| (-525)) (|:| -3701 (-525)) (|:| |axesColor| (-807)) (|:| -3094 (-525)) (|:| |unitsColor| (-807)) (|:| |showing| (-525)))) $) 36)) (-1710 (((-1176) $ (-854) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-807) (-525) (-807) (-525)) 68)) (-4028 (((-591 (-876 (-205))) $) NIL)) (-1443 (((-445) $ (-854)) 33)) (-3351 (((-1176) $ (-712) (-712) (-854) (-854)) 40)) (-2996 (((-1176) $ (-1072)) 79)) (-1320 (((-1176) $ (-854) (-1072)) 75)) (-2686 (((-796) $) 85)) (-1269 (((-1176) $) 80)) (-3701 (((-1176) $ (-854) (-1072)) 71) (((-1176) $ (-854) (-807)) 72)) (-3944 (((-108) $ $) NIL))) -(((-1172) (-13 (-1018) (-10 -8 (-15 -4028 ((-591 (-876 (-205))) $)) (-15 -1419 ($)) (-15 -3118 ($ $)) (-15 -1274 ((-591 (-242)) $)) (-15 -1274 ($ $ (-591 (-242)))) (-15 -3118 ($ (-445) (-591 (-242)))) (-15 -1710 ((-1176) $ (-854) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-807) (-525) (-807) (-525))) (-15 -1408 ((-1171 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3175 (-525)) (|:| -1320 (-525)) (|:| |spline| (-525)) (|:| -3701 (-525)) (|:| |axesColor| (-807)) (|:| -3094 (-525)) (|:| |unitsColor| (-807)) (|:| |showing| (-525)))) $)) (-15 -2491 ((-1171 (-3 (-445) "undefined")) $)) (-15 -2264 ((-1176) $ (-1072))) (-15 -3798 ((-1176) $ (-445) (-854))) (-15 -1443 ((-445) $ (-854))) (-15 -3701 ((-1176) $ (-854) (-1072))) (-15 -3701 ((-1176) $ (-854) (-807))) (-15 -3094 ((-1176) $ (-854) (-1072))) (-15 -3094 ((-1176) $ (-854) (-807))) (-15 -3175 ((-1176) $ (-854) (-1072))) (-15 -3518 ((-1176) $ (-854) (-1072))) (-15 -1320 ((-1176) $ (-854) (-1072))) (-15 -2996 ((-1176) $ (-1072))) (-15 -1269 ((-1176) $)) (-15 -3351 ((-1176) $ (-712) (-712) (-854) (-854))) (-15 -1735 ((-1176) $ (-854) (-357) (-357))) (-15 -3278 ((-1176) $ (-854) (-357) (-357))) (-15 -1464 ((-1176) $ (-854) (-1072))) (-15 -3061 ((-1176) $ (-712) (-712))) (-15 -1680 ((-1176) $ (-445) (-854))) (-15 -3580 ((-1176) $ (-854) (-854))) (-15 -2395 ((-1072) $ (-1072))) (-15 -2395 ((-1072) $ (-1072) (-1072))) (-15 -2395 ((-1072) $ (-1072) (-591 (-1072)))) (-15 -2376 ((-1176) $)) (-15 -1265 ((-525) $)) (-15 -2686 ((-796) $))))) (T -1172)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-1172)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-591 (-876 (-205)))) (-5 *1 (-1172)))) (-1419 (*1 *1) (-5 *1 (-1172))) (-3118 (*1 *1 *1) (-5 *1 (-1172))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-591 (-242))) (-5 *1 (-1172)))) (-1274 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-242))) (-5 *1 (-1172)))) (-3118 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-591 (-242))) (-5 *1 (-1172)))) (-1710 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-854)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-807)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-1171 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3175 (-525)) (|:| -1320 (-525)) (|:| |spline| (-525)) (|:| -3701 (-525)) (|:| |axesColor| (-807)) (|:| -3094 (-525)) (|:| |unitsColor| (-807)) (|:| |showing| (-525))))) (-5 *1 (-1172)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-1171 (-3 (-445) "undefined"))) (-5 *1 (-1172)))) (-2264 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3798 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-854)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-1443 (*1 *2 *1 *3) (-12 (-5 *3 (-854)) (-5 *2 (-445)) (-5 *1 (-1172)))) (-3701 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3701 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-807)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3094 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3094 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-807)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3175 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3518 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-1320 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-2996 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-1269 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3351 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-712)) (-5 *4 (-854)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-1735 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-854)) (-5 *4 (-357)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3278 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-854)) (-5 *4 (-357)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-1464 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3061 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-1680 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-854)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-3580 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1176)) (-5 *1 (-1172)))) (-2395 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1172)))) (-2395 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1172)))) (-2395 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1172)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1172)))) (-1265 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1172))))) -(-13 (-1018) (-10 -8 (-15 -4028 ((-591 (-876 (-205))) $)) (-15 -1419 ($)) (-15 -3118 ($ $)) (-15 -1274 ((-591 (-242)) $)) (-15 -1274 ($ $ (-591 (-242)))) (-15 -3118 ($ (-445) (-591 (-242)))) (-15 -1710 ((-1176) $ (-854) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-807) (-525) (-807) (-525))) (-15 -1408 ((-1171 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3175 (-525)) (|:| -1320 (-525)) (|:| |spline| (-525)) (|:| -3701 (-525)) (|:| |axesColor| (-807)) (|:| -3094 (-525)) (|:| |unitsColor| (-807)) (|:| |showing| (-525)))) $)) (-15 -2491 ((-1171 (-3 (-445) "undefined")) $)) (-15 -2264 ((-1176) $ (-1072))) (-15 -3798 ((-1176) $ (-445) (-854))) (-15 -1443 ((-445) $ (-854))) (-15 -3701 ((-1176) $ (-854) (-1072))) (-15 -3701 ((-1176) $ (-854) (-807))) (-15 -3094 ((-1176) $ (-854) (-1072))) (-15 -3094 ((-1176) $ (-854) (-807))) (-15 -3175 ((-1176) $ (-854) (-1072))) (-15 -3518 ((-1176) $ (-854) (-1072))) (-15 -1320 ((-1176) $ (-854) (-1072))) (-15 -2996 ((-1176) $ (-1072))) (-15 -1269 ((-1176) $)) (-15 -3351 ((-1176) $ (-712) (-712) (-854) (-854))) (-15 -1735 ((-1176) $ (-854) (-357) (-357))) (-15 -3278 ((-1176) $ (-854) (-357) (-357))) (-15 -1464 ((-1176) $ (-854) (-1072))) (-15 -3061 ((-1176) $ (-712) (-712))) (-15 -1680 ((-1176) $ (-445) (-854))) (-15 -3580 ((-1176) $ (-854) (-854))) (-15 -2395 ((-1072) $ (-1072))) (-15 -2395 ((-1072) $ (-1072) (-1072))) (-15 -2395 ((-1072) $ (-1072) (-591 (-1072)))) (-15 -2376 ((-1176) $)) (-15 -1265 ((-525) $)) (-15 -2686 ((-796) $)))) -((-2673 (((-108) $ $) NIL)) (-2689 (((-1176) $ (-357)) 140) (((-1176) $ (-357) (-357) (-357)) 141)) (-2395 (((-1072) $ (-1072)) 148) (((-1072) $ (-1072) (-1072)) 146) (((-1072) $ (-1072) (-591 (-1072))) 145)) (-1762 (($) 50)) (-2628 (((-1176) $ (-357) (-357) (-357) (-357) (-357)) 116) (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $) 114) (((-1176) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 115) (((-1176) $ (-525) (-525) (-357) (-357) (-357)) 117) (((-1176) $ (-357) (-357)) 118) (((-1176) $ (-357) (-357) (-357)) 125)) (-2416 (((-357)) 97) (((-357) (-357)) 98)) (-2685 (((-357)) 92) (((-357) (-357)) 94)) (-3986 (((-357)) 95) (((-357) (-357)) 96)) (-2969 (((-357)) 101) (((-357) (-357)) 102)) (-2308 (((-357)) 99) (((-357) (-357)) 100)) (-3278 (((-1176) $ (-357) (-357)) 142)) (-2264 (((-1176) $ (-1072)) 126)) (-2749 (((-1049 (-205)) $) 51) (($ $ (-1049 (-205))) 52)) (-1515 (((-1176) $ (-1072)) 154)) (-2722 (((-1176) $ (-1072)) 155)) (-3535 (((-1176) $ (-357) (-357)) 124) (((-1176) $ (-525) (-525)) 139)) (-3580 (((-1176) $ (-854) (-854)) 132)) (-2376 (((-1176) $) 112)) (-1914 (((-1176) $ (-1072)) 153)) (-1753 (((-1176) $ (-1072)) 109)) (-1274 (((-591 (-242)) $) 53) (($ $ (-591 (-242))) 54)) (-3061 (((-1176) $ (-712) (-712)) 131)) (-2195 (((-1176) $ (-712) (-876 (-205))) 160)) (-3577 (($ $) 56) (($ (-1049 (-205)) (-1072)) 57) (($ (-1049 (-205)) (-591 (-242))) 58)) (-2911 (((-1176) $ (-357) (-357) (-357)) 106)) (-2621 (((-1072) $) NIL)) (-1265 (((-525) $) 103)) (-1961 (((-1176) $ (-357)) 143)) (-3233 (((-1176) $ (-357)) 158)) (-2937 (((-1036) $) NIL)) (-2804 (((-1176) $ (-357)) 157)) (-2249 (((-1176) $ (-1072)) 111)) (-3351 (((-1176) $ (-712) (-712) (-854) (-854)) 130)) (-2254 (((-1176) $ (-1072)) 108)) (-2996 (((-1176) $ (-1072)) 110)) (-2802 (((-1176) $ (-146) (-146)) 129)) (-2686 (((-796) $) 137)) (-1269 (((-1176) $) 113)) (-1642 (((-1176) $ (-1072)) 156)) (-3701 (((-1176) $ (-1072)) 107)) (-3944 (((-108) $ $) NIL))) -(((-1173) (-13 (-1018) (-10 -8 (-15 -2685 ((-357))) (-15 -2685 ((-357) (-357))) (-15 -3986 ((-357))) (-15 -3986 ((-357) (-357))) (-15 -2416 ((-357))) (-15 -2416 ((-357) (-357))) (-15 -2308 ((-357))) (-15 -2308 ((-357) (-357))) (-15 -2969 ((-357))) (-15 -2969 ((-357) (-357))) (-15 -1762 ($)) (-15 -3577 ($ $)) (-15 -3577 ($ (-1049 (-205)) (-1072))) (-15 -3577 ($ (-1049 (-205)) (-591 (-242)))) (-15 -2749 ((-1049 (-205)) $)) (-15 -2749 ($ $ (-1049 (-205)))) (-15 -2195 ((-1176) $ (-712) (-876 (-205)))) (-15 -1274 ((-591 (-242)) $)) (-15 -1274 ($ $ (-591 (-242)))) (-15 -3061 ((-1176) $ (-712) (-712))) (-15 -3580 ((-1176) $ (-854) (-854))) (-15 -2264 ((-1176) $ (-1072))) (-15 -3351 ((-1176) $ (-712) (-712) (-854) (-854))) (-15 -2628 ((-1176) $ (-357) (-357) (-357) (-357) (-357))) (-15 -2628 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -2628 ((-1176) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2628 ((-1176) $ (-525) (-525) (-357) (-357) (-357))) (-15 -2628 ((-1176) $ (-357) (-357))) (-15 -2628 ((-1176) $ (-357) (-357) (-357))) (-15 -2996 ((-1176) $ (-1072))) (-15 -3701 ((-1176) $ (-1072))) (-15 -2254 ((-1176) $ (-1072))) (-15 -1753 ((-1176) $ (-1072))) (-15 -2249 ((-1176) $ (-1072))) (-15 -3535 ((-1176) $ (-357) (-357))) (-15 -3535 ((-1176) $ (-525) (-525))) (-15 -2689 ((-1176) $ (-357))) (-15 -2689 ((-1176) $ (-357) (-357) (-357))) (-15 -3278 ((-1176) $ (-357) (-357))) (-15 -1914 ((-1176) $ (-1072))) (-15 -2804 ((-1176) $ (-357))) (-15 -3233 ((-1176) $ (-357))) (-15 -1515 ((-1176) $ (-1072))) (-15 -2722 ((-1176) $ (-1072))) (-15 -1642 ((-1176) $ (-1072))) (-15 -2911 ((-1176) $ (-357) (-357) (-357))) (-15 -1961 ((-1176) $ (-357))) (-15 -2376 ((-1176) $)) (-15 -2802 ((-1176) $ (-146) (-146))) (-15 -2395 ((-1072) $ (-1072))) (-15 -2395 ((-1072) $ (-1072) (-1072))) (-15 -2395 ((-1072) $ (-1072) (-591 (-1072)))) (-15 -1269 ((-1176) $)) (-15 -1265 ((-525) $))))) (T -1173)) -((-2685 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-2685 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-3986 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-3986 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-2416 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-2308 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-2308 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-2969 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-2969 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) (-1762 (*1 *1) (-5 *1 (-1173))) (-3577 (*1 *1 *1) (-5 *1 (-1173))) (-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-205))) (-5 *3 (-1072)) (-5 *1 (-1173)))) (-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-205))) (-5 *3 (-591 (-242))) (-5 *1 (-1173)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-1049 (-205))) (-5 *1 (-1173)))) (-2749 (*1 *1 *1 *2) (-12 (-5 *2 (-1049 (-205))) (-5 *1 (-1173)))) (-2195 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-712)) (-5 *4 (-876 (-205))) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-591 (-242))) (-5 *1 (-1173)))) (-1274 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-242))) (-5 *1 (-1173)))) (-3061 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3580 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2264 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3351 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-712)) (-5 *4 (-854)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2628 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-1173)))) (-2628 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2628 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2628 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2628 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2996 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3701 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2254 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-1753 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2249 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3535 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3535 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2689 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2689 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3278 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-1914 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2804 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-3233 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-1515 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2722 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-1642 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2911 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-146)) (-5 *2 (-1176)) (-5 *1 (-1173)))) (-2395 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1173)))) (-2395 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1173)))) (-2395 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1173)))) (-1269 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1173)))) (-1265 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1173))))) -(-13 (-1018) (-10 -8 (-15 -2685 ((-357))) (-15 -2685 ((-357) (-357))) (-15 -3986 ((-357))) (-15 -3986 ((-357) (-357))) (-15 -2416 ((-357))) (-15 -2416 ((-357) (-357))) (-15 -2308 ((-357))) (-15 -2308 ((-357) (-357))) (-15 -2969 ((-357))) (-15 -2969 ((-357) (-357))) (-15 -1762 ($)) (-15 -3577 ($ $)) (-15 -3577 ($ (-1049 (-205)) (-1072))) (-15 -3577 ($ (-1049 (-205)) (-591 (-242)))) (-15 -2749 ((-1049 (-205)) $)) (-15 -2749 ($ $ (-1049 (-205)))) (-15 -2195 ((-1176) $ (-712) (-876 (-205)))) (-15 -1274 ((-591 (-242)) $)) (-15 -1274 ($ $ (-591 (-242)))) (-15 -3061 ((-1176) $ (-712) (-712))) (-15 -3580 ((-1176) $ (-854) (-854))) (-15 -2264 ((-1176) $ (-1072))) (-15 -3351 ((-1176) $ (-712) (-712) (-854) (-854))) (-15 -2628 ((-1176) $ (-357) (-357) (-357) (-357) (-357))) (-15 -2628 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -2628 ((-1176) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2628 ((-1176) $ (-525) (-525) (-357) (-357) (-357))) (-15 -2628 ((-1176) $ (-357) (-357))) (-15 -2628 ((-1176) $ (-357) (-357) (-357))) (-15 -2996 ((-1176) $ (-1072))) (-15 -3701 ((-1176) $ (-1072))) (-15 -2254 ((-1176) $ (-1072))) (-15 -1753 ((-1176) $ (-1072))) (-15 -2249 ((-1176) $ (-1072))) (-15 -3535 ((-1176) $ (-357) (-357))) (-15 -3535 ((-1176) $ (-525) (-525))) (-15 -2689 ((-1176) $ (-357))) (-15 -2689 ((-1176) $ (-357) (-357) (-357))) (-15 -3278 ((-1176) $ (-357) (-357))) (-15 -1914 ((-1176) $ (-1072))) (-15 -2804 ((-1176) $ (-357))) (-15 -3233 ((-1176) $ (-357))) (-15 -1515 ((-1176) $ (-1072))) (-15 -2722 ((-1176) $ (-1072))) (-15 -1642 ((-1176) $ (-1072))) (-15 -2911 ((-1176) $ (-357) (-357) (-357))) (-15 -1961 ((-1176) $ (-357))) (-15 -2376 ((-1176) $)) (-15 -2802 ((-1176) $ (-146) (-146))) (-15 -2395 ((-1072) $ (-1072))) (-15 -2395 ((-1072) $ (-1072) (-1072))) (-15 -2395 ((-1072) $ (-1072) (-591 (-1072)))) (-15 -1269 ((-1176) $)) (-15 -1265 ((-525) $)))) -((-1933 (((-591 (-1072)) (-591 (-1072))) 94) (((-591 (-1072))) 90)) (-1437 (((-591 (-1072))) 88)) (-3649 (((-591 (-854)) (-591 (-854))) 63) (((-591 (-854))) 60)) (-1772 (((-591 (-712)) (-591 (-712))) 57) (((-591 (-712))) 53)) (-4220 (((-1176)) 65)) (-2988 (((-854) (-854)) 81) (((-854)) 80)) (-3946 (((-854) (-854)) 79) (((-854)) 78)) (-2839 (((-807) (-807)) 75) (((-807)) 74)) (-2426 (((-205)) 85) (((-205) (-357)) 87)) (-1957 (((-854)) 82) (((-854) (-854)) 83)) (-3469 (((-854) (-854)) 77) (((-854)) 76)) (-1509 (((-807) (-807)) 69) (((-807)) 67)) (-2358 (((-807) (-807)) 71) (((-807)) 70)) (-4154 (((-807) (-807)) 73) (((-807)) 72))) -(((-1174) (-10 -7 (-15 -1509 ((-807))) (-15 -1509 ((-807) (-807))) (-15 -2358 ((-807))) (-15 -2358 ((-807) (-807))) (-15 -4154 ((-807))) (-15 -4154 ((-807) (-807))) (-15 -2839 ((-807))) (-15 -2839 ((-807) (-807))) (-15 -3469 ((-854))) (-15 -3469 ((-854) (-854))) (-15 -1772 ((-591 (-712)))) (-15 -1772 ((-591 (-712)) (-591 (-712)))) (-15 -3649 ((-591 (-854)))) (-15 -3649 ((-591 (-854)) (-591 (-854)))) (-15 -4220 ((-1176))) (-15 -1933 ((-591 (-1072)))) (-15 -1933 ((-591 (-1072)) (-591 (-1072)))) (-15 -1437 ((-591 (-1072)))) (-15 -3946 ((-854))) (-15 -2988 ((-854))) (-15 -3946 ((-854) (-854))) (-15 -2988 ((-854) (-854))) (-15 -1957 ((-854) (-854))) (-15 -1957 ((-854))) (-15 -2426 ((-205) (-357))) (-15 -2426 ((-205))))) (T -1174)) -((-2426 (*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1174)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1174)))) (-1957 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) (-1957 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) (-2988 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) (-2988 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) (-3946 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) (-1437 (*1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1174)))) (-1933 (*1 *2 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1174)))) (-1933 (*1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1174)))) (-4220 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1174)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-591 (-854))) (-5 *1 (-1174)))) (-3649 (*1 *2) (-12 (-5 *2 (-591 (-854))) (-5 *1 (-1174)))) (-1772 (*1 *2 *2) (-12 (-5 *2 (-591 (-712))) (-5 *1 (-1174)))) (-1772 (*1 *2) (-12 (-5 *2 (-591 (-712))) (-5 *1 (-1174)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) (-3469 (*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) (-2839 (*1 *2 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) (-2839 (*1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) (-4154 (*1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) (-2358 (*1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) (-1509 (*1 *2 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) (-1509 (*1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174))))) -(-10 -7 (-15 -1509 ((-807))) (-15 -1509 ((-807) (-807))) (-15 -2358 ((-807))) (-15 -2358 ((-807) (-807))) (-15 -4154 ((-807))) (-15 -4154 ((-807) (-807))) (-15 -2839 ((-807))) (-15 -2839 ((-807) (-807))) (-15 -3469 ((-854))) (-15 -3469 ((-854) (-854))) (-15 -1772 ((-591 (-712)))) (-15 -1772 ((-591 (-712)) (-591 (-712)))) (-15 -3649 ((-591 (-854)))) (-15 -3649 ((-591 (-854)) (-591 (-854)))) (-15 -4220 ((-1176))) (-15 -1933 ((-591 (-1072)))) (-15 -1933 ((-591 (-1072)) (-591 (-1072)))) (-15 -1437 ((-591 (-1072)))) (-15 -3946 ((-854))) (-15 -2988 ((-854))) (-15 -3946 ((-854) (-854))) (-15 -2988 ((-854) (-854))) (-15 -1957 ((-854) (-854))) (-15 -1957 ((-854))) (-15 -2426 ((-205) (-357))) (-15 -2426 ((-205)))) -((-1856 (((-445) (-591 (-591 (-876 (-205)))) (-591 (-242))) 21) (((-445) (-591 (-591 (-876 (-205))))) 20) (((-445) (-591 (-591 (-876 (-205)))) (-807) (-807) (-854) (-591 (-242))) 19)) (-3414 (((-1172) (-591 (-591 (-876 (-205)))) (-591 (-242))) 27) (((-1172) (-591 (-591 (-876 (-205)))) (-807) (-807) (-854) (-591 (-242))) 26)) (-2686 (((-1172) (-445)) 38))) -(((-1175) (-10 -7 (-15 -1856 ((-445) (-591 (-591 (-876 (-205)))) (-807) (-807) (-854) (-591 (-242)))) (-15 -1856 ((-445) (-591 (-591 (-876 (-205)))))) (-15 -1856 ((-445) (-591 (-591 (-876 (-205)))) (-591 (-242)))) (-15 -3414 ((-1172) (-591 (-591 (-876 (-205)))) (-807) (-807) (-854) (-591 (-242)))) (-15 -3414 ((-1172) (-591 (-591 (-876 (-205)))) (-591 (-242)))) (-15 -2686 ((-1172) (-445))))) (T -1175)) -((-2686 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1172)) (-5 *1 (-1175)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-591 (-242))) (-5 *2 (-1172)) (-5 *1 (-1175)))) (-3414 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-807)) (-5 *5 (-854)) (-5 *6 (-591 (-242))) (-5 *2 (-1172)) (-5 *1 (-1175)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-591 (-242))) (-5 *2 (-445)) (-5 *1 (-1175)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *2 (-445)) (-5 *1 (-1175)))) (-1856 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-807)) (-5 *5 (-854)) (-5 *6 (-591 (-242))) (-5 *2 (-445)) (-5 *1 (-1175))))) -(-10 -7 (-15 -1856 ((-445) (-591 (-591 (-876 (-205)))) (-807) (-807) (-854) (-591 (-242)))) (-15 -1856 ((-445) (-591 (-591 (-876 (-205)))))) (-15 -1856 ((-445) (-591 (-591 (-876 (-205)))) (-591 (-242)))) (-15 -3414 ((-1172) (-591 (-591 (-876 (-205)))) (-807) (-807) (-854) (-591 (-242)))) (-15 -3414 ((-1172) (-591 (-591 (-876 (-205)))) (-591 (-242)))) (-15 -2686 ((-1172) (-445)))) -((-1411 (($) 7)) (-2686 (((-796) $) 10))) -(((-1176) (-10 -8 (-15 -1411 ($)) (-15 -2686 ((-796) $)))) (T -1176)) -((-2686 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-1176)))) (-1411 (*1 *1) (-5 *1 (-1176)))) -(-10 -8 (-15 -1411 ($)) (-15 -2686 ((-796) $))) -((-4059 (($ $ |#2|) 10))) -(((-1177 |#1| |#2|) (-10 -8 (-15 -4059 (|#1| |#1| |#2|))) (-1178 |#2|) (-341)) (T -1177)) -NIL -(-10 -8 (-15 -4059 (|#1| |#1| |#2|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3840 (((-128)) 28)) (-2686 (((-796) $) 11)) (-1830 (($) 18 T CONST)) (-3944 (((-108) $ $) 6)) (-4059 (($ $ |#1|) 29)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1178 |#1|) (-131) (-341)) (T -1178)) -((-4059 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-341)))) (-3840 (*1 *2) (-12 (-4 *1 (-1178 *3)) (-4 *3 (-341)) (-5 *2 (-128))))) -(-13 (-659 |t#1|) (-10 -8 (-15 -4059 ($ $ |t#1|)) (-15 -3840 ((-128))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-659 |#1|) . T) ((-981 |#1|) . T) ((-1018) . T)) -((-3090 (((-591 (-1120 |#1|)) (-1089) (-1120 |#1|)) 78)) (-1651 (((-1070 (-1070 (-885 |#1|))) (-1089) (-1070 (-885 |#1|))) 57)) (-2979 (((-1 (-1070 (-1120 |#1|)) (-1070 (-1120 |#1|))) (-712) (-1120 |#1|) (-1070 (-1120 |#1|))) 68)) (-3096 (((-1 (-1070 (-885 |#1|)) (-1070 (-885 |#1|))) (-712)) 59)) (-1439 (((-1 (-1085 (-885 |#1|)) (-885 |#1|)) (-1089)) 29)) (-2534 (((-1 (-1070 (-885 |#1|)) (-1070 (-885 |#1|))) (-712)) 58))) -(((-1179 |#1|) (-10 -7 (-15 -3096 ((-1 (-1070 (-885 |#1|)) (-1070 (-885 |#1|))) (-712))) (-15 -2534 ((-1 (-1070 (-885 |#1|)) (-1070 (-885 |#1|))) (-712))) (-15 -1651 ((-1070 (-1070 (-885 |#1|))) (-1089) (-1070 (-885 |#1|)))) (-15 -1439 ((-1 (-1085 (-885 |#1|)) (-885 |#1|)) (-1089))) (-15 -3090 ((-591 (-1120 |#1|)) (-1089) (-1120 |#1|))) (-15 -2979 ((-1 (-1070 (-1120 |#1|)) (-1070 (-1120 |#1|))) (-712) (-1120 |#1|) (-1070 (-1120 |#1|))))) (-341)) (T -1179)) -((-2979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-712)) (-4 *6 (-341)) (-5 *4 (-1120 *6)) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1179 *6)) (-5 *5 (-1070 *4)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-341)) (-5 *2 (-591 (-1120 *5))) (-5 *1 (-1179 *5)) (-5 *4 (-1120 *5)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1085 (-885 *4)) (-885 *4))) (-5 *1 (-1179 *4)) (-4 *4 (-341)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-341)) (-5 *2 (-1070 (-1070 (-885 *5)))) (-5 *1 (-1179 *5)) (-5 *4 (-1070 (-885 *5))))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1 (-1070 (-885 *4)) (-1070 (-885 *4)))) (-5 *1 (-1179 *4)) (-4 *4 (-341)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1 (-1070 (-885 *4)) (-1070 (-885 *4)))) (-5 *1 (-1179 *4)) (-4 *4 (-341))))) -(-10 -7 (-15 -3096 ((-1 (-1070 (-885 |#1|)) (-1070 (-885 |#1|))) (-712))) (-15 -2534 ((-1 (-1070 (-885 |#1|)) (-1070 (-885 |#1|))) (-712))) (-15 -1651 ((-1070 (-1070 (-885 |#1|))) (-1089) (-1070 (-885 |#1|)))) (-15 -1439 ((-1 (-1085 (-885 |#1|)) (-885 |#1|)) (-1089))) (-15 -3090 ((-591 (-1120 |#1|)) (-1089) (-1120 |#1|))) (-15 -2979 ((-1 (-1070 (-1120 |#1|)) (-1070 (-1120 |#1|))) (-712) (-1120 |#1|) (-1070 (-1120 |#1|))))) -((-3662 (((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 75)) (-2773 (((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 74))) -(((-1180 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2773 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3662 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|))) (-327) (-1147 |#1|) (-1147 |#2|) (-387 |#2| |#3|)) (T -1180)) -((-3662 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 *3)) (-5 *2 (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-1180 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))) (-2773 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 *4)) (-5 *2 (-2 (|:| -3612 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-1180 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5))))) -(-10 -7 (-15 -2773 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3662 ((-2 (|:| -3612 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 43)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) NIL)) (-3865 (((-108) $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2686 (((-796) $) 64) (($ (-525)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-160)))) (-3425 (((-712)) NIL)) (-1309 (((-1176) (-712)) 16)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 27 T CONST)) (-1839 (($) 67 T CONST)) (-3944 (((-108) $ $) 69)) (-4059 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4047 (($ $) 71) (($ $ $) NIL)) (-4036 (($ $ $) 47)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))))) -(((-1181 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-975) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2686 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4059 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2686 ($ |#4|)) (-15 -1309 ((-1176) (-712))))) (-975) (-788) (-734) (-882 |#1| |#3| |#2|) (-591 |#2|) (-591 (-712)) (-712)) (T -1181)) -((-2686 (*1 *2 *1) (-12 (-4 *2 (-882 *3 *5 *4)) (-5 *1 (-1181 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-734)) (-14 *6 (-591 *4)) (-14 *7 (-591 (-712))) (-14 *8 (-712)))) (-4059 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-341)) (-4 *2 (-975)) (-4 *3 (-788)) (-4 *4 (-734)) (-14 *6 (-591 *3)) (-5 *1 (-1181 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-882 *2 *4 *3)) (-14 *7 (-591 (-712))) (-14 *8 (-712)))) (-2686 (*1 *1 *2) (-12 (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-734)) (-14 *6 (-591 *4)) (-5 *1 (-1181 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-882 *3 *5 *4)) (-14 *7 (-591 (-712))) (-14 *8 (-712)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-712)) (-4 *4 (-975)) (-4 *5 (-788)) (-4 *6 (-734)) (-14 *8 (-591 *5)) (-5 *2 (-1176)) (-5 *1 (-1181 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-882 *4 *6 *5)) (-14 *9 (-591 *3)) (-14 *10 *3)))) -(-13 (-975) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2686 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4059 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2686 ($ |#4|)) (-15 -1309 ((-1176) (-712))))) -((-2673 (((-108) $ $) NIL)) (-2313 (((-591 (-2 (|:| -1269 $) (|:| -1472 (-591 |#4|)))) (-591 |#4|)) NIL)) (-3227 (((-591 $) (-591 |#4|)) 88)) (-1444 (((-591 |#3|) $) NIL)) (-3713 (((-108) $) NIL)) (-1996 (((-108) $) NIL (|has| |#1| (-517)))) (-3750 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4123 ((|#4| |#4| $) NIL)) (-1282 (((-2 (|:| |under| $) (|:| -2767 $) (|:| |upper| $)) $ |#3|) NIL)) (-3727 (((-108) $ (-712)) NIL)) (-2467 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2055 (($) NIL T CONST)) (-3435 (((-108) $) NIL (|has| |#1| (-517)))) (-2342 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2605 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2167 (((-108) $) NIL (|has| |#1| (-517)))) (-2699 (((-591 |#4|) (-591 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-1533 (((-591 |#4|) (-591 |#4|) $) 25 (|has| |#1| (-517)))) (-2978 (((-591 |#4|) (-591 |#4|) $) NIL (|has| |#1| (-517)))) (-4174 (((-3 $ "failed") (-591 |#4|)) NIL)) (-3341 (($ (-591 |#4|)) NIL)) (-2884 (((-3 $ "failed") $) 70)) (-2302 ((|#4| |#4| $) 75)) (-2908 (($ $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-2537 (($ |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2449 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3797 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2490 ((|#4| |#4| $) NIL)) (-3618 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4250))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4250))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2082 (((-2 (|:| -1269 (-591 |#4|)) (|:| -1472 (-591 |#4|))) $) NIL)) (-2916 (((-591 |#4|) $) NIL (|has| $ (-6 -4250)))) (-2040 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3998 ((|#3| $) 76)) (-3491 (((-108) $ (-712)) NIL)) (-4207 (((-591 |#4|) $) 29 (|has| $ (-6 -4250)))) (-3956 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018))))) (-1381 (((-3 $ "failed") (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-591 |#4|)) 35)) (-4192 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4251)))) (-1257 (($ (-1 |#4| |#4|) $) NIL)) (-3520 (((-591 |#3|) $) NIL)) (-1574 (((-108) |#3| $) NIL)) (-3295 (((-108) $ (-712)) NIL)) (-2621 (((-1072) $) NIL)) (-2555 (((-3 |#4| "failed") $) NIL)) (-3664 (((-591 |#4|) $) 50)) (-1307 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3022 ((|#4| |#4| $) 74)) (-3300 (((-108) $ $) 85)) (-2499 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3255 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2246 ((|#4| |#4| $) NIL)) (-2937 (((-1036) $) NIL)) (-2872 (((-3 |#4| "failed") $) 69)) (-2714 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1591 (((-3 $ "failed") $ |#4|) NIL)) (-1618 (($ $ |#4|) NIL)) (-3465 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1980 (($ $ (-591 |#4|) (-591 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018)))) (($ $ (-591 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1018))))) (-2023 (((-108) $ $) NIL)) (-2077 (((-108) $) 67)) (-3164 (($) 42)) (-2743 (((-712) $) NIL)) (-2960 (((-712) |#4| $) NIL (-12 (|has| $ (-6 -4250)) (|has| |#4| (-1018)))) (((-712) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-2873 (($ $) NIL)) (-1300 (((-501) $) NIL (|has| |#4| (-566 (-501))))) (-2695 (($ (-591 |#4|)) NIL)) (-3786 (($ $ |#3|) NIL)) (-2794 (($ $ |#3|) NIL)) (-1656 (($ $) NIL)) (-1918 (($ $ |#3|) NIL)) (-2686 (((-796) $) NIL) (((-591 |#4|) $) 57)) (-3311 (((-712) $) NIL (|has| |#3| (-346)))) (-4012 (((-3 $ "failed") (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-591 |#4|)) 41)) (-1841 (((-591 $) (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-591 $) (-591 |#4|)) 66)) (-3339 (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1505 (-591 |#4|))) "failed") (-591 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3747 (((-108) $ (-1 (-108) |#4| (-591 |#4|))) NIL)) (-1475 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4250)))) (-1669 (((-591 |#3|) $) NIL)) (-2588 (((-108) |#3| $) NIL)) (-3944 (((-108) $ $) NIL)) (-2028 (((-712) $) NIL (|has| $ (-6 -4250))))) -(((-1182 |#1| |#2| |#3| |#4|) (-13 (-1119 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1381 ((-3 $ "failed") (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1381 ((-3 $ "failed") (-591 |#4|))) (-15 -4012 ((-3 $ "failed") (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4012 ((-3 $ "failed") (-591 |#4|))) (-15 -1841 ((-591 $) (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1841 ((-591 $) (-591 |#4|))))) (-517) (-734) (-788) (-989 |#1| |#2| |#3|)) (T -1182)) -((-1381 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-591 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-1182 *5 *6 *7 *8)))) (-1381 (*1 *1 *2) (|partial| -12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-1182 *3 *4 *5 *6)))) (-4012 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-591 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-1182 *5 *6 *7 *8)))) (-4012 (*1 *1 *2) (|partial| -12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-1182 *3 *4 *5 *6)))) (-1841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-989 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-734)) (-4 *8 (-788)) (-5 *2 (-591 (-1182 *6 *7 *8 *9))) (-5 *1 (-1182 *6 *7 *8 *9)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 (-1182 *4 *5 *6 *7))) (-5 *1 (-1182 *4 *5 *6 *7))))) -(-13 (-1119 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1381 ((-3 $ "failed") (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1381 ((-3 $ "failed") (-591 |#4|))) (-15 -4012 ((-3 $ "failed") (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4012 ((-3 $ "failed") (-591 |#4|))) (-15 -1841 ((-591 $) (-591 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1841 ((-591 $) (-591 |#4|))))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-3332 (((-3 $ "failed") $ $) 19)) (-2055 (($) 17 T CONST)) (-1522 (((-3 $ "failed") $) 34)) (-3865 (((-108) $) 31)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#1|) 38)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-1183 |#1|) (-131) (-975)) (T -1183)) -((-2686 (*1 *1 *2) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-975))))) -(-13 (-975) (-107 |t#1| |t#1|) (-10 -8 (-15 -2686 ($ |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-659 |#1|) |has| |#1| (-160)) ((-668) . T) ((-981 |#1|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T)) -((-2673 (((-108) $ $) 60)) (-1306 (((-108) $) NIL)) (-2758 (((-591 |#1|) $) 45)) (-3746 (($ $ (-712)) 39)) (-3332 (((-3 $ "failed") $ $) NIL)) (-4112 (($ $ (-712)) 18 (|has| |#2| (-160))) (($ $ $) 19 (|has| |#2| (-160)))) (-2055 (($) NIL T CONST)) (-1719 (($ $ $) 63) (($ $ (-760 |#1|)) 49) (($ $ |#1|) 53)) (-4174 (((-3 (-760 |#1|) "failed") $) NIL)) (-3341 (((-760 |#1|) $) NIL)) (-1575 (($ $) 32)) (-1522 (((-3 $ "failed") $) NIL)) (-3253 (((-108) $) NIL)) (-3037 (($ $) NIL)) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-2990 (($ (-760 |#1|) |#2|) 31)) (-1398 (($ $) 33)) (-2047 (((-2 (|:| |k| (-760 |#1|)) (|:| |c| |#2|)) $) 12)) (-1691 (((-760 |#1|) $) NIL)) (-4184 (((-760 |#1|) $) 34)) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-3740 (($ $ $) 62) (($ $ (-760 |#1|)) 51) (($ $ |#1|) 55)) (-1609 (((-2 (|:| |k| (-760 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1548 (((-760 |#1|) $) 28)) (-1556 ((|#2| $) 30)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2743 (((-712) $) 36)) (-3220 (((-108) $) 40)) (-2277 ((|#2| $) NIL)) (-2686 (((-796) $) NIL) (($ (-760 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-525)) NIL)) (-3109 (((-591 |#2|) $) NIL)) (-1263 ((|#2| $ (-760 |#1|)) NIL)) (-2976 ((|#2| $ $) 65) ((|#2| $ (-760 |#1|)) NIL)) (-3425 (((-712)) NIL)) (-1401 (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (-1830 (($) 13 T CONST)) (-1839 (($) 15 T CONST)) (-1994 (((-591 (-2 (|:| |k| (-760 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3944 (((-108) $ $) 38)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 22)) (** (($ $ (-712)) NIL) (($ $ (-854)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-760 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1184 |#1| |#2|) (-13 (-360 |#2| (-760 |#1|)) (-1190 |#1| |#2|)) (-788) (-975)) (T -1184)) -NIL -(-13 (-360 |#2| (-760 |#1|)) (-1190 |#1| |#2|)) -((-2356 ((|#3| |#3| (-712)) 23)) (-2288 ((|#3| |#3| (-712)) 28)) (-2664 ((|#3| |#3| |#3| (-712)) 29))) -(((-1185 |#1| |#2| |#3|) (-10 -7 (-15 -2288 (|#3| |#3| (-712))) (-15 -2356 (|#3| |#3| (-712))) (-15 -2664 (|#3| |#3| |#3| (-712)))) (-13 (-975) (-659 (-385 (-525)))) (-788) (-1190 |#2| |#1|)) (T -1185)) -((-2664 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-712)) (-4 *4 (-13 (-975) (-659 (-385 (-525))))) (-4 *5 (-788)) (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1190 *5 *4)))) (-2356 (*1 *2 *2 *3) (-12 (-5 *3 (-712)) (-4 *4 (-13 (-975) (-659 (-385 (-525))))) (-4 *5 (-788)) (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1190 *5 *4)))) (-2288 (*1 *2 *2 *3) (-12 (-5 *3 (-712)) (-4 *4 (-13 (-975) (-659 (-385 (-525))))) (-4 *5 (-788)) (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1190 *5 *4))))) -(-10 -7 (-15 -2288 (|#3| |#3| (-712))) (-15 -2356 (|#3| |#3| (-712))) (-15 -2664 (|#3| |#3| |#3| (-712)))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2758 (((-591 |#1|) $) 40)) (-3332 (((-3 $ "failed") $ $) 19)) (-4112 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-712)) 42 (|has| |#2| (-160)))) (-2055 (($) 17 T CONST)) (-1719 (($ $ |#1|) 54) (($ $ (-760 |#1|)) 53) (($ $ $) 52)) (-4174 (((-3 (-760 |#1|) "failed") $) 64)) (-3341 (((-760 |#1|) $) 63)) (-1522 (((-3 $ "failed") $) 34)) (-3253 (((-108) $) 45)) (-3037 (($ $) 44)) (-3865 (((-108) $) 31)) (-3802 (((-108) $) 50)) (-2990 (($ (-760 |#1|) |#2|) 51)) (-1398 (($ $) 49)) (-2047 (((-2 (|:| |k| (-760 |#1|)) (|:| |c| |#2|)) $) 60)) (-1691 (((-760 |#1|) $) 61)) (-1257 (($ (-1 |#2| |#2|) $) 41)) (-3740 (($ $ |#1|) 57) (($ $ (-760 |#1|)) 56) (($ $ $) 55)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-3220 (((-108) $) 47)) (-2277 ((|#2| $) 46)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-760 |#1|)) 65) (($ |#1|) 48)) (-2976 ((|#2| $ (-760 |#1|)) 59) ((|#2| $ $) 58)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) -(((-1186 |#1| |#2|) (-131) (-788) (-975)) (T -1186)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-788)) (-4 *2 (-975)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) (-1691 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-5 *2 (-760 *3)))) (-2047 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-5 *2 (-2 (|:| |k| (-760 *3)) (|:| |c| *4))))) (-2976 (*1 *2 *1 *3) (-12 (-5 *3 (-760 *4)) (-4 *1 (-1186 *4 *2)) (-4 *4 (-788)) (-4 *2 (-975)))) (-2976 (*1 *2 *1 *1) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-788)) (-4 *2 (-975)))) (-3740 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) (-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-760 *3)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)))) (-3740 (*1 *1 *1 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) (-1719 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) (-1719 (*1 *1 *1 *2) (-12 (-5 *2 (-760 *3)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)))) (-1719 (*1 *1 *1 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) (-2990 (*1 *1 *2 *3) (-12 (-5 *2 (-760 *4)) (-4 *4 (-788)) (-4 *1 (-1186 *4 *3)) (-4 *3 (-975)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-5 *2 (-108)))) (-1398 (*1 *1 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) (-2686 (*1 *1 *2) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-5 *2 (-108)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-788)) (-4 *2 (-975)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-5 *2 (-108)))) (-3037 (*1 *1 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) (-4112 (*1 *1 *1 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)) (-4 *3 (-160)))) (-4112 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-4 *4 (-160)))) (-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-5 *2 (-591 *3))))) -(-13 (-975) (-1183 |t#2|) (-966 (-760 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1691 ((-760 |t#1|) $)) (-15 -2047 ((-2 (|:| |k| (-760 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2976 (|t#2| $ (-760 |t#1|))) (-15 -2976 (|t#2| $ $)) (-15 -3740 ($ $ |t#1|)) (-15 -3740 ($ $ (-760 |t#1|))) (-15 -3740 ($ $ $)) (-15 -1719 ($ $ |t#1|)) (-15 -1719 ($ $ (-760 |t#1|))) (-15 -1719 ($ $ $)) (-15 -2990 ($ (-760 |t#1|) |t#2|)) (-15 -3802 ((-108) $)) (-15 -1398 ($ $)) (-15 -2686 ($ |t#1|)) (-15 -3220 ((-108) $)) (-15 -2277 (|t#2| $)) (-15 -3253 ((-108) $)) (-15 -3037 ($ $)) (IF (|has| |t#2| (-160)) (PROGN (-15 -4112 ($ $ $)) (-15 -4112 ($ $ (-712)))) |%noBranch|) (-15 -1257 ($ (-1 |t#2| |t#2|) $)) (-15 -2758 ((-591 |t#1|) $)) (IF (|has| |t#2| (-6 -4243)) (-6 -4243) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#2|) . T) ((-593 $) . T) ((-659 |#2|) |has| |#2| (-160)) ((-668) . T) ((-966 (-760 |#1|)) . T) ((-981 |#2|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1183 |#2|) . T)) -((-2862 (((-108) $) 15)) (-2588 (((-108) $) 14)) (-3861 (($ $) 19) (($ $ (-712)) 20))) -(((-1187 |#1| |#2|) (-10 -8 (-15 -3861 (|#1| |#1| (-712))) (-15 -3861 (|#1| |#1|)) (-15 -2862 ((-108) |#1|)) (-15 -2588 ((-108) |#1|))) (-1188 |#2|) (-341)) (T -1187)) -NIL -(-10 -8 (-15 -3861 (|#1| |#1| (-712))) (-15 -3861 (|#1| |#1|)) (-15 -2862 ((-108) |#1|)) (-15 -2588 ((-108) |#1|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2867 (((-2 (|:| -1851 $) (|:| -4237 $) (|:| |associate| $)) $) 41)) (-3641 (($ $) 40)) (-3077 (((-108) $) 38)) (-2862 (((-108) $) 94)) (-3981 (((-712)) 90)) (-3332 (((-3 $ "failed") $ $) 19)) (-1720 (($ $) 73)) (-3898 (((-396 $) $) 72)) (-1965 (((-108) $ $) 59)) (-2055 (($) 17 T CONST)) (-4174 (((-3 |#1| "failed") $) 101)) (-3341 ((|#1| $) 100)) (-3265 (($ $ $) 55)) (-1522 (((-3 $ "failed") $) 34)) (-3239 (($ $ $) 56)) (-1550 (((-2 (|:| -2976 (-591 $)) (|:| -3965 $)) (-591 $)) 51)) (-3477 (($ $ (-712)) 87 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2393 (((-108) $) 71)) (-1676 (((-774 (-854)) $) 84 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3865 (((-108) $) 31)) (-3188 (((-3 (-591 $) "failed") (-591 $) $) 52)) (-2081 (($ $ $) 46) (($ (-591 $)) 45)) (-2621 (((-1072) $) 9)) (-1523 (($ $) 70)) (-1326 (((-108) $) 93)) (-2937 (((-1036) $) 10)) (-3910 (((-1085 $) (-1085 $) (-1085 $)) 44)) (-2124 (($ $ $) 48) (($ (-591 $)) 47)) (-2542 (((-396 $) $) 74)) (-3383 (((-774 (-854))) 91)) (-3387 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3965 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3210 (((-3 $ "failed") $ $) 42)) (-2018 (((-3 (-591 $) "failed") (-591 $) $) 50)) (-3048 (((-712) $) 58)) (-3576 (((-2 (|:| -2746 $) (|:| -2449 $)) $ $) 57)) (-2652 (((-3 (-712) "failed") $ $) 85 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3840 (((-128)) 99)) (-2743 (((-774 (-854)) $) 92)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-3751 (((-3 $ "failed") $) 83 (-3150 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3425 (((-712)) 29)) (-1724 (((-108) $ $) 39)) (-2588 (((-108) $) 95)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33) (($ $ (-525)) 69)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3861 (($ $) 89 (|has| |#1| (-346))) (($ $ (-712)) 88 (|has| |#1| (-346)))) (-3944 (((-108) $ $) 6)) (-4059 (($ $ $) 64) (($ $ |#1|) 98)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32) (($ $ (-525)) 68)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) -(((-1188 |#1|) (-131) (-341)) (T -1188)) -((-2588 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-1326 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-774 (-854))))) (-3383 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-774 (-854))))) (-3981 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-712)))) (-3861 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-341)) (-4 *2 (-346)))) (-3861 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-4 *3 (-346))))) -(-13 (-341) (-966 |t#1|) (-1178 |t#1|) (-10 -8 (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-380)) |%noBranch|) (-15 -2588 ((-108) $)) (-15 -2862 ((-108) $)) (-15 -1326 ((-108) $)) (-15 -2743 ((-774 (-854)) $)) (-15 -3383 ((-774 (-854)))) (-15 -3981 ((-712))) (IF (|has| |t#1| (-346)) (PROGN (-6 (-380)) (-15 -3861 ($ $)) (-15 -3861 ($ $ (-712)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3150 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-565 (-796)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) -3150 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-429) . T) ((-517) . T) ((-593 #0#) . T) ((-593 |#1|) . T) ((-593 $) . T) ((-659 #0#) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-668) . T) ((-853) . T) ((-966 |#1|) . T) ((-981 #0#) . T) ((-981 |#1|) . T) ((-981 $) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1129) . T) ((-1178 |#1|) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2758 (((-591 |#1|) $) 86)) (-3746 (($ $ (-712)) 89)) (-3332 (((-3 $ "failed") $ $) NIL)) (-4112 (($ $ $) NIL (|has| |#2| (-160))) (($ $ (-712)) NIL (|has| |#2| (-160)))) (-2055 (($) NIL T CONST)) (-1719 (($ $ |#1|) NIL) (($ $ (-760 |#1|)) NIL) (($ $ $) NIL)) (-4174 (((-3 (-760 |#1|) "failed") $) NIL) (((-3 (-826 |#1|) "failed") $) NIL)) (-3341 (((-760 |#1|) $) NIL) (((-826 |#1|) $) NIL)) (-1575 (($ $) 88)) (-1522 (((-3 $ "failed") $) NIL)) (-3253 (((-108) $) 77)) (-3037 (($ $) 81)) (-1922 (($ $ $ (-712)) 90)) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-2990 (($ (-760 |#1|) |#2|) NIL) (($ (-826 |#1|) |#2|) 26)) (-1398 (($ $) 103)) (-2047 (((-2 (|:| |k| (-760 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1691 (((-760 |#1|) $) NIL)) (-4184 (((-760 |#1|) $) NIL)) (-1257 (($ (-1 |#2| |#2|) $) NIL)) (-3740 (($ $ |#1|) NIL) (($ $ (-760 |#1|)) NIL) (($ $ $) NIL)) (-2356 (($ $ (-712)) 97 (|has| |#2| (-659 (-385 (-525)))))) (-1609 (((-2 (|:| |k| (-826 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1548 (((-826 |#1|) $) 70)) (-1556 ((|#2| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2288 (($ $ (-712)) 94 (|has| |#2| (-659 (-385 (-525)))))) (-2743 (((-712) $) 87)) (-3220 (((-108) $) 71)) (-2277 ((|#2| $) 75)) (-2686 (((-796) $) 57) (($ (-525)) NIL) (($ |#2|) 51) (($ (-760 |#1|)) NIL) (($ |#1|) 59) (($ (-826 |#1|)) NIL) (($ (-609 |#1| |#2|)) 43) (((-1184 |#1| |#2|) $) 64) (((-1193 |#1| |#2|) $) 69)) (-3109 (((-591 |#2|) $) NIL)) (-1263 ((|#2| $ (-826 |#1|)) NIL)) (-2976 ((|#2| $ (-760 |#1|)) NIL) ((|#2| $ $) NIL)) (-3425 (((-712)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 21 T CONST)) (-1839 (($) 25 T CONST)) (-1994 (((-591 (-2 (|:| |k| (-826 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3006 (((-3 (-609 |#1| |#2|) "failed") $) 102)) (-3944 (((-108) $ $) 65)) (-4047 (($ $) 96) (($ $ $) 95)) (-4036 (($ $ $) 20)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-826 |#1|)) NIL))) -(((-1189 |#1| |#2|) (-13 (-1190 |#1| |#2|) (-360 |#2| (-826 |#1|)) (-10 -8 (-15 -2686 ($ (-609 |#1| |#2|))) (-15 -2686 ((-1184 |#1| |#2|) $)) (-15 -2686 ((-1193 |#1| |#2|) $)) (-15 -3006 ((-3 (-609 |#1| |#2|) "failed") $)) (-15 -1922 ($ $ $ (-712))) (IF (|has| |#2| (-659 (-385 (-525)))) (PROGN (-15 -2288 ($ $ (-712))) (-15 -2356 ($ $ (-712)))) |%noBranch|))) (-788) (-160)) (T -1189)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-609 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) (-5 *1 (-1189 *3 *4)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)))) (-3006 (*1 *2 *1) (|partial| -12 (-5 *2 (-609 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)))) (-1922 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)))) (-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-1189 *3 *4)) (-4 *4 (-659 (-385 (-525)))) (-4 *3 (-788)) (-4 *4 (-160)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-1189 *3 *4)) (-4 *4 (-659 (-385 (-525)))) (-4 *3 (-788)) (-4 *4 (-160))))) -(-13 (-1190 |#1| |#2|) (-360 |#2| (-826 |#1|)) (-10 -8 (-15 -2686 ($ (-609 |#1| |#2|))) (-15 -2686 ((-1184 |#1| |#2|) $)) (-15 -2686 ((-1193 |#1| |#2|) $)) (-15 -3006 ((-3 (-609 |#1| |#2|) "failed") $)) (-15 -1922 ($ $ $ (-712))) (IF (|has| |#2| (-659 (-385 (-525)))) (PROGN (-15 -2288 ($ $ (-712))) (-15 -2356 ($ $ (-712)))) |%noBranch|))) -((-2673 (((-108) $ $) 7)) (-1306 (((-108) $) 16)) (-2758 (((-591 |#1|) $) 40)) (-3746 (($ $ (-712)) 73)) (-3332 (((-3 $ "failed") $ $) 19)) (-4112 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-712)) 42 (|has| |#2| (-160)))) (-2055 (($) 17 T CONST)) (-1719 (($ $ |#1|) 54) (($ $ (-760 |#1|)) 53) (($ $ $) 52)) (-4174 (((-3 (-760 |#1|) "failed") $) 64)) (-3341 (((-760 |#1|) $) 63)) (-1522 (((-3 $ "failed") $) 34)) (-3253 (((-108) $) 45)) (-3037 (($ $) 44)) (-3865 (((-108) $) 31)) (-3802 (((-108) $) 50)) (-2990 (($ (-760 |#1|) |#2|) 51)) (-1398 (($ $) 49)) (-2047 (((-2 (|:| |k| (-760 |#1|)) (|:| |c| |#2|)) $) 60)) (-1691 (((-760 |#1|) $) 61)) (-4184 (((-760 |#1|) $) 75)) (-1257 (($ (-1 |#2| |#2|) $) 41)) (-3740 (($ $ |#1|) 57) (($ $ (-760 |#1|)) 56) (($ $ $) 55)) (-2621 (((-1072) $) 9)) (-2937 (((-1036) $) 10)) (-2743 (((-712) $) 74)) (-3220 (((-108) $) 47)) (-2277 ((|#2| $) 46)) (-2686 (((-796) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-760 |#1|)) 65) (($ |#1|) 48)) (-2976 ((|#2| $ (-760 |#1|)) 59) ((|#2| $ $) 58)) (-3425 (((-712)) 29)) (-1401 (($ $ (-854)) 26) (($ $ (-712)) 33)) (-1830 (($) 18 T CONST)) (-1839 (($) 30 T CONST)) (-3944 (((-108) $ $) 6)) (-4047 (($ $) 22) (($ $ $) 21)) (-4036 (($ $ $) 14)) (** (($ $ (-854)) 25) (($ $ (-712)) 32)) (* (($ (-854) $) 13) (($ (-712) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) -(((-1190 |#1| |#2|) (-131) (-788) (-975)) (T -1190)) -((-4184 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-5 *2 (-760 *3)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-5 *2 (-712)))) (-3746 (*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975))))) -(-13 (-1186 |t#1| |t#2|) (-10 -8 (-15 -4184 ((-760 |t#1|) $)) (-15 -2743 ((-712) $)) (-15 -3746 ($ $ (-712))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-565 (-796)) . T) ((-593 |#2|) . T) ((-593 $) . T) ((-659 |#2|) |has| |#2| (-160)) ((-668) . T) ((-966 (-760 |#1|)) . T) ((-981 |#2|) . T) ((-975) . T) ((-982) . T) ((-1030) . T) ((-1018) . T) ((-1183 |#2|) . T) ((-1186 |#1| |#2|) . T)) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-2758 (((-591 (-1089)) $) NIL)) (-3553 (($ (-1184 (-1089) |#1|)) NIL)) (-3746 (($ $ (-712)) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-4112 (($ $ $) NIL (|has| |#1| (-160))) (($ $ (-712)) NIL (|has| |#1| (-160)))) (-2055 (($) NIL T CONST)) (-1719 (($ $ (-1089)) NIL) (($ $ (-760 (-1089))) NIL) (($ $ $) NIL)) (-4174 (((-3 (-760 (-1089)) "failed") $) NIL)) (-3341 (((-760 (-1089)) $) NIL)) (-1522 (((-3 $ "failed") $) NIL)) (-3253 (((-108) $) NIL)) (-3037 (($ $) NIL)) (-3865 (((-108) $) NIL)) (-3802 (((-108) $) NIL)) (-2990 (($ (-760 (-1089)) |#1|) NIL)) (-1398 (($ $) NIL)) (-2047 (((-2 (|:| |k| (-760 (-1089))) (|:| |c| |#1|)) $) NIL)) (-1691 (((-760 (-1089)) $) NIL)) (-4184 (((-760 (-1089)) $) NIL)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-3740 (($ $ (-1089)) NIL) (($ $ (-760 (-1089))) NIL) (($ $ $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2431 (((-1184 (-1089) |#1|) $) NIL)) (-2743 (((-712) $) NIL)) (-3220 (((-108) $) NIL)) (-2277 ((|#1| $) NIL)) (-2686 (((-796) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-760 (-1089))) NIL) (($ (-1089)) NIL)) (-2976 ((|#1| $ (-760 (-1089))) NIL) ((|#1| $ $) NIL)) (-3425 (((-712)) NIL)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) NIL T CONST)) (-2922 (((-591 (-2 (|:| |k| (-1089)) (|:| |c| $))) $) NIL)) (-1839 (($) NIL T CONST)) (-3944 (((-108) $ $) NIL)) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) NIL)) (** (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1089) $) NIL))) -(((-1191 |#1|) (-13 (-1190 (-1089) |#1|) (-10 -8 (-15 -2431 ((-1184 (-1089) |#1|) $)) (-15 -3553 ($ (-1184 (-1089) |#1|))) (-15 -2922 ((-591 (-2 (|:| |k| (-1089)) (|:| |c| $))) $)))) (-975)) (T -1191)) -((-2431 (*1 *2 *1) (-12 (-5 *2 (-1184 (-1089) *3)) (-5 *1 (-1191 *3)) (-4 *3 (-975)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-1184 (-1089) *3)) (-4 *3 (-975)) (-5 *1 (-1191 *3)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |k| (-1089)) (|:| |c| (-1191 *3))))) (-5 *1 (-1191 *3)) (-4 *3 (-975))))) -(-13 (-1190 (-1089) |#1|) (-10 -8 (-15 -2431 ((-1184 (-1089) |#1|) $)) (-15 -3553 ($ (-1184 (-1089) |#1|))) (-15 -2922 ((-591 (-2 (|:| |k| (-1089)) (|:| |c| $))) $)))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) NIL)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2055 (($) NIL T CONST)) (-4174 (((-3 |#2| "failed") $) NIL)) (-3341 ((|#2| $) NIL)) (-1575 (($ $) NIL)) (-1522 (((-3 $ "failed") $) 36)) (-3253 (((-108) $) 30)) (-3037 (($ $) 32)) (-3865 (((-108) $) NIL)) (-3667 (((-712) $) NIL)) (-2987 (((-591 $) $) NIL)) (-3802 (((-108) $) NIL)) (-2990 (($ |#2| |#1|) NIL)) (-1691 ((|#2| $) 19)) (-4184 ((|#2| $) 16)) (-1257 (($ (-1 |#1| |#1|) $) NIL)) (-1609 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1548 ((|#2| $) NIL)) (-1556 ((|#1| $) NIL)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-3220 (((-108) $) 27)) (-2277 ((|#1| $) 28)) (-2686 (((-796) $) 55) (($ (-525)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3109 (((-591 |#1|) $) NIL)) (-1263 ((|#1| $ |#2|) NIL)) (-2976 ((|#1| $ |#2|) 24)) (-3425 (((-712)) 14)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 25 T CONST)) (-1839 (($) 11 T CONST)) (-1994 (((-591 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3944 (((-108) $ $) 26)) (-4059 (($ $ |#1|) 57 (|has| |#1| (-341)))) (-4047 (($ $) NIL) (($ $ $) NIL)) (-4036 (($ $ $) 44)) (** (($ $ (-854)) NIL) (($ $ (-712)) 46)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2028 (((-712) $) 15))) -(((-1192 |#1| |#2|) (-13 (-975) (-1183 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2028 ((-712) $)) (-15 -2686 ($ |#2|)) (-15 -4184 (|#2| $)) (-15 -1691 (|#2| $)) (-15 -1575 ($ $)) (-15 -2976 (|#1| $ |#2|)) (-15 -3220 ((-108) $)) (-15 -2277 (|#1| $)) (-15 -3253 ((-108) $)) (-15 -3037 ($ $)) (-15 -1257 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4059 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4243)) (-6 -4243) |%noBranch|) (IF (|has| |#1| (-6 -4247)) (-6 -4247) |%noBranch|) (IF (|has| |#1| (-6 -4248)) (-6 -4248) |%noBranch|))) (-975) (-784)) (T -1192)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-975)) (-4 *3 (-784)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-975)) (-4 *3 (-784)))) (-1257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-1192 *3 *4)) (-4 *4 (-784)))) (-2686 (*1 *1 *2) (-12 (-5 *1 (-1192 *3 *2)) (-4 *3 (-975)) (-4 *2 (-784)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-975)) (-4 *4 (-784)))) (-4184 (*1 *2 *1) (-12 (-4 *2 (-784)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-975)))) (-1691 (*1 *2 *1) (-12 (-4 *2 (-784)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-975)))) (-2976 (*1 *2 *1 *3) (-12 (-4 *2 (-975)) (-5 *1 (-1192 *2 *3)) (-4 *3 (-784)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-975)) (-4 *4 (-784)))) (-2277 (*1 *2 *1) (-12 (-4 *2 (-975)) (-5 *1 (-1192 *2 *3)) (-4 *3 (-784)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-975)) (-4 *4 (-784)))) (-3037 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-975)) (-4 *3 (-784)))) (-4059 (*1 *1 *1 *2) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-341)) (-4 *2 (-975)) (-4 *3 (-784))))) -(-13 (-975) (-1183 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2028 ((-712) $)) (-15 -2686 ($ |#2|)) (-15 -4184 (|#2| $)) (-15 -1691 (|#2| $)) (-15 -1575 ($ $)) (-15 -2976 (|#1| $ |#2|)) (-15 -3220 ((-108) $)) (-15 -2277 (|#1| $)) (-15 -3253 ((-108) $)) (-15 -3037 ($ $)) (-15 -1257 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4059 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4243)) (-6 -4243) |%noBranch|) (IF (|has| |#1| (-6 -4247)) (-6 -4247) |%noBranch|) (IF (|has| |#1| (-6 -4248)) (-6 -4248) |%noBranch|))) -((-2673 (((-108) $ $) 26)) (-1306 (((-108) $) NIL)) (-2758 (((-591 |#1|) $) 120)) (-3553 (($ (-1184 |#1| |#2|)) 44)) (-3746 (($ $ (-712)) 32)) (-3332 (((-3 $ "failed") $ $) NIL)) (-4112 (($ $ $) 48 (|has| |#2| (-160))) (($ $ (-712)) 46 (|has| |#2| (-160)))) (-2055 (($) NIL T CONST)) (-1719 (($ $ |#1|) 102) (($ $ (-760 |#1|)) 103) (($ $ $) 25)) (-4174 (((-3 (-760 |#1|) "failed") $) NIL)) (-3341 (((-760 |#1|) $) NIL)) (-1522 (((-3 $ "failed") $) 110)) (-3253 (((-108) $) 105)) (-3037 (($ $) 106)) (-3865 (((-108) $) NIL)) (-3802 (((-108) $) NIL)) (-2990 (($ (-760 |#1|) |#2|) 19)) (-1398 (($ $) NIL)) (-2047 (((-2 (|:| |k| (-760 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1691 (((-760 |#1|) $) 111)) (-4184 (((-760 |#1|) $) 114)) (-1257 (($ (-1 |#2| |#2|) $) 119)) (-3740 (($ $ |#1|) 100) (($ $ (-760 |#1|)) 101) (($ $ $) 56)) (-2621 (((-1072) $) NIL)) (-2937 (((-1036) $) NIL)) (-2431 (((-1184 |#1| |#2|) $) 84)) (-2743 (((-712) $) 117)) (-3220 (((-108) $) 70)) (-2277 ((|#2| $) 28)) (-2686 (((-796) $) 63) (($ (-525)) 77) (($ |#2|) 74) (($ (-760 |#1|)) 17) (($ |#1|) 73)) (-2976 ((|#2| $ (-760 |#1|)) 104) ((|#2| $ $) 27)) (-3425 (((-712)) 108)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 14 T CONST)) (-2922 (((-591 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-1839 (($) 29 T CONST)) (-3944 (((-108) $ $) 13)) (-4047 (($ $) 88) (($ $ $) 91)) (-4036 (($ $ $) 55)) (** (($ $ (-854)) NIL) (($ $ (-712)) 49)) (* (($ (-854) $) NIL) (($ (-712) $) 47) (($ (-525) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1193 |#1| |#2|) (-13 (-1190 |#1| |#2|) (-10 -8 (-15 -2431 ((-1184 |#1| |#2|) $)) (-15 -3553 ($ (-1184 |#1| |#2|))) (-15 -2922 ((-591 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-788) (-975)) (T -1193)) -((-2431 (*1 *2 *1) (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-1184 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) (-5 *1 (-1193 *3 *4)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-591 (-2 (|:| |k| *3) (|:| |c| (-1193 *3 *4))))) (-5 *1 (-1193 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975))))) -(-13 (-1190 |#1| |#2|) (-10 -8 (-15 -2431 ((-1184 |#1| |#2|) $)) (-15 -3553 ($ (-1184 |#1| |#2|))) (-15 -2922 ((-591 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1389 (((-591 (-1070 |#1|)) (-1 (-591 (-1070 |#1|)) (-591 (-1070 |#1|))) (-525)) 15) (((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|))) 11))) -(((-1194 |#1|) (-10 -7 (-15 -1389 ((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|)))) (-15 -1389 ((-591 (-1070 |#1|)) (-1 (-591 (-1070 |#1|)) (-591 (-1070 |#1|))) (-525)))) (-1125)) (T -1194)) -((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-591 (-1070 *5)) (-591 (-1070 *5)))) (-5 *4 (-525)) (-5 *2 (-591 (-1070 *5))) (-5 *1 (-1194 *5)) (-4 *5 (-1125)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1194 *4)) (-4 *4 (-1125))))) -(-10 -7 (-15 -1389 ((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|)))) (-15 -1389 ((-591 (-1070 |#1|)) (-1 (-591 (-1070 |#1|)) (-591 (-1070 |#1|))) (-525)))) -((-1404 (((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|))) 148) (((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108)) 147) (((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108) (-108)) 146) (((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108) (-108) (-108)) 145) (((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-972 |#1| |#2|)) 130)) (-1899 (((-591 (-972 |#1| |#2|)) (-591 (-885 |#1|))) 72) (((-591 (-972 |#1| |#2|)) (-591 (-885 |#1|)) (-108)) 71) (((-591 (-972 |#1| |#2|)) (-591 (-885 |#1|)) (-108) (-108)) 70)) (-3898 (((-591 (-1060 |#1| (-497 (-798 |#3|)) (-798 |#3|) (-721 |#1| (-798 |#3|)))) (-972 |#1| |#2|)) 61)) (-1919 (((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|))) 115) (((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108)) 114) (((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108) (-108)) 113) (((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108) (-108) (-108)) 112) (((-591 (-591 (-953 (-385 |#1|)))) (-972 |#1| |#2|)) 107)) (-2343 (((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|))) 120) (((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108)) 119) (((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108) (-108)) 118) (((-591 (-591 (-953 (-385 |#1|)))) (-972 |#1| |#2|)) 117)) (-1300 (((-591 (-721 |#1| (-798 |#3|))) (-1060 |#1| (-497 (-798 |#3|)) (-798 |#3|) (-721 |#1| (-798 |#3|)))) 98) (((-1085 (-953 (-385 |#1|))) (-1085 |#1|)) 89) (((-885 (-953 (-385 |#1|))) (-721 |#1| (-798 |#3|))) 96) (((-885 (-953 (-385 |#1|))) (-885 |#1|)) 94) (((-721 |#1| (-798 |#3|)) (-721 |#1| (-798 |#2|))) 33))) -(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -1899 ((-591 (-972 |#1| |#2|)) (-591 (-885 |#1|)) (-108) (-108))) (-15 -1899 ((-591 (-972 |#1| |#2|)) (-591 (-885 |#1|)) (-108))) (-15 -1899 ((-591 (-972 |#1| |#2|)) (-591 (-885 |#1|)))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-972 |#1| |#2|))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108) (-108) (-108))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108) (-108))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-972 |#1| |#2|))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108) (-108) (-108))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108) (-108))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)))) (-15 -2343 ((-591 (-591 (-953 (-385 |#1|)))) (-972 |#1| |#2|))) (-15 -2343 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108) (-108))) (-15 -2343 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108))) (-15 -2343 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)))) (-15 -3898 ((-591 (-1060 |#1| (-497 (-798 |#3|)) (-798 |#3|) (-721 |#1| (-798 |#3|)))) (-972 |#1| |#2|))) (-15 -1300 ((-721 |#1| (-798 |#3|)) (-721 |#1| (-798 |#2|)))) (-15 -1300 ((-885 (-953 (-385 |#1|))) (-885 |#1|))) (-15 -1300 ((-885 (-953 (-385 |#1|))) (-721 |#1| (-798 |#3|)))) (-15 -1300 ((-1085 (-953 (-385 |#1|))) (-1085 |#1|))) (-15 -1300 ((-591 (-721 |#1| (-798 |#3|))) (-1060 |#1| (-497 (-798 |#3|)) (-798 |#3|) (-721 |#1| (-798 |#3|)))))) (-13 (-786) (-286) (-138) (-951)) (-591 (-1089)) (-591 (-1089))) (T -1195)) -((-1300 (*1 *2 *3) (-12 (-5 *3 (-1060 *4 (-497 (-798 *6)) (-798 *6) (-721 *4 (-798 *6)))) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *6 (-591 (-1089))) (-5 *2 (-591 (-721 *4 (-798 *6)))) (-5 *1 (-1195 *4 *5 *6)) (-14 *5 (-591 (-1089))))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-1085 (-953 (-385 *4)))) (-5 *1 (-1195 *4 *5 *6)) (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089))))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-721 *4 (-798 *6))) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *6 (-591 (-1089))) (-5 *2 (-885 (-953 (-385 *4)))) (-5 *1 (-1195 *4 *5 *6)) (-14 *5 (-591 (-1089))))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-885 *4)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-885 (-953 (-385 *4)))) (-5 *1 (-1195 *4 *5 *6)) (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089))))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-721 *4 (-798 *5))) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *5 (-591 (-1089))) (-5 *2 (-721 *4 (-798 *6))) (-5 *1 (-1195 *4 *5 *6)) (-14 *6 (-591 (-1089))))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-972 *4 *5)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *5 (-591 (-1089))) (-5 *2 (-591 (-1060 *4 (-497 (-798 *6)) (-798 *6) (-721 *4 (-798 *6))))) (-5 *1 (-1195 *4 *5 *6)) (-14 *6 (-591 (-1089))))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-591 (-953 (-385 *4))))) (-5 *1 (-1195 *4 *5 *6)) (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089))))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) (-2343 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-972 *4 *5)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *5 (-591 (-1089))) (-5 *2 (-591 (-591 (-953 (-385 *4))))) (-5 *1 (-1195 *4 *5 *6)) (-14 *6 (-591 (-1089))))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-591 (-953 (-385 *4))))) (-5 *1 (-1195 *4 *5 *6)) (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089))))) (-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) (-1919 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) (-1919 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-972 *4 *5)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *5 (-591 (-1089))) (-5 *2 (-591 (-591 (-953 (-385 *4))))) (-5 *1 (-1195 *4 *5 *6)) (-14 *6 (-591 (-1089))))) (-1404 (*1 *2 *3) (-12 (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-2 (|:| -3237 (-1085 *4)) (|:| -1671 (-591 (-885 *4)))))) (-5 *1 (-1195 *4 *5 *6)) (-5 *3 (-591 (-885 *4))) (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089))))) (-1404 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) (-5 *1 (-1195 *5 *6 *7)) (-5 *3 (-591 (-885 *5))) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) (-1404 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) (-5 *1 (-1195 *5 *6 *7)) (-5 *3 (-591 (-885 *5))) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) (-1404 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) (-5 *1 (-1195 *5 *6 *7)) (-5 *3 (-591 (-885 *5))) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-972 *4 *5)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *5 (-591 (-1089))) (-5 *2 (-591 (-2 (|:| -3237 (-1085 *4)) (|:| -1671 (-591 (-885 *4)))))) (-5 *1 (-1195 *4 *5 *6)) (-14 *6 (-591 (-1089))))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-972 *4 *5))) (-5 *1 (-1195 *4 *5 *6)) (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089))))) (-1899 (*1 *2 *3 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-972 *5 *6))) (-5 *1 (-1195 *5 *6 *7)) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) (-1899 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) (-5 *2 (-591 (-972 *5 *6))) (-5 *1 (-1195 *5 *6 *7)) (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089)))))) -(-10 -7 (-15 -1899 ((-591 (-972 |#1| |#2|)) (-591 (-885 |#1|)) (-108) (-108))) (-15 -1899 ((-591 (-972 |#1| |#2|)) (-591 (-885 |#1|)) (-108))) (-15 -1899 ((-591 (-972 |#1| |#2|)) (-591 (-885 |#1|)))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-972 |#1| |#2|))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108) (-108) (-108))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108) (-108))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)) (-108))) (-15 -1404 ((-591 (-2 (|:| -3237 (-1085 |#1|)) (|:| -1671 (-591 (-885 |#1|))))) (-591 (-885 |#1|)))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-972 |#1| |#2|))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108) (-108) (-108))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108) (-108))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108))) (-15 -1919 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)))) (-15 -2343 ((-591 (-591 (-953 (-385 |#1|)))) (-972 |#1| |#2|))) (-15 -2343 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108) (-108))) (-15 -2343 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)) (-108))) (-15 -2343 ((-591 (-591 (-953 (-385 |#1|)))) (-591 (-885 |#1|)))) (-15 -3898 ((-591 (-1060 |#1| (-497 (-798 |#3|)) (-798 |#3|) (-721 |#1| (-798 |#3|)))) (-972 |#1| |#2|))) (-15 -1300 ((-721 |#1| (-798 |#3|)) (-721 |#1| (-798 |#2|)))) (-15 -1300 ((-885 (-953 (-385 |#1|))) (-885 |#1|))) (-15 -1300 ((-885 (-953 (-385 |#1|))) (-721 |#1| (-798 |#3|)))) (-15 -1300 ((-1085 (-953 (-385 |#1|))) (-1085 |#1|))) (-15 -1300 ((-591 (-721 |#1| (-798 |#3|))) (-1060 |#1| (-497 (-798 |#3|)) (-798 |#3|) (-721 |#1| (-798 |#3|)))))) -((-2500 (((-3 (-1171 (-385 (-525))) "failed") (-1171 |#1|) |#1|) 21)) (-1238 (((-108) (-1171 |#1|)) 12)) (-1240 (((-3 (-1171 (-525)) "failed") (-1171 |#1|)) 16))) -(((-1196 |#1|) (-10 -7 (-15 -1238 ((-108) (-1171 |#1|))) (-15 -1240 ((-3 (-1171 (-525)) "failed") (-1171 |#1|))) (-15 -2500 ((-3 (-1171 (-385 (-525))) "failed") (-1171 |#1|) |#1|))) (-587 (-525))) (T -1196)) -((-2500 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1171 *4)) (-4 *4 (-587 (-525))) (-5 *2 (-1171 (-385 (-525)))) (-5 *1 (-1196 *4)))) (-1240 (*1 *2 *3) (|partial| -12 (-5 *3 (-1171 *4)) (-4 *4 (-587 (-525))) (-5 *2 (-1171 (-525))) (-5 *1 (-1196 *4)))) (-1238 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-587 (-525))) (-5 *2 (-108)) (-5 *1 (-1196 *4))))) -(-10 -7 (-15 -1238 ((-108) (-1171 |#1|))) (-15 -1240 ((-3 (-1171 (-525)) "failed") (-1171 |#1|))) (-15 -2500 ((-3 (-1171 (-385 (-525))) "failed") (-1171 |#1|) |#1|))) -((-2673 (((-108) $ $) NIL)) (-1306 (((-108) $) 11)) (-3332 (((-3 $ "failed") $ $) NIL)) (-2834 (((-712)) 8)) (-2055 (($) NIL T CONST)) (-1522 (((-3 $ "failed") $) 43)) (-1325 (($) 36)) (-3865 (((-108) $) NIL)) (-2115 (((-3 $ "failed") $) 29)) (-1970 (((-854) $) 15)) (-2621 (((-1072) $) NIL)) (-3492 (($) 25 T CONST)) (-3229 (($ (-854)) 37)) (-2937 (((-1036) $) NIL)) (-1300 (((-525) $) 13)) (-2686 (((-796) $) 22) (($ (-525)) 19)) (-3425 (((-712)) 9)) (-1401 (($ $ (-854)) NIL) (($ $ (-712)) NIL)) (-1830 (($) 23 T CONST)) (-1839 (($) 24 T CONST)) (-3944 (((-108) $ $) 27)) (-4047 (($ $) 38) (($ $ $) 35)) (-4036 (($ $ $) 26)) (** (($ $ (-854)) NIL) (($ $ (-712)) 40)) (* (($ (-854) $) NIL) (($ (-712) $) NIL) (($ (-525) $) 32) (($ $ $) 31))) -(((-1197 |#1|) (-13 (-160) (-346) (-566 (-525)) (-1065)) (-854)) (T -1197)) -NIL -(-13 (-160) (-346) (-566 (-525)) (-1065)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3144482 3144487 3144492 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3144467 3144472 3144477 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3144452 3144457 3144462 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3144437 3144442 3144447 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1197 3143567 3144312 3144389 "ZMOD" 3144394 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1196 3142677 3142841 3143050 "ZLINDEP" 3143399 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1195 3132081 3133826 3135778 "ZDSOLVE" 3140826 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1194 3131327 3131468 3131657 "YSTREAM" 3131927 NIL YSTREAM (NIL T) -7 NIL NIL) (-1193 3129096 3130632 3130835 "XRPOLY" 3131170 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1192 3125558 3126887 3127469 "XPR" 3128560 NIL XPR (NIL T T) -8 NIL NIL) (-1191 3123272 3124893 3125096 "XPOLY" 3125389 NIL XPOLY (NIL T) -8 NIL NIL) (-1190 3121086 3122464 3122518 "XPOLYC" 3122803 NIL XPOLYC (NIL T T) -9 NIL 3122916) (-1189 3117458 3119603 3119991 "XPBWPOLY" 3120744 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1188 3113386 3115699 3115741 "XF" 3116362 NIL XF (NIL T) -9 NIL 3116761) (-1187 3113007 3113095 3113264 "XF-" 3113269 NIL XF- (NIL T T) -8 NIL NIL) (-1186 3108387 3109686 3109740 "XFALG" 3111888 NIL XFALG (NIL T T) -9 NIL 3112675) (-1185 3107524 3107628 3107832 "XEXPPKG" 3108279 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1184 3105623 3107375 3107470 "XDPOLY" 3107475 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1183 3104502 3105112 3105154 "XALG" 3105216 NIL XALG (NIL T) -9 NIL 3105335) (-1182 3097978 3102486 3102979 "WUTSET" 3104094 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1181 3095790 3096597 3096948 "WP" 3097760 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1180 3094676 3094874 3095169 "WFFINTBS" 3095587 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1179 3092580 3093007 3093469 "WEIER" 3094248 NIL WEIER (NIL T) -7 NIL NIL) (-1178 3091729 3092153 3092195 "VSPACE" 3092331 NIL VSPACE (NIL T) -9 NIL 3092405) (-1177 3091567 3091594 3091685 "VSPACE-" 3091690 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1176 3091313 3091356 3091427 "VOID" 3091518 T VOID (NIL) -8 NIL NIL) (-1175 3089449 3089808 3090214 "VIEW" 3090929 T VIEW (NIL) -7 NIL NIL) (-1174 3085874 3086512 3087249 "VIEWDEF" 3088734 T VIEWDEF (NIL) -7 NIL NIL) (-1173 3075212 3077422 3079595 "VIEW3D" 3083723 T VIEW3D (NIL) -8 NIL NIL) (-1172 3067494 3069123 3070702 "VIEW2D" 3073655 T VIEW2D (NIL) -8 NIL NIL) (-1171 3062903 3067264 3067356 "VECTOR" 3067437 NIL VECTOR (NIL T) -8 NIL NIL) (-1170 3061480 3061739 3062057 "VECTOR2" 3062633 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1169 3055020 3059272 3059315 "VECTCAT" 3060303 NIL VECTCAT (NIL T) -9 NIL 3060887) (-1168 3054034 3054288 3054678 "VECTCAT-" 3054683 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1167 3053515 3053685 3053805 "VARIABLE" 3053949 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1166 3053448 3053453 3053483 "UTYPE" 3053488 T UTYPE (NIL) -9 NIL NIL) (-1165 3052283 3052437 3052698 "UTSODETL" 3053274 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1164 3049723 3050183 3050707 "UTSODE" 3051824 NIL UTSODE (NIL T T) -7 NIL NIL) (-1163 3041567 3047363 3047851 "UTS" 3049292 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1162 3032912 3038277 3038319 "UTSCAT" 3039420 NIL UTSCAT (NIL T) -9 NIL 3040177) (-1161 3030267 3030983 3031971 "UTSCAT-" 3031976 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1160 3029898 3029941 3030072 "UTS2" 3030218 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1159 3024174 3026739 3026782 "URAGG" 3028852 NIL URAGG (NIL T) -9 NIL 3029574) (-1158 3021113 3021976 3023099 "URAGG-" 3023104 NIL URAGG- (NIL T T) -8 NIL NIL) (-1157 3016799 3019730 3020201 "UPXSSING" 3020777 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1156 3008690 3015920 3016200 "UPXS" 3016576 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1155 3001719 3008595 3008666 "UPXSCONS" 3008671 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1154 2992008 2998838 2998899 "UPXSCCA" 2999548 NIL UPXSCCA (NIL T T) -9 NIL 2999789) (-1153 2991647 2991732 2991905 "UPXSCCA-" 2991910 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1152 2981858 2988461 2988503 "UPXSCAT" 2989146 NIL UPXSCAT (NIL T) -9 NIL 2989754) (-1151 2981292 2981371 2981548 "UPXS2" 2981773 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1150 2979946 2980199 2980550 "UPSQFREE" 2981035 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1149 2973837 2976892 2976946 "UPSCAT" 2978095 NIL UPSCAT (NIL T T) -9 NIL 2978869) (-1148 2973042 2973249 2973575 "UPSCAT-" 2973580 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1147 2959128 2967165 2967207 "UPOLYC" 2969285 NIL UPOLYC (NIL T) -9 NIL 2970506) (-1146 2950458 2952883 2956029 "UPOLYC-" 2956034 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1145 2950089 2950132 2950263 "UPOLYC2" 2950409 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1144 2941508 2949658 2949795 "UP" 2949999 NIL UP (NIL NIL T) -8 NIL NIL) (-1143 2940851 2940958 2941121 "UPMP" 2941397 NIL UPMP (NIL T T) -7 NIL NIL) (-1142 2940404 2940485 2940624 "UPDIVP" 2940764 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1141 2938972 2939221 2939537 "UPDECOMP" 2940153 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1140 2938207 2938319 2938504 "UPCDEN" 2938856 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1139 2937730 2937799 2937946 "UP2" 2938132 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1138 2936247 2936934 2937211 "UNISEG" 2937488 NIL UNISEG (NIL T) -8 NIL NIL) (-1137 2935462 2935589 2935794 "UNISEG2" 2936090 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1136 2934522 2934702 2934928 "UNIFACT" 2935278 NIL UNIFACT (NIL T) -7 NIL NIL) (-1135 2918418 2933703 2933953 "ULS" 2934329 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1134 2906383 2918323 2918394 "ULSCONS" 2918399 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1133 2889133 2901146 2901207 "ULSCCAT" 2901919 NIL ULSCCAT (NIL T T) -9 NIL 2902215) (-1132 2888184 2888429 2888816 "ULSCCAT-" 2888821 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1131 2878174 2884691 2884733 "ULSCAT" 2885589 NIL ULSCAT (NIL T) -9 NIL 2886319) (-1130 2877608 2877687 2877864 "ULS2" 2878089 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1129 2876006 2876973 2877003 "UFD" 2877215 T UFD (NIL) -9 NIL 2877329) (-1128 2875800 2875846 2875941 "UFD-" 2875946 NIL UFD- (NIL T) -8 NIL NIL) (-1127 2874882 2875065 2875281 "UDVO" 2875606 T UDVO (NIL) -7 NIL NIL) (-1126 2872698 2873107 2873578 "UDPO" 2874446 NIL UDPO (NIL T) -7 NIL NIL) (-1125 2872631 2872636 2872666 "TYPE" 2872671 T TYPE (NIL) -9 NIL NIL) (-1124 2871602 2871804 2872044 "TWOFACT" 2872425 NIL TWOFACT (NIL T) -7 NIL NIL) (-1123 2870540 2870877 2871140 "TUPLE" 2871374 NIL TUPLE (NIL T) -8 NIL NIL) (-1122 2868231 2868750 2869289 "TUBETOOL" 2870023 T TUBETOOL (NIL) -7 NIL NIL) (-1121 2867080 2867285 2867526 "TUBE" 2868024 NIL TUBE (NIL T) -8 NIL NIL) (-1120 2861804 2866058 2866340 "TS" 2866832 NIL TS (NIL T) -8 NIL NIL) (-1119 2850508 2854600 2854696 "TSETCAT" 2859930 NIL TSETCAT (NIL T T T T) -9 NIL 2861461) (-1118 2845243 2846841 2848731 "TSETCAT-" 2848736 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1117 2839506 2840352 2841294 "TRMANIP" 2844379 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1116 2838947 2839010 2839173 "TRIMAT" 2839438 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1115 2836753 2836990 2837353 "TRIGMNIP" 2838696 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1114 2836273 2836386 2836416 "TRIGCAT" 2836629 T TRIGCAT (NIL) -9 NIL NIL) (-1113 2835942 2836021 2836162 "TRIGCAT-" 2836167 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1112 2832841 2834802 2835082 "TREE" 2835697 NIL TREE (NIL T) -8 NIL NIL) (-1111 2832115 2832643 2832673 "TRANFUN" 2832708 T TRANFUN (NIL) -9 NIL 2832774) (-1110 2831394 2831585 2831865 "TRANFUN-" 2831870 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1109 2831198 2831230 2831291 "TOPSP" 2831355 T TOPSP (NIL) -7 NIL NIL) (-1108 2830550 2830665 2830818 "TOOLSIGN" 2831079 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1107 2829211 2829727 2829966 "TEXTFILE" 2830333 T TEXTFILE (NIL) -8 NIL NIL) (-1106 2827076 2827590 2828028 "TEX" 2828795 T TEX (NIL) -8 NIL NIL) (-1105 2826857 2826888 2826960 "TEX1" 2827039 NIL TEX1 (NIL T) -7 NIL NIL) (-1104 2826505 2826568 2826658 "TEMUTL" 2826789 T TEMUTL (NIL) -7 NIL NIL) (-1103 2824659 2824939 2825264 "TBCMPPK" 2826228 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1102 2816548 2822820 2822876 "TBAGG" 2823276 NIL TBAGG (NIL T T) -9 NIL 2823487) (-1101 2811618 2813106 2814860 "TBAGG-" 2814865 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1100 2811002 2811109 2811254 "TANEXP" 2811507 NIL TANEXP (NIL T) -7 NIL NIL) (-1099 2804503 2810859 2810952 "TABLE" 2810957 NIL TABLE (NIL T T) -8 NIL NIL) (-1098 2803915 2804014 2804152 "TABLEAU" 2804400 NIL TABLEAU (NIL T) -8 NIL NIL) (-1097 2798523 2799743 2800991 "TABLBUMP" 2802701 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1096 2797951 2798051 2798179 "SYSTEM" 2798417 T SYSTEM (NIL) -7 NIL NIL) (-1095 2794414 2795109 2795892 "SYSSOLP" 2797202 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1094 2790705 2791413 2792147 "SYNTAX" 2793702 T SYNTAX (NIL) -8 NIL NIL) (-1093 2787839 2788447 2789085 "SYMTAB" 2790089 T SYMTAB (NIL) -8 NIL NIL) (-1092 2783088 2783990 2784973 "SYMS" 2786878 T SYMS (NIL) -8 NIL NIL) (-1091 2780321 2782548 2782777 "SYMPOLY" 2782893 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1090 2779841 2779916 2780038 "SYMFUNC" 2780233 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1089 2775818 2777078 2777900 "SYMBOL" 2779041 T SYMBOL (NIL) -8 NIL NIL) (-1088 2769357 2771046 2772766 "SWITCH" 2774120 T SWITCH (NIL) -8 NIL NIL) (-1087 2762587 2768184 2768486 "SUTS" 2769112 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1086 2754477 2761708 2761988 "SUPXS" 2762364 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1085 2745969 2754098 2754223 "SUP" 2754386 NIL SUP (NIL T) -8 NIL NIL) (-1084 2745128 2745255 2745472 "SUPFRACF" 2745837 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1083 2744753 2744812 2744923 "SUP2" 2745063 NIL SUP2 (NIL T T) -7 NIL NIL) (-1082 2743171 2743445 2743807 "SUMRF" 2744452 NIL SUMRF (NIL T) -7 NIL NIL) (-1081 2742488 2742554 2742752 "SUMFS" 2743092 NIL SUMFS (NIL T T) -7 NIL NIL) (-1080 2726424 2741669 2741919 "SULS" 2742295 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1079 2725746 2725949 2726089 "SUCH" 2726332 NIL SUCH (NIL T T) -8 NIL NIL) (-1078 2719673 2720685 2721643 "SUBSPACE" 2724834 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1077 2719103 2719193 2719357 "SUBRESP" 2719561 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1076 2712472 2713768 2715079 "STTF" 2717839 NIL STTF (NIL T) -7 NIL NIL) (-1075 2706645 2707765 2708912 "STTFNC" 2711372 NIL STTFNC (NIL T) -7 NIL NIL) (-1074 2697996 2699863 2701656 "STTAYLOR" 2704886 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1073 2691240 2697860 2697943 "STRTBL" 2697948 NIL STRTBL (NIL T) -8 NIL NIL) (-1072 2686631 2691195 2691226 "STRING" 2691231 T STRING (NIL) -8 NIL NIL) (-1071 2681520 2686005 2686035 "STRICAT" 2686094 T STRICAT (NIL) -9 NIL 2686156) (-1070 2674236 2679043 2679663 "STREAM" 2680935 NIL STREAM (NIL T) -8 NIL NIL) (-1069 2673746 2673823 2673967 "STREAM3" 2674153 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1068 2672728 2672911 2673146 "STREAM2" 2673559 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1067 2672416 2672468 2672561 "STREAM1" 2672670 NIL STREAM1 (NIL T) -7 NIL NIL) (-1066 2671432 2671613 2671844 "STINPROD" 2672232 NIL STINPROD (NIL T) -7 NIL NIL) (-1065 2671011 2671195 2671225 "STEP" 2671305 T STEP (NIL) -9 NIL 2671383) (-1064 2664554 2670910 2670987 "STBL" 2670992 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1063 2659730 2663777 2663820 "STAGG" 2663973 NIL STAGG (NIL T) -9 NIL 2664062) (-1062 2657432 2658034 2658906 "STAGG-" 2658911 NIL STAGG- (NIL T T) -8 NIL NIL) (-1061 2655627 2657202 2657294 "STACK" 2657375 NIL STACK (NIL T) -8 NIL NIL) (-1060 2648358 2653774 2654229 "SREGSET" 2655257 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1059 2640798 2642166 2643678 "SRDCMPK" 2646964 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1058 2633766 2638239 2638269 "SRAGG" 2639572 T SRAGG (NIL) -9 NIL 2640180) (-1057 2632783 2633038 2633417 "SRAGG-" 2633422 NIL SRAGG- (NIL T) -8 NIL NIL) (-1056 2627232 2631702 2632129 "SQMATRIX" 2632402 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1055 2620984 2623952 2624678 "SPLTREE" 2626578 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1054 2616974 2617640 2618286 "SPLNODE" 2620410 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1053 2616021 2616254 2616284 "SPFCAT" 2616728 T SPFCAT (NIL) -9 NIL NIL) (-1052 2614758 2614968 2615232 "SPECOUT" 2615779 T SPECOUT (NIL) -7 NIL NIL) (-1051 2614519 2614559 2614628 "SPADPRSR" 2614711 T SPADPRSR (NIL) -7 NIL NIL) (-1050 2606542 2608289 2608331 "SPACEC" 2612654 NIL SPACEC (NIL T) -9 NIL 2614470) (-1049 2604713 2606475 2606523 "SPACE3" 2606528 NIL SPACE3 (NIL T) -8 NIL NIL) (-1048 2603465 2603636 2603927 "SORTPAK" 2604518 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1047 2601521 2601824 2602242 "SOLVETRA" 2603129 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1046 2600532 2600754 2601028 "SOLVESER" 2601294 NIL SOLVESER (NIL T) -7 NIL NIL) (-1045 2595752 2596633 2597635 "SOLVERAD" 2599584 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1044 2591567 2592176 2592905 "SOLVEFOR" 2595119 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1043 2585867 2590919 2591015 "SNTSCAT" 2591020 NIL SNTSCAT (NIL T T T T) -9 NIL 2591090) (-1042 2579971 2584198 2584588 "SMTS" 2585557 NIL SMTS (NIL T T T) -8 NIL NIL) (-1041 2574381 2579860 2579936 "SMP" 2579941 NIL SMP (NIL T T) -8 NIL NIL) (-1040 2572540 2572841 2573239 "SMITH" 2574078 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1039 2565505 2569701 2569803 "SMATCAT" 2571143 NIL SMATCAT (NIL NIL T T T) -9 NIL 2571692) (-1038 2562446 2563269 2564446 "SMATCAT-" 2564451 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1037 2560160 2561683 2561726 "SKAGG" 2561987 NIL SKAGG (NIL T) -9 NIL 2562122) (-1036 2556218 2559264 2559542 "SINT" 2559904 T SINT (NIL) -8 NIL NIL) (-1035 2555990 2556028 2556094 "SIMPAN" 2556174 T SIMPAN (NIL) -7 NIL NIL) (-1034 2554828 2555049 2555324 "SIGNRF" 2555749 NIL SIGNRF (NIL T) -7 NIL NIL) (-1033 2553637 2553788 2554078 "SIGNEF" 2554657 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1032 2551327 2551781 2552287 "SHP" 2553178 NIL SHP (NIL T NIL) -7 NIL NIL) (-1031 2545180 2551228 2551304 "SHDP" 2551309 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1030 2544670 2544862 2544892 "SGROUP" 2545044 T SGROUP (NIL) -9 NIL 2545131) (-1029 2544440 2544492 2544596 "SGROUP-" 2544601 NIL SGROUP- (NIL T) -8 NIL NIL) (-1028 2541276 2541973 2542696 "SGCF" 2543739 T SGCF (NIL) -7 NIL NIL) (-1027 2535675 2540727 2540823 "SFRTCAT" 2540828 NIL SFRTCAT (NIL T T T T) -9 NIL 2540866) (-1026 2529135 2530150 2531284 "SFRGCD" 2534658 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1025 2522301 2523372 2524556 "SFQCMPK" 2528068 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1024 2521923 2522012 2522122 "SFORT" 2522242 NIL SFORT (NIL T T) -8 NIL NIL) (-1023 2521068 2521763 2521884 "SEXOF" 2521889 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1022 2520202 2520949 2521017 "SEX" 2521022 T SEX (NIL) -8 NIL NIL) (-1021 2514979 2515668 2515763 "SEXCAT" 2519534 NIL SEXCAT (NIL T T T T T) -9 NIL 2520153) (-1020 2512159 2514913 2514961 "SET" 2514966 NIL SET (NIL T) -8 NIL NIL) (-1019 2510410 2510872 2511177 "SETMN" 2511900 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1018 2510018 2510144 2510174 "SETCAT" 2510291 T SETCAT (NIL) -9 NIL 2510375) (-1017 2509798 2509850 2509949 "SETCAT-" 2509954 NIL SETCAT- (NIL T) -8 NIL NIL) (-1016 2506186 2508260 2508303 "SETAGG" 2509173 NIL SETAGG (NIL T) -9 NIL 2509513) (-1015 2505644 2505760 2505997 "SETAGG-" 2506002 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1014 2504848 2505141 2505202 "SEGXCAT" 2505488 NIL SEGXCAT (NIL T T) -9 NIL 2505608) (-1013 2503904 2504514 2504696 "SEG" 2504701 NIL SEG (NIL T) -8 NIL NIL) (-1012 2502811 2503024 2503067 "SEGCAT" 2503649 NIL SEGCAT (NIL T) -9 NIL 2503887) (-1011 2501860 2502190 2502390 "SEGBIND" 2502646 NIL SEGBIND (NIL T) -8 NIL NIL) (-1010 2501481 2501540 2501653 "SEGBIND2" 2501795 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1009 2500700 2500826 2501030 "SEG2" 2501325 NIL SEG2 (NIL T T) -7 NIL NIL) (-1008 2500137 2500635 2500682 "SDVAR" 2500687 NIL SDVAR (NIL T) -8 NIL NIL) (-1007 2492389 2499910 2500038 "SDPOL" 2500043 NIL SDPOL (NIL T) -8 NIL NIL) (-1006 2490982 2491248 2491567 "SCPKG" 2492104 NIL SCPKG (NIL T) -7 NIL NIL) (-1005 2490119 2490298 2490498 "SCOPE" 2490804 T SCOPE (NIL) -8 NIL NIL) (-1004 2489340 2489473 2489652 "SCACHE" 2489974 NIL SCACHE (NIL T) -7 NIL NIL) (-1003 2488779 2489100 2489185 "SAOS" 2489277 T SAOS (NIL) -8 NIL NIL) (-1002 2488344 2488379 2488552 "SAERFFC" 2488738 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1001 2482238 2488241 2488321 "SAE" 2488326 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1000 2481831 2481866 2482025 "SAEFACT" 2482197 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-999 2480157 2480471 2480870 "RURPK" 2481497 NIL RURPK (NIL T NIL) -7 NIL NIL) (-998 2478810 2479087 2479394 "RULESET" 2479993 NIL RULESET (NIL T T T) -8 NIL NIL) (-997 2476018 2476521 2476982 "RULE" 2478492 NIL RULE (NIL T T T) -8 NIL NIL) (-996 2475660 2475815 2475896 "RULECOLD" 2475970 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-995 2470552 2471346 2472262 "RSETGCD" 2474859 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-994 2459867 2464919 2465013 "RSETCAT" 2469078 NIL RSETCAT (NIL T T T T) -9 NIL 2470175) (-993 2457798 2458337 2459157 "RSETCAT-" 2459162 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-992 2450228 2451603 2453119 "RSDCMPK" 2456397 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-991 2448246 2448687 2448759 "RRCC" 2449835 NIL RRCC (NIL T T) -9 NIL 2450179) (-990 2447600 2447774 2448050 "RRCC-" 2448055 NIL RRCC- (NIL T T T) -8 NIL NIL) (-989 2421967 2431592 2431656 "RPOLCAT" 2442158 NIL RPOLCAT (NIL T T T) -9 NIL 2445316) (-988 2413471 2415809 2418927 "RPOLCAT-" 2418932 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-987 2404537 2411701 2412181 "ROUTINE" 2413011 T ROUTINE (NIL) -8 NIL NIL) (-986 2401242 2404093 2404240 "ROMAN" 2404410 T ROMAN (NIL) -8 NIL NIL) (-985 2399528 2400113 2400370 "ROIRC" 2401048 NIL ROIRC (NIL T T) -8 NIL NIL) (-984 2395933 2398237 2398265 "RNS" 2398561 T RNS (NIL) -9 NIL 2398831) (-983 2394447 2394830 2395361 "RNS-" 2395434 NIL RNS- (NIL T) -8 NIL NIL) (-982 2393873 2394281 2394309 "RNG" 2394314 T RNG (NIL) -9 NIL 2394335) (-981 2393271 2393633 2393673 "RMODULE" 2393733 NIL RMODULE (NIL T) -9 NIL 2393775) (-980 2392123 2392217 2392547 "RMCAT2" 2393172 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-979 2388837 2391306 2391627 "RMATRIX" 2391858 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-978 2381834 2384068 2384180 "RMATCAT" 2387489 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2388471) (-977 2381213 2381360 2381663 "RMATCAT-" 2381668 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-976 2380783 2380858 2380984 "RINTERP" 2381132 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-975 2379834 2380398 2380426 "RING" 2380536 T RING (NIL) -9 NIL 2380630) (-974 2379629 2379673 2379767 "RING-" 2379772 NIL RING- (NIL T) -8 NIL NIL) (-973 2378477 2378714 2378970 "RIDIST" 2379393 T RIDIST (NIL) -7 NIL NIL) (-972 2369799 2377951 2378154 "RGCHAIN" 2378326 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-971 2366804 2367418 2368086 "RF" 2369163 NIL RF (NIL T) -7 NIL NIL) (-970 2366453 2366516 2366617 "RFFACTOR" 2366735 NIL RFFACTOR (NIL T) -7 NIL NIL) (-969 2366181 2366216 2366311 "RFFACT" 2366412 NIL RFFACT (NIL T) -7 NIL NIL) (-968 2364311 2364675 2365055 "RFDIST" 2365821 T RFDIST (NIL) -7 NIL NIL) (-967 2363769 2363861 2364021 "RETSOL" 2364213 NIL RETSOL (NIL T T) -7 NIL NIL) (-966 2363362 2363442 2363483 "RETRACT" 2363673 NIL RETRACT (NIL T) -9 NIL NIL) (-965 2363214 2363239 2363323 "RETRACT-" 2363328 NIL RETRACT- (NIL T T) -8 NIL NIL) (-964 2356072 2362871 2362996 "RESULT" 2363109 T RESULT (NIL) -8 NIL NIL) (-963 2354657 2355346 2355543 "RESRING" 2355975 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-962 2354297 2354346 2354442 "RESLATC" 2354594 NIL RESLATC (NIL T) -7 NIL NIL) (-961 2354006 2354040 2354145 "REPSQ" 2354256 NIL REPSQ (NIL T) -7 NIL NIL) (-960 2351437 2352017 2352617 "REP" 2353426 T REP (NIL) -7 NIL NIL) (-959 2351138 2351172 2351281 "REPDB" 2351396 NIL REPDB (NIL T) -7 NIL NIL) (-958 2345083 2346462 2347682 "REP2" 2349950 NIL REP2 (NIL T) -7 NIL NIL) (-957 2341489 2342170 2342975 "REP1" 2344310 NIL REP1 (NIL T) -7 NIL NIL) (-956 2334235 2339650 2340102 "REGSET" 2341120 NIL REGSET (NIL T T T T) -8 NIL NIL) (-955 2333056 2333391 2333639 "REF" 2334020 NIL REF (NIL T) -8 NIL NIL) (-954 2332437 2332540 2332705 "REDORDER" 2332940 NIL REDORDER (NIL T T) -7 NIL NIL) (-953 2328406 2331671 2331892 "RECLOS" 2332268 NIL RECLOS (NIL T) -8 NIL NIL) (-952 2327463 2327644 2327857 "REALSOLV" 2328213 T REALSOLV (NIL) -7 NIL NIL) (-951 2327311 2327352 2327380 "REAL" 2327385 T REAL (NIL) -9 NIL 2327420) (-950 2323802 2324604 2325486 "REAL0Q" 2326476 NIL REAL0Q (NIL T) -7 NIL NIL) (-949 2319413 2320401 2321460 "REAL0" 2322783 NIL REAL0 (NIL T) -7 NIL NIL) (-948 2318821 2318893 2319098 "RDIV" 2319335 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-947 2317894 2318068 2318279 "RDIST" 2318643 NIL RDIST (NIL T) -7 NIL NIL) (-946 2316498 2316785 2317154 "RDETRS" 2317602 NIL RDETRS (NIL T T) -7 NIL NIL) (-945 2314319 2314773 2315308 "RDETR" 2316040 NIL RDETR (NIL T T) -7 NIL NIL) (-944 2312935 2313213 2313614 "RDEEFS" 2314035 NIL RDEEFS (NIL T T) -7 NIL NIL) (-943 2311435 2311741 2312170 "RDEEF" 2312623 NIL RDEEF (NIL T T) -7 NIL NIL) (-942 2305720 2308652 2308680 "RCFIELD" 2309957 T RCFIELD (NIL) -9 NIL 2310687) (-941 2303789 2304293 2304986 "RCFIELD-" 2305059 NIL RCFIELD- (NIL T) -8 NIL NIL) (-940 2300121 2301906 2301947 "RCAGG" 2303018 NIL RCAGG (NIL T) -9 NIL 2303483) (-939 2299752 2299846 2300006 "RCAGG-" 2300011 NIL RCAGG- (NIL T T) -8 NIL NIL) (-938 2299096 2299208 2299370 "RATRET" 2299636 NIL RATRET (NIL T) -7 NIL NIL) (-937 2298653 2298720 2298839 "RATFACT" 2299024 NIL RATFACT (NIL T) -7 NIL NIL) (-936 2297968 2298088 2298238 "RANDSRC" 2298523 T RANDSRC (NIL) -7 NIL NIL) (-935 2297705 2297749 2297820 "RADUTIL" 2297917 T RADUTIL (NIL) -7 NIL NIL) (-934 2290712 2296448 2296765 "RADIX" 2297420 NIL RADIX (NIL NIL) -8 NIL NIL) (-933 2282282 2290556 2290684 "RADFF" 2290689 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-932 2281934 2282009 2282037 "RADCAT" 2282194 T RADCAT (NIL) -9 NIL NIL) (-931 2281719 2281767 2281864 "RADCAT-" 2281869 NIL RADCAT- (NIL T) -8 NIL NIL) (-930 2279870 2281494 2281583 "QUEUE" 2281663 NIL QUEUE (NIL T) -8 NIL NIL) (-929 2276367 2279807 2279852 "QUAT" 2279857 NIL QUAT (NIL T) -8 NIL NIL) (-928 2276005 2276048 2276175 "QUATCT2" 2276318 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-927 2269799 2273179 2273219 "QUATCAT" 2273998 NIL QUATCAT (NIL T) -9 NIL 2274763) (-926 2265943 2266980 2268367 "QUATCAT-" 2268461 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-925 2263464 2265028 2265069 "QUAGG" 2265444 NIL QUAGG (NIL T) -9 NIL 2265619) (-924 2262389 2262862 2263034 "QFORM" 2263336 NIL QFORM (NIL NIL T) -8 NIL NIL) (-923 2253686 2258944 2258984 "QFCAT" 2259642 NIL QFCAT (NIL T) -9 NIL 2260635) (-922 2249258 2250459 2252050 "QFCAT-" 2252144 NIL QFCAT- (NIL T T) -8 NIL NIL) (-921 2248896 2248939 2249066 "QFCAT2" 2249209 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-920 2248356 2248466 2248596 "QEQUAT" 2248786 T QEQUAT (NIL) -8 NIL NIL) (-919 2241542 2242613 2243795 "QCMPACK" 2247289 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-918 2239118 2239539 2239967 "QALGSET" 2241197 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-917 2238363 2238537 2238769 "QALGSET2" 2238938 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-916 2237054 2237277 2237594 "PWFFINTB" 2238136 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-915 2235242 2235410 2235763 "PUSHVAR" 2236868 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-914 2231160 2232214 2232255 "PTRANFN" 2234139 NIL PTRANFN (NIL T) -9 NIL NIL) (-913 2229572 2229863 2230184 "PTPACK" 2230871 NIL PTPACK (NIL T) -7 NIL NIL) (-912 2229208 2229265 2229372 "PTFUNC2" 2229509 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-911 2223685 2228026 2228066 "PTCAT" 2228434 NIL PTCAT (NIL T) -9 NIL 2228596) (-910 2223343 2223378 2223502 "PSQFR" 2223644 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-909 2221938 2222236 2222570 "PSEUDLIN" 2223041 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-908 2208746 2211110 2213433 "PSETPK" 2219698 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-907 2201833 2204547 2204641 "PSETCAT" 2207622 NIL PSETCAT (NIL T T T T) -9 NIL 2208436) (-906 2199671 2200305 2201124 "PSETCAT-" 2201129 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-905 2199020 2199185 2199213 "PSCURVE" 2199481 T PSCURVE (NIL) -9 NIL 2199648) (-904 2195472 2196998 2197062 "PSCAT" 2197898 NIL PSCAT (NIL T T T) -9 NIL 2198138) (-903 2194536 2194752 2195151 "PSCAT-" 2195156 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-902 2193188 2193821 2194035 "PRTITION" 2194342 T PRTITION (NIL) -8 NIL NIL) (-901 2182286 2184492 2186680 "PRS" 2191050 NIL PRS (NIL T T) -7 NIL NIL) (-900 2180145 2181637 2181677 "PRQAGG" 2181860 NIL PRQAGG (NIL T) -9 NIL 2181962) (-899 2179716 2179818 2179846 "PROPLOG" 2180031 T PROPLOG (NIL) -9 NIL NIL) (-898 2176839 2177404 2177931 "PROPFRML" 2179221 NIL PROPFRML (NIL T) -8 NIL NIL) (-897 2176299 2176409 2176539 "PROPERTY" 2176729 T PROPERTY (NIL) -8 NIL NIL) (-896 2170073 2174465 2175285 "PRODUCT" 2175525 NIL PRODUCT (NIL T T) -8 NIL NIL) (-895 2167349 2169533 2169766 "PR" 2169884 NIL PR (NIL T T) -8 NIL NIL) (-894 2167145 2167177 2167236 "PRINT" 2167310 T PRINT (NIL) -7 NIL NIL) (-893 2166485 2166602 2166754 "PRIMES" 2167025 NIL PRIMES (NIL T) -7 NIL NIL) (-892 2164550 2164951 2165417 "PRIMELT" 2166064 NIL PRIMELT (NIL T) -7 NIL NIL) (-891 2164279 2164328 2164356 "PRIMCAT" 2164480 T PRIMCAT (NIL) -9 NIL NIL) (-890 2160440 2164217 2164262 "PRIMARR" 2164267 NIL PRIMARR (NIL T) -8 NIL NIL) (-889 2159447 2159625 2159853 "PRIMARR2" 2160258 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-888 2159090 2159146 2159257 "PREASSOC" 2159385 NIL PREASSOC (NIL T T) -7 NIL NIL) (-887 2158565 2158698 2158726 "PPCURVE" 2158931 T PPCURVE (NIL) -9 NIL 2159067) (-886 2155924 2156323 2156915 "POLYROOT" 2158146 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-885 2149830 2155530 2155689 "POLY" 2155797 NIL POLY (NIL T) -8 NIL NIL) (-884 2149215 2149273 2149506 "POLYLIFT" 2149766 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-883 2145500 2145949 2146577 "POLYCATQ" 2148760 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-882 2132541 2137938 2138002 "POLYCAT" 2141487 NIL POLYCAT (NIL T T T) -9 NIL 2143414) (-881 2125992 2127853 2130236 "POLYCAT-" 2130241 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-880 2125581 2125649 2125768 "POLY2UP" 2125918 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-879 2125217 2125274 2125381 "POLY2" 2125518 NIL POLY2 (NIL T T) -7 NIL NIL) (-878 2123902 2124141 2124417 "POLUTIL" 2124991 NIL POLUTIL (NIL T T) -7 NIL NIL) (-877 2122264 2122541 2122871 "POLTOPOL" 2123624 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-876 2117787 2122201 2122246 "POINT" 2122251 NIL POINT (NIL T) -8 NIL NIL) (-875 2115974 2116331 2116706 "PNTHEORY" 2117432 T PNTHEORY (NIL) -7 NIL NIL) (-874 2114402 2114699 2115108 "PMTOOLS" 2115672 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-873 2113995 2114073 2114190 "PMSYM" 2114318 NIL PMSYM (NIL T) -7 NIL NIL) (-872 2113505 2113574 2113748 "PMQFCAT" 2113920 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-871 2112860 2112970 2113126 "PMPRED" 2113382 NIL PMPRED (NIL T) -7 NIL NIL) (-870 2112256 2112342 2112503 "PMPREDFS" 2112761 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-869 2110902 2111110 2111494 "PMPLCAT" 2112018 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-868 2110434 2110513 2110665 "PMLSAGG" 2110817 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-867 2109911 2109987 2110167 "PMKERNEL" 2110352 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-866 2109528 2109603 2109716 "PMINS" 2109830 NIL PMINS (NIL T) -7 NIL NIL) (-865 2108958 2109027 2109242 "PMFS" 2109453 NIL PMFS (NIL T T T) -7 NIL NIL) (-864 2108189 2108307 2108511 "PMDOWN" 2108835 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-863 2107352 2107511 2107693 "PMASS" 2108027 T PMASS (NIL) -7 NIL NIL) (-862 2106626 2106737 2106900 "PMASSFS" 2107238 NIL PMASSFS (NIL T T) -7 NIL NIL) (-861 2106281 2106349 2106443 "PLOTTOOL" 2106552 T PLOTTOOL (NIL) -7 NIL NIL) (-860 2100903 2102092 2103240 "PLOT" 2105153 T PLOT (NIL) -8 NIL NIL) (-859 2096717 2097751 2098672 "PLOT3D" 2100002 T PLOT3D (NIL) -8 NIL NIL) (-858 2095629 2095806 2096041 "PLOT1" 2096521 NIL PLOT1 (NIL T) -7 NIL NIL) (-857 2071023 2075695 2080546 "PLEQN" 2090895 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-856 2070341 2070463 2070643 "PINTERP" 2070888 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-855 2070034 2070081 2070184 "PINTERPA" 2070288 NIL PINTERPA (NIL T T) -7 NIL NIL) (-854 2069261 2069828 2069921 "PI" 2069961 T PI (NIL) -8 NIL NIL) (-853 2067653 2068638 2068666 "PID" 2068848 T PID (NIL) -9 NIL 2068982) (-852 2067378 2067415 2067503 "PICOERCE" 2067610 NIL PICOERCE (NIL T) -7 NIL NIL) (-851 2066698 2066837 2067013 "PGROEB" 2067234 NIL PGROEB (NIL T) -7 NIL NIL) (-850 2062285 2063099 2064004 "PGE" 2065813 T PGE (NIL) -7 NIL NIL) (-849 2060409 2060655 2061021 "PGCD" 2062002 NIL PGCD (NIL T T T T) -7 NIL NIL) (-848 2059747 2059850 2060011 "PFRPAC" 2060293 NIL PFRPAC (NIL T) -7 NIL NIL) (-847 2056362 2058295 2058648 "PFR" 2059426 NIL PFR (NIL T) -8 NIL NIL) (-846 2054751 2054995 2055320 "PFOTOOLS" 2056109 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-845 2053284 2053523 2053874 "PFOQ" 2054508 NIL PFOQ (NIL T T T) -7 NIL NIL) (-844 2051761 2051973 2052335 "PFO" 2053068 NIL PFO (NIL T T T T T) -7 NIL NIL) (-843 2048284 2051650 2051719 "PF" 2051724 NIL PF (NIL NIL) -8 NIL NIL) (-842 2045713 2046994 2047022 "PFECAT" 2047607 T PFECAT (NIL) -9 NIL 2047991) (-841 2045158 2045312 2045526 "PFECAT-" 2045531 NIL PFECAT- (NIL T) -8 NIL NIL) (-840 2043762 2044013 2044314 "PFBRU" 2044907 NIL PFBRU (NIL T T) -7 NIL NIL) (-839 2041629 2041980 2042412 "PFBR" 2043413 NIL PFBR (NIL T T T T) -7 NIL NIL) (-838 2037481 2039005 2039681 "PERM" 2040986 NIL PERM (NIL T) -8 NIL NIL) (-837 2032746 2033688 2034558 "PERMGRP" 2036644 NIL PERMGRP (NIL T) -8 NIL NIL) (-836 2030817 2031810 2031851 "PERMCAT" 2032297 NIL PERMCAT (NIL T) -9 NIL 2032602) (-835 2030472 2030513 2030636 "PERMAN" 2030770 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-834 2027912 2030041 2030172 "PENDTREE" 2030374 NIL PENDTREE (NIL T) -8 NIL NIL) (-833 2025985 2026763 2026804 "PDRING" 2027461 NIL PDRING (NIL T) -9 NIL 2027746) (-832 2025088 2025306 2025668 "PDRING-" 2025673 NIL PDRING- (NIL T T) -8 NIL NIL) (-831 2022229 2022980 2023671 "PDEPROB" 2024417 T PDEPROB (NIL) -8 NIL NIL) (-830 2019800 2020296 2020845 "PDEPACK" 2021700 T PDEPACK (NIL) -7 NIL NIL) (-829 2018712 2018902 2019153 "PDECOMP" 2019599 NIL PDECOMP (NIL T T) -7 NIL NIL) (-828 2016324 2017139 2017167 "PDECAT" 2017952 T PDECAT (NIL) -9 NIL 2018663) (-827 2016077 2016110 2016199 "PCOMP" 2016285 NIL PCOMP (NIL T T) -7 NIL NIL) (-826 2014284 2014880 2015176 "PBWLB" 2015807 NIL PBWLB (NIL T) -8 NIL NIL) (-825 2006792 2008361 2009697 "PATTERN" 2012969 NIL PATTERN (NIL T) -8 NIL NIL) (-824 2006424 2006481 2006590 "PATTERN2" 2006729 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-823 2004181 2004569 2005026 "PATTERN1" 2006013 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-822 2001576 2002130 2002611 "PATRES" 2003746 NIL PATRES (NIL T T) -8 NIL NIL) (-821 2001140 2001207 2001339 "PATRES2" 2001503 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-820 1999037 1999437 1999842 "PATMATCH" 2000809 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-819 1998574 1998757 1998798 "PATMAB" 1998905 NIL PATMAB (NIL T) -9 NIL 1998988) (-818 1997119 1997428 1997686 "PATLRES" 1998379 NIL PATLRES (NIL T T T) -8 NIL NIL) (-817 1996665 1996788 1996829 "PATAB" 1996834 NIL PATAB (NIL T) -9 NIL 1997006) (-816 1994146 1994678 1995251 "PARTPERM" 1996112 T PARTPERM (NIL) -7 NIL NIL) (-815 1993767 1993830 1993932 "PARSURF" 1994077 NIL PARSURF (NIL T) -8 NIL NIL) (-814 1993399 1993456 1993565 "PARSU2" 1993704 NIL PARSU2 (NIL T T) -7 NIL NIL) (-813 1993163 1993203 1993270 "PARSER" 1993352 T PARSER (NIL) -7 NIL NIL) (-812 1992784 1992847 1992949 "PARSCURV" 1993094 NIL PARSCURV (NIL T) -8 NIL NIL) (-811 1992416 1992473 1992582 "PARSC2" 1992721 NIL PARSC2 (NIL T T) -7 NIL NIL) (-810 1992055 1992113 1992210 "PARPCURV" 1992352 NIL PARPCURV (NIL T) -8 NIL NIL) (-809 1991687 1991744 1991853 "PARPC2" 1991992 NIL PARPC2 (NIL T T) -7 NIL NIL) (-808 1991207 1991293 1991412 "PAN2EXPR" 1991588 T PAN2EXPR (NIL) -7 NIL NIL) (-807 1990013 1990328 1990556 "PALETTE" 1990999 T PALETTE (NIL) -8 NIL NIL) (-806 1988481 1989018 1989378 "PAIR" 1989699 NIL PAIR (NIL T T) -8 NIL NIL) (-805 1982331 1987740 1987934 "PADICRC" 1988336 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-804 1975539 1981677 1981861 "PADICRAT" 1982179 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-803 1973843 1975476 1975521 "PADIC" 1975526 NIL PADIC (NIL NIL) -8 NIL NIL) (-802 1971048 1972622 1972662 "PADICCT" 1973243 NIL PADICCT (NIL NIL) -9 NIL 1973525) (-801 1970005 1970205 1970473 "PADEPAC" 1970835 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-800 1969217 1969350 1969556 "PADE" 1969867 NIL PADE (NIL T T T) -7 NIL NIL) (-799 1967228 1968060 1968375 "OWP" 1968985 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-798 1966337 1966833 1967005 "OVAR" 1967096 NIL OVAR (NIL NIL) -8 NIL NIL) (-797 1965601 1965722 1965883 "OUT" 1966196 T OUT (NIL) -7 NIL NIL) (-796 1954655 1956826 1958996 "OUTFORM" 1963451 T OUTFORM (NIL) -8 NIL NIL) (-795 1954063 1954384 1954473 "OSI" 1954586 T OSI (NIL) -8 NIL NIL) (-794 1952808 1953035 1953320 "ORTHPOL" 1953810 NIL ORTHPOL (NIL T) -7 NIL NIL) (-793 1950179 1952469 1952607 "OREUP" 1952751 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-792 1947575 1949872 1949998 "ORESUP" 1950121 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-791 1945110 1945610 1946170 "OREPCTO" 1947064 NIL OREPCTO (NIL T T) -7 NIL NIL) (-790 1939020 1941226 1941266 "OREPCAT" 1943587 NIL OREPCAT (NIL T) -9 NIL 1944690) (-789 1936168 1936950 1938007 "OREPCAT-" 1938012 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-788 1935346 1935618 1935646 "ORDSET" 1935955 T ORDSET (NIL) -9 NIL 1936119) (-787 1934865 1934987 1935180 "ORDSET-" 1935185 NIL ORDSET- (NIL T) -8 NIL NIL) (-786 1933479 1934280 1934308 "ORDRING" 1934510 T ORDRING (NIL) -9 NIL 1934634) (-785 1933124 1933218 1933362 "ORDRING-" 1933367 NIL ORDRING- (NIL T) -8 NIL NIL) (-784 1932500 1932981 1933009 "ORDMON" 1933014 T ORDMON (NIL) -9 NIL 1933035) (-783 1931662 1931809 1932004 "ORDFUNS" 1932349 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-782 1931174 1931533 1931561 "ORDFIN" 1931566 T ORDFIN (NIL) -9 NIL 1931587) (-781 1927686 1929760 1930169 "ORDCOMP" 1930798 NIL ORDCOMP (NIL T) -8 NIL NIL) (-780 1926952 1927079 1927265 "ORDCOMP2" 1927546 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-779 1923459 1924342 1925179 "OPTPROB" 1926135 T OPTPROB (NIL) -8 NIL NIL) (-778 1920301 1920930 1921624 "OPTPACK" 1922785 T OPTPACK (NIL) -7 NIL NIL) (-777 1918027 1918763 1918791 "OPTCAT" 1919606 T OPTCAT (NIL) -9 NIL 1920252) (-776 1917795 1917834 1917900 "OPQUERY" 1917981 T OPQUERY (NIL) -7 NIL NIL) (-775 1914931 1916122 1916622 "OP" 1917327 NIL OP (NIL T) -8 NIL NIL) (-774 1911696 1913728 1914097 "ONECOMP" 1914595 NIL ONECOMP (NIL T) -8 NIL NIL) (-773 1911001 1911116 1911290 "ONECOMP2" 1911568 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-772 1910420 1910526 1910656 "OMSERVER" 1910891 T OMSERVER (NIL) -7 NIL NIL) (-771 1907309 1909861 1909901 "OMSAGG" 1909962 NIL OMSAGG (NIL T) -9 NIL 1910026) (-770 1905932 1906195 1906477 "OMPKG" 1907047 T OMPKG (NIL) -7 NIL NIL) (-769 1905362 1905465 1905493 "OM" 1905792 T OM (NIL) -9 NIL NIL) (-768 1903901 1904914 1905082 "OMLO" 1905243 NIL OMLO (NIL T T) -8 NIL NIL) (-767 1902831 1902978 1903204 "OMEXPR" 1903727 NIL OMEXPR (NIL T) -7 NIL NIL) (-766 1902149 1902377 1902513 "OMERR" 1902715 T OMERR (NIL) -8 NIL NIL) (-765 1901327 1901570 1901730 "OMERRK" 1902009 T OMERRK (NIL) -8 NIL NIL) (-764 1900805 1901004 1901112 "OMENC" 1901239 T OMENC (NIL) -8 NIL NIL) (-763 1894700 1895885 1897056 "OMDEV" 1899654 T OMDEV (NIL) -8 NIL NIL) (-762 1893769 1893940 1894134 "OMCONN" 1894526 T OMCONN (NIL) -8 NIL NIL) (-761 1892385 1893371 1893399 "OINTDOM" 1893404 T OINTDOM (NIL) -9 NIL 1893425) (-760 1888147 1889377 1890092 "OFMONOID" 1891702 NIL OFMONOID (NIL T) -8 NIL NIL) (-759 1887585 1888084 1888129 "ODVAR" 1888134 NIL ODVAR (NIL T) -8 NIL NIL) (-758 1884710 1887082 1887267 "ODR" 1887460 NIL ODR (NIL T T NIL) -8 NIL NIL) (-757 1877016 1884489 1884613 "ODPOL" 1884618 NIL ODPOL (NIL T) -8 NIL NIL) (-756 1870839 1876888 1876993 "ODP" 1876998 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-755 1869605 1869820 1870095 "ODETOOLS" 1870613 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-754 1866574 1867230 1867946 "ODESYS" 1868938 NIL ODESYS (NIL T T) -7 NIL NIL) (-753 1861478 1862386 1863409 "ODERTRIC" 1865649 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-752 1860904 1860986 1861180 "ODERED" 1861390 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-751 1857806 1858354 1859029 "ODERAT" 1860327 NIL ODERAT (NIL T T) -7 NIL NIL) (-750 1854774 1855238 1855834 "ODEPRRIC" 1857335 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-749 1852643 1853212 1853721 "ODEPROB" 1854285 T ODEPROB (NIL) -8 NIL NIL) (-748 1849175 1849658 1850304 "ODEPRIM" 1852122 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-747 1848428 1848530 1848788 "ODEPAL" 1849067 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-746 1844630 1845411 1846265 "ODEPACK" 1847594 T ODEPACK (NIL) -7 NIL NIL) (-745 1843667 1843774 1844002 "ODEINT" 1844519 NIL ODEINT (NIL T T) -7 NIL NIL) (-744 1837768 1839193 1840640 "ODEIFTBL" 1842240 T ODEIFTBL (NIL) -8 NIL NIL) (-743 1833112 1833898 1834856 "ODEEF" 1836927 NIL ODEEF (NIL T T) -7 NIL NIL) (-742 1832449 1832538 1832767 "ODECONST" 1833017 NIL ODECONST (NIL T T T) -7 NIL NIL) (-741 1830607 1831240 1831268 "ODECAT" 1831871 T ODECAT (NIL) -9 NIL 1832400) (-740 1827479 1830319 1830438 "OCT" 1830520 NIL OCT (NIL T) -8 NIL NIL) (-739 1827117 1827160 1827287 "OCTCT2" 1827430 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-738 1821951 1824389 1824429 "OC" 1825525 NIL OC (NIL T) -9 NIL 1826382) (-737 1819178 1819926 1820916 "OC-" 1821010 NIL OC- (NIL T T) -8 NIL NIL) (-736 1818557 1818999 1819027 "OCAMON" 1819032 T OCAMON (NIL) -9 NIL 1819053) (-735 1818011 1818418 1818446 "OASGP" 1818451 T OASGP (NIL) -9 NIL 1818471) (-734 1817299 1817762 1817790 "OAMONS" 1817830 T OAMONS (NIL) -9 NIL 1817873) (-733 1816740 1817147 1817175 "OAMON" 1817180 T OAMON (NIL) -9 NIL 1817200) (-732 1816045 1816537 1816565 "OAGROUP" 1816570 T OAGROUP (NIL) -9 NIL 1816590) (-731 1815735 1815785 1815873 "NUMTUBE" 1815989 NIL NUMTUBE (NIL T) -7 NIL NIL) (-730 1809308 1810826 1812362 "NUMQUAD" 1814219 T NUMQUAD (NIL) -7 NIL NIL) (-729 1805064 1806052 1807077 "NUMODE" 1808303 T NUMODE (NIL) -7 NIL NIL) (-728 1802468 1803314 1803342 "NUMINT" 1804259 T NUMINT (NIL) -9 NIL 1805015) (-727 1801416 1801613 1801831 "NUMFMT" 1802270 T NUMFMT (NIL) -7 NIL NIL) (-726 1787798 1790732 1793262 "NUMERIC" 1798925 NIL NUMERIC (NIL T) -7 NIL NIL) (-725 1782199 1787251 1787345 "NTSCAT" 1787350 NIL NTSCAT (NIL T T T T) -9 NIL 1787388) (-724 1781393 1781558 1781751 "NTPOLFN" 1782038 NIL NTPOLFN (NIL T) -7 NIL NIL) (-723 1769209 1778235 1779045 "NSUP" 1780615 NIL NSUP (NIL T) -8 NIL NIL) (-722 1768845 1768902 1769009 "NSUP2" 1769146 NIL NSUP2 (NIL T T) -7 NIL NIL) (-721 1758807 1768624 1768754 "NSMP" 1768759 NIL NSMP (NIL T T) -8 NIL NIL) (-720 1757239 1757540 1757897 "NREP" 1758495 NIL NREP (NIL T) -7 NIL NIL) (-719 1755830 1756082 1756440 "NPCOEF" 1756982 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-718 1754896 1755011 1755227 "NORMRETR" 1755711 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-717 1752949 1753239 1753646 "NORMPK" 1754604 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-716 1752634 1752662 1752786 "NORMMA" 1752915 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-715 1752461 1752591 1752620 "NONE" 1752625 T NONE (NIL) -8 NIL NIL) (-714 1752250 1752279 1752348 "NONE1" 1752425 NIL NONE1 (NIL T) -7 NIL NIL) (-713 1751735 1751797 1751982 "NODE1" 1752182 NIL NODE1 (NIL T T) -7 NIL NIL) (-712 1750028 1750898 1751153 "NNI" 1751500 T NNI (NIL) -8 NIL NIL) (-711 1748448 1748761 1749125 "NLINSOL" 1749696 NIL NLINSOL (NIL T) -7 NIL NIL) (-710 1744615 1745583 1746505 "NIPROB" 1747546 T NIPROB (NIL) -8 NIL NIL) (-709 1743372 1743606 1743908 "NFINTBAS" 1744377 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-708 1742080 1742311 1742592 "NCODIV" 1743140 NIL NCODIV (NIL T T) -7 NIL NIL) (-707 1741842 1741879 1741954 "NCNTFRAC" 1742037 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-706 1740022 1740386 1740806 "NCEP" 1741467 NIL NCEP (NIL T) -7 NIL NIL) (-705 1738934 1739673 1739701 "NASRING" 1739811 T NASRING (NIL) -9 NIL 1739885) (-704 1738729 1738773 1738867 "NASRING-" 1738872 NIL NASRING- (NIL T) -8 NIL NIL) (-703 1737883 1738382 1738410 "NARNG" 1738527 T NARNG (NIL) -9 NIL 1738618) (-702 1737575 1737642 1737776 "NARNG-" 1737781 NIL NARNG- (NIL T) -8 NIL NIL) (-701 1736454 1736661 1736896 "NAGSP" 1737360 T NAGSP (NIL) -7 NIL NIL) (-700 1727878 1729524 1731159 "NAGS" 1734839 T NAGS (NIL) -7 NIL NIL) (-699 1726442 1726746 1727073 "NAGF07" 1727571 T NAGF07 (NIL) -7 NIL NIL) (-698 1721024 1722304 1723600 "NAGF04" 1725166 T NAGF04 (NIL) -7 NIL NIL) (-697 1714056 1715654 1717271 "NAGF02" 1719427 T NAGF02 (NIL) -7 NIL NIL) (-696 1709320 1710410 1711517 "NAGF01" 1712969 T NAGF01 (NIL) -7 NIL NIL) (-695 1702980 1704538 1706115 "NAGE04" 1707763 T NAGE04 (NIL) -7 NIL NIL) (-694 1694221 1696324 1698436 "NAGE02" 1700888 T NAGE02 (NIL) -7 NIL NIL) (-693 1690214 1691151 1692105 "NAGE01" 1693287 T NAGE01 (NIL) -7 NIL NIL) (-692 1688021 1688552 1689107 "NAGD03" 1689679 T NAGD03 (NIL) -7 NIL NIL) (-691 1679807 1681726 1683671 "NAGD02" 1686096 T NAGD02 (NIL) -7 NIL NIL) (-690 1673666 1675079 1676507 "NAGD01" 1678399 T NAGD01 (NIL) -7 NIL NIL) (-689 1669923 1670733 1671558 "NAGC06" 1672861 T NAGC06 (NIL) -7 NIL NIL) (-688 1668400 1668729 1669082 "NAGC05" 1669590 T NAGC05 (NIL) -7 NIL NIL) (-687 1667784 1667901 1668043 "NAGC02" 1668278 T NAGC02 (NIL) -7 NIL NIL) (-686 1666846 1667403 1667443 "NAALG" 1667522 NIL NAALG (NIL T) -9 NIL 1667583) (-685 1666681 1666710 1666800 "NAALG-" 1666805 NIL NAALG- (NIL T T) -8 NIL NIL) (-684 1660631 1661739 1662926 "MULTSQFR" 1665577 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-683 1659950 1660025 1660209 "MULTFACT" 1660543 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-682 1653144 1657055 1657107 "MTSCAT" 1658167 NIL MTSCAT (NIL T T) -9 NIL 1658681) (-681 1652856 1652910 1653002 "MTHING" 1653084 NIL MTHING (NIL T) -7 NIL NIL) (-680 1652648 1652681 1652741 "MSYSCMD" 1652816 T MSYSCMD (NIL) -7 NIL NIL) (-679 1648760 1651403 1651723 "MSET" 1652361 NIL MSET (NIL T) -8 NIL NIL) (-678 1645856 1648322 1648363 "MSETAGG" 1648368 NIL MSETAGG (NIL T) -9 NIL 1648402) (-677 1641712 1643254 1643995 "MRING" 1645159 NIL MRING (NIL T T) -8 NIL NIL) (-676 1641282 1641349 1641478 "MRF2" 1641639 NIL MRF2 (NIL T T T) -7 NIL NIL) (-675 1640900 1640935 1641079 "MRATFAC" 1641241 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-674 1638512 1638807 1639238 "MPRFF" 1640605 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-673 1632532 1638367 1638463 "MPOLY" 1638468 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-672 1632022 1632057 1632265 "MPCPF" 1632491 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-671 1631538 1631581 1631764 "MPC3" 1631973 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-670 1630739 1630820 1631039 "MPC2" 1631453 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-669 1629040 1629377 1629767 "MONOTOOL" 1630399 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-668 1628165 1628500 1628528 "MONOID" 1628805 T MONOID (NIL) -9 NIL 1628977) (-667 1627543 1627706 1627949 "MONOID-" 1627954 NIL MONOID- (NIL T) -8 NIL NIL) (-666 1618524 1624510 1624569 "MONOGEN" 1625243 NIL MONOGEN (NIL T T) -9 NIL 1625699) (-665 1615742 1616477 1617477 "MONOGEN-" 1617596 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-664 1614602 1615022 1615050 "MONADWU" 1615442 T MONADWU (NIL) -9 NIL 1615680) (-663 1613974 1614133 1614381 "MONADWU-" 1614386 NIL MONADWU- (NIL T) -8 NIL NIL) (-662 1613360 1613578 1613606 "MONAD" 1613813 T MONAD (NIL) -9 NIL 1613925) (-661 1613045 1613123 1613255 "MONAD-" 1613260 NIL MONAD- (NIL T) -8 NIL NIL) (-660 1611296 1611958 1612237 "MOEBIUS" 1612798 NIL MOEBIUS (NIL T) -8 NIL NIL) (-659 1610690 1611068 1611108 "MODULE" 1611113 NIL MODULE (NIL T) -9 NIL 1611139) (-658 1610258 1610354 1610544 "MODULE-" 1610549 NIL MODULE- (NIL T T) -8 NIL NIL) (-657 1607929 1608624 1608950 "MODRING" 1610083 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-656 1604885 1606050 1606567 "MODOP" 1607461 NIL MODOP (NIL T T) -8 NIL NIL) (-655 1603072 1603524 1603865 "MODMONOM" 1604684 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-654 1592751 1601276 1601698 "MODMON" 1602700 NIL MODMON (NIL T T) -8 NIL NIL) (-653 1589877 1591595 1591871 "MODFIELD" 1592626 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-652 1588881 1589158 1589348 "MMLFORM" 1589707 T MMLFORM (NIL) -8 NIL NIL) (-651 1588407 1588450 1588629 "MMAP" 1588832 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-650 1586644 1587421 1587461 "MLO" 1587878 NIL MLO (NIL T) -9 NIL 1588119) (-649 1584011 1584526 1585128 "MLIFT" 1586125 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-648 1583402 1583486 1583640 "MKUCFUNC" 1583922 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-647 1583001 1583071 1583194 "MKRECORD" 1583325 NIL MKRECORD (NIL T T) -7 NIL NIL) (-646 1582049 1582210 1582438 "MKFUNC" 1582812 NIL MKFUNC (NIL T) -7 NIL NIL) (-645 1581437 1581541 1581697 "MKFLCFN" 1581932 NIL MKFLCFN (NIL T) -7 NIL NIL) (-644 1580863 1581230 1581319 "MKCHSET" 1581381 NIL MKCHSET (NIL T) -8 NIL NIL) (-643 1580140 1580242 1580427 "MKBCFUNC" 1580756 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-642 1576824 1579694 1579830 "MINT" 1580024 T MINT (NIL) -8 NIL NIL) (-641 1575636 1575879 1576156 "MHROWRED" 1576579 NIL MHROWRED (NIL T) -7 NIL NIL) (-640 1570907 1574081 1574505 "MFLOAT" 1575232 T MFLOAT (NIL) -8 NIL NIL) (-639 1570264 1570340 1570511 "MFINFACT" 1570819 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-638 1566579 1567427 1568311 "MESH" 1569400 T MESH (NIL) -7 NIL NIL) (-637 1564969 1565281 1565634 "MDDFACT" 1566266 NIL MDDFACT (NIL T) -7 NIL NIL) (-636 1561812 1564129 1564170 "MDAGG" 1564425 NIL MDAGG (NIL T) -9 NIL 1564568) (-635 1551510 1561105 1561312 "MCMPLX" 1561625 T MCMPLX (NIL) -8 NIL NIL) (-634 1550651 1550797 1550997 "MCDEN" 1551359 NIL MCDEN (NIL T T) -7 NIL NIL) (-633 1548541 1548811 1549191 "MCALCFN" 1550381 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-632 1546163 1546686 1547247 "MATSTOR" 1548012 NIL MATSTOR (NIL T) -7 NIL NIL) (-631 1542172 1545538 1545785 "MATRIX" 1545948 NIL MATRIX (NIL T) -8 NIL NIL) (-630 1537941 1538645 1539381 "MATLIN" 1541529 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-629 1528139 1531277 1531353 "MATCAT" 1536191 NIL MATCAT (NIL T T T) -9 NIL 1537608) (-628 1524504 1525517 1526872 "MATCAT-" 1526877 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-627 1523106 1523259 1523590 "MATCAT2" 1524339 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-626 1521218 1521542 1521926 "MAPPKG3" 1522781 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-625 1520199 1520372 1520594 "MAPPKG2" 1521042 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-624 1518698 1518982 1519309 "MAPPKG1" 1519905 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-623 1518309 1518367 1518490 "MAPHACK3" 1518634 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-622 1517901 1517962 1518076 "MAPHACK2" 1518241 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-621 1517339 1517442 1517584 "MAPHACK1" 1517792 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-620 1515447 1516041 1516344 "MAGMA" 1517068 NIL MAGMA (NIL T) -8 NIL NIL) (-619 1511921 1513691 1514151 "M3D" 1515020 NIL M3D (NIL T) -8 NIL NIL) (-618 1506077 1510292 1510333 "LZSTAGG" 1511115 NIL LZSTAGG (NIL T) -9 NIL 1511410) (-617 1502050 1503208 1504665 "LZSTAGG-" 1504670 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-616 1499166 1499943 1500429 "LWORD" 1501596 NIL LWORD (NIL T) -8 NIL NIL) (-615 1492326 1498937 1499071 "LSQM" 1499076 NIL LSQM (NIL NIL T) -8 NIL NIL) (-614 1491550 1491689 1491917 "LSPP" 1492181 NIL LSPP (NIL T T T T) -7 NIL NIL) (-613 1489362 1489663 1490119 "LSMP" 1491239 NIL LSMP (NIL T T T T) -7 NIL NIL) (-612 1486141 1486815 1487545 "LSMP1" 1488664 NIL LSMP1 (NIL T) -7 NIL NIL) (-611 1480068 1485310 1485351 "LSAGG" 1485413 NIL LSAGG (NIL T) -9 NIL 1485491) (-610 1476763 1477687 1478900 "LSAGG-" 1478905 NIL LSAGG- (NIL T T) -8 NIL NIL) (-609 1474389 1475907 1476156 "LPOLY" 1476558 NIL LPOLY (NIL T T) -8 NIL NIL) (-608 1473971 1474056 1474179 "LPEFRAC" 1474298 NIL LPEFRAC (NIL T) -7 NIL NIL) (-607 1472318 1473065 1473318 "LO" 1473803 NIL LO (NIL T T T) -8 NIL NIL) (-606 1471972 1472084 1472112 "LOGIC" 1472223 T LOGIC (NIL) -9 NIL 1472303) (-605 1471834 1471857 1471928 "LOGIC-" 1471933 NIL LOGIC- (NIL T) -8 NIL NIL) (-604 1471027 1471167 1471360 "LODOOPS" 1471690 NIL LODOOPS (NIL T T) -7 NIL NIL) (-603 1468445 1470944 1471009 "LODO" 1471014 NIL LODO (NIL T NIL) -8 NIL NIL) (-602 1466991 1467226 1467577 "LODOF" 1468192 NIL LODOF (NIL T T) -7 NIL NIL) (-601 1463411 1465847 1465887 "LODOCAT" 1466319 NIL LODOCAT (NIL T) -9 NIL 1466530) (-600 1463145 1463203 1463329 "LODOCAT-" 1463334 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-599 1460459 1462986 1463104 "LODO2" 1463109 NIL LODO2 (NIL T T) -8 NIL NIL) (-598 1457888 1460396 1460441 "LODO1" 1460446 NIL LODO1 (NIL T) -8 NIL NIL) (-597 1456751 1456916 1457227 "LODEEF" 1457711 NIL LODEEF (NIL T T T) -7 NIL NIL) (-596 1452038 1454882 1454923 "LNAGG" 1455870 NIL LNAGG (NIL T) -9 NIL 1456314) (-595 1451185 1451399 1451741 "LNAGG-" 1451746 NIL LNAGG- (NIL T T) -8 NIL NIL) (-594 1447350 1448112 1448750 "LMOPS" 1450601 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-593 1446748 1447110 1447150 "LMODULE" 1447210 NIL LMODULE (NIL T) -9 NIL 1447252) (-592 1443994 1446393 1446516 "LMDICT" 1446658 NIL LMDICT (NIL T) -8 NIL NIL) (-591 1437221 1442940 1443238 "LIST" 1443729 NIL LIST (NIL T) -8 NIL NIL) (-590 1436746 1436820 1436959 "LIST3" 1437141 NIL LIST3 (NIL T T T) -7 NIL NIL) (-589 1435753 1435931 1436159 "LIST2" 1436564 NIL LIST2 (NIL T T) -7 NIL NIL) (-588 1433887 1434199 1434598 "LIST2MAP" 1435400 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-587 1432600 1433280 1433320 "LINEXP" 1433573 NIL LINEXP (NIL T) -9 NIL 1433721) (-586 1431247 1431507 1431804 "LINDEP" 1432352 NIL LINDEP (NIL T T) -7 NIL NIL) (-585 1428014 1428733 1429510 "LIMITRF" 1430502 NIL LIMITRF (NIL T) -7 NIL NIL) (-584 1426294 1426589 1427004 "LIMITPS" 1427709 NIL LIMITPS (NIL T T) -7 NIL NIL) (-583 1420749 1425805 1426033 "LIE" 1426115 NIL LIE (NIL T T) -8 NIL NIL) (-582 1419800 1420243 1420283 "LIECAT" 1420423 NIL LIECAT (NIL T) -9 NIL 1420574) (-581 1419641 1419668 1419756 "LIECAT-" 1419761 NIL LIECAT- (NIL T T) -8 NIL NIL) (-580 1412253 1419090 1419255 "LIB" 1419496 T LIB (NIL) -8 NIL NIL) (-579 1407890 1408771 1409706 "LGROBP" 1411370 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-578 1405756 1406030 1406392 "LF" 1407611 NIL LF (NIL T T) -7 NIL NIL) (-577 1404596 1405288 1405316 "LFCAT" 1405523 T LFCAT (NIL) -9 NIL 1405662) (-576 1401508 1402134 1402820 "LEXTRIPK" 1403962 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-575 1398214 1399078 1399581 "LEXP" 1401088 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-574 1396612 1396925 1397326 "LEADCDET" 1397896 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-573 1395808 1395882 1396109 "LAZM3PK" 1396533 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-572 1390725 1393887 1394424 "LAUPOL" 1395321 NIL LAUPOL (NIL T T) -8 NIL NIL) (-571 1390292 1390336 1390503 "LAPLACE" 1390675 NIL LAPLACE (NIL T T) -7 NIL NIL) (-570 1388220 1389393 1389644 "LA" 1390125 NIL LA (NIL T T T) -8 NIL NIL) (-569 1387283 1387877 1387917 "LALG" 1387978 NIL LALG (NIL T) -9 NIL 1388036) (-568 1386998 1387057 1387192 "LALG-" 1387197 NIL LALG- (NIL T T) -8 NIL NIL) (-567 1385908 1386095 1386392 "KOVACIC" 1386798 NIL KOVACIC (NIL T T) -7 NIL NIL) (-566 1385743 1385767 1385808 "KONVERT" 1385870 NIL KONVERT (NIL T) -9 NIL NIL) (-565 1385578 1385602 1385643 "KOERCE" 1385705 NIL KOERCE (NIL T) -9 NIL NIL) (-564 1383312 1384072 1384465 "KERNEL" 1385217 NIL KERNEL (NIL T) -8 NIL NIL) (-563 1382814 1382895 1383025 "KERNEL2" 1383226 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-562 1376666 1381354 1381408 "KDAGG" 1381785 NIL KDAGG (NIL T T) -9 NIL 1381991) (-561 1376195 1376319 1376524 "KDAGG-" 1376529 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-560 1369370 1375856 1376011 "KAFILE" 1376073 NIL KAFILE (NIL T) -8 NIL NIL) (-559 1363825 1368881 1369109 "JORDAN" 1369191 NIL JORDAN (NIL T T) -8 NIL NIL) (-558 1360125 1362031 1362085 "IXAGG" 1363014 NIL IXAGG (NIL T T) -9 NIL 1363473) (-557 1359044 1359350 1359769 "IXAGG-" 1359774 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-556 1354629 1358966 1359025 "IVECTOR" 1359030 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-555 1353395 1353632 1353898 "ITUPLE" 1354396 NIL ITUPLE (NIL T) -8 NIL NIL) (-554 1351831 1352008 1352314 "ITRIGMNP" 1353217 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-553 1350576 1350780 1351063 "ITFUN3" 1351607 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-552 1350208 1350265 1350374 "ITFUN2" 1350513 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-551 1348010 1349081 1349378 "ITAYLOR" 1349943 NIL ITAYLOR (NIL T) -8 NIL NIL) (-550 1336998 1342196 1343355 "ISUPS" 1346883 NIL ISUPS (NIL T) -8 NIL NIL) (-549 1336102 1336242 1336478 "ISUMP" 1336845 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-548 1331366 1335903 1335982 "ISTRING" 1336055 NIL ISTRING (NIL NIL) -8 NIL NIL) (-547 1330579 1330660 1330875 "IRURPK" 1331280 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-546 1329515 1329716 1329956 "IRSN" 1330359 T IRSN (NIL) -7 NIL NIL) (-545 1327550 1327905 1328340 "IRRF2F" 1329153 NIL IRRF2F (NIL T) -7 NIL NIL) (-544 1327297 1327335 1327411 "IRREDFFX" 1327506 NIL IRREDFFX (NIL T) -7 NIL NIL) (-543 1325912 1326171 1326470 "IROOT" 1327030 NIL IROOT (NIL T) -7 NIL NIL) (-542 1322550 1323601 1324291 "IR" 1325254 NIL IR (NIL T) -8 NIL NIL) (-541 1320163 1320658 1321224 "IR2" 1322028 NIL IR2 (NIL T T) -7 NIL NIL) (-540 1319239 1319352 1319572 "IR2F" 1320046 NIL IR2F (NIL T T) -7 NIL NIL) (-539 1319030 1319064 1319124 "IPRNTPK" 1319199 T IPRNTPK (NIL) -7 NIL NIL) (-538 1315584 1318919 1318988 "IPF" 1318993 NIL IPF (NIL NIL) -8 NIL NIL) (-537 1313901 1315509 1315566 "IPADIC" 1315571 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-536 1313400 1313458 1313647 "INVLAPLA" 1313837 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-535 1303049 1305402 1307788 "INTTR" 1311064 NIL INTTR (NIL T T) -7 NIL NIL) (-534 1299397 1300138 1301001 "INTTOOLS" 1302235 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-533 1298983 1299074 1299191 "INTSLPE" 1299300 T INTSLPE (NIL) -7 NIL NIL) (-532 1296933 1298906 1298965 "INTRVL" 1298970 NIL INTRVL (NIL T) -8 NIL NIL) (-531 1294540 1295052 1295626 "INTRF" 1296418 NIL INTRF (NIL T) -7 NIL NIL) (-530 1293955 1294052 1294193 "INTRET" 1294438 NIL INTRET (NIL T) -7 NIL NIL) (-529 1291957 1292346 1292815 "INTRAT" 1293563 NIL INTRAT (NIL T T) -7 NIL NIL) (-528 1289190 1289773 1290398 "INTPM" 1291442 NIL INTPM (NIL T T) -7 NIL NIL) (-527 1285899 1286498 1287242 "INTPAF" 1288576 NIL INTPAF (NIL T T T) -7 NIL NIL) (-526 1281142 1282088 1283123 "INTPACK" 1284884 T INTPACK (NIL) -7 NIL NIL) (-525 1277996 1280871 1280998 "INT" 1281035 T INT (NIL) -8 NIL NIL) (-524 1277248 1277400 1277608 "INTHERTR" 1277838 NIL INTHERTR (NIL T T) -7 NIL NIL) (-523 1276687 1276767 1276955 "INTHERAL" 1277162 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-522 1274533 1274976 1275433 "INTHEORY" 1276250 T INTHEORY (NIL) -7 NIL NIL) (-521 1265855 1267476 1269254 "INTG0" 1272885 NIL INTG0 (NIL T T T) -7 NIL NIL) (-520 1246428 1251218 1256028 "INTFTBL" 1261065 T INTFTBL (NIL) -8 NIL NIL) (-519 1245677 1245815 1245988 "INTFACT" 1246287 NIL INTFACT (NIL T) -7 NIL NIL) (-518 1243068 1243514 1244077 "INTEF" 1245231 NIL INTEF (NIL T T) -7 NIL NIL) (-517 1241530 1242279 1242307 "INTDOM" 1242608 T INTDOM (NIL) -9 NIL 1242815) (-516 1240899 1241073 1241315 "INTDOM-" 1241320 NIL INTDOM- (NIL T) -8 NIL NIL) (-515 1237392 1239324 1239378 "INTCAT" 1240177 NIL INTCAT (NIL T) -9 NIL 1240496) (-514 1236865 1236967 1237095 "INTBIT" 1237284 T INTBIT (NIL) -7 NIL NIL) (-513 1235540 1235694 1236007 "INTALG" 1236710 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-512 1234997 1235087 1235257 "INTAF" 1235444 NIL INTAF (NIL T T) -7 NIL NIL) (-511 1228451 1234807 1234947 "INTABL" 1234952 NIL INTABL (NIL T T T) -8 NIL NIL) (-510 1223402 1226131 1226159 "INS" 1227127 T INS (NIL) -9 NIL 1227808) (-509 1220642 1221413 1222387 "INS-" 1222460 NIL INS- (NIL T) -8 NIL NIL) (-508 1219421 1219648 1219945 "INPSIGN" 1220395 NIL INPSIGN (NIL T T) -7 NIL NIL) (-507 1218539 1218656 1218853 "INPRODPF" 1219301 NIL INPRODPF (NIL T T) -7 NIL NIL) (-506 1217433 1217550 1217787 "INPRODFF" 1218419 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-505 1216433 1216585 1216845 "INNMFACT" 1217269 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-504 1215630 1215727 1215915 "INMODGCD" 1216332 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-503 1214139 1214383 1214707 "INFSP" 1215375 NIL INFSP (NIL T T T) -7 NIL NIL) (-502 1213323 1213440 1213623 "INFPROD0" 1214019 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-501 1210333 1211492 1211983 "INFORM" 1212840 T INFORM (NIL) -8 NIL NIL) (-500 1209943 1210003 1210101 "INFORM1" 1210268 NIL INFORM1 (NIL T) -7 NIL NIL) (-499 1209466 1209555 1209669 "INFINITY" 1209849 T INFINITY (NIL) -7 NIL NIL) (-498 1208083 1208332 1208653 "INEP" 1209214 NIL INEP (NIL T T T) -7 NIL NIL) (-497 1207359 1207980 1208045 "INDE" 1208050 NIL INDE (NIL T) -8 NIL NIL) (-496 1206923 1206991 1207108 "INCRMAPS" 1207286 NIL INCRMAPS (NIL T) -7 NIL NIL) (-495 1202234 1203159 1204103 "INBFF" 1206011 NIL INBFF (NIL T) -7 NIL NIL) (-494 1198729 1202079 1202182 "IMATRIX" 1202187 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-493 1197441 1197564 1197879 "IMATQF" 1198585 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-492 1195661 1195888 1196225 "IMATLIN" 1197197 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-491 1190287 1195585 1195643 "ILIST" 1195648 NIL ILIST (NIL T NIL) -8 NIL NIL) (-490 1188240 1190147 1190260 "IIARRAY2" 1190265 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-489 1183608 1188151 1188215 "IFF" 1188220 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-488 1178651 1182900 1183088 "IFARRAY" 1183465 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-487 1177858 1178555 1178628 "IFAMON" 1178633 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-486 1177442 1177507 1177561 "IEVALAB" 1177768 NIL IEVALAB (NIL T T) -9 NIL NIL) (-485 1177117 1177185 1177345 "IEVALAB-" 1177350 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-484 1176775 1177031 1177094 "IDPO" 1177099 NIL IDPO (NIL T T) -8 NIL NIL) (-483 1176052 1176664 1176739 "IDPOAMS" 1176744 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-482 1175386 1175941 1176016 "IDPOAM" 1176021 NIL IDPOAM (NIL T T) -8 NIL NIL) (-481 1174472 1174722 1174775 "IDPC" 1175188 NIL IDPC (NIL T T) -9 NIL 1175337) (-480 1173968 1174364 1174437 "IDPAM" 1174442 NIL IDPAM (NIL T T) -8 NIL NIL) (-479 1173371 1173860 1173933 "IDPAG" 1173938 NIL IDPAG (NIL T T) -8 NIL NIL) (-478 1169626 1170474 1171369 "IDECOMP" 1172528 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-477 1162499 1163549 1164596 "IDEAL" 1168662 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-476 1161663 1161775 1161974 "ICDEN" 1162383 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-475 1160762 1161143 1161290 "ICARD" 1161536 T ICARD (NIL) -8 NIL NIL) (-474 1158834 1159147 1159550 "IBPTOOLS" 1160439 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-473 1154448 1158454 1158567 "IBITS" 1158753 NIL IBITS (NIL NIL) -8 NIL NIL) (-472 1151171 1151747 1152442 "IBATOOL" 1153865 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-471 1148951 1149412 1149945 "IBACHIN" 1150706 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-470 1146828 1148797 1148900 "IARRAY2" 1148905 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-469 1142981 1146754 1146811 "IARRAY1" 1146816 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-468 1136919 1141399 1141877 "IAN" 1142523 T IAN (NIL) -8 NIL NIL) (-467 1136430 1136487 1136660 "IALGFACT" 1136856 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-466 1135958 1136071 1136099 "HYPCAT" 1136306 T HYPCAT (NIL) -9 NIL NIL) (-465 1135496 1135613 1135799 "HYPCAT-" 1135804 NIL HYPCAT- (NIL T) -8 NIL NIL) (-464 1132176 1133507 1133548 "HOAGG" 1134529 NIL HOAGG (NIL T) -9 NIL 1135208) (-463 1130770 1131169 1131695 "HOAGG-" 1131700 NIL HOAGG- (NIL T T) -8 NIL NIL) (-462 1124600 1130211 1130377 "HEXADEC" 1130624 T HEXADEC (NIL) -8 NIL NIL) (-461 1123348 1123570 1123833 "HEUGCD" 1124377 NIL HEUGCD (NIL T) -7 NIL NIL) (-460 1122451 1123185 1123315 "HELLFDIV" 1123320 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-459 1120679 1122228 1122316 "HEAP" 1122395 NIL HEAP (NIL T) -8 NIL NIL) (-458 1114546 1120594 1120656 "HDP" 1120661 NIL HDP (NIL NIL T) -8 NIL NIL) (-457 1108258 1114183 1114334 "HDMP" 1114447 NIL HDMP (NIL NIL T) -8 NIL NIL) (-456 1107583 1107722 1107886 "HB" 1108114 T HB (NIL) -7 NIL NIL) (-455 1101080 1107429 1107533 "HASHTBL" 1107538 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-454 1098833 1100708 1100887 "HACKPI" 1100921 T HACKPI (NIL) -8 NIL NIL) (-453 1094529 1098687 1098799 "GTSET" 1098804 NIL GTSET (NIL T T T T) -8 NIL NIL) (-452 1088055 1094407 1094505 "GSTBL" 1094510 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-451 1080288 1087091 1087355 "GSERIES" 1087846 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-450 1079311 1079764 1079792 "GROUP" 1080053 T GROUP (NIL) -9 NIL 1080212) (-449 1078427 1078650 1078994 "GROUP-" 1078999 NIL GROUP- (NIL T) -8 NIL NIL) (-448 1076796 1077115 1077502 "GROEBSOL" 1078104 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-447 1075737 1075999 1076050 "GRMOD" 1076579 NIL GRMOD (NIL T T) -9 NIL 1076747) (-446 1075505 1075541 1075669 "GRMOD-" 1075674 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-445 1070831 1071859 1072859 "GRIMAGE" 1074525 T GRIMAGE (NIL) -8 NIL NIL) (-444 1069298 1069558 1069882 "GRDEF" 1070527 T GRDEF (NIL) -7 NIL NIL) (-443 1068742 1068858 1068999 "GRAY" 1069177 T GRAY (NIL) -7 NIL NIL) (-442 1067976 1068356 1068407 "GRALG" 1068560 NIL GRALG (NIL T T) -9 NIL 1068652) (-441 1067637 1067710 1067873 "GRALG-" 1067878 NIL GRALG- (NIL T T T) -8 NIL NIL) (-440 1064445 1067226 1067402 "GPOLSET" 1067544 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-439 1063801 1063858 1064115 "GOSPER" 1064382 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-438 1059560 1060239 1060765 "GMODPOL" 1063500 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-437 1058565 1058749 1058987 "GHENSEL" 1059372 NIL GHENSEL (NIL T T) -7 NIL NIL) (-436 1052631 1053474 1054500 "GENUPS" 1057649 NIL GENUPS (NIL T T) -7 NIL NIL) (-435 1052328 1052379 1052468 "GENUFACT" 1052574 NIL GENUFACT (NIL T) -7 NIL NIL) (-434 1051740 1051817 1051982 "GENPGCD" 1052246 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-433 1051214 1051249 1051462 "GENMFACT" 1051699 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-432 1049782 1050037 1050344 "GENEEZ" 1050957 NIL GENEEZ (NIL T T) -7 NIL NIL) (-431 1043656 1049395 1049556 "GDMP" 1049705 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-430 1033036 1037427 1038533 "GCNAALG" 1042639 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-429 1031458 1032330 1032358 "GCDDOM" 1032613 T GCDDOM (NIL) -9 NIL 1032770) (-428 1030928 1031055 1031270 "GCDDOM-" 1031275 NIL GCDDOM- (NIL T) -8 NIL NIL) (-427 1029600 1029785 1030089 "GB" 1030707 NIL GB (NIL T T T T) -7 NIL NIL) (-426 1018220 1020546 1022938 "GBINTERN" 1027291 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-425 1016057 1016349 1016770 "GBF" 1017895 NIL GBF (NIL T T T T) -7 NIL NIL) (-424 1014838 1015003 1015270 "GBEUCLID" 1015873 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-423 1014187 1014312 1014461 "GAUSSFAC" 1014709 T GAUSSFAC (NIL) -7 NIL NIL) (-422 1012564 1012866 1013179 "GALUTIL" 1013906 NIL GALUTIL (NIL T) -7 NIL NIL) (-421 1010881 1011155 1011478 "GALPOLYU" 1012291 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-420 1008270 1008560 1008965 "GALFACTU" 1010578 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-419 1000076 1001575 1003183 "GALFACT" 1006702 NIL GALFACT (NIL T) -7 NIL NIL) (-418 997464 998122 998150 "FVFUN" 999306 T FVFUN (NIL) -9 NIL 1000026) (-417 996730 996912 996940 "FVC" 997231 T FVC (NIL) -9 NIL 997414) (-416 996372 996527 996608 "FUNCTION" 996682 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-415 994042 994593 995082 "FT" 995903 T FT (NIL) -8 NIL NIL) (-414 992860 993343 993546 "FTEM" 993859 T FTEM (NIL) -8 NIL NIL) (-413 991125 991413 991815 "FSUPFACT" 992552 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-412 989522 989811 990143 "FST" 990813 T FST (NIL) -8 NIL NIL) (-411 988697 988803 988997 "FSRED" 989404 NIL FSRED (NIL T T) -7 NIL NIL) (-410 987376 987631 987985 "FSPRMELT" 988412 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-409 984461 984899 985398 "FSPECF" 986939 NIL FSPECF (NIL T T) -7 NIL NIL) (-408 966835 975392 975432 "FS" 979270 NIL FS (NIL T) -9 NIL 981552) (-407 955485 958475 962531 "FS-" 962828 NIL FS- (NIL T T) -8 NIL NIL) (-406 955001 955055 955231 "FSINT" 955426 NIL FSINT (NIL T T) -7 NIL NIL) (-405 953282 953994 954297 "FSERIES" 954780 NIL FSERIES (NIL T T) -8 NIL NIL) (-404 952300 952416 952646 "FSCINT" 953162 NIL FSCINT (NIL T T) -7 NIL NIL) (-403 948535 951245 951286 "FSAGG" 951656 NIL FSAGG (NIL T) -9 NIL 951915) (-402 946297 946898 947694 "FSAGG-" 947789 NIL FSAGG- (NIL T T) -8 NIL NIL) (-401 945339 945482 945709 "FSAGG2" 946150 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-400 942998 943277 943830 "FS2UPS" 945057 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-399 942584 942627 942780 "FS2" 942949 NIL FS2 (NIL T T T T) -7 NIL NIL) (-398 941444 941615 941923 "FS2EXPXP" 942409 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-397 940870 940985 941137 "FRUTIL" 941324 NIL FRUTIL (NIL T) -7 NIL NIL) (-396 932290 936369 937725 "FR" 939546 NIL FR (NIL T) -8 NIL NIL) (-395 927367 930010 930050 "FRNAALG" 931446 NIL FRNAALG (NIL T) -9 NIL 932053) (-394 923045 924116 925391 "FRNAALG-" 926141 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-393 922683 922726 922853 "FRNAAF2" 922996 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-392 921048 921540 921834 "FRMOD" 922496 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-391 918770 919439 919755 "FRIDEAL" 920839 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-390 917969 918056 918343 "FRIDEAL2" 918677 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-389 917227 917635 917676 "FRETRCT" 917681 NIL FRETRCT (NIL T) -9 NIL 917852) (-388 916339 916570 916921 "FRETRCT-" 916926 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-387 913549 914769 914828 "FRAMALG" 915710 NIL FRAMALG (NIL T T) -9 NIL 916002) (-386 911682 912138 912768 "FRAMALG-" 912991 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-385 905584 911157 911433 "FRAC" 911438 NIL FRAC (NIL T) -8 NIL NIL) (-384 905220 905277 905384 "FRAC2" 905521 NIL FRAC2 (NIL T T) -7 NIL NIL) (-383 904856 904913 905020 "FR2" 905157 NIL FR2 (NIL T T) -7 NIL NIL) (-382 899530 902443 902471 "FPS" 903590 T FPS (NIL) -9 NIL 904146) (-381 898979 899088 899252 "FPS-" 899398 NIL FPS- (NIL T) -8 NIL NIL) (-380 896428 898125 898153 "FPC" 898378 T FPC (NIL) -9 NIL 898520) (-379 896221 896261 896358 "FPC-" 896363 NIL FPC- (NIL T) -8 NIL NIL) (-378 895100 895710 895751 "FPATMAB" 895756 NIL FPATMAB (NIL T) -9 NIL 895908) (-377 892800 893276 893702 "FPARFRAC" 894737 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-376 888193 888692 889374 "FORTRAN" 892232 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-375 885909 886409 886948 "FORT" 887674 T FORT (NIL) -7 NIL NIL) (-374 883585 884147 884175 "FORTFN" 885235 T FORTFN (NIL) -9 NIL 885859) (-373 883349 883399 883427 "FORTCAT" 883486 T FORTCAT (NIL) -9 NIL 883548) (-372 881409 881892 882291 "FORMULA" 882970 T FORMULA (NIL) -8 NIL NIL) (-371 881197 881227 881296 "FORMULA1" 881373 NIL FORMULA1 (NIL T) -7 NIL NIL) (-370 880720 880772 880945 "FORDER" 881139 NIL FORDER (NIL T T T T) -7 NIL NIL) (-369 879816 879980 880173 "FOP" 880547 T FOP (NIL) -7 NIL NIL) (-368 878424 879096 879270 "FNLA" 879698 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-367 877093 877482 877510 "FNCAT" 878082 T FNCAT (NIL) -9 NIL 878375) (-366 876659 877052 877080 "FNAME" 877085 T FNAME (NIL) -8 NIL NIL) (-365 875319 876292 876320 "FMTC" 876325 T FMTC (NIL) -9 NIL 876360) (-364 871637 872844 873472 "FMONOID" 874724 NIL FMONOID (NIL T) -8 NIL NIL) (-363 870857 871380 871528 "FM" 871533 NIL FM (NIL T T) -8 NIL NIL) (-362 868281 868927 868955 "FMFUN" 870099 T FMFUN (NIL) -9 NIL 870807) (-361 867550 867731 867759 "FMC" 868049 T FMC (NIL) -9 NIL 868231) (-360 864780 865614 865667 "FMCAT" 866849 NIL FMCAT (NIL T T) -9 NIL 867343) (-359 863675 864548 864647 "FM1" 864725 NIL FM1 (NIL T T) -8 NIL NIL) (-358 861449 861865 862359 "FLOATRP" 863226 NIL FLOATRP (NIL T) -7 NIL NIL) (-357 854935 859105 859735 "FLOAT" 860839 T FLOAT (NIL) -8 NIL NIL) (-356 852373 852873 853451 "FLOATCP" 854402 NIL FLOATCP (NIL T) -7 NIL NIL) (-355 851162 852010 852050 "FLINEXP" 852055 NIL FLINEXP (NIL T) -9 NIL 852148) (-354 850317 850552 850879 "FLINEXP-" 850884 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-353 849393 849537 849761 "FLASORT" 850169 NIL FLASORT (NIL T T) -7 NIL NIL) (-352 846612 847454 847506 "FLALG" 848733 NIL FLALG (NIL T T) -9 NIL 849200) (-351 840397 844099 844140 "FLAGG" 845402 NIL FLAGG (NIL T) -9 NIL 846054) (-350 839123 839462 839952 "FLAGG-" 839957 NIL FLAGG- (NIL T T) -8 NIL NIL) (-349 838165 838308 838535 "FLAGG2" 838976 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-348 835138 836156 836215 "FINRALG" 837343 NIL FINRALG (NIL T T) -9 NIL 837851) (-347 834298 834527 834866 "FINRALG-" 834871 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-346 833705 833918 833946 "FINITE" 834142 T FINITE (NIL) -9 NIL 834249) (-345 826165 828326 828366 "FINAALG" 832033 NIL FINAALG (NIL T) -9 NIL 833486) (-344 821506 822547 823691 "FINAALG-" 825070 NIL FINAALG- (NIL T T) -8 NIL NIL) (-343 820901 821261 821364 "FILE" 821436 NIL FILE (NIL T) -8 NIL NIL) (-342 819586 819898 819952 "FILECAT" 820636 NIL FILECAT (NIL T T) -9 NIL 820852) (-341 817449 819005 819033 "FIELD" 819073 T FIELD (NIL) -9 NIL 819153) (-340 816069 816454 816965 "FIELD-" 816970 NIL FIELD- (NIL T) -8 NIL NIL) (-339 813884 814706 815052 "FGROUP" 815756 NIL FGROUP (NIL T) -8 NIL NIL) (-338 812974 813138 813358 "FGLMICPK" 813716 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-337 808776 812899 812956 "FFX" 812961 NIL FFX (NIL T NIL) -8 NIL NIL) (-336 808377 808438 808573 "FFSLPE" 808709 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-335 804370 805149 805945 "FFPOLY" 807613 NIL FFPOLY (NIL T) -7 NIL NIL) (-334 803874 803910 804119 "FFPOLY2" 804328 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-333 799695 803793 803856 "FFP" 803861 NIL FFP (NIL T NIL) -8 NIL NIL) (-332 795063 799606 799670 "FF" 799675 NIL FF (NIL NIL NIL) -8 NIL NIL) (-331 790159 794406 794596 "FFNBX" 794917 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-330 785068 789294 789552 "FFNBP" 790013 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-329 779671 784352 784563 "FFNB" 784901 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-328 778503 778701 779016 "FFINTBAS" 779468 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-327 774727 776967 776995 "FFIELDC" 777615 T FFIELDC (NIL) -9 NIL 777991) (-326 773390 773760 774257 "FFIELDC-" 774262 NIL FFIELDC- (NIL T) -8 NIL NIL) (-325 772960 773005 773129 "FFHOM" 773332 NIL FFHOM (NIL T T T) -7 NIL NIL) (-324 770658 771142 771659 "FFF" 772475 NIL FFF (NIL T) -7 NIL NIL) (-323 766246 770400 770501 "FFCGX" 770601 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-322 761848 765978 766085 "FFCGP" 766189 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-321 757001 761575 761683 "FFCG" 761784 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-320 738947 748070 748156 "FFCAT" 753321 NIL FFCAT (NIL T T T) -9 NIL 754808) (-319 734145 735192 736506 "FFCAT-" 737736 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-318 733556 733599 733834 "FFCAT2" 734096 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-317 722756 726546 727763 "FEXPR" 732411 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-316 721756 722191 722232 "FEVALAB" 722316 NIL FEVALAB (NIL T) -9 NIL 722577) (-315 720915 721125 721463 "FEVALAB-" 721468 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-314 719508 720298 720501 "FDIV" 720814 NIL FDIV (NIL T T T T) -8 NIL NIL) (-313 716575 717290 717405 "FDIVCAT" 718973 NIL FDIVCAT (NIL T T T T) -9 NIL 719410) (-312 716337 716364 716534 "FDIVCAT-" 716539 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-311 715557 715644 715921 "FDIV2" 716244 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-310 714243 714502 714791 "FCPAK1" 715288 T FCPAK1 (NIL) -7 NIL NIL) (-309 713371 713743 713884 "FCOMP" 714134 NIL FCOMP (NIL T) -8 NIL NIL) (-308 697006 700420 703981 "FC" 709830 T FC (NIL) -8 NIL NIL) (-307 689602 693648 693688 "FAXF" 695490 NIL FAXF (NIL T) -9 NIL 696181) (-306 686881 687536 688361 "FAXF-" 688826 NIL FAXF- (NIL T T) -8 NIL NIL) (-305 681981 686257 686433 "FARRAY" 686738 NIL FARRAY (NIL T) -8 NIL NIL) (-304 677372 679443 679495 "FAMR" 680507 NIL FAMR (NIL T T) -9 NIL 680967) (-303 676263 676565 676999 "FAMR-" 677004 NIL FAMR- (NIL T T T) -8 NIL NIL) (-302 675459 676185 676238 "FAMONOID" 676243 NIL FAMONOID (NIL T) -8 NIL NIL) (-301 673292 673976 674029 "FAMONC" 674970 NIL FAMONC (NIL T T) -9 NIL 675355) (-300 671984 673046 673183 "FAGROUP" 673188 NIL FAGROUP (NIL T) -8 NIL NIL) (-299 669787 670106 670508 "FACUTIL" 671665 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-298 668886 669071 669293 "FACTFUNC" 669597 NIL FACTFUNC (NIL T) -7 NIL NIL) (-297 661206 668137 668349 "EXPUPXS" 668742 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-296 658689 659229 659815 "EXPRTUBE" 660640 T EXPRTUBE (NIL) -7 NIL NIL) (-295 654883 655475 656212 "EXPRODE" 658028 NIL EXPRODE (NIL T T) -7 NIL NIL) (-294 640042 653542 653968 "EXPR" 654489 NIL EXPR (NIL T) -8 NIL NIL) (-293 634470 635057 635869 "EXPR2UPS" 639340 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-292 634106 634163 634270 "EXPR2" 634407 NIL EXPR2 (NIL T T) -7 NIL NIL) (-291 625460 633243 633538 "EXPEXPAN" 633944 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-290 625287 625417 625446 "EXIT" 625451 T EXIT (NIL) -8 NIL NIL) (-289 624914 624976 625089 "EVALCYC" 625219 NIL EVALCYC (NIL T) -7 NIL NIL) (-288 624455 624573 624614 "EVALAB" 624784 NIL EVALAB (NIL T) -9 NIL 624888) (-287 623936 624058 624279 "EVALAB-" 624284 NIL EVALAB- (NIL T T) -8 NIL NIL) (-286 621399 622711 622739 "EUCDOM" 623294 T EUCDOM (NIL) -9 NIL 623644) (-285 619804 620246 620836 "EUCDOM-" 620841 NIL EUCDOM- (NIL T) -8 NIL NIL) (-284 607382 610130 612870 "ESTOOLS" 617084 T ESTOOLS (NIL) -7 NIL NIL) (-283 607018 607075 607182 "ESTOOLS2" 607319 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-282 606769 606811 606891 "ESTOOLS1" 606970 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-281 600707 602431 602459 "ES" 605223 T ES (NIL) -9 NIL 606629) (-280 595654 596941 598758 "ES-" 598922 NIL ES- (NIL T) -8 NIL NIL) (-279 592029 592789 593569 "ESCONT" 594894 T ESCONT (NIL) -7 NIL NIL) (-278 591774 591806 591888 "ESCONT1" 591991 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-277 591449 591499 591599 "ES2" 591718 NIL ES2 (NIL T T) -7 NIL NIL) (-276 591079 591137 591246 "ES1" 591385 NIL ES1 (NIL T T) -7 NIL NIL) (-275 590295 590424 590600 "ERROR" 590923 T ERROR (NIL) -7 NIL NIL) (-274 583798 590154 590245 "EQTBL" 590250 NIL EQTBL (NIL T T) -8 NIL NIL) (-273 576235 579116 580563 "EQ" 582384 NIL -2473 (NIL T) -8 NIL NIL) (-272 575867 575924 576033 "EQ2" 576172 NIL EQ2 (NIL T T) -7 NIL NIL) (-271 571159 572205 573298 "EP" 574806 NIL EP (NIL T) -7 NIL NIL) (-270 569742 570042 570359 "ENV" 570862 T ENV (NIL) -8 NIL NIL) (-269 568902 569466 569494 "ENTIRER" 569499 T ENTIRER (NIL) -9 NIL 569544) (-268 565358 566857 567227 "EMR" 568701 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-267 564502 564687 564741 "ELTAGG" 565121 NIL ELTAGG (NIL T T) -9 NIL 565332) (-266 564221 564283 564424 "ELTAGG-" 564429 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-265 564010 564039 564093 "ELTAB" 564177 NIL ELTAB (NIL T T) -9 NIL NIL) (-264 563136 563282 563481 "ELFUTS" 563861 NIL ELFUTS (NIL T T) -7 NIL NIL) (-263 562878 562934 562962 "ELEMFUN" 563067 T ELEMFUN (NIL) -9 NIL NIL) (-262 562748 562769 562837 "ELEMFUN-" 562842 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-261 557640 560849 560890 "ELAGG" 561830 NIL ELAGG (NIL T) -9 NIL 562293) (-260 555925 556359 557022 "ELAGG-" 557027 NIL ELAGG- (NIL T T) -8 NIL NIL) (-259 554582 554862 555157 "ELABEXPR" 555650 T ELABEXPR (NIL) -8 NIL NIL) (-258 547450 549249 550076 "EFUPXS" 553858 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-257 540900 542701 543511 "EFULS" 546726 NIL EFULS (NIL T T T) -8 NIL NIL) (-256 538331 538689 539167 "EFSTRUC" 540532 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-255 527403 528968 530528 "EF" 536846 NIL EF (NIL T T) -7 NIL NIL) (-254 526504 526888 527037 "EAB" 527274 T EAB (NIL) -8 NIL NIL) (-253 525717 526463 526491 "E04UCFA" 526496 T E04UCFA (NIL) -8 NIL NIL) (-252 524930 525676 525704 "E04NAFA" 525709 T E04NAFA (NIL) -8 NIL NIL) (-251 524143 524889 524917 "E04MBFA" 524922 T E04MBFA (NIL) -8 NIL NIL) (-250 523356 524102 524130 "E04JAFA" 524135 T E04JAFA (NIL) -8 NIL NIL) (-249 522571 523315 523343 "E04GCFA" 523348 T E04GCFA (NIL) -8 NIL NIL) (-248 521786 522530 522558 "E04FDFA" 522563 T E04FDFA (NIL) -8 NIL NIL) (-247 520999 521745 521773 "E04DGFA" 521778 T E04DGFA (NIL) -8 NIL NIL) (-246 515184 516529 517891 "E04AGNT" 519657 T E04AGNT (NIL) -7 NIL NIL) (-245 513911 514391 514431 "DVARCAT" 514906 NIL DVARCAT (NIL T) -9 NIL 515104) (-244 513115 513327 513641 "DVARCAT-" 513646 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-243 505977 512917 513044 "DSMP" 513049 NIL DSMP (NIL T T T) -8 NIL NIL) (-242 500787 501922 502990 "DROPT" 504929 T DROPT (NIL) -8 NIL NIL) (-241 500452 500511 500609 "DROPT1" 500722 NIL DROPT1 (NIL T) -7 NIL NIL) (-240 495567 496693 497830 "DROPT0" 499335 T DROPT0 (NIL) -7 NIL NIL) (-239 493912 494237 494623 "DRAWPT" 495201 T DRAWPT (NIL) -7 NIL NIL) (-238 488499 489422 490501 "DRAW" 492886 NIL DRAW (NIL T) -7 NIL NIL) (-237 488132 488185 488303 "DRAWHACK" 488440 NIL DRAWHACK (NIL T) -7 NIL NIL) (-236 486863 487132 487423 "DRAWCX" 487861 T DRAWCX (NIL) -7 NIL NIL) (-235 486381 486449 486599 "DRAWCURV" 486789 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-234 476852 478811 480926 "DRAWCFUN" 484286 T DRAWCFUN (NIL) -7 NIL NIL) (-233 473666 475548 475589 "DQAGG" 476218 NIL DQAGG (NIL T) -9 NIL 476491) (-232 462173 468911 468993 "DPOLCAT" 470831 NIL DPOLCAT (NIL T T T T) -9 NIL 471375) (-231 457013 458359 460316 "DPOLCAT-" 460321 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-230 451097 456875 456972 "DPMO" 456977 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-229 445084 450878 451044 "DPMM" 451049 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-228 444597 444695 444815 "DOMAIN" 444984 T DOMAIN (NIL) -8 NIL NIL) (-227 438309 444234 444385 "DMP" 444498 NIL DMP (NIL NIL T) -8 NIL NIL) (-226 437909 437965 438109 "DLP" 438247 NIL DLP (NIL T) -7 NIL NIL) (-225 431553 437010 437237 "DLIST" 437714 NIL DLIST (NIL T) -8 NIL NIL) (-224 428400 430409 430450 "DLAGG" 431000 NIL DLAGG (NIL T) -9 NIL 431229) (-223 427110 427802 427830 "DIVRING" 427980 T DIVRING (NIL) -9 NIL 428088) (-222 426098 426351 426744 "DIVRING-" 426749 NIL DIVRING- (NIL T) -8 NIL NIL) (-221 424200 424557 424963 "DISPLAY" 425712 T DISPLAY (NIL) -7 NIL NIL) (-220 418089 424114 424177 "DIRPROD" 424182 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-219 416937 417140 417405 "DIRPROD2" 417882 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-218 406568 412573 412626 "DIRPCAT" 413034 NIL DIRPCAT (NIL NIL T) -9 NIL 413861) (-217 403894 404536 405417 "DIRPCAT-" 405754 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-216 403181 403341 403527 "DIOSP" 403728 T DIOSP (NIL) -7 NIL NIL) (-215 399884 402094 402135 "DIOPS" 402569 NIL DIOPS (NIL T) -9 NIL 402798) (-214 399433 399547 399738 "DIOPS-" 399743 NIL DIOPS- (NIL T T) -8 NIL NIL) (-213 398305 398943 398971 "DIFRING" 399158 T DIFRING (NIL) -9 NIL 399267) (-212 397951 398028 398180 "DIFRING-" 398185 NIL DIFRING- (NIL T) -8 NIL NIL) (-211 395741 397023 397063 "DIFEXT" 397422 NIL DIFEXT (NIL T) -9 NIL 397715) (-210 394027 394455 395120 "DIFEXT-" 395125 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-209 391350 393560 393601 "DIAGG" 393606 NIL DIAGG (NIL T) -9 NIL 393626) (-208 390734 390891 391143 "DIAGG-" 391148 NIL DIAGG- (NIL T T) -8 NIL NIL) (-207 386199 389693 389970 "DHMATRIX" 390503 NIL DHMATRIX (NIL T) -8 NIL NIL) (-206 381811 382720 383730 "DFSFUN" 385209 T DFSFUN (NIL) -7 NIL NIL) (-205 376597 380525 380890 "DFLOAT" 381466 T DFLOAT (NIL) -8 NIL NIL) (-204 374830 375111 375506 "DFINTTLS" 376305 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-203 371863 372865 373263 "DERHAM" 374497 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-202 369712 371638 371727 "DEQUEUE" 371807 NIL DEQUEUE (NIL T) -8 NIL NIL) (-201 368930 369063 369258 "DEGRED" 369574 NIL DEGRED (NIL T T) -7 NIL NIL) (-200 365330 366075 366927 "DEFINTRF" 368158 NIL DEFINTRF (NIL T) -7 NIL NIL) (-199 362861 363330 363928 "DEFINTEF" 364849 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-198 356691 362302 362468 "DECIMAL" 362715 T DECIMAL (NIL) -8 NIL NIL) (-197 354203 354661 355167 "DDFACT" 356235 NIL DDFACT (NIL T T) -7 NIL NIL) (-196 353799 353842 353993 "DBLRESP" 354154 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-195 351509 351843 352212 "DBASE" 353557 NIL DBASE (NIL T) -8 NIL NIL) (-194 350644 351468 351496 "D03FAFA" 351501 T D03FAFA (NIL) -8 NIL NIL) (-193 349780 350603 350631 "D03EEFA" 350636 T D03EEFA (NIL) -8 NIL NIL) (-192 347730 348196 348685 "D03AGNT" 349311 T D03AGNT (NIL) -7 NIL NIL) (-191 347048 347689 347717 "D02EJFA" 347722 T D02EJFA (NIL) -8 NIL NIL) (-190 346366 347007 347035 "D02CJFA" 347040 T D02CJFA (NIL) -8 NIL NIL) (-189 345684 346325 346353 "D02BHFA" 346358 T D02BHFA (NIL) -8 NIL NIL) (-188 345002 345643 345671 "D02BBFA" 345676 T D02BBFA (NIL) -8 NIL NIL) (-187 338200 339788 341394 "D02AGNT" 343416 T D02AGNT (NIL) -7 NIL NIL) (-186 335969 336491 337037 "D01WGTS" 337674 T D01WGTS (NIL) -7 NIL NIL) (-185 335072 335928 335956 "D01TRNS" 335961 T D01TRNS (NIL) -8 NIL NIL) (-184 334175 335031 335059 "D01GBFA" 335064 T D01GBFA (NIL) -8 NIL NIL) (-183 333278 334134 334162 "D01FCFA" 334167 T D01FCFA (NIL) -8 NIL NIL) (-182 332381 333237 333265 "D01ASFA" 333270 T D01ASFA (NIL) -8 NIL NIL) (-181 331484 332340 332368 "D01AQFA" 332373 T D01AQFA (NIL) -8 NIL NIL) (-180 330587 331443 331471 "D01APFA" 331476 T D01APFA (NIL) -8 NIL NIL) (-179 329690 330546 330574 "D01ANFA" 330579 T D01ANFA (NIL) -8 NIL NIL) (-178 328793 329649 329677 "D01AMFA" 329682 T D01AMFA (NIL) -8 NIL NIL) (-177 327896 328752 328780 "D01ALFA" 328785 T D01ALFA (NIL) -8 NIL NIL) (-176 326999 327855 327883 "D01AKFA" 327888 T D01AKFA (NIL) -8 NIL NIL) (-175 326102 326958 326986 "D01AJFA" 326991 T D01AJFA (NIL) -8 NIL NIL) (-174 319406 320955 322514 "D01AGNT" 324563 T D01AGNT (NIL) -7 NIL NIL) (-173 318743 318871 319023 "CYCLOTOM" 319274 T CYCLOTOM (NIL) -7 NIL NIL) (-172 315478 316191 316918 "CYCLES" 318036 T CYCLES (NIL) -7 NIL NIL) (-171 314790 314924 315095 "CVMP" 315339 NIL CVMP (NIL T) -7 NIL NIL) (-170 312571 312829 313204 "CTRIGMNP" 314518 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-169 312176 312259 312364 "CTORCALL" 312486 T CTORCALL (NIL) -8 NIL NIL) (-168 311550 311649 311802 "CSTTOOLS" 312073 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-167 307349 308006 308764 "CRFP" 310862 NIL CRFP (NIL T T) -7 NIL NIL) (-166 306396 306581 306809 "CRAPACK" 307153 NIL CRAPACK (NIL T) -7 NIL NIL) (-165 305780 305881 306085 "CPMATCH" 306272 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-164 305505 305533 305639 "CPIMA" 305746 NIL CPIMA (NIL T T T) -7 NIL NIL) (-163 301869 302541 303259 "COORDSYS" 304840 NIL COORDSYS (NIL T) -7 NIL NIL) (-162 301253 301382 301532 "CONTOUR" 301739 T CONTOUR (NIL) -8 NIL NIL) (-161 297114 299256 299748 "CONTFRAC" 300793 NIL CONTFRAC (NIL T) -8 NIL NIL) (-160 296268 296832 296860 "COMRING" 296865 T COMRING (NIL) -9 NIL 296916) (-159 295349 295626 295810 "COMPPROP" 296104 T COMPPROP (NIL) -8 NIL NIL) (-158 295010 295045 295173 "COMPLPAT" 295308 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-157 284991 294819 294928 "COMPLEX" 294933 NIL COMPLEX (NIL T) -8 NIL NIL) (-156 284627 284684 284791 "COMPLEX2" 284928 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-155 284345 284380 284478 "COMPFACT" 284586 NIL COMPFACT (NIL T T) -7 NIL NIL) (-154 268680 278974 279014 "COMPCAT" 280016 NIL COMPCAT (NIL T) -9 NIL 281409) (-153 258195 261119 264746 "COMPCAT-" 265102 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-152 257926 257954 258056 "COMMUPC" 258161 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-151 257721 257754 257813 "COMMONOP" 257887 T COMMONOP (NIL) -7 NIL NIL) (-150 257304 257472 257559 "COMM" 257654 T COMM (NIL) -8 NIL NIL) (-149 256553 256747 256775 "COMBOPC" 257113 T COMBOPC (NIL) -9 NIL 257288) (-148 255449 255659 255901 "COMBINAT" 256343 NIL COMBINAT (NIL T) -7 NIL NIL) (-147 251647 252220 252860 "COMBF" 254871 NIL COMBF (NIL T T) -7 NIL NIL) (-146 250433 250763 250998 "COLOR" 251432 T COLOR (NIL) -8 NIL NIL) (-145 250073 250120 250245 "CMPLXRT" 250380 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-144 245575 246603 247683 "CLIP" 249013 T CLIP (NIL) -7 NIL NIL) (-143 243913 244683 244921 "CLIF" 245403 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-142 240136 242060 242101 "CLAGG" 243030 NIL CLAGG (NIL T) -9 NIL 243566) (-141 238558 239015 239598 "CLAGG-" 239603 NIL CLAGG- (NIL T T) -8 NIL NIL) (-140 238102 238187 238327 "CINTSLPE" 238467 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-139 235603 236074 236622 "CHVAR" 237630 NIL CHVAR (NIL T T T) -7 NIL NIL) (-138 234826 235390 235418 "CHARZ" 235423 T CHARZ (NIL) -9 NIL 235437) (-137 234580 234620 234698 "CHARPOL" 234780 NIL CHARPOL (NIL T) -7 NIL NIL) (-136 233687 234284 234312 "CHARNZ" 234359 T CHARNZ (NIL) -9 NIL 234414) (-135 231712 232377 232712 "CHAR" 233372 T CHAR (NIL) -8 NIL NIL) (-134 231438 231499 231527 "CFCAT" 231638 T CFCAT (NIL) -9 NIL NIL) (-133 230683 230794 230976 "CDEN" 231322 NIL CDEN (NIL T T T) -7 NIL NIL) (-132 226675 229836 230116 "CCLASS" 230423 T CCLASS (NIL) -8 NIL NIL) (-131 226594 226620 226655 "CATEGORY" 226660 T -10 (NIL) -8 NIL NIL) (-130 221646 222623 223376 "CARTEN" 225897 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-129 220754 220902 221123 "CARTEN2" 221493 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-128 219052 219906 220162 "CARD" 220518 T CARD (NIL) -8 NIL NIL) (-127 218425 218753 218781 "CACHSET" 218913 T CACHSET (NIL) -9 NIL 218990) (-126 217922 218218 218246 "CABMON" 218296 T CABMON (NIL) -9 NIL 218352) (-125 217410 217724 217804 "BYTE" 217862 T BYTE (NIL) -8 NIL NIL) (-124 213358 217357 217391 "BYTEARY" 217396 T BYTEARY (NIL) -8 NIL NIL) (-123 210915 213050 213157 "BTREE" 213284 NIL BTREE (NIL T) -8 NIL NIL) (-122 208413 210563 210685 "BTOURN" 210825 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205832 207885 207926 "BTCAT" 207994 NIL BTCAT (NIL T) -9 NIL 208071) (-120 205499 205579 205728 "BTCAT-" 205733 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200720 204591 204619 "BTAGG" 204875 T BTAGG (NIL) -9 NIL 205054) (-118 200143 200287 200517 "BTAGG-" 200522 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 197187 199421 199636 "BSTREE" 199960 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196325 196451 196635 "BRILL" 197043 NIL BRILL (NIL T) -7 NIL NIL) (-115 193027 195054 195095 "BRAGG" 195744 NIL BRAGG (NIL T) -9 NIL 196001) (-114 191556 191962 192517 "BRAGG-" 192522 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184764 190902 191086 "BPADICRT" 191404 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 183068 184701 184746 "BPADIC" 184751 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182768 182798 182911 "BOUNDZRO" 183032 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 178283 179374 180241 "BOP" 181921 T BOP (NIL) -8 NIL NIL) (-109 175904 176348 176868 "BOP1" 177796 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174539 175244 175462 "BOOLEAN" 175706 T BOOLEAN (NIL) -8 NIL NIL) (-107 173906 174284 174336 "BMODULE" 174341 NIL BMODULE (NIL T T) -9 NIL 174405) (-106 169716 173704 173777 "BITS" 173853 T BITS (NIL) -8 NIL NIL) (-105 168813 169248 169400 "BINFILE" 169584 T BINFILE (NIL) -8 NIL NIL) (-104 168225 168347 168489 "BINDING" 168691 T BINDING (NIL) -8 NIL NIL) (-103 162059 167669 167834 "BINARY" 168080 T BINARY (NIL) -8 NIL NIL) (-102 159887 161315 161356 "BGAGG" 161616 NIL BGAGG (NIL T) -9 NIL 161753) (-101 159718 159750 159841 "BGAGG-" 159846 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158816 159102 159307 "BFUNCT" 159533 T BFUNCT (NIL) -8 NIL NIL) (-99 157517 157695 157980 "BEZOUT" 158640 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154042 156377 156705 "BBTREE" 157220 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153780 153833 153859 "BASTYPE" 153976 T BASTYPE (NIL) -9 NIL NIL) (-96 153635 153664 153734 "BASTYPE-" 153739 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153073 153149 153299 "BALFACT" 153546 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151895 152492 152677 "AUTOMOR" 152918 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151621 151626 151652 "ATTREG" 151657 T ATTREG (NIL) -9 NIL NIL) (-92 149900 150318 150670 "ATTRBUT" 151287 T ATTRBUT (NIL) -8 NIL NIL) (-91 149436 149549 149575 "ATRIG" 149776 T ATRIG (NIL) -9 NIL NIL) (-90 149245 149286 149373 "ATRIG-" 149378 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147442 149021 149109 "ASTACK" 149188 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145947 146244 146609 "ASSOCEQ" 147124 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144979 145606 145730 "ASP9" 145854 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144743 144927 144966 "ASP8" 144971 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143612 144348 144490 "ASP80" 144632 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142511 143247 143379 "ASP7" 143511 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141465 142188 142306 "ASP78" 142424 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140434 141145 141262 "ASP77" 141379 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139346 140072 140203 "ASP74" 140334 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138246 138981 139113 "ASP73" 139245 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137201 137923 138041 "ASP6" 138159 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136149 136878 136996 "ASP55" 137114 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135099 135823 135942 "ASP50" 136061 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134187 134800 134910 "ASP4" 135020 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133275 133888 133998 "ASP49" 134108 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132060 132814 132982 "ASP42" 133164 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130837 131593 131763 "ASP41" 131947 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129787 130514 130632 "ASP35" 130750 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129552 129735 129774 "ASP34" 129779 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129289 129356 129432 "ASP33" 129507 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128184 128924 129056 "ASP31" 129188 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127949 128132 128171 "ASP30" 128176 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127684 127753 127829 "ASP29" 127904 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127449 127632 127671 "ASP28" 127676 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127214 127397 127436 "ASP27" 127441 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126298 126912 127023 "ASP24" 127134 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125214 125939 126069 "ASP20" 126199 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124302 124915 125025 "ASP1" 125135 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123246 123976 124095 "ASP19" 124214 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122983 123050 123126 "ASP12" 123201 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121835 122582 122726 "ASP10" 122870 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119734 121679 121770 "ARRAY2" 121775 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115550 119382 119496 "ARRAY1" 119651 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114582 114755 114976 "ARRAY12" 115373 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108942 110813 110888 "ARR2CAT" 113518 NIL ARR2CAT (NIL T T T) -9 NIL 114276) (-54 106376 107120 108074 "ARR2CAT-" 108079 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105136 105286 105589 "APPRULE" 106214 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104789 104837 104955 "APPLYORE" 105082 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103763 104054 104249 "ANY" 104612 T ANY (NIL) -8 NIL NIL) (-50 103041 103164 103321 "ANY1" 103637 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100573 101491 101816 "ANTISYM" 102766 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100088 100277 100374 "ANON" 100494 T ANON (NIL) -8 NIL NIL) (-47 94165 98633 99084 "AN" 99655 T AN (NIL) -8 NIL NIL) (-46 90519 91917 91967 "AMR" 92706 NIL AMR (NIL T T) -9 NIL 93305) (-45 89632 89853 90215 "AMR-" 90220 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74182 89549 89610 "ALIST" 89615 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71019 73776 73945 "ALGSC" 74100 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67575 68129 68736 "ALGPKG" 70459 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66852 66953 67137 "ALGMFACT" 67461 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62602 63282 63936 "ALGMANIP" 66376 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53921 62228 62378 "ALGFF" 62535 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53117 53248 53427 "ALGFACT" 53779 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52756 "ALGEBRA" 52816 NIL ALGEBRA (NIL T) -9 NIL 52874) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34087 49830 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33623 33736 33762 "AHYP" 33963 T AHYP (NIL) -9 NIL NIL) (-33 32554 32802 32828 "AGG" 33327 T AGG (NIL) -9 NIL 33606) (-32 31988 32150 32364 "AGG-" 32369 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31631 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +((-3206 (((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 37)) (-1453 (((-525) (-1145 |#2| |#1|)) 68 (|has| |#1| (-429)))) (-1648 (((-525) (-1145 |#2| |#1|)) 54)) (-2425 (((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 45)) (-4226 (((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 56 (|has| |#1| (-429)))) (-3238 (((-592 |#1|) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 48)) (-2990 (((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 53))) +(((-1033 |#1| |#2|) (-10 -7 (-15 -3206 ((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2425 ((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -3238 ((-592 |#1|) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2990 ((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -1648 ((-525) (-1145 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -4226 ((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -1453 ((-525) (-1145 |#2| |#1|)))) |%noBranch|)) (-762) (-1090)) (T -1033)) +((-1453 (*1 *2 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))) (-4226 (*1 *2 *3 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))) (-2990 (*1 *2 *3 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))) (-3238 (*1 *2 *3 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 *4)) (-5 *1 (-1033 *4 *5)))) (-2425 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 (-1145 *5 *4))) (-5 *1 (-1033 *4 *5)) (-5 *3 (-1145 *5 *4)))) (-3206 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 (-1145 *5 *4))) (-5 *1 (-1033 *4 *5)) (-5 *3 (-1145 *5 *4))))) +(-10 -7 (-15 -3206 ((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2425 ((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -3238 ((-592 |#1|) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2990 ((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -1648 ((-525) (-1145 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -4226 ((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -1453 ((-525) (-1145 |#2| |#1|)))) |%noBranch|)) +((-2780 (((-3 (-525) "failed") |#2| (-1090) |#2| (-1073)) 17) (((-3 (-525) "failed") |#2| (-1090) (-782 |#2|)) 15) (((-3 (-525) "failed") |#2|) 54))) +(((-1034 |#1| |#2|) (-10 -7 (-15 -2780 ((-3 (-525) "failed") |#2|)) (-15 -2780 ((-3 (-525) "failed") |#2| (-1090) (-782 |#2|))) (-15 -2780 ((-3 (-525) "failed") |#2| (-1090) |#2| (-1073)))) (-13 (-517) (-789) (-967 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1112) (-408 |#1|))) (T -1034)) +((-2780 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-13 (-517) (-789) (-967 *2) (-588 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1034 *6 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))))) (-2780 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-782 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 *2) (-588 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1034 *6 *3)))) (-2780 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-967 *2) (-588 *2) (-429))) (-5 *2 (-525)) (-5 *1 (-1034 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4)))))) +(-10 -7 (-15 -2780 ((-3 (-525) "failed") |#2|)) (-15 -2780 ((-3 (-525) "failed") |#2| (-1090) (-782 |#2|))) (-15 -2780 ((-3 (-525) "failed") |#2| (-1090) |#2| (-1073)))) +((-2780 (((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)) (-1073)) 35) (((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-782 (-385 (-886 |#1|)))) 30) (((-3 (-525) "failed") (-385 (-886 |#1|))) 13))) +(((-1035 |#1|) (-10 -7 (-15 -2780 ((-3 (-525) "failed") (-385 (-886 |#1|)))) (-15 -2780 ((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-782 (-385 (-886 |#1|))))) (-15 -2780 ((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)) (-1073)))) (-429)) (T -1035)) +((-2780 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1035 *6)))) (-2780 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-782 (-385 (-886 *6)))) (-5 *3 (-385 (-886 *6))) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1035 *6)))) (-2780 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-429)) (-5 *2 (-525)) (-5 *1 (-1035 *4))))) +(-10 -7 (-15 -2780 ((-3 (-525) "failed") (-385 (-886 |#1|)))) (-15 -2780 ((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-782 (-385 (-886 |#1|))))) (-15 -2780 ((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)) (-1073)))) +((-1351 (((-294 (-525)) (-47)) 12))) +(((-1036) (-10 -7 (-15 -1351 ((-294 (-525)) (-47))))) (T -1036)) +((-1351 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1036))))) +(-10 -7 (-15 -1351 ((-294 (-525)) (-47)))) +((-4028 (((-108) $ $) NIL)) (-3803 (($ $) 41)) (-2464 (((-108) $) 65)) (-1829 (($ $ $) 48)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 85)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3775 (($ $ $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-4065 (($ $ $ $) 74)) (-2701 (($ $) NIL)) (-1259 (((-396 $) $) NIL)) (-1700 (((-108) $ $) NIL)) (-2780 (((-525) $) NIL)) (-4162 (($ $ $) 71)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL)) (-2068 (((-525) $) NIL)) (-2720 (($ $ $) 59)) (-1307 (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 79) (((-632 (-525)) (-632 $)) 28)) (-1645 (((-3 $ "failed") $) NIL)) (-2132 (((-3 (-385 (-525)) "failed") $) NIL)) (-3748 (((-108) $) NIL)) (-1675 (((-385 (-525)) $) NIL)) (-1527 (($) 82) (($ $) 83)) (-2699 (($ $ $) 58)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL)) (-2069 (((-108) $) NIL)) (-2491 (($ $ $ $) NIL)) (-1514 (($ $ $) 80)) (-2973 (((-108) $) NIL)) (-2635 (($ $ $) NIL)) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL)) (-2507 (((-108) $) 66)) (-2057 (((-108) $) 64)) (-2823 (($ $) 42)) (-1978 (((-3 $ "failed") $) NIL)) (-3721 (((-108) $) 75)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3520 (($ $ $ $) 72)) (-1260 (($ $ $) 68) (($) 39)) (-2154 (($ $ $) 67) (($) 38)) (-3309 (($ $) NIL)) (-2520 (($ $) 70)) (-2226 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1707 (((-1073) $) NIL)) (-2169 (($ $ $) NIL)) (-2039 (($) NIL T CONST)) (-2640 (($ $) 50)) (-3027 (((-1037) $) NIL) (($ $) 69)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-2262 (($ $ $) 62) (($ (-592 $)) NIL)) (-3444 (($ $) NIL)) (-2961 (((-396 $) $) NIL)) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL)) (-2675 (((-3 $ "failed") $ $) NIL)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3524 (((-108) $) NIL)) (-2824 (((-713) $) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 61)) (-1576 (($ $ (-713)) NIL) (($ $) NIL)) (-1216 (($ $) 51)) (-1261 (($ $) NIL)) (-2923 (((-525) $) 32) (((-501) $) NIL) (((-826 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL)) (-4044 (((-797) $) 31) (($ (-525)) 81) (($ $) NIL) (($ (-525)) 81)) (-2502 (((-713)) NIL)) (-2301 (((-108) $ $) NIL)) (-3738 (($ $ $) NIL)) (-3758 (($) 37)) (-3787 (((-108) $ $) NIL)) (-2009 (($ $ $ $) 73)) (-2053 (($ $) 63)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-2337 (($ $ $) 44)) (-1436 (($) 35 T CONST)) (-3000 (($ $ $) 47)) (-1449 (($) 36 T CONST)) (-2453 (((-1073) $) 21) (((-1073) $ (-108)) 23) (((-1177) (-764) $) 24) (((-1177) (-764) $ (-108)) 25)) (-3017 (($ $) 45)) (-1990 (($ $ (-713)) NIL) (($ $) NIL)) (-2988 (($ $ $) 46)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 40)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 49)) (-2327 (($ $ $) 43)) (-4033 (($ $) 52) (($ $ $) 54)) (-4017 (($ $ $) 53)) (** (($ $ (-855)) NIL) (($ $ (-713)) 57)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 55))) +(((-1037) (-13 (-510) (-607) (-770) (-10 -8 (-6 -4241) (-6 -4246) (-6 -4242) (-15 -2154 ($)) (-15 -1260 ($)) (-15 -2823 ($ $)) (-15 -3803 ($ $)) (-15 -2327 ($ $ $)) (-15 -2337 ($ $ $)) (-15 -1829 ($ $ $)) (-15 -3017 ($ $)) (-15 -2988 ($ $ $)) (-15 -3000 ($ $ $))))) (T -1037)) +((-2337 (*1 *1 *1 *1) (-5 *1 (-1037))) (-2327 (*1 *1 *1 *1) (-5 *1 (-1037))) (-3803 (*1 *1 *1) (-5 *1 (-1037))) (-2154 (*1 *1) (-5 *1 (-1037))) (-1260 (*1 *1) (-5 *1 (-1037))) (-2823 (*1 *1 *1) (-5 *1 (-1037))) (-1829 (*1 *1 *1 *1) (-5 *1 (-1037))) (-3017 (*1 *1 *1) (-5 *1 (-1037))) (-2988 (*1 *1 *1 *1) (-5 *1 (-1037))) (-3000 (*1 *1 *1 *1) (-5 *1 (-1037)))) +(-13 (-510) (-607) (-770) (-10 -8 (-6 -4241) (-6 -4246) (-6 -4242) (-15 -2154 ($)) (-15 -1260 ($)) (-15 -2823 ($ $)) (-15 -3803 ($ $)) (-15 -2327 ($ $ $)) (-15 -2337 ($ $ $)) (-15 -1829 ($ $ $)) (-15 -3017 ($ $)) (-15 -2988 ($ $ $)) (-15 -3000 ($ $ $)))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3214 ((|#1| $) 44)) (-2583 (((-108) $ (-713)) 8)) (-1957 (($) 7 T CONST)) (-2048 ((|#1| |#1| $) 46)) (-3462 ((|#1| $) 45)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2434 ((|#1| $) 39)) (-4157 (($ |#1| $) 40)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3672 ((|#1| $) 41)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-3465 (((-713) $) 43)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) 42)) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-1038 |#1|) (-131) (-1126)) (T -1038)) +((-2048 (*1 *2 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-1126)) (-5 *2 (-713))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4254) (-15 -2048 (|t#1| |t#1| $)) (-15 -3462 (|t#1| $)) (-15 -3214 (|t#1| $)) (-15 -3465 ((-713) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-3942 ((|#3| $) 76)) (-2769 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2068 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#3| $) 37)) (-1307 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3471 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 $) (-1172 $)) 73) (((-632 |#3|) (-632 $)) 65)) (-1576 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-1255 ((|#3| $) 78)) (-4181 ((|#4| $) 32)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#3|) 16)) (** (($ $ (-855)) NIL) (($ $ (-713)) 15) (($ $ (-525)) 82))) +(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -1255 (|#3| |#1|)) (-15 -3942 (|#3| |#1|)) (-15 -4181 (|#4| |#1|)) (-15 -1307 ((-632 |#3|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -2068 (|#3| |#1|)) (-15 -2769 ((-3 |#3| "failed") |#1|)) (-15 -4044 (|#1| |#3|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4044 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855))) (-15 -4044 ((-797) |#1|))) (-1040 |#2| |#3| |#4| |#5|) (-713) (-976) (-218 |#2| |#3|) (-218 |#2| |#3|)) (T -1039)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -1255 (|#3| |#1|)) (-15 -3942 (|#3| |#1|)) (-15 -4181 (|#4| |#1|)) (-15 -1307 ((-632 |#3|) (-632 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1307 ((-632 (-525)) (-632 |#1|))) (-15 -2068 (|#3| |#1|)) (-15 -2769 ((-3 |#3| "failed") |#1|)) (-15 -4044 (|#1| |#3|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-525) |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -1576 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4044 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3942 ((|#2| $) 72)) (-3714 (((-108) $) 112)) (-3004 (((-3 $ "failed") $ $) 19)) (-2882 (((-108) $) 110)) (-2583 (((-108) $ (-713)) 102)) (-2448 (($ |#2|) 75)) (-1957 (($) 17 T CONST)) (-2384 (($ $) 129 (|has| |#2| (-286)))) (-2914 ((|#3| $ (-525)) 124)) (-2769 (((-3 (-525) "failed") $) 86 (|has| |#2| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 84 (|has| |#2| (-967 (-385 (-525))))) (((-3 |#2| "failed") $) 81)) (-2068 (((-525) $) 87 (|has| |#2| (-967 (-525)))) (((-385 (-525)) $) 85 (|has| |#2| (-967 (-385 (-525))))) ((|#2| $) 80)) (-1307 (((-632 (-525)) (-632 $)) 79 (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 78 (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 77) (((-632 |#2|) (-632 $)) 76)) (-1645 (((-3 $ "failed") $) 34)) (-3439 (((-713) $) 130 (|has| |#2| (-517)))) (-2488 ((|#2| $ (-525) (-525)) 122)) (-3781 (((-592 |#2|) $) 95 (|has| $ (-6 -4254)))) (-2507 (((-108) $) 31)) (-2372 (((-713) $) 131 (|has| |#2| (-517)))) (-4151 (((-592 |#4|) $) 132 (|has| |#2| (-517)))) (-1431 (((-713) $) 118)) (-1444 (((-713) $) 119)) (-2010 (((-108) $ (-713)) 103)) (-1302 ((|#2| $) 67 (|has| |#2| (-6 (-4256 "*"))))) (-3533 (((-525) $) 114)) (-3054 (((-525) $) 116)) (-2679 (((-592 |#2|) $) 94 (|has| $ (-6 -4254)))) (-1883 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-2487 (((-525) $) 115)) (-4220 (((-525) $) 117)) (-1521 (($ (-592 (-592 |#2|))) 109)) (-2540 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2972 (((-592 (-592 |#2|)) $) 120)) (-2350 (((-108) $ (-713)) 104)) (-1707 (((-1073) $) 9)) (-3194 (((-3 $ "failed") $) 66 (|has| |#2| (-341)))) (-3027 (((-1037) $) 10)) (-2675 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-517)))) (-3669 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#2|))) 91 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 90 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 88 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) 108)) (-3086 (((-108) $) 105)) (-3266 (($) 106)) (-1496 ((|#2| $ (-525) (-525) |#2|) 123) ((|#2| $ (-525) (-525)) 121)) (-1576 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-713)) 51) (($ $ (-592 (-1090)) (-592 (-713))) 44 (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) 43 (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) 42 (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) 41 (|has| |#2| (-834 (-1090)))) (($ $ (-713)) 39 (|has| |#2| (-213))) (($ $) 37 (|has| |#2| (-213)))) (-1255 ((|#2| $) 71)) (-4154 (($ (-592 |#2|)) 74)) (-2804 (((-108) $) 111)) (-4181 ((|#3| $) 73)) (-2958 ((|#2| $) 68 (|has| |#2| (-6 (-4256 "*"))))) (-3053 (((-713) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4254))) (((-713) |#2| $) 93 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 107)) (-2738 ((|#4| $ (-525)) 125)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 83 (|has| |#2| (-967 (-385 (-525))))) (($ |#2|) 82)) (-2502 (((-713)) 29)) (-2443 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4254)))) (-3773 (((-108) $) 113)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-713)) 49) (($ $ (-592 (-1090)) (-592 (-713))) 48 (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) 47 (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) 46 (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) 45 (|has| |#2| (-834 (-1090)))) (($ $ (-713)) 40 (|has| |#2| (-213))) (($ $) 38 (|has| |#2| (-213)))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#2|) 128 (|has| |#2| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 65 (|has| |#2| (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-1696 (((-713) $) 101 (|has| $ (-6 -4254))))) +(((-1040 |#1| |#2| |#3| |#4|) (-131) (-713) (-976) (-218 |t#1| |t#2|) (-218 |t#1| |t#2|)) (T -1040)) +((-2448 (*1 *1 *2) (-12 (-4 *2 (-976)) (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-592 *4)) (-4 *4 (-976)) (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *4 *2 *5)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-976)))) (-1255 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-976)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1040 *3 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1040 *3 *4 *2 *5)) (-4 *4 (-976)) (-4 *2 (-218 *3 *4)) (-4 *5 (-218 *3 *4)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) (-3194 (*1 *1 *1) (|partial| -12 (-4 *1 (-1040 *2 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341))))) +(-13 (-211 |t#2|) (-107 |t#2| |t#2|) (-979 |t#1| |t#1| |t#2| |t#3| |t#4|) (-389 |t#2|) (-355 |t#2|) (-10 -8 (IF (|has| |t#2| (-160)) (-6 (-660 |t#2|)) |%noBranch|) (-15 -2448 ($ |t#2|)) (-15 -4154 ($ (-592 |t#2|))) (-15 -4181 (|t#3| $)) (-15 -3942 (|t#2| $)) (-15 -1255 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4256 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2958 (|t#2| $)) (-15 -1302 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-341)) (PROGN (-15 -3194 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4256 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-797)) . T) ((-211 |#2|) . T) ((-213) |has| |#2| (-213)) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-355 |#2|) . T) ((-389 |#2|) . T) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-594 |#2|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#2| (-588 (-525))) ((-588 |#2|) . T) ((-660 |#2|) -3215 (|has| |#2| (-160)) (|has| |#2| (-6 (-4256 "*")))) ((-669) . T) ((-834 (-1090)) |has| |#2| (-834 (-1090))) ((-979 |#1| |#1| |#2| |#3| |#4|) . T) ((-967 (-385 (-525))) |has| |#2| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#2| (-967 (-525))) ((-967 |#2|) . T) ((-982 |#2|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1126) . T)) +((-1727 ((|#4| |#4|) 70)) (-4012 ((|#4| |#4|) 65)) (-1840 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2734 (-592 |#3|))) |#4| |#3|) 78)) (-3566 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3099 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1041 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4012 (|#4| |#4|)) (-15 -3099 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1727 (|#4| |#4|)) (-15 -3566 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1840 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2734 (-592 |#3|))) |#4| |#3|))) (-286) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1041)) +((-1840 (*1 *2 *3 *4) (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) (-5 *1 (-1041 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-3566 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1041 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1727 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1041 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1041 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1041 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))) +(-10 -7 (-15 -4012 (|#4| |#4|)) (-15 -3099 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1727 (|#4| |#4|)) (-15 -3566 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1840 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2734 (-592 |#3|))) |#4| |#3|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 17)) (-3122 (((-592 |#2|) $) 161)) (-1315 (((-1086 $) $ |#2|) 54) (((-1086 |#1|) $) 43)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 110 (|has| |#1| (-517)))) (-2609 (($ $) 112 (|has| |#1| (-517)))) (-1220 (((-108) $) 114 (|has| |#1| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 |#2|)) 194)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2701 (($ $) NIL (|has| |#1| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) 158) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 |#2| "failed") $) NIL)) (-2068 ((|#1| $) 156) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) ((|#2| $) NIL)) (-3048 (($ $ $ |#2|) NIL (|has| |#1| (-160)))) (-3306 (($ $) 198)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) 82)) (-2319 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#1| (-843)))) (-2187 (($ $ |#1| (-497 |#2|) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| |#1| (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| |#1| (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2507 (((-108) $) 19)) (-3682 (((-713) $) 26)) (-3110 (($ (-1086 |#1|) |#2|) 48) (($ (-1086 $) |#2|) 64)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) 32)) (-3097 (($ |#1| (-497 |#2|)) 71) (($ $ |#2| (-713)) 52) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ |#2|) NIL)) (-3762 (((-497 |#2|) $) 188) (((-713) $ |#2|) 189) (((-592 (-713)) $ (-592 |#2|)) 190)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2078 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) 122)) (-3869 (((-3 |#2| "failed") $) 163)) (-3277 (($ $) 197)) (-3286 ((|#1| $) 37)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1707 (((-1073) $) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| |#2|) (|:| -1737 (-713))) "failed") $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) 33)) (-3267 ((|#1| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 140 (|has| |#1| (-429)))) (-2262 (($ (-592 $)) 145 (|has| |#1| (-429))) (($ $ $) 132 (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2675 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-517)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-592 |#2|) (-592 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-592 |#2|) (-592 $)) 178)) (-2257 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-1576 (($ $ |#2|) 196) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1486 (((-497 |#2|) $) 184) (((-713) $ |#2|) 180) (((-592 (-713)) $ (-592 |#2|)) 182)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2758 ((|#1| $) 128 (|has| |#1| (-429))) (($ $ |#2|) 131 (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-4044 (((-797) $) 151) (($ (-525)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-3681 (((-592 |#1|) $) 154)) (-2100 ((|#1| $ (-497 |#2|)) 73) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) 79)) (-2541 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3787 (((-108) $ $) 117 (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 102) (($ $ (-713)) 104)) (-1436 (($) 12 T CONST)) (-1449 (($) 14 T CONST)) (-1990 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) 97)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ |#1|) 126 (|has| |#1| (-341)))) (-4033 (($ $) 85) (($ $ $) 95)) (-4017 (($ $ $) 49)) (** (($ $ (-855)) 103) (($ $ (-713)) 100)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 88) (($ $ $) 65) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1042 |#1| |#2|) (-883 |#1| (-497 |#2|) |#2|) (-976) (-789)) (T -1042)) +NIL +(-883 |#1| (-497 |#2|) |#2|) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 |#2|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3915 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3886 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-3946 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3648 (((-886 |#1|) $ (-713)) NIL) (((-886 |#1|) $ (-713) (-713)) NIL)) (-3951 (((-108) $) NIL)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-713) $ |#2|) NIL) (((-713) $ |#2| (-713)) NIL)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1432 (((-108) $) NIL)) (-3097 (($ $ (-592 |#2|) (-592 (-497 |#2|))) NIL) (($ $ |#2| (-497 |#2|)) NIL) (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 58) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2412 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-2313 (($ $ |#2|) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-385 (-525)))))) (-3027 (((-1037) $) NIL)) (-1466 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-385 (-525)))))) (-1539 (($ $ (-713)) 15)) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2840 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (($ $ |#2| $) 97) (($ $ (-592 |#2|) (-592 $)) 90) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-1576 (($ $ |#2|) 100) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1486 (((-497 |#2|) $) NIL)) (-1970 (((-1 (-1071 |#3|) |#3|) (-592 |#2|) (-592 (-1071 |#3|))) 79)) (-3960 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) 17)) (-4044 (((-797) $) 182) (($ (-525)) NIL) (($ |#1|) 44 (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#2|) 65) (($ |#3|) 63)) (-2100 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL) ((|#3| $ (-713)) 42)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-4004 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2608 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 18 T CONST)) (-1449 (($) 10 T CONST)) (-1990 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#1|) 184 (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 61)) (** (($ $ (-855)) NIL) (($ $ (-713)) 70) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 103 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 60) (($ $ (-385 (-525))) 108 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 106 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) +(((-1043 |#1| |#2| |#3|) (-13 (-683 |#1| |#2|) (-10 -8 (-15 -2100 (|#3| $ (-713))) (-15 -4044 ($ |#2|)) (-15 -4044 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1970 ((-1 (-1071 |#3|) |#3|) (-592 |#2|) (-592 (-1071 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $ |#2| |#1|)) (-15 -1466 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-976) (-789) (-883 |#1| (-497 |#2|) |#2|)) (T -1043)) +((-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *2 (-883 *4 (-497 *5) *5)) (-5 *1 (-1043 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-789)))) (-4044 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *2 (-789)) (-5 *1 (-1043 *3 *2 *4)) (-4 *4 (-883 *3 (-497 *2) *2)))) (-4044 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-5 *1 (-1043 *3 *4 *2)) (-4 *2 (-883 *3 (-497 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-5 *1 (-1043 *3 *4 *2)) (-4 *2 (-883 *3 (-497 *4) *4)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1071 *7))) (-4 *6 (-789)) (-4 *7 (-883 *5 (-497 *6) *6)) (-4 *5 (-976)) (-5 *2 (-1 (-1071 *7) *7)) (-5 *1 (-1043 *5 *6 *7)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-4 *2 (-789)) (-5 *1 (-1043 *3 *2 *4)) (-4 *4 (-883 *3 (-497 *2) *2)))) (-1466 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1043 *4 *3 *5))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976)) (-4 *3 (-789)) (-5 *1 (-1043 *4 *3 *5)) (-4 *5 (-883 *4 (-497 *3) *3))))) +(-13 (-683 |#1| |#2|) (-10 -8 (-15 -2100 (|#3| $ (-713))) (-15 -4044 ($ |#2|)) (-15 -4044 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1970 ((-1 (-1071 |#3|) |#3|) (-592 |#2|) (-592 (-1071 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $ |#2| |#1|)) (-15 -1466 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-4028 (((-108) $ $) 7)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |#4|)))) (-592 |#4|)) 85)) (-2713 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-3122 (((-592 |#3|) $) 33)) (-4037 (((-108) $) 26)) (-3410 (((-108) $) 17 (|has| |#1| (-517)))) (-2576 (((-108) |#4| $) 101) (((-108) $) 97)) (-1792 ((|#4| |#4| $) 92)) (-2701 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| $) 126)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) 27)) (-2583 (((-108) $ (-713)) 44)) (-1249 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1957 (($) 45 T CONST)) (-4164 (((-108) $) 22 (|has| |#1| (-517)))) (-1333 (((-108) $ $) 24 (|has| |#1| (-517)))) (-3508 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3364 (((-108) $) 25 (|has| |#1| (-517)))) (-3722 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2523 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) 36)) (-2068 (($ (-592 |#4|)) 35)) (-1693 (((-3 $ "failed") $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1716 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-2175 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3025 ((|#4| |#4| $) 87)) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2884 (((-2 (|:| -3671 (-592 |#4|)) (|:| -3864 (-592 |#4|))) $) 105)) (-3875 (((-108) |#4| $) 136)) (-2751 (((-108) |#4| $) 133)) (-1591 (((-108) |#4| $) 137) (((-108) $) 134)) (-3781 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-1695 (((-108) |#4| $) 104) (((-108) $) 103)) (-3632 ((|#3| $) 34)) (-2010 (((-108) $ (-713)) 43)) (-2679 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 47)) (-4210 (((-592 |#3|) $) 32)) (-1506 (((-108) |#3| $) 31)) (-2350 (((-108) $ (-713)) 42)) (-1707 (((-1073) $) 9)) (-2686 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-1503 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| |#4| $) 127)) (-2618 (((-3 |#4| "failed") $) 83)) (-3509 (((-592 $) |#4| $) 129)) (-2709 (((-3 (-108) (-592 $)) |#4| $) 132)) (-3854 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2021 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-1476 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-2338 (((-592 |#4|) $) 107)) (-2616 (((-108) |#4| $) 99) (((-108) $) 95)) (-1803 ((|#4| |#4| $) 90)) (-1826 (((-108) $ $) 110)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-1483 (((-108) |#4| $) 100) (((-108) $) 96)) (-2342 ((|#4| |#4| $) 91)) (-3027 (((-1037) $) 10)) (-1683 (((-3 |#4| "failed") $) 84)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2750 (((-3 $ "failed") $ |#4|) 78)) (-1539 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3669 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) 38)) (-3086 (((-108) $) 41)) (-3266 (($) 40)) (-1486 (((-713) $) 106)) (-3053 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-1261 (($ $) 39)) (-2923 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) 60)) (-2484 (($ $ |#3|) 28)) (-4016 (($ $ |#3|) 30)) (-1287 (($ $) 88)) (-3967 (($ $ |#3|) 29)) (-4044 (((-797) $) 11) (((-592 |#4|) $) 37)) (-2665 (((-713) $) 76 (|has| |#3| (-346)))) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2125 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3493 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2443 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2396 (((-592 |#3|) $) 81)) (-4032 (((-108) |#4| $) 135)) (-2238 (((-108) |#3| $) 80)) (-3899 (((-108) $ $) 6)) (-1696 (((-713) $) 46 (|has| $ (-6 -4254))))) +(((-1044 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -1044)) +NIL +(-13 (-1028 |t#1| |t#2| |t#3| |t#4|) (-726 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-726 |#1| |#2| |#3| |#4|) . T) ((-908 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1028 |#1| |#2| |#3| |#4|) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1126) . T)) +((-1932 (((-592 |#2|) |#1|) 12)) (-1637 (((-592 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-592 |#2|) |#1|) 49)) (-3945 (((-592 |#2|) |#2| |#2| |#2|) 36) (((-592 |#2|) |#1|) 47)) (-3023 ((|#2| |#1|) 43)) (-1497 (((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3630 (((-592 |#2|) |#2| |#2|) 35) (((-592 |#2|) |#1|) 46)) (-1277 (((-592 |#2|) |#2| |#2| |#2| |#2|) 37) (((-592 |#2|) |#1|) 48)) (-3158 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-2707 ((|#2| |#2| |#2| |#2|) 40)) (-1533 ((|#2| |#2| |#2|) 39)) (-3590 ((|#2| |#2| |#2| |#2| |#2|) 41))) +(((-1045 |#1| |#2|) (-10 -7 (-15 -1932 ((-592 |#2|) |#1|)) (-15 -3023 (|#2| |#1|)) (-15 -1497 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3630 ((-592 |#2|) |#1|)) (-15 -3945 ((-592 |#2|) |#1|)) (-15 -1277 ((-592 |#2|) |#1|)) (-15 -1637 ((-592 |#2|) |#1|)) (-15 -3630 ((-592 |#2|) |#2| |#2|)) (-15 -3945 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -1277 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1637 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1533 (|#2| |#2| |#2|)) (-15 -2707 (|#2| |#2| |#2| |#2|)) (-15 -3590 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3158 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1148 |#2|) (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (T -1045)) +((-3158 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-3590 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-2707 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-1533 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-1637 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))) (-1277 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))) (-3945 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))) (-3630 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))) (-1637 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) (-1277 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) (-3945 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) (-3630 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-2 (|:| |solns| (-592 *5)) (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1045 *3 *5)) (-4 *3 (-1148 *5)))) (-3023 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -1932 ((-592 |#2|) |#1|)) (-15 -3023 (|#2| |#1|)) (-15 -1497 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3630 ((-592 |#2|) |#1|)) (-15 -3945 ((-592 |#2|) |#1|)) (-15 -1277 ((-592 |#2|) |#1|)) (-15 -1637 ((-592 |#2|) |#1|)) (-15 -3630 ((-592 |#2|) |#2| |#2|)) (-15 -3945 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -1277 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1637 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1533 (|#2| |#2| |#2|)) (-15 -2707 (|#2| |#2| |#2| |#2|)) (-15 -3590 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3158 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3838 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|))))) 95) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090))) 94) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|)))) 92) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))) (-592 (-1090))) 90) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|)))) 75) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))) (-1090)) 76) (((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|))) 70) (((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)) (-1090)) 59)) (-1317 (((-592 (-592 (-294 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090))) 88) (((-592 (-294 |#1|)) (-385 (-886 |#1|)) (-1090)) 43)) (-1862 (((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-886 |#1|)) (-1090)) 98) (((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090)) 97))) +(((-1046 |#1|) (-10 -7 (-15 -3838 ((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -3838 ((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)))) (-15 -3838 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -3838 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))))) (-15 -3838 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -3838 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))))) (-15 -3838 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090)))) (-15 -3838 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -1317 ((-592 (-294 |#1|)) (-385 (-886 |#1|)) (-1090))) (-15 -1317 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -1862 ((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -1862 ((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-886 |#1|)) (-1090)))) (-13 (-286) (-789) (-138))) (T -1046)) +((-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1080 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-886 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1080 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5)))) (-5 *1 (-1046 *5)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5))) (-5 *1 (-1046 *5)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-592 (-273 (-385 (-886 *4))))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1046 *4)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-886 *5))))) (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-886 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1046 *4)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-273 (-385 (-886 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1046 *4)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-886 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1046 *5)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1046 *4)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1046 *5))))) +(-10 -7 (-15 -3838 ((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -3838 ((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)))) (-15 -3838 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -3838 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))))) (-15 -3838 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -3838 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))))) (-15 -3838 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090)))) (-15 -3838 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -1317 ((-592 (-294 |#1|)) (-385 (-886 |#1|)) (-1090))) (-15 -1317 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -1862 ((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -1862 ((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-886 |#1|)) (-1090)))) +((-1720 (((-385 (-1086 (-294 |#1|))) (-1172 (-294 |#1|)) (-385 (-1086 (-294 |#1|))) (-525)) 29)) (-3637 (((-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|)))) 40))) +(((-1047 |#1|) (-10 -7 (-15 -3637 ((-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))))) (-15 -1720 ((-385 (-1086 (-294 |#1|))) (-1172 (-294 |#1|)) (-385 (-1086 (-294 |#1|))) (-525)))) (-13 (-517) (-789))) (T -1047)) +((-1720 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-385 (-1086 (-294 *5)))) (-5 *3 (-1172 (-294 *5))) (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1047 *5)))) (-3637 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-385 (-1086 (-294 *3)))) (-4 *3 (-13 (-517) (-789))) (-5 *1 (-1047 *3))))) +(-10 -7 (-15 -3637 ((-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))))) (-15 -1720 ((-385 (-1086 (-294 |#1|))) (-1172 (-294 |#1|)) (-385 (-1086 (-294 |#1|))) (-525)))) +((-1932 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1090))) 222) (((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1090)) 20) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1090)) 26) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|))) 25) (((-592 (-273 (-294 |#1|))) (-294 |#1|)) 21))) +(((-1048 |#1|) (-10 -7 (-15 -1932 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -1932 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -1932 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1090))) (-15 -1932 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1090))) (-15 -1932 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1090))))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (T -1048)) +((-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)) (-5 *3 (-592 (-273 (-294 *5)))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-294 *5)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-273 (-294 *5))))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)) (-5 *3 (-273 (-294 *4))))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)) (-5 *3 (-294 *4))))) +(-10 -7 (-15 -1932 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -1932 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -1932 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1090))) (-15 -1932 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1090))) (-15 -1932 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1090))))) +((-2752 ((|#2| |#2|) 20 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 17)) (-3210 ((|#2| |#2|) 19 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16))) +(((-1049 |#1| |#2|) (-10 -7 (-15 -3210 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2752 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -3210 (|#2| |#2|)) (-15 -2752 (|#2| |#2|))) |%noBranch|)) (-1126) (-13 (-558 (-525) |#1|) (-10 -7 (-6 -4254) (-6 -4255)))) (T -1049)) +((-2752 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1126)) (-5 *1 (-1049 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4254) (-6 -4255)))))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1126)) (-5 *1 (-1049 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4254) (-6 -4255)))))) (-2752 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-1049 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4254) (-6 -4255)))))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-1049 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4254) (-6 -4255))))))) +(-10 -7 (-15 -3210 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2752 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -3210 (|#2| |#2|)) (-15 -2752 (|#2| |#2|))) |%noBranch|)) +((-4028 (((-108) $ $) NIL)) (-1843 (((-1079 3 |#1|) $) 108)) (-3372 (((-108) $) 72)) (-3449 (($ $ (-592 (-877 |#1|))) 20) (($ $ (-592 (-592 |#1|))) 75) (($ (-592 (-877 |#1|))) 74) (((-592 (-877 |#1|)) $) 73)) (-2176 (((-108) $) 41)) (-4183 (($ $ (-877 |#1|)) 46) (($ $ (-592 |#1|)) 51) (($ $ (-713)) 53) (($ (-877 |#1|)) 47) (((-877 |#1|) $) 45)) (-3747 (((-2 (|:| -2017 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 106)) (-3159 (((-713) $) 26)) (-3029 (((-713) $) 25)) (-2516 (($ $ (-713) (-877 |#1|)) 39)) (-3013 (((-108) $) 82)) (-2150 (($ $ (-592 (-592 (-877 |#1|))) (-592 (-159)) (-159)) 89) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 91) (($ $ (-592 (-592 (-877 |#1|))) (-108) (-108)) 85) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 93) (($ (-592 (-592 (-877 |#1|)))) 86) (($ (-592 (-592 (-877 |#1|))) (-108) (-108)) 87) (((-592 (-592 (-877 |#1|))) $) 84)) (-1440 (($ (-592 $)) 28) (($ $ $) 29)) (-2012 (((-592 (-159)) $) 103)) (-2196 (((-592 (-877 |#1|)) $) 97)) (-2038 (((-592 (-592 (-159))) $) 102)) (-3151 (((-592 (-592 (-592 (-877 |#1|)))) $) NIL)) (-3035 (((-592 (-592 (-592 (-713)))) $) 100)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2537 (((-713) $ (-592 (-877 |#1|))) 37)) (-1438 (((-108) $) 54)) (-1595 (($ $ (-592 (-877 |#1|))) 56) (($ $ (-592 (-592 |#1|))) 62) (($ (-592 (-877 |#1|))) 57) (((-592 (-877 |#1|)) $) 55)) (-1634 (($) 23) (($ (-1079 3 |#1|)) 24)) (-1261 (($ $) 35)) (-2590 (((-592 $) $) 34)) (-2173 (($ (-592 $)) 31)) (-1458 (((-592 $) $) 33)) (-4044 (((-797) $) 112)) (-1278 (((-108) $) 64)) (-1858 (($ $ (-592 (-877 |#1|))) 66) (($ $ (-592 (-592 |#1|))) 69) (($ (-592 (-877 |#1|))) 67) (((-592 (-877 |#1|)) $) 65)) (-1310 (($ $) 107)) (-3899 (((-108) $ $) NIL))) +(((-1050 |#1|) (-1051 |#1|) (-976)) (T -1050)) +NIL +(-1051 |#1|) +((-4028 (((-108) $ $) 7)) (-1843 (((-1079 3 |#1|) $) 13)) (-3372 (((-108) $) 29)) (-3449 (($ $ (-592 (-877 |#1|))) 33) (($ $ (-592 (-592 |#1|))) 32) (($ (-592 (-877 |#1|))) 31) (((-592 (-877 |#1|)) $) 30)) (-2176 (((-108) $) 44)) (-4183 (($ $ (-877 |#1|)) 49) (($ $ (-592 |#1|)) 48) (($ $ (-713)) 47) (($ (-877 |#1|)) 46) (((-877 |#1|) $) 45)) (-3747 (((-2 (|:| -2017 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 15)) (-3159 (((-713) $) 58)) (-3029 (((-713) $) 59)) (-2516 (($ $ (-713) (-877 |#1|)) 50)) (-3013 (((-108) $) 21)) (-2150 (($ $ (-592 (-592 (-877 |#1|))) (-592 (-159)) (-159)) 28) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 27) (($ $ (-592 (-592 (-877 |#1|))) (-108) (-108)) 26) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 25) (($ (-592 (-592 (-877 |#1|)))) 24) (($ (-592 (-592 (-877 |#1|))) (-108) (-108)) 23) (((-592 (-592 (-877 |#1|))) $) 22)) (-1440 (($ (-592 $)) 57) (($ $ $) 56)) (-2012 (((-592 (-159)) $) 16)) (-2196 (((-592 (-877 |#1|)) $) 20)) (-2038 (((-592 (-592 (-159))) $) 17)) (-3151 (((-592 (-592 (-592 (-877 |#1|)))) $) 18)) (-3035 (((-592 (-592 (-592 (-713)))) $) 19)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2537 (((-713) $ (-592 (-877 |#1|))) 51)) (-1438 (((-108) $) 39)) (-1595 (($ $ (-592 (-877 |#1|))) 43) (($ $ (-592 (-592 |#1|))) 42) (($ (-592 (-877 |#1|))) 41) (((-592 (-877 |#1|)) $) 40)) (-1634 (($) 61) (($ (-1079 3 |#1|)) 60)) (-1261 (($ $) 52)) (-2590 (((-592 $) $) 53)) (-2173 (($ (-592 $)) 55)) (-1458 (((-592 $) $) 54)) (-4044 (((-797) $) 11)) (-1278 (((-108) $) 34)) (-1858 (($ $ (-592 (-877 |#1|))) 38) (($ $ (-592 (-592 |#1|))) 37) (($ (-592 (-877 |#1|))) 36) (((-592 (-877 |#1|)) $) 35)) (-1310 (($ $) 14)) (-3899 (((-108) $ $) 6))) +(((-1051 |#1|) (-131) (-976)) (T -1051)) +((-4044 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-797)))) (-1634 (*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-1440 (*1 *1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) (-2173 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-1458 (*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)))) (-2590 (*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)))) (-1261 (*1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) (-2537 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-877 *4))) (-4 *1 (-1051 *4)) (-4 *4 (-976)) (-5 *2 (-713)))) (-2516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-877 *4)) (-4 *1 (-1051 *4)) (-4 *4 (-976)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-4183 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-4183 (*1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-4183 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-877 *3)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-1595 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-1595 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-1595 (*1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) (-1438 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-1858 (*1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) (-1278 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-3449 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-3449 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-3449 (*1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-2150 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-877 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1051 *5)) (-4 *5 (-976)))) (-2150 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1051 *5)) (-4 *5 (-976)))) (-2150 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-877 *4)))) (-5 *3 (-108)) (-4 *1 (-1051 *4)) (-4 *4 (-976)))) (-2150 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108)) (-4 *1 (-1051 *4)) (-4 *4 (-976)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 *3)))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-2150 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-877 *4)))) (-5 *3 (-108)) (-4 *4 (-976)) (-4 *1 (-1051 *4)))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-877 *3)))))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-592 (-713))))))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-592 (-877 *3))))))) (-2038 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-159)))))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-159))))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -2017 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713)))))) (-1310 (*1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-1079 3 *3))))) +(-13 (-1019) (-10 -8 (-15 -1634 ($)) (-15 -1634 ($ (-1079 3 |t#1|))) (-15 -3029 ((-713) $)) (-15 -3159 ((-713) $)) (-15 -1440 ($ (-592 $))) (-15 -1440 ($ $ $)) (-15 -2173 ($ (-592 $))) (-15 -1458 ((-592 $) $)) (-15 -2590 ((-592 $) $)) (-15 -1261 ($ $)) (-15 -2537 ((-713) $ (-592 (-877 |t#1|)))) (-15 -2516 ($ $ (-713) (-877 |t#1|))) (-15 -4183 ($ $ (-877 |t#1|))) (-15 -4183 ($ $ (-592 |t#1|))) (-15 -4183 ($ $ (-713))) (-15 -4183 ($ (-877 |t#1|))) (-15 -4183 ((-877 |t#1|) $)) (-15 -2176 ((-108) $)) (-15 -1595 ($ $ (-592 (-877 |t#1|)))) (-15 -1595 ($ $ (-592 (-592 |t#1|)))) (-15 -1595 ($ (-592 (-877 |t#1|)))) (-15 -1595 ((-592 (-877 |t#1|)) $)) (-15 -1438 ((-108) $)) (-15 -1858 ($ $ (-592 (-877 |t#1|)))) (-15 -1858 ($ $ (-592 (-592 |t#1|)))) (-15 -1858 ($ (-592 (-877 |t#1|)))) (-15 -1858 ((-592 (-877 |t#1|)) $)) (-15 -1278 ((-108) $)) (-15 -3449 ($ $ (-592 (-877 |t#1|)))) (-15 -3449 ($ $ (-592 (-592 |t#1|)))) (-15 -3449 ($ (-592 (-877 |t#1|)))) (-15 -3449 ((-592 (-877 |t#1|)) $)) (-15 -3372 ((-108) $)) (-15 -2150 ($ $ (-592 (-592 (-877 |t#1|))) (-592 (-159)) (-159))) (-15 -2150 ($ $ (-592 (-592 (-592 |t#1|))) (-592 (-159)) (-159))) (-15 -2150 ($ $ (-592 (-592 (-877 |t#1|))) (-108) (-108))) (-15 -2150 ($ $ (-592 (-592 (-592 |t#1|))) (-108) (-108))) (-15 -2150 ($ (-592 (-592 (-877 |t#1|))))) (-15 -2150 ($ (-592 (-592 (-877 |t#1|))) (-108) (-108))) (-15 -2150 ((-592 (-592 (-877 |t#1|))) $)) (-15 -3013 ((-108) $)) (-15 -2196 ((-592 (-877 |t#1|)) $)) (-15 -3035 ((-592 (-592 (-592 (-713)))) $)) (-15 -3151 ((-592 (-592 (-592 (-877 |t#1|)))) $)) (-15 -2038 ((-592 (-592 (-159))) $)) (-15 -2012 ((-592 (-159)) $)) (-15 -3747 ((-2 (|:| -2017 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $)) (-15 -1310 ($ $)) (-15 -1843 ((-1079 3 |t#1|) $)) (-15 -4044 ((-797) $)))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-3247 (((-592 (-1095)) (-1073)) 9))) +(((-1052) (-10 -7 (-15 -3247 ((-592 (-1095)) (-1073))))) (T -1052)) +((-3247 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-592 (-1095))) (-5 *1 (-1052))))) +(-10 -7 (-15 -3247 ((-592 (-1095)) (-1073)))) +((-3718 (((-1177) (-592 (-797))) 23) (((-1177) (-797)) 22)) (-3755 (((-1177) (-592 (-797))) 21) (((-1177) (-797)) 20)) (-3153 (((-1177) (-592 (-797))) 19) (((-1177) (-797)) 11) (((-1177) (-1073) (-797)) 17))) +(((-1053) (-10 -7 (-15 -3153 ((-1177) (-1073) (-797))) (-15 -3153 ((-1177) (-797))) (-15 -3755 ((-1177) (-797))) (-15 -3718 ((-1177) (-797))) (-15 -3153 ((-1177) (-592 (-797)))) (-15 -3755 ((-1177) (-592 (-797)))) (-15 -3718 ((-1177) (-592 (-797)))))) (T -1053)) +((-3718 (*1 *2 *3) (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053))))) +(-10 -7 (-15 -3153 ((-1177) (-1073) (-797))) (-15 -3153 ((-1177) (-797))) (-15 -3755 ((-1177) (-797))) (-15 -3718 ((-1177) (-797))) (-15 -3153 ((-1177) (-592 (-797)))) (-15 -3755 ((-1177) (-592 (-797)))) (-15 -3718 ((-1177) (-592 (-797))))) +((-1857 (($ $ $) 10)) (-3156 (($ $) 9)) (-3220 (($ $ $) 13)) (-3579 (($ $ $) 15)) (-1949 (($ $ $) 12)) (-2200 (($ $ $) 14)) (-3653 (($ $) 17)) (-1228 (($ $) 16)) (-2053 (($ $) 6)) (-1406 (($ $ $) 11) (($ $) 7)) (-1208 (($ $ $) 8))) +(((-1054) (-131)) (T -1054)) +((-3653 (*1 *1 *1) (-4 *1 (-1054))) (-1228 (*1 *1 *1) (-4 *1 (-1054))) (-3579 (*1 *1 *1 *1) (-4 *1 (-1054))) (-2200 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3220 (*1 *1 *1 *1) (-4 *1 (-1054))) (-1949 (*1 *1 *1 *1) (-4 *1 (-1054))) (-1406 (*1 *1 *1 *1) (-4 *1 (-1054))) (-1857 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3156 (*1 *1 *1) (-4 *1 (-1054))) (-1208 (*1 *1 *1 *1) (-4 *1 (-1054))) (-1406 (*1 *1 *1) (-4 *1 (-1054))) (-2053 (*1 *1 *1) (-4 *1 (-1054)))) +(-13 (-10 -8 (-15 -2053 ($ $)) (-15 -1406 ($ $)) (-15 -1208 ($ $ $)) (-15 -3156 ($ $)) (-15 -1857 ($ $ $)) (-15 -1406 ($ $ $)) (-15 -1949 ($ $ $)) (-15 -3220 ($ $ $)) (-15 -2200 ($ $ $)) (-15 -3579 ($ $ $)) (-15 -1228 ($ $)) (-15 -3653 ($ $)))) +((-4028 (((-108) $ $) 41)) (-3067 ((|#1| $) 15)) (-2677 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2777 (((-108) $) 17)) (-2118 (($ $ |#1|) 28)) (-1745 (($ $ (-108)) 30)) (-1352 (($ $) 31)) (-2863 (($ $ |#2|) 29)) (-1707 (((-1073) $) NIL)) (-2960 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-3027 (((-1037) $) NIL)) (-3086 (((-108) $) 14)) (-3266 (($) 10)) (-1261 (($ $) 27)) (-4059 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2249 |#2|))) 21) (((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -2249 |#2|)))) 24) (((-592 $) |#1| (-592 |#2|)) 26)) (-1926 ((|#2| $) 16)) (-4044 (((-797) $) 50)) (-3899 (((-108) $ $) 39))) +(((-1055 |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -3266 ($)) (-15 -3086 ((-108) $)) (-15 -3067 (|#1| $)) (-15 -1926 (|#2| $)) (-15 -2777 ((-108) $)) (-15 -4059 ($ |#1| |#2| (-108))) (-15 -4059 ($ |#1| |#2|)) (-15 -4059 ($ (-2 (|:| |val| |#1|) (|:| -2249 |#2|)))) (-15 -4059 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -2249 |#2|))))) (-15 -4059 ((-592 $) |#1| (-592 |#2|))) (-15 -1261 ($ $)) (-15 -2118 ($ $ |#1|)) (-15 -2863 ($ $ |#2|)) (-15 -1745 ($ $ (-108))) (-15 -1352 ($ $)) (-15 -2960 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2677 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1019) (-33)) (-13 (-1019) (-33))) (T -1055)) +((-3266 (*1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-3067 (*1 *2 *1) (-12 (-4 *2 (-13 (-1019) (-33))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-13 (-1019) (-33))))) (-1926 (*1 *2 *1) (-12 (-4 *2 (-13 (-1019) (-33))) (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1019) (-33))))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-4059 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-4059 (*1 *1 *2 *3) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2249 *4))) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1055 *3 *4)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -2249 *5)))) (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-592 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-592 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) (-4 *3 (-13 (-1019) (-33))))) (-1261 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-2118 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-2863 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1019) (-33))) (-4 *2 (-13 (-1019) (-33))))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-1352 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-2960 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1019) (-33))) (-4 *6 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1055 *5 *6)))) (-2677 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1019) (-33)))))) +(-13 (-1019) (-10 -8 (-15 -3266 ($)) (-15 -3086 ((-108) $)) (-15 -3067 (|#1| $)) (-15 -1926 (|#2| $)) (-15 -2777 ((-108) $)) (-15 -4059 ($ |#1| |#2| (-108))) (-15 -4059 ($ |#1| |#2|)) (-15 -4059 ($ (-2 (|:| |val| |#1|) (|:| -2249 |#2|)))) (-15 -4059 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -2249 |#2|))))) (-15 -4059 ((-592 $) |#1| (-592 |#2|))) (-15 -1261 ($ $)) (-15 -2118 ($ $ |#1|)) (-15 -2863 ($ $ |#2|)) (-15 -1745 ($ $ (-108))) (-15 -1352 ($ $)) (-15 -2960 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2677 ((-108) $ $ (-1 (-108) |#2| |#2|))))) +((-4028 (((-108) $ $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-3067 (((-1055 |#1| |#2|) $) 25)) (-4174 (($ $) 76)) (-1235 (((-108) (-1055 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-2883 (($ $ $ (-592 (-1055 |#1| |#2|))) 90) (($ $ $ (-592 (-1055 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-2583 (((-108) $ (-713)) NIL)) (-2325 (((-1055 |#1| |#2|) $ (-1055 |#1| |#2|)) 43 (|has| $ (-6 -4255)))) (-1230 (((-1055 |#1| |#2|) $ "value" (-1055 |#1| |#2|)) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-2959 (((-592 (-2 (|:| |val| |#1|) (|:| -2249 |#2|))) $) 80)) (-1640 (($ (-1055 |#1| |#2|) $) 39)) (-2591 (($ (-1055 |#1| |#2|) $) 31)) (-3781 (((-592 (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 51)) (-1875 (((-108) (-1055 |#1| |#2|) $) 82)) (-2983 (((-108) $ $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 (-1055 |#1| |#2|)) $) 55 (|has| $ (-6 -4254)))) (-1883 (((-108) (-1055 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-1055 |#1| |#2|) (-1019))))) (-2540 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 47 (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 46)) (-2350 (((-108) $ (-713)) NIL)) (-2401 (((-592 (-1055 |#1| |#2|)) $) 53)) (-3260 (((-108) $) 42)) (-1707 (((-1073) $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-3027 (((-1037) $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-2289 (((-3 $ "failed") $) 75)) (-3669 (((-108) (-1 (-108) (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-1055 |#1| |#2|)))) NIL (-12 (|has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1019)))) (($ $ (-273 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1019)))) (($ $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (-12 (|has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1019)))) (($ $ (-592 (-1055 |#1| |#2|)) (-592 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1019))))) (-3063 (((-108) $ $) 50)) (-3086 (((-108) $) 22)) (-3266 (($) 24)) (-1496 (((-1055 |#1| |#2|) $ "value") NIL)) (-3612 (((-525) $ $) NIL)) (-3105 (((-108) $) 44)) (-3053 (((-713) (-1 (-108) (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -4254))) (((-713) (-1055 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-1055 |#1| |#2|) (-1019))))) (-1261 (($ $) 49)) (-4059 (($ (-1055 |#1| |#2|)) 9) (($ |#1| |#2| (-592 $)) 12) (($ |#1| |#2| (-592 (-1055 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-592 |#2|)) 17)) (-3878 (((-592 |#2|) $) 81)) (-4044 (((-797) $) 73 (|has| (-1055 |#1| |#2|) (-566 (-797))))) (-2180 (((-592 $) $) 28)) (-2086 (((-108) $ $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-2443 (((-108) (-1 (-108) (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 64 (|has| (-1055 |#1| |#2|) (-1019)))) (-1696 (((-713) $) 58 (|has| $ (-6 -4254))))) +(((-1056 |#1| |#2|) (-13 (-941 (-1055 |#1| |#2|)) (-10 -8 (-6 -4255) (-6 -4254) (-15 -2289 ((-3 $ "failed") $)) (-15 -4174 ($ $)) (-15 -4059 ($ (-1055 |#1| |#2|))) (-15 -4059 ($ |#1| |#2| (-592 $))) (-15 -4059 ($ |#1| |#2| (-592 (-1055 |#1| |#2|)))) (-15 -4059 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -3878 ((-592 |#2|) $)) (-15 -2959 ((-592 (-2 (|:| |val| |#1|) (|:| -2249 |#2|))) $)) (-15 -1875 ((-108) (-1055 |#1| |#2|) $)) (-15 -1235 ((-108) (-1055 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2591 ($ (-1055 |#1| |#2|) $)) (-15 -1640 ($ (-1055 |#1| |#2|) $)) (-15 -2883 ($ $ $ (-592 (-1055 |#1| |#2|)))) (-15 -2883 ($ $ $ (-592 (-1055 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1019) (-33)) (-13 (-1019) (-33))) (T -1056)) +((-2289 (*1 *1 *1) (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-4174 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))) (-4059 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-4059 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1055 *2 *3))) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))) (-5 *1 (-1056 *2 *3)))) (-4059 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1019) (-33))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-592 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-1875 (*1 *2 *3 *1) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1056 *4 *5)))) (-1235 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1019) (-33))) (-4 *6 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1056 *5 *6)))) (-2591 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))) (-2883 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-592 (-1055 *3 *4))) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))) (-2883 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1055 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33))) (-5 *1 (-1056 *4 *5))))) +(-13 (-941 (-1055 |#1| |#2|)) (-10 -8 (-6 -4255) (-6 -4254) (-15 -2289 ((-3 $ "failed") $)) (-15 -4174 ($ $)) (-15 -4059 ($ (-1055 |#1| |#2|))) (-15 -4059 ($ |#1| |#2| (-592 $))) (-15 -4059 ($ |#1| |#2| (-592 (-1055 |#1| |#2|)))) (-15 -4059 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -3878 ((-592 |#2|) $)) (-15 -2959 ((-592 (-2 (|:| |val| |#1|) (|:| -2249 |#2|))) $)) (-15 -1875 ((-108) (-1055 |#1| |#2|) $)) (-15 -1235 ((-108) (-1055 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2591 ($ (-1055 |#1| |#2|) $)) (-15 -1640 ($ (-1055 |#1| |#2|) $)) (-15 -2883 ($ $ $ (-592 (-1055 |#1| |#2|)))) (-15 -2883 ($ $ $ (-592 (-1055 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1342 (($ $) NIL)) (-3942 ((|#2| $) NIL)) (-3714 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-3842 (($ (-632 |#2|)) 47)) (-2882 (((-108) $) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-2448 (($ |#2|) 9)) (-1957 (($) NIL T CONST)) (-2384 (($ $) 60 (|has| |#2| (-286)))) (-2914 (((-220 |#1| |#2|) $ (-525)) 34)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) ((|#2| $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) 74)) (-3439 (((-713) $) 62 (|has| |#2| (-517)))) (-2488 ((|#2| $ (-525) (-525)) NIL)) (-3781 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2507 (((-108) $) NIL)) (-2372 (((-713) $) 64 (|has| |#2| (-517)))) (-4151 (((-592 (-220 |#1| |#2|)) $) 68 (|has| |#2| (-517)))) (-1431 (((-713) $) NIL)) (-1444 (((-713) $) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-1302 ((|#2| $) 58 (|has| |#2| (-6 (-4256 "*"))))) (-3533 (((-525) $) NIL)) (-3054 (((-525) $) NIL)) (-2679 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2487 (((-525) $) NIL)) (-4220 (((-525) $) NIL)) (-1521 (($ (-592 (-592 |#2|))) 29)) (-2540 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2972 (((-592 (-592 |#2|)) $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-3194 (((-3 $ "failed") $) 71 (|has| |#2| (-341)))) (-3027 (((-1037) $) NIL)) (-2675 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3669 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) NIL)) (-1576 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-1255 ((|#2| $) NIL)) (-4154 (($ (-592 |#2|)) 42)) (-2804 (((-108) $) NIL)) (-4181 (((-220 |#1| |#2|) $) NIL)) (-2958 ((|#2| $) 56 (|has| |#2| (-6 (-4256 "*"))))) (-3053 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1261 (($ $) NIL)) (-2923 (((-501) $) 83 (|has| |#2| (-567 (-501))))) (-2738 (((-220 |#1| |#2|) $ (-525)) 36)) (-4044 (((-797) $) 39) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-967 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) 44)) (-2502 (((-713)) 17)) (-2443 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3773 (((-108) $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 11 T CONST)) (-1449 (($) 14 T CONST)) (-1990 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) 54) (($ $ (-525)) 73 (|has| |#2| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) 50) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) 52)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1057 |#1| |#2|) (-13 (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -1342 ($ $)) (-15 -3842 ($ (-632 |#2|))) (-15 -4044 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4256 "*"))) (-6 -4243) |%noBranch|) (IF (|has| |#2| (-6 (-4256 "*"))) (IF (|has| |#2| (-6 -4251)) (-6 -4251) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-713) (-976)) (T -1057)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-632 *4)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-713)) (-4 *4 (-976)))) (-1342 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-713)) (-4 *3 (-976)))) (-3842 (*1 *1 *2) (-12 (-5 *2 (-632 *4)) (-4 *4 (-976)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-713))))) +(-13 (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -1342 ($ $)) (-15 -3842 ($ (-632 |#2|))) (-15 -4044 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4256 "*"))) (-6 -4243) |%noBranch|) (IF (|has| |#2| (-6 (-4256 "*"))) (IF (|has| |#2| (-6 -4251)) (-6 -4251) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) +((-3635 (($ $) 19)) (-2441 (($ $ (-135)) 10) (($ $ (-132)) 14)) (-3235 (((-108) $ $) 24)) (-3265 (($ $) 17)) (-1496 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1139 (-525))) NIL) (($ $ $) 29)) (-4044 (($ (-135)) 27) (((-797) $) NIL))) +(((-1058 |#1|) (-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -1496 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| (-132))) (-15 -2441 (|#1| |#1| (-135))) (-15 -4044 (|#1| (-135))) (-15 -3235 ((-108) |#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 -1496 (|#1| |#1| (-1139 (-525)))) (-15 -1496 ((-135) |#1| (-525))) (-15 -1496 ((-135) |#1| (-525) (-135)))) (-1059)) (T -1058)) +NIL +(-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -1496 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| (-132))) (-15 -2441 (|#1| |#1| (-135))) (-15 -4044 (|#1| (-135))) (-15 -3235 ((-108) |#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 -1496 (|#1| |#1| (-1139 (-525)))) (-15 -1496 ((-135) |#1| (-525))) (-15 -1496 ((-135) |#1| (-525) (-135)))) +((-4028 (((-108) $ $) 19 (|has| (-135) (-1019)))) (-2291 (($ $) 120)) (-3635 (($ $) 121)) (-2441 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-2792 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3203 (((-108) $ $) 118)) (-3172 (((-108) $ $ (-525)) 117)) (-3114 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-3746 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-1943 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4255))))) (-1473 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-2583 (((-108) $ (-713)) 8)) (-1230 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4255))) (((-135) $ (-1139 (-525)) (-135)) 58 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-2604 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-1626 (($ $) 90 (|has| $ (-6 -4255)))) (-3263 (($ $) 100)) (-2195 (($ $ (-1139 (-525)) $) 114)) (-1716 (($ $) 78 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ (-135) $) 77 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4254)))) (-3336 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4254)))) (-2549 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4255)))) (-2488 (((-135) $ (-525)) 51)) (-3235 (((-108) $ $) 119)) (-1930 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1019))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1019))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-3781 (((-592 (-135)) $) 30 (|has| $ (-6 -4254)))) (-3248 (($ (-713) (-135)) 69)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 43 (|has| (-525) (-789)))) (-1260 (($ $ $) 87 (|has| (-135) (-789)))) (-1440 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-2679 (((-592 (-135)) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 44 (|has| (-525) (-789)))) (-2154 (($ $ $) 86 (|has| (-135) (-789)))) (-2033 (((-108) $ $ (-135)) 115)) (-3894 (((-713) $ $ (-135)) 116)) (-2540 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-3850 (($ $) 122)) (-3265 (($ $) 123)) (-2350 (((-108) $ (-713)) 10)) (-2617 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-1707 (((-1073) $) 22 (|has| (-135) (-1019)))) (-2234 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-2379 (((-592 (-525)) $) 46)) (-2030 (((-108) (-525) $) 47)) (-3027 (((-1037) $) 21 (|has| (-135) (-1019)))) (-1683 (((-135) $) 42 (|has| (-525) (-789)))) (-3611 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-1614 (($ $ (-135)) 41 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-4100 (((-592 (-135)) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1139 (-525))) 63) (($ $ $) 102)) (-2697 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-3053 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4254))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-4038 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-1261 (($ $) 13)) (-2923 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-4059 (($ (-592 (-135))) 70)) (-1810 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4044 (($ (-135)) 111) (((-797) $) 18 (|has| (-135) (-566 (-797))))) (-2443 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) 84 (|has| (-135) (-789)))) (-3944 (((-108) $ $) 83 (|has| (-135) (-789)))) (-3899 (((-108) $ $) 20 (|has| (-135) (-1019)))) (-3959 (((-108) $ $) 85 (|has| (-135) (-789)))) (-3928 (((-108) $ $) 82 (|has| (-135) (-789)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-1059) (-131)) (T -1059)) +((-3265 (*1 *1 *1) (-4 *1 (-1059))) (-3850 (*1 *1 *1) (-4 *1 (-1059))) (-3635 (*1 *1 *1) (-4 *1 (-1059))) (-2291 (*1 *1 *1) (-4 *1 (-1059))) (-3235 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-108)))) (-3203 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-108)))) (-3172 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-525)) (-5 *2 (-108)))) (-3894 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-135)) (-5 *2 (-713)))) (-2033 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-135)) (-5 *2 (-108)))) (-2195 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1139 (-525))))) (-1930 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-525)))) (-1930 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-525)) (-5 *3 (-132)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1059)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1059)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1059)))) (-2441 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135)))) (-2441 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132)))) (-2617 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135)))) (-2617 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132)))) (-2604 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135)))) (-2604 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132)))) (-1496 (*1 *1 *1 *1) (-4 *1 (-1059)))) +(-13 (-19 (-135)) (-10 -8 (-15 -3265 ($ $)) (-15 -3850 ($ $)) (-15 -3635 ($ $)) (-15 -2291 ($ $)) (-15 -3235 ((-108) $ $)) (-15 -3203 ((-108) $ $)) (-15 -3172 ((-108) $ $ (-525))) (-15 -3894 ((-713) $ $ (-135))) (-15 -2033 ((-108) $ $ (-135))) (-15 -2195 ($ $ (-1139 (-525)) $)) (-15 -1930 ((-525) $ $ (-525))) (-15 -1930 ((-525) (-132) $ (-525))) (-15 -4044 ($ (-135))) (-15 -3114 ((-592 $) $ (-135))) (-15 -3114 ((-592 $) $ (-132))) (-15 -2441 ($ $ (-135))) (-15 -2441 ($ $ (-132))) (-15 -2617 ($ $ (-135))) (-15 -2617 ($ $ (-132))) (-15 -2604 ($ $ (-135))) (-15 -2604 ($ $ (-132))) (-15 -1496 ($ $ $)))) +(((-33) . T) ((-97) -3215 (|has| (-135) (-1019)) (|has| (-135) (-789))) ((-566 (-797)) -3215 (|has| (-135) (-1019)) (|has| (-135) (-789)) (|has| (-135) (-566 (-797)))) ((-142 #0=(-135)) . T) ((-567 (-501)) |has| (-135) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))) ((-597 #0#) . T) ((-19 #0#) . T) ((-789) |has| (-135) (-789)) ((-1019) -3215 (|has| (-135) (-1019)) (|has| (-135) (-789))) ((-1126) . T)) +((-3354 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-713)) 94)) (-2373 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713)) 54)) (-3470 (((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-713)) 85)) (-2214 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-3491 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713)) 56) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713) (-108)) 58)) (-3756 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 77)) (-2923 (((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) 80)) (-1411 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|) 53)) (-4101 (((-713) (-592 |#4|) (-592 |#5|)) 19))) +(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4101 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2214 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -1411 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -2373 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713))) (-15 -2373 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713))) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -3756 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3756 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3354 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-713))) (-15 -2923 ((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) (-15 -3470 ((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-713)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-1028 |#1| |#2| |#3| |#4|)) (T -1060)) +((-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2249 *9)))) (-5 *4 (-713)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1177)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2249 *8))) (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-1028 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1073)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3354 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -2249 *11)))))) (-5 *6 (-713)) (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -2249 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-990 *7 *8 *9)) (-4 *11 (-1028 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-3756 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3756 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3491 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3)))) (-3491 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1028 *6 *7 *8 *3)))) (-3491 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-990 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1028 *7 *8 *9 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3)))) (-2373 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1028 *6 *7 *8 *3)))) (-1411 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3)))) (-2214 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-4101 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4101 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2214 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -1411 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -2373 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713))) (-15 -2373 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5| (-713))) (-15 -3491 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) |#4| |#5|)) (-15 -3756 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3756 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3354 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))))) (-713))) (-15 -2923 ((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|)))) (-15 -3470 ((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -2249 |#5|))) (-713)))) +((-4028 (((-108) $ $) NIL)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |#4|)))) (-592 |#4|)) NIL)) (-2713 (((-592 $) (-592 |#4|)) 110) (((-592 $) (-592 |#4|) (-108)) 111) (((-592 $) (-592 |#4|) (-108) (-108)) 109) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 112)) (-3122 (((-592 |#3|) $) NIL)) (-4037 (((-108) $) NIL)) (-3410 (((-108) $) NIL (|has| |#1| (-517)))) (-2576 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1792 ((|#4| |#4| $) NIL)) (-2701 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| $) 84)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1249 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 62)) (-1957 (($) NIL T CONST)) (-4164 (((-108) $) 26 (|has| |#1| (-517)))) (-1333 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3508 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3364 (((-108) $) NIL (|has| |#1| (-517)))) (-3722 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2523 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) NIL)) (-2068 (($ (-592 |#4|)) NIL)) (-1693 (((-3 $ "failed") $) 39)) (-4092 ((|#4| |#4| $) 65)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-517)))) (-2175 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3025 ((|#4| |#4| $) NIL)) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2884 (((-2 (|:| -3671 (-592 |#4|)) (|:| -3864 (-592 |#4|))) $) NIL)) (-3875 (((-108) |#4| $) NIL)) (-2751 (((-108) |#4| $) NIL)) (-1591 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3514 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 124)) (-3781 (((-592 |#4|) $) 16 (|has| $ (-6 -4254)))) (-1695 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3632 ((|#3| $) 33)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#4|) $) 17 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2540 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 21)) (-4210 (((-592 |#3|) $) NIL)) (-1506 (((-108) |#3| $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2686 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-1503 (((-592 (-2 (|:| |val| |#4|) (|:| -2249 $))) |#4| |#4| $) 103)) (-2618 (((-3 |#4| "failed") $) 37)) (-3509 (((-592 $) |#4| $) 88)) (-2709 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-3854 (((-592 (-2 (|:| |val| (-108)) (|:| -2249 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-2021 (((-592 $) |#4| $) 107) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 108) (((-592 $) |#4| (-592 $)) NIL)) (-2528 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 119)) (-1476 (($ |#4| $) 75) (($ (-592 |#4|) $) 76) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-2338 (((-592 |#4|) $) NIL)) (-2616 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1803 ((|#4| |#4| $) NIL)) (-1826 (((-108) $ $) NIL)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-1483 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2342 ((|#4| |#4| $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 (((-3 |#4| "failed") $) 35)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2750 (((-3 $ "failed") $ |#4|) 48)) (-1539 (($ $ |#4|) NIL) (((-592 $) |#4| $) 90) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 86)) (-3669 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 15)) (-3266 (($) 13)) (-1486 (((-713) $) NIL)) (-3053 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) 12)) (-2923 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) 20)) (-2484 (($ $ |#3|) 42)) (-4016 (($ $ |#3|) 44)) (-1287 (($ $) NIL)) (-3967 (($ $ |#3|) NIL)) (-4044 (((-797) $) 31) (((-592 |#4|) $) 40)) (-2665 (((-713) $) NIL (|has| |#3| (-346)))) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2125 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3493 (((-592 $) |#4| $) 54) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-2443 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2396 (((-592 |#3|) $) NIL)) (-4032 (((-108) |#4| $) NIL)) (-2238 (((-108) |#3| $) 61)) (-3899 (((-108) $ $) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1061 |#1| |#2| |#3| |#4|) (-13 (-1028 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1476 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2713 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -2713 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -2528 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -3514 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -1061)) +((-1476 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) (-4 *3 (-990 *5 *6 *7)))) (-2713 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-2713 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-2528 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3514 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-1061 *5 *6 *7 *8))))) (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-592 *8))))) +(-13 (-1028 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1476 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2713 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -2713 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -2528 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -3514 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3214 ((|#1| $) 34)) (-3824 (($ (-592 |#1|)) 39)) (-2583 (((-108) $ (-713)) NIL)) (-1957 (($) NIL T CONST)) (-2048 ((|#1| |#1| $) 36)) (-3462 ((|#1| $) 32)) (-3781 (((-592 |#1|) $) 18 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 22)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2434 ((|#1| $) 35)) (-4157 (($ |#1| $) 37)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3672 ((|#1| $) 33)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 31)) (-3266 (($) 38)) (-3465 (((-713) $) 29)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) 27)) (-4044 (((-797) $) 14 (|has| |#1| (-566 (-797))))) (-1326 (($ (-592 |#1|)) NIL)) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 17 (|has| |#1| (-1019)))) (-1696 (((-713) $) 30 (|has| $ (-6 -4254))))) +(((-1062 |#1|) (-13 (-1038 |#1|) (-10 -8 (-15 -3824 ($ (-592 |#1|))))) (-1126)) (T -1062)) +((-3824 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1062 *3))))) +(-13 (-1038 |#1|) (-10 -8 (-15 -3824 ($ (-592 |#1|))))) +((-1230 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1139 (-525)) |#2|) 44) ((|#2| $ (-525) |#2|) 41)) (-2426 (((-108) $) 12)) (-2540 (($ (-1 |#2| |#2|) $) 39)) (-1683 ((|#2| $) NIL) (($ $ (-713)) 17)) (-1614 (($ $ |#2|) 40)) (-3050 (((-108) $) 11)) (-1496 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1139 (-525))) 31) ((|#2| $ (-525)) 23) ((|#2| $ (-525) |#2|) NIL)) (-2455 (($ $ $) 47) (($ $ |#2|) NIL)) (-1810 (($ $ $) 33) (($ |#2| $) NIL) (($ (-592 $)) 36) (($ $ |#2|) NIL))) +(((-1063 |#1| |#2|) (-10 -8 (-15 -2426 ((-108) |#1|)) (-15 -3050 ((-108) |#1|)) (-15 -1230 (|#2| |#1| (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525))) (-15 -1614 (|#1| |#1| |#2|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 -1810 (|#1| (-592 |#1|))) (-15 -1496 (|#1| |#1| (-1139 (-525)))) (-15 -1230 (|#2| |#1| (-1139 (-525)) |#2|)) (-15 -1230 (|#2| |#1| "last" |#2|)) (-15 -1230 (|#1| |#1| "rest" |#1|)) (-15 -1230 (|#2| |#1| "first" |#2|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -1496 (|#2| |#1| "last")) (-15 -1496 (|#1| |#1| "rest")) (-15 -1683 (|#1| |#1| (-713))) (-15 -1496 (|#2| |#1| "first")) (-15 -1683 (|#2| |#1|)) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1230 (|#2| |#1| "value" |#2|)) (-15 -1496 (|#2| |#1| "value")) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|))) (-1064 |#2|) (-1126)) (T -1063)) +NIL +(-10 -8 (-15 -2426 ((-108) |#1|)) (-15 -3050 ((-108) |#1|)) (-15 -1230 (|#2| |#1| (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525) |#2|)) (-15 -1496 (|#2| |#1| (-525))) (-15 -1614 (|#1| |#1| |#2|)) (-15 -1810 (|#1| |#1| |#2|)) (-15 -1810 (|#1| (-592 |#1|))) (-15 -1496 (|#1| |#1| (-1139 (-525)))) (-15 -1230 (|#2| |#1| (-1139 (-525)) |#2|)) (-15 -1230 (|#2| |#1| "last" |#2|)) (-15 -1230 (|#1| |#1| "rest" |#1|)) (-15 -1230 (|#2| |#1| "first" |#2|)) (-15 -2455 (|#1| |#1| |#2|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -1496 (|#2| |#1| "last")) (-15 -1496 (|#1| |#1| "rest")) (-15 -1683 (|#1| |#1| (-713))) (-15 -1496 (|#2| |#1| "first")) (-15 -1683 (|#2| |#1|)) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1230 (|#2| |#1| "value" |#2|)) (-15 -1496 (|#2| |#1| "value")) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3067 ((|#1| $) 48)) (-1212 ((|#1| $) 65)) (-3134 (($ $) 67)) (-2792 (((-1177) $ (-525) (-525)) 97 (|has| $ (-6 -4255)))) (-2974 (($ $ (-525)) 52 (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) 8)) (-2325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-4050 (($ $ $) 56 (|has| $ (-6 -4255)))) (-3079 ((|#1| $ |#1|) 54 (|has| $ (-6 -4255)))) (-3995 ((|#1| $ |#1|) 58 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4255))) (($ $ "rest" $) 55 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 117 (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4254)))) (-4227 ((|#1| $) 66)) (-1957 (($) 7 T CONST)) (-1693 (($ $) 73) (($ $ (-713)) 71)) (-1716 (($ $) 99 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4254))) (($ |#1| $) 100 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2549 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 87)) (-2426 (((-108) $) 83)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 50)) (-2983 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-3248 (($ (-713) |#1|) 108)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 95 (|has| (-525) (-789)))) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 94 (|has| (-525) (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2350 (((-108) $ (-713)) 10)) (-2401 (((-592 |#1|) $) 45)) (-3260 (((-108) $) 49)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2618 ((|#1| $) 70) (($ $ (-713)) 68)) (-2234 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-2379 (((-592 (-525)) $) 92)) (-2030 (((-108) (-525) $) 91)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1683 ((|#1| $) 76) (($ $ (-713)) 74)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1614 (($ $ |#1|) 96 (|has| $ (-6 -4255)))) (-3050 (((-108) $) 84)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) 90)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1139 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-3612 (((-525) $ $) 44)) (-2697 (($ $ (-1139 (-525))) 114) (($ $ (-525)) 113)) (-3105 (((-108) $) 46)) (-2079 (($ $) 62)) (-2129 (($ $) 59 (|has| $ (-6 -4255)))) (-3185 (((-713) $) 63)) (-2008 (($ $) 64)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2923 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 107)) (-2455 (($ $ $) 61 (|has| $ (-6 -4255))) (($ $ |#1|) 60 (|has| $ (-6 -4255)))) (-1810 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) 51)) (-2086 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-1064 |#1|) (-131) (-1126)) (T -1064)) +((-3050 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1126)) (-5 *2 (-108))))) +(-13 (-1160 |t#1|) (-597 |t#1|) (-10 -8 (-15 -3050 ((-108) $)) (-15 -2426 ((-108) $)))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T) ((-1160 |#1|) . T)) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2792 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#2| $ |#1| |#2|) NIL)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 |#2| "failed") |#1| $) NIL)) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) NIL)) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) NIL)) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 ((|#1| $) NIL (|has| |#1| (-789)))) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2112 ((|#1| $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-2183 (((-592 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-2379 (((-592 |#1|) $) NIL)) (-2030 (((-108) |#1| $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1683 ((|#2| $) NIL (|has| |#1| (-789)))) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-4044 (((-797) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1065 |#1| |#2| |#3|) (-1103 |#1| |#2|) (-1019) (-1019) |#2|) (T -1065)) +NIL +(-1103 |#1| |#2|) +((-4028 (((-108) $ $) 7)) (-1978 (((-3 $ "failed") $) 13)) (-1707 (((-1073) $) 9)) (-2039 (($) 14 T CONST)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11)) (-3899 (((-108) $ $) 6))) +(((-1066) (-131)) (T -1066)) +((-2039 (*1 *1) (-4 *1 (-1066))) (-1978 (*1 *1 *1) (|partial| -4 *1 (-1066)))) +(-13 (-1019) (-10 -8 (-15 -2039 ($) -3219) (-15 -1978 ((-3 $ "failed") $)))) +(((-97) . T) ((-566 (-797)) . T) ((-1019) . T)) +((-2814 (((-1071 |#1|) (-1071 |#1|)) 17)) (-1876 (((-1071 |#1|) (-1071 |#1|)) 13)) (-2967 (((-1071 |#1|) (-1071 |#1|) (-525) (-525)) 20)) (-1366 (((-1071 |#1|) (-1071 |#1|)) 15))) +(((-1067 |#1|) (-10 -7 (-15 -1876 ((-1071 |#1|) (-1071 |#1|))) (-15 -1366 ((-1071 |#1|) (-1071 |#1|))) (-15 -2814 ((-1071 |#1|) (-1071 |#1|))) (-15 -2967 ((-1071 |#1|) (-1071 |#1|) (-525) (-525)))) (-13 (-517) (-138))) (T -1067)) +((-2967 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1067 *4)))) (-2814 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1067 *3)))) (-1366 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1067 *3)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1067 *3))))) +(-10 -7 (-15 -1876 ((-1071 |#1|) (-1071 |#1|))) (-15 -1366 ((-1071 |#1|) (-1071 |#1|))) (-15 -2814 ((-1071 |#1|) (-1071 |#1|))) (-15 -2967 ((-1071 |#1|) (-1071 |#1|) (-525) (-525)))) +((-1810 (((-1071 |#1|) (-1071 (-1071 |#1|))) 15))) +(((-1068 |#1|) (-10 -7 (-15 -1810 ((-1071 |#1|) (-1071 (-1071 |#1|))))) (-1126)) (T -1068)) +((-1810 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1068 *4)) (-4 *4 (-1126))))) +(-10 -7 (-15 -1810 ((-1071 |#1|) (-1071 (-1071 |#1|))))) +((-2225 (((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)) 25)) (-3336 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)) 26)) (-2868 (((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|)) 16))) +(((-1069 |#1| |#2|) (-10 -7 (-15 -2868 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|))) (-15 -2225 ((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|))) (-15 -3336 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)))) (-1126) (-1126)) (T -1069)) +((-3336 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1071 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-1069 *5 *2)))) (-2225 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1071 *6)) (-4 *6 (-1126)) (-4 *3 (-1126)) (-5 *2 (-1071 *3)) (-5 *1 (-1069 *6 *3)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1071 *6)) (-5 *1 (-1069 *5 *6))))) +(-10 -7 (-15 -2868 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|))) (-15 -2225 ((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|))) (-15 -3336 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)))) +((-2868 (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|)) 21))) +(((-1070 |#1| |#2| |#3|) (-10 -7 (-15 -2868 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|)))) (-1126) (-1126) (-1126)) (T -1070)) +((-2868 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-1071 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8)) (-5 *1 (-1070 *6 *7 *8))))) +(-10 -7 (-15 -2868 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) NIL)) (-1212 ((|#1| $) NIL)) (-3134 (($ $) 49)) (-2792 (((-1177) $ (-525) (-525)) 74 (|has| $ (-6 -4255)))) (-2974 (($ $ (-525)) 108 (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-3427 (((-797) $) 38 (|has| |#1| (-1019)))) (-1719 (((-108)) 39 (|has| |#1| (-1019)))) (-2325 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-4050 (($ $ $) 96 (|has| $ (-6 -4255))) (($ $ (-525) $) 119)) (-3079 ((|#1| $ |#1|) 105 (|has| $ (-6 -4255)))) (-3995 ((|#1| $ |#1|) 100 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4255))) (($ $ "rest" $) 104 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 87 (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) 56)) (-4227 ((|#1| $) NIL)) (-1957 (($) NIL T CONST)) (-1959 (($ $) 14)) (-1693 (($ $) 29) (($ $ (-713)) 86)) (-1972 (((-108) (-592 |#1|) $) 114 (|has| |#1| (-1019)))) (-3308 (($ (-592 |#1|)) 110)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) 55)) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-2426 (((-108) $) NIL)) (-3781 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3184 (((-1177) (-525) $) 118 (|has| |#1| (-1019)))) (-4141 (((-713) $) 116)) (-2850 (((-592 $) $) NIL)) (-2983 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3248 (($ (-713) |#1|) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2350 (((-108) $ (-713)) NIL)) (-2401 (((-592 |#1|) $) NIL)) (-3260 (((-108) $) NIL)) (-3891 (($ $) 88)) (-1699 (((-108) $) 13)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2618 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-2234 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) 72)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-4187 (($ (-1 |#1|)) 121) (($ (-1 |#1| |#1|) |#1|) 122)) (-1540 ((|#1| $) 10)) (-1683 ((|#1| $) 28) (($ $ (-713)) 47)) (-2468 (((-2 (|:| |cycle?| (-108)) (|:| -1819 (-713)) (|:| |period| (-713))) (-713) $) 25)) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1217 (($ (-1 (-108) |#1|) $) 123)) (-1232 (($ (-1 (-108) |#1|) $) 124)) (-1614 (($ $ |#1|) 66 (|has| $ (-6 -4255)))) (-1539 (($ $ (-525)) 32)) (-3050 (((-108) $) 70)) (-1814 (((-108) $) 12)) (-2794 (((-108) $) 115)) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 20)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) 15)) (-3266 (($) 41)) (-1496 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1139 (-525))) NIL) ((|#1| $ (-525)) 52) ((|#1| $ (-525) |#1|) NIL)) (-3612 (((-525) $ $) 46)) (-2697 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-1686 (($ (-1 $)) 45)) (-3105 (((-108) $) 67)) (-2079 (($ $) 68)) (-2129 (($ $) 97 (|has| $ (-6 -4255)))) (-3185 (((-713) $) NIL)) (-2008 (($ $) NIL)) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) 42)) (-2923 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 51)) (-2842 (($ |#1| $) 95)) (-2455 (($ $ $) 98 (|has| $ (-6 -4255))) (($ $ |#1|) 99 (|has| $ (-6 -4255)))) (-1810 (($ $ $) 76) (($ |#1| $) 43) (($ (-592 $)) 81) (($ $ |#1|) 75)) (-2789 (($ $) 48)) (-4044 (($ (-592 |#1|)) 109) (((-797) $) 40 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) NIL)) (-2086 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 112 (|has| |#1| (-1019)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1071 |#1|) (-13 (-619 |#1|) (-10 -8 (-6 -4255) (-15 -4044 ($ (-592 |#1|))) (-15 -3308 ($ (-592 |#1|))) (IF (|has| |#1| (-1019)) (-15 -1972 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -2468 ((-2 (|:| |cycle?| (-108)) (|:| -1819 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -1686 ($ (-1 $))) (-15 -2842 ($ |#1| $)) (IF (|has| |#1| (-1019)) (PROGN (-15 -3184 ((-1177) (-525) $)) (-15 -3427 ((-797) $)) (-15 -1719 ((-108)))) |%noBranch|) (-15 -4050 ($ $ (-525) $)) (-15 -4187 ($ (-1 |#1|))) (-15 -4187 ($ (-1 |#1| |#1|) |#1|)) (-15 -1217 ($ (-1 (-108) |#1|) $)) (-15 -1232 ($ (-1 (-108) |#1|) $)))) (-1126)) (T -1071)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-3308 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-1972 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-4 *4 (-1126)) (-5 *2 (-108)) (-5 *1 (-1071 *4)))) (-2468 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -1819 (-713)) (|:| |period| (-713)))) (-5 *1 (-1071 *4)) (-4 *4 (-1126)) (-5 *3 (-713)))) (-1686 (*1 *1 *2) (-12 (-5 *2 (-1 (-1071 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-1126)))) (-2842 (*1 *1 *2 *1) (-12 (-5 *1 (-1071 *2)) (-4 *2 (-1126)))) (-3184 (*1 *2 *3 *1) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1071 *4)) (-4 *4 (-1019)) (-4 *4 (-1126)))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1071 *3)) (-4 *3 (-1019)) (-4 *3 (-1126)))) (-1719 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3)) (-4 *3 (-1019)) (-4 *3 (-1126)))) (-4050 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1071 *3)) (-4 *3 (-1126)))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-4187 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-1217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-1232 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3))))) +(-13 (-619 |#1|) (-10 -8 (-6 -4255) (-15 -4044 ($ (-592 |#1|))) (-15 -3308 ($ (-592 |#1|))) (IF (|has| |#1| (-1019)) (-15 -1972 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -2468 ((-2 (|:| |cycle?| (-108)) (|:| -1819 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -1686 ($ (-1 $))) (-15 -2842 ($ |#1| $)) (IF (|has| |#1| (-1019)) (PROGN (-15 -3184 ((-1177) (-525) $)) (-15 -3427 ((-797) $)) (-15 -1719 ((-108)))) |%noBranch|) (-15 -4050 ($ $ (-525) $)) (-15 -4187 ($ (-1 |#1|))) (-15 -4187 ($ (-1 |#1| |#1|) |#1|)) (-15 -1217 ($ (-1 (-108) |#1|) $)) (-15 -1232 ($ (-1 (-108) |#1|) $)))) +((-4028 (((-108) $ $) 19)) (-2291 (($ $) 120)) (-3635 (($ $) 121)) (-2441 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-2792 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3203 (((-108) $ $) 118)) (-3172 (((-108) $ $ (-525)) 117)) (-2717 (($ (-525)) 127)) (-3114 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-3746 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-1943 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4255))))) (-1473 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-2583 (((-108) $ (-713)) 8)) (-1230 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4255))) (((-135) $ (-1139 (-525)) (-135)) 58 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-2604 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-1626 (($ $) 90 (|has| $ (-6 -4255)))) (-3263 (($ $) 100)) (-2195 (($ $ (-1139 (-525)) $) 114)) (-1716 (($ $) 78 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ (-135) $) 77 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4254)))) (-3336 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4254)))) (-2549 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4255)))) (-2488 (((-135) $ (-525)) 51)) (-3235 (((-108) $ $) 119)) (-1930 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1019))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1019))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-3781 (((-592 (-135)) $) 30 (|has| $ (-6 -4254)))) (-3248 (($ (-713) (-135)) 69)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 43 (|has| (-525) (-789)))) (-1260 (($ $ $) 87 (|has| (-135) (-789)))) (-1440 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-2679 (((-592 (-135)) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 44 (|has| (-525) (-789)))) (-2154 (($ $ $) 86 (|has| (-135) (-789)))) (-2033 (((-108) $ $ (-135)) 115)) (-3894 (((-713) $ $ (-135)) 116)) (-2540 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-3850 (($ $) 122)) (-3265 (($ $) 123)) (-2350 (((-108) $ (-713)) 10)) (-2617 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-1707 (((-1073) $) 22)) (-2234 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-2379 (((-592 (-525)) $) 46)) (-2030 (((-108) (-525) $) 47)) (-3027 (((-1037) $) 21)) (-1683 (((-135) $) 42 (|has| (-525) (-789)))) (-3611 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-1614 (($ $ (-135)) 41 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-4100 (((-592 (-135)) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1139 (-525))) 63) (($ $ $) 102)) (-2697 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-3053 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4254))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-4038 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-1261 (($ $) 13)) (-2923 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-4059 (($ (-592 (-135))) 70)) (-1810 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4044 (($ (-135)) 111) (((-797) $) 18)) (-2443 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4254)))) (-2453 (((-1073) $) 131) (((-1073) $ (-108)) 130) (((-1177) (-764) $) 129) (((-1177) (-764) $ (-108)) 128)) (-3973 (((-108) $ $) 84 (|has| (-135) (-789)))) (-3944 (((-108) $ $) 83 (|has| (-135) (-789)))) (-3899 (((-108) $ $) 20)) (-3959 (((-108) $ $) 85 (|has| (-135) (-789)))) (-3928 (((-108) $ $) 82 (|has| (-135) (-789)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-1072) (-131)) (T -1072)) +((-2717 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1072))))) +(-13 (-1059) (-1019) (-770) (-10 -8 (-15 -2717 ($ (-525))))) +(((-33) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 #0=(-135)) . T) ((-567 (-501)) |has| (-135) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))) ((-597 #0#) . T) ((-19 #0#) . T) ((-770) . T) ((-789) |has| (-135) (-789)) ((-1019) . T) ((-1059) . T) ((-1126) . T)) +((-4028 (((-108) $ $) NIL)) (-2291 (($ $) NIL)) (-3635 (($ $) NIL)) (-2441 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3203 (((-108) $ $) NIL)) (-3172 (((-108) $ $ (-525)) NIL)) (-2717 (($ (-525)) 7)) (-3114 (((-592 $) $ (-135)) NIL) (((-592 $) $ (-132)) NIL)) (-3746 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-1943 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-789))))) (-1473 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4255))) (((-135) $ (-1139 (-525)) (-135)) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-2604 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-2195 (($ $ (-1139 (-525)) $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-2591 (($ (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2549 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4255)))) (-2488 (((-135) $ (-525)) NIL)) (-3235 (((-108) $ $) NIL)) (-1930 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1019))) (((-525) (-135) $ (-525)) NIL (|has| (-135) (-1019))) (((-525) $ $ (-525)) NIL) (((-525) (-132) $ (-525)) NIL)) (-3781 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-3248 (($ (-713) (-135)) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| (-135) (-789)))) (-1440 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-2679 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| (-135) (-789)))) (-2033 (((-108) $ $ (-135)) NIL)) (-3894 (((-713) $ $ (-135)) NIL)) (-2540 (($ (-1 (-135) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-3850 (($ $) NIL)) (-3265 (($ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-2617 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-1707 (((-1073) $) NIL)) (-2234 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 (((-135) $) NIL (|has| (-525) (-789)))) (-3611 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-1614 (($ $ (-135)) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-4100 (((-592 (-135)) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1139 (-525))) NIL) (($ $ $) NIL)) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3053 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-4059 (($ (-592 (-135))) NIL)) (-1810 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4044 (($ (-135)) NIL) (((-797) $) NIL)) (-2443 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2453 (((-1073) $) 18) (((-1073) $ (-108)) 20) (((-1177) (-764) $) 21) (((-1177) (-764) $ (-108)) 22)) (-3973 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3944 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3928 (((-108) $ $) NIL (|has| (-135) (-789)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1073) (-1072)) (T -1073)) +NIL +(-1072) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)) (|has| |#1| (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL)) (-2792 (((-1177) $ (-1073) (-1073)) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-1073) |#1|) NIL)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 |#1| "failed") (-1073) $) NIL)) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019))))) (-1640 (($ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#1| "failed") (-1073) $) NIL)) (-2591 (($ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-1073)) NIL)) (-3781 (((-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-1073) $) NIL (|has| (-1073) (-789)))) (-2679 (((-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-1073) $) NIL (|has| (-1073) (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)) (|has| |#1| (-1019))))) (-2183 (((-592 (-1073)) $) NIL)) (-2781 (((-108) (-1073) $) NIL)) (-2434 (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL)) (-4157 (($ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL)) (-2379 (((-592 (-1073)) $) NIL)) (-2030 (((-108) (-1073) $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)) (|has| |#1| (-1019))))) (-1683 ((|#1| $) NIL (|has| (-1073) (-789)))) (-3611 (((-3 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) "failed") (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (($ $ (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL (-12 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-288 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-1073)) NIL) ((|#1| $ (-1073) |#1|) NIL)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL)) (-4044 (((-797) $) NIL (-3215 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-566 (-797))) (|has| |#1| (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 (-1073)) (|:| -3978 |#1|)) (-1019)) (|has| |#1| (-1019))))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1074 |#1|) (-13 (-1103 (-1073) |#1|) (-10 -7 (-6 -4254))) (-1019)) (T -1074)) +NIL +(-13 (-1103 (-1073) |#1|) (-10 -7 (-6 -4254))) +((-3321 (((-1071 |#1|) (-1071 |#1|)) 77)) (-1645 (((-3 (-1071 |#1|) "failed") (-1071 |#1|)) 37)) (-2626 (((-1071 |#1|) (-385 (-525)) (-1071 |#1|)) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1870 (((-1071 |#1|) |#1| (-1071 |#1|)) 122 (|has| |#1| (-341)))) (-2524 (((-1071 |#1|) (-1071 |#1|)) 90)) (-2532 (((-1071 (-525)) (-525)) 57)) (-2700 (((-1071 |#1|) (-1071 (-1071 |#1|))) 108 (|has| |#1| (-37 (-385 (-525)))))) (-1797 (((-1071 |#1|) (-525) (-525) (-1071 |#1|)) 95)) (-1784 (((-1071 |#1|) |#1| (-525)) 45)) (-2104 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 60)) (-3938 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 119 (|has| |#1| (-341)))) (-2564 (((-1071 |#1|) |#1| (-1 (-1071 |#1|))) 107 (|has| |#1| (-37 (-385 (-525)))))) (-1867 (((-1071 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1071 |#1|))) 120 (|has| |#1| (-341)))) (-2534 (((-1071 |#1|) (-1071 |#1|)) 89)) (-1848 (((-1071 |#1|) (-1071 |#1|)) 76)) (-1859 (((-1071 |#1|) (-525) (-525) (-1071 |#1|)) 96)) (-2313 (((-1071 |#1|) |#1| (-1071 |#1|)) 105 (|has| |#1| (-37 (-385 (-525)))))) (-2485 (((-1071 (-525)) (-525)) 56)) (-3038 (((-1071 |#1|) |#1|) 59)) (-2757 (((-1071 |#1|) (-1071 |#1|) (-525) (-525)) 92)) (-1451 (((-1071 |#1|) (-1 |#1| (-525)) (-1071 |#1|)) 66)) (-2675 (((-3 (-1071 |#1|) "failed") (-1071 |#1|) (-1071 |#1|)) 35)) (-2721 (((-1071 |#1|) (-1071 |#1|)) 91)) (-2168 (((-1071 |#1|) (-1071 |#1|) |#1|) 71)) (-1461 (((-1071 |#1|) (-1071 |#1|)) 62)) (-3947 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 72)) (-4044 (((-1071 |#1|) |#1|) 67)) (-3337 (((-1071 |#1|) (-1071 (-1071 |#1|))) 82)) (-4047 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 36)) (-4033 (((-1071 |#1|) (-1071 |#1|)) 21) (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 23)) (-4017 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 17)) (* (((-1071 |#1|) (-1071 |#1|) |#1|) 29) (((-1071 |#1|) |#1| (-1071 |#1|)) 26) (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 27))) +(((-1075 |#1|) (-10 -7 (-15 -4017 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -4033 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -4033 ((-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -2675 ((-3 (-1071 |#1|) "failed") (-1071 |#1|) (-1071 |#1|))) (-15 -4047 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1645 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -1784 ((-1071 |#1|) |#1| (-525))) (-15 -2485 ((-1071 (-525)) (-525))) (-15 -2532 ((-1071 (-525)) (-525))) (-15 -3038 ((-1071 |#1|) |#1|)) (-15 -2104 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1461 ((-1071 |#1|) (-1071 |#1|))) (-15 -1451 ((-1071 |#1|) (-1 |#1| (-525)) (-1071 |#1|))) (-15 -4044 ((-1071 |#1|) |#1|)) (-15 -2168 ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -3947 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1848 ((-1071 |#1|) (-1071 |#1|))) (-15 -3321 ((-1071 |#1|) (-1071 |#1|))) (-15 -3337 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -2534 ((-1071 |#1|) (-1071 |#1|))) (-15 -2524 ((-1071 |#1|) (-1071 |#1|))) (-15 -2721 ((-1071 |#1|) (-1071 |#1|))) (-15 -2757 ((-1071 |#1|) (-1071 |#1|) (-525) (-525))) (-15 -1797 ((-1071 |#1|) (-525) (-525) (-1071 |#1|))) (-15 -1859 ((-1071 |#1|) (-525) (-525) (-1071 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 -2564 ((-1071 |#1|) |#1| (-1 (-1071 |#1|)))) (-15 -2700 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -2626 ((-1071 |#1|) (-385 (-525)) (-1071 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3938 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1867 ((-1071 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1071 |#1|)))) (-15 -1870 ((-1071 |#1|) |#1| (-1071 |#1|)))) |%noBranch|)) (-976)) (T -1075)) +((-1870 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-341)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-1867 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1071 *4))) (-4 *4 (-341)) (-4 *4 (-976)) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)))) (-3938 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-341)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-2626 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *4)) (-4 *4 (-37 *3)) (-4 *4 (-976)) (-5 *3 (-385 (-525))) (-5 *1 (-1075 *4)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976)))) (-2564 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1071 *3))) (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)))) (-2313 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-1859 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976)) (-5 *1 (-1075 *4)))) (-1797 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976)) (-5 *1 (-1075 *4)))) (-2757 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976)) (-5 *1 (-1075 *4)))) (-2721 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-2524 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-2534 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)) (-4 *4 (-976)))) (-3321 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-1848 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-3947 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-2168 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4044 (*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976)))) (-1451 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-976)) (-5 *1 (-1075 *4)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-2104 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-3038 (*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976)))) (-2532 (*1 *2 *3) (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-1075 *4)) (-4 *4 (-976)) (-5 *3 (-525)))) (-2485 (*1 *2 *3) (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-1075 *4)) (-4 *4 (-976)) (-5 *3 (-525)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976)))) (-1645 (*1 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4047 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-2675 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4033 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4033 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4017 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))) +(-10 -7 (-15 -4017 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -4033 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -4033 ((-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -2675 ((-3 (-1071 |#1|) "failed") (-1071 |#1|) (-1071 |#1|))) (-15 -4047 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1645 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -1784 ((-1071 |#1|) |#1| (-525))) (-15 -2485 ((-1071 (-525)) (-525))) (-15 -2532 ((-1071 (-525)) (-525))) (-15 -3038 ((-1071 |#1|) |#1|)) (-15 -2104 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1461 ((-1071 |#1|) (-1071 |#1|))) (-15 -1451 ((-1071 |#1|) (-1 |#1| (-525)) (-1071 |#1|))) (-15 -4044 ((-1071 |#1|) |#1|)) (-15 -2168 ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -3947 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1848 ((-1071 |#1|) (-1071 |#1|))) (-15 -3321 ((-1071 |#1|) (-1071 |#1|))) (-15 -3337 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -2534 ((-1071 |#1|) (-1071 |#1|))) (-15 -2524 ((-1071 |#1|) (-1071 |#1|))) (-15 -2721 ((-1071 |#1|) (-1071 |#1|))) (-15 -2757 ((-1071 |#1|) (-1071 |#1|) (-525) (-525))) (-15 -1797 ((-1071 |#1|) (-525) (-525) (-1071 |#1|))) (-15 -1859 ((-1071 |#1|) (-525) (-525) (-1071 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 -2564 ((-1071 |#1|) |#1| (-1 (-1071 |#1|)))) (-15 -2700 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -2626 ((-1071 |#1|) (-385 (-525)) (-1071 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3938 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -1867 ((-1071 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1071 |#1|)))) (-15 -1870 ((-1071 |#1|) |#1| (-1071 |#1|)))) |%noBranch|)) +((-3915 (((-1071 |#1|) (-1071 |#1|)) 57)) (-3760 (((-1071 |#1|) (-1071 |#1|)) 39)) (-3886 (((-1071 |#1|) (-1071 |#1|)) 53)) (-3737 (((-1071 |#1|) (-1071 |#1|)) 35)) (-3946 (((-1071 |#1|) (-1071 |#1|)) 60)) (-3783 (((-1071 |#1|) (-1071 |#1|)) 42)) (-2412 (((-1071 |#1|) (-1071 |#1|)) 31)) (-2840 (((-1071 |#1|) (-1071 |#1|)) 27)) (-3960 (((-1071 |#1|) (-1071 |#1|)) 61)) (-3795 (((-1071 |#1|) (-1071 |#1|)) 43)) (-3930 (((-1071 |#1|) (-1071 |#1|)) 58)) (-3771 (((-1071 |#1|) (-1071 |#1|)) 40)) (-3901 (((-1071 |#1|) (-1071 |#1|)) 55)) (-3749 (((-1071 |#1|) (-1071 |#1|)) 37)) (-4004 (((-1071 |#1|) (-1071 |#1|)) 65)) (-3836 (((-1071 |#1|) (-1071 |#1|)) 47)) (-3975 (((-1071 |#1|) (-1071 |#1|)) 63)) (-3808 (((-1071 |#1|) (-1071 |#1|)) 45)) (-4035 (((-1071 |#1|) (-1071 |#1|)) 68)) (-3861 (((-1071 |#1|) (-1071 |#1|)) 50)) (-2608 (((-1071 |#1|) (-1071 |#1|)) 69)) (-3873 (((-1071 |#1|) (-1071 |#1|)) 51)) (-4018 (((-1071 |#1|) (-1071 |#1|)) 67)) (-3848 (((-1071 |#1|) (-1071 |#1|)) 49)) (-3989 (((-1071 |#1|) (-1071 |#1|)) 66)) (-3823 (((-1071 |#1|) (-1071 |#1|)) 48)) (** (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 33))) +(((-1076 |#1|) (-10 -7 (-15 -2840 ((-1071 |#1|) (-1071 |#1|))) (-15 -2412 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3737 ((-1071 |#1|) (-1071 |#1|))) (-15 -3749 ((-1071 |#1|) (-1071 |#1|))) (-15 -3760 ((-1071 |#1|) (-1071 |#1|))) (-15 -3771 ((-1071 |#1|) (-1071 |#1|))) (-15 -3783 ((-1071 |#1|) (-1071 |#1|))) (-15 -3795 ((-1071 |#1|) (-1071 |#1|))) (-15 -3808 ((-1071 |#1|) (-1071 |#1|))) (-15 -3823 ((-1071 |#1|) (-1071 |#1|))) (-15 -3836 ((-1071 |#1|) (-1071 |#1|))) (-15 -3848 ((-1071 |#1|) (-1071 |#1|))) (-15 -3861 ((-1071 |#1|) (-1071 |#1|))) (-15 -3873 ((-1071 |#1|) (-1071 |#1|))) (-15 -3886 ((-1071 |#1|) (-1071 |#1|))) (-15 -3901 ((-1071 |#1|) (-1071 |#1|))) (-15 -3915 ((-1071 |#1|) (-1071 |#1|))) (-15 -3930 ((-1071 |#1|) (-1071 |#1|))) (-15 -3946 ((-1071 |#1|) (-1071 |#1|))) (-15 -3960 ((-1071 |#1|) (-1071 |#1|))) (-15 -3975 ((-1071 |#1|) (-1071 |#1|))) (-15 -3989 ((-1071 |#1|) (-1071 |#1|))) (-15 -4004 ((-1071 |#1|) (-1071 |#1|))) (-15 -4018 ((-1071 |#1|) (-1071 |#1|))) (-15 -4035 ((-1071 |#1|) (-1071 |#1|))) (-15 -2608 ((-1071 |#1|) (-1071 |#1|)))) (-37 (-385 (-525)))) (T -1076)) +((-2608 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4004 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3989 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3975 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3795 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3737 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2412 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3))))) +(-10 -7 (-15 -2840 ((-1071 |#1|) (-1071 |#1|))) (-15 -2412 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3737 ((-1071 |#1|) (-1071 |#1|))) (-15 -3749 ((-1071 |#1|) (-1071 |#1|))) (-15 -3760 ((-1071 |#1|) (-1071 |#1|))) (-15 -3771 ((-1071 |#1|) (-1071 |#1|))) (-15 -3783 ((-1071 |#1|) (-1071 |#1|))) (-15 -3795 ((-1071 |#1|) (-1071 |#1|))) (-15 -3808 ((-1071 |#1|) (-1071 |#1|))) (-15 -3823 ((-1071 |#1|) (-1071 |#1|))) (-15 -3836 ((-1071 |#1|) (-1071 |#1|))) (-15 -3848 ((-1071 |#1|) (-1071 |#1|))) (-15 -3861 ((-1071 |#1|) (-1071 |#1|))) (-15 -3873 ((-1071 |#1|) (-1071 |#1|))) (-15 -3886 ((-1071 |#1|) (-1071 |#1|))) (-15 -3901 ((-1071 |#1|) (-1071 |#1|))) (-15 -3915 ((-1071 |#1|) (-1071 |#1|))) (-15 -3930 ((-1071 |#1|) (-1071 |#1|))) (-15 -3946 ((-1071 |#1|) (-1071 |#1|))) (-15 -3960 ((-1071 |#1|) (-1071 |#1|))) (-15 -3975 ((-1071 |#1|) (-1071 |#1|))) (-15 -3989 ((-1071 |#1|) (-1071 |#1|))) (-15 -4004 ((-1071 |#1|) (-1071 |#1|))) (-15 -4018 ((-1071 |#1|) (-1071 |#1|))) (-15 -4035 ((-1071 |#1|) (-1071 |#1|))) (-15 -2608 ((-1071 |#1|) (-1071 |#1|)))) +((-3915 (((-1071 |#1|) (-1071 |#1|)) 100)) (-3760 (((-1071 |#1|) (-1071 |#1|)) 64)) (-2280 (((-2 (|:| -3886 (-1071 |#1|)) (|:| -3901 (-1071 |#1|))) (-1071 |#1|)) 96)) (-3886 (((-1071 |#1|) (-1071 |#1|)) 97)) (-3998 (((-2 (|:| -3737 (-1071 |#1|)) (|:| -3749 (-1071 |#1|))) (-1071 |#1|)) 53)) (-3737 (((-1071 |#1|) (-1071 |#1|)) 54)) (-3946 (((-1071 |#1|) (-1071 |#1|)) 102)) (-3783 (((-1071 |#1|) (-1071 |#1|)) 71)) (-2412 (((-1071 |#1|) (-1071 |#1|)) 39)) (-2840 (((-1071 |#1|) (-1071 |#1|)) 36)) (-3960 (((-1071 |#1|) (-1071 |#1|)) 103)) (-3795 (((-1071 |#1|) (-1071 |#1|)) 72)) (-3930 (((-1071 |#1|) (-1071 |#1|)) 101)) (-3771 (((-1071 |#1|) (-1071 |#1|)) 67)) (-3901 (((-1071 |#1|) (-1071 |#1|)) 98)) (-3749 (((-1071 |#1|) (-1071 |#1|)) 55)) (-4004 (((-1071 |#1|) (-1071 |#1|)) 111)) (-3836 (((-1071 |#1|) (-1071 |#1|)) 86)) (-3975 (((-1071 |#1|) (-1071 |#1|)) 105)) (-3808 (((-1071 |#1|) (-1071 |#1|)) 82)) (-4035 (((-1071 |#1|) (-1071 |#1|)) 115)) (-3861 (((-1071 |#1|) (-1071 |#1|)) 90)) (-2608 (((-1071 |#1|) (-1071 |#1|)) 117)) (-3873 (((-1071 |#1|) (-1071 |#1|)) 92)) (-4018 (((-1071 |#1|) (-1071 |#1|)) 113)) (-3848 (((-1071 |#1|) (-1071 |#1|)) 88)) (-3989 (((-1071 |#1|) (-1071 |#1|)) 107)) (-3823 (((-1071 |#1|) (-1071 |#1|)) 84)) (** (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 40))) +(((-1077 |#1|) (-10 -7 (-15 -2840 ((-1071 |#1|) (-1071 |#1|))) (-15 -2412 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3998 ((-2 (|:| -3737 (-1071 |#1|)) (|:| -3749 (-1071 |#1|))) (-1071 |#1|))) (-15 -3737 ((-1071 |#1|) (-1071 |#1|))) (-15 -3749 ((-1071 |#1|) (-1071 |#1|))) (-15 -3760 ((-1071 |#1|) (-1071 |#1|))) (-15 -3771 ((-1071 |#1|) (-1071 |#1|))) (-15 -3783 ((-1071 |#1|) (-1071 |#1|))) (-15 -3795 ((-1071 |#1|) (-1071 |#1|))) (-15 -3808 ((-1071 |#1|) (-1071 |#1|))) (-15 -3823 ((-1071 |#1|) (-1071 |#1|))) (-15 -3836 ((-1071 |#1|) (-1071 |#1|))) (-15 -3848 ((-1071 |#1|) (-1071 |#1|))) (-15 -3861 ((-1071 |#1|) (-1071 |#1|))) (-15 -3873 ((-1071 |#1|) (-1071 |#1|))) (-15 -2280 ((-2 (|:| -3886 (-1071 |#1|)) (|:| -3901 (-1071 |#1|))) (-1071 |#1|))) (-15 -3886 ((-1071 |#1|) (-1071 |#1|))) (-15 -3901 ((-1071 |#1|) (-1071 |#1|))) (-15 -3915 ((-1071 |#1|) (-1071 |#1|))) (-15 -3930 ((-1071 |#1|) (-1071 |#1|))) (-15 -3946 ((-1071 |#1|) (-1071 |#1|))) (-15 -3960 ((-1071 |#1|) (-1071 |#1|))) (-15 -3975 ((-1071 |#1|) (-1071 |#1|))) (-15 -3989 ((-1071 |#1|) (-1071 |#1|))) (-15 -4004 ((-1071 |#1|) (-1071 |#1|))) (-15 -4018 ((-1071 |#1|) (-1071 |#1|))) (-15 -4035 ((-1071 |#1|) (-1071 |#1|))) (-15 -2608 ((-1071 |#1|) (-1071 |#1|)))) (-37 (-385 (-525)))) (T -1077)) +((-2608 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4004 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3989 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3975 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2280 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -3886 (-1071 *4)) (|:| -3901 (-1071 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1071 *4)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3795 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3737 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3998 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -3737 (-1071 *4)) (|:| -3749 (-1071 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1071 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2412 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3))))) +(-10 -7 (-15 -2840 ((-1071 |#1|) (-1071 |#1|))) (-15 -2412 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3998 ((-2 (|:| -3737 (-1071 |#1|)) (|:| -3749 (-1071 |#1|))) (-1071 |#1|))) (-15 -3737 ((-1071 |#1|) (-1071 |#1|))) (-15 -3749 ((-1071 |#1|) (-1071 |#1|))) (-15 -3760 ((-1071 |#1|) (-1071 |#1|))) (-15 -3771 ((-1071 |#1|) (-1071 |#1|))) (-15 -3783 ((-1071 |#1|) (-1071 |#1|))) (-15 -3795 ((-1071 |#1|) (-1071 |#1|))) (-15 -3808 ((-1071 |#1|) (-1071 |#1|))) (-15 -3823 ((-1071 |#1|) (-1071 |#1|))) (-15 -3836 ((-1071 |#1|) (-1071 |#1|))) (-15 -3848 ((-1071 |#1|) (-1071 |#1|))) (-15 -3861 ((-1071 |#1|) (-1071 |#1|))) (-15 -3873 ((-1071 |#1|) (-1071 |#1|))) (-15 -2280 ((-2 (|:| -3886 (-1071 |#1|)) (|:| -3901 (-1071 |#1|))) (-1071 |#1|))) (-15 -3886 ((-1071 |#1|) (-1071 |#1|))) (-15 -3901 ((-1071 |#1|) (-1071 |#1|))) (-15 -3915 ((-1071 |#1|) (-1071 |#1|))) (-15 -3930 ((-1071 |#1|) (-1071 |#1|))) (-15 -3946 ((-1071 |#1|) (-1071 |#1|))) (-15 -3960 ((-1071 |#1|) (-1071 |#1|))) (-15 -3975 ((-1071 |#1|) (-1071 |#1|))) (-15 -3989 ((-1071 |#1|) (-1071 |#1|))) (-15 -4004 ((-1071 |#1|) (-1071 |#1|))) (-15 -4018 ((-1071 |#1|) (-1071 |#1|))) (-15 -4035 ((-1071 |#1|) (-1071 |#1|))) (-15 -2608 ((-1071 |#1|) (-1071 |#1|)))) +((-3227 (((-891 |#2|) |#2| |#2|) 35)) (-2319 ((|#2| |#2| |#1|) 19 (|has| |#1| (-286))))) +(((-1078 |#1| |#2|) (-10 -7 (-15 -3227 ((-891 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -2319 (|#2| |#2| |#1|)) |%noBranch|)) (-517) (-1148 |#1|)) (T -1078)) +((-2319 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1078 *3 *2)) (-4 *2 (-1148 *3)))) (-3227 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-891 *3)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -3227 ((-891 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -2319 (|#2| |#2| |#1|)) |%noBranch|)) +((-4028 (((-108) $ $) NIL)) (-3237 (($ $ (-592 (-713))) 67)) (-1843 (($) 26)) (-2306 (($ $) 42)) (-3302 (((-592 $) $) 51)) (-2120 (((-108) $) 16)) (-3631 (((-592 (-877 |#2|)) $) 74)) (-1272 (($ $) 68)) (-2962 (((-713) $) 37)) (-3248 (($) 25)) (-2831 (($ $ (-592 (-713)) (-877 |#2|)) 60) (($ $ (-592 (-713)) (-713)) 61) (($ $ (-713) (-877 |#2|)) 63)) (-1440 (($ $ $) 48) (($ (-592 $)) 50)) (-1881 (((-713) $) 75)) (-3260 (((-108) $) 15)) (-1707 (((-1073) $) NIL)) (-1226 (((-108) $) 18)) (-3027 (((-1037) $) NIL)) (-3708 (((-159) $) 73)) (-1258 (((-877 |#2|) $) 69)) (-3176 (((-713) $) 70)) (-1369 (((-108) $) 72)) (-2061 (($ $ (-592 (-713)) (-159)) 66)) (-2577 (($ $) 43)) (-4044 (((-797) $) 86)) (-3693 (($ $ (-592 (-713)) (-108)) 65)) (-2180 (((-592 $) $) 11)) (-3182 (($ $ (-713)) 36)) (-1335 (($ $) 32)) (-1353 (($ $ $ (-877 |#2|) (-713)) 56)) (-2667 (($ $ (-877 |#2|)) 55)) (-2114 (($ $ (-592 (-713)) (-877 |#2|)) 54) (($ $ (-592 (-713)) (-713)) 58) (((-713) $ (-877 |#2|)) 59)) (-3899 (((-108) $ $) 80))) +(((-1079 |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -3260 ((-108) $)) (-15 -2120 ((-108) $)) (-15 -1226 ((-108) $)) (-15 -3248 ($)) (-15 -1843 ($)) (-15 -1335 ($ $)) (-15 -3182 ($ $ (-713))) (-15 -2180 ((-592 $) $)) (-15 -2962 ((-713) $)) (-15 -2306 ($ $)) (-15 -2577 ($ $)) (-15 -1440 ($ $ $)) (-15 -1440 ($ (-592 $))) (-15 -3302 ((-592 $) $)) (-15 -2114 ($ $ (-592 (-713)) (-877 |#2|))) (-15 -2667 ($ $ (-877 |#2|))) (-15 -1353 ($ $ $ (-877 |#2|) (-713))) (-15 -2831 ($ $ (-592 (-713)) (-877 |#2|))) (-15 -2114 ($ $ (-592 (-713)) (-713))) (-15 -2831 ($ $ (-592 (-713)) (-713))) (-15 -2114 ((-713) $ (-877 |#2|))) (-15 -2831 ($ $ (-713) (-877 |#2|))) (-15 -3693 ($ $ (-592 (-713)) (-108))) (-15 -2061 ($ $ (-592 (-713)) (-159))) (-15 -3237 ($ $ (-592 (-713)))) (-15 -1258 ((-877 |#2|) $)) (-15 -3176 ((-713) $)) (-15 -1369 ((-108) $)) (-15 -3708 ((-159) $)) (-15 -1881 ((-713) $)) (-15 -1272 ($ $)) (-15 -3631 ((-592 (-877 |#2|)) $)))) (-855) (-976)) (T -1079)) +((-3260 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-3248 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-1843 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-1335 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-3182 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-2577 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-1440 (*1 *1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-2114 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-877 *4)) (-4 *4 (-976)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)))) (-1353 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-877 *5)) (-5 *3 (-713)) (-4 *5 (-976)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-2831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-2114 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)) (-4 *5 (-976)))) (-2831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)) (-4 *5 (-976)))) (-2114 (*1 *2 *1 *3) (-12 (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *2 (-713)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-2831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-3693 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)) (-4 *5 (-976)))) (-2061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)) (-4 *5 (-976)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-1258 (*1 *2 *1) (-12 (-5 *2 (-877 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-1272 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-592 (-877 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976))))) +(-13 (-1019) (-10 -8 (-15 -3260 ((-108) $)) (-15 -2120 ((-108) $)) (-15 -1226 ((-108) $)) (-15 -3248 ($)) (-15 -1843 ($)) (-15 -1335 ($ $)) (-15 -3182 ($ $ (-713))) (-15 -2180 ((-592 $) $)) (-15 -2962 ((-713) $)) (-15 -2306 ($ $)) (-15 -2577 ($ $)) (-15 -1440 ($ $ $)) (-15 -1440 ($ (-592 $))) (-15 -3302 ((-592 $) $)) (-15 -2114 ($ $ (-592 (-713)) (-877 |#2|))) (-15 -2667 ($ $ (-877 |#2|))) (-15 -1353 ($ $ $ (-877 |#2|) (-713))) (-15 -2831 ($ $ (-592 (-713)) (-877 |#2|))) (-15 -2114 ($ $ (-592 (-713)) (-713))) (-15 -2831 ($ $ (-592 (-713)) (-713))) (-15 -2114 ((-713) $ (-877 |#2|))) (-15 -2831 ($ $ (-713) (-877 |#2|))) (-15 -3693 ($ $ (-592 (-713)) (-108))) (-15 -2061 ($ $ (-592 (-713)) (-159))) (-15 -3237 ($ $ (-592 (-713)))) (-15 -1258 ((-877 |#2|) $)) (-15 -3176 ((-713) $)) (-15 -1369 ((-108) $)) (-15 -3708 ((-159) $)) (-15 -1881 ((-713) $)) (-15 -1272 ($ $)) (-15 -3631 ((-592 (-877 |#2|)) $)))) +((-4028 (((-108) $ $) NIL)) (-1804 ((|#2| $) 11)) (-1795 ((|#1| $) 10)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4059 (($ |#1| |#2|) 9)) (-4044 (((-797) $) 16)) (-3899 (((-108) $ $) NIL))) +(((-1080 |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -4059 ($ |#1| |#2|)) (-15 -1795 (|#1| $)) (-15 -1804 (|#2| $)))) (-1019) (-1019)) (T -1080)) +((-4059 (*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-1795 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1019)))) (-1804 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1019))))) +(-13 (-1019) (-10 -8 (-15 -4059 ($ |#1| |#2|)) (-15 -1795 (|#1| $)) (-15 -1804 (|#2| $)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) 11)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2609 (($ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1220 (((-108) $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3948 (($ $ (-525)) NIL) (($ $ (-525) (-525)) 66)) (-3423 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-3742 (((-1088 |#1| |#2| |#3|) $) 36)) (-1801 (((-3 (-1088 |#1| |#2| |#3|) "failed") $) 29)) (-3181 (((-1088 |#1| |#2| |#3|) $) 30)) (-3915 (($ $) 107 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-2701 (($ $) NIL (|has| |#1| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3886 (($ $) 103 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (((-525) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-4231 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-3946 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-1088 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1090) "failed") $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))))) (-2068 (((-1088 |#1| |#2| |#3|) $) 131) (((-1090) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))))) (-1373 (($ $) 34) (($ (-525) $) 35)) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) NIL)) (-1307 (((-632 (-1088 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3471 (-632 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1172 (-1088 |#1| |#2| |#3|)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-1645 (((-3 $ "failed") $) 48)) (-2730 (((-385 (-886 |#1|)) $ (-525)) 65 (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) 67 (|has| |#1| (-517)))) (-1527 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2069 (((-108) $) NIL (|has| |#1| (-341)))) (-2973 (((-108) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3951 (((-108) $) 25)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-820 (-525))) (|has| |#1| (-341)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-820 (-357))) (|has| |#1| (-341))))) (-2158 (((-525) $) NIL) (((-525) $ (-525)) 24)) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL (|has| |#1| (-341)))) (-1936 (((-1088 |#1| |#2| |#3|) $) 38 (|has| |#1| (-341)))) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1978 (((-3 $ "failed") $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-341))))) (-3721 (((-108) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2633 (($ $ (-855)) NIL)) (-2277 (($ (-1 |#1| (-525)) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-525)) 18) (($ $ (-1004) (-525)) NIL) (($ $ (-592 (-1004)) (-592 (-525))) NIL)) (-1260 (($ $ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2154 (($ $ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-2412 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3199 (($ (-525) (-1088 |#1| |#2| |#3|)) 33)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-2313 (($ $) 70 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 71 (|has| |#1| (-37 (-385 (-525)))))) (-2039 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-341))) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1341 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2473 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-2961 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1539 (($ $ (-525)) 145)) (-2675 (((-3 $ "failed") $ $) 49 (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2840 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1090) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-486 (-1090) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-486 (-1090) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1088 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1088 |#1| |#2| |#3|)) (-592 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ (-525)) NIL) (($ $ $) 54 (|has| (-525) (-1031))) (($ $ (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-265 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-1576 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1168 |#2|)) 51) (($ $ (-713)) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 50 (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-1987 (($ $) NIL (|has| |#1| (-341)))) (-1945 (((-1088 |#1| |#2| |#3|) $) 41 (|has| |#1| (-341)))) (-1486 (((-525) $) 37)) (-3960 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 109 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 105 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-2923 (((-501) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-952)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-952)) (|has| |#1| (-341)))) (((-826 (-357)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-567 (-826 (-357)))) (|has| |#1| (-341)))) (((-826 (-525)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-567 (-826 (-525)))) (|has| |#1| (-341))))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-2789 (($ $) NIL)) (-4044 (((-797) $) 149) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1088 |#1| |#2| |#3|)) 27) (($ (-1168 |#2|)) 23) (($ (-1090)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (($ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-2100 ((|#1| $ (-525)) 68)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-3448 ((|#1| $) 12)) (-1448 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-4004 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 95 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3975 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 99 (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 101 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 97 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-2053 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) 20 T CONST)) (-1449 (($) 16 T CONST)) (-1990 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-3973 (((-108) $ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3944 (((-108) $ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3928 (((-108) $ $) NIL (-3215 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 44 (|has| |#1| (-341))) (($ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) 45 (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 21)) (** (($ $ (-855)) NIL) (($ $ (-713)) 53) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) 74 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1088 |#1| |#2| |#3|)) 43 (|has| |#1| (-341))) (($ (-1088 |#1| |#2| |#3|) $) 42 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-1081 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1088 |#1| |#2| |#3|)) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1081)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))) +(-13 (-1134 |#1| (-1088 |#1| |#2| |#3|)) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) +((-4138 ((|#2| |#2| (-1012 |#2|)) 26) ((|#2| |#2| (-1090)) 28))) +(((-1082 |#1| |#2|) (-10 -7 (-15 -4138 (|#2| |#2| (-1090))) (-15 -4138 (|#2| |#2| (-1012 |#2|)))) (-13 (-517) (-789) (-967 (-525)) (-588 (-525))) (-13 (-408 |#1|) (-149) (-27) (-1112))) (T -1082)) +((-4138 (*1 *2 *2 *3) (-12 (-5 *3 (-1012 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1112))) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1082 *4 *2)))) (-4138 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1112)))))) +(-10 -7 (-15 -4138 (|#2| |#2| (-1090))) (-15 -4138 (|#2| |#2| (-1012 |#2|)))) +((-4138 (((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1012 (-385 (-886 |#1|)))) 31) (((-385 (-886 |#1|)) (-886 |#1|) (-1012 (-886 |#1|))) 44) (((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1090)) 33) (((-385 (-886 |#1|)) (-886 |#1|) (-1090)) 36))) +(((-1083 |#1|) (-10 -7 (-15 -4138 ((-385 (-886 |#1|)) (-886 |#1|) (-1090))) (-15 -4138 ((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1090))) (-15 -4138 ((-385 (-886 |#1|)) (-886 |#1|) (-1012 (-886 |#1|)))) (-15 -4138 ((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1012 (-385 (-886 |#1|)))))) (-13 (-517) (-789) (-967 (-525)))) (T -1083)) +((-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1012 (-385 (-886 *5)))) (-5 *3 (-385 (-886 *5))) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-3 *3 (-294 *5))) (-5 *1 (-1083 *5)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1012 (-886 *5))) (-5 *3 (-886 *5)) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-385 *3)) (-5 *1 (-1083 *5)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-3 (-385 (-886 *5)) (-294 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-385 (-886 *5))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-385 (-886 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-886 *5))))) +(-10 -7 (-15 -4138 ((-385 (-886 |#1|)) (-886 |#1|) (-1090))) (-15 -4138 ((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1090))) (-15 -4138 ((-385 (-886 |#1|)) (-886 |#1|) (-1012 (-886 |#1|)))) (-15 -4138 ((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1012 (-385 (-886 |#1|)))))) +((-2868 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 13))) +(((-1084 |#1| |#2|) (-10 -7 (-15 -2868 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-976) (-976)) (T -1084)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-1086 *6)) (-5 *1 (-1084 *5 *6))))) +(-10 -7 (-15 -2868 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) +((-1259 (((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|))) 51)) (-2961 (((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|))) 52))) +(((-1085 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2961 ((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|)))) (-15 -1259 ((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|))))) (-735) (-789) (-429) (-883 |#3| |#1| |#2|)) (T -1085)) +((-1259 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 (-385 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1086 (-385 *7))))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 (-385 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1086 (-385 *7)))))) +(-10 -7 (-15 -2961 ((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|)))) (-15 -1259 ((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|))))) +((-4028 (((-108) $ $) 139)) (-2464 (((-108) $) 30)) (-3350 (((-1172 |#1|) $ (-713)) NIL)) (-3122 (((-592 (-1004)) $) NIL)) (-2878 (($ (-1086 |#1|)) NIL)) (-1315 (((-1086 $) $ (-1004)) 60) (((-1086 |#1|) $) 49)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) 134 (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-1004))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2481 (($ $ $) 128 (|has| |#1| (-517)))) (-1426 (((-396 (-1086 $)) (-1086 $)) 73 (|has| |#1| (-843)))) (-2701 (($ $) NIL (|has| |#1| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 93 (|has| |#1| (-843)))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3778 (($ $ (-713)) 42)) (-3564 (($ $ (-713)) 43)) (-3302 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1004) "failed") $) NIL)) (-2068 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1004) $) NIL)) (-3048 (($ $ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $ $) 130 (|has| |#1| (-160)))) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) 58)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-1974 (($ $ $) 106)) (-2932 (($ $ $) NIL (|has| |#1| (-517)))) (-2683 (((-2 (|:| -2059 |#1|) (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-517)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2319 (($ $) 135 (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#1| (-843)))) (-2187 (($ $ |#1| (-713) $) 47)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2926 (((-797) $ (-797)) 119)) (-2158 (((-713) $ $) NIL (|has| |#1| (-517)))) (-2507 (((-108) $) 32)) (-3682 (((-713) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| |#1| (-1066)))) (-3110 (($ (-1086 |#1|) (-1004)) 51) (($ (-1086 $) (-1004)) 67)) (-2633 (($ $ (-713)) 34)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-713)) 65) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-1004)) NIL) (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 123)) (-3762 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2078 (($ (-1 (-713) (-713)) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-1298 (((-1086 |#1|) $) NIL)) (-3869 (((-3 (-1004) "failed") $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) 54)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1707 (((-1073) $) NIL)) (-2628 (((-2 (|:| -2877 $) (|:| -2097 $)) $ (-713)) 41)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-1004)) (|:| -1737 (-713))) "failed") $) NIL)) (-2313 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2039 (($) NIL (|has| |#1| (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) 33)) (-3267 ((|#1| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 81 (|has| |#1| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 137 (|has| |#1| (-429)))) (-2773 (($ $ (-713) |#1| $) 101)) (-3725 (((-396 (-1086 $)) (-1086 $)) 79 (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) 78 (|has| |#1| (-843)))) (-2961 (((-396 $) $) 86 (|has| |#1| (-843)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-2675 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#1|) NIL) (($ $ (-592 (-1004)) (-592 |#1|)) NIL) (($ $ (-1004) $) NIL) (($ $ (-592 (-1004)) (-592 $)) NIL)) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-3907 (((-3 $ "failed") $ (-713)) 37)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 140 (|has| |#1| (-341)))) (-2257 (($ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $) 126 (|has| |#1| (-160)))) (-1576 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1486 (((-713) $) 56) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2758 ((|#1| $) 132 (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-2173 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-4044 (((-797) $) 120) (($ (-525)) NIL) (($ |#1|) 55) (($ (-1004)) NIL) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-713)) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) 28 (|has| |#1| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 15) (($ $ (-713)) 16)) (-1436 (($) 17 T CONST)) (-1449 (($) 18 T CONST)) (-1990 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) 98)) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4047 (($ $ |#1|) 141 (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 68)) (** (($ $ (-855)) 14) (($ $ (-713)) 12)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 27) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 104) (($ $ |#1|) NIL))) +(((-1086 |#1|) (-13 (-1148 |#1|) (-10 -8 (-15 -2926 ((-797) $ (-797))) (-15 -2773 ($ $ (-713) |#1| $)))) (-976)) (T -1086)) +((-2926 (*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1086 *3)) (-4 *3 (-976)))) (-2773 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1086 *3)) (-4 *3 (-976))))) +(-13 (-1148 |#1|) (-10 -8 (-15 -2926 ((-797) $ (-797))) (-15 -2773 ($ $ (-713) |#1| $)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) 11)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3948 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-3423 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| |#1| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3886 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-3946 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-1081 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1088 |#1| |#2| |#3|) "failed") $) 36)) (-2068 (((-1081 |#1| |#2| |#3|) $) NIL) (((-1088 |#1| |#2| |#3|) $) NIL)) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2668 (((-385 (-525)) $) 55)) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-3213 (($ (-385 (-525)) (-1081 |#1| |#2| |#3|)) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2069 (((-108) $) NIL (|has| |#1| (-341)))) (-3951 (((-108) $) NIL)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) NIL) (($ $ (-385 (-525))) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-385 (-525))) 20) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2412 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2597 (((-1081 |#1| |#2| |#3|) $) 41)) (-3972 (((-3 (-1081 |#1| |#2| |#3|) "failed") $) NIL)) (-3199 (((-1081 |#1| |#2| |#3|) $) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-2313 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1539 (($ $ (-385 (-525))) NIL)) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2840 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1031)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1168 |#2|)) 38)) (-1486 (((-385 (-525)) $) NIL)) (-3960 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) NIL)) (-4044 (((-797) $) 58) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1081 |#1| |#2| |#3|)) 30) (($ (-1088 |#1| |#2| |#3|)) 31) (($ (-1168 |#2|)) 26) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-2100 ((|#1| $ (-385 (-525))) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-3448 ((|#1| $) 12)) (-4004 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) 22 T CONST)) (-1449 (($) 16 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 24)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-1087 |#1| |#2| |#3|) (-13 (-1155 |#1| (-1081 |#1| |#2| |#3|)) (-967 (-1088 |#1| |#2| |#3|)) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1087)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))) +(-13 (-1155 |#1| (-1081 |#1| |#2| |#3|)) (-967 (-1088 |#1| |#2| |#3|)) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 125)) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) 116)) (-2084 (((-1145 |#2| |#1|) $ (-713)) 63)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3948 (($ $ (-713)) 79) (($ $ (-713) (-713)) 76)) (-3423 (((-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 102)) (-3915 (($ $) 169 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3886 (($ $) 165 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 115) (($ (-1071 |#1|)) 110)) (-3946 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) 23)) (-3954 (($ $) 26)) (-3648 (((-886 |#1|) $ (-713)) 75) (((-886 |#1|) $ (-713) (-713)) 77)) (-3951 (((-108) $) 120)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-713) $) 122) (((-713) $ (-713)) 124)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) NIL)) (-2277 (($ (-1 |#1| (-525)) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-713)) 13) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2412 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-2313 (($ $) 129 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3027 (((-1037) $) NIL)) (-1539 (($ $ (-713)) 15)) (-2675 (((-3 $ "failed") $ $) 24 (|has| |#1| (-517)))) (-2840 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-1496 ((|#1| $ (-713)) 119) (($ $ $) 128 (|has| (-713) (-1031)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1168 |#2|)) 29)) (-1486 (((-713) $) NIL)) (-3960 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 167 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) NIL)) (-4044 (((-797) $) 201) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 126 (|has| |#1| (-160))) (($ (-1145 |#2| |#1|)) 51) (($ (-1168 |#2|)) 32)) (-3681 (((-1071 |#1|) $) 98)) (-2100 ((|#1| $ (-713)) 118)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-3448 ((|#1| $) 54)) (-4004 (($ $) 181 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 185 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-713)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 183 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 17 T CONST)) (-1449 (($) 19 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) 194)) (-4017 (($ $ $) 31)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 198 (|has| |#1| (-341))) (($ $ $) 134 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 137 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-1088 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-10 -8 (-15 -4044 ($ (-1145 |#2| |#1|))) (-15 -2084 ((-1145 |#2| |#1|) $ (-713))) (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1088)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1145 *4 *3)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1088 *3 *4 *5)))) (-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1145 *5 *4)) (-5 *1 (-1088 *4 *5 *6)) (-4 *4 (-976)) (-14 *5 (-1090)) (-14 *6 *4))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))) +(-13 (-1163 |#1|) (-10 -8 (-15 -4044 ($ (-1145 |#2| |#1|))) (-15 -2084 ((-1145 |#2| |#1|) $ (-713))) (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) +((-4044 (((-797) $) 27) (($ (-1090)) 29)) (-3215 (($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 40)) (-3197 (($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 33) (($ $) 34)) (-2013 (($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 35)) (-2003 (($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 37)) (-1992 (($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 36)) (-1983 (($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 38)) (-2446 (($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 39))) +(((-1089) (-13 (-566 (-797)) (-10 -8 (-15 -4044 ($ (-1090))) (-15 -2013 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -1992 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2003 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -1983 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3215 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2446 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3197 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3197 ($ $))))) (T -1089)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1089)))) (-2013 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-1992 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-2003 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-1983 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-3215 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-2446 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-3197 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-3197 (*1 *1 *1) (-5 *1 (-1089)))) +(-13 (-566 (-797)) (-10 -8 (-15 -4044 ($ (-1090))) (-15 -2013 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -1992 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2003 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -1983 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3215 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2446 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3197 ($ (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3197 ($ $)))) +((-4028 (((-108) $ $) NIL)) (-1786 (($ $ (-592 (-797))) 59)) (-1617 (($ $ (-592 (-797))) 57)) (-2717 (((-1073) $) 84)) (-2530 (((-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) (|:| |args| (-592 (-797)))) $) 87)) (-3675 (((-108) $) 22)) (-2221 (($ $ (-592 (-592 (-797)))) 56) (($ $ (-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) (|:| |args| (-592 (-797))))) 82)) (-1957 (($) 124 T CONST)) (-1430 (((-1177)) 106)) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 66) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 73)) (-3248 (($) 95) (($ $) 101)) (-3515 (($ $) 83)) (-1260 (($ $ $) NIL)) (-2154 (($ $ $) NIL)) (-1553 (((-592 $) $) 107)) (-1707 (((-1073) $) 90)) (-3027 (((-1037) $) NIL)) (-1496 (($ $ (-592 (-797))) 58)) (-2923 (((-501) $) 46) (((-1090) $) 47) (((-826 (-525)) $) 77) (((-826 (-357)) $) 75)) (-4044 (((-797) $) 53) (($ (-1073)) 48)) (-3406 (($ $ (-592 (-797))) 60)) (-2453 (((-1073) $) 33) (((-1073) $ (-108)) 34) (((-1177) (-764) $) 35) (((-1177) (-764) $ (-108)) 36)) (-3973 (((-108) $ $) NIL)) (-3944 (((-108) $ $) NIL)) (-3899 (((-108) $ $) 49)) (-3959 (((-108) $ $) NIL)) (-3928 (((-108) $ $) 50))) +(((-1090) (-13 (-789) (-567 (-501)) (-770) (-567 (-1090)) (-567 (-826 (-525))) (-567 (-826 (-357))) (-820 (-525)) (-820 (-357)) (-10 -8 (-15 -3248 ($)) (-15 -3248 ($ $)) (-15 -1430 ((-1177))) (-15 -4044 ($ (-1073))) (-15 -3515 ($ $)) (-15 -3675 ((-108) $)) (-15 -2530 ((-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) (|:| |args| (-592 (-797)))) $)) (-15 -2221 ($ $ (-592 (-592 (-797))))) (-15 -2221 ($ $ (-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) (|:| |args| (-592 (-797)))))) (-15 -1617 ($ $ (-592 (-797)))) (-15 -1786 ($ $ (-592 (-797)))) (-15 -3406 ($ $ (-592 (-797)))) (-15 -1496 ($ $ (-592 (-797)))) (-15 -2717 ((-1073) $)) (-15 -1553 ((-592 $) $)) (-15 -1957 ($) -3219)))) (T -1090)) +((-3248 (*1 *1) (-5 *1 (-1090))) (-3248 (*1 *1 *1) (-5 *1 (-1090))) (-1430 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1090)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))) (-3515 (*1 *1 *1) (-5 *1 (-1090))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) (|:| |args| (-592 (-797))))) (-5 *1 (-1090)))) (-2221 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-797)))) (-5 *1 (-1090)))) (-2221 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) (|:| |args| (-592 (-797))))) (-5 *1 (-1090)))) (-1617 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1090)))) (-1957 (*1 *1) (-5 *1 (-1090)))) +(-13 (-789) (-567 (-501)) (-770) (-567 (-1090)) (-567 (-826 (-525))) (-567 (-826 (-357))) (-820 (-525)) (-820 (-357)) (-10 -8 (-15 -3248 ($)) (-15 -3248 ($ $)) (-15 -1430 ((-1177))) (-15 -4044 ($ (-1073))) (-15 -3515 ($ $)) (-15 -3675 ((-108) $)) (-15 -2530 ((-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) (|:| |args| (-592 (-797)))) $)) (-15 -2221 ($ $ (-592 (-592 (-797))))) (-15 -2221 ($ $ (-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) (|:| |args| (-592 (-797)))))) (-15 -1617 ($ $ (-592 (-797)))) (-15 -1786 ($ $ (-592 (-797)))) (-15 -3406 ($ $ (-592 (-797)))) (-15 -1496 ($ $ (-592 (-797)))) (-15 -2717 ((-1073) $)) (-15 -1553 ((-592 $) $)) (-15 -1957 ($) -3219))) +((-2366 (((-1172 |#1|) |#1| (-855)) 16) (((-1172 |#1|) (-592 |#1|)) 20))) +(((-1091 |#1|) (-10 -7 (-15 -2366 ((-1172 |#1|) (-592 |#1|))) (-15 -2366 ((-1172 |#1|) |#1| (-855)))) (-976)) (T -1091)) +((-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-5 *2 (-1172 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-976)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-976)) (-5 *2 (-1172 *4)) (-5 *1 (-1091 *4))))) +(-10 -7 (-15 -2366 ((-1172 |#1|) (-592 |#1|))) (-15 -2366 ((-1172 |#1|) |#1| (-855)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2068 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2319 (($ $) NIL (|has| |#1| (-429)))) (-2187 (($ $ |#1| (-903) $) NIL)) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-903)) NIL)) (-3762 (((-903) $) NIL)) (-2078 (($ (-1 (-903) (-903)) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#1| $) NIL)) (-2773 (($ $ (-903) |#1| $) NIL (-12 (|has| (-903) (-126)) (|has| |#1| (-517))))) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1486 (((-903) $) NIL)) (-2758 ((|#1| $) NIL (|has| |#1| (-429)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3215 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ (-903)) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 9 T CONST)) (-1449 (($) 14 T CONST)) (-3899 (((-108) $ $) 16)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 19)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-1092 |#1|) (-13 (-304 |#1| (-903)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-903) (-126)) (-15 -2773 ($ $ (-903) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|))) (-976)) (T -1092)) +((-2773 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-903)) (-4 *2 (-126)) (-5 *1 (-1092 *3)) (-4 *3 (-517)) (-4 *3 (-976))))) +(-13 (-304 |#1| (-903)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-903) (-126)) (-15 -2773 ($ $ (-903) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|))) +((-3239 (((-1094) (-1090) $) 25)) (-2139 (($) 29)) (-3921 (((-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-1090) $) 22)) (-3388 (((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3089 "void")) $) 41) (((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) 42) (((-1177) (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) 43)) (-2727 (((-1177) (-1090)) 58)) (-3003 (((-1177) (-1090) $) 55) (((-1177) (-1090)) 56) (((-1177)) 57)) (-2018 (((-1177) (-1090)) 37)) (-3521 (((-1090)) 36)) (-3266 (($) 34)) (-3045 (((-415) (-1090) (-415) (-1090) $) 45) (((-415) (-592 (-1090)) (-415) (-1090) $) 49) (((-415) (-1090) (-415)) 46) (((-415) (-1090) (-415) (-1090)) 50)) (-1211 (((-1090)) 35)) (-4044 (((-797) $) 28)) (-1740 (((-1177)) 30) (((-1177) (-1090)) 33)) (-3289 (((-592 (-1090)) (-1090) $) 24)) (-4000 (((-1177) (-1090) (-592 (-1090)) $) 38) (((-1177) (-1090) (-592 (-1090))) 39) (((-1177) (-592 (-1090))) 40))) +(((-1093) (-13 (-566 (-797)) (-10 -8 (-15 -2139 ($)) (-15 -1740 ((-1177))) (-15 -1740 ((-1177) (-1090))) (-15 -3045 ((-415) (-1090) (-415) (-1090) $)) (-15 -3045 ((-415) (-592 (-1090)) (-415) (-1090) $)) (-15 -3045 ((-415) (-1090) (-415))) (-15 -3045 ((-415) (-1090) (-415) (-1090))) (-15 -2018 ((-1177) (-1090))) (-15 -1211 ((-1090))) (-15 -3521 ((-1090))) (-15 -4000 ((-1177) (-1090) (-592 (-1090)) $)) (-15 -4000 ((-1177) (-1090) (-592 (-1090)))) (-15 -4000 ((-1177) (-592 (-1090)))) (-15 -3388 ((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3089 "void")) $)) (-15 -3388 ((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3089 "void")))) (-15 -3388 ((-1177) (-3 (|:| |fst| (-412)) (|:| -3089 "void")))) (-15 -3003 ((-1177) (-1090) $)) (-15 -3003 ((-1177) (-1090))) (-15 -3003 ((-1177))) (-15 -2727 ((-1177) (-1090))) (-15 -3266 ($)) (-15 -3921 ((-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-1090) $)) (-15 -3289 ((-592 (-1090)) (-1090) $)) (-15 -3239 ((-1094) (-1090) $))))) (T -1093)) +((-2139 (*1 *1) (-5 *1 (-1093))) (-1740 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1093)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3045 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3045 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1090))) (-5 *4 (-1090)) (-5 *1 (-1093)))) (-3045 (*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3045 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-1211 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-3521 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-4000 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-592 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3388 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3388 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3003 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3003 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1093)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3266 (*1 *1) (-5 *1 (-1093))) (-3921 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *1 (-1093)))) (-3289 (*1 *2 *3 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090)))) (-3239 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093))))) +(-13 (-566 (-797)) (-10 -8 (-15 -2139 ($)) (-15 -1740 ((-1177))) (-15 -1740 ((-1177) (-1090))) (-15 -3045 ((-415) (-1090) (-415) (-1090) $)) (-15 -3045 ((-415) (-592 (-1090)) (-415) (-1090) $)) (-15 -3045 ((-415) (-1090) (-415))) (-15 -3045 ((-415) (-1090) (-415) (-1090))) (-15 -2018 ((-1177) (-1090))) (-15 -1211 ((-1090))) (-15 -3521 ((-1090))) (-15 -4000 ((-1177) (-1090) (-592 (-1090)) $)) (-15 -4000 ((-1177) (-1090) (-592 (-1090)))) (-15 -4000 ((-1177) (-592 (-1090)))) (-15 -3388 ((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3089 "void")) $)) (-15 -3388 ((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3089 "void")))) (-15 -3388 ((-1177) (-3 (|:| |fst| (-412)) (|:| -3089 "void")))) (-15 -3003 ((-1177) (-1090) $)) (-15 -3003 ((-1177) (-1090))) (-15 -3003 ((-1177))) (-15 -2727 ((-1177) (-1090))) (-15 -3266 ($)) (-15 -3921 ((-3 (|:| |fst| (-412)) (|:| -3089 "void")) (-1090) $)) (-15 -3289 ((-592 (-1090)) (-1090) $)) (-15 -3239 ((-1094) (-1090) $)))) +((-1606 (((-592 (-592 (-3 (|:| -3515 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))) $) 59)) (-1462 (((-592 (-3 (|:| -3515 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))) (-412) $) 43)) (-3104 (($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-415))))) 17)) (-2727 (((-1177) $) 67)) (-4230 (((-592 (-1090)) $) 22)) (-3677 (((-1023) $) 55)) (-3881 (((-415) (-1090) $) 27)) (-3290 (((-592 (-1090)) $) 30)) (-3266 (($) 19)) (-3045 (((-415) (-592 (-1090)) (-415) $) 25) (((-415) (-1090) (-415) $) 24)) (-4044 (((-797) $) 9) (((-1100 (-1090) (-415)) $) 13))) +(((-1094) (-13 (-566 (-797)) (-10 -8 (-15 -4044 ((-1100 (-1090) (-415)) $)) (-15 -3266 ($)) (-15 -3045 ((-415) (-592 (-1090)) (-415) $)) (-15 -3045 ((-415) (-1090) (-415) $)) (-15 -3881 ((-415) (-1090) $)) (-15 -4230 ((-592 (-1090)) $)) (-15 -1462 ((-592 (-3 (|:| -3515 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))) (-412) $)) (-15 -3290 ((-592 (-1090)) $)) (-15 -1606 ((-592 (-592 (-3 (|:| -3515 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))) $)) (-15 -3677 ((-1023) $)) (-15 -2727 ((-1177) $)) (-15 -3104 ($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-415))))))))) (T -1094)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-1100 (-1090) (-415))) (-5 *1 (-1094)))) (-3266 (*1 *1) (-5 *1 (-1094))) (-3045 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1090))) (-5 *1 (-1094)))) (-3045 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1094)))) (-3881 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-415)) (-5 *1 (-1094)))) (-4230 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1094)))) (-1462 (*1 *2 *3 *1) (-12 (-5 *3 (-412)) (-5 *2 (-592 (-3 (|:| -3515 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))) (-5 *1 (-1094)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1094)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-3 (|:| -3515 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))))) (-5 *1 (-1094)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-1094)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1094)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-415))))) (-5 *1 (-1094))))) +(-13 (-566 (-797)) (-10 -8 (-15 -4044 ((-1100 (-1090) (-415)) $)) (-15 -3266 ($)) (-15 -3045 ((-415) (-592 (-1090)) (-415) $)) (-15 -3045 ((-415) (-1090) (-415) $)) (-15 -3881 ((-415) (-1090) $)) (-15 -4230 ((-592 (-1090)) $)) (-15 -1462 ((-592 (-3 (|:| -3515 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))) (-412) $)) (-15 -3290 ((-592 (-1090)) $)) (-15 -1606 ((-592 (-592 (-3 (|:| -3515 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))) $)) (-15 -3677 ((-1023) $)) (-15 -2727 ((-1177) $)) (-15 -3104 ($ (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-415)))))))) +((-4028 (((-108) $ $) NIL)) (-3518 (((-108) $) 42)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3001 (((-3 (-525) (-205) (-1090) (-1073) $) $) 50)) (-3456 (((-592 $) $) 55)) (-2923 (((-1023) $) 24) (($ (-1023)) 25)) (-3283 (((-108) $) 52)) (-4044 (((-797) $) NIL) (($ (-525)) 26) (((-525) $) 28) (($ (-205)) 29) (((-205) $) 31) (($ (-1090)) 32) (((-1090) $) 34) (($ (-1073)) 35) (((-1073) $) 37)) (-1423 (((-108) $ (|[\|\|]| (-525))) 11) (((-108) $ (|[\|\|]| (-205))) 15) (((-108) $ (|[\|\|]| (-1090))) 23) (((-108) $ (|[\|\|]| (-1073))) 19)) (-1676 (($ (-1090) (-592 $)) 39) (($ $ (-592 $)) 40)) (-1283 (((-525) $) 27) (((-205) $) 30) (((-1090) $) 33) (((-1073) $) 36)) (-3899 (((-108) $ $) 7))) +(((-1095) (-13 (-1167) (-1019) (-10 -8 (-15 -2923 ((-1023) $)) (-15 -2923 ($ (-1023))) (-15 -4044 ($ (-525))) (-15 -4044 ((-525) $)) (-15 -1283 ((-525) $)) (-15 -4044 ($ (-205))) (-15 -4044 ((-205) $)) (-15 -1283 ((-205) $)) (-15 -4044 ($ (-1090))) (-15 -4044 ((-1090) $)) (-15 -1283 ((-1090) $)) (-15 -4044 ($ (-1073))) (-15 -4044 ((-1073) $)) (-15 -1283 ((-1073) $)) (-15 -1676 ($ (-1090) (-592 $))) (-15 -1676 ($ $ (-592 $))) (-15 -3518 ((-108) $)) (-15 -3001 ((-3 (-525) (-205) (-1090) (-1073) $) $)) (-15 -3456 ((-592 $) $)) (-15 -3283 ((-108) $)) (-15 -1423 ((-108) $ (|[\|\|]| (-525)))) (-15 -1423 ((-108) $ (|[\|\|]| (-205)))) (-15 -1423 ((-108) $ (|[\|\|]| (-1090)))) (-15 -1423 ((-108) $ (|[\|\|]| (-1073))))))) (T -1095)) +((-2923 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-1095)))) (-2923 (*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-1095)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1095)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1095)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1095)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1095)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1095)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1095)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1095)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1095)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1095)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-1676 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-1095))) (-5 *1 (-1095)))) (-1676 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-1095)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1095)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-3 (-525) (-205) (-1090) (-1073) (-1095))) (-5 *1 (-1095)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-1095)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1095)))) (-1423 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1095)))) (-1423 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1095)))) (-1423 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-108)) (-5 *1 (-1095)))) (-1423 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-108)) (-5 *1 (-1095))))) +(-13 (-1167) (-1019) (-10 -8 (-15 -2923 ((-1023) $)) (-15 -2923 ($ (-1023))) (-15 -4044 ($ (-525))) (-15 -4044 ((-525) $)) (-15 -1283 ((-525) $)) (-15 -4044 ($ (-205))) (-15 -4044 ((-205) $)) (-15 -1283 ((-205) $)) (-15 -4044 ($ (-1090))) (-15 -4044 ((-1090) $)) (-15 -1283 ((-1090) $)) (-15 -4044 ($ (-1073))) (-15 -4044 ((-1073) $)) (-15 -1283 ((-1073) $)) (-15 -1676 ($ (-1090) (-592 $))) (-15 -1676 ($ $ (-592 $))) (-15 -3518 ((-108) $)) (-15 -3001 ((-3 (-525) (-205) (-1090) (-1073) $) $)) (-15 -3456 ((-592 $) $)) (-15 -3283 ((-108) $)) (-15 -1423 ((-108) $ (|[\|\|]| (-525)))) (-15 -1423 ((-108) $ (|[\|\|]| (-205)))) (-15 -1423 ((-108) $ (|[\|\|]| (-1090)))) (-15 -1423 ((-108) $ (|[\|\|]| (-1073)))))) +((-3412 (((-592 (-592 (-886 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090))) 57)) (-1932 (((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|)))) 69) (((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|))) 65) (((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090)) 70) (((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090)) 64) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|))))) 93) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|)))) 92) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090))) 94) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))) (-592 (-1090))) 91))) +(((-1096 |#1|) (-10 -7 (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090)))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -1932 ((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090))) (-15 -1932 ((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -1932 ((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)))) (-15 -1932 ((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))))) (-15 -3412 ((-592 (-592 (-886 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090))))) (-517)) (T -1096)) +((-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-886 *5)))) (-5 *1 (-1096 *5)))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *4))))) (-5 *1 (-1096 *4)) (-5 *3 (-273 (-385 (-886 *4)))))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *4))))) (-5 *1 (-1096 *4)) (-5 *3 (-385 (-886 *4))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *5))))) (-5 *1 (-1096 *5)) (-5 *3 (-273 (-385 (-886 *5)))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *5))))) (-5 *1 (-1096 *5)) (-5 *3 (-385 (-886 *5))))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-1096 *4)) (-5 *3 (-592 (-273 (-385 (-886 *4))))))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-886 *4)))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-1096 *4)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-1096 *5)) (-5 *3 (-592 (-273 (-385 (-886 *5))))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-1096 *5))))) +(-10 -7 (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090)))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))))) (-15 -1932 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -1932 ((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090))) (-15 -1932 ((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -1932 ((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)))) (-15 -1932 ((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))))) (-15 -3412 ((-592 (-592 (-886 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090))))) +((-1714 (((-1073)) 7)) (-3818 (((-1073)) 9)) (-3658 (((-1177) (-1073)) 11)) (-2535 (((-1073)) 8))) +(((-1097) (-10 -7 (-15 -1714 ((-1073))) (-15 -2535 ((-1073))) (-15 -3818 ((-1073))) (-15 -3658 ((-1177) (-1073))))) (T -1097)) +((-3658 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1097)))) (-3818 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097)))) (-2535 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097)))) (-1714 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097))))) +(-10 -7 (-15 -1714 ((-1073))) (-15 -2535 ((-1073))) (-15 -3818 ((-1073))) (-15 -3658 ((-1177) (-1073)))) +((-1907 (((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 38)) (-1471 (((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|))) 24)) (-1757 (((-1099 (-592 |#1|)) (-592 |#1|)) 34)) (-4148 (((-592 (-592 |#1|)) (-592 |#1|)) 30)) (-3434 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))) 37)) (-1865 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|)))) 36)) (-1206 (((-592 (-592 |#1|)) (-592 (-592 |#1|))) 28)) (-3194 (((-592 |#1|) (-592 |#1|)) 31)) (-1655 (((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 18)) (-3129 (((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 16)) (-2736 (((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|))) 14)) (-2567 (((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 39)) (-3895 (((-592 (-592 |#1|)) (-1099 (-592 |#1|))) 41))) +(((-1098 |#1|) (-10 -7 (-15 -2736 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -3129 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1655 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1907 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -2567 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -3895 ((-592 (-592 |#1|)) (-1099 (-592 |#1|)))) (-15 -1471 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -1757 ((-1099 (-592 |#1|)) (-592 |#1|))) (-15 -1206 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -4148 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -3194 ((-592 |#1|) (-592 |#1|))) (-15 -1865 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -3434 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))))) (-789)) (T -1098)) +((-3434 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4)))) (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4)))))) (-5 *1 (-1098 *4)) (-5 *3 (-592 (-592 (-592 *4)))))) (-1865 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-789)) (-5 *3 (-592 *6)) (-5 *5 (-592 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-592 *5)) (|:| |f3| *5) (|:| |f4| (-592 *5)))) (-5 *1 (-1098 *6)) (-5 *4 (-592 *5)))) (-3194 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1098 *3)))) (-4148 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4)) (-5 *3 (-592 *4)))) (-1206 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1098 *3)))) (-1757 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-1099 (-592 *4))) (-5 *1 (-1098 *4)) (-5 *3 (-592 *4)))) (-1471 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4)))) (-5 *1 (-1098 *4)) (-5 *3 (-592 (-592 *4))))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-1099 (-592 *4))) (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4)) (-4 *4 (-789)))) (-1907 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4))) (-4 *4 (-789)) (-5 *1 (-1098 *4)))) (-1655 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *1 (-1098 *4)))) (-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1098 *5)))) (-2736 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789)) (-5 *4 (-592 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-592 *4)))) (-5 *1 (-1098 *6)) (-5 *5 (-592 *4))))) +(-10 -7 (-15 -2736 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -3129 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1655 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1907 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -2567 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -3895 ((-592 (-592 |#1|)) (-1099 (-592 |#1|)))) (-15 -1471 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -1757 ((-1099 (-592 |#1|)) (-592 |#1|))) (-15 -1206 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -4148 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -3194 ((-592 |#1|) (-592 |#1|))) (-15 -1865 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -3434 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))))) +((-3810 (($ (-592 (-592 |#1|))) 10)) (-2972 (((-592 (-592 |#1|)) $) 11)) (-4044 (((-797) $) 26))) +(((-1099 |#1|) (-10 -8 (-15 -3810 ($ (-592 (-592 |#1|)))) (-15 -2972 ((-592 (-592 |#1|)) $)) (-15 -4044 ((-797) $))) (-1019)) (T -1099)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1099 *3)) (-4 *3 (-1019)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1019)))) (-3810 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-1099 *3))))) +(-10 -8 (-15 -3810 ($ (-592 (-592 |#1|)))) (-15 -2972 ((-592 (-592 |#1|)) $)) (-15 -4044 ((-797) $))) +((-4028 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1450 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2792 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#2| $ |#1| |#2|) NIL)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2504 (((-3 |#2| "failed") |#1| $) NIL)) (-1957 (($) NIL T CONST)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) NIL)) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) NIL)) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) NIL)) (-2179 ((|#1| $) NIL (|has| |#1| (-789)))) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2112 ((|#1| $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-2183 (((-592 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-2379 (((-592 |#1|) $) NIL)) (-2030 (((-108) |#1| $) NIL)) (-3027 (((-1037) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1683 ((|#2| $) NIL (|has| |#1| (-789)))) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL)) (-1614 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3607 (($) NIL) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-4044 (((-797) $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) NIL)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) NIL (-3215 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1100 |#1| |#2|) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) (-1019) (-1019)) (T -1100)) +NIL +(-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) +((-2688 ((|#1| (-592 |#1|)) 32)) (-1721 ((|#1| |#1| (-525)) 18)) (-3961 (((-1086 |#1|) |#1| (-855)) 15))) +(((-1101 |#1|) (-10 -7 (-15 -2688 (|#1| (-592 |#1|))) (-15 -3961 ((-1086 |#1|) |#1| (-855))) (-15 -1721 (|#1| |#1| (-525)))) (-341)) (T -1101)) +((-1721 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1101 *2)) (-4 *2 (-341)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-5 *2 (-1086 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-341)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1101 *2)) (-4 *2 (-341))))) +(-10 -7 (-15 -2688 (|#1| (-592 |#1|))) (-15 -3961 ((-1086 |#1|) |#1| (-855))) (-15 -1721 (|#1| |#1| (-525)))) +((-1450 (($) 10) (($ (-592 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)))) 14)) (-1640 (($ (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) $) 61) (($ (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3781 (((-592 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) $) 39) (((-592 |#3|) $) 41)) (-2540 (($ (-1 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2868 (($ (-1 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2434 (((-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) $) 54)) (-4157 (($ (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) $) 16)) (-2379 (((-592 |#2|) $) 19)) (-2030 (((-108) |#2| $) 59)) (-3611 (((-3 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) "failed") (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) $) 58)) (-3672 (((-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) $) 63)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 67)) (-4100 (((-592 |#3|) $) 43)) (-1496 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) $) NIL) (((-713) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) $) NIL) (((-713) |#3| $) NIL) (((-713) (-1 (-108) |#3|) $) 68)) (-4044 (((-797) $) 27)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 65)) (-3899 (((-108) $ $) 49))) +(((-1102 |#1| |#2| |#3|) (-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -2868 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1450 (|#1| (-592 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))))) (-15 -1450 (|#1|)) (-15 -2868 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3053 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -3781 ((-592 |#3|) |#1|)) (-15 -3053 ((-713) |#3| |#1|)) (-15 -1496 (|#3| |#1| |#2| |#3|)) (-15 -1496 (|#3| |#1| |#2|)) (-15 -4100 ((-592 |#3|) |#1|)) (-15 -2030 ((-108) |#2| |#1|)) (-15 -2379 ((-592 |#2|) |#1|)) (-15 -1640 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1640 (|#1| (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -1640 (|#1| (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -3611 ((-3 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) "failed") (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -2434 ((-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -4157 (|#1| (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -3672 ((-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -3053 ((-713) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -3781 ((-592 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -3053 ((-713) (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -3669 ((-108) (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -2443 ((-108) (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -2540 (|#1| (-1 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -2868 (|#1| (-1 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|))) (-1103 |#2| |#3|) (-1019) (-1019)) (T -1102)) +NIL +(-10 -8 (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -2868 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1450 (|#1| (-592 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))))) (-15 -1450 (|#1|)) (-15 -2868 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2443 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3669 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3053 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -3781 ((-592 |#3|) |#1|)) (-15 -3053 ((-713) |#3| |#1|)) (-15 -1496 (|#3| |#1| |#2| |#3|)) (-15 -1496 (|#3| |#1| |#2|)) (-15 -4100 ((-592 |#3|) |#1|)) (-15 -2030 ((-108) |#2| |#1|)) (-15 -2379 ((-592 |#2|) |#1|)) (-15 -1640 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1640 (|#1| (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -1640 (|#1| (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -3611 ((-3 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) "failed") (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -2434 ((-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -4157 (|#1| (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -3672 ((-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -3053 ((-713) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) |#1|)) (-15 -3781 ((-592 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -3053 ((-713) (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -3669 ((-108) (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -2443 ((-108) (-1 (-108) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -2540 (|#1| (-1 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|)) (-15 -2868 (|#1| (-1 (-2 (|:| -3160 |#2|) (|:| -3978 |#3|)) (-2 (|:| -3160 |#2|) (|:| -3978 |#3|))) |#1|))) +((-4028 (((-108) $ $) 19 (-3215 (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1450 (($) 72) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 71)) (-2792 (((-1177) $ |#1| |#1|) 99 (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) 8)) (-1230 ((|#2| $ |#1| |#2|) 73)) (-2696 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 45 (|has| $ (-6 -4254)))) (-1249 (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 55 (|has| $ (-6 -4254)))) (-2504 (((-3 |#2| "failed") |#1| $) 61)) (-1957 (($) 7 T CONST)) (-1716 (($ $) 58 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-1640 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 46 (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 62)) (-2591 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 54 (|has| $ (-6 -4254)))) (-3336 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 56 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 53 (|has| $ (-6 -4254))) (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 52 (|has| $ (-6 -4254)))) (-2549 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4255)))) (-2488 ((|#2| $ |#1|) 88)) (-3781 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 30 (|has| $ (-6 -4254))) (((-592 |#2|) $) 79 (|has| $ (-6 -4254)))) (-2010 (((-108) $ (-713)) 9)) (-2179 ((|#1| $) 96 (|has| |#1| (-789)))) (-2679 (((-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 29 (|has| $ (-6 -4254))) (((-592 |#2|) $) 80 (|has| $ (-6 -4254)))) (-1883 (((-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-2112 ((|#1| $) 95 (|has| |#1| (-789)))) (-2540 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 34 (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4255)))) (-2868 (($ (-1 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2350 (((-108) $ (-713)) 10)) (-1707 (((-1073) $) 22 (-3215 (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-2183 (((-592 |#1|) $) 63)) (-2781 (((-108) |#1| $) 64)) (-2434 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 39)) (-4157 (($ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 40)) (-2379 (((-592 |#1|) $) 93)) (-2030 (((-108) |#1| $) 92)) (-3027 (((-1037) $) 21 (-3215 (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1683 ((|#2| $) 97 (|has| |#1| (-789)))) (-3611 (((-3 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) "failed") (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 51)) (-1614 (($ $ |#2|) 98 (|has| $ (-6 -4255)))) (-3672 (((-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 41)) (-3669 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 32 (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))))) 26 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 25 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) 24 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 23 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-4100 (((-592 |#2|) $) 91)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3607 (($) 49) (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 48)) (-3053 (((-713) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 31 (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4254)))) (-1261 (($ $) 13)) (-2923 (((-501) $) 59 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))))) (-4059 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 50)) (-4044 (((-797) $) 18 (-3215 (|has| |#2| (-566 (-797))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797)))))) (-1326 (($ (-592 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) 42)) (-2443 (((-108) (-1 (-108) (-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) $) 33 (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (-3215 (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-1103 |#1| |#2|) (-131) (-1019) (-1019)) (T -1103)) +((-1230 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1103 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-1450 (*1 *1) (-12 (-4 *1 (-1103 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3160 *3) (|:| -3978 *4)))) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *1 (-1103 *3 *4)))) (-2868 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1103 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019))))) +(-13 (-563 |t#1| |t#2|) (-558 |t#1| |t#2|) (-10 -8 (-15 -1230 (|t#2| $ |t#1| |t#2|)) (-15 -1450 ($)) (-15 -1450 ($ (-592 (-2 (|:| -3160 |t#1|) (|:| -3978 |t#2|))))) (-15 -2868 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -3160 |#1|) (|:| -3978 |#2|))) . T) ((-97) -3215 (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) ((-566 (-797)) -3215 (|has| |#2| (-1019)) (|has| |#2| (-566 (-797))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-566 (-797)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 #0#) -12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-464 #0#) . T) ((-464 |#2|) . T) ((-558 |#1| |#2|) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-288 (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)))) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-563 |#1| |#2|) . T) ((-1019) -3215 (|has| |#2| (-1019)) (|has| (-2 (|:| -3160 |#1|) (|:| -3978 |#2|)) (-1019))) ((-1126) . T)) +((-3011 (((-108)) 24)) (-4170 (((-1177) (-1073)) 26)) (-2140 (((-108)) 36)) (-4072 (((-1177)) 34)) (-2927 (((-1177) (-1073) (-1073)) 25)) (-3385 (((-108)) 37)) (-4157 (((-1177) |#1| |#2|) 44)) (-3794 (((-1177)) 20)) (-4229 (((-3 |#2| "failed") |#1|) 42)) (-2994 (((-1177)) 35))) +(((-1104 |#1| |#2|) (-10 -7 (-15 -3794 ((-1177))) (-15 -2927 ((-1177) (-1073) (-1073))) (-15 -4170 ((-1177) (-1073))) (-15 -4072 ((-1177))) (-15 -2994 ((-1177))) (-15 -3011 ((-108))) (-15 -2140 ((-108))) (-15 -3385 ((-108))) (-15 -4229 ((-3 |#2| "failed") |#1|)) (-15 -4157 ((-1177) |#1| |#2|))) (-1019) (-1019)) (T -1104)) +((-4157 (*1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-4229 (*1 *2 *3) (|partial| -12 (-4 *2 (-1019)) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1019)))) (-3385 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-2140 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-3011 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-2994 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-4072 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1104 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)))) (-2927 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1104 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)))) (-3794 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019))))) +(-10 -7 (-15 -3794 ((-1177))) (-15 -2927 ((-1177) (-1073) (-1073))) (-15 -4170 ((-1177) (-1073))) (-15 -4072 ((-1177))) (-15 -2994 ((-1177))) (-15 -3011 ((-108))) (-15 -2140 ((-108))) (-15 -3385 ((-108))) (-15 -4229 ((-3 |#2| "failed") |#1|)) (-15 -4157 ((-1177) |#1| |#2|))) +((-1292 (((-1073) (-1073)) 18)) (-2432 (((-51) (-1073)) 21))) +(((-1105) (-10 -7 (-15 -2432 ((-51) (-1073))) (-15 -1292 ((-1073) (-1073))))) (T -1105)) +((-1292 (*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1105)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-1105))))) +(-10 -7 (-15 -2432 ((-51) (-1073))) (-15 -1292 ((-1073) (-1073)))) +((-4044 (((-1107) |#1|) 11))) +(((-1106 |#1|) (-10 -7 (-15 -4044 ((-1107) |#1|))) (-1019)) (T -1106)) +((-4044 (*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1106 *3)) (-4 *3 (-1019))))) +(-10 -7 (-15 -4044 ((-1107) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2253 (((-592 (-1073)) $) 34)) (-2943 (((-592 (-1073)) $ (-592 (-1073))) 37)) (-1384 (((-592 (-1073)) $ (-592 (-1073))) 36)) (-3991 (((-592 (-1073)) $ (-592 (-1073))) 38)) (-3352 (((-592 (-1073)) $) 33)) (-3248 (($) 22)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4019 (((-592 (-1073)) $) 35)) (-3686 (((-1177) $ (-525)) 29) (((-1177) $) 30)) (-2923 (($ (-797) (-525)) 26) (($ (-797) (-525) (-797)) NIL)) (-4044 (((-797) $) 40) (($ (-797)) 24)) (-3899 (((-108) $ $) NIL))) +(((-1107) (-13 (-1019) (-10 -8 (-15 -4044 ($ (-797))) (-15 -2923 ($ (-797) (-525))) (-15 -2923 ($ (-797) (-525) (-797))) (-15 -3686 ((-1177) $ (-525))) (-15 -3686 ((-1177) $)) (-15 -4019 ((-592 (-1073)) $)) (-15 -2253 ((-592 (-1073)) $)) (-15 -3248 ($)) (-15 -3352 ((-592 (-1073)) $)) (-15 -3991 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -2943 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -1384 ((-592 (-1073)) $ (-592 (-1073))))))) (T -1107)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1107)))) (-2923 (*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-1107)))) (-2923 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-1107)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1107)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1107)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-2253 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-3248 (*1 *1) (-5 *1 (-1107))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-3991 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-2943 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-1384 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107))))) +(-13 (-1019) (-10 -8 (-15 -4044 ($ (-797))) (-15 -2923 ($ (-797) (-525))) (-15 -2923 ($ (-797) (-525) (-797))) (-15 -3686 ((-1177) $ (-525))) (-15 -3686 ((-1177) $)) (-15 -4019 ((-592 (-1073)) $)) (-15 -2253 ((-592 (-1073)) $)) (-15 -3248 ($)) (-15 -3352 ((-592 (-1073)) $)) (-15 -3991 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -2943 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -1384 ((-592 (-1073)) $ (-592 (-1073)))))) +((-4028 (((-108) $ $) NIL)) (-2098 (((-1073) $ (-1073)) 17) (((-1073) $) 16)) (-1817 (((-1073) $ (-1073)) 15)) (-3343 (($ $ (-1073)) NIL)) (-3571 (((-3 (-1073) "failed") $) 11)) (-3124 (((-1073) $) 8)) (-2929 (((-3 (-1073) "failed") $) 12)) (-2872 (((-1073) $) 9)) (-3864 (($ (-366)) NIL) (($ (-366) (-1073)) NIL)) (-3515 (((-366) $) NIL)) (-1707 (((-1073) $) NIL)) (-3036 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1993 (((-108) $) 18)) (-4044 (((-797) $) NIL)) (-3069 (($ $) NIL)) (-3899 (((-108) $ $) NIL))) +(((-1108) (-13 (-342 (-366) (-1073)) (-10 -8 (-15 -2098 ((-1073) $ (-1073))) (-15 -2098 ((-1073) $)) (-15 -3124 ((-1073) $)) (-15 -3571 ((-3 (-1073) "failed") $)) (-15 -2929 ((-3 (-1073) "failed") $)) (-15 -1993 ((-108) $))))) (T -1108)) +((-2098 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-3571 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-2929 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1108))))) +(-13 (-342 (-366) (-1073)) (-10 -8 (-15 -2098 ((-1073) $ (-1073))) (-15 -2098 ((-1073) $)) (-15 -3124 ((-1073) $)) (-15 -3571 ((-3 (-1073) "failed") $)) (-15 -2929 ((-3 (-1073) "failed") $)) (-15 -1993 ((-108) $)))) +((-2780 (((-3 (-525) "failed") |#1|) 19)) (-3380 (((-3 (-525) "failed") |#1|) 14)) (-2601 (((-525) (-1073)) 28))) +(((-1109 |#1|) (-10 -7 (-15 -2780 ((-3 (-525) "failed") |#1|)) (-15 -3380 ((-3 (-525) "failed") |#1|)) (-15 -2601 ((-525) (-1073)))) (-976)) (T -1109)) +((-2601 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-525)) (-5 *1 (-1109 *4)) (-4 *4 (-976)))) (-3380 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1109 *3)) (-4 *3 (-976)))) (-2780 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1109 *3)) (-4 *3 (-976))))) +(-10 -7 (-15 -2780 ((-3 (-525) "failed") |#1|)) (-15 -3380 ((-3 (-525) "failed") |#1|)) (-15 -2601 ((-525) (-1073)))) +((-4189 (((-1050 (-205))) 9))) +(((-1110) (-10 -7 (-15 -4189 ((-1050 (-205)))))) (T -1110)) +((-4189 (*1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1110))))) +(-10 -7 (-15 -4189 ((-1050 (-205))))) +((-1961 (($) 11)) (-4004 (($ $) 35)) (-3975 (($ $) 33)) (-3808 (($ $) 25)) (-4035 (($ $) 17)) (-2608 (($ $) 15)) (-4018 (($ $) 19)) (-3848 (($ $) 30)) (-3989 (($ $) 34)) (-3823 (($ $) 29))) +(((-1111 |#1|) (-10 -8 (-15 -1961 (|#1|)) (-15 -4004 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -4035 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3823 (|#1| |#1|))) (-1112)) (T -1111)) +NIL +(-10 -8 (-15 -1961 (|#1|)) (-15 -4004 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -4035 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3823 (|#1| |#1|))) +((-3915 (($ $) 26)) (-3760 (($ $) 11)) (-3886 (($ $) 27)) (-3737 (($ $) 10)) (-3946 (($ $) 28)) (-3783 (($ $) 9)) (-1961 (($) 16)) (-2412 (($ $) 19)) (-2840 (($ $) 18)) (-3960 (($ $) 29)) (-3795 (($ $) 8)) (-3930 (($ $) 30)) (-3771 (($ $) 7)) (-3901 (($ $) 31)) (-3749 (($ $) 6)) (-4004 (($ $) 20)) (-3836 (($ $) 32)) (-3975 (($ $) 21)) (-3808 (($ $) 33)) (-4035 (($ $) 22)) (-3861 (($ $) 34)) (-2608 (($ $) 23)) (-3873 (($ $) 35)) (-4018 (($ $) 24)) (-3848 (($ $) 36)) (-3989 (($ $) 25)) (-3823 (($ $) 37)) (** (($ $ $) 17))) +(((-1112) (-131)) (T -1112)) +((-1961 (*1 *1) (-4 *1 (-1112)))) +(-13 (-1115) (-91) (-466) (-34) (-263) (-10 -8 (-15 -1961 ($)))) +(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-1115) . T)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3067 ((|#1| $) 17)) (-2326 (($ |#1| (-592 $)) 23) (($ (-592 |#1|)) 27) (($ |#1|) 25)) (-2583 (((-108) $ (-713)) 48)) (-2325 ((|#1| $ |#1|) 14 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 13 (|has| $ (-6 -4255)))) (-1957 (($) NIL T CONST)) (-3781 (((-592 |#1|) $) 52 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 43)) (-2983 (((-108) $ $) 33 (|has| |#1| (-1019)))) (-2010 (((-108) $ (-713)) 41)) (-2679 (((-592 |#1|) $) 53 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2540 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 22)) (-2350 (((-108) $ (-713)) 40)) (-2401 (((-592 |#1|) $) 37)) (-3260 (((-108) $) 36)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3669 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 74)) (-3086 (((-108) $) 9)) (-3266 (($) 10)) (-1496 ((|#1| $ "value") NIL)) (-3612 (((-525) $ $) 32)) (-2514 (((-592 $) $) 59)) (-3683 (((-108) $ $) 77)) (-2466 (((-592 $) $) 72)) (-3389 (($ $) 73)) (-3105 (((-108) $) 56)) (-3053 (((-713) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4254))) (((-713) |#1| $) 16 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1261 (($ $) 58)) (-4044 (((-797) $) 61 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) 12)) (-2086 (((-108) $ $) 29 (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 28 (|has| |#1| (-1019)))) (-1696 (((-713) $) 39 (|has| $ (-6 -4254))))) +(((-1113 |#1|) (-13 (-941 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -2326 ($ |#1| (-592 $))) (-15 -2326 ($ (-592 |#1|))) (-15 -2326 ($ |#1|)) (-15 -3105 ((-108) $)) (-15 -3389 ($ $)) (-15 -2466 ((-592 $) $)) (-15 -3683 ((-108) $ $)) (-15 -2514 ((-592 $) $)))) (-1019)) (T -1113)) +((-3105 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))) (-2326 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-1113 *2))) (-5 *1 (-1113 *2)) (-4 *2 (-1019)))) (-2326 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-1113 *3)))) (-2326 (*1 *1 *2) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-1019)))) (-3389 (*1 *1 *1) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-1019)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-592 (-1113 *3))) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))) (-3683 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-592 (-1113 *3))) (-5 *1 (-1113 *3)) (-4 *3 (-1019))))) +(-13 (-941 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -2326 ($ |#1| (-592 $))) (-15 -2326 ($ (-592 |#1|))) (-15 -2326 ($ |#1|)) (-15 -3105 ((-108) $)) (-15 -3389 ($ $)) (-15 -2466 ((-592 $) $)) (-15 -3683 ((-108) $ $)) (-15 -2514 ((-592 $) $)))) +((-3760 (($ $) 15)) (-3783 (($ $) 12)) (-3795 (($ $) 10)) (-3771 (($ $) 17))) +(((-1114 |#1|) (-10 -8 (-15 -3771 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -3760 (|#1| |#1|))) (-1115)) (T -1114)) +NIL +(-10 -8 (-15 -3771 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -3760 (|#1| |#1|))) +((-3760 (($ $) 11)) (-3737 (($ $) 10)) (-3783 (($ $) 9)) (-3795 (($ $) 8)) (-3771 (($ $) 7)) (-3749 (($ $) 6))) +(((-1115) (-131)) (T -1115)) +((-3760 (*1 *1 *1) (-4 *1 (-1115))) (-3737 (*1 *1 *1) (-4 *1 (-1115))) (-3783 (*1 *1 *1) (-4 *1 (-1115))) (-3795 (*1 *1 *1) (-4 *1 (-1115))) (-3771 (*1 *1 *1) (-4 *1 (-1115))) (-3749 (*1 *1 *1) (-4 *1 (-1115)))) +(-13 (-10 -8 (-15 -3749 ($ $)) (-15 -3771 ($ $)) (-15 -3795 ($ $)) (-15 -3783 ($ $)) (-15 -3737 ($ $)) (-15 -3760 ($ $)))) +((-1457 ((|#2| |#2|) 88)) (-1942 (((-108) |#2|) 26)) (-2992 ((|#2| |#2|) 30)) (-3005 ((|#2| |#2|) 32)) (-1780 ((|#2| |#2| (-1090)) 83) ((|#2| |#2|) 84)) (-1564 (((-157 |#2|) |#2|) 28)) (-3397 ((|#2| |#2| (-1090)) 85) ((|#2| |#2|) 86))) +(((-1116 |#1| |#2|) (-10 -7 (-15 -1780 (|#2| |#2|)) (-15 -1780 (|#2| |#2| (-1090))) (-15 -3397 (|#2| |#2|)) (-15 -3397 (|#2| |#2| (-1090))) (-15 -1457 (|#2| |#2|)) (-15 -2992 (|#2| |#2|)) (-15 -3005 (|#2| |#2|)) (-15 -1942 ((-108) |#2|)) (-15 -1564 ((-157 |#2|) |#2|))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -1116)) +((-1564 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-157 *3)) (-5 *1 (-1116 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-1942 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-1116 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-3005 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-2992 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-1457 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-3397 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-3397 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-1780 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-1780 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))))) +(-10 -7 (-15 -1780 (|#2| |#2|)) (-15 -1780 (|#2| |#2| (-1090))) (-15 -3397 (|#2| |#2|)) (-15 -3397 (|#2| |#2| (-1090))) (-15 -1457 (|#2| |#2|)) (-15 -2992 (|#2| |#2|)) (-15 -3005 (|#2| |#2|)) (-15 -1942 ((-108) |#2|)) (-15 -1564 ((-157 |#2|) |#2|))) +((-1525 ((|#4| |#4| |#1|) 27)) (-3523 ((|#4| |#4| |#1|) 28))) +(((-1117 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1525 (|#4| |#4| |#1|)) (-15 -3523 (|#4| |#4| |#1|))) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1117)) +((-3523 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1525 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))) +(-10 -7 (-15 -1525 (|#4| |#4| |#1|)) (-15 -3523 (|#4| |#4| |#1|))) +((-1437 ((|#2| |#2|) 134)) (-2188 ((|#2| |#2|) 131)) (-2515 ((|#2| |#2|) 122)) (-2034 ((|#2| |#2|) 119)) (-3498 ((|#2| |#2|) 127)) (-2349 ((|#2| |#2|) 115)) (-3218 ((|#2| |#2|) 43)) (-3108 ((|#2| |#2|) 95)) (-1351 ((|#2| |#2|) 75)) (-1456 ((|#2| |#2|) 129)) (-3546 ((|#2| |#2|) 117)) (-3422 ((|#2| |#2|) 139)) (-2058 ((|#2| |#2|) 137)) (-3602 ((|#2| |#2|) 138)) (-2518 ((|#2| |#2|) 136)) (-1632 ((|#2| |#2|) 149)) (-2171 ((|#2| |#2|) 30 (-12 (|has| |#2| (-567 (-826 |#1|))) (|has| |#2| (-820 |#1|)) (|has| |#1| (-567 (-826 |#1|))) (|has| |#1| (-820 |#1|))))) (-1256 ((|#2| |#2|) 76)) (-1239 ((|#2| |#2|) 140)) (-1203 ((|#2| |#2|) 141)) (-3317 ((|#2| |#2|) 128)) (-4129 ((|#2| |#2|) 116)) (-2387 ((|#2| |#2|) 135)) (-1378 ((|#2| |#2|) 133)) (-4166 ((|#2| |#2|) 123)) (-3077 ((|#2| |#2|) 121)) (-2710 ((|#2| |#2|) 125)) (-3313 ((|#2| |#2|) 113))) +(((-1118 |#1| |#2|) (-10 -7 (-15 -1203 (|#2| |#2|)) (-15 -1351 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -1256 (|#2| |#2|)) (-15 -1239 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -3317 (|#2| |#2|)) (-15 -3546 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -2515 (|#2| |#2|)) (-15 -1437 (|#2| |#2|)) (-15 -2034 (|#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2058 (|#2| |#2|)) (-15 -3602 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (IF (|has| |#1| (-820 |#1|)) (IF (|has| |#1| (-567 (-826 |#1|))) (IF (|has| |#2| (-567 (-826 |#1|))) (IF (|has| |#2| (-820 |#1|)) (-15 -2171 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-789) (-429)) (-13 (-408 |#1|) (-1112))) (T -1118)) +((-2171 (*1 *2 *2) (-12 (-4 *3 (-567 (-826 *3))) (-4 *3 (-820 *3)) (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-567 (-826 *3))) (-4 *2 (-820 *3)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3422 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3602 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2058 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2034 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1437 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2515 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3546 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3317 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-4129 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2387 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3313 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1239 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1256 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3218 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1351 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1203 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112)))))) +(-10 -7 (-15 -1203 (|#2| |#2|)) (-15 -1351 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -1256 (|#2| |#2|)) (-15 -1239 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -3317 (|#2| |#2|)) (-15 -3546 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -2515 (|#2| |#2|)) (-15 -1437 (|#2| |#2|)) (-15 -2034 (|#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2058 (|#2| |#2|)) (-15 -3602 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (IF (|has| |#1| (-820 |#1|)) (IF (|has| |#1| (-567 (-826 |#1|))) (IF (|has| |#2| (-567 (-826 |#1|))) (IF (|has| |#2| (-820 |#1|)) (-15 -2171 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2576 (((-108) |#5| $) 60) (((-108) $) 102)) (-1792 ((|#5| |#5| $) 75)) (-1249 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3722 (((-592 |#5|) (-592 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-2769 (((-3 $ "failed") (-592 |#5|)) 126)) (-1693 (((-3 $ "failed") $) 112)) (-4092 ((|#5| |#5| $) 94)) (-2175 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-3025 ((|#5| |#5| $) 98)) (-3336 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-2884 (((-2 (|:| -3671 (-592 |#5|)) (|:| -3864 (-592 |#5|))) $) 55)) (-1695 (((-108) |#5| $) 58) (((-108) $) 103)) (-3632 ((|#4| $) 108)) (-2618 (((-3 |#5| "failed") $) 110)) (-2338 (((-592 |#5|) $) 49)) (-2616 (((-108) |#5| $) 67) (((-108) $) 107)) (-1803 ((|#5| |#5| $) 81)) (-1826 (((-108) $ $) 27)) (-1483 (((-108) |#5| $) 63) (((-108) $) 105)) (-2342 ((|#5| |#5| $) 78)) (-1683 (((-3 |#5| "failed") $) 109)) (-1539 (($ $ |#5|) 127)) (-1486 (((-713) $) 52)) (-4059 (($ (-592 |#5|)) 124)) (-2484 (($ $ |#4|) 122)) (-4016 (($ $ |#4|) 121)) (-1287 (($ $) 120)) (-4044 (((-797) $) NIL) (((-592 |#5|) $) 113)) (-2665 (((-713) $) 130)) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-2125 (((-108) $ (-1 (-108) |#5| (-592 |#5|))) 100)) (-2396 (((-592 |#4|) $) 115)) (-2238 (((-108) |#4| $) 118)) (-3899 (((-108) $ $) 19))) +(((-1119 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2665 ((-713) |#1|)) (-15 -1539 (|#1| |#1| |#5|)) (-15 -1249 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2238 ((-108) |#4| |#1|)) (-15 -2396 ((-592 |#4|) |#1|)) (-15 -1693 ((-3 |#1| "failed") |#1|)) (-15 -2618 ((-3 |#5| "failed") |#1|)) (-15 -1683 ((-3 |#5| "failed") |#1|)) (-15 -3025 (|#5| |#5| |#1|)) (-15 -1287 (|#1| |#1|)) (-15 -4092 (|#5| |#5| |#1|)) (-15 -1803 (|#5| |#5| |#1|)) (-15 -2342 (|#5| |#5| |#1|)) (-15 -1792 (|#5| |#5| |#1|)) (-15 -3722 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3336 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2616 ((-108) |#1|)) (-15 -1483 ((-108) |#1|)) (-15 -2576 ((-108) |#1|)) (-15 -2125 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -2616 ((-108) |#5| |#1|)) (-15 -1483 ((-108) |#5| |#1|)) (-15 -2576 ((-108) |#5| |#1|)) (-15 -2175 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -1695 ((-108) |#1|)) (-15 -1695 ((-108) |#5| |#1|)) (-15 -2884 ((-2 (|:| -3671 (-592 |#5|)) (|:| -3864 (-592 |#5|))) |#1|)) (-15 -1486 ((-713) |#1|)) (-15 -2338 ((-592 |#5|) |#1|)) (-15 -2901 ((-3 (-2 (|:| |bas| |#1|) (|:| -3214 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -2901 ((-3 (-2 (|:| |bas| |#1|) (|:| -3214 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -1826 ((-108) |#1| |#1|)) (-15 -2484 (|#1| |#1| |#4|)) (-15 -4016 (|#1| |#1| |#4|)) (-15 -3632 (|#4| |#1|)) (-15 -2769 ((-3 |#1| "failed") (-592 |#5|))) (-15 -4044 ((-592 |#5|) |#1|)) (-15 -4059 (|#1| (-592 |#5|))) (-15 -3336 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3336 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1249 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3336 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) (-1120 |#2| |#3| |#4| |#5|) (-517) (-735) (-789) (-990 |#2| |#3| |#4|)) (T -1119)) +NIL +(-10 -8 (-15 -2665 ((-713) |#1|)) (-15 -1539 (|#1| |#1| |#5|)) (-15 -1249 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2238 ((-108) |#4| |#1|)) (-15 -2396 ((-592 |#4|) |#1|)) (-15 -1693 ((-3 |#1| "failed") |#1|)) (-15 -2618 ((-3 |#5| "failed") |#1|)) (-15 -1683 ((-3 |#5| "failed") |#1|)) (-15 -3025 (|#5| |#5| |#1|)) (-15 -1287 (|#1| |#1|)) (-15 -4092 (|#5| |#5| |#1|)) (-15 -1803 (|#5| |#5| |#1|)) (-15 -2342 (|#5| |#5| |#1|)) (-15 -1792 (|#5| |#5| |#1|)) (-15 -3722 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3336 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2616 ((-108) |#1|)) (-15 -1483 ((-108) |#1|)) (-15 -2576 ((-108) |#1|)) (-15 -2125 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -2616 ((-108) |#5| |#1|)) (-15 -1483 ((-108) |#5| |#1|)) (-15 -2576 ((-108) |#5| |#1|)) (-15 -2175 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -1695 ((-108) |#1|)) (-15 -1695 ((-108) |#5| |#1|)) (-15 -2884 ((-2 (|:| -3671 (-592 |#5|)) (|:| -3864 (-592 |#5|))) |#1|)) (-15 -1486 ((-713) |#1|)) (-15 -2338 ((-592 |#5|) |#1|)) (-15 -2901 ((-3 (-2 (|:| |bas| |#1|) (|:| -3214 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -2901 ((-3 (-2 (|:| |bas| |#1|) (|:| -3214 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -1826 ((-108) |#1| |#1|)) (-15 -2484 (|#1| |#1| |#4|)) (-15 -4016 (|#1| |#1| |#4|)) (-15 -3632 (|#4| |#1|)) (-15 -2769 ((-3 |#1| "failed") (-592 |#5|))) (-15 -4044 ((-592 |#5|) |#1|)) (-15 -4059 (|#1| (-592 |#5|))) (-15 -3336 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3336 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1249 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3336 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4044 ((-797) |#1|)) (-15 -3899 ((-108) |#1| |#1|))) +((-4028 (((-108) $ $) 7)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |#4|)))) (-592 |#4|)) 85)) (-2713 (((-592 $) (-592 |#4|)) 86)) (-3122 (((-592 |#3|) $) 33)) (-4037 (((-108) $) 26)) (-3410 (((-108) $) 17 (|has| |#1| (-517)))) (-2576 (((-108) |#4| $) 101) (((-108) $) 97)) (-1792 ((|#4| |#4| $) 92)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) 27)) (-2583 (((-108) $ (-713)) 44)) (-1249 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1957 (($) 45 T CONST)) (-4164 (((-108) $) 22 (|has| |#1| (-517)))) (-1333 (((-108) $ $) 24 (|has| |#1| (-517)))) (-3508 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3364 (((-108) $) 25 (|has| |#1| (-517)))) (-3722 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2523 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) 36)) (-2068 (($ (-592 |#4|)) 35)) (-1693 (((-3 $ "failed") $) 82)) (-4092 ((|#4| |#4| $) 89)) (-1716 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-2175 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3025 ((|#4| |#4| $) 87)) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2884 (((-2 (|:| -3671 (-592 |#4|)) (|:| -3864 (-592 |#4|))) $) 105)) (-3781 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-1695 (((-108) |#4| $) 104) (((-108) $) 103)) (-3632 ((|#3| $) 34)) (-2010 (((-108) $ (-713)) 43)) (-2679 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) 47)) (-4210 (((-592 |#3|) $) 32)) (-1506 (((-108) |#3| $) 31)) (-2350 (((-108) $ (-713)) 42)) (-1707 (((-1073) $) 9)) (-2618 (((-3 |#4| "failed") $) 83)) (-2338 (((-592 |#4|) $) 107)) (-2616 (((-108) |#4| $) 99) (((-108) $) 95)) (-1803 ((|#4| |#4| $) 90)) (-1826 (((-108) $ $) 110)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-1483 (((-108) |#4| $) 100) (((-108) $) 96)) (-2342 ((|#4| |#4| $) 91)) (-3027 (((-1037) $) 10)) (-1683 (((-3 |#4| "failed") $) 84)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2750 (((-3 $ "failed") $ |#4|) 78)) (-1539 (($ $ |#4|) 77)) (-3669 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) 38)) (-3086 (((-108) $) 41)) (-3266 (($) 40)) (-1486 (((-713) $) 106)) (-3053 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-1261 (($ $) 39)) (-2923 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) 60)) (-2484 (($ $ |#3|) 28)) (-4016 (($ $ |#3|) 30)) (-1287 (($ $) 88)) (-3967 (($ $ |#3|) 29)) (-4044 (((-797) $) 11) (((-592 |#4|) $) 37)) (-2665 (((-713) $) 76 (|has| |#3| (-346)))) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-2125 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-2443 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2396 (((-592 |#3|) $) 81)) (-2238 (((-108) |#3| $) 80)) (-3899 (((-108) $ $) 6)) (-1696 (((-713) $) 46 (|has| $ (-6 -4254))))) +(((-1120 |#1| |#2| |#3| |#4|) (-131) (-517) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -1120)) +((-1826 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-2901 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3214 (-592 *8)))) (-5 *3 (-592 *8)) (-4 *1 (-1120 *5 *6 *7 *8)))) (-2901 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3214 (-592 *9)))) (-5 *3 (-592 *9)) (-4 *1 (-1120 *6 *7 *8 *9)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *6)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-713)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-2 (|:| -3671 (-592 *6)) (|:| -3864 (-592 *6)))))) (-1695 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-2175 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1120 *5 *6 *7 *3)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108)))) (-2576 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-1483 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-2616 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1120 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-3336 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1120 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *2 (-990 *5 *6 *7)))) (-3722 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1120 *5 *6 *7 *8)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)))) (-1792 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-2342 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-1803 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-4092 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-1287 (*1 *1 *1) (-12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-990 *2 *3 *4)))) (-3025 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-1120 *4 *5 *6 *7)))) (-2646 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| -3671 *1) (|:| -3864 (-592 *7))))) (-5 *3 (-592 *7)) (-4 *1 (-1120 *4 *5 *6 *7)))) (-1683 (*1 *2 *1) (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-2618 (*1 *2 *1) (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-1693 (*1 *1 *1) (|partial| -12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-990 *2 *3 *4)))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5)))) (-2238 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-108)))) (-1249 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1120 *4 *5 *3 *2)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *2 (-990 *4 *5 *3)))) (-2750 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-1539 (*1 *1 *1 *2) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *5 (-346)) (-5 *2 (-713))))) +(-13 (-908 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -1826 ((-108) $ $)) (-15 -2901 ((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2901 ((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2338 ((-592 |t#4|) $)) (-15 -1486 ((-713) $)) (-15 -2884 ((-2 (|:| -3671 (-592 |t#4|)) (|:| -3864 (-592 |t#4|))) $)) (-15 -1695 ((-108) |t#4| $)) (-15 -1695 ((-108) $)) (-15 -2175 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -2576 ((-108) |t#4| $)) (-15 -1483 ((-108) |t#4| $)) (-15 -2616 ((-108) |t#4| $)) (-15 -2125 ((-108) $ (-1 (-108) |t#4| (-592 |t#4|)))) (-15 -2576 ((-108) $)) (-15 -1483 ((-108) $)) (-15 -2616 ((-108) $)) (-15 -3336 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3722 ((-592 |t#4|) (-592 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -1792 (|t#4| |t#4| $)) (-15 -2342 (|t#4| |t#4| $)) (-15 -1803 (|t#4| |t#4| $)) (-15 -4092 (|t#4| |t#4| $)) (-15 -1287 ($ $)) (-15 -3025 (|t#4| |t#4| $)) (-15 -2713 ((-592 $) (-592 |t#4|))) (-15 -2646 ((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |t#4|)))) (-592 |t#4|))) (-15 -1683 ((-3 |t#4| "failed") $)) (-15 -2618 ((-3 |t#4| "failed") $)) (-15 -1693 ((-3 $ "failed") $)) (-15 -2396 ((-592 |t#3|) $)) (-15 -2238 ((-108) |t#3| $)) (-15 -1249 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2750 ((-3 $ "failed") $ |t#4|)) (-15 -1539 ($ $ |t#4|)) (IF (|has| |t#3| (-346)) (-15 -2665 ((-713) $)) |%noBranch|))) +(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-908 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1126) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-1090)) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3915 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3886 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3946 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3648 (((-886 |#1|) $ (-713)) 17) (((-886 |#1|) $ (-713) (-713)) NIL)) (-3951 (((-108) $) NIL)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-713) $ (-1090)) NIL) (((-713) $ (-1090) (-713)) NIL)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1432 (((-108) $) NIL)) (-3097 (($ $ (-592 (-1090)) (-592 (-497 (-1090)))) NIL) (($ $ (-1090) (-497 (-1090))) NIL) (($ |#1| (-497 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2412 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-2313 (($ $ (-1090)) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3027 (((-1037) $) NIL)) (-1466 (($ (-1 $) (-1090) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1539 (($ $ (-713)) NIL)) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2840 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2168 (($ $ (-1090) $) NIL) (($ $ (-592 (-1090)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-1576 (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-1486 (((-497 (-1090)) $) NIL)) (-3960 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-1090)) NIL) (($ (-886 |#1|)) NIL)) (-2100 ((|#1| $ (-497 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (((-886 |#1|) $ (-713)) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-4004 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2608 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) NIL T CONST)) (-1990 (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1121 |#1|) (-13 (-683 |#1| (-1090)) (-10 -8 (-15 -2100 ((-886 |#1|) $ (-713))) (-15 -4044 ($ (-1090))) (-15 -4044 ($ (-886 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $ (-1090) |#1|)) (-15 -1466 ($ (-1 $) (-1090) |#1|))) |%noBranch|))) (-976)) (T -1121)) +((-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-886 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-976)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1121 *3)) (-4 *3 (-976)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-5 *1 (-1121 *3)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *1 (-1121 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)))) (-1466 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1090)) (-5 *1 (-1121 *4)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976))))) +(-13 (-683 |#1| (-1090)) (-10 -8 (-15 -2100 ((-886 |#1|) $ (-713))) (-15 -4044 ($ (-1090))) (-15 -4044 ($ (-886 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $ (-1090) |#1|)) (-15 -1466 ($ (-1 $) (-1090) |#1|))) |%noBranch|))) +((-3345 (($ |#1| (-592 (-592 (-877 (-205)))) (-108)) 19)) (-1901 (((-108) $ (-108)) 18)) (-3477 (((-108) $) 17)) (-3777 (((-592 (-592 (-877 (-205)))) $) 13)) (-1358 ((|#1| $) 8)) (-2607 (((-108) $) 15))) +(((-1122 |#1|) (-10 -8 (-15 -1358 (|#1| $)) (-15 -3777 ((-592 (-592 (-877 (-205)))) $)) (-15 -2607 ((-108) $)) (-15 -3477 ((-108) $)) (-15 -1901 ((-108) $ (-108))) (-15 -3345 ($ |#1| (-592 (-592 (-877 (-205)))) (-108)))) (-906)) (T -1122)) +((-3345 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-108)) (-5 *1 (-1122 *2)) (-4 *2 (-906)))) (-1901 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-1122 *3)) (-4 *3 (-906)))) (-1358 (*1 *2 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-906))))) +(-10 -8 (-15 -1358 (|#1| $)) (-15 -3777 ((-592 (-592 (-877 (-205)))) $)) (-15 -2607 ((-108) $)) (-15 -3477 ((-108) $)) (-15 -1901 ((-108) $ (-108))) (-15 -3345 ($ |#1| (-592 (-592 (-877 (-205)))) (-108)))) +((-3510 (((-877 (-205)) (-877 (-205))) 25)) (-4183 (((-877 (-205)) (-205) (-205) (-205) (-205)) 10)) (-3534 (((-592 (-877 (-205))) (-877 (-205)) (-877 (-205)) (-877 (-205)) (-205) (-592 (-592 (-205)))) 37)) (-1580 (((-205) (-877 (-205)) (-877 (-205))) 21)) (-2331 (((-877 (-205)) (-877 (-205)) (-877 (-205))) 22)) (-2287 (((-592 (-592 (-205))) (-525)) 31)) (-4033 (((-877 (-205)) (-877 (-205)) (-877 (-205))) 20)) (-4017 (((-877 (-205)) (-877 (-205)) (-877 (-205))) 19)) (* (((-877 (-205)) (-205) (-877 (-205))) 18))) +(((-1123) (-10 -7 (-15 -4183 ((-877 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-877 (-205)) (-205) (-877 (-205)))) (-15 -4017 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -4033 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -1580 ((-205) (-877 (-205)) (-877 (-205)))) (-15 -2331 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -3510 ((-877 (-205)) (-877 (-205)))) (-15 -2287 ((-592 (-592 (-205))) (-525))) (-15 -3534 ((-592 (-877 (-205))) (-877 (-205)) (-877 (-205)) (-877 (-205)) (-205) (-592 (-592 (-205))))))) (T -1123)) +((-3534 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 (-877 *4))) (-5 *1 (-1123)) (-5 *3 (-877 *4)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1123)))) (-3510 (*1 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) (-2331 (*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) (-1580 (*1 *2 *3 *3) (-12 (-5 *3 (-877 (-205))) (-5 *2 (-205)) (-5 *1 (-1123)))) (-4033 (*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) (-4017 (*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-877 (-205))) (-5 *3 (-205)) (-5 *1 (-1123)))) (-4183 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)) (-5 *3 (-205))))) +(-10 -7 (-15 -4183 ((-877 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-877 (-205)) (-205) (-877 (-205)))) (-15 -4017 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -4033 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -1580 ((-205) (-877 (-205)) (-877 (-205)))) (-15 -2331 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -3510 ((-877 (-205)) (-877 (-205)))) (-15 -2287 ((-592 (-592 (-205))) (-525))) (-15 -3534 ((-592 (-877 (-205))) (-877 (-205)) (-877 (-205)) (-877 (-205)) (-205) (-592 (-592 (-205)))))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1249 ((|#1| $ (-713)) 13)) (-2520 (((-713) $) 12)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-4044 (((-891 |#1|) $) 10) (($ (-891 |#1|)) 9) (((-797) $) 23 (|has| |#1| (-566 (-797))))) (-3899 (((-108) $ $) 16 (|has| |#1| (-1019))))) +(((-1124 |#1|) (-13 (-566 (-891 |#1|)) (-10 -8 (-15 -4044 ($ (-891 |#1|))) (-15 -1249 (|#1| $ (-713))) (-15 -2520 ((-713) $)) (IF (|has| |#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|))) (-1126)) (T -1124)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-891 *3)) (-4 *3 (-1126)) (-5 *1 (-1124 *3)))) (-1249 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-1124 *2)) (-4 *2 (-1126)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1124 *3)) (-4 *3 (-1126))))) +(-13 (-566 (-891 |#1|)) (-10 -8 (-15 -4044 ($ (-891 |#1|))) (-15 -1249 (|#1| $ (-713))) (-15 -2520 ((-713) $)) (IF (|has| |#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|))) +((-3106 (((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-525)) 80)) (-2889 (((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 74)) (-2879 (((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 59))) +(((-1125 |#1|) (-10 -7 (-15 -2889 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -2879 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3106 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-525)))) (-327)) (T -1125)) +((-3106 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1086 (-1086 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-1086 (-1086 *5))))) (-2879 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1086 (-1086 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-1086 (-1086 *4))))) (-2889 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1086 (-1086 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-1086 (-1086 *4)))))) +(-10 -7 (-15 -2889 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -2879 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3106 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-525)))) +NIL +(((-1126) (-131)) (T -1126)) +NIL +(-13 (-10 -7 (-6 -2341))) +((-1586 (((-108)) 15)) (-2921 (((-1177) (-592 |#1|) (-592 |#1|)) 19) (((-1177) (-592 |#1|)) 20)) (-2010 (((-108) |#1| |#1|) 32 (|has| |#1| (-789)))) (-2350 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-3584 ((|#1| (-592 |#1|)) 33 (|has| |#1| (-789))) ((|#1| (-592 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-1467 (((-2 (|:| -4171 (-592 |#1|)) (|:| -3480 (-592 |#1|)))) 17))) +(((-1127 |#1|) (-10 -7 (-15 -2921 ((-1177) (-592 |#1|))) (-15 -2921 ((-1177) (-592 |#1|) (-592 |#1|))) (-15 -1467 ((-2 (|:| -4171 (-592 |#1|)) (|:| -3480 (-592 |#1|))))) (-15 -2350 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2350 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3584 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1586 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -3584 (|#1| (-592 |#1|))) (-15 -2010 ((-108) |#1| |#1|))) |%noBranch|)) (-1019)) (T -1127)) +((-2010 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-789)) (-4 *3 (-1019)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-789)) (-5 *1 (-1127 *2)))) (-1586 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-1019)))) (-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1127 *2)) (-4 *2 (-1019)))) (-2350 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1019)) (-5 *2 (-108)) (-5 *1 (-1127 *3)))) (-2350 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-1019)))) (-1467 (*1 *2) (-12 (-5 *2 (-2 (|:| -4171 (-592 *3)) (|:| -3480 (-592 *3)))) (-5 *1 (-1127 *3)) (-4 *3 (-1019)))) (-2921 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-5 *2 (-1177)) (-5 *1 (-1127 *4)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-5 *2 (-1177)) (-5 *1 (-1127 *4))))) +(-10 -7 (-15 -2921 ((-1177) (-592 |#1|))) (-15 -2921 ((-1177) (-592 |#1|) (-592 |#1|))) (-15 -1467 ((-2 (|:| -4171 (-592 |#1|)) (|:| -3480 (-592 |#1|))))) (-15 -2350 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2350 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3584 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1586 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -3584 (|#1| (-592 |#1|))) (-15 -2010 ((-108) |#1| |#1|))) |%noBranch|)) +((-2074 (((-1177) (-592 (-1090)) (-592 (-1090))) 13) (((-1177) (-592 (-1090))) 11)) (-2912 (((-1177)) 14)) (-1989 (((-2 (|:| -3480 (-592 (-1090))) (|:| -4171 (-592 (-1090))))) 18))) +(((-1128) (-10 -7 (-15 -2074 ((-1177) (-592 (-1090)))) (-15 -2074 ((-1177) (-592 (-1090)) (-592 (-1090)))) (-15 -1989 ((-2 (|:| -3480 (-592 (-1090))) (|:| -4171 (-592 (-1090)))))) (-15 -2912 ((-1177))))) (T -1128)) +((-2912 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1128)))) (-1989 (*1 *2) (-12 (-5 *2 (-2 (|:| -3480 (-592 (-1090))) (|:| -4171 (-592 (-1090))))) (-5 *1 (-1128)))) (-2074 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1128)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1128))))) +(-10 -7 (-15 -2074 ((-1177) (-592 (-1090)))) (-15 -2074 ((-1177) (-592 (-1090)) (-592 (-1090)))) (-15 -1989 ((-2 (|:| -3480 (-592 (-1090))) (|:| -4171 (-592 (-1090)))))) (-15 -2912 ((-1177)))) +((-2701 (($ $) 17)) (-2069 (((-108) $) 24))) +(((-1129 |#1|) (-10 -8 (-15 -2701 (|#1| |#1|)) (-15 -2069 ((-108) |#1|))) (-1130)) (T -1129)) +NIL +(-10 -8 (-15 -2701 (|#1| |#1|)) (-15 -2069 ((-108) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 51)) (-1259 (((-396 $) $) 52)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2069 (((-108) $) 53)) (-2507 (((-108) $) 31)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2961 (((-396 $) $) 50)) (-2675 (((-3 $ "failed") $ $) 42)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24))) +(((-1130) (-131)) (T -1130)) +((-2069 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-108)))) (-1259 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1130)))) (-2701 (*1 *1 *1) (-4 *1 (-1130))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1130))))) +(-13 (-429) (-10 -8 (-15 -2069 ((-108) $)) (-15 -1259 ((-396 $) $)) (-15 -2701 ($ $)) (-15 -2961 ((-396 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2868 (((-1136 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1136 |#1| |#3| |#5|)) 23))) +(((-1131 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2868 ((-1136 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1136 |#1| |#3| |#5|)))) (-976) (-976) (-1090) (-1090) |#1| |#2|) (T -1131)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5 *7 *9)) (-4 *5 (-976)) (-4 *6 (-976)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1136 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090))))) +(-10 -7 (-15 -2868 ((-1136 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1136 |#1| |#3| |#5|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3122 (((-592 (-1004)) $) 74)) (-2818 (((-1090) $) 103)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2609 (($ $) 52 (|has| |#1| (-517)))) (-1220 (((-108) $) 54 (|has| |#1| (-517)))) (-3948 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-3423 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-3915 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 162 (|has| |#1| (-341)))) (-1259 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2975 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1700 (((-108) $ $) 153 (|has| |#1| (-341)))) (-3886 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-3946 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) 17 T CONST)) (-2720 (($ $ $) 157 (|has| |#1| (-341)))) (-3306 (($ $) 60)) (-1645 (((-3 $ "failed") $) 34)) (-2730 (((-385 (-886 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-2699 (($ $ $) 156 (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-2069 (((-108) $) 164 (|has| |#1| (-341)))) (-3951 (((-108) $) 73)) (-1961 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-525) $) 100) (((-525) $ (-525)) 99)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) 101)) (-2277 (($ (-1 |#1| (-525)) $) 173)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1432 (((-108) $) 62)) (-3097 (($ |#1| (-525)) 61) (($ $ (-1004) (-525)) 76) (($ $ (-592 (-1004)) (-592 (-525))) 75)) (-2868 (($ (-1 |#1| |#1|) $) 63)) (-2412 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) 65)) (-3286 ((|#1| $) 66)) (-2226 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-1707 (((-1073) $) 9)) (-3243 (($ $) 165 (|has| |#1| (-341)))) (-2313 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 169 (-3215 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 150 (|has| |#1| (-341)))) (-2262 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2961 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 158 (|has| |#1| (-341)))) (-1539 (($ $ (-525)) 95)) (-2675 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-2840 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-2824 (((-713) $) 154 (|has| |#1| (-341)))) (-1496 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1031)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 155 (|has| |#1| (-341)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-1486 (((-525) $) 64)) (-3960 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) 72)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-2100 ((|#1| $ (-525)) 59)) (-1279 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-3448 ((|#1| $) 102)) (-4004 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3975 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) +(((-1132 |#1|) (-131) (-976)) (T -1132)) +((-4231 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-976)) (-4 *1 (-1132 *3)))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1132 *3)) (-4 *3 (-976)))) (-2730 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1132 *4)) (-4 *4 (-976)) (-4 *4 (-517)) (-5 *2 (-385 (-886 *4))))) (-2730 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1132 *4)) (-4 *4 (-976)) (-4 *4 (-517)) (-5 *2 (-385 (-886 *4))))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) (-2313 (*1 *1 *1 *2) (-3215 (-12 (-5 *2 (-1090)) (-4 *1 (-1132 *3)) (-4 *3 (-976)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1132 *3)) (-4 *3 (-976)) (-12 (|has| *3 (-15 -3122 ((-592 *2) *3))) (|has| *3 (-15 -2313 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))) +(-13 (-1150 |t#1| (-525)) (-10 -8 (-15 -4231 ($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |t#1|))))) (-15 -2277 ($ (-1 |t#1| (-525)) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -2730 ((-385 (-886 |t#1|)) $ (-525))) (-15 -2730 ((-385 (-886 |t#1|)) $ (-525) (-525)))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $)) (IF (|has| |t#1| (-15 -2313 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3122 ((-592 (-1090)) |t#1|))) (-15 -2313 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1112)) (IF (|has| |t#1| (-892)) (IF (|has| |t#1| (-29 (-525))) (-15 -2313 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-933)) (-6 (-1112))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-525) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-525) (-1031)) ((-269) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| #0# (-1004)) . T) ((-854) |has| |#1| (-341)) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-982 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1130) |has| |#1| (-341)) ((-1150 |#1| #0#) . T)) +((-2464 (((-108) $) 12)) (-2769 (((-3 |#3| "failed") $) 17) (((-3 (-1090) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL)) (-2068 ((|#3| $) 14) (((-1090) $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL))) +(((-1133 |#1| |#2| |#3|) (-10 -8 (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-1090) |#1|)) (-15 -2769 ((-3 (-1090) "failed") |#1|)) (-15 -2068 (|#3| |#1|)) (-15 -2769 ((-3 |#3| "failed") |#1|)) (-15 -2464 ((-108) |#1|))) (-1134 |#2| |#3|) (-976) (-1163 |#2|)) (T -1133)) +NIL +(-10 -8 (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2068 ((-1090) |#1|)) (-15 -2769 ((-3 (-1090) "failed") |#1|)) (-15 -2068 (|#3| |#1|)) (-15 -2769 ((-3 |#3| "failed") |#1|)) (-15 -2464 ((-108) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-4094 ((|#2| $) 231 (-2385 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-3122 (((-592 (-1004)) $) 74)) (-2818 (((-1090) $) 103)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2609 (($ $) 52 (|has| |#1| (-517)))) (-1220 (((-108) $) 54 (|has| |#1| (-517)))) (-3948 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-3423 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-3742 ((|#2| $) 267)) (-1801 (((-3 |#2| "failed") $) 263)) (-3181 ((|#2| $) 264)) (-3915 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) 19)) (-1426 (((-396 (-1086 $)) (-1086 $)) 240 (-2385 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-2701 (($ $) 162 (|has| |#1| (-341)))) (-1259 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2975 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 237 (-2385 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-1700 (((-108) $ $) 153 (|has| |#1| (-341)))) (-3886 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (((-525) $) 249 (-2385 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-4231 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-3946 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#2| "failed") $) 270) (((-3 (-525) "failed") $) 259 (-2385 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) 257 (-2385 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-1090) "failed") $) 242 (-2385 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341))))) (-2068 ((|#2| $) 269) (((-525) $) 260 (-2385 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) 258 (-2385 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-1090) $) 243 (-2385 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341))))) (-1373 (($ $) 266) (($ (-525) $) 265)) (-2720 (($ $ $) 157 (|has| |#1| (-341)))) (-3306 (($ $) 60)) (-1307 (((-632 |#2|) (-632 $)) 221 (|has| |#1| (-341))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 220 (|has| |#1| (-341))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 219 (-2385 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) 218 (-2385 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-1645 (((-3 $ "failed") $) 34)) (-2730 (((-385 (-886 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-1527 (($) 233 (-2385 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-2699 (($ $ $) 156 (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-2069 (((-108) $) 164 (|has| |#1| (-341)))) (-2973 (((-108) $) 247 (-2385 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3951 (((-108) $) 73)) (-1961 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 225 (-2385 (|has| |#2| (-820 (-357))) (|has| |#1| (-341)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 224 (-2385 (|has| |#2| (-820 (-525))) (|has| |#1| (-341))))) (-2158 (((-525) $) 100) (((-525) $ (-525)) 99)) (-2507 (((-108) $) 31)) (-4055 (($ $) 229 (|has| |#1| (-341)))) (-1936 ((|#2| $) 227 (|has| |#1| (-341)))) (-2581 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1978 (((-3 $ "failed") $) 261 (-2385 (|has| |#2| (-1066)) (|has| |#1| (-341))))) (-3721 (((-108) $) 248 (-2385 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2633 (($ $ (-855)) 101)) (-2277 (($ (-1 |#1| (-525)) $) 173)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1432 (((-108) $) 62)) (-3097 (($ |#1| (-525)) 61) (($ $ (-1004) (-525)) 76) (($ $ (-592 (-1004)) (-592 (-525))) 75)) (-1260 (($ $ $) 251 (-2385 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2154 (($ $ $) 252 (-2385 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2868 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-341)))) (-2412 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) 65)) (-3286 ((|#1| $) 66)) (-2226 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-3199 (($ (-525) |#2|) 268)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 165 (|has| |#1| (-341)))) (-2313 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 169 (-3215 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2039 (($) 262 (-2385 (|has| |#2| (-1066)) (|has| |#1| (-341))) CONST)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 150 (|has| |#1| (-341)))) (-2262 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-1341 (($ $) 232 (-2385 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2473 ((|#2| $) 235 (-2385 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3725 (((-396 (-1086 $)) (-1086 $)) 238 (-2385 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-1944 (((-396 (-1086 $)) (-1086 $)) 239 (-2385 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-2961 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 158 (|has| |#1| (-341)))) (-1539 (($ $ (-525)) 95)) (-2675 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-2840 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1090) |#2|) 212 (-2385 (|has| |#2| (-486 (-1090) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 |#2|)) 211 (-2385 (|has| |#2| (-486 (-1090) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) 210 (-2385 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) 209 (-2385 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) 208 (-2385 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) 207 (-2385 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-2824 (((-713) $) 154 (|has| |#1| (-341)))) (-1496 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1031))) (($ $ |#2|) 206 (-2385 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 155 (|has| |#1| (-341)))) (-1576 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 216 (|has| |#1| (-341))) (($ $ (-713)) 84 (-3215 (-2385 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 82 (-3215 (-2385 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) 89 (-3215 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1090) (-713)) 88 (-3215 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1090))) 87 (-3215 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1090)) 86 (-3215 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-1987 (($ $) 230 (|has| |#1| (-341)))) (-1945 ((|#2| $) 228 (|has| |#1| (-341)))) (-1486 (((-525) $) 64)) (-3960 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2923 (((-205) $) 246 (-2385 (|has| |#2| (-952)) (|has| |#1| (-341)))) (((-357) $) 245 (-2385 (|has| |#2| (-952)) (|has| |#1| (-341)))) (((-501) $) 244 (-2385 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-826 (-357)) $) 223 (-2385 (|has| |#2| (-567 (-826 (-357)))) (|has| |#1| (-341)))) (((-826 (-525)) $) 222 (-2385 (|has| |#2| (-567 (-826 (-525)))) (|has| |#1| (-341))))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 236 (-2385 (-2385 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#1| (-341))))) (-2789 (($ $) 72)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 271) (($ (-1090)) 241 (-2385 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341)))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-2100 ((|#1| $ (-525)) 59)) (-1279 (((-3 $ "failed") $) 48 (-3215 (-2385 (-3215 (|has| |#2| (-136)) (-2385 (|has| $ (-136)) (|has| |#2| (-843)))) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2502 (((-713)) 29)) (-3448 ((|#1| $) 102)) (-1448 ((|#2| $) 234 (-2385 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-4004 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3975 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-2053 (($ $) 250 (-2385 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 214 (|has| |#1| (-341))) (($ $ (-713)) 85 (-3215 (-2385 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 83 (-3215 (-2385 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) 93 (-3215 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1090) (-713)) 92 (-3215 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1090))) 91 (-3215 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1090)) 90 (-3215 (-2385 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-3973 (((-108) $ $) 254 (-2385 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3944 (((-108) $ $) 255 (-2385 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 253 (-2385 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3928 (((-108) $ $) 256 (-2385 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4047 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341))) (($ |#2| |#2|) 226 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-341))) (($ |#2| $) 204 (|has| |#1| (-341))) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) +(((-1134 |#1| |#2|) (-131) (-976) (-1163 |t#1|)) (T -1134)) +((-1486 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1163 *3)) (-5 *2 (-525)))) (-4044 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *1 (-1134 *3 *2)) (-4 *2 (-1163 *3)))) (-3199 (*1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *4 (-976)) (-4 *1 (-1134 *4 *3)) (-4 *3 (-1163 *4)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3)))) (-1373 (*1 *1 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1163 *2)))) (-1373 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1163 *3)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3)))) (-1801 (*1 *2 *1) (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3))))) +(-13 (-1132 |t#1|) (-967 |t#2|) (-10 -8 (-15 -3199 ($ (-525) |t#2|)) (-15 -1486 ((-525) $)) (-15 -3742 (|t#2| $)) (-15 -1373 ($ $)) (-15 -1373 ($ (-525) $)) (-15 -4044 ($ |t#2|)) (-15 -3181 (|t#2| $)) (-15 -1801 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-341)) (-6 (-924 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 |#2|) |has| |#1| (-341)) ((-37 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-341)) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) -3215 (-12 (|has| |#1| (-341)) (|has| |#2| (-136))) (|has| |#1| (-136))) ((-138) -3215 (-12 (|has| |#1| (-341)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) ((-567 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) ((-567 (-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-826 (-525))))) ((-211 |#2|) |has| |#1| (-341)) ((-213) -3215 (-12 (|has| |#1| (-341)) (|has| |#2| (-213))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 |#2| $) -12 (|has| |#1| (-341)) (|has| |#2| (-265 |#2| |#2|))) ((-265 $ $) |has| (-525) (-1031)) ((-269) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-341) |has| |#1| (-341)) ((-316 |#2|) |has| |#1| (-341)) ((-355 |#2|) |has| |#1| (-341)) ((-378 |#2|) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 (-1090) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1090) |#2|))) ((-486 |#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-517) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 |#2|) |has| |#1| (-341)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-588 (-525)))) ((-588 |#2|) |has| |#1| (-341)) ((-660 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 |#2|) |has| |#1| (-341)) ((-660 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-733) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-734) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-736) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-737) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-762) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-787) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-789) -3215 (-12 (|has| |#1| (-341)) (|has| |#2| (-789))) (-12 (|has| |#1| (-341)) (|has| |#2| (-762)))) ((-834 (-1090)) -3215 (-12 (|has| |#1| (-341)) (|has| |#2| (-834 (-1090)))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) ((-820 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-820 (-357)))) ((-820 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-820 (-525)))) ((-818 |#2|) |has| |#1| (-341)) ((-843) -12 (|has| |#1| (-341)) (|has| |#2| (-843))) ((-905 |#1| #0# (-1004)) . T) ((-854) |has| |#1| (-341)) ((-924 |#2|) |has| |#1| (-341)) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-952) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) ((-967 (-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-525)))) ((-967 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-525)))) ((-967 (-1090)) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-1090)))) ((-967 |#2|) . T) ((-982 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-982 |#1|) . T) ((-982 |#2|) |has| |#1| (-341)) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) -12 (|has| |#1| (-341)) (|has| |#2| (-1066))) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1126) |has| |#1| (-341)) ((-1130) |has| |#1| (-341)) ((-1132 |#1|) . T) ((-1150 |#1| #0#) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 70)) (-4094 ((|#2| $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) 88)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3948 (($ $ (-525)) 97) (($ $ (-525) (-525)) 99)) (-3423 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 47)) (-3742 ((|#2| $) 11)) (-1801 (((-3 |#2| "failed") $) 30)) (-3181 ((|#2| $) 31)) (-3915 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-2701 (($ $) NIL (|has| |#1| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3886 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-2780 (((-525) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-4231 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 57)) (-3946 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) 144) (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-1090) "failed") $) NIL (-12 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341))))) (-2068 ((|#2| $) 143) (((-525) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-1090) $) NIL (-12 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341))))) (-1373 (($ $) 61) (($ (-525) $) 24)) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) NIL)) (-1307 (((-632 |#2|) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-1645 (((-3 $ "failed") $) 77)) (-2730 (((-385 (-886 |#1|)) $ (-525)) 112 (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) 114 (|has| |#1| (-517)))) (-1527 (($) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2069 (((-108) $) NIL (|has| |#1| (-341)))) (-2973 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3951 (((-108) $) 64)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| |#2| (-820 (-357))) (|has| |#1| (-341)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| |#2| (-820 (-525))) (|has| |#1| (-341))))) (-2158 (((-525) $) 93) (((-525) $ (-525)) 95)) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL (|has| |#1| (-341)))) (-1936 ((|#2| $) 151 (|has| |#1| (-341)))) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1978 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1066)) (|has| |#1| (-341))))) (-3721 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2633 (($ $ (-855)) 136)) (-2277 (($ (-1 |#1| (-525)) $) 132)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-525)) 19) (($ $ (-1004) (-525)) NIL) (($ $ (-592 (-1004)) (-592 (-525))) NIL)) (-1260 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2154 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2868 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-341)))) (-2412 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3199 (($ (-525) |#2|) 10)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 145 (|has| |#1| (-341)))) (-2313 (($ $) 214 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 219 (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112)))))) (-2039 (($) NIL (-12 (|has| |#2| (-1066)) (|has| |#1| (-341))) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1341 (($ $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2473 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-2961 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1539 (($ $ (-525)) 126)) (-2675 (((-3 $ "failed") $ $) 116 (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2840 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1090) |#2|) NIL (-12 (|has| |#2| (-486 (-1090) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 |#2|)) NIL (-12 (|has| |#2| (-486 (-1090) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ (-525)) 91) (($ $ $) 79 (|has| (-525) (-1031))) (($ $ |#2|) NIL (-12 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-1576 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3215 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 137 (-3215 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3215 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3215 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3215 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) 140 (-3215 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-1987 (($ $) NIL (|has| |#1| (-341)))) (-1945 ((|#2| $) 152 (|has| |#1| (-341)))) (-1486 (((-525) $) 12)) (-3960 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-2923 (((-205) $) NIL (-12 (|has| |#2| (-952)) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| |#2| (-952)) (|has| |#1| (-341)))) (((-501) $) NIL (-12 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-826 (-357)) $) NIL (-12 (|has| |#2| (-567 (-826 (-357)))) (|has| |#1| (-341)))) (((-826 (-525)) $) NIL (-12 (|has| |#2| (-567 (-826 (-525)))) (|has| |#1| (-341))))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843)) (|has| |#1| (-341))))) (-2789 (($ $) 124)) (-4044 (((-797) $) 245) (($ (-525)) 23) (($ |#1|) 21 (|has| |#1| (-160))) (($ |#2|) 20) (($ (-1090)) NIL (-12 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341)))) (($ (-385 (-525))) 155 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-2100 ((|#1| $ (-525)) 74)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#2| (-843)) (|has| |#1| (-341))) (-12 (|has| |#2| (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2502 (((-713)) 142)) (-3448 ((|#1| $) 90)) (-1448 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-4004 (($ $) 204 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) 200 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 208 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-525)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) 210 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 206 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 202 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-2053 (($ $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) 13 T CONST)) (-1449 (($) 17 T CONST)) (-1990 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3215 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3215 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3215 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3215 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3215 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-3973 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3944 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3899 (((-108) $ $) 63)) (-3959 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3928 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 149 (|has| |#1| (-341))) (($ |#2| |#2|) 150 (|has| |#1| (-341)))) (-4033 (($ $) 213) (($ $ $) 68)) (-4017 (($ $ $) 66)) (** (($ $ (-855)) NIL) (($ $ (-713)) 73) (($ $ (-525)) 146 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-341))) (($ |#2| $) 147 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-1135 |#1| |#2|) (-1134 |#1| |#2|) (-976) (-1163 |#1|)) (T -1135)) +NIL +(-1134 |#1| |#2|) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-4094 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) 10)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2609 (($ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1220 (((-108) $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3948 (($ $ (-525)) NIL) (($ $ (-525) (-525)) NIL)) (-3423 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-3742 (((-1164 |#1| |#2| |#3|) $) NIL)) (-1801 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) NIL)) (-3181 (((-1164 |#1| |#2| |#3|) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-2701 (($ $) NIL (|has| |#1| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3886 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2780 (((-525) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-4231 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-3946 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))))) (-2068 (((-1164 |#1| |#2| |#3|) $) NIL) (((-1090) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))))) (-1373 (($ $) NIL) (($ (-525) $) NIL)) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) NIL)) (-1307 (((-632 (-1164 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3471 (-632 (-1164 |#1| |#2| |#3|))) (|:| |vec| (-1172 (-1164 |#1| |#2| |#3|)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-1645 (((-3 $ "failed") $) NIL)) (-2730 (((-385 (-886 |#1|)) $ (-525)) NIL (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) NIL (|has| |#1| (-517)))) (-1527 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2069 (((-108) $) NIL (|has| |#1| (-341)))) (-2973 (((-108) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3951 (((-108) $) NIL)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2029 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-820 (-525))) (|has| |#1| (-341)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-820 (-357))) (|has| |#1| (-341))))) (-2158 (((-525) $) NIL) (((-525) $ (-525)) NIL)) (-2507 (((-108) $) NIL)) (-4055 (($ $) NIL (|has| |#1| (-341)))) (-1936 (((-1164 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1978 (((-3 $ "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-341))))) (-3721 (((-108) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2633 (($ $ (-855)) NIL)) (-2277 (($ (-1 |#1| (-525)) $) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-525)) 17) (($ $ (-1004) (-525)) NIL) (($ $ (-592 (-1004)) (-592 (-525))) NIL)) (-1260 (($ $ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2154 (($ $ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-2412 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3199 (($ (-525) (-1164 |#1| |#2| |#3|)) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-2313 (($ $) 25 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 26 (|has| |#1| (-37 (-385 (-525)))))) (-2039 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-341))) CONST)) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-1341 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2473 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-2961 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1539 (($ $ (-525)) NIL)) (-2675 (((-3 $ "failed") $ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2840 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1090) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-486 (-1090) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-486 (-1090) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1164 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1164 |#1| |#2| |#3|)) (-592 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ (-525)) NIL) (($ $ $) NIL (|has| (-525) (-1031))) (($ $ (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-265 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-1576 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1168 |#2|)) 24) (($ $ (-713)) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 23 (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-1987 (($ $) NIL (|has| |#1| (-341)))) (-1945 (((-1164 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-1486 (((-525) $) NIL)) (-3960 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2923 (((-501) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-952)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-952)) (|has| |#1| (-341)))) (((-826 (-357)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-567 (-826 (-357)))) (|has| |#1| (-341)))) (((-826 (-525)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-567 (-826 (-525)))) (|has| |#1| (-341))))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-2789 (($ $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1164 |#1| |#2| |#3|)) NIL) (($ (-1168 |#2|)) 22) (($ (-1090)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (($ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-2100 ((|#1| $ (-525)) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2502 (((-713)) NIL)) (-3448 ((|#1| $) 11)) (-1448 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-4004 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2053 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) 19 T CONST)) (-1449 (($) 15 T CONST)) (-1990 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-3973 (((-108) $ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3944 (((-108) $ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3928 (((-108) $ $) NIL (-3215 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341))) (($ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 20)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1164 |#1| |#2| |#3|)) NIL (|has| |#1| (-341))) (($ (-1164 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-1136 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1136)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))) +(-13 (-1134 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) +((-3952 (((-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))) |#1| (-108)) 12)) (-3167 (((-396 |#1|) |#1|) 22)) (-2961 (((-396 |#1|) |#1|) 21))) +(((-1137 |#1|) (-10 -7 (-15 -2961 ((-396 |#1|) |#1|)) (-15 -3167 ((-396 |#1|) |#1|)) (-15 -3952 ((-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))) |#1| (-108)))) (-1148 (-525))) (T -1137)) +((-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| *3) (|:| -3862 (-525))))))) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525))))) (-3167 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525))))) (-2961 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525)))))) +(-10 -7 (-15 -2961 ((-396 |#1|) |#1|)) (-15 -3167 ((-396 |#1|) |#1|)) (-15 -3952 ((-2 (|:| |contp| (-525)) (|:| -2826 (-592 (-2 (|:| |irr| |#1|) (|:| -3862 (-525)))))) |#1| (-108)))) +((-2868 (((-1071 |#2|) (-1 |#2| |#1|) (-1139 |#1|)) 23 (|has| |#1| (-787))) (((-1139 |#2|) (-1 |#2| |#1|) (-1139 |#1|)) 17))) +(((-1138 |#1| |#2|) (-10 -7 (-15 -2868 ((-1139 |#2|) (-1 |#2| |#1|) (-1139 |#1|))) (IF (|has| |#1| (-787)) (-15 -2868 ((-1071 |#2|) (-1 |#2| |#1|) (-1139 |#1|))) |%noBranch|)) (-1126) (-1126)) (T -1138)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-787)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1071 *6)) (-5 *1 (-1138 *5 *6)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1139 *6)) (-5 *1 (-1138 *5 *6))))) +(-10 -7 (-15 -2868 ((-1139 |#2|) (-1 |#2| |#1|) (-1139 |#1|))) (IF (|has| |#1| (-787)) (-15 -2868 ((-1071 |#2|) (-1 |#2| |#1|) (-1139 |#1|))) |%noBranch|)) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3212 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2868 (((-1071 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-787)))) (-4171 ((|#1| $) 14)) (-3335 ((|#1| $) 10)) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-4001 (((-525) $) 18)) (-3480 ((|#1| $) 17)) (-4015 ((|#1| $) 11)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3155 (((-108) $) 16)) (-1203 (((-1071 |#1|) $) 38 (|has| |#1| (-787))) (((-1071 |#1|) (-592 $)) 37 (|has| |#1| (-787)))) (-2923 (($ |#1|) 25)) (-4044 (($ (-1014 |#1|)) 24) (((-797) $) 34 (|has| |#1| (-1019)))) (-2956 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3666 (($ $ (-525)) 13)) (-3899 (((-108) $ $) 27 (|has| |#1| (-1019))))) +(((-1139 |#1|) (-13 (-1013 |#1|) (-10 -8 (-15 -2956 ($ |#1|)) (-15 -3212 ($ |#1|)) (-15 -4044 ($ (-1014 |#1|))) (-15 -3155 ((-108) $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1015 |#1| (-1071 |#1|))) |%noBranch|))) (-1126)) (T -1139)) +((-2956 (*1 *1 *2) (-12 (-5 *1 (-1139 *2)) (-4 *2 (-1126)))) (-3212 (*1 *1 *2) (-12 (-5 *1 (-1139 *2)) (-4 *2 (-1126)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1014 *3)) (-4 *3 (-1126)) (-5 *1 (-1139 *3)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1139 *3)) (-4 *3 (-1126))))) +(-13 (-1013 |#1|) (-10 -8 (-15 -2956 ($ |#1|)) (-15 -3212 ($ |#1|)) (-15 -4044 ($ (-1014 |#1|))) (-15 -3155 ((-108) $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1015 |#1| (-1071 |#1|))) |%noBranch|))) +((-2868 (((-1145 |#3| |#4|) (-1 |#4| |#2|) (-1145 |#1| |#2|)) 15))) +(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 ((-1145 |#3| |#4|) (-1 |#4| |#2|) (-1145 |#1| |#2|)))) (-1090) (-976) (-1090) (-976)) (T -1140)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1145 *5 *6)) (-14 *5 (-1090)) (-4 *6 (-976)) (-4 *8 (-976)) (-5 *2 (-1145 *7 *8)) (-5 *1 (-1140 *5 *6 *7 *8)) (-14 *7 (-1090))))) +(-10 -7 (-15 -2868 ((-1145 |#3| |#4|) (-1 |#4| |#2|) (-1145 |#1| |#2|)))) +((-3338 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4172 ((|#1| |#3|) 13)) (-1904 ((|#3| |#3|) 19))) +(((-1141 |#1| |#2| |#3|) (-10 -7 (-15 -4172 (|#1| |#3|)) (-15 -1904 (|#3| |#3|)) (-15 -3338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-924 |#1|) (-1148 |#2|)) (T -1141)) +((-3338 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1141 *4 *5 *3)) (-4 *3 (-1148 *5)))) (-1904 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-924 *3)) (-5 *1 (-1141 *3 *4 *2)) (-4 *2 (-1148 *4)))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-1141 *2 *4 *3)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -4172 (|#1| |#3|)) (-15 -1904 (|#3| |#3|)) (-15 -3338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3547 (((-3 |#2| "failed") |#2| (-713) |#1|) 29)) (-3984 (((-3 |#2| "failed") |#2| (-713)) 30)) (-2322 (((-3 (-2 (|:| -3347 |#2|) (|:| -3356 |#2|)) "failed") |#2|) 43)) (-3275 (((-592 |#2|) |#2|) 45)) (-3142 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1142 |#1| |#2|) (-10 -7 (-15 -3984 ((-3 |#2| "failed") |#2| (-713))) (-15 -3547 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -3142 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2322 ((-3 (-2 (|:| -3347 |#2|) (|:| -3356 |#2|)) "failed") |#2|)) (-15 -3275 ((-592 |#2|) |#2|))) (-13 (-517) (-138)) (-1148 |#1|)) (T -1142)) +((-3275 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3)) (-5 *1 (-1142 *4 *3)) (-4 *3 (-1148 *4)))) (-2322 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-2 (|:| -3347 *3) (|:| -3356 *3))) (-5 *1 (-1142 *4 *3)) (-4 *3 (-1148 *4)))) (-3142 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1142 *3 *2)) (-4 *2 (-1148 *3)))) (-3547 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1142 *4 *2)) (-4 *2 (-1148 *4)))) (-3984 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1142 *4 *2)) (-4 *2 (-1148 *4))))) +(-10 -7 (-15 -3984 ((-3 |#2| "failed") |#2| (-713))) (-15 -3547 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -3142 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2322 ((-3 (-2 (|:| -3347 |#2|) (|:| -3356 |#2|)) "failed") |#2|)) (-15 -3275 ((-592 |#2|) |#2|))) +((-2621 (((-3 (-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) "failed") |#2| |#2|) 32))) +(((-1143 |#1| |#2|) (-10 -7 (-15 -2621 ((-3 (-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) "failed") |#2| |#2|))) (-517) (-1148 |#1|)) (T -1143)) +((-2621 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-1143 *4 *3)) (-4 *3 (-1148 *4))))) +(-10 -7 (-15 -2621 ((-3 (-2 (|:| -2877 |#2|) (|:| -2097 |#2|)) "failed") |#2| |#2|))) +((-2240 ((|#2| |#2| |#2|) 19)) (-2212 ((|#2| |#2| |#2|) 30)) (-1407 ((|#2| |#2| |#2| (-713) (-713)) 36))) +(((-1144 |#1| |#2|) (-10 -7 (-15 -2240 (|#2| |#2| |#2|)) (-15 -2212 (|#2| |#2| |#2|)) (-15 -1407 (|#2| |#2| |#2| (-713) (-713)))) (-976) (-1148 |#1|)) (T -1144)) +((-1407 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-5 *1 (-1144 *4 *2)) (-4 *2 (-1148 *4)))) (-2212 (*1 *2 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1148 *3)))) (-2240 (*1 *2 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1148 *3))))) +(-10 -7 (-15 -2240 (|#2| |#2| |#2|)) (-15 -2212 (|#2| |#2| |#2|)) (-15 -1407 (|#2| |#2| |#2| (-713) (-713)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3350 (((-1172 |#2|) $ (-713)) NIL)) (-3122 (((-592 (-1004)) $) NIL)) (-2878 (($ (-1086 |#2|)) NIL)) (-1315 (((-1086 $) $ (-1004)) NIL) (((-1086 |#2|) $) NIL)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-2609 (($ $) NIL (|has| |#2| (-517)))) (-1220 (((-108) $) NIL (|has| |#2| (-517)))) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-1004))) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-2481 (($ $ $) NIL (|has| |#2| (-517)))) (-1426 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2701 (($ $) NIL (|has| |#2| (-429)))) (-1259 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1700 (((-108) $ $) NIL (|has| |#2| (-341)))) (-3778 (($ $ (-713)) NIL)) (-3564 (($ $ (-713)) NIL)) (-3302 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-429)))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-1004) "failed") $) NIL)) (-2068 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-1004) $) NIL)) (-3048 (($ $ $ (-1004)) NIL (|has| |#2| (-160))) ((|#2| $ $) NIL (|has| |#2| (-160)))) (-2720 (($ $ $) NIL (|has| |#2| (-341)))) (-3306 (($ $) NIL)) (-1307 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2699 (($ $ $) NIL (|has| |#2| (-341)))) (-1974 (($ $ $) NIL)) (-2932 (($ $ $) NIL (|has| |#2| (-517)))) (-2683 (((-2 (|:| -2059 |#2|) (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#2| (-517)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-2319 (($ $) NIL (|has| |#2| (-429))) (($ $ (-1004)) NIL (|has| |#2| (-429)))) (-3295 (((-592 $) $) NIL)) (-2069 (((-108) $) NIL (|has| |#2| (-843)))) (-2187 (($ $ |#2| (-713) $) NIL)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1004) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1004) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2158 (((-713) $ $) NIL (|has| |#2| (-517)))) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-1978 (((-3 $ "failed") $) NIL (|has| |#2| (-1066)))) (-3110 (($ (-1086 |#2|) (-1004)) NIL) (($ (-1086 $) (-1004)) NIL)) (-2633 (($ $ (-713)) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-3097 (($ |#2| (-713)) 17) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-1004)) NIL) (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL)) (-3762 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-1260 (($ $ $) NIL (|has| |#2| (-789)))) (-2154 (($ $ $) NIL (|has| |#2| (-789)))) (-2078 (($ (-1 (-713) (-713)) $) NIL)) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-1298 (((-1086 |#2|) $) NIL)) (-3869 (((-3 (-1004) "failed") $) NIL)) (-3277 (($ $) NIL)) (-3286 ((|#2| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1707 (((-1073) $) NIL)) (-2628 (((-2 (|:| -2877 $) (|:| -2097 $)) $ (-713)) NIL)) (-3466 (((-3 (-592 $) "failed") $) NIL)) (-4103 (((-3 (-592 $) "failed") $) NIL)) (-1850 (((-3 (-2 (|:| |var| (-1004)) (|:| -1737 (-713))) "failed") $) NIL)) (-2313 (($ $) NIL (|has| |#2| (-37 (-385 (-525)))))) (-2039 (($) NIL (|has| |#2| (-1066)) CONST)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 ((|#2| $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-2262 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2773 (($ $ (-713) |#2| $) NIL)) (-3725 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2961 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#2| (-341)))) (-2675 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2168 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#2|) NIL) (($ $ (-592 (-1004)) (-592 |#2|)) NIL) (($ $ (-1004) $) NIL) (($ $ (-592 (-1004)) (-592 $)) NIL)) (-2824 (((-713) $) NIL (|has| |#2| (-341)))) (-1496 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#2| (-517))) ((|#2| (-385 $) |#2|) NIL (|has| |#2| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#2| (-517)))) (-3907 (((-3 $ "failed") $ (-713)) NIL)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#2| (-341)))) (-2257 (($ $ (-1004)) NIL (|has| |#2| (-160))) ((|#2| $) NIL (|has| |#2| (-160)))) (-1576 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1486 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-2923 (((-826 (-357)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1004) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2758 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-1004)) NIL (|has| |#2| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-2173 (((-3 $ "failed") $ $) NIL (|has| |#2| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#2| (-517)))) (-4044 (((-797) $) 13) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1004)) NIL) (($ (-1168 |#1|)) 19) (($ (-385 (-525))) NIL (-3215 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3681 (((-592 |#2|) $) NIL)) (-2100 ((|#2| $ (-713)) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-1279 (((-3 $ "failed") $) NIL (-3215 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3787 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-1449 (($) 14 T CONST)) (-1990 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3973 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3899 (((-108) $ $) NIL)) (-3959 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4047 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1145 |#1| |#2|) (-13 (-1148 |#2|) (-10 -8 (-15 -4044 ($ (-1168 |#1|))) (-15 -2773 ($ $ (-713) |#2| $)))) (-1090) (-976)) (T -1145)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-14 *3 (-1090)) (-5 *1 (-1145 *3 *4)) (-4 *4 (-976)))) (-2773 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1145 *4 *3)) (-14 *4 (-1090)) (-4 *3 (-976))))) +(-13 (-1148 |#2|) (-10 -8 (-15 -4044 ($ (-1168 |#1|))) (-15 -2773 ($ $ (-713) |#2| $)))) +((-2868 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1146 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 (|#4| (-1 |#3| |#1|) |#2|))) (-976) (-1148 |#1|) (-976) (-1148 |#3|)) (T -1146)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-4 *2 (-1148 *6)) (-5 *1 (-1146 *5 *4 *6 *2)) (-4 *4 (-1148 *5))))) +(-10 -7 (-15 -2868 (|#4| (-1 |#3| |#1|) |#2|))) +((-3350 (((-1172 |#2|) $ (-713)) 114)) (-3122 (((-592 (-1004)) $) 15)) (-2878 (($ (-1086 |#2|)) 67)) (-2874 (((-713) $) NIL) (((-713) $ (-592 (-1004))) 18)) (-1426 (((-396 (-1086 $)) (-1086 $)) 185)) (-2701 (($ $) 175)) (-1259 (((-396 $) $) 173)) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 82)) (-3778 (($ $ (-713)) 71)) (-3564 (($ $ (-713)) 73)) (-3302 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2769 (((-3 |#2| "failed") $) 117) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-1004) "failed") $) NIL)) (-2068 ((|#2| $) 115) (((-385 (-525)) $) NIL) (((-525) $) NIL) (((-1004) $) NIL)) (-2932 (($ $ $) 151)) (-2683 (((-2 (|:| -2059 |#2|) (|:| -2877 $) (|:| -2097 $)) $ $) 153)) (-2158 (((-713) $ $) 170)) (-1978 (((-3 $ "failed") $) 123)) (-3097 (($ |#2| (-713)) NIL) (($ $ (-1004) (-713)) 47) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3762 (((-713) $) NIL) (((-713) $ (-1004)) 42) (((-592 (-713)) $ (-592 (-1004))) 43)) (-1298 (((-1086 |#2|) $) 59)) (-3869 (((-3 (-1004) "failed") $) 40)) (-2628 (((-2 (|:| -2877 $) (|:| -2097 $)) $ (-713)) 70)) (-2313 (($ $) 197)) (-2039 (($) 119)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 182)) (-3725 (((-396 (-1086 $)) (-1086 $)) 88)) (-1944 (((-396 (-1086 $)) (-1086 $)) 86)) (-2961 (((-396 $) $) 107)) (-2168 (($ $ (-592 (-273 $))) 39) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#2|) 31) (($ $ (-592 (-1004)) (-592 |#2|)) 28) (($ $ (-1004) $) 25) (($ $ (-592 (-1004)) (-592 $)) 23)) (-2824 (((-713) $) 188)) (-1496 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) 147) ((|#2| (-385 $) |#2|) 187) (((-385 $) $ (-385 $)) 169)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 191)) (-1576 (($ $ (-1004)) 140) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) 138) (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-1486 (((-713) $) NIL) (((-713) $ (-1004)) 16) (((-592 (-713)) $ (-592 (-1004))) 20)) (-2758 ((|#2| $) NIL) (($ $ (-1004)) 125)) (-2173 (((-3 $ "failed") $ $) 161) (((-3 (-385 $) "failed") (-385 $) $) 157)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1004)) 51) (($ (-385 (-525))) NIL) (($ $) NIL))) +(((-1147 |#1| |#2|) (-10 -8 (-15 -4044 (|#1| |#1|)) (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2039 (|#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -2824 ((-713) |#1|)) (-15 -4204 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -1496 (|#2| (-385 |#1|) |#2|)) (-15 -3302 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2683 ((-2 (|:| -2059 |#2|) (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2932 (|#1| |#1| |#1|)) (-15 -2173 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -2173 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2158 ((-713) |#1| |#1|)) (-15 -1496 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3564 (|#1| |#1| (-713))) (-15 -3778 (|#1| |#1| (-713))) (-15 -2628 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| (-713))) (-15 -2878 (|#1| (-1086 |#2|))) (-15 -1298 ((-1086 |#2|) |#1|)) (-15 -3350 ((-1172 |#2|) |#1| (-713))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1496 (|#1| |#1| |#1|)) (-15 -1496 (|#2| |#1| |#2|)) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -1426 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -1944 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -3725 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2746 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2758 (|#1| |#1| (-1004))) (-15 -3122 ((-592 (-1004)) |#1|)) (-15 -2874 ((-713) |#1| (-592 (-1004)))) (-15 -2874 ((-713) |#1|)) (-15 -3097 (|#1| |#1| (-592 (-1004)) (-592 (-713)))) (-15 -3097 (|#1| |#1| (-1004) (-713))) (-15 -3762 ((-592 (-713)) |#1| (-592 (-1004)))) (-15 -3762 ((-713) |#1| (-1004))) (-15 -3869 ((-3 (-1004) "failed") |#1|)) (-15 -1486 ((-592 (-713)) |#1| (-592 (-1004)))) (-15 -1486 ((-713) |#1| (-1004))) (-15 -2068 ((-1004) |#1|)) (-15 -2769 ((-3 (-1004) "failed") |#1|)) (-15 -4044 (|#1| (-1004))) (-15 -2168 (|#1| |#1| (-592 (-1004)) (-592 |#1|))) (-15 -2168 (|#1| |#1| (-1004) |#1|)) (-15 -2168 (|#1| |#1| (-592 (-1004)) (-592 |#2|))) (-15 -2168 (|#1| |#1| (-1004) |#2|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1486 ((-713) |#1|)) (-15 -3097 (|#1| |#2| (-713))) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -3762 ((-713) |#1|)) (-15 -2758 (|#2| |#1|)) (-15 -1576 (|#1| |#1| (-592 (-1004)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1004) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1004)))) (-15 -1576 (|#1| |#1| (-1004))) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) (-1148 |#2|) (-976)) (T -1147)) +NIL +(-10 -8 (-15 -4044 (|#1| |#1|)) (-15 -2160 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1259 ((-396 |#1|) |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -2039 (|#1|)) (-15 -1978 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -2824 ((-713) |#1|)) (-15 -4204 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -1496 (|#2| (-385 |#1|) |#2|)) (-15 -3302 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2683 ((-2 (|:| -2059 |#2|) (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| |#1|)) (-15 -2932 (|#1| |#1| |#1|)) (-15 -2173 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -2173 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2158 ((-713) |#1| |#1|)) (-15 -1496 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3564 (|#1| |#1| (-713))) (-15 -3778 (|#1| |#1| (-713))) (-15 -2628 ((-2 (|:| -2877 |#1|) (|:| -2097 |#1|)) |#1| (-713))) (-15 -2878 (|#1| (-1086 |#2|))) (-15 -1298 ((-1086 |#2|) |#1|)) (-15 -3350 ((-1172 |#2|) |#1| (-713))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1576 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1090) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1090)))) (-15 -1576 (|#1| |#1| (-1090))) (-15 -1576 (|#1| |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 -1496 (|#1| |#1| |#1|)) (-15 -1496 (|#2| |#1| |#2|)) (-15 -2961 ((-396 |#1|) |#1|)) (-15 -1426 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -1944 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -3725 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2746 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2758 (|#1| |#1| (-1004))) (-15 -3122 ((-592 (-1004)) |#1|)) (-15 -2874 ((-713) |#1| (-592 (-1004)))) (-15 -2874 ((-713) |#1|)) (-15 -3097 (|#1| |#1| (-592 (-1004)) (-592 (-713)))) (-15 -3097 (|#1| |#1| (-1004) (-713))) (-15 -3762 ((-592 (-713)) |#1| (-592 (-1004)))) (-15 -3762 ((-713) |#1| (-1004))) (-15 -3869 ((-3 (-1004) "failed") |#1|)) (-15 -1486 ((-592 (-713)) |#1| (-592 (-1004)))) (-15 -1486 ((-713) |#1| (-1004))) (-15 -2068 ((-1004) |#1|)) (-15 -2769 ((-3 (-1004) "failed") |#1|)) (-15 -4044 (|#1| (-1004))) (-15 -2168 (|#1| |#1| (-592 (-1004)) (-592 |#1|))) (-15 -2168 (|#1| |#1| (-1004) |#1|)) (-15 -2168 (|#1| |#1| (-592 (-1004)) (-592 |#2|))) (-15 -2168 (|#1| |#1| (-1004) |#2|)) (-15 -2168 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2168 (|#1| |#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| (-273 |#1|))) (-15 -2168 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1486 ((-713) |#1|)) (-15 -3097 (|#1| |#2| (-713))) (-15 -2068 ((-525) |#1|)) (-15 -2769 ((-3 (-525) "failed") |#1|)) (-15 -2068 ((-385 (-525)) |#1|)) (-15 -2769 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -4044 (|#1| |#2|)) (-15 -2769 ((-3 |#2| "failed") |#1|)) (-15 -2068 (|#2| |#1|)) (-15 -3762 ((-713) |#1|)) (-15 -2758 (|#2| |#1|)) (-15 -1576 (|#1| |#1| (-592 (-1004)) (-592 (-713)))) (-15 -1576 (|#1| |#1| (-1004) (-713))) (-15 -1576 (|#1| |#1| (-592 (-1004)))) (-15 -1576 (|#1| |#1| (-1004))) (-15 -4044 (|#1| (-525))) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3350 (((-1172 |#1|) $ (-713)) 238)) (-3122 (((-592 (-1004)) $) 110)) (-2878 (($ (-1086 |#1|)) 236)) (-1315 (((-1086 $) $ (-1004)) 125) (((-1086 |#1|) $) 124)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-2609 (($ $) 88 (|has| |#1| (-517)))) (-1220 (((-108) $) 90 (|has| |#1| (-517)))) (-2874 (((-713) $) 112) (((-713) $ (-592 (-1004))) 111)) (-3004 (((-3 $ "failed") $ $) 19)) (-2481 (($ $ $) 223 (|has| |#1| (-517)))) (-1426 (((-396 (-1086 $)) (-1086 $)) 100 (|has| |#1| (-843)))) (-2701 (($ $) 98 (|has| |#1| (-429)))) (-1259 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2746 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-843)))) (-1700 (((-108) $ $) 208 (|has| |#1| (-341)))) (-3778 (($ $ (-713)) 231)) (-3564 (($ $ (-713)) 230)) (-3302 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-429)))) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-967 (-525)))) (((-3 (-1004) "failed") $) 136)) (-2068 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-967 (-525)))) (((-1004) $) 135)) (-3048 (($ $ $ (-1004)) 108 (|has| |#1| (-160))) ((|#1| $ $) 226 (|has| |#1| (-160)))) (-2720 (($ $ $) 212 (|has| |#1| (-341)))) (-3306 (($ $) 154)) (-1307 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3471 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 211 (|has| |#1| (-341)))) (-1974 (($ $ $) 229)) (-2932 (($ $ $) 220 (|has| |#1| (-517)))) (-2683 (((-2 (|:| -2059 |#1|) (|:| -2877 $) (|:| -2097 $)) $ $) 219 (|has| |#1| (-517)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 206 (|has| |#1| (-341)))) (-2319 (($ $) 176 (|has| |#1| (-429))) (($ $ (-1004)) 105 (|has| |#1| (-429)))) (-3295 (((-592 $) $) 109)) (-2069 (((-108) $) 96 (|has| |#1| (-843)))) (-2187 (($ $ |#1| (-713) $) 172)) (-2029 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84 (-12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 83 (-12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2158 (((-713) $ $) 224 (|has| |#1| (-517)))) (-2507 (((-108) $) 31)) (-3682 (((-713) $) 169)) (-1978 (((-3 $ "failed") $) 204 (|has| |#1| (-1066)))) (-3110 (($ (-1086 |#1|) (-1004)) 117) (($ (-1086 $) (-1004)) 116)) (-2633 (($ $ (-713)) 235)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 215 (|has| |#1| (-341)))) (-1585 (((-592 $) $) 126)) (-1432 (((-108) $) 152)) (-3097 (($ |#1| (-713)) 153) (($ $ (-1004) (-713)) 119) (($ $ (-592 (-1004)) (-592 (-713))) 118)) (-2995 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $ (-1004)) 120) (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 233)) (-3762 (((-713) $) 170) (((-713) $ (-1004)) 122) (((-592 (-713)) $ (-592 (-1004))) 121)) (-1260 (($ $ $) 79 (|has| |#1| (-789)))) (-2154 (($ $ $) 78 (|has| |#1| (-789)))) (-2078 (($ (-1 (-713) (-713)) $) 171)) (-2868 (($ (-1 |#1| |#1|) $) 151)) (-1298 (((-1086 |#1|) $) 237)) (-3869 (((-3 (-1004) "failed") $) 123)) (-3277 (($ $) 149)) (-3286 ((|#1| $) 148)) (-2226 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-1707 (((-1073) $) 9)) (-2628 (((-2 (|:| -2877 $) (|:| -2097 $)) $ (-713)) 232)) (-3466 (((-3 (-592 $) "failed") $) 114)) (-4103 (((-3 (-592 $) "failed") $) 115)) (-1850 (((-3 (-2 (|:| |var| (-1004)) (|:| -1737 (-713))) "failed") $) 113)) (-2313 (($ $) 216 (|has| |#1| (-37 (-385 (-525)))))) (-2039 (($) 203 (|has| |#1| (-1066)) CONST)) (-3027 (((-1037) $) 10)) (-3256 (((-108) $) 166)) (-3267 ((|#1| $) 167)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 95 (|has| |#1| (-429)))) (-2262 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-3725 (((-396 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-843)))) (-1944 (((-396 (-1086 $)) (-1086 $)) 101 (|has| |#1| (-843)))) (-2961 (((-396 $) $) 99 (|has| |#1| (-843)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 213 (|has| |#1| (-341)))) (-2675 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 207 (|has| |#1| (-341)))) (-2168 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ (-1004) |#1|) 141) (($ $ (-592 (-1004)) (-592 |#1|)) 140) (($ $ (-1004) $) 139) (($ $ (-592 (-1004)) (-592 $)) 138)) (-2824 (((-713) $) 209 (|has| |#1| (-341)))) (-1496 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-385 $) (-385 $) (-385 $)) 225 (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) 217 (|has| |#1| (-341))) (((-385 $) $ (-385 $)) 205 (|has| |#1| (-517)))) (-3907 (((-3 $ "failed") $ (-713)) 234)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 210 (|has| |#1| (-341)))) (-2257 (($ $ (-1004)) 107 (|has| |#1| (-160))) ((|#1| $) 227 (|has| |#1| (-160)))) (-1576 (($ $ (-1004)) 42) (($ $ (-592 (-1004))) 41) (($ $ (-1004) (-713)) 40) (($ $ (-592 (-1004)) (-592 (-713))) 39) (($ $ (-713)) 253) (($ $) 251) (($ $ (-1090)) 250 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 249 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 248 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 247 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-1486 (((-713) $) 150) (((-713) $ (-1004)) 130) (((-592 (-713)) $ (-592 (-1004))) 129)) (-2923 (((-826 (-357)) $) 82 (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) 81 (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) 80 (-12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2758 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ (-1004)) 106 (|has| |#1| (-429)))) (-2420 (((-3 (-1172 $) "failed") (-632 $)) 104 (-2385 (|has| $ (-136)) (|has| |#1| (-843))))) (-2173 (((-3 $ "failed") $ $) 222 (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) 221 (|has| |#1| (-517)))) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ (-1004)) 137) (($ (-385 (-525))) 72 (-3215 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3681 (((-592 |#1|) $) 168)) (-2100 ((|#1| $ (-713)) 155) (($ $ (-1004) (-713)) 128) (($ $ (-592 (-1004)) (-592 (-713))) 127)) (-1279 (((-3 $ "failed") $) 73 (-3215 (-2385 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2502 (((-713)) 29)) (-2541 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3787 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-1004)) 38) (($ $ (-592 (-1004))) 37) (($ $ (-1004) (-713)) 36) (($ $ (-592 (-1004)) (-592 (-713))) 35) (($ $ (-713)) 254) (($ $) 252) (($ $ (-1090)) 246 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 245 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 244 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 243 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-3973 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 6)) (-3959 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4047 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1148 |#1|) (-131) (-976)) (T -1148)) +((-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1148 *4)) (-4 *4 (-976)) (-5 *2 (-1172 *4)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-5 *2 (-1086 *3)))) (-2878 (*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-976)) (-4 *1 (-1148 *3)))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-3907 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-2995 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-1148 *3)))) (-2628 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-1148 *4)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-1974 (*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)))) (-1576 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-2257 (*1 *2 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-160)))) (-3048 (*1 *2 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-160)))) (-1496 (*1 *2 *2 *2) (-12 (-5 *2 (-385 *1)) (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-4 *3 (-517)))) (-2158 (*1 *2 *1 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-4 *3 (-517)) (-5 *2 (-713)))) (-2481 (*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517)))) (-2173 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517)))) (-2173 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-4 *3 (-517)))) (-2932 (*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517)))) (-2683 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -2059 *3) (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-1148 *3)))) (-3302 (*1 *2 *1 *1) (-12 (-4 *3 (-429)) (-4 *3 (-976)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1148 *3)))) (-1496 (*1 *2 *3 *2) (-12 (-5 *3 (-385 *1)) (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525))))))) +(-13 (-883 |t#1| (-713) (-1004)) (-265 |t#1| |t#1|) (-265 $ $) (-213) (-211 |t#1|) (-10 -8 (-15 -3350 ((-1172 |t#1|) $ (-713))) (-15 -1298 ((-1086 |t#1|) $)) (-15 -2878 ($ (-1086 |t#1|))) (-15 -2633 ($ $ (-713))) (-15 -3907 ((-3 $ "failed") $ (-713))) (-15 -2995 ((-2 (|:| -2877 $) (|:| -2097 $)) $ $)) (-15 -2628 ((-2 (|:| -2877 $) (|:| -2097 $)) $ (-713))) (-15 -3778 ($ $ (-713))) (-15 -3564 ($ $ (-713))) (-15 -1974 ($ $ $)) (-15 -1576 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -2257 (|t#1| $)) (-15 -3048 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-265 (-385 $) (-385 $))) (-15 -1496 ((-385 $) (-385 $) (-385 $))) (-15 -2158 ((-713) $ $)) (-15 -2481 ($ $ $)) (-15 -2173 ((-3 $ "failed") $ $)) (-15 -2173 ((-3 (-385 $) "failed") (-385 $) $)) (-15 -2932 ($ $ $)) (-15 -2683 ((-2 (|:| -2059 |t#1|) (|:| -2877 $) (|:| -2097 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (-15 -3302 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-286)) (-6 -4250) (-15 -1496 (|t#1| (-385 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-15 -2313 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525))))) ((-211 |#1|) . T) ((-213) . T) ((-265 (-385 $) (-385 $)) |has| |#1| (-517)) ((-265 |#1| |#1|) . T) ((-265 $ $) . T) ((-269) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 $) . T) ((-304 |#1| #0#) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3215 (|has| |#1| (-843)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-486 #2=(-1004) |#1|) . T) ((-486 #2# $) . T) ((-486 $ $) . T) ((-517) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 #2#) . T) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-820 (-357)) -12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357)))) ((-820 (-525)) -12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))) ((-883 |#1| #0# #2#) . T) ((-843) |has| |#1| (-843)) ((-854) |has| |#1| (-341)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 #2#) . T) ((-967 |#1|) . T) ((-982 #1#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-1066)) ((-1130) |has| |#1| (-843))) +((-3122 (((-592 (-1004)) $) 28)) (-3306 (($ $) 25)) (-3097 (($ |#2| |#3|) NIL) (($ $ (-1004) |#3|) 22) (($ $ (-592 (-1004)) (-592 |#3|)) 21)) (-3277 (($ $) 14)) (-3286 ((|#2| $) 12)) (-1486 ((|#3| $) 10))) +(((-1149 |#1| |#2| |#3|) (-10 -8 (-15 -3122 ((-592 (-1004)) |#1|)) (-15 -3097 (|#1| |#1| (-592 (-1004)) (-592 |#3|))) (-15 -3097 (|#1| |#1| (-1004) |#3|)) (-15 -3306 (|#1| |#1|)) (-15 -3097 (|#1| |#2| |#3|)) (-15 -1486 (|#3| |#1|)) (-15 -3277 (|#1| |#1|)) (-15 -3286 (|#2| |#1|))) (-1150 |#2| |#3|) (-976) (-734)) (T -1149)) +NIL +(-10 -8 (-15 -3122 ((-592 (-1004)) |#1|)) (-15 -3097 (|#1| |#1| (-592 (-1004)) (-592 |#3|))) (-15 -3097 (|#1| |#1| (-1004) |#3|)) (-15 -3306 (|#1| |#1|)) (-15 -3097 (|#1| |#2| |#3|)) (-15 -1486 (|#3| |#1|)) (-15 -3277 (|#1| |#1|)) (-15 -3286 (|#2| |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3122 (((-592 (-1004)) $) 74)) (-2818 (((-1090) $) 103)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2609 (($ $) 52 (|has| |#1| (-517)))) (-1220 (((-108) $) 54 (|has| |#1| (-517)))) (-3948 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-3423 (((-1071 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-3306 (($ $) 60)) (-1645 (((-3 $ "failed") $) 34)) (-3951 (((-108) $) 73)) (-2158 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2507 (((-108) $) 31)) (-2633 (($ $ (-855)) 101)) (-1432 (((-108) $) 62)) (-3097 (($ |#1| |#2|) 61) (($ $ (-1004) |#2|) 76) (($ $ (-592 (-1004)) (-592 |#2|)) 75)) (-2868 (($ (-1 |#1| |#1|) $) 63)) (-3277 (($ $) 65)) (-3286 ((|#1| $) 66)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1539 (($ $ |#2|) 95)) (-2675 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2168 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1496 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1031)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1486 ((|#2| $) 64)) (-2789 (($ $) 72)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-2100 ((|#1| $ |#2|) 59)) (-1279 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-3448 ((|#1| $) 102)) (-3787 (((-108) $ $) 53 (|has| |#1| (-517)))) (-2371 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) +(((-1150 |#1| |#2|) (-131) (-976) (-734)) (T -1150)) +((-3423 (*1 *2 *1) (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-1071 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1496 (*1 *2 *1 *3) (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-1090)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-2158 (*1 *2 *1 *2) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-3948 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-2371 (*1 *2 *1 *3) (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4044 (*2 (-1090)))) (-4 *2 (-976)))) (-1539 (*1 *1 *1 *2) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-2168 (*1 *2 *1 *3) (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1071 *3))))) +(-13 (-905 |t#1| |t#2| (-1004)) (-10 -8 (-15 -3423 ((-1071 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1496 (|t#1| $ |t#2|)) (-15 -2818 ((-1090) $)) (-15 -3448 (|t#1| $)) (-15 -2633 ($ $ (-855))) (-15 -2158 (|t#2| $)) (-15 -2158 (|t#2| $ |t#2|)) (-15 -3948 ($ $ |t#2|)) (-15 -3948 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4044 (|t#1| (-1090)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2371 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1539 ($ $ |t#2|)) (IF (|has| |t#2| (-1031)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-213)) (IF (|has| |t#1| (-834 (-1090))) (-6 (-834 (-1090))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2168 ((-1071 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-265 $ $) |has| |#2| (-1031)) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| |#2| (-1004)) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-2701 ((|#2| |#2|) 12)) (-1259 (((-396 |#2|) |#2|) 14)) (-2533 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))) 30))) +(((-1151 |#1| |#2|) (-10 -7 (-15 -1259 ((-396 |#2|) |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -2533 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))))) (-517) (-13 (-1148 |#1|) (-517) (-10 -8 (-15 -2262 ($ $ $))))) (T -1151)) +((-2533 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-525)))) (-4 *4 (-13 (-1148 *3) (-517) (-10 -8 (-15 -2262 ($ $ $))))) (-4 *3 (-517)) (-5 *1 (-1151 *3 *4)))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-1148 *3) (-517) (-10 -8 (-15 -2262 ($ $ $))))))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1151 *4 *3)) (-4 *3 (-13 (-1148 *4) (-517) (-10 -8 (-15 -2262 ($ $ $)))))))) +(-10 -7 (-15 -1259 ((-396 |#2|) |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -2533 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))))) +((-2868 (((-1157 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1157 |#1| |#3| |#5|)) 24))) +(((-1152 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2868 ((-1157 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1157 |#1| |#3| |#5|)))) (-976) (-976) (-1090) (-1090) |#1| |#2|) (T -1152)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5 *7 *9)) (-4 *5 (-976)) (-4 *6 (-976)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1157 *6 *8 *10)) (-5 *1 (-1152 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090))))) +(-10 -7 (-15 -2868 ((-1157 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1157 |#1| |#3| |#5|)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3122 (((-592 (-1004)) $) 74)) (-2818 (((-1090) $) 103)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2609 (($ $) 52 (|has| |#1| (-517)))) (-1220 (((-108) $) 54 (|has| |#1| (-517)))) (-3948 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-3423 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-3915 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 162 (|has| |#1| (-341)))) (-1259 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2975 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1700 (((-108) $ $) 153 (|has| |#1| (-341)))) (-3886 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-3946 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) 17 T CONST)) (-2720 (($ $ $) 157 (|has| |#1| (-341)))) (-3306 (($ $) 60)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 156 (|has| |#1| (-341)))) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-2069 (((-108) $) 164 (|has| |#1| (-341)))) (-3951 (((-108) $) 73)) (-1961 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) 101) (($ $ (-385 (-525))) 171)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1432 (((-108) $) 62)) (-3097 (($ |#1| (-385 (-525))) 61) (($ $ (-1004) (-385 (-525))) 76) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) 75)) (-2868 (($ (-1 |#1| |#1|) $) 63)) (-2412 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) 65)) (-3286 ((|#1| $) 66)) (-2226 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-1707 (((-1073) $) 9)) (-3243 (($ $) 165 (|has| |#1| (-341)))) (-2313 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 169 (-3215 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 150 (|has| |#1| (-341)))) (-2262 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2961 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 158 (|has| |#1| (-341)))) (-1539 (($ $ (-385 (-525))) 95)) (-2675 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-2840 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2824 (((-713) $) 154 (|has| |#1| (-341)))) (-1496 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1031)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 155 (|has| |#1| (-341)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-1486 (((-385 (-525)) $) 64)) (-3960 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) 72)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-2100 ((|#1| $ (-385 (-525))) 59)) (-1279 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-3448 ((|#1| $) 102)) (-4004 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3975 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) +(((-1153 |#1|) (-131) (-976)) (T -1153)) +((-4231 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))) (-4 *4 (-976)) (-4 *1 (-1153 *4)))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1153 *3)) (-4 *3 (-976)))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) (-2313 (*1 *1 *1 *2) (-3215 (-12 (-5 *2 (-1090)) (-4 *1 (-1153 *3)) (-4 *3 (-976)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1153 *3)) (-4 *3 (-976)) (-12 (|has| *3 (-15 -3122 ((-592 *2) *3))) (|has| *3 (-15 -2313 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))) +(-13 (-1150 |t#1| (-385 (-525))) (-10 -8 (-15 -4231 ($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |t#1|))))) (-15 -2633 ($ $ (-385 (-525)))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $)) (IF (|has| |t#1| (-15 -2313 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3122 ((-592 (-1090)) |t#1|))) (-15 -2313 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1112)) (IF (|has| |t#1| (-892)) (IF (|has| |t#1| (-29 (-525))) (-15 -2313 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-933)) (-6 (-1112))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1031)) ((-269) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| #0# (-1004)) . T) ((-854) |has| |#1| (-341)) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-982 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1130) |has| |#1| (-341)) ((-1150 |#1| #0#) . T)) +((-2464 (((-108) $) 12)) (-2769 (((-3 |#3| "failed") $) 17)) (-2068 ((|#3| $) 14))) +(((-1154 |#1| |#2| |#3|) (-10 -8 (-15 -2068 (|#3| |#1|)) (-15 -2769 ((-3 |#3| "failed") |#1|)) (-15 -2464 ((-108) |#1|))) (-1155 |#2| |#3|) (-976) (-1132 |#2|)) (T -1154)) +NIL +(-10 -8 (-15 -2068 (|#3| |#1|)) (-15 -2769 ((-3 |#3| "failed") |#1|)) (-15 -2464 ((-108) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3122 (((-592 (-1004)) $) 74)) (-2818 (((-1090) $) 103)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2609 (($ $) 52 (|has| |#1| (-517)))) (-1220 (((-108) $) 54 (|has| |#1| (-517)))) (-3948 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-3423 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-3915 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 162 (|has| |#1| (-341)))) (-1259 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2975 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1700 (((-108) $ $) 153 (|has| |#1| (-341)))) (-3886 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-3946 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#2| "failed") $) 183)) (-2068 ((|#2| $) 182)) (-2720 (($ $ $) 157 (|has| |#1| (-341)))) (-3306 (($ $) 60)) (-1645 (((-3 $ "failed") $) 34)) (-2668 (((-385 (-525)) $) 180)) (-2699 (($ $ $) 156 (|has| |#1| (-341)))) (-3213 (($ (-385 (-525)) |#2|) 181)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-2069 (((-108) $) 164 (|has| |#1| (-341)))) (-3951 (((-108) $) 73)) (-1961 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) 101) (($ $ (-385 (-525))) 171)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1432 (((-108) $) 62)) (-3097 (($ |#1| (-385 (-525))) 61) (($ $ (-1004) (-385 (-525))) 76) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) 75)) (-2868 (($ (-1 |#1| |#1|) $) 63)) (-2412 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) 65)) (-3286 ((|#1| $) 66)) (-2226 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2597 ((|#2| $) 179)) (-3972 (((-3 |#2| "failed") $) 177)) (-3199 ((|#2| $) 178)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 165 (|has| |#1| (-341)))) (-2313 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 169 (-3215 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 150 (|has| |#1| (-341)))) (-2262 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2961 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 158 (|has| |#1| (-341)))) (-1539 (($ $ (-385 (-525))) 95)) (-2675 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-2840 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2824 (((-713) $) 154 (|has| |#1| (-341)))) (-1496 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1031)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 155 (|has| |#1| (-341)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-1486 (((-385 (-525)) $) 64)) (-3960 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) 72)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 184) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-2100 ((|#1| $ (-385 (-525))) 59)) (-1279 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-3448 ((|#1| $) 102)) (-4004 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3975 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) +(((-1155 |#1| |#2|) (-131) (-976) (-1132 |t#1|)) (T -1155)) +((-1486 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1132 *3)) (-5 *2 (-385 (-525))))) (-4044 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *1 (-1155 *3 *2)) (-4 *2 (-1132 *3)))) (-3213 (*1 *1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-4 *4 (-976)) (-4 *1 (-1155 *4 *3)) (-4 *3 (-1132 *4)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1132 *3)) (-5 *2 (-385 (-525))))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3)))) (-3972 (*1 *2 *1) (|partial| -12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3))))) +(-13 (-1153 |t#1|) (-967 |t#2|) (-10 -8 (-15 -3213 ($ (-385 (-525)) |t#2|)) (-15 -2668 ((-385 (-525)) $)) (-15 -2597 (|t#2| $)) (-15 -1486 ((-385 (-525)) $)) (-15 -4044 ($ |t#2|)) (-15 -3199 (|t#2| $)) (-15 -3972 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1031)) ((-269) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| #0# (-1004)) . T) ((-854) |has| |#1| (-341)) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-967 |#2|) . T) ((-982 #1#) -3215 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1130) |has| |#1| (-341)) ((-1150 |#1| #0#) . T) ((-1153 |#1|) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) 96)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3948 (($ $ (-385 (-525))) 106) (($ $ (-385 (-525)) (-385 (-525))) 108)) (-3423 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 51)) (-3915 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 156 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| |#1| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3886 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 152 (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 61)) (-3946 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) NIL)) (-2068 ((|#2| $) NIL)) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) 79)) (-2668 (((-385 (-525)) $) 13)) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-3213 (($ (-385 (-525)) |#2|) 11)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2069 (((-108) $) NIL (|has| |#1| (-341)))) (-3951 (((-108) $) 68)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-385 (-525)) $) 103) (((-385 (-525)) $ (-385 (-525))) 104)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) 120) (($ $ (-385 (-525))) 118)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-385 (-525))) 31) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-2868 (($ (-1 |#1| |#1|) $) 115)) (-2412 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2597 ((|#2| $) 12)) (-3972 (((-3 |#2| "failed") $) 41)) (-3199 ((|#2| $) 42)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) 93 (|has| |#1| (-341)))) (-2313 (($ $) 135 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 140 (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112)))))) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1539 (($ $ (-385 (-525))) 112)) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2840 (($ $) 148 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ (-385 (-525))) 100) (($ $ $) 86 (|has| (-385 (-525)) (-1031)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) 127 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-1486 (((-385 (-525)) $) 16)) (-3960 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 154 (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) 110)) (-4044 (((-797) $) NIL) (($ (-525)) 35) (($ |#1|) 27 (|has| |#1| (-160))) (($ |#2|) 32) (($ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-2100 ((|#1| $ (-385 (-525))) 99)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) 117)) (-3448 ((|#1| $) 98)) (-4004 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) 21 T CONST)) (-1449 (($) 17 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3899 (((-108) $ $) 66)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 92 (|has| |#1| (-341)))) (-4033 (($ $) 131) (($ $ $) 72)) (-4017 (($ $ $) 70)) (** (($ $ (-855)) NIL) (($ $ (-713)) 76) (($ $ (-525)) 145 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 146 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-1156 |#1| |#2|) (-1155 |#1| |#2|) (-976) (-1132 |#1|)) (T -1156)) +NIL +(-1155 |#1| |#2|) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) 11)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) NIL (|has| |#1| (-517)))) (-3948 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-3423 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2701 (($ $) NIL (|has| |#1| (-341)))) (-1259 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1700 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3886 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-3946 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-1136 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 22)) (-2068 (((-1136 |#1| |#2| |#3|) $) NIL) (((-1164 |#1| |#2| |#3|) $) NIL)) (-2720 (($ $ $) NIL (|has| |#1| (-341)))) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2668 (((-385 (-525)) $) 57)) (-2699 (($ $ $) NIL (|has| |#1| (-341)))) (-3213 (($ (-385 (-525)) (-1136 |#1| |#2| |#3|)) NIL)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2069 (((-108) $) NIL (|has| |#1| (-341)))) (-3951 (((-108) $) NIL)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-2507 (((-108) $) NIL)) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) NIL) (($ $ (-385 (-525))) NIL)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-385 (-525))) 30) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-2412 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-2226 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2597 (((-1136 |#1| |#2| |#3|) $) 60)) (-3972 (((-3 (-1136 |#1| |#2| |#3|) "failed") $) NIL)) (-3199 (((-1136 |#1| |#2| |#3|) $) NIL)) (-1707 (((-1073) $) NIL)) (-3243 (($ $) NIL (|has| |#1| (-341)))) (-2313 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-3027 (((-1037) $) NIL)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-2262 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2961 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2345 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) NIL (|has| |#1| (-341)))) (-1539 (($ $ (-385 (-525))) NIL)) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3554 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2840 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2824 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1031)))) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) NIL (|has| |#1| (-341)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1168 |#2|)) 38)) (-1486 (((-385 (-525)) $) NIL)) (-3960 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) NIL)) (-4044 (((-797) $) 89) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1136 |#1| |#2| |#3|)) 16) (($ (-1164 |#1| |#2| |#3|)) 17) (($ (-1168 |#2|)) 36) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-2100 ((|#1| $ (-385 (-525))) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-3448 ((|#1| $) 12)) (-4004 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-385 (-525))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-1436 (($) 32 T CONST)) (-1449 (($) 26 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 34)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-1157 |#1| |#2| |#3|) (-13 (-1155 |#1| (-1136 |#1| |#2| |#3|)) (-967 (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1157)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))) +(-13 (-1155 |#1| (-1136 |#1| |#2| |#3|)) (-967 (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 34)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-2609 (($ $) NIL)) (-1220 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 (-525) "failed") $) NIL (|has| (-1157 |#2| |#3| |#4|) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1157 |#2| |#3| |#4|) (-967 (-385 (-525))))) (((-3 (-1157 |#2| |#3| |#4|) "failed") $) 20)) (-2068 (((-525) $) NIL (|has| (-1157 |#2| |#3| |#4|) (-967 (-525)))) (((-385 (-525)) $) NIL (|has| (-1157 |#2| |#3| |#4|) (-967 (-385 (-525))))) (((-1157 |#2| |#3| |#4|) $) NIL)) (-3306 (($ $) 35)) (-1645 (((-3 $ "failed") $) 25)) (-2319 (($ $) NIL (|has| (-1157 |#2| |#3| |#4|) (-429)))) (-2187 (($ $ (-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|) $) NIL)) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) 11)) (-1432 (((-108) $) NIL)) (-3097 (($ (-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) 23)) (-3762 (((-297 |#2| |#3| |#4|) $) NIL)) (-2078 (($ (-1 (-297 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) $) NIL)) (-2868 (($ (-1 (-1157 |#2| |#3| |#4|) (-1157 |#2| |#3| |#4|)) $) NIL)) (-4014 (((-3 (-782 |#2|) "failed") $) 75)) (-3277 (($ $) NIL)) (-3286 (((-1157 |#2| |#3| |#4|) $) 18)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3256 (((-108) $) NIL)) (-3267 (((-1157 |#2| |#3| |#4|) $) NIL)) (-2675 (((-3 $ "failed") $ (-1157 |#2| |#3| |#4|)) NIL (|has| (-1157 |#2| |#3| |#4|) (-517))) (((-3 $ "failed") $ $) NIL)) (-2526 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1157 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) "failed") $) 58)) (-1486 (((-297 |#2| |#3| |#4|) $) 14)) (-2758 (((-1157 |#2| |#3| |#4|) $) NIL (|has| (-1157 |#2| |#3| |#4|) (-429)))) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ (-1157 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL (-3215 (|has| (-1157 |#2| |#3| |#4|) (-37 (-385 (-525)))) (|has| (-1157 |#2| |#3| |#4|) (-967 (-385 (-525))))))) (-3681 (((-592 (-1157 |#2| |#3| |#4|)) $) NIL)) (-2100 (((-1157 |#2| |#3| |#4|) $ (-297 |#2| |#3| |#4|)) NIL)) (-1279 (((-3 $ "failed") $) NIL (|has| (-1157 |#2| |#3| |#4|) (-136)))) (-2502 (((-713)) NIL)) (-2541 (($ $ $ (-713)) NIL (|has| (-1157 |#2| |#3| |#4|) (-160)))) (-3787 (((-108) $ $) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 63 T CONST)) (-1449 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ (-1157 |#2| |#3| |#4|)) NIL (|has| (-1157 |#2| |#3| |#4|) (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-1157 |#2| |#3| |#4|)) NIL) (($ (-1157 |#2| |#3| |#4|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-1157 |#2| |#3| |#4|) (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| (-1157 |#2| |#3| |#4|) (-37 (-385 (-525))))))) +(((-1158 |#1| |#2| |#3| |#4|) (-13 (-304 (-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -4014 ((-3 (-782 |#2|) "failed") $)) (-15 -2526 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1157 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) "failed") $)))) (-13 (-789) (-967 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1112) (-408 |#1|)) (-1090) |#2|) (T -1158)) +((-4014 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) (-14 *6 *4))) (-2526 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1157 *4 *5 *6)) (|:| |%expon| (-297 *4 *5 *6)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))))) (|:| |%type| (-1073)))) (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) (-14 *6 *4)))) +(-13 (-304 (-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -4014 ((-3 (-782 |#2|) "failed") $)) (-15 -2526 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1157 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) "failed") $)))) +((-3067 ((|#2| $) 29)) (-1212 ((|#2| $) 18)) (-3134 (($ $) 36)) (-2974 (($ $ (-525)) 64)) (-2583 (((-108) $ (-713)) 33)) (-2325 ((|#2| $ |#2|) 61)) (-3079 ((|#2| $ |#2|) 59)) (-1230 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2614 (($ $ (-592 $)) 60)) (-4227 ((|#2| $) 17)) (-1693 (($ $) NIL) (($ $ (-713)) 42)) (-2850 (((-592 $) $) 26)) (-2983 (((-108) $ $) 50)) (-2010 (((-108) $ (-713)) 32)) (-2350 (((-108) $ (-713)) 31)) (-3260 (((-108) $) 28)) (-2618 ((|#2| $) 24) (($ $ (-713)) 46)) (-1496 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3105 (((-108) $) 22)) (-2079 (($ $) 39)) (-2129 (($ $) 65)) (-3185 (((-713) $) 41)) (-2008 (($ $) 40)) (-1810 (($ $ $) 58) (($ |#2| $) NIL)) (-2180 (((-592 $) $) 27)) (-3899 (((-108) $ $) 48)) (-1696 (((-713) $) 35))) +(((-1159 |#1| |#2|) (-10 -8 (-15 -2974 (|#1| |#1| (-525))) (-15 -1230 (|#2| |#1| "last" |#2|)) (-15 -3079 (|#2| |#1| |#2|)) (-15 -1230 (|#1| |#1| "rest" |#1|)) (-15 -1230 (|#2| |#1| "first" |#2|)) (-15 -2129 (|#1| |#1|)) (-15 -2079 (|#1| |#1|)) (-15 -3185 ((-713) |#1|)) (-15 -2008 (|#1| |#1|)) (-15 -1212 (|#2| |#1|)) (-15 -4227 (|#2| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -2618 (|#1| |#1| (-713))) (-15 -1496 (|#2| |#1| "last")) (-15 -2618 (|#2| |#1|)) (-15 -1693 (|#1| |#1| (-713))) (-15 -1496 (|#1| |#1| "rest")) (-15 -1693 (|#1| |#1|)) (-15 -1496 (|#2| |#1| "first")) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -2325 (|#2| |#1| |#2|)) (-15 -1230 (|#2| |#1| "value" |#2|)) (-15 -2614 (|#1| |#1| (-592 |#1|))) (-15 -2983 ((-108) |#1| |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -1496 (|#2| |#1| "value")) (-15 -3067 (|#2| |#1|)) (-15 -3260 ((-108) |#1|)) (-15 -2850 ((-592 |#1|) |#1|)) (-15 -2180 ((-592 |#1|) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -1696 ((-713) |#1|)) (-15 -2583 ((-108) |#1| (-713))) (-15 -2010 ((-108) |#1| (-713))) (-15 -2350 ((-108) |#1| (-713)))) (-1160 |#2|) (-1126)) (T -1159)) +NIL +(-10 -8 (-15 -2974 (|#1| |#1| (-525))) (-15 -1230 (|#2| |#1| "last" |#2|)) (-15 -3079 (|#2| |#1| |#2|)) (-15 -1230 (|#1| |#1| "rest" |#1|)) (-15 -1230 (|#2| |#1| "first" |#2|)) (-15 -2129 (|#1| |#1|)) (-15 -2079 (|#1| |#1|)) (-15 -3185 ((-713) |#1|)) (-15 -2008 (|#1| |#1|)) (-15 -1212 (|#2| |#1|)) (-15 -4227 (|#2| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -2618 (|#1| |#1| (-713))) (-15 -1496 (|#2| |#1| "last")) (-15 -2618 (|#2| |#1|)) (-15 -1693 (|#1| |#1| (-713))) (-15 -1496 (|#1| |#1| "rest")) (-15 -1693 (|#1| |#1|)) (-15 -1496 (|#2| |#1| "first")) (-15 -1810 (|#1| |#2| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -2325 (|#2| |#1| |#2|)) (-15 -1230 (|#2| |#1| "value" |#2|)) (-15 -2614 (|#1| |#1| (-592 |#1|))) (-15 -2983 ((-108) |#1| |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -1496 (|#2| |#1| "value")) (-15 -3067 (|#2| |#1|)) (-15 -3260 ((-108) |#1|)) (-15 -2850 ((-592 |#1|) |#1|)) (-15 -2180 ((-592 |#1|) |#1|)) (-15 -3899 ((-108) |#1| |#1|)) (-15 -1696 ((-713) |#1|)) (-15 -2583 ((-108) |#1| (-713))) (-15 -2010 ((-108) |#1| (-713))) (-15 -2350 ((-108) |#1| (-713)))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3067 ((|#1| $) 48)) (-1212 ((|#1| $) 65)) (-3134 (($ $) 67)) (-2974 (($ $ (-525)) 52 (|has| $ (-6 -4255)))) (-2583 (((-108) $ (-713)) 8)) (-2325 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-4050 (($ $ $) 56 (|has| $ (-6 -4255)))) (-3079 ((|#1| $ |#1|) 54 (|has| $ (-6 -4255)))) (-3995 ((|#1| $ |#1|) 58 (|has| $ (-6 -4255)))) (-1230 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4255))) (($ $ "rest" $) 55 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4255)))) (-2614 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-4227 ((|#1| $) 66)) (-1957 (($) 7 T CONST)) (-1693 (($ $) 73) (($ $ (-713)) 71)) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2850 (((-592 $) $) 50)) (-2983 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-2010 (((-108) $ (-713)) 9)) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35)) (-2350 (((-108) $ (-713)) 10)) (-2401 (((-592 |#1|) $) 45)) (-3260 (((-108) $) 49)) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2618 ((|#1| $) 70) (($ $ (-713)) 68)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1683 ((|#1| $) 76) (($ $ (-713)) 74)) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3612 (((-525) $ $) 44)) (-3105 (((-108) $) 46)) (-2079 (($ $) 62)) (-2129 (($ $) 59 (|has| $ (-6 -4255)))) (-3185 (((-713) $) 63)) (-2008 (($ $) 64)) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1261 (($ $) 13)) (-2455 (($ $ $) 61 (|has| $ (-6 -4255))) (($ $ |#1|) 60 (|has| $ (-6 -4255)))) (-1810 (($ $ $) 78) (($ |#1| $) 77)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2180 (((-592 $) $) 51)) (-2086 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-1160 |#1|) (-131) (-1126)) (T -1160)) +((-1810 (*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1810 (*1 *1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1683 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-1693 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-1693 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-2618 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1496 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2618 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1212 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2008 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) (-2079 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2455 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2455 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2129 (*1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3995 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1230 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-4050 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1230 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-3079 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1230 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4255)) (-4 *1 (-1160 *3)) (-4 *3 (-1126))))) +(-13 (-941 |t#1|) (-10 -8 (-15 -1810 ($ $ $)) (-15 -1810 ($ |t#1| $)) (-15 -1683 (|t#1| $)) (-15 -1496 (|t#1| $ "first")) (-15 -1683 ($ $ (-713))) (-15 -1693 ($ $)) (-15 -1496 ($ $ "rest")) (-15 -1693 ($ $ (-713))) (-15 -2618 (|t#1| $)) (-15 -1496 (|t#1| $ "last")) (-15 -2618 ($ $ (-713))) (-15 -3134 ($ $)) (-15 -4227 (|t#1| $)) (-15 -1212 (|t#1| $)) (-15 -2008 ($ $)) (-15 -3185 ((-713) $)) (-15 -2079 ($ $)) (IF (|has| $ (-6 -4255)) (PROGN (-15 -2455 ($ $ $)) (-15 -2455 ($ $ |t#1|)) (-15 -2129 ($ $)) (-15 -3995 (|t#1| $ |t#1|)) (-15 -1230 (|t#1| $ "first" |t#1|)) (-15 -4050 ($ $ $)) (-15 -1230 ($ $ "rest" $)) (-15 -3079 (|t#1| $ |t#1|)) (-15 -1230 (|t#1| $ "last" |t#1|)) (-15 -2974 ($ $ (-525)))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T)) +((-2868 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1161 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2868 (|#4| (-1 |#2| |#1|) |#3|))) (-976) (-976) (-1163 |#1|) (-1163 |#2|)) (T -1161)) +((-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-4 *2 (-1163 *6)) (-5 *1 (-1161 *5 *6 *4 *2)) (-4 *4 (-1163 *5))))) +(-10 -7 (-15 -2868 (|#4| (-1 |#2| |#1|) |#3|))) +((-2464 (((-108) $) 15)) (-3915 (($ $) 92)) (-3760 (($ $) 68)) (-3886 (($ $) 88)) (-3737 (($ $) 64)) (-3946 (($ $) 96)) (-3783 (($ $) 72)) (-2412 (($ $) 62)) (-2840 (($ $) 60)) (-3960 (($ $) 98)) (-3795 (($ $) 74)) (-3930 (($ $) 94)) (-3771 (($ $) 70)) (-3901 (($ $) 90)) (-3749 (($ $) 66)) (-4044 (((-797) $) 48) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4004 (($ $) 104)) (-3836 (($ $) 80)) (-3975 (($ $) 100)) (-3808 (($ $) 76)) (-4035 (($ $) 108)) (-3861 (($ $) 84)) (-2608 (($ $) 110)) (-3873 (($ $) 86)) (-4018 (($ $) 106)) (-3848 (($ $) 82)) (-3989 (($ $) 102)) (-3823 (($ $) 78)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-385 (-525))) 58))) +(((-1162 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3760 (|#1| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3873 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -4035 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -2412 (|#1| |#1|)) (-15 -2840 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855))) (-15 -2464 ((-108) |#1|)) (-15 -4044 ((-797) |#1|))) (-1163 |#2|) (-976)) (T -1162)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3760 (|#1| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3873 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -4035 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -2412 (|#1| |#1|)) (-15 -2840 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4044 (|#1| |#2|)) (-15 -4044 (|#1| |#1|)) (-15 -4044 (|#1| (-385 (-525)))) (-15 -4044 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855))) (-15 -2464 ((-108) |#1|)) (-15 -4044 ((-797) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3122 (((-592 (-1004)) $) 74)) (-2818 (((-1090) $) 103)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-2609 (($ $) 52 (|has| |#1| (-517)))) (-1220 (((-108) $) 54 (|has| |#1| (-517)))) (-3948 (($ $ (-713)) 98) (($ $ (-713) (-713)) 97)) (-3423 (((-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 105)) (-3915 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) 19)) (-2975 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3886 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 155) (($ (-1071 |#1|)) 153)) (-3946 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) 17 T CONST)) (-3306 (($ $) 60)) (-1645 (((-3 $ "failed") $) 34)) (-3954 (($ $) 152)) (-3648 (((-886 |#1|) $ (-713)) 150) (((-886 |#1|) $ (-713) (-713)) 149)) (-3951 (((-108) $) 73)) (-1961 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-713) $) 100) (((-713) $ (-713)) 99)) (-2507 (((-108) $) 31)) (-2581 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-2633 (($ $ (-855)) 101)) (-2277 (($ (-1 |#1| (-525)) $) 151)) (-1432 (((-108) $) 62)) (-3097 (($ |#1| (-713)) 61) (($ $ (-1004) (-713)) 76) (($ $ (-592 (-1004)) (-592 (-713))) 75)) (-2868 (($ (-1 |#1| |#1|) $) 63)) (-2412 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) 65)) (-3286 ((|#1| $) 66)) (-1707 (((-1073) $) 9)) (-2313 (($ $) 147 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 146 (-3215 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3027 (((-1037) $) 10)) (-1539 (($ $ (-713)) 95)) (-2675 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2840 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2168 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-1496 ((|#1| $ (-713)) 104) (($ $ $) 81 (|has| (-713) (-1031)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-1486 (((-713) $) 64)) (-3960 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) 72)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3681 (((-1071 |#1|) $) 154)) (-2100 ((|#1| $ (-713)) 59)) (-1279 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2502 (((-713)) 29)) (-3448 ((|#1| $) 102)) (-4004 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3975 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-713)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ |#1|) 148 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525))))))) +(((-1163 |#1|) (-131) (-976)) (T -1163)) +((-4231 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-713)) (|:| |c| *3)))) (-4 *3 (-976)) (-4 *1 (-1163 *3)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1163 *3)) (-4 *3 (-976)) (-5 *2 (-1071 *3)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-4 *1 (-1163 *3)))) (-3954 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1163 *3)) (-4 *3 (-976)))) (-3648 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1163 *4)) (-4 *4 (-976)) (-5 *2 (-886 *4)))) (-3648 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1163 *4)) (-4 *4 (-976)) (-5 *2 (-886 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) (-2313 (*1 *1 *1 *2) (-3215 (-12 (-5 *2 (-1090)) (-4 *1 (-1163 *3)) (-4 *3 (-976)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1163 *3)) (-4 *3 (-976)) (-12 (|has| *3 (-15 -3122 ((-592 *2) *3))) (|has| *3 (-15 -2313 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525))))))))) +(-13 (-1150 |t#1| (-713)) (-10 -8 (-15 -4231 ($ (-1071 (-2 (|:| |k| (-713)) (|:| |c| |t#1|))))) (-15 -3681 ((-1071 |t#1|) $)) (-15 -4231 ($ (-1071 |t#1|))) (-15 -3954 ($ $)) (-15 -2277 ($ (-1 |t#1| (-525)) $)) (-15 -3648 ((-886 |t#1|) $ (-713))) (-15 -3648 ((-886 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-341)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2313 ($ $)) (IF (|has| |t#1| (-15 -2313 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3122 ((-592 (-1090)) |t#1|))) (-15 -2313 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1112)) (IF (|has| |t#1| (-892)) (IF (|has| |t#1| (-29 (-525))) (-15 -2313 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-933)) (-6 (-1112))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-713) |#1|))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-713) (-1031)) ((-269) |has| |#1| (-517)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| #0# (-1004)) . T) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-982 #1#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3215 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1150 |#1| #0#) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3122 (((-592 (-1004)) $) NIL)) (-2818 (((-1090) $) 87)) (-2084 (((-1145 |#2| |#1|) $ (-713)) 73)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-2609 (($ $) NIL (|has| |#1| (-517)))) (-1220 (((-108) $) 137 (|has| |#1| (-517)))) (-3948 (($ $ (-713)) 122) (($ $ (-713) (-713)) 124)) (-3423 (((-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 42)) (-3915 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3760 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3004 (((-3 $ "failed") $ $) NIL)) (-2975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3886 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3737 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4231 (($ (-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 53) (($ (-1071 |#1|)) NIL)) (-3946 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3783 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1957 (($) NIL T CONST)) (-3321 (($ $) 128)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-3954 (($ $) 135)) (-3648 (((-886 |#1|) $ (-713)) 63) (((-886 |#1|) $ (-713) (-713)) 65)) (-3951 (((-108) $) NIL)) (-1961 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2158 (((-713) $) NIL) (((-713) $ (-713)) NIL)) (-2507 (((-108) $) NIL)) (-2524 (($ $) 112)) (-2581 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1797 (($ (-525) (-525) $) 130)) (-2633 (($ $ (-855)) 134)) (-2277 (($ (-1 |#1| (-525)) $) 106)) (-1432 (((-108) $) NIL)) (-3097 (($ |#1| (-713)) 15) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-2868 (($ (-1 |#1| |#1|) $) 94)) (-2412 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3277 (($ $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-2534 (($ $) 110)) (-1848 (($ $) 108)) (-1859 (($ (-525) (-525) $) 132)) (-2313 (($ $) 145 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 151 (-3215 (-12 (|has| |#1| (-15 -2313 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3122 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 146 (|has| |#1| (-37 (-385 (-525)))))) (-3027 (((-1037) $) NIL)) (-2757 (($ $ (-525) (-525)) 116)) (-1539 (($ $ (-713)) 118)) (-2675 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2840 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2721 (($ $) 114)) (-2168 (((-1071 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-1496 ((|#1| $ (-713)) 91) (($ $ $) 126 (|has| (-713) (-1031)))) (-1576 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) 103 (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1168 |#2|)) 99)) (-1486 (((-713) $) NIL)) (-3960 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3795 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3930 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3771 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3901 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3749 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2789 (($ $) 120)) (-4044 (((-797) $) NIL) (($ (-525)) 24) (($ (-385 (-525))) 143 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 23 (|has| |#1| (-160))) (($ (-1145 |#2| |#1|)) 80) (($ (-1168 |#2|)) 20)) (-3681 (((-1071 |#1|) $) NIL)) (-2100 ((|#1| $ (-713)) 90)) (-1279 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2502 (((-713)) NIL)) (-3448 ((|#1| $) 88)) (-4004 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3836 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3787 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3975 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3808 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4035 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3861 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2371 ((|#1| $ (-713)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -4044 (|#1| (-1090))))))) (-2608 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3873 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4018 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3848 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3989 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3823 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 17 T CONST)) (-1449 (($) 13 T CONST)) (-1990 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3899 (((-108) $ $) NIL)) (-4047 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) 102)) (-4017 (($ $ $) 18)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 140 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))))) +(((-1164 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-10 -8 (-15 -4044 ($ (-1145 |#2| |#1|))) (-15 -2084 ((-1145 |#2| |#1|) $ (-713))) (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (-15 -1848 ($ $)) (-15 -2534 ($ $)) (-15 -2524 ($ $)) (-15 -2721 ($ $)) (-15 -2757 ($ $ (-525) (-525))) (-15 -3321 ($ $)) (-15 -1797 ($ (-525) (-525) $)) (-15 -1859 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1164)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-1145 *4 *3)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5)))) (-2084 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1145 *5 *4)) (-5 *1 (-1164 *4 *5 *6)) (-4 *4 (-976)) (-14 *5 (-1090)) (-14 *6 *4))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-1576 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-1848 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-2534 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-2524 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-2721 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-2757 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3))) (-3321 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-1797 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3))) (-1859 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))) +(-13 (-1163 |#1|) (-10 -8 (-15 -4044 ($ (-1145 |#2| |#1|))) (-15 -2084 ((-1145 |#2| |#1|) $ (-713))) (-15 -4044 ($ (-1168 |#2|))) (-15 -1576 ($ $ (-1168 |#2|))) (-15 -1848 ($ $)) (-15 -2534 ($ $)) (-15 -2524 ($ $)) (-15 -2721 ($ $)) (-15 -2757 ($ $ (-525) (-525))) (-15 -3321 ($ $)) (-15 -1797 ($ (-525) (-525) $)) (-15 -1859 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2313 ($ $ (-1168 |#2|))) |%noBranch|))) +((-2801 (((-1 (-1071 |#1|) (-592 (-1071 |#1|))) (-1 |#2| (-592 |#2|))) 24)) (-2361 (((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3357 (((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|)) 13)) (-3418 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2663 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3442 ((|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|)) 54)) (-1290 (((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))) 61)) (-4070 ((|#2| |#2| |#2|) 43))) +(((-1165 |#1| |#2|) (-10 -7 (-15 -3357 ((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|))) (-15 -2361 ((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2801 ((-1 (-1071 |#1|) (-592 (-1071 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -4070 (|#2| |#2| |#2|)) (-15 -2663 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3418 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3442 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -1290 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))))) (-37 (-385 (-525))) (-1163 |#1|)) (T -1165)) +((-1290 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6)))) (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1163 *5)) (-5 *2 (-592 *6)) (-5 *1 (-1165 *5 *6)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5)) (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1163 *5)) (-5 *1 (-1165 *5 *2)))) (-3418 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-4070 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1165 *3 *2)) (-4 *2 (-1163 *3)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1163 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1071 *4) (-592 (-1071 *4)))) (-5 *1 (-1165 *4 *5)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1163 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1071 *4) (-1071 *4) (-1071 *4))) (-5 *1 (-1165 *4 *5)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1163 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1165 *4 *5))))) +(-10 -7 (-15 -3357 ((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|))) (-15 -2361 ((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2801 ((-1 (-1071 |#1|) (-592 (-1071 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -4070 (|#2| |#2| |#2|)) (-15 -2663 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3418 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3442 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -1290 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))))) +((-2693 ((|#2| |#4| (-713)) 30)) (-2768 ((|#4| |#2|) 25)) (-1882 ((|#4| (-385 |#2|)) 52 (|has| |#1| (-517)))) (-1754 (((-1 |#4| (-592 |#4|)) |#3|) 46))) +(((-1166 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2768 (|#4| |#2|)) (-15 -2693 (|#2| |#4| (-713))) (-15 -1754 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -1882 (|#4| (-385 |#2|))) |%noBranch|)) (-976) (-1148 |#1|) (-602 |#2|) (-1163 |#1|)) (T -1166)) +((-1882 (*1 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-517)) (-4 *4 (-976)) (-4 *2 (-1163 *4)) (-5 *1 (-1166 *4 *5 *6 *2)) (-4 *6 (-602 *5)))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *5 (-1148 *4)) (-5 *2 (-1 *6 (-592 *6))) (-5 *1 (-1166 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1163 *4)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-976)) (-4 *2 (-1148 *5)) (-5 *1 (-1166 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1163 *5)))) (-2768 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *3 (-1148 *4)) (-4 *2 (-1163 *4)) (-5 *1 (-1166 *4 *3 *5 *2)) (-4 *5 (-602 *3))))) +(-10 -7 (-15 -2768 (|#4| |#2|)) (-15 -2693 (|#2| |#4| (-713))) (-15 -1754 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -1882 (|#4| (-385 |#2|))) |%noBranch|)) +NIL +(((-1167) (-131)) (T -1167)) +NIL +(-13 (-10 -7 (-6 -2341))) +((-4028 (((-108) $ $) NIL)) (-2818 (((-1090)) 12)) (-1707 (((-1073) $) 17)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 11) (((-1090) $) 8)) (-3899 (((-108) $ $) 14))) +(((-1168 |#1|) (-13 (-1019) (-566 (-1090)) (-10 -8 (-15 -4044 ((-1090) $)) (-15 -2818 ((-1090))))) (-1090)) (T -1168)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1168 *3)) (-14 *3 *2))) (-2818 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1168 *3)) (-14 *3 *2)))) +(-13 (-1019) (-566 (-1090)) (-10 -8 (-15 -4044 ((-1090) $)) (-15 -2818 ((-1090))))) +((-2957 (($ (-713)) 18)) (-1336 (((-632 |#2|) $ $) 40)) (-3597 ((|#2| $) 48)) (-2520 ((|#2| $) 47)) (-1580 ((|#2| $ $) 35)) (-2331 (($ $ $) 44)) (-4033 (($ $) 22) (($ $ $) 28)) (-4017 (($ $ $) 15)) (* (($ (-525) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1169 |#1| |#2|) (-10 -8 (-15 -3597 (|#2| |#1|)) (-15 -2520 (|#2| |#1|)) (-15 -2331 (|#1| |#1| |#1|)) (-15 -1336 ((-632 |#2|) |#1| |#1|)) (-15 -1580 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 -2957 (|#1| (-713))) (-15 -4017 (|#1| |#1| |#1|))) (-1170 |#2|) (-1126)) (T -1169)) +NIL +(-10 -8 (-15 -3597 (|#2| |#1|)) (-15 -2520 (|#2| |#1|)) (-15 -2331 (|#1| |#1| |#1|)) (-15 -1336 ((-632 |#2|) |#1| |#1|)) (-15 -1580 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1|)) (-15 -2957 (|#1| (-713))) (-15 -4017 (|#1| |#1| |#1|))) +((-4028 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-2957 (($ (-713)) 112 (|has| |#1| (-23)))) (-2792 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) 8)) (-1230 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1957 (($) 7 T CONST)) (-1626 (($ $) 90 (|has| $ (-6 -4255)))) (-3263 (($ $) 100)) (-1716 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2591 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) 51)) (-1930 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1019)))) (-3781 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-1336 (((-632 |#1|) $ $) 105 (|has| |#1| (-976)))) (-3248 (($ (-713) |#1|) 69)) (-2010 (((-108) $ (-713)) 9)) (-2179 (((-525) $) 43 (|has| (-525) (-789)))) (-1260 (($ $ $) 87 (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2112 (((-525) $) 44 (|has| (-525) (-789)))) (-2154 (($ $ $) 86 (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3597 ((|#1| $) 102 (-12 (|has| |#1| (-976)) (|has| |#1| (-933))))) (-2350 (((-108) $ (-713)) 10)) (-2520 ((|#1| $) 103 (-12 (|has| |#1| (-976)) (|has| |#1| (-933))))) (-1707 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-2379 (((-592 (-525)) $) 46)) (-2030 (((-108) (-525) $) 47)) (-3027 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1683 ((|#1| $) 42 (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1614 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) 14)) (-2024 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) 48)) (-3086 (((-108) $) 11)) (-3266 (($) 12)) (-1496 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-1580 ((|#1| $ $) 106 (|has| |#1| (-976)))) (-2697 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2331 (($ $ $) 104 (|has| |#1| (-976)))) (-3053 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-4038 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-1261 (($ $) 13)) (-2923 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 70)) (-1810 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-4044 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3944 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3899 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-3959 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3928 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4033 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4017 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-1696 (((-713) $) 6 (|has| $ (-6 -4254))))) +(((-1170 |#1|) (-131) (-1126)) (T -1170)) +((-4017 (*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-25)))) (-2957 (*1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1170 *3)) (-4 *3 (-23)) (-4 *3 (-1126)))) (-4033 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-21)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1170 *3)) (-4 *3 (-1126)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) (-1580 (*1 *2 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-976)))) (-1336 (*1 *2 *1 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1126)) (-4 *3 (-976)) (-5 *2 (-632 *3)))) (-2331 (*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-976)))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-933)) (-4 *2 (-976)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-933)) (-4 *2 (-976))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4017 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2957 ($ (-713))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4033 ($ $)) (-15 -4033 ($ $ $)) (-15 * ($ (-525) $))) |%noBranch|) (IF (|has| |t#1| (-669)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-976)) (PROGN (-15 -1580 (|t#1| $ $)) (-15 -1336 ((-632 |t#1|) $ $)) (-15 -2331 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-933)) (IF (|has| |t#1| (-976)) (PROGN (-15 -2520 (|t#1| $)) (-15 -3597 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-33) . T) ((-97) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1019) -3215 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1126) . T)) +((-2225 (((-1172 |#2|) (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|) 13)) (-3336 ((|#2| (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|) 15)) (-2868 (((-3 (-1172 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1172 |#1|)) 28) (((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|)) 18))) +(((-1171 |#1| |#2|) (-10 -7 (-15 -2225 ((-1172 |#2|) (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|)) (-15 -3336 (|#2| (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|)) (-15 -2868 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (-15 -2868 ((-3 (-1172 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1172 |#1|)))) (-1126) (-1126)) (T -1171)) +((-2868 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1172 *6)) (-5 *1 (-1171 *5 *6)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1172 *6)) (-5 *1 (-1171 *5 *6)))) (-3336 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1172 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-1171 *5 *2)))) (-2225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1172 *6)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-5 *2 (-1172 *5)) (-5 *1 (-1171 *6 *5))))) +(-10 -7 (-15 -2225 ((-1172 |#2|) (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|)) (-15 -3336 (|#2| (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|)) (-15 -2868 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (-15 -2868 ((-3 (-1172 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1172 |#1|)))) +((-4028 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2957 (($ (-713)) NIL (|has| |#1| (-23)))) (-3303 (($ (-592 |#1|)) 9)) (-2792 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3746 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1943 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-1473 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-2583 (((-108) $ (-713)) NIL)) (-1230 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-1249 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1957 (($) NIL T CONST)) (-1626 (($ $) NIL (|has| $ (-6 -4255)))) (-3263 (($ $) NIL)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2591 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3336 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2549 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2488 ((|#1| $ (-525)) NIL)) (-1930 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-3781 (((-592 |#1|) $) 15 (|has| $ (-6 -4254)))) (-1336 (((-632 |#1|) $ $) NIL (|has| |#1| (-976)))) (-3248 (($ (-713) |#1|) NIL)) (-2010 (((-108) $ (-713)) NIL)) (-2179 (((-525) $) NIL (|has| (-525) (-789)))) (-1260 (($ $ $) NIL (|has| |#1| (-789)))) (-1440 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-2679 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1883 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2112 (((-525) $) NIL (|has| (-525) (-789)))) (-2154 (($ $ $) NIL (|has| |#1| (-789)))) (-2540 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3597 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-2350 (((-108) $ (-713)) NIL)) (-2520 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-1707 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2234 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2379 (((-592 (-525)) $) NIL)) (-2030 (((-108) (-525) $) NIL)) (-3027 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1683 ((|#1| $) NIL (|has| (-525) (-789)))) (-3611 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3669 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-3063 (((-108) $ $) NIL)) (-2024 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4100 (((-592 |#1|) $) NIL)) (-3086 (((-108) $) NIL)) (-3266 (($) NIL)) (-1496 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-1580 ((|#1| $ $) NIL (|has| |#1| (-976)))) (-2697 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2331 (($ $ $) NIL (|has| |#1| (-976)))) (-3053 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4038 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) 19 (|has| |#1| (-567 (-501))))) (-4059 (($ (-592 |#1|)) 8)) (-1810 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-4044 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2443 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3973 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3944 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3899 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3928 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4033 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4017 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1172 |#1|) (-13 (-1170 |#1|) (-10 -8 (-15 -3303 ($ (-592 |#1|))))) (-1126)) (T -1172)) +((-3303 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1172 *3))))) +(-13 (-1170 |#1|) (-10 -8 (-15 -3303 ($ (-592 |#1|))))) +((-4028 (((-108) $ $) NIL)) (-4182 (((-1073) $ (-1073)) 90) (((-1073) $ (-1073) (-1073)) 88) (((-1073) $ (-1073) (-592 (-1073))) 87)) (-2715 (($) 59)) (-1874 (((-1177) $ (-445) (-855)) 45)) (-3855 (((-1177) $ (-855) (-1073)) 73) (((-1177) $ (-855) (-808)) 74)) (-1973 (((-1177) $ (-855) (-357) (-357)) 48)) (-2367 (((-1177) $ (-1073)) 69)) (-3911 (((-1177) $ (-855) (-1073)) 78)) (-2409 (((-1177) $ (-855) (-357) (-357)) 49)) (-3327 (((-1177) $ (-855) (-855)) 46)) (-4152 (((-1177) $) 70)) (-3922 (((-1177) $ (-855) (-1073)) 77)) (-2246 (((-1177) $ (-445) (-855)) 31)) (-2017 (((-1177) $ (-855) (-1073)) 76)) (-3173 (((-592 (-242)) $) 23) (($ $ (-592 (-242))) 24)) (-1687 (((-1177) $ (-713) (-713)) 43)) (-3270 (($ $) 60) (($ (-445) (-592 (-242))) 61)) (-1707 (((-1073) $) NIL)) (-3160 (((-525) $) 38)) (-3027 (((-1037) $) NIL)) (-1975 (((-1172 (-3 (-445) "undefined")) $) 37)) (-4102 (((-1172 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2017 (-525)) (|:| -1361 (-525)) (|:| |spline| (-525)) (|:| -2681 (-525)) (|:| |axesColor| (-808)) (|:| -3855 (-525)) (|:| |unitsColor| (-808)) (|:| |showing| (-525)))) $) 36)) (-1853 (((-1177) $ (-855) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-808) (-525) (-808) (-525)) 68)) (-1726 (((-592 (-877 (-205))) $) NIL)) (-2647 (((-445) $ (-855)) 33)) (-2881 (((-1177) $ (-713) (-713) (-855) (-855)) 40)) (-1791 (((-1177) $ (-1073)) 79)) (-1361 (((-1177) $ (-855) (-1073)) 75)) (-4044 (((-797) $) 85)) (-3671 (((-1177) $) 80)) (-2681 (((-1177) $ (-855) (-1073)) 71) (((-1177) $ (-855) (-808)) 72)) (-3899 (((-108) $ $) NIL))) +(((-1173) (-13 (-1019) (-10 -8 (-15 -1726 ((-592 (-877 (-205))) $)) (-15 -2715 ($)) (-15 -3270 ($ $)) (-15 -3173 ((-592 (-242)) $)) (-15 -3173 ($ $ (-592 (-242)))) (-15 -3270 ($ (-445) (-592 (-242)))) (-15 -1853 ((-1177) $ (-855) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-808) (-525) (-808) (-525))) (-15 -4102 ((-1172 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2017 (-525)) (|:| -1361 (-525)) (|:| |spline| (-525)) (|:| -2681 (-525)) (|:| |axesColor| (-808)) (|:| -3855 (-525)) (|:| |unitsColor| (-808)) (|:| |showing| (-525)))) $)) (-15 -1975 ((-1172 (-3 (-445) "undefined")) $)) (-15 -2367 ((-1177) $ (-1073))) (-15 -2246 ((-1177) $ (-445) (-855))) (-15 -2647 ((-445) $ (-855))) (-15 -2681 ((-1177) $ (-855) (-1073))) (-15 -2681 ((-1177) $ (-855) (-808))) (-15 -3855 ((-1177) $ (-855) (-1073))) (-15 -3855 ((-1177) $ (-855) (-808))) (-15 -2017 ((-1177) $ (-855) (-1073))) (-15 -3922 ((-1177) $ (-855) (-1073))) (-15 -1361 ((-1177) $ (-855) (-1073))) (-15 -1791 ((-1177) $ (-1073))) (-15 -3671 ((-1177) $)) (-15 -2881 ((-1177) $ (-713) (-713) (-855) (-855))) (-15 -2409 ((-1177) $ (-855) (-357) (-357))) (-15 -1973 ((-1177) $ (-855) (-357) (-357))) (-15 -3911 ((-1177) $ (-855) (-1073))) (-15 -1687 ((-1177) $ (-713) (-713))) (-15 -1874 ((-1177) $ (-445) (-855))) (-15 -3327 ((-1177) $ (-855) (-855))) (-15 -4182 ((-1073) $ (-1073))) (-15 -4182 ((-1073) $ (-1073) (-1073))) (-15 -4182 ((-1073) $ (-1073) (-592 (-1073)))) (-15 -4152 ((-1177) $)) (-15 -3160 ((-525) $)) (-15 -4044 ((-797) $))))) (T -1173)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1173)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-592 (-877 (-205)))) (-5 *1 (-1173)))) (-2715 (*1 *1) (-5 *1 (-1173))) (-3270 (*1 *1 *1) (-5 *1 (-1173))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1173)))) (-3173 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1173)))) (-3270 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1173)))) (-1853 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-855)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-1172 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2017 (-525)) (|:| -1361 (-525)) (|:| |spline| (-525)) (|:| -2681 (-525)) (|:| |axesColor| (-808)) (|:| -3855 (-525)) (|:| |unitsColor| (-808)) (|:| |showing| (-525))))) (-5 *1 (-1173)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-1172 (-3 (-445) "undefined"))) (-5 *1 (-1173)))) (-2367 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2246 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2647 (*1 *2 *1 *3) (-12 (-5 *3 (-855)) (-5 *2 (-445)) (-5 *1 (-1173)))) (-2681 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2681 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3855 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3855 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2017 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3922 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-1361 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-1791 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2881 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2409 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-855)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-1973 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-855)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3911 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-1687 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-1874 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3327 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-4182 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1173)))) (-4182 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1173)))) (-4182 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1173)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1173))))) +(-13 (-1019) (-10 -8 (-15 -1726 ((-592 (-877 (-205))) $)) (-15 -2715 ($)) (-15 -3270 ($ $)) (-15 -3173 ((-592 (-242)) $)) (-15 -3173 ($ $ (-592 (-242)))) (-15 -3270 ($ (-445) (-592 (-242)))) (-15 -1853 ((-1177) $ (-855) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-808) (-525) (-808) (-525))) (-15 -4102 ((-1172 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2017 (-525)) (|:| -1361 (-525)) (|:| |spline| (-525)) (|:| -2681 (-525)) (|:| |axesColor| (-808)) (|:| -3855 (-525)) (|:| |unitsColor| (-808)) (|:| |showing| (-525)))) $)) (-15 -1975 ((-1172 (-3 (-445) "undefined")) $)) (-15 -2367 ((-1177) $ (-1073))) (-15 -2246 ((-1177) $ (-445) (-855))) (-15 -2647 ((-445) $ (-855))) (-15 -2681 ((-1177) $ (-855) (-1073))) (-15 -2681 ((-1177) $ (-855) (-808))) (-15 -3855 ((-1177) $ (-855) (-1073))) (-15 -3855 ((-1177) $ (-855) (-808))) (-15 -2017 ((-1177) $ (-855) (-1073))) (-15 -3922 ((-1177) $ (-855) (-1073))) (-15 -1361 ((-1177) $ (-855) (-1073))) (-15 -1791 ((-1177) $ (-1073))) (-15 -3671 ((-1177) $)) (-15 -2881 ((-1177) $ (-713) (-713) (-855) (-855))) (-15 -2409 ((-1177) $ (-855) (-357) (-357))) (-15 -1973 ((-1177) $ (-855) (-357) (-357))) (-15 -3911 ((-1177) $ (-855) (-1073))) (-15 -1687 ((-1177) $ (-713) (-713))) (-15 -1874 ((-1177) $ (-445) (-855))) (-15 -3327 ((-1177) $ (-855) (-855))) (-15 -4182 ((-1073) $ (-1073))) (-15 -4182 ((-1073) $ (-1073) (-1073))) (-15 -4182 ((-1073) $ (-1073) (-592 (-1073)))) (-15 -4152 ((-1177) $)) (-15 -3160 ((-525) $)) (-15 -4044 ((-797) $)))) +((-4028 (((-108) $ $) NIL)) (-2311 (((-1177) $ (-357)) 140) (((-1177) $ (-357) (-357) (-357)) 141)) (-4182 (((-1073) $ (-1073)) 148) (((-1073) $ (-1073) (-1073)) 146) (((-1073) $ (-1073) (-592 (-1073))) 145)) (-3723 (($) 50)) (-2101 (((-1177) $ (-357) (-357) (-357) (-357) (-357)) 116) (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $) 114) (((-1177) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 115) (((-1177) $ (-525) (-525) (-357) (-357) (-357)) 117) (((-1177) $ (-357) (-357)) 118) (((-1177) $ (-357) (-357) (-357)) 125)) (-2806 (((-357)) 97) (((-357) (-357)) 98)) (-2976 (((-357)) 92) (((-357) (-357)) 94)) (-1641 (((-357)) 95) (((-357) (-357)) 96)) (-4184 (((-357)) 101) (((-357) (-357)) 102)) (-1237 (((-357)) 99) (((-357) (-357)) 100)) (-1973 (((-1177) $ (-357) (-357)) 142)) (-2367 (((-1177) $ (-1073)) 126)) (-1843 (((-1050 (-205)) $) 51) (($ $ (-1050 (-205))) 52)) (-4118 (((-1177) $ (-1073)) 154)) (-2944 (((-1177) $ (-1073)) 155)) (-2031 (((-1177) $ (-357) (-357)) 124) (((-1177) $ (-525) (-525)) 139)) (-3327 (((-1177) $ (-855) (-855)) 132)) (-4152 (((-1177) $) 112)) (-2708 (((-1177) $ (-1073)) 153)) (-1966 (((-1177) $ (-1073)) 109)) (-3173 (((-592 (-242)) $) 53) (($ $ (-592 (-242))) 54)) (-1687 (((-1177) $ (-713) (-713)) 131)) (-2516 (((-1177) $ (-713) (-877 (-205))) 160)) (-3064 (($ $) 56) (($ (-1050 (-205)) (-1073)) 57) (($ (-1050 (-205)) (-592 (-242))) 58)) (-2302 (((-1177) $ (-357) (-357) (-357)) 106)) (-1707 (((-1073) $) NIL)) (-3160 (((-525) $) 103)) (-4109 (((-1177) $ (-357)) 143)) (-3996 (((-1177) $ (-357)) 158)) (-3027 (((-1037) $) NIL)) (-3585 (((-1177) $ (-357)) 157)) (-3115 (((-1177) $ (-1073)) 111)) (-2881 (((-1177) $ (-713) (-713) (-855) (-855)) 130)) (-2787 (((-1177) $ (-1073)) 108)) (-1791 (((-1177) $ (-1073)) 110)) (-3451 (((-1177) $ (-146) (-146)) 129)) (-4044 (((-797) $) 137)) (-3671 (((-1177) $) 113)) (-3085 (((-1177) $ (-1073)) 156)) (-2681 (((-1177) $ (-1073)) 107)) (-3899 (((-108) $ $) NIL))) +(((-1174) (-13 (-1019) (-10 -8 (-15 -2976 ((-357))) (-15 -2976 ((-357) (-357))) (-15 -1641 ((-357))) (-15 -1641 ((-357) (-357))) (-15 -2806 ((-357))) (-15 -2806 ((-357) (-357))) (-15 -1237 ((-357))) (-15 -1237 ((-357) (-357))) (-15 -4184 ((-357))) (-15 -4184 ((-357) (-357))) (-15 -3723 ($)) (-15 -3064 ($ $)) (-15 -3064 ($ (-1050 (-205)) (-1073))) (-15 -3064 ($ (-1050 (-205)) (-592 (-242)))) (-15 -1843 ((-1050 (-205)) $)) (-15 -1843 ($ $ (-1050 (-205)))) (-15 -2516 ((-1177) $ (-713) (-877 (-205)))) (-15 -3173 ((-592 (-242)) $)) (-15 -3173 ($ $ (-592 (-242)))) (-15 -1687 ((-1177) $ (-713) (-713))) (-15 -3327 ((-1177) $ (-855) (-855))) (-15 -2367 ((-1177) $ (-1073))) (-15 -2881 ((-1177) $ (-713) (-713) (-855) (-855))) (-15 -2101 ((-1177) $ (-357) (-357) (-357) (-357) (-357))) (-15 -2101 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -2101 ((-1177) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2101 ((-1177) $ (-525) (-525) (-357) (-357) (-357))) (-15 -2101 ((-1177) $ (-357) (-357))) (-15 -2101 ((-1177) $ (-357) (-357) (-357))) (-15 -1791 ((-1177) $ (-1073))) (-15 -2681 ((-1177) $ (-1073))) (-15 -2787 ((-1177) $ (-1073))) (-15 -1966 ((-1177) $ (-1073))) (-15 -3115 ((-1177) $ (-1073))) (-15 -2031 ((-1177) $ (-357) (-357))) (-15 -2031 ((-1177) $ (-525) (-525))) (-15 -2311 ((-1177) $ (-357))) (-15 -2311 ((-1177) $ (-357) (-357) (-357))) (-15 -1973 ((-1177) $ (-357) (-357))) (-15 -2708 ((-1177) $ (-1073))) (-15 -3585 ((-1177) $ (-357))) (-15 -3996 ((-1177) $ (-357))) (-15 -4118 ((-1177) $ (-1073))) (-15 -2944 ((-1177) $ (-1073))) (-15 -3085 ((-1177) $ (-1073))) (-15 -2302 ((-1177) $ (-357) (-357) (-357))) (-15 -4109 ((-1177) $ (-357))) (-15 -4152 ((-1177) $)) (-15 -3451 ((-1177) $ (-146) (-146))) (-15 -4182 ((-1073) $ (-1073))) (-15 -4182 ((-1073) $ (-1073) (-1073))) (-15 -4182 ((-1073) $ (-1073) (-592 (-1073)))) (-15 -3671 ((-1177) $)) (-15 -3160 ((-525) $))))) (T -1174)) +((-2976 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-1641 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2806 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2806 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-1237 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-1237 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-4184 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-4184 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-3723 (*1 *1) (-5 *1 (-1174))) (-3064 (*1 *1 *1) (-5 *1 (-1174))) (-3064 (*1 *1 *2 *3) (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-1073)) (-5 *1 (-1174)))) (-3064 (*1 *1 *2 *3) (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1174)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1174)))) (-1843 (*1 *1 *1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1174)))) (-2516 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174)))) (-3173 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174)))) (-1687 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3327 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2367 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2881 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2101 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-1174)))) (-2101 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2101 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2101 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2101 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1791 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2681 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1966 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2031 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2031 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2311 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1973 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3585 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3996 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-4118 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3085 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2302 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3451 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-146)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-4182 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1174)))) (-4182 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1174)))) (-4182 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1174)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1174))))) +(-13 (-1019) (-10 -8 (-15 -2976 ((-357))) (-15 -2976 ((-357) (-357))) (-15 -1641 ((-357))) (-15 -1641 ((-357) (-357))) (-15 -2806 ((-357))) (-15 -2806 ((-357) (-357))) (-15 -1237 ((-357))) (-15 -1237 ((-357) (-357))) (-15 -4184 ((-357))) (-15 -4184 ((-357) (-357))) (-15 -3723 ($)) (-15 -3064 ($ $)) (-15 -3064 ($ (-1050 (-205)) (-1073))) (-15 -3064 ($ (-1050 (-205)) (-592 (-242)))) (-15 -1843 ((-1050 (-205)) $)) (-15 -1843 ($ $ (-1050 (-205)))) (-15 -2516 ((-1177) $ (-713) (-877 (-205)))) (-15 -3173 ((-592 (-242)) $)) (-15 -3173 ($ $ (-592 (-242)))) (-15 -1687 ((-1177) $ (-713) (-713))) (-15 -3327 ((-1177) $ (-855) (-855))) (-15 -2367 ((-1177) $ (-1073))) (-15 -2881 ((-1177) $ (-713) (-713) (-855) (-855))) (-15 -2101 ((-1177) $ (-357) (-357) (-357) (-357) (-357))) (-15 -2101 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -2101 ((-1177) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2101 ((-1177) $ (-525) (-525) (-357) (-357) (-357))) (-15 -2101 ((-1177) $ (-357) (-357))) (-15 -2101 ((-1177) $ (-357) (-357) (-357))) (-15 -1791 ((-1177) $ (-1073))) (-15 -2681 ((-1177) $ (-1073))) (-15 -2787 ((-1177) $ (-1073))) (-15 -1966 ((-1177) $ (-1073))) (-15 -3115 ((-1177) $ (-1073))) (-15 -2031 ((-1177) $ (-357) (-357))) (-15 -2031 ((-1177) $ (-525) (-525))) (-15 -2311 ((-1177) $ (-357))) (-15 -2311 ((-1177) $ (-357) (-357) (-357))) (-15 -1973 ((-1177) $ (-357) (-357))) (-15 -2708 ((-1177) $ (-1073))) (-15 -3585 ((-1177) $ (-357))) (-15 -3996 ((-1177) $ (-357))) (-15 -4118 ((-1177) $ (-1073))) (-15 -2944 ((-1177) $ (-1073))) (-15 -3085 ((-1177) $ (-1073))) (-15 -2302 ((-1177) $ (-357) (-357) (-357))) (-15 -4109 ((-1177) $ (-357))) (-15 -4152 ((-1177) $)) (-15 -3451 ((-1177) $ (-146) (-146))) (-15 -4182 ((-1073) $ (-1073))) (-15 -4182 ((-1073) $ (-1073) (-1073))) (-15 -4182 ((-1073) $ (-1073) (-592 (-1073)))) (-15 -3671 ((-1177) $)) (-15 -3160 ((-525) $)))) +((-2045 (((-592 (-1073)) (-592 (-1073))) 94) (((-592 (-1073))) 90)) (-1435 (((-592 (-1073))) 88)) (-1395 (((-592 (-855)) (-592 (-855))) 63) (((-592 (-855))) 60)) (-2825 (((-592 (-713)) (-592 (-713))) 57) (((-592 (-713))) 53)) (-3779 (((-1177)) 65)) (-1735 (((-855) (-855)) 81) (((-855)) 80)) (-3095 (((-855) (-855)) 79) (((-855)) 78)) (-1845 (((-808) (-808)) 75) (((-808)) 74)) (-4056 (((-205)) 85) (((-205) (-357)) 87)) (-1638 (((-855)) 82) (((-855) (-855)) 83)) (-4058 (((-855) (-855)) 77) (((-855)) 76)) (-2116 (((-808) (-808)) 69) (((-808)) 67)) (-1612 (((-808) (-808)) 71) (((-808)) 70)) (-2333 (((-808) (-808)) 73) (((-808)) 72))) +(((-1175) (-10 -7 (-15 -2116 ((-808))) (-15 -2116 ((-808) (-808))) (-15 -1612 ((-808))) (-15 -1612 ((-808) (-808))) (-15 -2333 ((-808))) (-15 -2333 ((-808) (-808))) (-15 -1845 ((-808))) (-15 -1845 ((-808) (-808))) (-15 -4058 ((-855))) (-15 -4058 ((-855) (-855))) (-15 -2825 ((-592 (-713)))) (-15 -2825 ((-592 (-713)) (-592 (-713)))) (-15 -1395 ((-592 (-855)))) (-15 -1395 ((-592 (-855)) (-592 (-855)))) (-15 -3779 ((-1177))) (-15 -2045 ((-592 (-1073)))) (-15 -2045 ((-592 (-1073)) (-592 (-1073)))) (-15 -1435 ((-592 (-1073)))) (-15 -3095 ((-855))) (-15 -1735 ((-855))) (-15 -3095 ((-855) (-855))) (-15 -1735 ((-855) (-855))) (-15 -1638 ((-855) (-855))) (-15 -1638 ((-855))) (-15 -4056 ((-205) (-357))) (-15 -4056 ((-205))))) (T -1175)) +((-4056 (*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1175)))) (-4056 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1175)))) (-1638 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1735 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-3095 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1435 (*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175)))) (-2045 (*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175)))) (-3779 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1175)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1175)))) (-1395 (*1 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1175)))) (-2825 (*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1175)))) (-2825 (*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1175)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-4058 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-1845 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-2333 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-1612 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-2116 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-2116 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175))))) +(-10 -7 (-15 -2116 ((-808))) (-15 -2116 ((-808) (-808))) (-15 -1612 ((-808))) (-15 -1612 ((-808) (-808))) (-15 -2333 ((-808))) (-15 -2333 ((-808) (-808))) (-15 -1845 ((-808))) (-15 -1845 ((-808) (-808))) (-15 -4058 ((-855))) (-15 -4058 ((-855) (-855))) (-15 -2825 ((-592 (-713)))) (-15 -2825 ((-592 (-713)) (-592 (-713)))) (-15 -1395 ((-592 (-855)))) (-15 -1395 ((-592 (-855)) (-592 (-855)))) (-15 -3779 ((-1177))) (-15 -2045 ((-592 (-1073)))) (-15 -2045 ((-592 (-1073)) (-592 (-1073)))) (-15 -1435 ((-592 (-1073)))) (-15 -3095 ((-855))) (-15 -1735 ((-855))) (-15 -3095 ((-855) (-855))) (-15 -1735 ((-855) (-855))) (-15 -1638 ((-855) (-855))) (-15 -1638 ((-855))) (-15 -4056 ((-205) (-357))) (-15 -4056 ((-205)))) +((-1815 (((-445) (-592 (-592 (-877 (-205)))) (-592 (-242))) 21) (((-445) (-592 (-592 (-877 (-205))))) 20) (((-445) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242))) 19)) (-1621 (((-1173) (-592 (-592 (-877 (-205)))) (-592 (-242))) 27) (((-1173) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242))) 26)) (-4044 (((-1173) (-445)) 38))) +(((-1176) (-10 -7 (-15 -1815 ((-445) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242)))) (-15 -1815 ((-445) (-592 (-592 (-877 (-205)))))) (-15 -1815 ((-445) (-592 (-592 (-877 (-205)))) (-592 (-242)))) (-15 -1621 ((-1173) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242)))) (-15 -1621 ((-1173) (-592 (-592 (-877 (-205)))) (-592 (-242)))) (-15 -4044 ((-1173) (-445))))) (T -1176)) +((-4044 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1173)) (-5 *1 (-1176)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-1176)))) (-1621 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-808)) (-5 *5 (-855)) (-5 *6 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-1176)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1176)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-445)) (-5 *1 (-1176)))) (-1815 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-808)) (-5 *5 (-855)) (-5 *6 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1176))))) +(-10 -7 (-15 -1815 ((-445) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242)))) (-15 -1815 ((-445) (-592 (-592 (-877 (-205)))))) (-15 -1815 ((-445) (-592 (-592 (-877 (-205)))) (-592 (-242)))) (-15 -1621 ((-1173) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242)))) (-15 -1621 ((-1173) (-592 (-592 (-877 (-205)))) (-592 (-242)))) (-15 -4044 ((-1173) (-445)))) +((-3089 (($) 7)) (-4044 (((-797) $) 10))) +(((-1177) (-10 -8 (-15 -3089 ($)) (-15 -4044 ((-797) $)))) (T -1177)) +((-4044 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1177)))) (-3089 (*1 *1) (-5 *1 (-1177)))) +(-10 -8 (-15 -3089 ($)) (-15 -4044 ((-797) $))) +((-4047 (($ $ |#2|) 10))) +(((-1178 |#1| |#2|) (-10 -8 (-15 -4047 (|#1| |#1| |#2|))) (-1179 |#2|) (-341)) (T -1178)) +NIL +(-10 -8 (-15 -4047 (|#1| |#1| |#2|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-2374 (((-128)) 28)) (-4044 (((-797) $) 11)) (-1436 (($) 18 T CONST)) (-3899 (((-108) $ $) 6)) (-4047 (($ $ |#1|) 29)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1179 |#1|) (-131) (-341)) (T -1179)) +((-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-341)))) (-2374 (*1 *2) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-341)) (-5 *2 (-128))))) +(-13 (-660 |t#1|) (-10 -8 (-15 -4047 ($ $ |t#1|)) (-15 -2374 ((-128))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-982 |#1|) . T) ((-1019) . T)) +((-2653 (((-592 (-1121 |#1|)) (-1090) (-1121 |#1|)) 78)) (-1705 (((-1071 (-1071 (-886 |#1|))) (-1090) (-1071 (-886 |#1|))) 57)) (-2573 (((-1 (-1071 (-1121 |#1|)) (-1071 (-1121 |#1|))) (-713) (-1121 |#1|) (-1071 (-1121 |#1|))) 68)) (-2051 (((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713)) 59)) (-2919 (((-1 (-1086 (-886 |#1|)) (-886 |#1|)) (-1090)) 29)) (-2843 (((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713)) 58))) +(((-1180 |#1|) (-10 -7 (-15 -2051 ((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713))) (-15 -2843 ((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713))) (-15 -1705 ((-1071 (-1071 (-886 |#1|))) (-1090) (-1071 (-886 |#1|)))) (-15 -2919 ((-1 (-1086 (-886 |#1|)) (-886 |#1|)) (-1090))) (-15 -2653 ((-592 (-1121 |#1|)) (-1090) (-1121 |#1|))) (-15 -2573 ((-1 (-1071 (-1121 |#1|)) (-1071 (-1121 |#1|))) (-713) (-1121 |#1|) (-1071 (-1121 |#1|))))) (-341)) (T -1180)) +((-2573 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-713)) (-4 *6 (-341)) (-5 *4 (-1121 *6)) (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1180 *6)) (-5 *5 (-1071 *4)))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-341)) (-5 *2 (-592 (-1121 *5))) (-5 *1 (-1180 *5)) (-5 *4 (-1121 *5)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1086 (-886 *4)) (-886 *4))) (-5 *1 (-1180 *4)) (-4 *4 (-341)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-341)) (-5 *2 (-1071 (-1071 (-886 *5)))) (-5 *1 (-1180 *5)) (-5 *4 (-1071 (-886 *5))))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1071 (-886 *4)) (-1071 (-886 *4)))) (-5 *1 (-1180 *4)) (-4 *4 (-341)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1071 (-886 *4)) (-1071 (-886 *4)))) (-5 *1 (-1180 *4)) (-4 *4 (-341))))) +(-10 -7 (-15 -2051 ((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713))) (-15 -2843 ((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713))) (-15 -1705 ((-1071 (-1071 (-886 |#1|))) (-1090) (-1071 (-886 |#1|)))) (-15 -2919 ((-1 (-1086 (-886 |#1|)) (-886 |#1|)) (-1090))) (-15 -2653 ((-592 (-1121 |#1|)) (-1090) (-1121 |#1|))) (-15 -2573 ((-1 (-1071 (-1121 |#1|)) (-1071 (-1121 |#1|))) (-713) (-1121 |#1|) (-1071 (-1121 |#1|))))) +((-2161 (((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 75)) (-1920 (((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 74))) +(((-1181 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1920 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -2161 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|))) (-327) (-1148 |#1|) (-1148 |#2|) (-387 |#2| |#3|)) (T -1181)) +((-2161 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 *3)) (-5 *2 (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-1181 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))) (-1920 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -2734 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-1181 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5))))) +(-10 -7 (-15 -1920 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -2161 ((-2 (|:| -2734 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 43)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) NIL)) (-2507 (((-108) $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-4044 (((-797) $) 64) (($ (-525)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-160)))) (-2502 (((-713)) NIL)) (-3301 (((-1177) (-713)) 16)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 27 T CONST)) (-1449 (($) 67 T CONST)) (-3899 (((-108) $ $) 69)) (-4047 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4033 (($ $) 71) (($ $ $) NIL)) (-4017 (($ $ $) 47)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))))) +(((-1182 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-976) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4044 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4047 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4044 ($ |#4|)) (-15 -3301 ((-1177) (-713))))) (-976) (-789) (-735) (-883 |#1| |#3| |#2|) (-592 |#2|) (-592 (-713)) (-713)) (T -1182)) +((-4044 (*1 *2 *1) (-12 (-4 *2 (-883 *3 *5 *4)) (-5 *1 (-1182 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-4047 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-341)) (-4 *2 (-976)) (-4 *3 (-789)) (-4 *4 (-735)) (-14 *6 (-592 *3)) (-5 *1 (-1182 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-883 *2 *4 *3)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-4044 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-5 *1 (-1182 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-883 *3 *5 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-4 *5 (-789)) (-4 *6 (-735)) (-14 *8 (-592 *5)) (-5 *2 (-1177)) (-5 *1 (-1182 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-883 *4 *6 *5)) (-14 *9 (-592 *3)) (-14 *10 *3)))) +(-13 (-976) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -4044 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4047 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4044 ($ |#4|)) (-15 -3301 ((-1177) (-713))))) +((-4028 (((-108) $ $) NIL)) (-2646 (((-592 (-2 (|:| -3671 $) (|:| -3864 (-592 |#4|)))) (-592 |#4|)) NIL)) (-2713 (((-592 $) (-592 |#4|)) 88)) (-3122 (((-592 |#3|) $) NIL)) (-4037 (((-108) $) NIL)) (-3410 (((-108) $) NIL (|has| |#1| (-517)))) (-2576 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1792 ((|#4| |#4| $) NIL)) (-1473 (((-2 (|:| |under| $) (|:| -2473 $) (|:| |upper| $)) $ |#3|) NIL)) (-2583 (((-108) $ (-713)) NIL)) (-1249 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1957 (($) NIL T CONST)) (-4164 (((-108) $) NIL (|has| |#1| (-517)))) (-1333 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3508 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3364 (((-108) $) NIL (|has| |#1| (-517)))) (-3722 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-2523 (((-592 |#4|) (-592 |#4|) $) 25 (|has| |#1| (-517)))) (-1241 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2769 (((-3 $ "failed") (-592 |#4|)) NIL)) (-2068 (($ (-592 |#4|)) NIL)) (-1693 (((-3 $ "failed") $) 70)) (-4092 ((|#4| |#4| $) 75)) (-1716 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2591 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2097 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2175 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3025 ((|#4| |#4| $) NIL)) (-3336 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2884 (((-2 (|:| -3671 (-592 |#4|)) (|:| -3864 (-592 |#4|))) $) NIL)) (-3781 (((-592 |#4|) $) NIL (|has| $ (-6 -4254)))) (-1695 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3632 ((|#3| $) 76)) (-2010 (((-108) $ (-713)) NIL)) (-2679 (((-592 |#4|) $) 29 (|has| $ (-6 -4254)))) (-1883 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-3625 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-592 |#4|)) 35)) (-2540 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4255)))) (-2868 (($ (-1 |#4| |#4|) $) NIL)) (-4210 (((-592 |#3|) $) NIL)) (-1506 (((-108) |#3| $) NIL)) (-2350 (((-108) $ (-713)) NIL)) (-1707 (((-1073) $) NIL)) (-2618 (((-3 |#4| "failed") $) NIL)) (-2338 (((-592 |#4|) $) 50)) (-2616 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1803 ((|#4| |#4| $) 74)) (-1826 (((-108) $ $) 85)) (-3415 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-1483 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2342 ((|#4| |#4| $) NIL)) (-3027 (((-1037) $) NIL)) (-1683 (((-3 |#4| "failed") $) 69)) (-3611 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2750 (((-3 $ "failed") $ |#4|) NIL)) (-1539 (($ $ |#4|) NIL)) (-3669 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2168 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-3063 (((-108) $ $) NIL)) (-3086 (((-108) $) 67)) (-3266 (($) 42)) (-1486 (((-713) $) NIL)) (-3053 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1261 (($ $) NIL)) (-2923 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-4059 (($ (-592 |#4|)) NIL)) (-2484 (($ $ |#3|) NIL)) (-4016 (($ $ |#3|) NIL)) (-1287 (($ $) NIL)) (-3967 (($ $ |#3|) NIL)) (-4044 (((-797) $) NIL) (((-592 |#4|) $) 57)) (-2665 (((-713) $) NIL (|has| |#3| (-346)))) (-2304 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-592 |#4|)) 41)) (-3917 (((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-592 $) (-592 |#4|)) 66)) (-2901 (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3214 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2125 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-2443 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2396 (((-592 |#3|) $) NIL)) (-2238 (((-108) |#3| $) NIL)) (-3899 (((-108) $ $) NIL)) (-1696 (((-713) $) NIL (|has| $ (-6 -4254))))) +(((-1183 |#1| |#2| |#3| |#4|) (-13 (-1120 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3625 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3625 ((-3 $ "failed") (-592 |#4|))) (-15 -2304 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2304 ((-3 $ "failed") (-592 |#4|))) (-15 -3917 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3917 ((-592 $) (-592 |#4|))))) (-517) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -1183)) +((-3625 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1183 *5 *6 *7 *8)))) (-3625 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1183 *3 *4 *5 *6)))) (-2304 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1183 *5 *6 *7 *8)))) (-2304 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1183 *3 *4 *5 *6)))) (-3917 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1183 *6 *7 *8 *9))) (-5 *1 (-1183 *6 *7 *8 *9)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1183 *4 *5 *6 *7))) (-5 *1 (-1183 *4 *5 *6 *7))))) +(-13 (-1120 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3625 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3625 ((-3 $ "failed") (-592 |#4|))) (-15 -2304 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2304 ((-3 $ "failed") (-592 |#4|))) (-15 -3917 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3917 ((-592 $) (-592 |#4|))))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-3004 (((-3 $ "failed") $ $) 19)) (-1957 (($) 17 T CONST)) (-1645 (((-3 $ "failed") $) 34)) (-2507 (((-108) $) 31)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 38)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-1184 |#1|) (-131) (-976)) (T -1184)) +((-4044 (*1 *1 *2) (-12 (-4 *1 (-1184 *2)) (-4 *2 (-976))))) +(-13 (-976) (-107 |t#1| |t#1|) (-10 -8 (-15 -4044 ($ |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T)) +((-4028 (((-108) $ $) 60)) (-2464 (((-108) $) NIL)) (-1562 (((-592 |#1|) $) 45)) (-1285 (($ $ (-713)) 39)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1877 (($ $ (-713)) 18 (|has| |#2| (-160))) (($ $ $) 19 (|has| |#2| (-160)))) (-1957 (($) NIL T CONST)) (-2554 (($ $ $) 63) (($ $ (-761 |#1|)) 49) (($ $ |#1|) 53)) (-2769 (((-3 (-761 |#1|) "failed") $) NIL)) (-2068 (((-761 |#1|) $) NIL)) (-3306 (($ $) 32)) (-1645 (((-3 $ "failed") $) NIL)) (-2324 (((-108) $) NIL)) (-3428 (($ $) NIL)) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-1784 (($ (-761 |#1|) |#2|) 31)) (-2414 (($ $) 33)) (-3276 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 12)) (-1276 (((-761 |#1|) $) NIL)) (-2497 (((-761 |#1|) $) 34)) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-1257 (($ $ $) 62) (($ $ (-761 |#1|)) 51) (($ $ |#1|) 55)) (-3060 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3277 (((-761 |#1|) $) 28)) (-3286 ((|#2| $) 30)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1486 (((-713) $) 36)) (-3078 (((-108) $) 40)) (-3219 ((|#2| $) NIL)) (-4044 (((-797) $) NIL) (($ (-761 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-525)) NIL)) (-3681 (((-592 |#2|) $) NIL)) (-2100 ((|#2| $ (-761 |#1|)) NIL)) (-2059 ((|#2| $ $) 65) ((|#2| $ (-761 |#1|)) NIL)) (-2502 (((-713)) NIL)) (-1594 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-1436 (($) 13 T CONST)) (-1449 (($) 15 T CONST)) (-3365 (((-592 (-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3899 (((-108) $ $) 38)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 22)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-761 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1185 |#1| |#2|) (-13 (-360 |#2| (-761 |#1|)) (-1191 |#1| |#2|)) (-789) (-976)) (T -1185)) +NIL +(-13 (-360 |#2| (-761 |#1|)) (-1191 |#1| |#2|)) +((-2412 ((|#3| |#3| (-713)) 23)) (-2840 ((|#3| |#3| (-713)) 28)) (-3936 ((|#3| |#3| |#3| (-713)) 29))) +(((-1186 |#1| |#2| |#3|) (-10 -7 (-15 -2840 (|#3| |#3| (-713))) (-15 -2412 (|#3| |#3| (-713))) (-15 -3936 (|#3| |#3| |#3| (-713)))) (-13 (-976) (-660 (-385 (-525)))) (-789) (-1191 |#2| |#1|)) (T -1186)) +((-3936 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) (-2412 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) (-2840 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4))))) +(-10 -7 (-15 -2840 (|#3| |#3| (-713))) (-15 -2412 (|#3| |#3| (-713))) (-15 -3936 (|#3| |#3| |#3| (-713)))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1562 (((-592 |#1|) $) 40)) (-3004 (((-3 $ "failed") $ $) 19)) (-1877 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-1957 (($) 17 T CONST)) (-2554 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-2769 (((-3 (-761 |#1|) "failed") $) 64)) (-2068 (((-761 |#1|) $) 63)) (-1645 (((-3 $ "failed") $) 34)) (-2324 (((-108) $) 45)) (-3428 (($ $) 44)) (-2507 (((-108) $) 31)) (-1432 (((-108) $) 50)) (-1784 (($ (-761 |#1|) |#2|) 51)) (-2414 (($ $) 49)) (-3276 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-1276 (((-761 |#1|) $) 61)) (-2868 (($ (-1 |#2| |#2|) $) 41)) (-1257 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-3078 (((-108) $) 47)) (-3219 ((|#2| $) 46)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-2059 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1187 |#1| |#2|) (-131) (-789) (-976)) (T -1187)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-761 *3)))) (-3276 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4))))) (-2059 (*1 *2 *1 *3) (-12 (-5 *3 (-761 *4)) (-4 *1 (-1187 *4 *2)) (-4 *4 (-789)) (-4 *2 (-976)))) (-2059 (*1 *2 *1 *1) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976)))) (-1257 (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-1257 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))) (-1257 (*1 *1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-2554 (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-2554 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))) (-2554 (*1 *1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-1784 (*1 *1 *2 *3) (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1187 *4 *3)) (-4 *3 (-976)))) (-1432 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-108)))) (-2414 (*1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-4044 (*1 *1 *2) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-108)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-108)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-1877 (*1 *1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)) (-4 *3 (-160)))) (-1877 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-4 *4 (-160)))) (-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-592 *3))))) +(-13 (-976) (-1184 |t#2|) (-967 (-761 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1276 ((-761 |t#1|) $)) (-15 -3276 ((-2 (|:| |k| (-761 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2059 (|t#2| $ (-761 |t#1|))) (-15 -2059 (|t#2| $ $)) (-15 -1257 ($ $ |t#1|)) (-15 -1257 ($ $ (-761 |t#1|))) (-15 -1257 ($ $ $)) (-15 -2554 ($ $ |t#1|)) (-15 -2554 ($ $ (-761 |t#1|))) (-15 -2554 ($ $ $)) (-15 -1784 ($ (-761 |t#1|) |t#2|)) (-15 -1432 ((-108) $)) (-15 -2414 ($ $)) (-15 -4044 ($ |t#1|)) (-15 -3078 ((-108) $)) (-15 -3219 (|t#2| $)) (-15 -2324 ((-108) $)) (-15 -3428 ($ $)) (IF (|has| |t#2| (-160)) (PROGN (-15 -1877 ($ $ $)) (-15 -1877 ($ $ (-713)))) |%noBranch|) (-15 -2868 ($ (-1 |t#2| |t#2|) $)) (-15 -1562 ((-592 |t#1|) $)) (IF (|has| |t#2| (-6 -4247)) (-6 -4247) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-660 |#2|) |has| |#2| (-160)) ((-669) . T) ((-967 (-761 |#1|)) . T) ((-982 |#2|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1184 |#2|) . T)) +((-1433 (((-108) $) 15)) (-2238 (((-108) $) 14)) (-3459 (($ $) 19) (($ $ (-713)) 20))) +(((-1188 |#1| |#2|) (-10 -8 (-15 -3459 (|#1| |#1| (-713))) (-15 -3459 (|#1| |#1|)) (-15 -1433 ((-108) |#1|)) (-15 -2238 ((-108) |#1|))) (-1189 |#2|) (-341)) (T -1188)) +NIL +(-10 -8 (-15 -3459 (|#1| |#1| (-713))) (-15 -3459 (|#1| |#1|)) (-15 -1433 ((-108) |#1|)) (-15 -2238 ((-108) |#1|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1893 (((-2 (|:| -3603 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-2609 (($ $) 40)) (-1220 (((-108) $) 38)) (-1433 (((-108) $) 94)) (-2275 (((-713)) 90)) (-3004 (((-3 $ "failed") $ $) 19)) (-2701 (($ $) 73)) (-1259 (((-396 $) $) 72)) (-1700 (((-108) $ $) 59)) (-1957 (($) 17 T CONST)) (-2769 (((-3 |#1| "failed") $) 101)) (-2068 ((|#1| $) 100)) (-2720 (($ $ $) 55)) (-1645 (((-3 $ "failed") $) 34)) (-2699 (($ $ $) 56)) (-2340 (((-2 (|:| -2059 (-592 $)) (|:| -3258 $)) (-592 $)) 51)) (-3351 (($ $ (-713)) 87 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2069 (((-108) $) 71)) (-2158 (((-775 (-855)) $) 84 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2507 (((-108) $) 31)) (-3690 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2226 (($ $ $) 46) (($ (-592 $)) 45)) (-1707 (((-1073) $) 9)) (-3243 (($ $) 70)) (-1769 (((-108) $) 93)) (-3027 (((-1037) $) 10)) (-2160 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-2262 (($ $ $) 48) (($ (-592 $)) 47)) (-2961 (((-396 $) $) 74)) (-1927 (((-775 (-855))) 91)) (-2345 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3258 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2675 (((-3 $ "failed") $ $) 42)) (-3554 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2824 (((-713) $) 58)) (-4204 (((-2 (|:| -2877 $) (|:| -2097 $)) $ $) 57)) (-2729 (((-3 (-713) "failed") $ $) 85 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2374 (((-128)) 99)) (-1486 (((-775 (-855)) $) 92)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-1279 (((-3 $ "failed") $) 83 (-3215 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2502 (((-713)) 29)) (-3787 (((-108) $ $) 39)) (-2238 (((-108) $) 95)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3459 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-3899 (((-108) $ $) 6)) (-4047 (($ $ $) 64) (($ $ |#1|) 98)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +(((-1189 |#1|) (-131) (-341)) (T -1189)) +((-2238 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-855))))) (-1927 (*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-855))))) (-2275 (*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-713)))) (-3459 (*1 *1 *1) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-341)) (-4 *2 (-346)))) (-3459 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-4 *3 (-346))))) +(-13 (-341) (-967 |t#1|) (-1179 |t#1|) (-10 -8 (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-380)) |%noBranch|) (-15 -2238 ((-108) $)) (-15 -1433 ((-108) $)) (-15 -1769 ((-108) $)) (-15 -1486 ((-775 (-855)) $)) (-15 -1927 ((-775 (-855)))) (-15 -2275 ((-713))) (IF (|has| |t#1| (-346)) (PROGN (-6 (-380)) (-15 -3459 ($ $)) (-15 -3459 ($ $ (-713)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3215 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) -3215 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-967 |#1|) . T) ((-982 #0#) . T) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T) ((-1179 |#1|) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1562 (((-592 |#1|) $) 86)) (-1285 (($ $ (-713)) 89)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1877 (($ $ $) NIL (|has| |#2| (-160))) (($ $ (-713)) NIL (|has| |#2| (-160)))) (-1957 (($) NIL T CONST)) (-2554 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-2769 (((-3 (-761 |#1|) "failed") $) NIL) (((-3 (-827 |#1|) "failed") $) NIL)) (-2068 (((-761 |#1|) $) NIL) (((-827 |#1|) $) NIL)) (-3306 (($ $) 88)) (-1645 (((-3 $ "failed") $) NIL)) (-2324 (((-108) $) 77)) (-3428 (($ $) 81)) (-3292 (($ $ $ (-713)) 90)) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-1784 (($ (-761 |#1|) |#2|) NIL) (($ (-827 |#1|) |#2|) 26)) (-2414 (($ $) 103)) (-3276 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1276 (((-761 |#1|) $) NIL)) (-2497 (((-761 |#1|) $) NIL)) (-2868 (($ (-1 |#2| |#2|) $) NIL)) (-1257 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-2412 (($ $ (-713)) 97 (|has| |#2| (-660 (-385 (-525)))))) (-3060 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3277 (((-827 |#1|) $) 70)) (-3286 ((|#2| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-2840 (($ $ (-713)) 94 (|has| |#2| (-660 (-385 (-525)))))) (-1486 (((-713) $) 87)) (-3078 (((-108) $) 71)) (-3219 ((|#2| $) 75)) (-4044 (((-797) $) 57) (($ (-525)) NIL) (($ |#2|) 51) (($ (-761 |#1|)) NIL) (($ |#1|) 59) (($ (-827 |#1|)) NIL) (($ (-610 |#1| |#2|)) 43) (((-1185 |#1| |#2|) $) 64) (((-1194 |#1| |#2|) $) 69)) (-3681 (((-592 |#2|) $) NIL)) (-2100 ((|#2| $ (-827 |#1|)) NIL)) (-2059 ((|#2| $ (-761 |#1|)) NIL) ((|#2| $ $) NIL)) (-2502 (((-713)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 21 T CONST)) (-1449 (($) 25 T CONST)) (-3365 (((-592 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1460 (((-3 (-610 |#1| |#2|) "failed") $) 102)) (-3899 (((-108) $ $) 65)) (-4033 (($ $) 96) (($ $ $) 95)) (-4017 (($ $ $) 20)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-827 |#1|)) NIL))) +(((-1190 |#1| |#2|) (-13 (-1191 |#1| |#2|) (-360 |#2| (-827 |#1|)) (-10 -8 (-15 -4044 ($ (-610 |#1| |#2|))) (-15 -4044 ((-1185 |#1| |#2|) $)) (-15 -4044 ((-1194 |#1| |#2|) $)) (-15 -1460 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -3292 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -2840 ($ $ (-713))) (-15 -2412 ($ $ (-713)))) |%noBranch|))) (-789) (-160)) (T -1190)) +((-4044 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-1190 *3 *4)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1460 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3292 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))) (-2412 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160))))) +(-13 (-1191 |#1| |#2|) (-360 |#2| (-827 |#1|)) (-10 -8 (-15 -4044 ($ (-610 |#1| |#2|))) (-15 -4044 ((-1185 |#1| |#2|) $)) (-15 -4044 ((-1194 |#1| |#2|) $)) (-15 -1460 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -3292 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -2840 ($ $ (-713))) (-15 -2412 ($ $ (-713)))) |%noBranch|))) +((-4028 (((-108) $ $) 7)) (-2464 (((-108) $) 16)) (-1562 (((-592 |#1|) $) 40)) (-1285 (($ $ (-713)) 73)) (-3004 (((-3 $ "failed") $ $) 19)) (-1877 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-1957 (($) 17 T CONST)) (-2554 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-2769 (((-3 (-761 |#1|) "failed") $) 64)) (-2068 (((-761 |#1|) $) 63)) (-1645 (((-3 $ "failed") $) 34)) (-2324 (((-108) $) 45)) (-3428 (($ $) 44)) (-2507 (((-108) $) 31)) (-1432 (((-108) $) 50)) (-1784 (($ (-761 |#1|) |#2|) 51)) (-2414 (($ $) 49)) (-3276 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-1276 (((-761 |#1|) $) 61)) (-2497 (((-761 |#1|) $) 75)) (-2868 (($ (-1 |#2| |#2|) $) 41)) (-1257 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-1707 (((-1073) $) 9)) (-3027 (((-1037) $) 10)) (-1486 (((-713) $) 74)) (-3078 (((-108) $) 47)) (-3219 ((|#2| $) 46)) (-4044 (((-797) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-2059 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-2502 (((-713)) 29)) (-1594 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-1436 (($) 18 T CONST)) (-1449 (($) 30 T CONST)) (-3899 (((-108) $ $) 6)) (-4033 (($ $) 22) (($ $ $) 21)) (-4017 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1191 |#1| |#2|) (-131) (-789) (-976)) (T -1191)) +((-2497 (*1 *2 *1) (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-761 *3)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-713)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))))) +(-13 (-1187 |t#1| |t#2|) (-10 -8 (-15 -2497 ((-761 |t#1|) $)) (-15 -1486 ((-713) $)) (-15 -1285 ($ $ (-713))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-660 |#2|) |has| |#2| (-160)) ((-669) . T) ((-967 (-761 |#1|)) . T) ((-982 |#2|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1184 |#2|) . T) ((-1187 |#1| |#2|) . T)) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-1562 (((-592 (-1090)) $) NIL)) (-4049 (($ (-1185 (-1090) |#1|)) NIL)) (-1285 (($ $ (-713)) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1877 (($ $ $) NIL (|has| |#1| (-160))) (($ $ (-713)) NIL (|has| |#1| (-160)))) (-1957 (($) NIL T CONST)) (-2554 (($ $ (-1090)) NIL) (($ $ (-761 (-1090))) NIL) (($ $ $) NIL)) (-2769 (((-3 (-761 (-1090)) "failed") $) NIL)) (-2068 (((-761 (-1090)) $) NIL)) (-1645 (((-3 $ "failed") $) NIL)) (-2324 (((-108) $) NIL)) (-3428 (($ $) NIL)) (-2507 (((-108) $) NIL)) (-1432 (((-108) $) NIL)) (-1784 (($ (-761 (-1090)) |#1|) NIL)) (-2414 (($ $) NIL)) (-3276 (((-2 (|:| |k| (-761 (-1090))) (|:| |c| |#1|)) $) NIL)) (-1276 (((-761 (-1090)) $) NIL)) (-2497 (((-761 (-1090)) $) NIL)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-1257 (($ $ (-1090)) NIL) (($ $ (-761 (-1090))) NIL) (($ $ $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1203 (((-1185 (-1090) |#1|) $) NIL)) (-1486 (((-713) $) NIL)) (-3078 (((-108) $) NIL)) (-3219 ((|#1| $) NIL)) (-4044 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-761 (-1090))) NIL) (($ (-1090)) NIL)) (-2059 ((|#1| $ (-761 (-1090))) NIL) ((|#1| $ $) NIL)) (-2502 (((-713)) NIL)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) NIL T CONST)) (-3031 (((-592 (-2 (|:| |k| (-1090)) (|:| |c| $))) $) NIL)) (-1449 (($) NIL T CONST)) (-3899 (((-108) $ $) NIL)) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1090) $) NIL))) +(((-1192 |#1|) (-13 (-1191 (-1090) |#1|) (-10 -8 (-15 -1203 ((-1185 (-1090) |#1|) $)) (-15 -4049 ($ (-1185 (-1090) |#1|))) (-15 -3031 ((-592 (-2 (|:| |k| (-1090)) (|:| |c| $))) $)))) (-976)) (T -1192)) +((-1203 (*1 *2 *1) (-12 (-5 *2 (-1185 (-1090) *3)) (-5 *1 (-1192 *3)) (-4 *3 (-976)))) (-4049 (*1 *1 *2) (-12 (-5 *2 (-1185 (-1090) *3)) (-4 *3 (-976)) (-5 *1 (-1192 *3)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-1090)) (|:| |c| (-1192 *3))))) (-5 *1 (-1192 *3)) (-4 *3 (-976))))) +(-13 (-1191 (-1090) |#1|) (-10 -8 (-15 -1203 ((-1185 (-1090) |#1|) $)) (-15 -4049 ($ (-1185 (-1090) |#1|))) (-15 -3031 ((-592 (-2 (|:| |k| (-1090)) (|:| |c| $))) $)))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1957 (($) NIL T CONST)) (-2769 (((-3 |#2| "failed") $) NIL)) (-2068 ((|#2| $) NIL)) (-3306 (($ $) NIL)) (-1645 (((-3 $ "failed") $) 36)) (-2324 (((-108) $) 30)) (-3428 (($ $) 32)) (-2507 (((-108) $) NIL)) (-3682 (((-713) $) NIL)) (-1585 (((-592 $) $) NIL)) (-1432 (((-108) $) NIL)) (-1784 (($ |#2| |#1|) NIL)) (-1276 ((|#2| $) 19)) (-2497 ((|#2| $) 16)) (-2868 (($ (-1 |#1| |#1|) $) NIL)) (-3060 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3277 ((|#2| $) NIL)) (-3286 ((|#1| $) NIL)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-3078 (((-108) $) 27)) (-3219 ((|#1| $) 28)) (-4044 (((-797) $) 55) (($ (-525)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3681 (((-592 |#1|) $) NIL)) (-2100 ((|#1| $ |#2|) NIL)) (-2059 ((|#1| $ |#2|) 24)) (-2502 (((-713)) 14)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 25 T CONST)) (-1449 (($) 11 T CONST)) (-3365 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3899 (((-108) $ $) 26)) (-4047 (($ $ |#1|) 57 (|has| |#1| (-341)))) (-4033 (($ $) NIL) (($ $ $) NIL)) (-4017 (($ $ $) 44)) (** (($ $ (-855)) NIL) (($ $ (-713)) 46)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1696 (((-713) $) 15))) +(((-1193 |#1| |#2|) (-13 (-976) (-1184 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1696 ((-713) $)) (-15 -4044 ($ |#2|)) (-15 -2497 (|#2| $)) (-15 -1276 (|#2| $)) (-15 -3306 ($ $)) (-15 -2059 (|#1| $ |#2|)) (-15 -3078 ((-108) $)) (-15 -3219 (|#1| $)) (-15 -2324 ((-108) $)) (-15 -3428 ($ $)) (-15 -2868 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4047 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4247)) (-6 -4247) |%noBranch|) (IF (|has| |#1| (-6 -4251)) (-6 -4251) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|))) (-976) (-785)) (T -1193)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785)))) (-3306 (*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785)))) (-2868 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-1193 *3 *4)) (-4 *4 (-785)))) (-4044 (*1 *1 *2) (-12 (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)) (-4 *2 (-785)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976)) (-4 *4 (-785)))) (-2497 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)))) (-1276 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)))) (-2059 (*1 *2 *1 *3) (-12 (-4 *2 (-976)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-785)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976)) (-4 *4 (-785)))) (-3219 (*1 *2 *1) (-12 (-4 *2 (-976)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-785)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976)) (-4 *4 (-785)))) (-3428 (*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-341)) (-4 *2 (-976)) (-4 *3 (-785))))) +(-13 (-976) (-1184 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1696 ((-713) $)) (-15 -4044 ($ |#2|)) (-15 -2497 (|#2| $)) (-15 -1276 (|#2| $)) (-15 -3306 ($ $)) (-15 -2059 (|#1| $ |#2|)) (-15 -3078 ((-108) $)) (-15 -3219 (|#1| $)) (-15 -2324 ((-108) $)) (-15 -3428 ($ $)) (-15 -2868 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4047 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4247)) (-6 -4247) |%noBranch|) (IF (|has| |#1| (-6 -4251)) (-6 -4251) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|))) +((-4028 (((-108) $ $) 26)) (-2464 (((-108) $) NIL)) (-1562 (((-592 |#1|) $) 120)) (-4049 (($ (-1185 |#1| |#2|)) 44)) (-1285 (($ $ (-713)) 32)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1877 (($ $ $) 48 (|has| |#2| (-160))) (($ $ (-713)) 46 (|has| |#2| (-160)))) (-1957 (($) NIL T CONST)) (-2554 (($ $ |#1|) 102) (($ $ (-761 |#1|)) 103) (($ $ $) 25)) (-2769 (((-3 (-761 |#1|) "failed") $) NIL)) (-2068 (((-761 |#1|) $) NIL)) (-1645 (((-3 $ "failed") $) 110)) (-2324 (((-108) $) 105)) (-3428 (($ $) 106)) (-2507 (((-108) $) NIL)) (-1432 (((-108) $) NIL)) (-1784 (($ (-761 |#1|) |#2|) 19)) (-2414 (($ $) NIL)) (-3276 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1276 (((-761 |#1|) $) 111)) (-2497 (((-761 |#1|) $) 114)) (-2868 (($ (-1 |#2| |#2|) $) 119)) (-1257 (($ $ |#1|) 100) (($ $ (-761 |#1|)) 101) (($ $ $) 56)) (-1707 (((-1073) $) NIL)) (-3027 (((-1037) $) NIL)) (-1203 (((-1185 |#1| |#2|) $) 84)) (-1486 (((-713) $) 117)) (-3078 (((-108) $) 70)) (-3219 ((|#2| $) 28)) (-4044 (((-797) $) 63) (($ (-525)) 77) (($ |#2|) 74) (($ (-761 |#1|)) 17) (($ |#1|) 73)) (-2059 ((|#2| $ (-761 |#1|)) 104) ((|#2| $ $) 27)) (-2502 (((-713)) 108)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 14 T CONST)) (-3031 (((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-1449 (($) 29 T CONST)) (-3899 (((-108) $ $) 13)) (-4033 (($ $) 88) (($ $ $) 91)) (-4017 (($ $ $) 55)) (** (($ $ (-855)) NIL) (($ $ (-713)) 49)) (* (($ (-855) $) NIL) (($ (-713) $) 47) (($ (-525) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1194 |#1| |#2|) (-13 (-1191 |#1| |#2|) (-10 -8 (-15 -1203 ((-1185 |#1| |#2|) $)) (-15 -4049 ($ (-1185 |#1| |#2|))) (-15 -3031 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-789) (-976)) (T -1194)) +((-1203 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))) (-4049 (*1 *1 *2) (-12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *1 (-1194 *3 *4)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1194 *3 *4))))) (-5 *1 (-1194 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))))) +(-13 (-1191 |#1| |#2|) (-10 -8 (-15 -1203 ((-1185 |#1| |#2|) $)) (-15 -4049 ($ (-1185 |#1| |#2|))) (-15 -3031 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-1507 (((-592 (-1071 |#1|)) (-1 (-592 (-1071 |#1|)) (-592 (-1071 |#1|))) (-525)) 15) (((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|))) 11))) +(((-1195 |#1|) (-10 -7 (-15 -1507 ((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|)))) (-15 -1507 ((-592 (-1071 |#1|)) (-1 (-592 (-1071 |#1|)) (-592 (-1071 |#1|))) (-525)))) (-1126)) (T -1195)) +((-1507 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 (-1071 *5)) (-592 (-1071 *5)))) (-5 *4 (-525)) (-5 *2 (-592 (-1071 *5))) (-5 *1 (-1195 *5)) (-4 *5 (-1126)))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-1 (-1071 *4) (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1195 *4)) (-4 *4 (-1126))))) +(-10 -7 (-15 -1507 ((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|)))) (-15 -1507 ((-592 (-1071 |#1|)) (-1 (-592 (-1071 |#1|)) (-592 (-1071 |#1|))) (-525)))) +((-2015 (((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|))) 148) (((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108)) 147) (((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108)) 146) (((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108) (-108)) 145) (((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-973 |#1| |#2|)) 130)) (-1247 (((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|))) 72) (((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108)) 71) (((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108) (-108)) 70)) (-1259 (((-592 (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))) (-973 |#1| |#2|)) 61)) (-4150 (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|))) 115) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108)) 114) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108)) 113) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108) (-108)) 112) (((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|)) 107)) (-1425 (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|))) 120) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108)) 119) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108)) 118) (((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|)) 117)) (-2923 (((-592 (-722 |#1| (-799 |#3|))) (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))) 98) (((-1086 (-954 (-385 |#1|))) (-1086 |#1|)) 89) (((-886 (-954 (-385 |#1|))) (-722 |#1| (-799 |#3|))) 96) (((-886 (-954 (-385 |#1|))) (-886 |#1|)) 94) (((-722 |#1| (-799 |#3|)) (-722 |#1| (-799 |#2|))) 33))) +(((-1196 |#1| |#2| |#3|) (-10 -7 (-15 -1247 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108) (-108))) (-15 -1247 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108))) (-15 -1247 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-973 |#1| |#2|))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108) (-108))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108) (-108))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)))) (-15 -1425 ((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|))) (-15 -1425 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -1425 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108))) (-15 -1425 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)))) (-15 -1259 ((-592 (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))) (-973 |#1| |#2|))) (-15 -2923 ((-722 |#1| (-799 |#3|)) (-722 |#1| (-799 |#2|)))) (-15 -2923 ((-886 (-954 (-385 |#1|))) (-886 |#1|))) (-15 -2923 ((-886 (-954 (-385 |#1|))) (-722 |#1| (-799 |#3|)))) (-15 -2923 ((-1086 (-954 (-385 |#1|))) (-1086 |#1|))) (-15 -2923 ((-592 (-722 |#1| (-799 |#3|))) (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))))) (-13 (-787) (-286) (-138) (-952)) (-592 (-1090)) (-592 (-1090))) (T -1196)) +((-2923 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 (-497 (-799 *6)) (-799 *6) (-722 *4 (-799 *6)))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-722 *4 (-799 *6)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-1086 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-799 *6))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *6 (-592 (-1090))) (-5 *2 (-886 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-886 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-799 *5))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-722 *4 (-799 *6))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-1061 *4 (-497 (-799 *6)) (-799 *6) (-722 *4 (-799 *6))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-1425 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-1425 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-4150 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-4150 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-4150 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-2 (|:| -3162 (-1086 *4)) (|:| -1625 (-592 (-886 *4)))))) (-5 *1 (-1196 *4 *5 *6)) (-5 *3 (-592 (-886 *4))) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-2015 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-2015 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-2 (|:| -3162 (-1086 *4)) (|:| -1625 (-592 (-886 *4)))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-1247 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-973 *4 *5))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-1247 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-1247 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))) +(-10 -7 (-15 -1247 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108) (-108))) (-15 -1247 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108))) (-15 -1247 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-973 |#1| |#2|))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108) (-108))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108))) (-15 -2015 ((-592 (-2 (|:| -3162 (-1086 |#1|)) (|:| -1625 (-592 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108) (-108))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108))) (-15 -4150 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)))) (-15 -1425 ((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|))) (-15 -1425 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -1425 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108))) (-15 -1425 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)))) (-15 -1259 ((-592 (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))) (-973 |#1| |#2|))) (-15 -2923 ((-722 |#1| (-799 |#3|)) (-722 |#1| (-799 |#2|)))) (-15 -2923 ((-886 (-954 (-385 |#1|))) (-886 |#1|))) (-15 -2923 ((-886 (-954 (-385 |#1|))) (-722 |#1| (-799 |#3|)))) (-15 -2923 ((-1086 (-954 (-385 |#1|))) (-1086 |#1|))) (-15 -2923 ((-592 (-722 |#1| (-799 |#3|))) (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))))) +((-3513 (((-3 (-1172 (-385 (-525))) "failed") (-1172 |#1|) |#1|) 21)) (-3791 (((-108) (-1172 |#1|)) 12)) (-3985 (((-3 (-1172 (-525)) "failed") (-1172 |#1|)) 16))) +(((-1197 |#1|) (-10 -7 (-15 -3791 ((-108) (-1172 |#1|))) (-15 -3985 ((-3 (-1172 (-525)) "failed") (-1172 |#1|))) (-15 -3513 ((-3 (-1172 (-385 (-525))) "failed") (-1172 |#1|) |#1|))) (-588 (-525))) (T -1197)) +((-3513 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1172 (-385 (-525)))) (-5 *1 (-1197 *4)))) (-3985 (*1 *2 *3) (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1172 (-525))) (-5 *1 (-1197 *4)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108)) (-5 *1 (-1197 *4))))) +(-10 -7 (-15 -3791 ((-108) (-1172 |#1|))) (-15 -3985 ((-3 (-1172 (-525)) "failed") (-1172 |#1|))) (-15 -3513 ((-3 (-1172 (-385 (-525))) "failed") (-1172 |#1|) |#1|))) +((-4028 (((-108) $ $) NIL)) (-2464 (((-108) $) 11)) (-3004 (((-3 $ "failed") $ $) NIL)) (-1651 (((-713)) 8)) (-1957 (($) NIL T CONST)) (-1645 (((-3 $ "failed") $) 43)) (-1527 (($) 36)) (-2507 (((-108) $) NIL)) (-1978 (((-3 $ "failed") $) 29)) (-2111 (((-855) $) 15)) (-1707 (((-1073) $) NIL)) (-2039 (($) 25 T CONST)) (-3381 (($ (-855)) 37)) (-3027 (((-1037) $) NIL)) (-2923 (((-525) $) 13)) (-4044 (((-797) $) 22) (($ (-525)) 19)) (-2502 (((-713)) 9)) (-1594 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-1436 (($) 23 T CONST)) (-1449 (($) 24 T CONST)) (-3899 (((-108) $ $) 27)) (-4033 (($ $) 38) (($ $ $) 35)) (-4017 (($ $ $) 26)) (** (($ $ (-855)) NIL) (($ $ (-713)) 40)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 32) (($ $ $) 31))) +(((-1198 |#1|) (-13 (-160) (-346) (-567 (-525)) (-1066)) (-855)) (T -1198)) +NIL +(-13 (-160) (-346) (-567 (-525)) (-1066)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3145078 3145083 3145088 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3145063 3145068 3145073 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3145048 3145053 3145058 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3145033 3145038 3145043 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1198 3144163 3144908 3144985 "ZMOD" 3144990 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1197 3143273 3143437 3143646 "ZLINDEP" 3143995 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1196 3132677 3134422 3136374 "ZDSOLVE" 3141422 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1195 3131923 3132064 3132253 "YSTREAM" 3132523 NIL YSTREAM (NIL T) -7 NIL NIL) (-1194 3129692 3131228 3131431 "XRPOLY" 3131766 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1193 3126154 3127483 3128065 "XPR" 3129156 NIL XPR (NIL T T) -8 NIL NIL) (-1192 3123868 3125489 3125692 "XPOLY" 3125985 NIL XPOLY (NIL T) -8 NIL NIL) (-1191 3121682 3123060 3123114 "XPOLYC" 3123399 NIL XPOLYC (NIL T T) -9 NIL 3123512) (-1190 3118054 3120199 3120587 "XPBWPOLY" 3121340 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1189 3113982 3116295 3116337 "XF" 3116958 NIL XF (NIL T) -9 NIL 3117357) (-1188 3113603 3113691 3113860 "XF-" 3113865 NIL XF- (NIL T T) -8 NIL NIL) (-1187 3108983 3110282 3110336 "XFALG" 3112484 NIL XFALG (NIL T T) -9 NIL 3113271) (-1186 3108120 3108224 3108428 "XEXPPKG" 3108875 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1185 3106219 3107971 3108066 "XDPOLY" 3108071 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1184 3105098 3105708 3105750 "XALG" 3105812 NIL XALG (NIL T) -9 NIL 3105931) (-1183 3098574 3103082 3103575 "WUTSET" 3104690 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1182 3096386 3097193 3097544 "WP" 3098356 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1181 3095272 3095470 3095765 "WFFINTBS" 3096183 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1180 3093176 3093603 3094065 "WEIER" 3094844 NIL WEIER (NIL T) -7 NIL NIL) (-1179 3092325 3092749 3092791 "VSPACE" 3092927 NIL VSPACE (NIL T) -9 NIL 3093001) (-1178 3092163 3092190 3092281 "VSPACE-" 3092286 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1177 3091909 3091952 3092023 "VOID" 3092114 T VOID (NIL) -8 NIL NIL) (-1176 3090045 3090404 3090810 "VIEW" 3091525 T VIEW (NIL) -7 NIL NIL) (-1175 3086470 3087108 3087845 "VIEWDEF" 3089330 T VIEWDEF (NIL) -7 NIL NIL) (-1174 3075808 3078018 3080191 "VIEW3D" 3084319 T VIEW3D (NIL) -8 NIL NIL) (-1173 3068090 3069719 3071298 "VIEW2D" 3074251 T VIEW2D (NIL) -8 NIL NIL) (-1172 3063499 3067860 3067952 "VECTOR" 3068033 NIL VECTOR (NIL T) -8 NIL NIL) (-1171 3062076 3062335 3062653 "VECTOR2" 3063229 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1170 3055616 3059868 3059911 "VECTCAT" 3060899 NIL VECTCAT (NIL T) -9 NIL 3061483) (-1169 3054630 3054884 3055274 "VECTCAT-" 3055279 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1168 3054111 3054281 3054401 "VARIABLE" 3054545 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1167 3054044 3054049 3054079 "UTYPE" 3054084 T UTYPE (NIL) -9 NIL NIL) (-1166 3052879 3053033 3053294 "UTSODETL" 3053870 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1165 3050319 3050779 3051303 "UTSODE" 3052420 NIL UTSODE (NIL T T) -7 NIL NIL) (-1164 3042163 3047959 3048447 "UTS" 3049888 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1163 3033508 3038873 3038915 "UTSCAT" 3040016 NIL UTSCAT (NIL T) -9 NIL 3040773) (-1162 3030863 3031579 3032567 "UTSCAT-" 3032572 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1161 3030494 3030537 3030668 "UTS2" 3030814 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1160 3024770 3027335 3027378 "URAGG" 3029448 NIL URAGG (NIL T) -9 NIL 3030170) (-1159 3021709 3022572 3023695 "URAGG-" 3023700 NIL URAGG- (NIL T T) -8 NIL NIL) (-1158 3017395 3020326 3020797 "UPXSSING" 3021373 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1157 3009286 3016516 3016796 "UPXS" 3017172 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1156 3002315 3009191 3009262 "UPXSCONS" 3009267 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1155 2992604 2999434 2999495 "UPXSCCA" 3000144 NIL UPXSCCA (NIL T T) -9 NIL 3000385) (-1154 2992243 2992328 2992501 "UPXSCCA-" 2992506 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1153 2982454 2989057 2989099 "UPXSCAT" 2989742 NIL UPXSCAT (NIL T) -9 NIL 2990350) (-1152 2981888 2981967 2982144 "UPXS2" 2982369 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1151 2980542 2980795 2981146 "UPSQFREE" 2981631 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1150 2974433 2977488 2977542 "UPSCAT" 2978691 NIL UPSCAT (NIL T T) -9 NIL 2979465) (-1149 2973638 2973845 2974171 "UPSCAT-" 2974176 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1148 2959724 2967761 2967803 "UPOLYC" 2969881 NIL UPOLYC (NIL T) -9 NIL 2971102) (-1147 2951054 2953479 2956625 "UPOLYC-" 2956630 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1146 2950685 2950728 2950859 "UPOLYC2" 2951005 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1145 2942104 2950254 2950391 "UP" 2950595 NIL UP (NIL NIL T) -8 NIL NIL) (-1144 2941447 2941554 2941717 "UPMP" 2941993 NIL UPMP (NIL T T) -7 NIL NIL) (-1143 2941000 2941081 2941220 "UPDIVP" 2941360 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1142 2939568 2939817 2940133 "UPDECOMP" 2940749 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1141 2938803 2938915 2939100 "UPCDEN" 2939452 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1140 2938326 2938395 2938542 "UP2" 2938728 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1139 2936843 2937530 2937807 "UNISEG" 2938084 NIL UNISEG (NIL T) -8 NIL NIL) (-1138 2936058 2936185 2936390 "UNISEG2" 2936686 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1137 2935118 2935298 2935524 "UNIFACT" 2935874 NIL UNIFACT (NIL T) -7 NIL NIL) (-1136 2919014 2934299 2934549 "ULS" 2934925 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1135 2906979 2918919 2918990 "ULSCONS" 2918995 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1134 2889729 2901742 2901803 "ULSCCAT" 2902515 NIL ULSCCAT (NIL T T) -9 NIL 2902811) (-1133 2888780 2889025 2889412 "ULSCCAT-" 2889417 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1132 2878770 2885287 2885329 "ULSCAT" 2886185 NIL ULSCAT (NIL T) -9 NIL 2886915) (-1131 2878204 2878283 2878460 "ULS2" 2878685 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1130 2876602 2877569 2877599 "UFD" 2877811 T UFD (NIL) -9 NIL 2877925) (-1129 2876396 2876442 2876537 "UFD-" 2876542 NIL UFD- (NIL T) -8 NIL NIL) (-1128 2875478 2875661 2875877 "UDVO" 2876202 T UDVO (NIL) -7 NIL NIL) (-1127 2873294 2873703 2874174 "UDPO" 2875042 NIL UDPO (NIL T) -7 NIL NIL) (-1126 2873227 2873232 2873262 "TYPE" 2873267 T TYPE (NIL) -9 NIL NIL) (-1125 2872198 2872400 2872640 "TWOFACT" 2873021 NIL TWOFACT (NIL T) -7 NIL NIL) (-1124 2871136 2871473 2871736 "TUPLE" 2871970 NIL TUPLE (NIL T) -8 NIL NIL) (-1123 2868827 2869346 2869885 "TUBETOOL" 2870619 T TUBETOOL (NIL) -7 NIL NIL) (-1122 2867676 2867881 2868122 "TUBE" 2868620 NIL TUBE (NIL T) -8 NIL NIL) (-1121 2862400 2866654 2866936 "TS" 2867428 NIL TS (NIL T) -8 NIL NIL) (-1120 2851104 2855196 2855292 "TSETCAT" 2860526 NIL TSETCAT (NIL T T T T) -9 NIL 2862057) (-1119 2845839 2847437 2849327 "TSETCAT-" 2849332 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1118 2840102 2840948 2841890 "TRMANIP" 2844975 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1117 2839543 2839606 2839769 "TRIMAT" 2840034 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1116 2837349 2837586 2837949 "TRIGMNIP" 2839292 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1115 2836869 2836982 2837012 "TRIGCAT" 2837225 T TRIGCAT (NIL) -9 NIL NIL) (-1114 2836538 2836617 2836758 "TRIGCAT-" 2836763 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1113 2833437 2835398 2835678 "TREE" 2836293 NIL TREE (NIL T) -8 NIL NIL) (-1112 2832711 2833239 2833269 "TRANFUN" 2833304 T TRANFUN (NIL) -9 NIL 2833370) (-1111 2831990 2832181 2832461 "TRANFUN-" 2832466 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1110 2831794 2831826 2831887 "TOPSP" 2831951 T TOPSP (NIL) -7 NIL NIL) (-1109 2831146 2831261 2831414 "TOOLSIGN" 2831675 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1108 2829807 2830323 2830562 "TEXTFILE" 2830929 T TEXTFILE (NIL) -8 NIL NIL) (-1107 2827672 2828186 2828624 "TEX" 2829391 T TEX (NIL) -8 NIL NIL) (-1106 2827453 2827484 2827556 "TEX1" 2827635 NIL TEX1 (NIL T) -7 NIL NIL) (-1105 2827101 2827164 2827254 "TEMUTL" 2827385 T TEMUTL (NIL) -7 NIL NIL) (-1104 2825255 2825535 2825860 "TBCMPPK" 2826824 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1103 2817144 2823416 2823472 "TBAGG" 2823872 NIL TBAGG (NIL T T) -9 NIL 2824083) (-1102 2812214 2813702 2815456 "TBAGG-" 2815461 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1101 2811598 2811705 2811850 "TANEXP" 2812103 NIL TANEXP (NIL T) -7 NIL NIL) (-1100 2805099 2811455 2811548 "TABLE" 2811553 NIL TABLE (NIL T T) -8 NIL NIL) (-1099 2804511 2804610 2804748 "TABLEAU" 2804996 NIL TABLEAU (NIL T) -8 NIL NIL) (-1098 2799119 2800339 2801587 "TABLBUMP" 2803297 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1097 2798547 2798647 2798775 "SYSTEM" 2799013 T SYSTEM (NIL) -7 NIL NIL) (-1096 2795010 2795705 2796488 "SYSSOLP" 2797798 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1095 2791301 2792009 2792743 "SYNTAX" 2794298 T SYNTAX (NIL) -8 NIL NIL) (-1094 2788435 2789043 2789681 "SYMTAB" 2790685 T SYMTAB (NIL) -8 NIL NIL) (-1093 2783684 2784586 2785569 "SYMS" 2787474 T SYMS (NIL) -8 NIL NIL) (-1092 2780917 2783144 2783373 "SYMPOLY" 2783489 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1091 2780437 2780512 2780634 "SYMFUNC" 2780829 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1090 2776414 2777674 2778496 "SYMBOL" 2779637 T SYMBOL (NIL) -8 NIL NIL) (-1089 2769953 2771642 2773362 "SWITCH" 2774716 T SWITCH (NIL) -8 NIL NIL) (-1088 2763183 2768780 2769082 "SUTS" 2769708 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1087 2755073 2762304 2762584 "SUPXS" 2762960 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1086 2746565 2754694 2754819 "SUP" 2754982 NIL SUP (NIL T) -8 NIL NIL) (-1085 2745724 2745851 2746068 "SUPFRACF" 2746433 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1084 2745349 2745408 2745519 "SUP2" 2745659 NIL SUP2 (NIL T T) -7 NIL NIL) (-1083 2743767 2744041 2744403 "SUMRF" 2745048 NIL SUMRF (NIL T) -7 NIL NIL) (-1082 2743084 2743150 2743348 "SUMFS" 2743688 NIL SUMFS (NIL T T) -7 NIL NIL) (-1081 2727020 2742265 2742515 "SULS" 2742891 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1080 2726342 2726545 2726685 "SUCH" 2726928 NIL SUCH (NIL T T) -8 NIL NIL) (-1079 2720269 2721281 2722239 "SUBSPACE" 2725430 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1078 2719699 2719789 2719953 "SUBRESP" 2720157 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1077 2713068 2714364 2715675 "STTF" 2718435 NIL STTF (NIL T) -7 NIL NIL) (-1076 2707241 2708361 2709508 "STTFNC" 2711968 NIL STTFNC (NIL T) -7 NIL NIL) (-1075 2698592 2700459 2702252 "STTAYLOR" 2705482 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1074 2691836 2698456 2698539 "STRTBL" 2698544 NIL STRTBL (NIL T) -8 NIL NIL) (-1073 2687227 2691791 2691822 "STRING" 2691827 T STRING (NIL) -8 NIL NIL) (-1072 2682116 2686601 2686631 "STRICAT" 2686690 T STRICAT (NIL) -9 NIL 2686752) (-1071 2674832 2679639 2680259 "STREAM" 2681531 NIL STREAM (NIL T) -8 NIL NIL) (-1070 2674342 2674419 2674563 "STREAM3" 2674749 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1069 2673324 2673507 2673742 "STREAM2" 2674155 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1068 2673012 2673064 2673157 "STREAM1" 2673266 NIL STREAM1 (NIL T) -7 NIL NIL) (-1067 2672028 2672209 2672440 "STINPROD" 2672828 NIL STINPROD (NIL T) -7 NIL NIL) (-1066 2671607 2671791 2671821 "STEP" 2671901 T STEP (NIL) -9 NIL 2671979) (-1065 2665150 2671506 2671583 "STBL" 2671588 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1064 2660326 2664373 2664416 "STAGG" 2664569 NIL STAGG (NIL T) -9 NIL 2664658) (-1063 2658028 2658630 2659502 "STAGG-" 2659507 NIL STAGG- (NIL T T) -8 NIL NIL) (-1062 2656223 2657798 2657890 "STACK" 2657971 NIL STACK (NIL T) -8 NIL NIL) (-1061 2648954 2654370 2654825 "SREGSET" 2655853 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1060 2641394 2642762 2644274 "SRDCMPK" 2647560 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1059 2634362 2638835 2638865 "SRAGG" 2640168 T SRAGG (NIL) -9 NIL 2640776) (-1058 2633379 2633634 2634013 "SRAGG-" 2634018 NIL SRAGG- (NIL T) -8 NIL NIL) (-1057 2627828 2632298 2632725 "SQMATRIX" 2632998 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1056 2621580 2624548 2625274 "SPLTREE" 2627174 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1055 2617570 2618236 2618882 "SPLNODE" 2621006 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1054 2616617 2616850 2616880 "SPFCAT" 2617324 T SPFCAT (NIL) -9 NIL NIL) (-1053 2615354 2615564 2615828 "SPECOUT" 2616375 T SPECOUT (NIL) -7 NIL NIL) (-1052 2615115 2615155 2615224 "SPADPRSR" 2615307 T SPADPRSR (NIL) -7 NIL NIL) (-1051 2607138 2608885 2608927 "SPACEC" 2613250 NIL SPACEC (NIL T) -9 NIL 2615066) (-1050 2605309 2607071 2607119 "SPACE3" 2607124 NIL SPACE3 (NIL T) -8 NIL NIL) (-1049 2604061 2604232 2604523 "SORTPAK" 2605114 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1048 2602117 2602420 2602838 "SOLVETRA" 2603725 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1047 2601128 2601350 2601624 "SOLVESER" 2601890 NIL SOLVESER (NIL T) -7 NIL NIL) (-1046 2596348 2597229 2598231 "SOLVERAD" 2600180 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1045 2592163 2592772 2593501 "SOLVEFOR" 2595715 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1044 2586463 2591515 2591611 "SNTSCAT" 2591616 NIL SNTSCAT (NIL T T T T) -9 NIL 2591686) (-1043 2580567 2584794 2585184 "SMTS" 2586153 NIL SMTS (NIL T T T) -8 NIL NIL) (-1042 2574977 2580456 2580532 "SMP" 2580537 NIL SMP (NIL T T) -8 NIL NIL) (-1041 2573136 2573437 2573835 "SMITH" 2574674 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1040 2566101 2570297 2570399 "SMATCAT" 2571739 NIL SMATCAT (NIL NIL T T T) -9 NIL 2572288) (-1039 2563042 2563865 2565042 "SMATCAT-" 2565047 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1038 2560756 2562279 2562322 "SKAGG" 2562583 NIL SKAGG (NIL T) -9 NIL 2562718) (-1037 2556814 2559860 2560138 "SINT" 2560500 T SINT (NIL) -8 NIL NIL) (-1036 2556586 2556624 2556690 "SIMPAN" 2556770 T SIMPAN (NIL) -7 NIL NIL) (-1035 2555424 2555645 2555920 "SIGNRF" 2556345 NIL SIGNRF (NIL T) -7 NIL NIL) (-1034 2554233 2554384 2554674 "SIGNEF" 2555253 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1033 2551923 2552377 2552883 "SHP" 2553774 NIL SHP (NIL T NIL) -7 NIL NIL) (-1032 2545776 2551824 2551900 "SHDP" 2551905 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1031 2545266 2545458 2545488 "SGROUP" 2545640 T SGROUP (NIL) -9 NIL 2545727) (-1030 2545036 2545088 2545192 "SGROUP-" 2545197 NIL SGROUP- (NIL T) -8 NIL NIL) (-1029 2541872 2542569 2543292 "SGCF" 2544335 T SGCF (NIL) -7 NIL NIL) (-1028 2536271 2541323 2541419 "SFRTCAT" 2541424 NIL SFRTCAT (NIL T T T T) -9 NIL 2541462) (-1027 2529731 2530746 2531880 "SFRGCD" 2535254 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1026 2522897 2523968 2525152 "SFQCMPK" 2528664 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1025 2522519 2522608 2522718 "SFORT" 2522838 NIL SFORT (NIL T T) -8 NIL NIL) (-1024 2521664 2522359 2522480 "SEXOF" 2522485 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1023 2520798 2521545 2521613 "SEX" 2521618 T SEX (NIL) -8 NIL NIL) (-1022 2515575 2516264 2516359 "SEXCAT" 2520130 NIL SEXCAT (NIL T T T T T) -9 NIL 2520749) (-1021 2512755 2515509 2515557 "SET" 2515562 NIL SET (NIL T) -8 NIL NIL) (-1020 2511006 2511468 2511773 "SETMN" 2512496 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1019 2510614 2510740 2510770 "SETCAT" 2510887 T SETCAT (NIL) -9 NIL 2510971) (-1018 2510394 2510446 2510545 "SETCAT-" 2510550 NIL SETCAT- (NIL T) -8 NIL NIL) (-1017 2506782 2508856 2508899 "SETAGG" 2509769 NIL SETAGG (NIL T) -9 NIL 2510109) (-1016 2506240 2506356 2506593 "SETAGG-" 2506598 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1015 2505444 2505737 2505798 "SEGXCAT" 2506084 NIL SEGXCAT (NIL T T) -9 NIL 2506204) (-1014 2504500 2505110 2505292 "SEG" 2505297 NIL SEG (NIL T) -8 NIL NIL) (-1013 2503407 2503620 2503663 "SEGCAT" 2504245 NIL SEGCAT (NIL T) -9 NIL 2504483) (-1012 2502456 2502786 2502986 "SEGBIND" 2503242 NIL SEGBIND (NIL T) -8 NIL NIL) (-1011 2502077 2502136 2502249 "SEGBIND2" 2502391 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1010 2501296 2501422 2501626 "SEG2" 2501921 NIL SEG2 (NIL T T) -7 NIL NIL) (-1009 2500733 2501231 2501278 "SDVAR" 2501283 NIL SDVAR (NIL T) -8 NIL NIL) (-1008 2492985 2500506 2500634 "SDPOL" 2500639 NIL SDPOL (NIL T) -8 NIL NIL) (-1007 2491578 2491844 2492163 "SCPKG" 2492700 NIL SCPKG (NIL T) -7 NIL NIL) (-1006 2490715 2490894 2491094 "SCOPE" 2491400 T SCOPE (NIL) -8 NIL NIL) (-1005 2489936 2490069 2490248 "SCACHE" 2490570 NIL SCACHE (NIL T) -7 NIL NIL) (-1004 2489375 2489696 2489781 "SAOS" 2489873 T SAOS (NIL) -8 NIL NIL) (-1003 2488940 2488975 2489148 "SAERFFC" 2489334 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1002 2482834 2488837 2488917 "SAE" 2488922 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1001 2482427 2482462 2482621 "SAEFACT" 2482793 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1000 2480748 2481062 2481463 "RURPK" 2482093 NIL RURPK (NIL T NIL) -7 NIL NIL) (-999 2479401 2479678 2479985 "RULESET" 2480584 NIL RULESET (NIL T T T) -8 NIL NIL) (-998 2476609 2477112 2477573 "RULE" 2479083 NIL RULE (NIL T T T) -8 NIL NIL) (-997 2476251 2476406 2476487 "RULECOLD" 2476561 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-996 2471143 2471937 2472853 "RSETGCD" 2475450 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-995 2460458 2465510 2465604 "RSETCAT" 2469669 NIL RSETCAT (NIL T T T T) -9 NIL 2470766) (-994 2458389 2458928 2459748 "RSETCAT-" 2459753 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-993 2450819 2452194 2453710 "RSDCMPK" 2456988 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-992 2448837 2449278 2449350 "RRCC" 2450426 NIL RRCC (NIL T T) -9 NIL 2450770) (-991 2448191 2448365 2448641 "RRCC-" 2448646 NIL RRCC- (NIL T T T) -8 NIL NIL) (-990 2422558 2432183 2432247 "RPOLCAT" 2442749 NIL RPOLCAT (NIL T T T) -9 NIL 2445907) (-989 2414062 2416400 2419518 "RPOLCAT-" 2419523 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-988 2405128 2412292 2412772 "ROUTINE" 2413602 T ROUTINE (NIL) -8 NIL NIL) (-987 2401833 2404684 2404831 "ROMAN" 2405001 T ROMAN (NIL) -8 NIL NIL) (-986 2400119 2400704 2400961 "ROIRC" 2401639 NIL ROIRC (NIL T T) -8 NIL NIL) (-985 2396524 2398828 2398856 "RNS" 2399152 T RNS (NIL) -9 NIL 2399422) (-984 2395038 2395421 2395952 "RNS-" 2396025 NIL RNS- (NIL T) -8 NIL NIL) (-983 2394464 2394872 2394900 "RNG" 2394905 T RNG (NIL) -9 NIL 2394926) (-982 2393862 2394224 2394264 "RMODULE" 2394324 NIL RMODULE (NIL T) -9 NIL 2394366) (-981 2392714 2392808 2393138 "RMCAT2" 2393763 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-980 2389428 2391897 2392218 "RMATRIX" 2392449 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-979 2382425 2384659 2384771 "RMATCAT" 2388080 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2389062) (-978 2381804 2381951 2382254 "RMATCAT-" 2382259 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-977 2381374 2381449 2381575 "RINTERP" 2381723 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-976 2380425 2380989 2381017 "RING" 2381127 T RING (NIL) -9 NIL 2381221) (-975 2380220 2380264 2380358 "RING-" 2380363 NIL RING- (NIL T) -8 NIL NIL) (-974 2379068 2379305 2379561 "RIDIST" 2379984 T RIDIST (NIL) -7 NIL NIL) (-973 2370390 2378542 2378745 "RGCHAIN" 2378917 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-972 2367395 2368009 2368677 "RF" 2369754 NIL RF (NIL T) -7 NIL NIL) (-971 2367044 2367107 2367208 "RFFACTOR" 2367326 NIL RFFACTOR (NIL T) -7 NIL NIL) (-970 2366772 2366807 2366902 "RFFACT" 2367003 NIL RFFACT (NIL T) -7 NIL NIL) (-969 2364902 2365266 2365646 "RFDIST" 2366412 T RFDIST (NIL) -7 NIL NIL) (-968 2364360 2364452 2364612 "RETSOL" 2364804 NIL RETSOL (NIL T T) -7 NIL NIL) (-967 2363953 2364033 2364074 "RETRACT" 2364264 NIL RETRACT (NIL T) -9 NIL NIL) (-966 2363805 2363830 2363914 "RETRACT-" 2363919 NIL RETRACT- (NIL T T) -8 NIL NIL) (-965 2356663 2363462 2363587 "RESULT" 2363700 T RESULT (NIL) -8 NIL NIL) (-964 2355248 2355937 2356134 "RESRING" 2356566 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-963 2354888 2354937 2355033 "RESLATC" 2355185 NIL RESLATC (NIL T) -7 NIL NIL) (-962 2354597 2354631 2354736 "REPSQ" 2354847 NIL REPSQ (NIL T) -7 NIL NIL) (-961 2352028 2352608 2353208 "REP" 2354017 T REP (NIL) -7 NIL NIL) (-960 2351729 2351763 2351872 "REPDB" 2351987 NIL REPDB (NIL T) -7 NIL NIL) (-959 2345674 2347053 2348273 "REP2" 2350541 NIL REP2 (NIL T) -7 NIL NIL) (-958 2342080 2342761 2343566 "REP1" 2344901 NIL REP1 (NIL T) -7 NIL NIL) (-957 2334826 2340241 2340693 "REGSET" 2341711 NIL REGSET (NIL T T T T) -8 NIL NIL) (-956 2333647 2333982 2334230 "REF" 2334611 NIL REF (NIL T) -8 NIL NIL) (-955 2333028 2333131 2333296 "REDORDER" 2333531 NIL REDORDER (NIL T T) -7 NIL NIL) (-954 2328997 2332262 2332483 "RECLOS" 2332859 NIL RECLOS (NIL T) -8 NIL NIL) (-953 2328054 2328235 2328448 "REALSOLV" 2328804 T REALSOLV (NIL) -7 NIL NIL) (-952 2327902 2327943 2327971 "REAL" 2327976 T REAL (NIL) -9 NIL 2328011) (-951 2324393 2325195 2326077 "REAL0Q" 2327067 NIL REAL0Q (NIL T) -7 NIL NIL) (-950 2320004 2320992 2322051 "REAL0" 2323374 NIL REAL0 (NIL T) -7 NIL NIL) (-949 2319412 2319484 2319689 "RDIV" 2319926 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-948 2318485 2318659 2318870 "RDIST" 2319234 NIL RDIST (NIL T) -7 NIL NIL) (-947 2317089 2317376 2317745 "RDETRS" 2318193 NIL RDETRS (NIL T T) -7 NIL NIL) (-946 2314910 2315364 2315899 "RDETR" 2316631 NIL RDETR (NIL T T) -7 NIL NIL) (-945 2313526 2313804 2314205 "RDEEFS" 2314626 NIL RDEEFS (NIL T T) -7 NIL NIL) (-944 2312026 2312332 2312761 "RDEEF" 2313214 NIL RDEEF (NIL T T) -7 NIL NIL) (-943 2306311 2309243 2309271 "RCFIELD" 2310548 T RCFIELD (NIL) -9 NIL 2311278) (-942 2304380 2304884 2305577 "RCFIELD-" 2305650 NIL RCFIELD- (NIL T) -8 NIL NIL) (-941 2300712 2302497 2302538 "RCAGG" 2303609 NIL RCAGG (NIL T) -9 NIL 2304074) (-940 2300343 2300437 2300597 "RCAGG-" 2300602 NIL RCAGG- (NIL T T) -8 NIL NIL) (-939 2299687 2299799 2299961 "RATRET" 2300227 NIL RATRET (NIL T) -7 NIL NIL) (-938 2299244 2299311 2299430 "RATFACT" 2299615 NIL RATFACT (NIL T) -7 NIL NIL) (-937 2298559 2298679 2298829 "RANDSRC" 2299114 T RANDSRC (NIL) -7 NIL NIL) (-936 2298296 2298340 2298411 "RADUTIL" 2298508 T RADUTIL (NIL) -7 NIL NIL) (-935 2291303 2297039 2297356 "RADIX" 2298011 NIL RADIX (NIL NIL) -8 NIL NIL) (-934 2282873 2291147 2291275 "RADFF" 2291280 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-933 2282525 2282600 2282628 "RADCAT" 2282785 T RADCAT (NIL) -9 NIL NIL) (-932 2282310 2282358 2282455 "RADCAT-" 2282460 NIL RADCAT- (NIL T) -8 NIL NIL) (-931 2280461 2282085 2282174 "QUEUE" 2282254 NIL QUEUE (NIL T) -8 NIL NIL) (-930 2276958 2280398 2280443 "QUAT" 2280448 NIL QUAT (NIL T) -8 NIL NIL) (-929 2276596 2276639 2276766 "QUATCT2" 2276909 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-928 2270390 2273770 2273810 "QUATCAT" 2274589 NIL QUATCAT (NIL T) -9 NIL 2275354) (-927 2266534 2267571 2268958 "QUATCAT-" 2269052 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-926 2264055 2265619 2265660 "QUAGG" 2266035 NIL QUAGG (NIL T) -9 NIL 2266210) (-925 2262980 2263453 2263625 "QFORM" 2263927 NIL QFORM (NIL NIL T) -8 NIL NIL) (-924 2254277 2259535 2259575 "QFCAT" 2260233 NIL QFCAT (NIL T) -9 NIL 2261226) (-923 2249849 2251050 2252641 "QFCAT-" 2252735 NIL QFCAT- (NIL T T) -8 NIL NIL) (-922 2249487 2249530 2249657 "QFCAT2" 2249800 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-921 2248947 2249057 2249187 "QEQUAT" 2249377 T QEQUAT (NIL) -8 NIL NIL) (-920 2242133 2243204 2244386 "QCMPACK" 2247880 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-919 2239709 2240130 2240558 "QALGSET" 2241788 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-918 2238954 2239128 2239360 "QALGSET2" 2239529 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-917 2237645 2237868 2238185 "PWFFINTB" 2238727 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-916 2235833 2236001 2236354 "PUSHVAR" 2237459 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-915 2231751 2232805 2232846 "PTRANFN" 2234730 NIL PTRANFN (NIL T) -9 NIL NIL) (-914 2230163 2230454 2230775 "PTPACK" 2231462 NIL PTPACK (NIL T) -7 NIL NIL) (-913 2229799 2229856 2229963 "PTFUNC2" 2230100 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-912 2224276 2228617 2228657 "PTCAT" 2229025 NIL PTCAT (NIL T) -9 NIL 2229187) (-911 2223934 2223969 2224093 "PSQFR" 2224235 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-910 2222529 2222827 2223161 "PSEUDLIN" 2223632 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-909 2209337 2211701 2214024 "PSETPK" 2220289 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-908 2202424 2205138 2205232 "PSETCAT" 2208213 NIL PSETCAT (NIL T T T T) -9 NIL 2209027) (-907 2200262 2200896 2201715 "PSETCAT-" 2201720 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-906 2199611 2199776 2199804 "PSCURVE" 2200072 T PSCURVE (NIL) -9 NIL 2200239) (-905 2196063 2197589 2197653 "PSCAT" 2198489 NIL PSCAT (NIL T T T) -9 NIL 2198729) (-904 2195127 2195343 2195742 "PSCAT-" 2195747 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-903 2193779 2194412 2194626 "PRTITION" 2194933 T PRTITION (NIL) -8 NIL NIL) (-902 2182877 2185083 2187271 "PRS" 2191641 NIL PRS (NIL T T) -7 NIL NIL) (-901 2180736 2182228 2182268 "PRQAGG" 2182451 NIL PRQAGG (NIL T) -9 NIL 2182553) (-900 2180307 2180409 2180437 "PROPLOG" 2180622 T PROPLOG (NIL) -9 NIL NIL) (-899 2177430 2177995 2178522 "PROPFRML" 2179812 NIL PROPFRML (NIL T) -8 NIL NIL) (-898 2176890 2177000 2177130 "PROPERTY" 2177320 T PROPERTY (NIL) -8 NIL NIL) (-897 2170664 2175056 2175876 "PRODUCT" 2176116 NIL PRODUCT (NIL T T) -8 NIL NIL) (-896 2167940 2170124 2170357 "PR" 2170475 NIL PR (NIL T T) -8 NIL NIL) (-895 2167736 2167768 2167827 "PRINT" 2167901 T PRINT (NIL) -7 NIL NIL) (-894 2167076 2167193 2167345 "PRIMES" 2167616 NIL PRIMES (NIL T) -7 NIL NIL) (-893 2165141 2165542 2166008 "PRIMELT" 2166655 NIL PRIMELT (NIL T) -7 NIL NIL) (-892 2164870 2164919 2164947 "PRIMCAT" 2165071 T PRIMCAT (NIL) -9 NIL NIL) (-891 2161031 2164808 2164853 "PRIMARR" 2164858 NIL PRIMARR (NIL T) -8 NIL NIL) (-890 2160038 2160216 2160444 "PRIMARR2" 2160849 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-889 2159681 2159737 2159848 "PREASSOC" 2159976 NIL PREASSOC (NIL T T) -7 NIL NIL) (-888 2159156 2159289 2159317 "PPCURVE" 2159522 T PPCURVE (NIL) -9 NIL 2159658) (-887 2156515 2156914 2157506 "POLYROOT" 2158737 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-886 2150421 2156121 2156280 "POLY" 2156388 NIL POLY (NIL T) -8 NIL NIL) (-885 2149806 2149864 2150097 "POLYLIFT" 2150357 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-884 2146091 2146540 2147168 "POLYCATQ" 2149351 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-883 2133132 2138529 2138593 "POLYCAT" 2142078 NIL POLYCAT (NIL T T T) -9 NIL 2144005) (-882 2126583 2128444 2130827 "POLYCAT-" 2130832 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-881 2126172 2126240 2126359 "POLY2UP" 2126509 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-880 2125808 2125865 2125972 "POLY2" 2126109 NIL POLY2 (NIL T T) -7 NIL NIL) (-879 2124493 2124732 2125008 "POLUTIL" 2125582 NIL POLUTIL (NIL T T) -7 NIL NIL) (-878 2122855 2123132 2123462 "POLTOPOL" 2124215 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-877 2118378 2122792 2122837 "POINT" 2122842 NIL POINT (NIL T) -8 NIL NIL) (-876 2116565 2116922 2117297 "PNTHEORY" 2118023 T PNTHEORY (NIL) -7 NIL NIL) (-875 2114993 2115290 2115699 "PMTOOLS" 2116263 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-874 2114586 2114664 2114781 "PMSYM" 2114909 NIL PMSYM (NIL T) -7 NIL NIL) (-873 2114096 2114165 2114339 "PMQFCAT" 2114511 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-872 2113451 2113561 2113717 "PMPRED" 2113973 NIL PMPRED (NIL T) -7 NIL NIL) (-871 2112847 2112933 2113094 "PMPREDFS" 2113352 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-870 2111493 2111701 2112085 "PMPLCAT" 2112609 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-869 2111025 2111104 2111256 "PMLSAGG" 2111408 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-868 2110502 2110578 2110758 "PMKERNEL" 2110943 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-867 2110119 2110194 2110307 "PMINS" 2110421 NIL PMINS (NIL T) -7 NIL NIL) (-866 2109549 2109618 2109833 "PMFS" 2110044 NIL PMFS (NIL T T T) -7 NIL NIL) (-865 2108780 2108898 2109102 "PMDOWN" 2109426 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-864 2107943 2108102 2108284 "PMASS" 2108618 T PMASS (NIL) -7 NIL NIL) (-863 2107217 2107328 2107491 "PMASSFS" 2107829 NIL PMASSFS (NIL T T) -7 NIL NIL) (-862 2106872 2106940 2107034 "PLOTTOOL" 2107143 T PLOTTOOL (NIL) -7 NIL NIL) (-861 2101494 2102683 2103831 "PLOT" 2105744 T PLOT (NIL) -8 NIL NIL) (-860 2097308 2098342 2099263 "PLOT3D" 2100593 T PLOT3D (NIL) -8 NIL NIL) (-859 2096220 2096397 2096632 "PLOT1" 2097112 NIL PLOT1 (NIL T) -7 NIL NIL) (-858 2071614 2076286 2081137 "PLEQN" 2091486 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-857 2070932 2071054 2071234 "PINTERP" 2071479 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-856 2070625 2070672 2070775 "PINTERPA" 2070879 NIL PINTERPA (NIL T T) -7 NIL NIL) (-855 2069852 2070419 2070512 "PI" 2070552 T PI (NIL) -8 NIL NIL) (-854 2068244 2069229 2069257 "PID" 2069439 T PID (NIL) -9 NIL 2069573) (-853 2067969 2068006 2068094 "PICOERCE" 2068201 NIL PICOERCE (NIL T) -7 NIL NIL) (-852 2067289 2067428 2067604 "PGROEB" 2067825 NIL PGROEB (NIL T) -7 NIL NIL) (-851 2062876 2063690 2064595 "PGE" 2066404 T PGE (NIL) -7 NIL NIL) (-850 2061000 2061246 2061612 "PGCD" 2062593 NIL PGCD (NIL T T T T) -7 NIL NIL) (-849 2060338 2060441 2060602 "PFRPAC" 2060884 NIL PFRPAC (NIL T) -7 NIL NIL) (-848 2056953 2058886 2059239 "PFR" 2060017 NIL PFR (NIL T) -8 NIL NIL) (-847 2055342 2055586 2055911 "PFOTOOLS" 2056700 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-846 2053875 2054114 2054465 "PFOQ" 2055099 NIL PFOQ (NIL T T T) -7 NIL NIL) (-845 2052352 2052564 2052926 "PFO" 2053659 NIL PFO (NIL T T T T T) -7 NIL NIL) (-844 2048875 2052241 2052310 "PF" 2052315 NIL PF (NIL NIL) -8 NIL NIL) (-843 2046304 2047585 2047613 "PFECAT" 2048198 T PFECAT (NIL) -9 NIL 2048582) (-842 2045749 2045903 2046117 "PFECAT-" 2046122 NIL PFECAT- (NIL T) -8 NIL NIL) (-841 2044353 2044604 2044905 "PFBRU" 2045498 NIL PFBRU (NIL T T) -7 NIL NIL) (-840 2042220 2042571 2043003 "PFBR" 2044004 NIL PFBR (NIL T T T T) -7 NIL NIL) (-839 2038072 2039596 2040272 "PERM" 2041577 NIL PERM (NIL T) -8 NIL NIL) (-838 2033337 2034279 2035149 "PERMGRP" 2037235 NIL PERMGRP (NIL T) -8 NIL NIL) (-837 2031408 2032401 2032442 "PERMCAT" 2032888 NIL PERMCAT (NIL T) -9 NIL 2033193) (-836 2031063 2031104 2031227 "PERMAN" 2031361 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-835 2028503 2030632 2030763 "PENDTREE" 2030965 NIL PENDTREE (NIL T) -8 NIL NIL) (-834 2026576 2027354 2027395 "PDRING" 2028052 NIL PDRING (NIL T) -9 NIL 2028337) (-833 2025679 2025897 2026259 "PDRING-" 2026264 NIL PDRING- (NIL T T) -8 NIL NIL) (-832 2022820 2023571 2024262 "PDEPROB" 2025008 T PDEPROB (NIL) -8 NIL NIL) (-831 2020391 2020887 2021436 "PDEPACK" 2022291 T PDEPACK (NIL) -7 NIL NIL) (-830 2019303 2019493 2019744 "PDECOMP" 2020190 NIL PDECOMP (NIL T T) -7 NIL NIL) (-829 2016915 2017730 2017758 "PDECAT" 2018543 T PDECAT (NIL) -9 NIL 2019254) (-828 2016668 2016701 2016790 "PCOMP" 2016876 NIL PCOMP (NIL T T) -7 NIL NIL) (-827 2014875 2015471 2015767 "PBWLB" 2016398 NIL PBWLB (NIL T) -8 NIL NIL) (-826 2007383 2008952 2010288 "PATTERN" 2013560 NIL PATTERN (NIL T) -8 NIL NIL) (-825 2007015 2007072 2007181 "PATTERN2" 2007320 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-824 2004772 2005160 2005617 "PATTERN1" 2006604 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-823 2002167 2002721 2003202 "PATRES" 2004337 NIL PATRES (NIL T T) -8 NIL NIL) (-822 2001731 2001798 2001930 "PATRES2" 2002094 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-821 1999628 2000028 2000433 "PATMATCH" 2001400 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-820 1999165 1999348 1999389 "PATMAB" 1999496 NIL PATMAB (NIL T) -9 NIL 1999579) (-819 1997710 1998019 1998277 "PATLRES" 1998970 NIL PATLRES (NIL T T T) -8 NIL NIL) (-818 1997256 1997379 1997420 "PATAB" 1997425 NIL PATAB (NIL T) -9 NIL 1997597) (-817 1994737 1995269 1995842 "PARTPERM" 1996703 T PARTPERM (NIL) -7 NIL NIL) (-816 1994358 1994421 1994523 "PARSURF" 1994668 NIL PARSURF (NIL T) -8 NIL NIL) (-815 1993990 1994047 1994156 "PARSU2" 1994295 NIL PARSU2 (NIL T T) -7 NIL NIL) (-814 1993754 1993794 1993861 "PARSER" 1993943 T PARSER (NIL) -7 NIL NIL) (-813 1993375 1993438 1993540 "PARSCURV" 1993685 NIL PARSCURV (NIL T) -8 NIL NIL) (-812 1993007 1993064 1993173 "PARSC2" 1993312 NIL PARSC2 (NIL T T) -7 NIL NIL) (-811 1992646 1992704 1992801 "PARPCURV" 1992943 NIL PARPCURV (NIL T) -8 NIL NIL) (-810 1992278 1992335 1992444 "PARPC2" 1992583 NIL PARPC2 (NIL T T) -7 NIL NIL) (-809 1991798 1991884 1992003 "PAN2EXPR" 1992179 T PAN2EXPR (NIL) -7 NIL NIL) (-808 1990604 1990919 1991147 "PALETTE" 1991590 T PALETTE (NIL) -8 NIL NIL) (-807 1989072 1989609 1989969 "PAIR" 1990290 NIL PAIR (NIL T T) -8 NIL NIL) (-806 1982922 1988331 1988525 "PADICRC" 1988927 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-805 1976130 1982268 1982452 "PADICRAT" 1982770 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-804 1974434 1976067 1976112 "PADIC" 1976117 NIL PADIC (NIL NIL) -8 NIL NIL) (-803 1971639 1973213 1973253 "PADICCT" 1973834 NIL PADICCT (NIL NIL) -9 NIL 1974116) (-802 1970596 1970796 1971064 "PADEPAC" 1971426 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-801 1969808 1969941 1970147 "PADE" 1970458 NIL PADE (NIL T T T) -7 NIL NIL) (-800 1967819 1968651 1968966 "OWP" 1969576 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-799 1966928 1967424 1967596 "OVAR" 1967687 NIL OVAR (NIL NIL) -8 NIL NIL) (-798 1966192 1966313 1966474 "OUT" 1966787 T OUT (NIL) -7 NIL NIL) (-797 1955246 1957417 1959587 "OUTFORM" 1964042 T OUTFORM (NIL) -8 NIL NIL) (-796 1954654 1954975 1955064 "OSI" 1955177 T OSI (NIL) -8 NIL NIL) (-795 1953399 1953626 1953911 "ORTHPOL" 1954401 NIL ORTHPOL (NIL T) -7 NIL NIL) (-794 1950770 1953060 1953198 "OREUP" 1953342 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-793 1948166 1950463 1950589 "ORESUP" 1950712 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-792 1945701 1946201 1946761 "OREPCTO" 1947655 NIL OREPCTO (NIL T T) -7 NIL NIL) (-791 1939611 1941817 1941857 "OREPCAT" 1944178 NIL OREPCAT (NIL T) -9 NIL 1945281) (-790 1936759 1937541 1938598 "OREPCAT-" 1938603 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-789 1935937 1936209 1936237 "ORDSET" 1936546 T ORDSET (NIL) -9 NIL 1936710) (-788 1935456 1935578 1935771 "ORDSET-" 1935776 NIL ORDSET- (NIL T) -8 NIL NIL) (-787 1934070 1934871 1934899 "ORDRING" 1935101 T ORDRING (NIL) -9 NIL 1935225) (-786 1933715 1933809 1933953 "ORDRING-" 1933958 NIL ORDRING- (NIL T) -8 NIL NIL) (-785 1933091 1933572 1933600 "ORDMON" 1933605 T ORDMON (NIL) -9 NIL 1933626) (-784 1932253 1932400 1932595 "ORDFUNS" 1932940 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-783 1931765 1932124 1932152 "ORDFIN" 1932157 T ORDFIN (NIL) -9 NIL 1932178) (-782 1928277 1930351 1930760 "ORDCOMP" 1931389 NIL ORDCOMP (NIL T) -8 NIL NIL) (-781 1927543 1927670 1927856 "ORDCOMP2" 1928137 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-780 1924050 1924933 1925770 "OPTPROB" 1926726 T OPTPROB (NIL) -8 NIL NIL) (-779 1920892 1921521 1922215 "OPTPACK" 1923376 T OPTPACK (NIL) -7 NIL NIL) (-778 1918618 1919354 1919382 "OPTCAT" 1920197 T OPTCAT (NIL) -9 NIL 1920843) (-777 1918386 1918425 1918491 "OPQUERY" 1918572 T OPQUERY (NIL) -7 NIL NIL) (-776 1915522 1916713 1917213 "OP" 1917918 NIL OP (NIL T) -8 NIL NIL) (-775 1912287 1914319 1914688 "ONECOMP" 1915186 NIL ONECOMP (NIL T) -8 NIL NIL) (-774 1911592 1911707 1911881 "ONECOMP2" 1912159 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-773 1911011 1911117 1911247 "OMSERVER" 1911482 T OMSERVER (NIL) -7 NIL NIL) (-772 1907900 1910452 1910492 "OMSAGG" 1910553 NIL OMSAGG (NIL T) -9 NIL 1910617) (-771 1906523 1906786 1907068 "OMPKG" 1907638 T OMPKG (NIL) -7 NIL NIL) (-770 1905953 1906056 1906084 "OM" 1906383 T OM (NIL) -9 NIL NIL) (-769 1904492 1905505 1905673 "OMLO" 1905834 NIL OMLO (NIL T T) -8 NIL NIL) (-768 1903422 1903569 1903795 "OMEXPR" 1904318 NIL OMEXPR (NIL T) -7 NIL NIL) (-767 1902740 1902968 1903104 "OMERR" 1903306 T OMERR (NIL) -8 NIL NIL) (-766 1901918 1902161 1902321 "OMERRK" 1902600 T OMERRK (NIL) -8 NIL NIL) (-765 1901396 1901595 1901703 "OMENC" 1901830 T OMENC (NIL) -8 NIL NIL) (-764 1895291 1896476 1897647 "OMDEV" 1900245 T OMDEV (NIL) -8 NIL NIL) (-763 1894360 1894531 1894725 "OMCONN" 1895117 T OMCONN (NIL) -8 NIL NIL) (-762 1892976 1893962 1893990 "OINTDOM" 1893995 T OINTDOM (NIL) -9 NIL 1894016) (-761 1888738 1889968 1890683 "OFMONOID" 1892293 NIL OFMONOID (NIL T) -8 NIL NIL) (-760 1888176 1888675 1888720 "ODVAR" 1888725 NIL ODVAR (NIL T) -8 NIL NIL) (-759 1885301 1887673 1887858 "ODR" 1888051 NIL ODR (NIL T T NIL) -8 NIL NIL) (-758 1877607 1885080 1885204 "ODPOL" 1885209 NIL ODPOL (NIL T) -8 NIL NIL) (-757 1871430 1877479 1877584 "ODP" 1877589 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-756 1870196 1870411 1870686 "ODETOOLS" 1871204 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-755 1867165 1867821 1868537 "ODESYS" 1869529 NIL ODESYS (NIL T T) -7 NIL NIL) (-754 1862069 1862977 1864000 "ODERTRIC" 1866240 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-753 1861495 1861577 1861771 "ODERED" 1861981 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-752 1858397 1858945 1859620 "ODERAT" 1860918 NIL ODERAT (NIL T T) -7 NIL NIL) (-751 1855365 1855829 1856425 "ODEPRRIC" 1857926 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-750 1853234 1853803 1854312 "ODEPROB" 1854876 T ODEPROB (NIL) -8 NIL NIL) (-749 1849766 1850249 1850895 "ODEPRIM" 1852713 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-748 1849019 1849121 1849379 "ODEPAL" 1849658 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-747 1845221 1846002 1846856 "ODEPACK" 1848185 T ODEPACK (NIL) -7 NIL NIL) (-746 1844258 1844365 1844593 "ODEINT" 1845110 NIL ODEINT (NIL T T) -7 NIL NIL) (-745 1838359 1839784 1841231 "ODEIFTBL" 1842831 T ODEIFTBL (NIL) -8 NIL NIL) (-744 1833703 1834489 1835447 "ODEEF" 1837518 NIL ODEEF (NIL T T) -7 NIL NIL) (-743 1833040 1833129 1833358 "ODECONST" 1833608 NIL ODECONST (NIL T T T) -7 NIL NIL) (-742 1831198 1831831 1831859 "ODECAT" 1832462 T ODECAT (NIL) -9 NIL 1832991) (-741 1828070 1830910 1831029 "OCT" 1831111 NIL OCT (NIL T) -8 NIL NIL) (-740 1827708 1827751 1827878 "OCTCT2" 1828021 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-739 1822542 1824980 1825020 "OC" 1826116 NIL OC (NIL T) -9 NIL 1826973) (-738 1819769 1820517 1821507 "OC-" 1821601 NIL OC- (NIL T T) -8 NIL NIL) (-737 1819148 1819590 1819618 "OCAMON" 1819623 T OCAMON (NIL) -9 NIL 1819644) (-736 1818602 1819009 1819037 "OASGP" 1819042 T OASGP (NIL) -9 NIL 1819062) (-735 1817890 1818353 1818381 "OAMONS" 1818421 T OAMONS (NIL) -9 NIL 1818464) (-734 1817331 1817738 1817766 "OAMON" 1817771 T OAMON (NIL) -9 NIL 1817791) (-733 1816636 1817128 1817156 "OAGROUP" 1817161 T OAGROUP (NIL) -9 NIL 1817181) (-732 1816326 1816376 1816464 "NUMTUBE" 1816580 NIL NUMTUBE (NIL T) -7 NIL NIL) (-731 1809899 1811417 1812953 "NUMQUAD" 1814810 T NUMQUAD (NIL) -7 NIL NIL) (-730 1805655 1806643 1807668 "NUMODE" 1808894 T NUMODE (NIL) -7 NIL NIL) (-729 1803059 1803905 1803933 "NUMINT" 1804850 T NUMINT (NIL) -9 NIL 1805606) (-728 1802007 1802204 1802422 "NUMFMT" 1802861 T NUMFMT (NIL) -7 NIL NIL) (-727 1788389 1791323 1793853 "NUMERIC" 1799516 NIL NUMERIC (NIL T) -7 NIL NIL) (-726 1782790 1787842 1787936 "NTSCAT" 1787941 NIL NTSCAT (NIL T T T T) -9 NIL 1787979) (-725 1781984 1782149 1782342 "NTPOLFN" 1782629 NIL NTPOLFN (NIL T) -7 NIL NIL) (-724 1769800 1778826 1779636 "NSUP" 1781206 NIL NSUP (NIL T) -8 NIL NIL) (-723 1769436 1769493 1769600 "NSUP2" 1769737 NIL NSUP2 (NIL T T) -7 NIL NIL) (-722 1759398 1769215 1769345 "NSMP" 1769350 NIL NSMP (NIL T T) -8 NIL NIL) (-721 1757830 1758131 1758488 "NREP" 1759086 NIL NREP (NIL T) -7 NIL NIL) (-720 1756421 1756673 1757031 "NPCOEF" 1757573 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-719 1755487 1755602 1755818 "NORMRETR" 1756302 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-718 1753540 1753830 1754237 "NORMPK" 1755195 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-717 1753225 1753253 1753377 "NORMMA" 1753506 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-716 1753052 1753182 1753211 "NONE" 1753216 T NONE (NIL) -8 NIL NIL) (-715 1752841 1752870 1752939 "NONE1" 1753016 NIL NONE1 (NIL T) -7 NIL NIL) (-714 1752326 1752388 1752573 "NODE1" 1752773 NIL NODE1 (NIL T T) -7 NIL NIL) (-713 1750619 1751489 1751744 "NNI" 1752091 T NNI (NIL) -8 NIL NIL) (-712 1749039 1749352 1749716 "NLINSOL" 1750287 NIL NLINSOL (NIL T) -7 NIL NIL) (-711 1745206 1746174 1747096 "NIPROB" 1748137 T NIPROB (NIL) -8 NIL NIL) (-710 1743963 1744197 1744499 "NFINTBAS" 1744968 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-709 1742671 1742902 1743183 "NCODIV" 1743731 NIL NCODIV (NIL T T) -7 NIL NIL) (-708 1742433 1742470 1742545 "NCNTFRAC" 1742628 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-707 1740613 1740977 1741397 "NCEP" 1742058 NIL NCEP (NIL T) -7 NIL NIL) (-706 1739525 1740264 1740292 "NASRING" 1740402 T NASRING (NIL) -9 NIL 1740476) (-705 1739320 1739364 1739458 "NASRING-" 1739463 NIL NASRING- (NIL T) -8 NIL NIL) (-704 1738474 1738973 1739001 "NARNG" 1739118 T NARNG (NIL) -9 NIL 1739209) (-703 1738166 1738233 1738367 "NARNG-" 1738372 NIL NARNG- (NIL T) -8 NIL NIL) (-702 1737045 1737252 1737487 "NAGSP" 1737951 T NAGSP (NIL) -7 NIL NIL) (-701 1728469 1730115 1731750 "NAGS" 1735430 T NAGS (NIL) -7 NIL NIL) (-700 1727033 1727337 1727664 "NAGF07" 1728162 T NAGF07 (NIL) -7 NIL NIL) (-699 1721615 1722895 1724191 "NAGF04" 1725757 T NAGF04 (NIL) -7 NIL NIL) (-698 1714647 1716245 1717862 "NAGF02" 1720018 T NAGF02 (NIL) -7 NIL NIL) (-697 1709911 1711001 1712108 "NAGF01" 1713560 T NAGF01 (NIL) -7 NIL NIL) (-696 1703571 1705129 1706706 "NAGE04" 1708354 T NAGE04 (NIL) -7 NIL NIL) (-695 1694812 1696915 1699027 "NAGE02" 1701479 T NAGE02 (NIL) -7 NIL NIL) (-694 1690805 1691742 1692696 "NAGE01" 1693878 T NAGE01 (NIL) -7 NIL NIL) (-693 1688612 1689143 1689698 "NAGD03" 1690270 T NAGD03 (NIL) -7 NIL NIL) (-692 1680398 1682317 1684262 "NAGD02" 1686687 T NAGD02 (NIL) -7 NIL NIL) (-691 1674257 1675670 1677098 "NAGD01" 1678990 T NAGD01 (NIL) -7 NIL NIL) (-690 1670514 1671324 1672149 "NAGC06" 1673452 T NAGC06 (NIL) -7 NIL NIL) (-689 1668991 1669320 1669673 "NAGC05" 1670181 T NAGC05 (NIL) -7 NIL NIL) (-688 1668375 1668492 1668634 "NAGC02" 1668869 T NAGC02 (NIL) -7 NIL NIL) (-687 1667437 1667994 1668034 "NAALG" 1668113 NIL NAALG (NIL T) -9 NIL 1668174) (-686 1667272 1667301 1667391 "NAALG-" 1667396 NIL NAALG- (NIL T T) -8 NIL NIL) (-685 1661222 1662330 1663517 "MULTSQFR" 1666168 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-684 1660541 1660616 1660800 "MULTFACT" 1661134 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-683 1653735 1657646 1657698 "MTSCAT" 1658758 NIL MTSCAT (NIL T T) -9 NIL 1659272) (-682 1653447 1653501 1653593 "MTHING" 1653675 NIL MTHING (NIL T) -7 NIL NIL) (-681 1653239 1653272 1653332 "MSYSCMD" 1653407 T MSYSCMD (NIL) -7 NIL NIL) (-680 1649351 1651994 1652314 "MSET" 1652952 NIL MSET (NIL T) -8 NIL NIL) (-679 1646447 1648913 1648954 "MSETAGG" 1648959 NIL MSETAGG (NIL T) -9 NIL 1648993) (-678 1642303 1643845 1644586 "MRING" 1645750 NIL MRING (NIL T T) -8 NIL NIL) (-677 1641873 1641940 1642069 "MRF2" 1642230 NIL MRF2 (NIL T T T) -7 NIL NIL) (-676 1641491 1641526 1641670 "MRATFAC" 1641832 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-675 1639103 1639398 1639829 "MPRFF" 1641196 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-674 1633123 1638958 1639054 "MPOLY" 1639059 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-673 1632613 1632648 1632856 "MPCPF" 1633082 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-672 1632129 1632172 1632355 "MPC3" 1632564 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-671 1631330 1631411 1631630 "MPC2" 1632044 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-670 1629631 1629968 1630358 "MONOTOOL" 1630990 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-669 1628756 1629091 1629119 "MONOID" 1629396 T MONOID (NIL) -9 NIL 1629568) (-668 1628134 1628297 1628540 "MONOID-" 1628545 NIL MONOID- (NIL T) -8 NIL NIL) (-667 1619115 1625101 1625160 "MONOGEN" 1625834 NIL MONOGEN (NIL T T) -9 NIL 1626290) (-666 1616333 1617068 1618068 "MONOGEN-" 1618187 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-665 1615193 1615613 1615641 "MONADWU" 1616033 T MONADWU (NIL) -9 NIL 1616271) (-664 1614565 1614724 1614972 "MONADWU-" 1614977 NIL MONADWU- (NIL T) -8 NIL NIL) (-663 1613951 1614169 1614197 "MONAD" 1614404 T MONAD (NIL) -9 NIL 1614516) (-662 1613636 1613714 1613846 "MONAD-" 1613851 NIL MONAD- (NIL T) -8 NIL NIL) (-661 1611887 1612549 1612828 "MOEBIUS" 1613389 NIL MOEBIUS (NIL T) -8 NIL NIL) (-660 1611281 1611659 1611699 "MODULE" 1611704 NIL MODULE (NIL T) -9 NIL 1611730) (-659 1610849 1610945 1611135 "MODULE-" 1611140 NIL MODULE- (NIL T T) -8 NIL NIL) (-658 1608520 1609215 1609541 "MODRING" 1610674 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-657 1605476 1606641 1607158 "MODOP" 1608052 NIL MODOP (NIL T T) -8 NIL NIL) (-656 1603663 1604115 1604456 "MODMONOM" 1605275 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-655 1593342 1601867 1602289 "MODMON" 1603291 NIL MODMON (NIL T T) -8 NIL NIL) (-654 1590468 1592186 1592462 "MODFIELD" 1593217 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-653 1589472 1589749 1589939 "MMLFORM" 1590298 T MMLFORM (NIL) -8 NIL NIL) (-652 1588998 1589041 1589220 "MMAP" 1589423 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-651 1587235 1588012 1588052 "MLO" 1588469 NIL MLO (NIL T) -9 NIL 1588710) (-650 1584602 1585117 1585719 "MLIFT" 1586716 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-649 1583993 1584077 1584231 "MKUCFUNC" 1584513 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-648 1583592 1583662 1583785 "MKRECORD" 1583916 NIL MKRECORD (NIL T T) -7 NIL NIL) (-647 1582640 1582801 1583029 "MKFUNC" 1583403 NIL MKFUNC (NIL T) -7 NIL NIL) (-646 1582028 1582132 1582288 "MKFLCFN" 1582523 NIL MKFLCFN (NIL T) -7 NIL NIL) (-645 1581454 1581821 1581910 "MKCHSET" 1581972 NIL MKCHSET (NIL T) -8 NIL NIL) (-644 1580731 1580833 1581018 "MKBCFUNC" 1581347 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-643 1577415 1580285 1580421 "MINT" 1580615 T MINT (NIL) -8 NIL NIL) (-642 1576227 1576470 1576747 "MHROWRED" 1577170 NIL MHROWRED (NIL T) -7 NIL NIL) (-641 1571498 1574672 1575096 "MFLOAT" 1575823 T MFLOAT (NIL) -8 NIL NIL) (-640 1570855 1570931 1571102 "MFINFACT" 1571410 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-639 1567170 1568018 1568902 "MESH" 1569991 T MESH (NIL) -7 NIL NIL) (-638 1565560 1565872 1566225 "MDDFACT" 1566857 NIL MDDFACT (NIL T) -7 NIL NIL) (-637 1562403 1564720 1564761 "MDAGG" 1565016 NIL MDAGG (NIL T) -9 NIL 1565159) (-636 1552101 1561696 1561903 "MCMPLX" 1562216 T MCMPLX (NIL) -8 NIL NIL) (-635 1551242 1551388 1551588 "MCDEN" 1551950 NIL MCDEN (NIL T T) -7 NIL NIL) (-634 1549132 1549402 1549782 "MCALCFN" 1550972 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-633 1546754 1547277 1547838 "MATSTOR" 1548603 NIL MATSTOR (NIL T) -7 NIL NIL) (-632 1542763 1546129 1546376 "MATRIX" 1546539 NIL MATRIX (NIL T) -8 NIL NIL) (-631 1538532 1539236 1539972 "MATLIN" 1542120 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-630 1528730 1531868 1531944 "MATCAT" 1536782 NIL MATCAT (NIL T T T) -9 NIL 1538199) (-629 1525095 1526108 1527463 "MATCAT-" 1527468 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-628 1523697 1523850 1524181 "MATCAT2" 1524930 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-627 1521809 1522133 1522517 "MAPPKG3" 1523372 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-626 1520790 1520963 1521185 "MAPPKG2" 1521633 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-625 1519289 1519573 1519900 "MAPPKG1" 1520496 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-624 1518900 1518958 1519081 "MAPHACK3" 1519225 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-623 1518492 1518553 1518667 "MAPHACK2" 1518832 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-622 1517930 1518033 1518175 "MAPHACK1" 1518383 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-621 1516038 1516632 1516935 "MAGMA" 1517659 NIL MAGMA (NIL T) -8 NIL NIL) (-620 1512512 1514282 1514742 "M3D" 1515611 NIL M3D (NIL T) -8 NIL NIL) (-619 1506668 1510883 1510924 "LZSTAGG" 1511706 NIL LZSTAGG (NIL T) -9 NIL 1512001) (-618 1502641 1503799 1505256 "LZSTAGG-" 1505261 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-617 1499757 1500534 1501020 "LWORD" 1502187 NIL LWORD (NIL T) -8 NIL NIL) (-616 1492917 1499528 1499662 "LSQM" 1499667 NIL LSQM (NIL NIL T) -8 NIL NIL) (-615 1492141 1492280 1492508 "LSPP" 1492772 NIL LSPP (NIL T T T T) -7 NIL NIL) (-614 1489953 1490254 1490710 "LSMP" 1491830 NIL LSMP (NIL T T T T) -7 NIL NIL) (-613 1486732 1487406 1488136 "LSMP1" 1489255 NIL LSMP1 (NIL T) -7 NIL NIL) (-612 1480659 1485901 1485942 "LSAGG" 1486004 NIL LSAGG (NIL T) -9 NIL 1486082) (-611 1477354 1478278 1479491 "LSAGG-" 1479496 NIL LSAGG- (NIL T T) -8 NIL NIL) (-610 1474980 1476498 1476747 "LPOLY" 1477149 NIL LPOLY (NIL T T) -8 NIL NIL) (-609 1474562 1474647 1474770 "LPEFRAC" 1474889 NIL LPEFRAC (NIL T) -7 NIL NIL) (-608 1472909 1473656 1473909 "LO" 1474394 NIL LO (NIL T T T) -8 NIL NIL) (-607 1472563 1472675 1472703 "LOGIC" 1472814 T LOGIC (NIL) -9 NIL 1472894) (-606 1472425 1472448 1472519 "LOGIC-" 1472524 NIL LOGIC- (NIL T) -8 NIL NIL) (-605 1471618 1471758 1471951 "LODOOPS" 1472281 NIL LODOOPS (NIL T T) -7 NIL NIL) (-604 1469036 1471535 1471600 "LODO" 1471605 NIL LODO (NIL T NIL) -8 NIL NIL) (-603 1467582 1467817 1468168 "LODOF" 1468783 NIL LODOF (NIL T T) -7 NIL NIL) (-602 1464002 1466438 1466478 "LODOCAT" 1466910 NIL LODOCAT (NIL T) -9 NIL 1467121) (-601 1463736 1463794 1463920 "LODOCAT-" 1463925 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-600 1461050 1463577 1463695 "LODO2" 1463700 NIL LODO2 (NIL T T) -8 NIL NIL) (-599 1458479 1460987 1461032 "LODO1" 1461037 NIL LODO1 (NIL T) -8 NIL NIL) (-598 1457342 1457507 1457818 "LODEEF" 1458302 NIL LODEEF (NIL T T T) -7 NIL NIL) (-597 1452629 1455473 1455514 "LNAGG" 1456461 NIL LNAGG (NIL T) -9 NIL 1456905) (-596 1451776 1451990 1452332 "LNAGG-" 1452337 NIL LNAGG- (NIL T T) -8 NIL NIL) (-595 1447941 1448703 1449341 "LMOPS" 1451192 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-594 1447339 1447701 1447741 "LMODULE" 1447801 NIL LMODULE (NIL T) -9 NIL 1447843) (-593 1444585 1446984 1447107 "LMDICT" 1447249 NIL LMDICT (NIL T) -8 NIL NIL) (-592 1437812 1443531 1443829 "LIST" 1444320 NIL LIST (NIL T) -8 NIL NIL) (-591 1437337 1437411 1437550 "LIST3" 1437732 NIL LIST3 (NIL T T T) -7 NIL NIL) (-590 1436344 1436522 1436750 "LIST2" 1437155 NIL LIST2 (NIL T T) -7 NIL NIL) (-589 1434478 1434790 1435189 "LIST2MAP" 1435991 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-588 1433191 1433871 1433911 "LINEXP" 1434164 NIL LINEXP (NIL T) -9 NIL 1434312) (-587 1431838 1432098 1432395 "LINDEP" 1432943 NIL LINDEP (NIL T T) -7 NIL NIL) (-586 1428605 1429324 1430101 "LIMITRF" 1431093 NIL LIMITRF (NIL T) -7 NIL NIL) (-585 1426885 1427180 1427595 "LIMITPS" 1428300 NIL LIMITPS (NIL T T) -7 NIL NIL) (-584 1421340 1426396 1426624 "LIE" 1426706 NIL LIE (NIL T T) -8 NIL NIL) (-583 1420391 1420834 1420874 "LIECAT" 1421014 NIL LIECAT (NIL T) -9 NIL 1421165) (-582 1420232 1420259 1420347 "LIECAT-" 1420352 NIL LIECAT- (NIL T T) -8 NIL NIL) (-581 1412844 1419681 1419846 "LIB" 1420087 T LIB (NIL) -8 NIL NIL) (-580 1408481 1409362 1410297 "LGROBP" 1411961 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-579 1406347 1406621 1406983 "LF" 1408202 NIL LF (NIL T T) -7 NIL NIL) (-578 1405187 1405879 1405907 "LFCAT" 1406114 T LFCAT (NIL) -9 NIL 1406253) (-577 1402099 1402725 1403411 "LEXTRIPK" 1404553 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-576 1398805 1399669 1400172 "LEXP" 1401679 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-575 1397203 1397516 1397917 "LEADCDET" 1398487 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-574 1396399 1396473 1396700 "LAZM3PK" 1397124 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-573 1391316 1394478 1395015 "LAUPOL" 1395912 NIL LAUPOL (NIL T T) -8 NIL NIL) (-572 1390883 1390927 1391094 "LAPLACE" 1391266 NIL LAPLACE (NIL T T) -7 NIL NIL) (-571 1388811 1389984 1390235 "LA" 1390716 NIL LA (NIL T T T) -8 NIL NIL) (-570 1387874 1388468 1388508 "LALG" 1388569 NIL LALG (NIL T) -9 NIL 1388627) (-569 1387589 1387648 1387783 "LALG-" 1387788 NIL LALG- (NIL T T) -8 NIL NIL) (-568 1386499 1386686 1386983 "KOVACIC" 1387389 NIL KOVACIC (NIL T T) -7 NIL NIL) (-567 1386334 1386358 1386399 "KONVERT" 1386461 NIL KONVERT (NIL T) -9 NIL NIL) (-566 1386169 1386193 1386234 "KOERCE" 1386296 NIL KOERCE (NIL T) -9 NIL NIL) (-565 1383903 1384663 1385056 "KERNEL" 1385808 NIL KERNEL (NIL T) -8 NIL NIL) (-564 1383405 1383486 1383616 "KERNEL2" 1383817 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-563 1377257 1381945 1381999 "KDAGG" 1382376 NIL KDAGG (NIL T T) -9 NIL 1382582) (-562 1376786 1376910 1377115 "KDAGG-" 1377120 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-561 1369961 1376447 1376602 "KAFILE" 1376664 NIL KAFILE (NIL T) -8 NIL NIL) (-560 1364416 1369472 1369700 "JORDAN" 1369782 NIL JORDAN (NIL T T) -8 NIL NIL) (-559 1364145 1364204 1364291 "JAVACODE" 1364349 T JAVACODE (NIL) -8 NIL NIL) (-558 1360445 1362351 1362405 "IXAGG" 1363334 NIL IXAGG (NIL T T) -9 NIL 1363793) (-557 1359364 1359670 1360089 "IXAGG-" 1360094 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-556 1354949 1359286 1359345 "IVECTOR" 1359350 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-555 1353715 1353952 1354218 "ITUPLE" 1354716 NIL ITUPLE (NIL T) -8 NIL NIL) (-554 1352151 1352328 1352634 "ITRIGMNP" 1353537 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-553 1350896 1351100 1351383 "ITFUN3" 1351927 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-552 1350528 1350585 1350694 "ITFUN2" 1350833 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-551 1348330 1349401 1349698 "ITAYLOR" 1350263 NIL ITAYLOR (NIL T) -8 NIL NIL) (-550 1337318 1342516 1343675 "ISUPS" 1347203 NIL ISUPS (NIL T) -8 NIL NIL) (-549 1336422 1336562 1336798 "ISUMP" 1337165 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-548 1331686 1336223 1336302 "ISTRING" 1336375 NIL ISTRING (NIL NIL) -8 NIL NIL) (-547 1330899 1330980 1331195 "IRURPK" 1331600 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-546 1329835 1330036 1330276 "IRSN" 1330679 T IRSN (NIL) -7 NIL NIL) (-545 1327870 1328225 1328660 "IRRF2F" 1329473 NIL IRRF2F (NIL T) -7 NIL NIL) (-544 1327617 1327655 1327731 "IRREDFFX" 1327826 NIL IRREDFFX (NIL T) -7 NIL NIL) (-543 1326232 1326491 1326790 "IROOT" 1327350 NIL IROOT (NIL T) -7 NIL NIL) (-542 1322870 1323921 1324611 "IR" 1325574 NIL IR (NIL T) -8 NIL NIL) (-541 1320483 1320978 1321544 "IR2" 1322348 NIL IR2 (NIL T T) -7 NIL NIL) (-540 1319559 1319672 1319892 "IR2F" 1320366 NIL IR2F (NIL T T) -7 NIL NIL) (-539 1319350 1319384 1319444 "IPRNTPK" 1319519 T IPRNTPK (NIL) -7 NIL NIL) (-538 1315904 1319239 1319308 "IPF" 1319313 NIL IPF (NIL NIL) -8 NIL NIL) (-537 1314221 1315829 1315886 "IPADIC" 1315891 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-536 1313720 1313778 1313967 "INVLAPLA" 1314157 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-535 1303369 1305722 1308108 "INTTR" 1311384 NIL INTTR (NIL T T) -7 NIL NIL) (-534 1299717 1300458 1301321 "INTTOOLS" 1302555 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-533 1299303 1299394 1299511 "INTSLPE" 1299620 T INTSLPE (NIL) -7 NIL NIL) (-532 1297253 1299226 1299285 "INTRVL" 1299290 NIL INTRVL (NIL T) -8 NIL NIL) (-531 1294860 1295372 1295946 "INTRF" 1296738 NIL INTRF (NIL T) -7 NIL NIL) (-530 1294275 1294372 1294513 "INTRET" 1294758 NIL INTRET (NIL T) -7 NIL NIL) (-529 1292277 1292666 1293135 "INTRAT" 1293883 NIL INTRAT (NIL T T) -7 NIL NIL) (-528 1289510 1290093 1290718 "INTPM" 1291762 NIL INTPM (NIL T T) -7 NIL NIL) (-527 1286219 1286818 1287562 "INTPAF" 1288896 NIL INTPAF (NIL T T T) -7 NIL NIL) (-526 1281462 1282408 1283443 "INTPACK" 1285204 T INTPACK (NIL) -7 NIL NIL) (-525 1278316 1281191 1281318 "INT" 1281355 T INT (NIL) -8 NIL NIL) (-524 1277568 1277720 1277928 "INTHERTR" 1278158 NIL INTHERTR (NIL T T) -7 NIL NIL) (-523 1277007 1277087 1277275 "INTHERAL" 1277482 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-522 1274853 1275296 1275753 "INTHEORY" 1276570 T INTHEORY (NIL) -7 NIL NIL) (-521 1266175 1267796 1269574 "INTG0" 1273205 NIL INTG0 (NIL T T T) -7 NIL NIL) (-520 1246748 1251538 1256348 "INTFTBL" 1261385 T INTFTBL (NIL) -8 NIL NIL) (-519 1245997 1246135 1246308 "INTFACT" 1246607 NIL INTFACT (NIL T) -7 NIL NIL) (-518 1243388 1243834 1244397 "INTEF" 1245551 NIL INTEF (NIL T T) -7 NIL NIL) (-517 1241850 1242599 1242627 "INTDOM" 1242928 T INTDOM (NIL) -9 NIL 1243135) (-516 1241219 1241393 1241635 "INTDOM-" 1241640 NIL INTDOM- (NIL T) -8 NIL NIL) (-515 1237712 1239644 1239698 "INTCAT" 1240497 NIL INTCAT (NIL T) -9 NIL 1240816) (-514 1237185 1237287 1237415 "INTBIT" 1237604 T INTBIT (NIL) -7 NIL NIL) (-513 1235860 1236014 1236327 "INTALG" 1237030 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-512 1235317 1235407 1235577 "INTAF" 1235764 NIL INTAF (NIL T T) -7 NIL NIL) (-511 1228771 1235127 1235267 "INTABL" 1235272 NIL INTABL (NIL T T T) -8 NIL NIL) (-510 1223722 1226451 1226479 "INS" 1227447 T INS (NIL) -9 NIL 1228128) (-509 1220962 1221733 1222707 "INS-" 1222780 NIL INS- (NIL T) -8 NIL NIL) (-508 1219741 1219968 1220265 "INPSIGN" 1220715 NIL INPSIGN (NIL T T) -7 NIL NIL) (-507 1218859 1218976 1219173 "INPRODPF" 1219621 NIL INPRODPF (NIL T T) -7 NIL NIL) (-506 1217753 1217870 1218107 "INPRODFF" 1218739 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-505 1216753 1216905 1217165 "INNMFACT" 1217589 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-504 1215950 1216047 1216235 "INMODGCD" 1216652 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-503 1214459 1214703 1215027 "INFSP" 1215695 NIL INFSP (NIL T T T) -7 NIL NIL) (-502 1213643 1213760 1213943 "INFPROD0" 1214339 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-501 1210653 1211812 1212303 "INFORM" 1213160 T INFORM (NIL) -8 NIL NIL) (-500 1210263 1210323 1210421 "INFORM1" 1210588 NIL INFORM1 (NIL T) -7 NIL NIL) (-499 1209786 1209875 1209989 "INFINITY" 1210169 T INFINITY (NIL) -7 NIL NIL) (-498 1208403 1208652 1208973 "INEP" 1209534 NIL INEP (NIL T T T) -7 NIL NIL) (-497 1207679 1208300 1208365 "INDE" 1208370 NIL INDE (NIL T) -8 NIL NIL) (-496 1207243 1207311 1207428 "INCRMAPS" 1207606 NIL INCRMAPS (NIL T) -7 NIL NIL) (-495 1202554 1203479 1204423 "INBFF" 1206331 NIL INBFF (NIL T) -7 NIL NIL) (-494 1199049 1202399 1202502 "IMATRIX" 1202507 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-493 1197761 1197884 1198199 "IMATQF" 1198905 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-492 1195981 1196208 1196545 "IMATLIN" 1197517 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-491 1190607 1195905 1195963 "ILIST" 1195968 NIL ILIST (NIL T NIL) -8 NIL NIL) (-490 1188560 1190467 1190580 "IIARRAY2" 1190585 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-489 1183928 1188471 1188535 "IFF" 1188540 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-488 1178971 1183220 1183408 "IFARRAY" 1183785 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-487 1178178 1178875 1178948 "IFAMON" 1178953 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-486 1177762 1177827 1177881 "IEVALAB" 1178088 NIL IEVALAB (NIL T T) -9 NIL NIL) (-485 1177437 1177505 1177665 "IEVALAB-" 1177670 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-484 1177095 1177351 1177414 "IDPO" 1177419 NIL IDPO (NIL T T) -8 NIL NIL) (-483 1176372 1176984 1177059 "IDPOAMS" 1177064 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-482 1175706 1176261 1176336 "IDPOAM" 1176341 NIL IDPOAM (NIL T T) -8 NIL NIL) (-481 1174792 1175042 1175095 "IDPC" 1175508 NIL IDPC (NIL T T) -9 NIL 1175657) (-480 1174288 1174684 1174757 "IDPAM" 1174762 NIL IDPAM (NIL T T) -8 NIL NIL) (-479 1173691 1174180 1174253 "IDPAG" 1174258 NIL IDPAG (NIL T T) -8 NIL NIL) (-478 1169946 1170794 1171689 "IDECOMP" 1172848 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-477 1162819 1163869 1164916 "IDEAL" 1168982 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-476 1161983 1162095 1162294 "ICDEN" 1162703 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-475 1161082 1161463 1161610 "ICARD" 1161856 T ICARD (NIL) -8 NIL NIL) (-474 1159154 1159467 1159870 "IBPTOOLS" 1160759 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-473 1154768 1158774 1158887 "IBITS" 1159073 NIL IBITS (NIL NIL) -8 NIL NIL) (-472 1151491 1152067 1152762 "IBATOOL" 1154185 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-471 1149271 1149732 1150265 "IBACHIN" 1151026 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-470 1147148 1149117 1149220 "IARRAY2" 1149225 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-469 1143301 1147074 1147131 "IARRAY1" 1147136 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-468 1137239 1141719 1142197 "IAN" 1142843 T IAN (NIL) -8 NIL NIL) (-467 1136750 1136807 1136980 "IALGFACT" 1137176 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-466 1136278 1136391 1136419 "HYPCAT" 1136626 T HYPCAT (NIL) -9 NIL NIL) (-465 1135816 1135933 1136119 "HYPCAT-" 1136124 NIL HYPCAT- (NIL T) -8 NIL NIL) (-464 1132496 1133827 1133868 "HOAGG" 1134849 NIL HOAGG (NIL T) -9 NIL 1135528) (-463 1131090 1131489 1132015 "HOAGG-" 1132020 NIL HOAGG- (NIL T T) -8 NIL NIL) (-462 1124920 1130531 1130697 "HEXADEC" 1130944 T HEXADEC (NIL) -8 NIL NIL) (-461 1123668 1123890 1124153 "HEUGCD" 1124697 NIL HEUGCD (NIL T) -7 NIL NIL) (-460 1122771 1123505 1123635 "HELLFDIV" 1123640 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-459 1120999 1122548 1122636 "HEAP" 1122715 NIL HEAP (NIL T) -8 NIL NIL) (-458 1114866 1120914 1120976 "HDP" 1120981 NIL HDP (NIL NIL T) -8 NIL NIL) (-457 1108578 1114503 1114654 "HDMP" 1114767 NIL HDMP (NIL NIL T) -8 NIL NIL) (-456 1107903 1108042 1108206 "HB" 1108434 T HB (NIL) -7 NIL NIL) (-455 1101400 1107749 1107853 "HASHTBL" 1107858 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-454 1099153 1101028 1101207 "HACKPI" 1101241 T HACKPI (NIL) -8 NIL NIL) (-453 1094849 1099007 1099119 "GTSET" 1099124 NIL GTSET (NIL T T T T) -8 NIL NIL) (-452 1088375 1094727 1094825 "GSTBL" 1094830 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-451 1080608 1087411 1087675 "GSERIES" 1088166 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-450 1079631 1080084 1080112 "GROUP" 1080373 T GROUP (NIL) -9 NIL 1080532) (-449 1078747 1078970 1079314 "GROUP-" 1079319 NIL GROUP- (NIL T) -8 NIL NIL) (-448 1077116 1077435 1077822 "GROEBSOL" 1078424 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-447 1076057 1076319 1076370 "GRMOD" 1076899 NIL GRMOD (NIL T T) -9 NIL 1077067) (-446 1075825 1075861 1075989 "GRMOD-" 1075994 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-445 1071151 1072179 1073179 "GRIMAGE" 1074845 T GRIMAGE (NIL) -8 NIL NIL) (-444 1069618 1069878 1070202 "GRDEF" 1070847 T GRDEF (NIL) -7 NIL NIL) (-443 1069062 1069178 1069319 "GRAY" 1069497 T GRAY (NIL) -7 NIL NIL) (-442 1068296 1068676 1068727 "GRALG" 1068880 NIL GRALG (NIL T T) -9 NIL 1068972) (-441 1067957 1068030 1068193 "GRALG-" 1068198 NIL GRALG- (NIL T T T) -8 NIL NIL) (-440 1064765 1067546 1067722 "GPOLSET" 1067864 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-439 1064121 1064178 1064435 "GOSPER" 1064702 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-438 1059880 1060559 1061085 "GMODPOL" 1063820 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-437 1058885 1059069 1059307 "GHENSEL" 1059692 NIL GHENSEL (NIL T T) -7 NIL NIL) (-436 1052951 1053794 1054820 "GENUPS" 1057969 NIL GENUPS (NIL T T) -7 NIL NIL) (-435 1052648 1052699 1052788 "GENUFACT" 1052894 NIL GENUFACT (NIL T) -7 NIL NIL) (-434 1052060 1052137 1052302 "GENPGCD" 1052566 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-433 1051534 1051569 1051782 "GENMFACT" 1052019 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-432 1050102 1050357 1050664 "GENEEZ" 1051277 NIL GENEEZ (NIL T T) -7 NIL NIL) (-431 1043976 1049715 1049876 "GDMP" 1050025 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-430 1033356 1037747 1038853 "GCNAALG" 1042959 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-429 1031778 1032650 1032678 "GCDDOM" 1032933 T GCDDOM (NIL) -9 NIL 1033090) (-428 1031248 1031375 1031590 "GCDDOM-" 1031595 NIL GCDDOM- (NIL T) -8 NIL NIL) (-427 1029920 1030105 1030409 "GB" 1031027 NIL GB (NIL T T T T) -7 NIL NIL) (-426 1018540 1020866 1023258 "GBINTERN" 1027611 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-425 1016377 1016669 1017090 "GBF" 1018215 NIL GBF (NIL T T T T) -7 NIL NIL) (-424 1015158 1015323 1015590 "GBEUCLID" 1016193 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-423 1014507 1014632 1014781 "GAUSSFAC" 1015029 T GAUSSFAC (NIL) -7 NIL NIL) (-422 1012884 1013186 1013499 "GALUTIL" 1014226 NIL GALUTIL (NIL T) -7 NIL NIL) (-421 1011201 1011475 1011798 "GALPOLYU" 1012611 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-420 1008590 1008880 1009285 "GALFACTU" 1010898 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-419 1000396 1001895 1003503 "GALFACT" 1007022 NIL GALFACT (NIL T) -7 NIL NIL) (-418 997784 998442 998470 "FVFUN" 999626 T FVFUN (NIL) -9 NIL 1000346) (-417 997050 997232 997260 "FVC" 997551 T FVC (NIL) -9 NIL 997734) (-416 996692 996847 996928 "FUNCTION" 997002 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-415 994362 994913 995402 "FT" 996223 T FT (NIL) -8 NIL NIL) (-414 993180 993663 993866 "FTEM" 994179 T FTEM (NIL) -8 NIL NIL) (-413 991445 991733 992135 "FSUPFACT" 992872 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-412 989842 990131 990463 "FST" 991133 T FST (NIL) -8 NIL NIL) (-411 989017 989123 989317 "FSRED" 989724 NIL FSRED (NIL T T) -7 NIL NIL) (-410 987696 987951 988305 "FSPRMELT" 988732 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-409 984781 985219 985718 "FSPECF" 987259 NIL FSPECF (NIL T T) -7 NIL NIL) (-408 967155 975712 975752 "FS" 979590 NIL FS (NIL T) -9 NIL 981872) (-407 955805 958795 962851 "FS-" 963148 NIL FS- (NIL T T) -8 NIL NIL) (-406 955321 955375 955551 "FSINT" 955746 NIL FSINT (NIL T T) -7 NIL NIL) (-405 953602 954314 954617 "FSERIES" 955100 NIL FSERIES (NIL T T) -8 NIL NIL) (-404 952620 952736 952966 "FSCINT" 953482 NIL FSCINT (NIL T T) -7 NIL NIL) (-403 948855 951565 951606 "FSAGG" 951976 NIL FSAGG (NIL T) -9 NIL 952235) (-402 946617 947218 948014 "FSAGG-" 948109 NIL FSAGG- (NIL T T) -8 NIL NIL) (-401 945659 945802 946029 "FSAGG2" 946470 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-400 943318 943597 944150 "FS2UPS" 945377 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-399 942904 942947 943100 "FS2" 943269 NIL FS2 (NIL T T T T) -7 NIL NIL) (-398 941764 941935 942243 "FS2EXPXP" 942729 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-397 941190 941305 941457 "FRUTIL" 941644 NIL FRUTIL (NIL T) -7 NIL NIL) (-396 932610 936689 938045 "FR" 939866 NIL FR (NIL T) -8 NIL NIL) (-395 927687 930330 930370 "FRNAALG" 931766 NIL FRNAALG (NIL T) -9 NIL 932373) (-394 923365 924436 925711 "FRNAALG-" 926461 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-393 923003 923046 923173 "FRNAAF2" 923316 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-392 921368 921860 922154 "FRMOD" 922816 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-391 919090 919759 920075 "FRIDEAL" 921159 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-390 918289 918376 918663 "FRIDEAL2" 918997 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-389 917547 917955 917996 "FRETRCT" 918001 NIL FRETRCT (NIL T) -9 NIL 918172) (-388 916659 916890 917241 "FRETRCT-" 917246 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-387 913869 915089 915148 "FRAMALG" 916030 NIL FRAMALG (NIL T T) -9 NIL 916322) (-386 912002 912458 913088 "FRAMALG-" 913311 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-385 905904 911477 911753 "FRAC" 911758 NIL FRAC (NIL T) -8 NIL NIL) (-384 905540 905597 905704 "FRAC2" 905841 NIL FRAC2 (NIL T T) -7 NIL NIL) (-383 905176 905233 905340 "FR2" 905477 NIL FR2 (NIL T T) -7 NIL NIL) (-382 899850 902763 902791 "FPS" 903910 T FPS (NIL) -9 NIL 904466) (-381 899299 899408 899572 "FPS-" 899718 NIL FPS- (NIL T) -8 NIL NIL) (-380 896748 898445 898473 "FPC" 898698 T FPC (NIL) -9 NIL 898840) (-379 896541 896581 896678 "FPC-" 896683 NIL FPC- (NIL T) -8 NIL NIL) (-378 895420 896030 896071 "FPATMAB" 896076 NIL FPATMAB (NIL T) -9 NIL 896228) (-377 893120 893596 894022 "FPARFRAC" 895057 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-376 888513 889012 889694 "FORTRAN" 892552 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-375 886229 886729 887268 "FORT" 887994 T FORT (NIL) -7 NIL NIL) (-374 883905 884467 884495 "FORTFN" 885555 T FORTFN (NIL) -9 NIL 886179) (-373 883669 883719 883747 "FORTCAT" 883806 T FORTCAT (NIL) -9 NIL 883868) (-372 881729 882212 882611 "FORMULA" 883290 T FORMULA (NIL) -8 NIL NIL) (-371 881517 881547 881616 "FORMULA1" 881693 NIL FORMULA1 (NIL T) -7 NIL NIL) (-370 881040 881092 881265 "FORDER" 881459 NIL FORDER (NIL T T T T) -7 NIL NIL) (-369 880136 880300 880493 "FOP" 880867 T FOP (NIL) -7 NIL NIL) (-368 878744 879416 879590 "FNLA" 880018 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-367 877413 877802 877830 "FNCAT" 878402 T FNCAT (NIL) -9 NIL 878695) (-366 876979 877372 877400 "FNAME" 877405 T FNAME (NIL) -8 NIL NIL) (-365 875639 876612 876640 "FMTC" 876645 T FMTC (NIL) -9 NIL 876680) (-364 871957 873164 873792 "FMONOID" 875044 NIL FMONOID (NIL T) -8 NIL NIL) (-363 871177 871700 871848 "FM" 871853 NIL FM (NIL T T) -8 NIL NIL) (-362 868601 869247 869275 "FMFUN" 870419 T FMFUN (NIL) -9 NIL 871127) (-361 867870 868051 868079 "FMC" 868369 T FMC (NIL) -9 NIL 868551) (-360 865100 865934 865987 "FMCAT" 867169 NIL FMCAT (NIL T T) -9 NIL 867663) (-359 863995 864868 864967 "FM1" 865045 NIL FM1 (NIL T T) -8 NIL NIL) (-358 861769 862185 862679 "FLOATRP" 863546 NIL FLOATRP (NIL T) -7 NIL NIL) (-357 855255 859425 860055 "FLOAT" 861159 T FLOAT (NIL) -8 NIL NIL) (-356 852693 853193 853771 "FLOATCP" 854722 NIL FLOATCP (NIL T) -7 NIL NIL) (-355 851482 852330 852370 "FLINEXP" 852375 NIL FLINEXP (NIL T) -9 NIL 852468) (-354 850637 850872 851199 "FLINEXP-" 851204 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-353 849713 849857 850081 "FLASORT" 850489 NIL FLASORT (NIL T T) -7 NIL NIL) (-352 846932 847774 847826 "FLALG" 849053 NIL FLALG (NIL T T) -9 NIL 849520) (-351 840717 844419 844460 "FLAGG" 845722 NIL FLAGG (NIL T) -9 NIL 846374) (-350 839443 839782 840272 "FLAGG-" 840277 NIL FLAGG- (NIL T T) -8 NIL NIL) (-349 838485 838628 838855 "FLAGG2" 839296 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-348 835458 836476 836535 "FINRALG" 837663 NIL FINRALG (NIL T T) -9 NIL 838171) (-347 834618 834847 835186 "FINRALG-" 835191 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-346 834025 834238 834266 "FINITE" 834462 T FINITE (NIL) -9 NIL 834569) (-345 826485 828646 828686 "FINAALG" 832353 NIL FINAALG (NIL T) -9 NIL 833806) (-344 821826 822867 824011 "FINAALG-" 825390 NIL FINAALG- (NIL T T) -8 NIL NIL) (-343 821221 821581 821684 "FILE" 821756 NIL FILE (NIL T) -8 NIL NIL) (-342 819906 820218 820272 "FILECAT" 820956 NIL FILECAT (NIL T T) -9 NIL 821172) (-341 817769 819325 819353 "FIELD" 819393 T FIELD (NIL) -9 NIL 819473) (-340 816389 816774 817285 "FIELD-" 817290 NIL FIELD- (NIL T) -8 NIL NIL) (-339 814204 815026 815372 "FGROUP" 816076 NIL FGROUP (NIL T) -8 NIL NIL) (-338 813294 813458 813678 "FGLMICPK" 814036 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-337 809096 813219 813276 "FFX" 813281 NIL FFX (NIL T NIL) -8 NIL NIL) (-336 808697 808758 808893 "FFSLPE" 809029 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-335 804690 805469 806265 "FFPOLY" 807933 NIL FFPOLY (NIL T) -7 NIL NIL) (-334 804194 804230 804439 "FFPOLY2" 804648 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-333 800015 804113 804176 "FFP" 804181 NIL FFP (NIL T NIL) -8 NIL NIL) (-332 795383 799926 799990 "FF" 799995 NIL FF (NIL NIL NIL) -8 NIL NIL) (-331 790479 794726 794916 "FFNBX" 795237 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-330 785388 789614 789872 "FFNBP" 790333 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-329 779991 784672 784883 "FFNB" 785221 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-328 778823 779021 779336 "FFINTBAS" 779788 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-327 775047 777287 777315 "FFIELDC" 777935 T FFIELDC (NIL) -9 NIL 778311) (-326 773710 774080 774577 "FFIELDC-" 774582 NIL FFIELDC- (NIL T) -8 NIL NIL) (-325 773280 773325 773449 "FFHOM" 773652 NIL FFHOM (NIL T T T) -7 NIL NIL) (-324 770978 771462 771979 "FFF" 772795 NIL FFF (NIL T) -7 NIL NIL) (-323 766566 770720 770821 "FFCGX" 770921 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-322 762168 766298 766405 "FFCGP" 766509 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-321 757321 761895 762003 "FFCG" 762104 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-320 739267 748390 748476 "FFCAT" 753641 NIL FFCAT (NIL T T T) -9 NIL 755128) (-319 734465 735512 736826 "FFCAT-" 738056 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-318 733876 733919 734154 "FFCAT2" 734416 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-317 723076 726866 728083 "FEXPR" 732731 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-316 722076 722511 722552 "FEVALAB" 722636 NIL FEVALAB (NIL T) -9 NIL 722897) (-315 721235 721445 721783 "FEVALAB-" 721788 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-314 719828 720618 720821 "FDIV" 721134 NIL FDIV (NIL T T T T) -8 NIL NIL) (-313 716895 717610 717725 "FDIVCAT" 719293 NIL FDIVCAT (NIL T T T T) -9 NIL 719730) (-312 716657 716684 716854 "FDIVCAT-" 716859 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-311 715877 715964 716241 "FDIV2" 716564 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-310 714563 714822 715111 "FCPAK1" 715608 T FCPAK1 (NIL) -7 NIL NIL) (-309 713691 714063 714204 "FCOMP" 714454 NIL FCOMP (NIL T) -8 NIL NIL) (-308 697326 700740 704301 "FC" 710150 T FC (NIL) -8 NIL NIL) (-307 689922 693968 694008 "FAXF" 695810 NIL FAXF (NIL T) -9 NIL 696501) (-306 687201 687856 688681 "FAXF-" 689146 NIL FAXF- (NIL T T) -8 NIL NIL) (-305 682301 686577 686753 "FARRAY" 687058 NIL FARRAY (NIL T) -8 NIL NIL) (-304 677692 679763 679815 "FAMR" 680827 NIL FAMR (NIL T T) -9 NIL 681287) (-303 676583 676885 677319 "FAMR-" 677324 NIL FAMR- (NIL T T T) -8 NIL NIL) (-302 675779 676505 676558 "FAMONOID" 676563 NIL FAMONOID (NIL T) -8 NIL NIL) (-301 673612 674296 674349 "FAMONC" 675290 NIL FAMONC (NIL T T) -9 NIL 675675) (-300 672304 673366 673503 "FAGROUP" 673508 NIL FAGROUP (NIL T) -8 NIL NIL) (-299 670107 670426 670828 "FACUTIL" 671985 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-298 669206 669391 669613 "FACTFUNC" 669917 NIL FACTFUNC (NIL T) -7 NIL NIL) (-297 661526 668457 668669 "EXPUPXS" 669062 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-296 659009 659549 660135 "EXPRTUBE" 660960 T EXPRTUBE (NIL) -7 NIL NIL) (-295 655203 655795 656532 "EXPRODE" 658348 NIL EXPRODE (NIL T T) -7 NIL NIL) (-294 640362 653862 654288 "EXPR" 654809 NIL EXPR (NIL T) -8 NIL NIL) (-293 634790 635377 636189 "EXPR2UPS" 639660 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-292 634426 634483 634590 "EXPR2" 634727 NIL EXPR2 (NIL T T) -7 NIL NIL) (-291 625780 633563 633858 "EXPEXPAN" 634264 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-290 625607 625737 625766 "EXIT" 625771 T EXIT (NIL) -8 NIL NIL) (-289 625234 625296 625409 "EVALCYC" 625539 NIL EVALCYC (NIL T) -7 NIL NIL) (-288 624775 624893 624934 "EVALAB" 625104 NIL EVALAB (NIL T) -9 NIL 625208) (-287 624256 624378 624599 "EVALAB-" 624604 NIL EVALAB- (NIL T T) -8 NIL NIL) (-286 621719 623031 623059 "EUCDOM" 623614 T EUCDOM (NIL) -9 NIL 623964) (-285 620124 620566 621156 "EUCDOM-" 621161 NIL EUCDOM- (NIL T) -8 NIL NIL) (-284 607702 610450 613190 "ESTOOLS" 617404 T ESTOOLS (NIL) -7 NIL NIL) (-283 607338 607395 607502 "ESTOOLS2" 607639 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-282 607089 607131 607211 "ESTOOLS1" 607290 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-281 601027 602751 602779 "ES" 605543 T ES (NIL) -9 NIL 606949) (-280 595974 597261 599078 "ES-" 599242 NIL ES- (NIL T) -8 NIL NIL) (-279 592349 593109 593889 "ESCONT" 595214 T ESCONT (NIL) -7 NIL NIL) (-278 592094 592126 592208 "ESCONT1" 592311 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-277 591769 591819 591919 "ES2" 592038 NIL ES2 (NIL T T) -7 NIL NIL) (-276 591399 591457 591566 "ES1" 591705 NIL ES1 (NIL T T) -7 NIL NIL) (-275 590615 590744 590920 "ERROR" 591243 T ERROR (NIL) -7 NIL NIL) (-274 584118 590474 590565 "EQTBL" 590570 NIL EQTBL (NIL T T) -8 NIL NIL) (-273 576555 579436 580883 "EQ" 582704 NIL -2446 (NIL T) -8 NIL NIL) (-272 576187 576244 576353 "EQ2" 576492 NIL EQ2 (NIL T T) -7 NIL NIL) (-271 571479 572525 573618 "EP" 575126 NIL EP (NIL T) -7 NIL NIL) (-270 570062 570362 570679 "ENV" 571182 T ENV (NIL) -8 NIL NIL) (-269 569222 569786 569814 "ENTIRER" 569819 T ENTIRER (NIL) -9 NIL 569864) (-268 565678 567177 567547 "EMR" 569021 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-267 564822 565007 565061 "ELTAGG" 565441 NIL ELTAGG (NIL T T) -9 NIL 565652) (-266 564541 564603 564744 "ELTAGG-" 564749 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-265 564330 564359 564413 "ELTAB" 564497 NIL ELTAB (NIL T T) -9 NIL NIL) (-264 563456 563602 563801 "ELFUTS" 564181 NIL ELFUTS (NIL T T) -7 NIL NIL) (-263 563198 563254 563282 "ELEMFUN" 563387 T ELEMFUN (NIL) -9 NIL NIL) (-262 563068 563089 563157 "ELEMFUN-" 563162 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-261 557960 561169 561210 "ELAGG" 562150 NIL ELAGG (NIL T) -9 NIL 562613) (-260 556245 556679 557342 "ELAGG-" 557347 NIL ELAGG- (NIL T T) -8 NIL NIL) (-259 554902 555182 555477 "ELABEXPR" 555970 T ELABEXPR (NIL) -8 NIL NIL) (-258 547770 549569 550396 "EFUPXS" 554178 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-257 541220 543021 543831 "EFULS" 547046 NIL EFULS (NIL T T T) -8 NIL NIL) (-256 538651 539009 539487 "EFSTRUC" 540852 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-255 527723 529288 530848 "EF" 537166 NIL EF (NIL T T) -7 NIL NIL) (-254 526824 527208 527357 "EAB" 527594 T EAB (NIL) -8 NIL NIL) (-253 526037 526783 526811 "E04UCFA" 526816 T E04UCFA (NIL) -8 NIL NIL) (-252 525250 525996 526024 "E04NAFA" 526029 T E04NAFA (NIL) -8 NIL NIL) (-251 524463 525209 525237 "E04MBFA" 525242 T E04MBFA (NIL) -8 NIL NIL) (-250 523676 524422 524450 "E04JAFA" 524455 T E04JAFA (NIL) -8 NIL NIL) (-249 522891 523635 523663 "E04GCFA" 523668 T E04GCFA (NIL) -8 NIL NIL) (-248 522106 522850 522878 "E04FDFA" 522883 T E04FDFA (NIL) -8 NIL NIL) (-247 521319 522065 522093 "E04DGFA" 522098 T E04DGFA (NIL) -8 NIL NIL) (-246 515504 516849 518211 "E04AGNT" 519977 T E04AGNT (NIL) -7 NIL NIL) (-245 514231 514711 514751 "DVARCAT" 515226 NIL DVARCAT (NIL T) -9 NIL 515424) (-244 513435 513647 513961 "DVARCAT-" 513966 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-243 506297 513237 513364 "DSMP" 513369 NIL DSMP (NIL T T T) -8 NIL NIL) (-242 501107 502242 503310 "DROPT" 505249 T DROPT (NIL) -8 NIL NIL) (-241 500772 500831 500929 "DROPT1" 501042 NIL DROPT1 (NIL T) -7 NIL NIL) (-240 495887 497013 498150 "DROPT0" 499655 T DROPT0 (NIL) -7 NIL NIL) (-239 494232 494557 494943 "DRAWPT" 495521 T DRAWPT (NIL) -7 NIL NIL) (-238 488819 489742 490821 "DRAW" 493206 NIL DRAW (NIL T) -7 NIL NIL) (-237 488452 488505 488623 "DRAWHACK" 488760 NIL DRAWHACK (NIL T) -7 NIL NIL) (-236 487183 487452 487743 "DRAWCX" 488181 T DRAWCX (NIL) -7 NIL NIL) (-235 486701 486769 486919 "DRAWCURV" 487109 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-234 477172 479131 481246 "DRAWCFUN" 484606 T DRAWCFUN (NIL) -7 NIL NIL) (-233 473986 475868 475909 "DQAGG" 476538 NIL DQAGG (NIL T) -9 NIL 476811) (-232 462493 469231 469313 "DPOLCAT" 471151 NIL DPOLCAT (NIL T T T T) -9 NIL 471695) (-231 457333 458679 460636 "DPOLCAT-" 460641 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-230 451417 457195 457292 "DPMO" 457297 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-229 445404 451198 451364 "DPMM" 451369 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-228 444917 445015 445135 "DOMAIN" 445304 T DOMAIN (NIL) -8 NIL NIL) (-227 438629 444554 444705 "DMP" 444818 NIL DMP (NIL NIL T) -8 NIL NIL) (-226 438229 438285 438429 "DLP" 438567 NIL DLP (NIL T) -7 NIL NIL) (-225 431873 437330 437557 "DLIST" 438034 NIL DLIST (NIL T) -8 NIL NIL) (-224 428720 430729 430770 "DLAGG" 431320 NIL DLAGG (NIL T) -9 NIL 431549) (-223 427430 428122 428150 "DIVRING" 428300 T DIVRING (NIL) -9 NIL 428408) (-222 426418 426671 427064 "DIVRING-" 427069 NIL DIVRING- (NIL T) -8 NIL NIL) (-221 424520 424877 425283 "DISPLAY" 426032 T DISPLAY (NIL) -7 NIL NIL) (-220 418409 424434 424497 "DIRPROD" 424502 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-219 417257 417460 417725 "DIRPROD2" 418202 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-218 406888 412893 412946 "DIRPCAT" 413354 NIL DIRPCAT (NIL NIL T) -9 NIL 414181) (-217 404214 404856 405737 "DIRPCAT-" 406074 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-216 403501 403661 403847 "DIOSP" 404048 T DIOSP (NIL) -7 NIL NIL) (-215 400204 402414 402455 "DIOPS" 402889 NIL DIOPS (NIL T) -9 NIL 403118) (-214 399753 399867 400058 "DIOPS-" 400063 NIL DIOPS- (NIL T T) -8 NIL NIL) (-213 398625 399263 399291 "DIFRING" 399478 T DIFRING (NIL) -9 NIL 399587) (-212 398271 398348 398500 "DIFRING-" 398505 NIL DIFRING- (NIL T) -8 NIL NIL) (-211 396061 397343 397383 "DIFEXT" 397742 NIL DIFEXT (NIL T) -9 NIL 398035) (-210 394347 394775 395440 "DIFEXT-" 395445 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-209 391670 393880 393921 "DIAGG" 393926 NIL DIAGG (NIL T) -9 NIL 393946) (-208 391054 391211 391463 "DIAGG-" 391468 NIL DIAGG- (NIL T T) -8 NIL NIL) (-207 386519 390013 390290 "DHMATRIX" 390823 NIL DHMATRIX (NIL T) -8 NIL NIL) (-206 382131 383040 384050 "DFSFUN" 385529 T DFSFUN (NIL) -7 NIL NIL) (-205 376917 380845 381210 "DFLOAT" 381786 T DFLOAT (NIL) -8 NIL NIL) (-204 375150 375431 375826 "DFINTTLS" 376625 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-203 372183 373185 373583 "DERHAM" 374817 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-202 370032 371958 372047 "DEQUEUE" 372127 NIL DEQUEUE (NIL T) -8 NIL NIL) (-201 369250 369383 369578 "DEGRED" 369894 NIL DEGRED (NIL T T) -7 NIL NIL) (-200 365650 366395 367247 "DEFINTRF" 368478 NIL DEFINTRF (NIL T) -7 NIL NIL) (-199 363181 363650 364248 "DEFINTEF" 365169 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-198 357011 362622 362788 "DECIMAL" 363035 T DECIMAL (NIL) -8 NIL NIL) (-197 354523 354981 355487 "DDFACT" 356555 NIL DDFACT (NIL T T) -7 NIL NIL) (-196 354119 354162 354313 "DBLRESP" 354474 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-195 351829 352163 352532 "DBASE" 353877 NIL DBASE (NIL T) -8 NIL NIL) (-194 350964 351788 351816 "D03FAFA" 351821 T D03FAFA (NIL) -8 NIL NIL) (-193 350100 350923 350951 "D03EEFA" 350956 T D03EEFA (NIL) -8 NIL NIL) (-192 348050 348516 349005 "D03AGNT" 349631 T D03AGNT (NIL) -7 NIL NIL) (-191 347368 348009 348037 "D02EJFA" 348042 T D02EJFA (NIL) -8 NIL NIL) (-190 346686 347327 347355 "D02CJFA" 347360 T D02CJFA (NIL) -8 NIL NIL) (-189 346004 346645 346673 "D02BHFA" 346678 T D02BHFA (NIL) -8 NIL NIL) (-188 345322 345963 345991 "D02BBFA" 345996 T D02BBFA (NIL) -8 NIL NIL) (-187 338520 340108 341714 "D02AGNT" 343736 T D02AGNT (NIL) -7 NIL NIL) (-186 336289 336811 337357 "D01WGTS" 337994 T D01WGTS (NIL) -7 NIL NIL) (-185 335392 336248 336276 "D01TRNS" 336281 T D01TRNS (NIL) -8 NIL NIL) (-184 334495 335351 335379 "D01GBFA" 335384 T D01GBFA (NIL) -8 NIL NIL) (-183 333598 334454 334482 "D01FCFA" 334487 T D01FCFA (NIL) -8 NIL NIL) (-182 332701 333557 333585 "D01ASFA" 333590 T D01ASFA (NIL) -8 NIL NIL) (-181 331804 332660 332688 "D01AQFA" 332693 T D01AQFA (NIL) -8 NIL NIL) (-180 330907 331763 331791 "D01APFA" 331796 T D01APFA (NIL) -8 NIL NIL) (-179 330010 330866 330894 "D01ANFA" 330899 T D01ANFA (NIL) -8 NIL NIL) (-178 329113 329969 329997 "D01AMFA" 330002 T D01AMFA (NIL) -8 NIL NIL) (-177 328216 329072 329100 "D01ALFA" 329105 T D01ALFA (NIL) -8 NIL NIL) (-176 327319 328175 328203 "D01AKFA" 328208 T D01AKFA (NIL) -8 NIL NIL) (-175 326422 327278 327306 "D01AJFA" 327311 T D01AJFA (NIL) -8 NIL NIL) (-174 319726 321275 322834 "D01AGNT" 324883 T D01AGNT (NIL) -7 NIL NIL) (-173 319063 319191 319343 "CYCLOTOM" 319594 T CYCLOTOM (NIL) -7 NIL NIL) (-172 315798 316511 317238 "CYCLES" 318356 T CYCLES (NIL) -7 NIL NIL) (-171 315110 315244 315415 "CVMP" 315659 NIL CVMP (NIL T) -7 NIL NIL) (-170 312891 313149 313524 "CTRIGMNP" 314838 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-169 312496 312579 312684 "CTORCALL" 312806 T CTORCALL (NIL) -8 NIL NIL) (-168 311870 311969 312122 "CSTTOOLS" 312393 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-167 307669 308326 309084 "CRFP" 311182 NIL CRFP (NIL T T) -7 NIL NIL) (-166 306716 306901 307129 "CRAPACK" 307473 NIL CRAPACK (NIL T) -7 NIL NIL) (-165 306100 306201 306405 "CPMATCH" 306592 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-164 305825 305853 305959 "CPIMA" 306066 NIL CPIMA (NIL T T T) -7 NIL NIL) (-163 302189 302861 303579 "COORDSYS" 305160 NIL COORDSYS (NIL T) -7 NIL NIL) (-162 301573 301702 301852 "CONTOUR" 302059 T CONTOUR (NIL) -8 NIL NIL) (-161 297434 299576 300068 "CONTFRAC" 301113 NIL CONTFRAC (NIL T) -8 NIL NIL) (-160 296588 297152 297180 "COMRING" 297185 T COMRING (NIL) -9 NIL 297236) (-159 295669 295946 296130 "COMPPROP" 296424 T COMPPROP (NIL) -8 NIL NIL) (-158 295330 295365 295493 "COMPLPAT" 295628 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-157 285311 295139 295248 "COMPLEX" 295253 NIL COMPLEX (NIL T) -8 NIL NIL) (-156 284947 285004 285111 "COMPLEX2" 285248 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-155 284665 284700 284798 "COMPFACT" 284906 NIL COMPFACT (NIL T T) -7 NIL NIL) (-154 269000 279294 279334 "COMPCAT" 280336 NIL COMPCAT (NIL T) -9 NIL 281729) (-153 258515 261439 265066 "COMPCAT-" 265422 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-152 258246 258274 258376 "COMMUPC" 258481 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-151 258041 258074 258133 "COMMONOP" 258207 T COMMONOP (NIL) -7 NIL NIL) (-150 257624 257792 257879 "COMM" 257974 T COMM (NIL) -8 NIL NIL) (-149 256873 257067 257095 "COMBOPC" 257433 T COMBOPC (NIL) -9 NIL 257608) (-148 255769 255979 256221 "COMBINAT" 256663 NIL COMBINAT (NIL T) -7 NIL NIL) (-147 251967 252540 253180 "COMBF" 255191 NIL COMBF (NIL T T) -7 NIL NIL) (-146 250753 251083 251318 "COLOR" 251752 T COLOR (NIL) -8 NIL NIL) (-145 250393 250440 250565 "CMPLXRT" 250700 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-144 245895 246923 248003 "CLIP" 249333 T CLIP (NIL) -7 NIL NIL) (-143 244233 245003 245241 "CLIF" 245723 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-142 240456 242380 242421 "CLAGG" 243350 NIL CLAGG (NIL T) -9 NIL 243886) (-141 238878 239335 239918 "CLAGG-" 239923 NIL CLAGG- (NIL T T) -8 NIL NIL) (-140 238422 238507 238647 "CINTSLPE" 238787 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-139 235923 236394 236942 "CHVAR" 237950 NIL CHVAR (NIL T T T) -7 NIL NIL) (-138 235146 235710 235738 "CHARZ" 235743 T CHARZ (NIL) -9 NIL 235757) (-137 234900 234940 235018 "CHARPOL" 235100 NIL CHARPOL (NIL T) -7 NIL NIL) (-136 234007 234604 234632 "CHARNZ" 234679 T CHARNZ (NIL) -9 NIL 234734) (-135 232032 232697 233032 "CHAR" 233692 T CHAR (NIL) -8 NIL NIL) (-134 231758 231819 231847 "CFCAT" 231958 T CFCAT (NIL) -9 NIL NIL) (-133 231003 231114 231296 "CDEN" 231642 NIL CDEN (NIL T T T) -7 NIL NIL) (-132 226995 230156 230436 "CCLASS" 230743 T CCLASS (NIL) -8 NIL NIL) (-131 226914 226940 226975 "CATEGORY" 226980 T -10 (NIL) -8 NIL NIL) (-130 221966 222943 223696 "CARTEN" 226217 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-129 221074 221222 221443 "CARTEN2" 221813 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-128 219372 220226 220482 "CARD" 220838 T CARD (NIL) -8 NIL NIL) (-127 218745 219073 219101 "CACHSET" 219233 T CACHSET (NIL) -9 NIL 219310) (-126 218242 218538 218566 "CABMON" 218616 T CABMON (NIL) -9 NIL 218672) (-125 217410 217789 217932 "BYTE" 218119 T BYTE (NIL) -8 NIL NIL) (-124 213358 217357 217391 "BYTEARY" 217396 T BYTEARY (NIL) -8 NIL NIL) (-123 210915 213050 213157 "BTREE" 213284 NIL BTREE (NIL T) -8 NIL NIL) (-122 208413 210563 210685 "BTOURN" 210825 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205832 207885 207926 "BTCAT" 207994 NIL BTCAT (NIL T) -9 NIL 208071) (-120 205499 205579 205728 "BTCAT-" 205733 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200720 204591 204619 "BTAGG" 204875 T BTAGG (NIL) -9 NIL 205054) (-118 200143 200287 200517 "BTAGG-" 200522 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 197187 199421 199636 "BSTREE" 199960 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196325 196451 196635 "BRILL" 197043 NIL BRILL (NIL T) -7 NIL NIL) (-115 193027 195054 195095 "BRAGG" 195744 NIL BRAGG (NIL T) -9 NIL 196001) (-114 191556 191962 192517 "BRAGG-" 192522 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184764 190902 191086 "BPADICRT" 191404 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 183068 184701 184746 "BPADIC" 184751 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182768 182798 182911 "BOUNDZRO" 183032 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 178283 179374 180241 "BOP" 181921 T BOP (NIL) -8 NIL NIL) (-109 175904 176348 176868 "BOP1" 177796 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174539 175244 175462 "BOOLEAN" 175706 T BOOLEAN (NIL) -8 NIL NIL) (-107 173906 174284 174336 "BMODULE" 174341 NIL BMODULE (NIL T T) -9 NIL 174405) (-106 169716 173704 173777 "BITS" 173853 T BITS (NIL) -8 NIL NIL) (-105 168813 169248 169400 "BINFILE" 169584 T BINFILE (NIL) -8 NIL NIL) (-104 168225 168347 168489 "BINDING" 168691 T BINDING (NIL) -8 NIL NIL) (-103 162059 167669 167834 "BINARY" 168080 T BINARY (NIL) -8 NIL NIL) (-102 159887 161315 161356 "BGAGG" 161616 NIL BGAGG (NIL T) -9 NIL 161753) (-101 159718 159750 159841 "BGAGG-" 159846 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158816 159102 159307 "BFUNCT" 159533 T BFUNCT (NIL) -8 NIL NIL) (-99 157517 157695 157980 "BEZOUT" 158640 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154042 156377 156705 "BBTREE" 157220 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153780 153833 153859 "BASTYPE" 153976 T BASTYPE (NIL) -9 NIL NIL) (-96 153635 153664 153734 "BASTYPE-" 153739 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153073 153149 153299 "BALFACT" 153546 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151895 152492 152677 "AUTOMOR" 152918 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151621 151626 151652 "ATTREG" 151657 T ATTREG (NIL) -9 NIL NIL) (-92 149900 150318 150670 "ATTRBUT" 151287 T ATTRBUT (NIL) -8 NIL NIL) (-91 149436 149549 149575 "ATRIG" 149776 T ATRIG (NIL) -9 NIL NIL) (-90 149245 149286 149373 "ATRIG-" 149378 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147442 149021 149109 "ASTACK" 149188 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145947 146244 146609 "ASSOCEQ" 147124 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144979 145606 145730 "ASP9" 145854 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144743 144927 144966 "ASP8" 144971 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143612 144348 144490 "ASP80" 144632 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142511 143247 143379 "ASP7" 143511 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141465 142188 142306 "ASP78" 142424 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140434 141145 141262 "ASP77" 141379 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139346 140072 140203 "ASP74" 140334 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138246 138981 139113 "ASP73" 139245 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137201 137923 138041 "ASP6" 138159 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136149 136878 136996 "ASP55" 137114 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135099 135823 135942 "ASP50" 136061 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134187 134800 134910 "ASP4" 135020 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133275 133888 133998 "ASP49" 134108 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132060 132814 132982 "ASP42" 133164 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130837 131593 131763 "ASP41" 131947 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129787 130514 130632 "ASP35" 130750 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129552 129735 129774 "ASP34" 129779 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129289 129356 129432 "ASP33" 129507 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128184 128924 129056 "ASP31" 129188 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127949 128132 128171 "ASP30" 128176 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127684 127753 127829 "ASP29" 127904 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127449 127632 127671 "ASP28" 127676 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127214 127397 127436 "ASP27" 127441 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126298 126912 127023 "ASP24" 127134 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125214 125939 126069 "ASP20" 126199 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124302 124915 125025 "ASP1" 125135 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123246 123976 124095 "ASP19" 124214 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122983 123050 123126 "ASP12" 123201 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121835 122582 122726 "ASP10" 122870 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119734 121679 121770 "ARRAY2" 121775 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115550 119382 119496 "ARRAY1" 119651 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114582 114755 114976 "ARRAY12" 115373 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108942 110813 110888 "ARR2CAT" 113518 NIL ARR2CAT (NIL T T T) -9 NIL 114276) (-54 106376 107120 108074 "ARR2CAT-" 108079 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105136 105286 105589 "APPRULE" 106214 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104789 104837 104955 "APPLYORE" 105082 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103763 104054 104249 "ANY" 104612 T ANY (NIL) -8 NIL NIL) (-50 103041 103164 103321 "ANY1" 103637 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100573 101491 101816 "ANTISYM" 102766 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100088 100277 100374 "ANON" 100494 T ANON (NIL) -8 NIL NIL) (-47 94165 98633 99084 "AN" 99655 T AN (NIL) -8 NIL NIL) (-46 90519 91917 91967 "AMR" 92706 NIL AMR (NIL T T) -9 NIL 93305) (-45 89632 89853 90215 "AMR-" 90220 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74182 89549 89610 "ALIST" 89615 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71019 73776 73945 "ALGSC" 74100 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67575 68129 68736 "ALGPKG" 70459 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66852 66953 67137 "ALGMFACT" 67461 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62602 63282 63936 "ALGMANIP" 66376 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53921 62228 62378 "ALGFF" 62535 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53117 53248 53427 "ALGFACT" 53779 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52108 52718 52756 "ALGEBRA" 52816 NIL ALGEBRA (NIL T) -9 NIL 52874) (-36 51826 51885 52017 "ALGEBRA-" 52022 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34087 49830 49882 "ALAGG" 50018 NIL ALAGG (NIL T T) -9 NIL 50179) (-34 33623 33736 33762 "AHYP" 33963 T AHYP (NIL) -9 NIL NIL) (-33 32554 32802 32828 "AGG" 33327 T AGG (NIL) -9 NIL 33606) (-32 31988 32150 32364 "AGG-" 32369 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31631 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 7b196aca..ca976aaa 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,2000 +1,2053 @@ -(726211 . 3419169926) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3))))) +(726384 . 3419278781) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 *1)) (-4 *1 (-408 *4)) - (-4 *4 (-788)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-426 *4 *5 *6 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) (-5 *2 (-591 (-591 (-525)))) - (-5 *1 (-857 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-882 *4 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) - (-4 *5 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *5)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-259))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-591 (-564 *3))) - (-5 *5 (-564 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *7))) - (-4 *7 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) - (-5 *1 (-518 *7 *3))))) -(((*1 *1) (-5 *1 (-135)))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1174))))) + (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) + (-4 *2 (-13 (-789) (-21)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1014 (-782 (-205)))) (-5 *1 (-284))))) (((*1 *2 *3) - (-12 (-5 *3 (-885 *5)) (-4 *5 (-975)) (-5 *2 (-227 *4 *5)) - (-5 *1 (-877 *4 *5)) (-14 *4 (-591 (-1089)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *2 *2) - (-12 (-4 *3 (-788)) (-5 *1 (-862 *3 *2)) (-4 *2 (-408 *3)))) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) + (-4 *5 (-13 (-27) (-1112) (-408 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-294 (-525))) (-5 *1 (-863))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3))))) + (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-385 (-525))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) + (-4 *3 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) + (-4 *6 (-13 (-27) (-1112) (-408 *5))) + (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-525))) + (-4 *7 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-525))) + (-4 *3 (-13 (-27) (-1112) (-408 *7))) + (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) + (-5 *5 (-1139 (-385 (-525)))) (-5 *6 (-385 (-525))) + (-4 *8 (-13 (-27) (-1112) (-408 *7))) + (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-385 (-525)))) + (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *8))) + (-4 *8 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3)))) + (-4 *3 (-976)) (-5 *1 (-550 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-551 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3)))) + (-4 *3 (-976)) (-4 *1 (-1132 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-713)) + (-5 *3 (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))) + (-4 *4 (-976)) (-4 *1 (-1153 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-4 *1 (-1163 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1071 (-2 (|:| |k| (-713)) (|:| |c| *3)))) + (-4 *3 (-976)) (-4 *1 (-1163 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1094))))) (((*1 *2 *3) - (-12 (-4 *3 (-1147 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-916 *4 *2 *3 *5)) - (-4 *4 (-327)) (-4 *5 (-666 *2 *3))))) + (|partial| -12 (-4 *2 (-1019)) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1019))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1126)) + (-4 *5 (-351 *4)) (-4 *3 (-351 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1126)) (-5 *1 (-807 *3 *2)) (-4 *3 (-1126)))) + ((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) + (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-565 *4)) (-5 *6 (-1086 *4)) + (-4 *4 (-13 (-408 *7) (-27) (-1112))) + (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) + (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1086 *4))) + (-4 *4 (-13 (-408 *7) (-27) (-1112))) + (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) + (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-694))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-525)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-712)) (-5 *1 (-110))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-715)) (-5 *1 (-110))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-854)) (-4 *5 (-517)) (-5 *2 (-631 *5)) - (-5 *1 (-888 *5 *3)) (-4 *3 (-601 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-564 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4))) - (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-256 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850))))) + (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -3963 *5)))) + (-4 *5 (-1148 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5)) + (-5 *1 (-197 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-2 (|:| -2961 *5) (|:| -1486 (-525))))) + (-5 *4 (-525)) (-4 *5 (-1148 *4)) (-5 *2 (-592 *5)) + (-5 *1 (-638 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25)))))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) + (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) + (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126))))) +(((*1 *1) (-5 *1 (-308)))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4250)) (-4 *1 (-464 *3)) (-4 *3 (-1125)) - (-5 *2 (-591 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-679 *3)) (-4 *3 (-1018))))) + (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-990 *3 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-958 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-976)) (-5 *1 (-958 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-958 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-976)) (-5 *1 (-958 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-108)) (-5 *5 (-1021 (-713))) (-5 *6 (-713)) + (-5 *2 + (-2 (|:| |contp| (-525)) + (|:| -2826 (-592 (-2 (|:| |irr| *3) (|:| -3862 (-525))))))) + (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-886 *5)) (-4 *5 (-976)) (-5 *2 (-457 *4 *5)) + (-5 *1 (-878 *4 *5)) (-14 *4 (-592 (-1090)))))) +(((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-51))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) + (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) + (-5 *4 (-294 (-357))) (-5 *1 (-308)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) + (-5 *4 (-294 (-525))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-157 (-357))))) + (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-357)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-525)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-157 (-357))))) + (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-357))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-525))) (-5 *1 (-308)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) + (-5 *4 (-294 (-636))) (-5 *1 (-308)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) + (-5 *4 (-294 (-641))) (-5 *1 (-308)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) + (-5 *4 (-294 (-643))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-636)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-641)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-643)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-636))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-641))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-643))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-636))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-641))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-643))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-636))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-641))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-643))) (-5 *1 (-308)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-308)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-286)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3)))) + (-5 *1 (-364 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2877 (-713)) (|:| -2097 (-713)))) + (-5 *1 (-713)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-695))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-517)) (-5 *1 (-901 *4 *2)) - (-4 *2 (-1147 *4))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1125)) - (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1018)) - (-4 *2 (-1125))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-51)) (-5 *1 (-1104))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-385 (-885 *6)) (-1079 (-1089) (-885 *6)))) - (-5 *5 (-712)) (-4 *6 (-429)) (-5 *2 (-591 (-631 (-385 (-885 *6))))) - (-5 *1 (-271 *6)) (-5 *4 (-631 (-385 (-885 *6)))))) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1019))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-765)) (-5 *1 (-764))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))) +(((*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517))))) +(((*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-919 (-385 (-525)) (-799 *3) (-220 *4 (-713)) + (-227 *3 (-385 (-525))))) + (-14 *3 (-592 (-1090))) (-14 *4 (-713)) (-5 *1 (-918 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1019)) + (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) + (-5 *2 (-592 (-998 *3 *4 *5))) (-5 *1 (-999 *3 *4 *5)) + (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3))))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1172 *4))) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) + (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) + (-5 *2 (-592 (-1172 *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-933) (-1112))) + (-4 *4 (-13 (-517) (-789))) + (-4 *2 (-13 (-408 (-157 *4)) (-933) (-1112))) + (-5 *1 (-554 *4 *5 *2))))) +(((*1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1110))))) +(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-965)) (-5 *1 (-779)))) ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) + (-5 *2 (-965)) (-5 *1 (-779))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-1172 (-592 (-525)))) (-5 *1 (-456)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-690))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-385 (-885 *5)) (-1079 (-1089) (-885 *5)))) - (|:| |eigmult| (-712)) (|:| |eigvec| (-591 *4)))) - (-4 *5 (-429)) (-5 *2 (-591 (-631 (-385 (-885 *5))))) - (-5 *1 (-271 *5)) (-5 *4 (-631 (-385 (-885 *5))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-459 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1125)) (-5 *1 (-168 *3 *2)) - (-4 *2 (-618 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *6 *5)) - (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) (-5 *2 (-108)) (-5 *1 (-857 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-13 (-286) (-138))) - (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-108)) - (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-882 *4 *6 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3) (-12 (-5 *3 (-591 (-51))) (-5 *2 (-1176)) (-5 *1 (-797))))) -(((*1 *2 *3) (-12 (-5 *3 (-591 (-525))) (-5 *2 (-712)) (-5 *1 (-546))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))) + (-5 *2 (-357)) (-5 *1 (-187))))) +(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) + ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-877 (-205))) (-5 *4 (-808)) (-5 *2 (-1177)) + (-5 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-912 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-877 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-877 *3)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)) (-5 *3 (-205))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1173)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1173)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1173)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1174)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1174)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1174))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1040 *3 *4 *2 *5)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) + (-4 *2 (-218 *3 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *1 *1) (-5 *1 (-988)))) +(((*1 *2) + (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4251)) (-4 *1 (-464 *3)) - (-4 *3 (-1125))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-591 (-2 (|:| |totdeg| (-712)) (|:| -2217 *3)))) - (-5 *4 (-712)) (-4 *3 (-882 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-734)) - (-4 *7 (-788)) (-5 *1 (-426 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) - ((*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-807)))) - ((*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-4 *1 (-836 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-786)) (-5 *2 (-525)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-991 *4 *3)) (-4 *4 (-13 (-786) (-341))) - (-4 *3 (-1147 *4)) (-5 *2 (-525)))) + (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) + (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-395 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))) + (-4 *3 (-13 (-1019) (-33)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-2 (|:| -3067 *4) (|:| -2147 (-525))))) + (-4 *4 (-1019)) (-5 *2 (-1 *4)) (-5 *1 (-948 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3)) + (-4 *3 (-351 *4)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-517) (-788) (-966 *2) (-587 *2) (-429))) - (-5 *2 (-525)) (-5 *1 (-1033 *4 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-781 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-517) (-788) (-966 *2) (-587 *2) (-429))) - (-5 *2 (-525)) (-5 *1 (-1033 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072)) - (-4 *6 (-13 (-517) (-788) (-966 *2) (-587 *2) (-429))) - (-5 *2 (-525)) (-5 *1 (-1033 *6 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *6))))) + (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3)) + (-4 *5 (-351 *2)) (-4 *3 (-351 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-429)) (-5 *2 (-525)) - (-5 *1 (-1034 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-781 (-385 (-885 *6)))) - (-5 *3 (-385 (-885 *6))) (-4 *6 (-429)) (-5 *2 (-525)) - (-5 *1 (-1034 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-385 (-885 *6))) (-5 *4 (-1089)) - (-5 *5 (-1072)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1034 *6)))) + (-12 (-5 *3 (-632 *4)) (-4 *4 (-924 *2)) (-4 *2 (-517)) + (-5 *1 (-635 *2 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1108 *3)) (-4 *3 (-975))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-697))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) - (-14 *6 (-591 (-1089))) + (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-1141 *2 *4 *3)) + (-4 *3 (-1148 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1104 *4 *5)) + (-4 *4 (-1019)) (-4 *5 (-1019))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-826 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1019)) + (-4 *5 (-1126)) (-5 *1 (-824 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-826 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1019)) + (-4 *5 (-1126)) (-5 *1 (-824 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-826 *5)) (-5 *3 (-592 (-1090))) + (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1019)) (-4 *6 (-1126)) + (-5 *1 (-824 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1126)) (-4 *4 (-789)) + (-5 *1 (-871 *4 *2 *5)) (-4 *2 (-408 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1126)) (-4 *4 (-789)) + (-5 *1 (-871 *4 *2 *5)) (-4 *2 (-408 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1126)) + (-5 *2 (-294 (-525))) (-5 *1 (-872 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1126)) + (-5 *2 (-294 (-525))) (-5 *1 (-872 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-1 (-108) (-592 *6))) + (-4 *6 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))) (-4 *4 (-1019)) + (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) + (-5 *1 (-998 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 - (-591 (-1060 *5 (-497 (-798 *6)) (-798 *6) (-721 *5 (-798 *6))))) - (-5 *1 (-576 *5 *6))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))) + (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) + (-5 *1 (-187))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) + (-5 *2 + (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) + (|:| |success| (-108)))) + (-5 *1 (-731)) (-5 *5 (-525))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1090)) (-5 *6 (-592 (-565 *3))) + (-5 *5 (-565 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *7))) + (-4 *7 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) + (-5 *1 (-518 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) - (-5 *2 (-760 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-784)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-975))))) -(((*1 *1 *2) - (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-966 *4)) (-4 *3 (-286)) - (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) (-4 *6 (-387 *4 *5)) - (-14 *7 (-1171 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 *6)) (-4 *6 (-387 *4 *5)) (-4 *4 (-923 *3)) - (-4 *5 (-1147 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-1085 (-885 *4))) (-5 *1 (-394 *3 *4)) - (-4 *3 (-395 *4)))) - ((*1 *2) - (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) - (-5 *2 (-1085 (-885 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1085 (-385 (-885 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-353 *4 *2)) - (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4251))))))) + (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-195 (-475))) (-5 *1 (-776))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-905)) (-5 *2 (-1013 (-205)))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-712)) (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) - (-4 *2 (-1147 *3))))) -(((*1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2))))) + (-12 (-4 *4 (-1148 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-847 *4 *3)) + (-4 *3 (-1148 (-385 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) + ((*1 *1 *1 *1) (-4 *1 (-510))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) + ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-885 (-357))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-385 (-885 (-357)))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-885 (-525))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-385 (-885 (-525)))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-317 *3 *4 *5)) - (-14 *3 (-591 *2)) (-14 *4 (-591 *2)) (-4 *5 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365)) - (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-631 (-385 (-885 (-525))))) (-4 *1 (-362)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-631 (-385 (-885 (-357))))) (-4 *1 (-362)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-631 (-885 (-525)))) (-4 *1 (-362)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-631 (-885 (-357)))) (-4 *1 (-362)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-631 (-294 (-525)))) (-4 *1 (-362)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-631 (-294 (-357)))) (-4 *1 (-362)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-385 (-885 (-525)))) (-4 *1 (-374)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-385 (-885 (-357)))) (-4 *1 (-374)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-885 (-525))) (-4 *1 (-374)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-885 (-357))) (-4 *1 (-374)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1171 (-385 (-885 (-525))))) (-4 *1 (-418)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1171 (-385 (-885 (-357))))) (-4 *1 (-418)))) + (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) + (-5 *2 + (-3 (|:| |overq| (-1086 (-385 (-525)))) + (|:| |overan| (-1086 (-47))) (|:| -4081 (-108)))) + (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3)) + (-4 *4 (-13 (-341) (-787))) (-4 *3 (-1148 *2))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-108))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1126)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1171 (-885 (-525)))) (-4 *1 (-418)))) + (-12 + (-5 *2 + (-2 + (|:| -3160 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (|:| -3978 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1071 (-205))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2853 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-520)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1019)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1171 (-885 (-357)))) (-4 *1 (-418)))) + (-12 + (-5 *2 + (-2 + (|:| -3160 + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))) + (|:| -3978 + (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) + (|:| |expense| (-357)) (|:| |accuracy| (-357)) + (|:| |intermediateResults| (-357)))))) + (-5 *1 (-745)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-883 *4 *6 *5)) (-4 *4 (-429)) + (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-919 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-620 (-205))) + (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-693))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 *1)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1171 (-294 (-525)))) (-4 *1 (-418)))) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-976)) (-5 *1 (-632 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1171 (-294 (-357)))) (-4 *1 (-418)))) + (-12 (-5 *2 (-592 *4)) (-4 *4 (-976)) (-4 *1 (-1040 *3 *4 *5 *6)) + (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4))))) +(((*1 *1 *1) + (-12 (-4 *2 (-327)) (-4 *2 (-976)) (-5 *1 (-655 *2 *3)) + (-4 *3 (-1148 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4255)) (-4 *4 (-341)) (-4 *5 (-351 *4)) + (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3)) + (-4 *3 (-630 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4255)) (-4 *4 (-517)) (-4 *5 (-351 *4)) + (-4 *6 (-351 *4)) (-4 *7 (-924 *4)) (-4 *8 (-351 *7)) + (-4 *9 (-351 *7)) (-5 *2 (-592 *6)) + (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6)) + (-4 *10 (-630 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1147 *5)) - (-5 *2 (-1085 (-1085 *4))) (-5 *1 (-718 *4 *5 *6 *3 *7)) - (-4 *3 (-1147 *6)) (-14 *7 (-854)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) - (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *1 (-907 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-966 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) - (|partial| -3150 - (-12 (-5 *2 (-885 *3)) - (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) - (-3389 (-4 *3 (-37 (-525)))) (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) - (-4 *5 (-788))) - (-12 (-5 *2 (-885 *3)) - (-12 (-3389 (-4 *3 (-510))) (-3389 (-4 *3 (-37 (-385 (-525))))) - (-4 *3 (-37 (-525))) (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) - (-4 *5 (-788))) - (-12 (-5 *2 (-885 *3)) - (-12 (-3389 (-4 *3 (-923 (-525)))) (-4 *3 (-37 (-385 (-525)))) - (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) - (-4 *5 (-788))))) - ((*1 *1 *2) - (|partial| -3150 - (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) - (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) - (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))) - (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-885 (-385 (-525)))) (-4 *1 (-989 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089))) (-4 *3 (-975)) - (-4 *4 (-734)) (-4 *5 (-788))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 *3) - (-5 *3 (-525)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-804 *4)) (-14 *4 *3) - (-5 *3 (-525)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-385 (-525))) (-5 *1 (-805 *4 *5)) - (-5 *3 (-525)) (-4 *5 (-802 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-942)) (-5 *2 (-385 (-525))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-991 *2 *3)) (-4 *2 (-13 (-786) (-341))) - (-4 *3 (-1147 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-733)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2686 (*2 (-1089)))) - (-4 *2 (-975))))) -(((*1 *2 *3) - (-12 (-5 *3 (-760 *4)) (-4 *4 (-788)) (-5 *2 (-108)) - (-5 *1 (-616 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125))))) -(((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 (-631 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-854)) (-5 *2 (-1085 *3)) (-5 *1 (-1100 *3)) - (-4 *3 (-341))))) + (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) + (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3)) + (-4 *3 (-630 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) + (-5 *2 (-592 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-592 (-1090))) + (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-953)) (-5 *5 (-357)))) + ((*1 *2 *3) + (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) + (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-886 *4))) + (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-286)) + (-5 *2 (-385 (-396 (-886 *4)))) (-5 *1 (-971 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4)) + (-5 *3 (-592 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-341)) (-4 *3 (-976)) + (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-791 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-976)) + (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-792 *5 *3)) + (-4 *3 (-791 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-126)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-339 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-364 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-595 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3)))) + (-5 *1 (-550 *3)) (-4 *3 (-976))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-341)) (-5 *1 (-955 *3 *2)) (-4 *2 (-602 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -3941 *3) (|:| -3892 (-592 *5)))) + (-5 *1 (-955 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-108))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-4 *1 (-837 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-713))))) (((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-395 *4))))) + (|partial| -12 (-5 *3 (-1172 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) + (-5 *2 (-1172 *4)) (-5 *1 (-587 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1014 *3)) (-4 *3 (-883 *7 *6 *4)) (-4 *6 (-735)) + (-4 *4 (-789)) (-4 *7 (-517)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) + (-5 *1 (-549 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) + (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-883 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1112))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1012 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1112))) + (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-1082 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) + (-5 *2 (-385 (-886 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-886 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) + (-5 *2 (-3 (-385 (-886 *5)) (-294 *5))) (-5 *1 (-1083 *5)) + (-5 *3 (-385 (-886 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1012 (-886 *5))) (-5 *3 (-886 *5)) + (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-385 *3)) + (-5 *1 (-1083 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1012 (-385 (-886 *5)))) (-5 *3 (-385 (-886 *5))) + (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-3 *3 (-294 *5))) + (-5 *1 (-1083 *5))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *3 (-205)) + (-5 *2 (-965)) (-5 *1 (-692))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1148 *4)) (-4 *4 (-1130)) + (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1148 (-385 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) - (-5 *2 (-2 (|:| -2976 (-385 *5)) (|:| |poly| *3))) - (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1147 (-385 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1018)) - (-4 *2 (-13 (-408 *4) (-819 *3) (-566 (-825 *3)))) - (-5 *1 (-997 *3 *4 *2)) - (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1018)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1013 (-205))))) - ((*1 *2 *1) (-12 (-4 *1 (-905)) (-5 *2 (-1013 (-205)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-591 (-525))) (-5 *3 (-108)) (-5 *1 (-1028))))) + (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) + (-4 *4 (-327))))) +(((*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308))))) +(((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-998 *3 *4 *5))) (-4 *3 (-1019)) + (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) + (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))) + (-5 *1 (-999 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-341)) + (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *1 (-427 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341)) + (-5 *2 + (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) + (-5 *1 (-910 *6)) (-5 *3 (-632 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1006))))) (((*1 *2 *3) - (-12 (-4 *4 (-975)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3)) - (-4 *3 (-1147 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-108))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1089)) - (-4 *4 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-536 *4 *2)) - (-4 *2 (-13 (-1111) (-891) (-1053) (-29 *4)))))) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) + (-5 *2 (-592 (-886 *4))))) + ((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-592 (-886 *4))) (-5 *1 (-394 *3 *4)) + (-4 *3 (-395 *4)))) + ((*1 *2) + (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-886 *3))))) + ((*1 *2) + (-12 (-5 *2 (-592 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 (-430 *4 *5 *6 *7))) (-5 *2 (-592 (-886 *4))) + (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *4 (-160)) + (-14 *5 (-855)) (-14 *6 (-592 (-1090))) (-14 *7 (-1172 (-632 *4)))))) (((*1 *2) - (-12 (-5 *2 (-854)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *2) - (-12 (-5 *2 (-854)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) + (-12 (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) + (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))))) + (-5 *2 (-965)) (-5 *1 (-284)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) + (-5 *2 (-965)) (-5 *1 (-284))))) (((*1 *2 *1) - (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) - (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) (-5 *2 (-591 *3)) (-5 *1 (-857 *4 *5 *6 *3)) - (-4 *3 (-882 *4 *6 *5))))) -(((*1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174))))) + (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019))))) +(((*1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1086 (-525))) (-5 *3 (-525)) (-4 *1 (-803 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) + (-4 *7 (-1148 (-385 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -2451 *3))) + (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) + (-5 *2 + (-2 (|:| |answer| (-385 *6)) (|:| -2451 (-385 *6)) + (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) + (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6))))) +(((*1 *1) (-5 *1 (-765)))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-202 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-233 *3)))) + ((*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-965))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1071 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-989 *4 *5 *6)) (-4 *4 (-517)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-908 *4 *5 *6 *2))))) + (-12 (-5 *3 (-855)) (-5 *1 (-962 *2)) + (-4 *2 (-13 (-1019) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) + ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) + ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861))))) (((*1 *2 *1) - (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1018)) - (-4 *2 (-788))))) -(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1018)) - (-4 *2 (-13 (-408 *4) (-819 *3) (-566 (-825 *3)))) - (-5 *1 (-997 *3 *4 *2)) - (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1018)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1018))))) + (-12 (-4 *3 (-976)) (-5 *2 (-1172 *3)) (-5 *1 (-655 *3 *4)) + (-4 *4 (-1148 *3))))) +(((*1 *1) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-764))))) (((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1013 (-205))))) - ((*1 *2 *1) (-12 (-4 *1 (-905)) (-5 *2 (-1013 (-205)))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *2 (-964)) (-5 *1 (-693))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-571 *4 *2)) (-4 *2 (-13 (-1111) (-891) (-29 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341)) - (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-408 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) - (|has| *2 (-6 (-4252 "*"))) (-4 *2 (-975)))) - ((*1 *2 *3) - (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) - (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) + (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) + (-4 *3 (-1019)))) ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) - (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4252 "*"))) (-4 *2 (-975))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-525)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-712)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-734)) (-4 *4 (-882 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-788)) - (-5 *1 (-426 *5 *6 *7 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-134))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) - (-14 *4 *2)))) + (|partial| -12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) + (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *3)) + (-5 *1 (-884 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-341) + (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) + (-15 -1945 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-712)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-712))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1125)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6) - (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -2744 *6))) - (-5 *1 (-946 *5 *6)) (-5 *3 (-385 *6))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-712)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) - (-4 *2 (-1147 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-525)) (-5 *1 (-637 *2)) (-4 *2 (-1147 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-1147 *4)) (-4 *4 (-975)) - (-5 *2 (-1171 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514))))) -(((*1 *2 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1112 *3)) (-4 *3 (-1018))))) -(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092))))) -(((*1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1125))))) + (-12 + (-5 *2 + (-1172 + (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) + (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -2017 (-525)) + (|:| -1361 (-525)) (|:| |spline| (-525)) (|:| -2681 (-525)) + (|:| |axesColor| (-808)) (|:| -3855 (-525)) + (|:| |unitsColor| (-808)) (|:| |showing| (-525))))) + (-5 *1 (-1173))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) + (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) + (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) + (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) + (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) - (-5 *2 (-1085 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *6)) (-4 *6 (-788)) (-4 *4 (-341)) (-4 *5 (-734)) + (-12 (-5 *2 - (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) - (|:| |genIdeal| (-477 *4 *5 *6 *7)))) - (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-882 *4 *5 *6))))) + (-592 + (-2 + (|:| -3160 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (|:| -3978 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1071 (-205))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2853 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-520)))) + ((*1 *2 *1) + (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) + (-5 *2 (-592 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-51))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-976)) (-4 *3 (-789)) + (-5 *2 (-2 (|:| |val| *1) (|:| -1737 (-525)))) (-4 *1 (-408 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-826 *3)) (|:| -1737 (-826 *3)))) + (-5 *1 (-826 *3)) (-4 *3 (-1019)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) + (-4 *7 (-883 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -1737 (-525)))) + (-5 *1 (-884 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-341) + (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) + (-15 -1945 (*7 $)))))))) (((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) + (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) +(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) + ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160))))) +(((*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) + ((*1 *2 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))) + ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) + ((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-525))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4))) + (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787)))))) +(((*1 *1 *1) (-5 *1 (-108)))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-712)))) + (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1071 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382)))) ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-712))))) + (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-805 *3)) (-14 *3 (-525)))) + ((*1 *2 *1) + (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525)))) + (-5 *1 (-806 *3 *4)) (-4 *4 (-803 *3))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-698)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366)) + (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-698))))) +(((*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) + ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) + ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-591 (-1085 *4))) (-5 *3 (-1085 *4)) - (-4 *4 (-842)) (-5 *1 (-608 *4))))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-855)) (-4 *4 (-976)) + (-5 *1 (-958 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-855)) (-4 *4 (-976)) + (-5 *1 (-958 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-2 (|:| -2940 *4) (|:| -1314 (-525))))) - (-4 *4 (-1018)) (-5 *2 (-1 *4)) (-5 *1 (-947 *4))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-712)) (-4 *6 (-1018)) (-4 *7 (-833 *6)) - (-5 *2 (-631 *7)) (-5 *1 (-633 *6 *7 *3 *4)) (-4 *3 (-351 *7)) - (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4250))))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) - (-4 *5 (-351 *2)) (-4 *2 (-1125)))) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-108)) (-5 *1 (-110)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1090)) (-5 *2 (-108)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1125)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *2 *6 *7)) - (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-975))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-859))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-696))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-876 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-876 *3))) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-876 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) - (-5 *2 (-591 (-205))) (-5 *1 (-284))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) - (-4 *3 (-13 (-341) (-1111) (-932)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1147 (-47)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-5 *1 (-1098 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-975)) (-4 *4 (-160)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)) - (-4 *3 (-160))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-847 *2)))) + (-12 (-5 *3 (-1090)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) - (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-848 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-396 (-885 *6))) (-5 *5 (-1089)) (-5 *3 (-885 *6)) - (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-848 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-1094))) (-5 *1 (-1094)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-1094))) (-5 *1 (-1094))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1176)) - (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *1 (-327)) - (-5 *2 (-591 (-2 (|:| -2542 (-525)) (|:| -3987 (-525)))))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-157 (-205)))) (-5 *2 (-964)) - (-5 *1 (-698))))) -(((*1 *1) (-5 *1 (-270)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-1171 *5))) (-5 *4 (-525)) (-5 *2 (-1171 *5)) - (-5 *1 (-958 *5)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-975))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-712)) (-5 *1 (-724 *2)) (-4 *2 (-37 (-385 (-525)))) - (-4 *2 (-160))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-385 (-885 *4))) (-5 *3 (-1089)) - (-4 *4 (-13 (-517) (-966 (-525)) (-138))) (-5 *1 (-531 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-761)) (-14 *5 (-1089)) - (-5 *2 (-525)) (-5 *1 (-1032 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-525)) (-5 *1 (-221)))) + (-12 (-4 *5 (-1019)) (-5 *2 (-108)) (-5 *1 (-821 *5 *3 *4)) + (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *6)) (-4 *6 (-820 *5)) (-4 *5 (-1019)) + (-5 *2 (-108)) (-5 *1 (-821 *5 *6 *4)) (-4 *4 (-567 (-826 *5)))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346)) + (-4 *6 (-976)) (-5 *2 (-592 (-592 (-632 *6)))) (-5 *1 (-959 *6)) + (-5 *3 (-592 (-632 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-525)) (-5 *1 (-221))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-51)) (-5 *1 (-770))))) -(((*1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) - (-4 *4 (-351 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *5)) (-4 *5 (-429)) (-5 *2 (-591 *6)) - (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-786))))) + (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-976)) + (-5 *2 (-592 (-592 (-632 *4)))) (-5 *1 (-959 *4)) + (-5 *3 (-592 (-632 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 *5)) (-4 *5 (-429)) (-5 *2 (-591 *6)) - (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-786)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1125)) (-5 *2 (-712)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-618 *4))))) + (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976)) + (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) + (-5 *3 (-592 (-632 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-855)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976)) + (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) + (-5 *3 (-592 (-632 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-902 *2 *3)) + (-4 *3 (-1148 *2))))) +(((*1 *1) + (-12 (-4 *3 (-1019)) (-5 *1 (-819 *2 *3 *4)) (-4 *2 (-1019)) + (-4 *4 (-612 *3)))) + ((*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) + (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6))) + (-5 *1 (-577 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5)) - (-4 *3 (-13 (-341) (-788))) (-14 *4 (-1089)) (-14 *5 *3)))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-592 (-1086 *7))) (-5 *3 (-1086 *7)) + (-4 *7 (-883 *5 *6 *4)) (-4 *5 (-843)) (-4 *6 (-735)) + (-4 *4 (-789)) (-5 *1 (-840 *5 *6 *4 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4)) + (-4 *4 (-789)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-1027 *5 *6 *7 *8)) - (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-547 *5 *6 *7 *8 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))) + (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1177)) (-5 *1 (-773))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *1) (-5 *1 (-108)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-712)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-734)) - (-4 *9 (-788)) (-4 *3 (-989 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-992 *7 *8 *9 *3 *4)) (-4 *4 (-994 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-712)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) - (-4 *3 (-989 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-992 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-992 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-712)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-734)) - (-4 *9 (-788)) (-4 *3 (-989 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-1059 *7 *8 *9 *3 *4)) (-4 *4 (-1027 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-712)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) - (-4 *3 (-989 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1027 *6 *7 *8 *3)))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2) + (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *2 (-965)) (-5 *1 (-695))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1165 *3 *2)) + (-4 *2 (-1163 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)) + (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1027 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-763))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-591 (-631 (-525)))) - (-5 *1 (-1028))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *1) - (-12 (-4 *3 (-1018)) (-5 *1 (-818 *2 *3 *4)) (-4 *2 (-1018)) - (-4 *4 (-611 *3)))) - ((*1 *1) (-12 (-5 *1 (-822 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) - (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) - (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517))))) + (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341)) + (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1147 *5)) - (-5 *2 (-591 *3)) (-5 *1 (-718 *4 *5 *6 *3 *7)) (-4 *3 (-1147 *6)) - (-14 *7 (-854))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372))))) + (-12 (-5 *3 (-886 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) + ((*1 *2 *3) + (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) + ((*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-943)) (-5 *2 (-592 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-943)) (-5 *2 (-592 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-592 *1)) + (-4 *1 (-992 *4 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-876 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))))) - (-5 *2 (-964)) (-5 *1 (-284)))) + (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) + (-5 *2 (-1086 *3))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) + (-5 *2 (-965)) (-5 *1 (-688))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-510)))) +(((*1 *2 *2) + (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3)))) ((*1 *2 *3) + (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) + (-5 *2 (-965)) (-5 *1 (-700))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6)) + (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1148 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-142 *3)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964)))) - (-5 *2 (-964)) (-5 *1 (-284))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *1 *1) (-4 *1 (-466))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-385 (-525))) - (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-712)) (-4 *4 (-13 (-517) (-138))) - (-5 *1 (-1141 *4 *2)) (-4 *2 (-1147 *4))))) + (-5 *2 (-592 (-2 (|:| -1737 (-713)) (|:| -3448 *4) (|:| |num| *4)))) + (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-108)) (-5 *1 (-415)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-5 *3 (-592 (-1090))) (-5 *4 (-108)) (-5 *1 (-415)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1071 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) + (-4 *4 (-160)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) + (-4 *4 (-160)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) + (-4 *4 (-160)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1019)) + (-5 *1 (-620 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1019)) + (-14 *4 + (-1 (-108) (-2 (|:| -3381 *2) (|:| -1737 *3)) + (-2 (|:| -3381 *2) (|:| -1737 *3)))))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1126)) (-4 *3 (-1126)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 *4)))) + (-4 *4 (-1019)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1019) (-33))) + (-5 *2 (-592 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) + (-4 *3 (-13 (-1019) (-33))))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -2249 *5)))) + (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33))) + (-5 *2 (-592 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2249 *4))) + (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) + (-5 *1 (-1055 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) + (-4 *3 (-13 (-1019) (-33))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) + (-4 *3 (-13 (-1019) (-33))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1019) (-33))) + (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-592 (-1055 *2 *3))) (-4 *2 (-13 (-1019) (-33))) + (-4 *3 (-13 (-1019) (-33))) (-5 *1 (-1056 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-592 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) + (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) + (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))) +(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1021 (-1021 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019))))) +(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1175)))) + ((*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1175))))) +(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-976)))) + ((*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1019)) + (-4 *6 (-1019)) (-4 *2 (-1019)) (-5 *1 (-624 *5 *6 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-591 *8))) (-5 *3 (-591 *8)) - (-4 *8 (-882 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) - (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-108)) - (-5 *1 (-857 *5 *6 *7 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1147 *3)) (-4 *3 (-975))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2 *3) (-12 (-5 *3 (-902)) (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1125)) (-5 *2 (-525))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-620 *3)) (-4 *3 (-788)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760 *3)) (-4 *3 (-788))))) -(((*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-899))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1089)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *2 (-591 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1147 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) + (-12 (-5 *3 (-592 *5)) (-5 *4 (-855)) (-4 *5 (-789)) + (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5))))) (((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1148 (-525)))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-525)) (-5 *1 (-1071 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1185 (-1090) *3)) (-4 *3 (-976)) (-5 *1 (-1192 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) + (-5 *1 (-1194 *3 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-799 *4))) + (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6)) + (-4 *6 (-429))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *2 (-341)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) ((*1 *1 *1 *1) - (-3150 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1125))) - (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1125))))) + (-3215 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1126))) + (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1126))))) ((*1 *1 *1 *1) (-4 *1 (-341))) ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1041 *3 (-564 *1))) (-4 *3 (-517)) (-4 *3 (-788)) + (-12 (-5 *2 (-1042 *3 (-565 *1))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) ((*1 *1 *1 *1) (-4 *1 (-450))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) ((*1 *1 *1 *1) (-5 *1 (-501))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-160)) (-5 *1 (-570 *2 *4 *3)) (-4 *2 (-37 *4)) - (-4 *3 (|SubsetCategory| (-668) *4)))) + (-12 (-4 *4 (-160)) (-5 *1 (-571 *2 *4 *3)) (-4 *2 (-37 *4)) + (-4 *3 (|SubsetCategory| (-669) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-160)) (-5 *1 (-570 *3 *4 *2)) (-4 *3 (-37 *4)) - (-4 *2 (|SubsetCategory| (-668) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-582 *2)) (-4 *2 (-160)) (-4 *2 (-341)))) + (-12 (-4 *4 (-160)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)) + (-4 *2 (|SubsetCategory| (-669) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)) (-4 *2 (-341)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-160)) (-5 *1 (-607 *2 *4 *3)) (-4 *2 (-659 *4)) - (-4 *3 (|SubsetCategory| (-668) *4)))) + (-12 (-4 *4 (-160)) (-5 *1 (-608 *2 *4 *3)) (-4 *2 (-660 *4)) + (-4 *3 (|SubsetCategory| (-669) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-160)) (-5 *1 (-607 *3 *4 *2)) (-4 *3 (-659 *4)) - (-4 *2 (|SubsetCategory| (-668) *4)))) + (-12 (-4 *4 (-160)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)) + (-4 *2 (|SubsetCategory| (-669) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) - ((*1 *1 *1 *1) (-5 *1 (-796))) + ((*1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-799 *2 *3 *4 *5)) (-4 *2 (-341)) - (-4 *2 (-975)) (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-712))) - (-14 *5 (-712)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)))) + (|partial| -12 (-5 *1 (-800 *2 *3 *4 *5)) (-4 *2 (-341)) + (-4 *2 (-976)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-713))) + (-14 *5 (-713)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2 *5 *6)) (-4 *2 (-975)) + (-12 (-4 *1 (-979 *3 *4 *2 *5 *6)) (-4 *2 (-976)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-341)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-341)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-341)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-341)) (-4 *2 (-975)) (-4 *3 (-788)) - (-4 *4 (-734)) (-14 *6 (-591 *3)) - (-5 *1 (-1181 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-882 *2 *4 *3)) - (-14 *7 (-591 (-712))) (-14 *8 (-712)))) + (|partial| -12 (-4 *2 (-341)) (-4 *2 (-976)) (-4 *3 (-789)) + (-4 *4 (-735)) (-14 *6 (-592 *3)) + (-5 *1 (-1182 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-883 *2 *4 *3)) + (-14 *7 (-592 (-713))) (-14 *8 (-713)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-341)) (-4 *2 (-975)) - (-4 *3 (-784))))) + (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-341)) (-4 *2 (-976)) + (-4 *3 (-785))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) + (-5 *1 (-310)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1090)) (-5 *4 (-1012 (-886 (-525)))) (-5 *2 (-308)) + (-5 *1 (-310)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-976)) (-4 *3 (-1019))))) +(((*1 *2) + (-12 (-4 *1 (-327)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-341)) (-14 *6 (-1172 (-632 *3))) + (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))))) + ((*1 *1 *2) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1126)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059 'JINT 'X 'ELAM) (-4059) (-641)))) + (-5 *1 (-59 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 'XC) (-641)))) + (-5 *1 (-61 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-317 (-4059 'X) (-4059) (-641))) (-5 *1 (-62 *3)) + (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-632 (-317 (-4059) (-4059 'X 'HESS) (-641)))) + (-5 *1 (-63 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-317 (-4059) (-4059 'XC) (-641))) (-5 *1 (-64 *3)) + (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059 'X) (-4059 '-1507) (-641)))) + (-5 *1 (-69 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 'X) (-641)))) + (-5 *1 (-72 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059 'X 'EPS) (-4059 '-1507) (-641)))) + (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1090)) (-14 *4 (-1090)) + (-14 *5 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059 'EPS) (-4059 'YA 'YB) (-641)))) + (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1090)) (-14 *4 (-1090)) + (-14 *5 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-317 (-4059) (-4059 'X) (-641))) (-5 *1 (-75 *3)) + (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-317 (-4059) (-4059 'X) (-641))) (-5 *1 (-76 *3)) + (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 'XC) (-641)))) + (-5 *1 (-77 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 'X) (-641)))) + (-5 *1 (-78 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059) (-4059 'X) (-641)))) + (-5 *1 (-79 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059 'X '-1507) (-4059) (-641)))) + (-5 *1 (-80 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-632 (-317 (-4059 'X '-1507) (-4059) (-641)))) + (-5 *1 (-81 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-632 (-317 (-4059 'X) (-4059) (-641)))) (-5 *1 (-82 *3)) + (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059 'X) (-4059) (-641)))) + (-5 *1 (-83 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-317 (-4059 'X) (-4059 '-1507) (-641)))) + (-5 *1 (-84 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-632 (-317 (-4059 'XL 'XR 'ELAM) (-4059) (-641)))) + (-5 *1 (-85 *3)) (-14 *3 (-1090)))) + ((*1 *1 *2) + (-12 (-5 *2 (-317 (-4059 'X) (-4059 '-1507) (-641))) (-5 *1 (-87 *3)) + (-14 *3 (-1090)))) + ((*1 *2 *1) (-12 (-5 *2 (-935 2)) (-5 *1 (-103)))) + ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) + ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-130 *3 *4 *5))) (-5 *1 (-130 *3 *4 *5)) + (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) + (-14 *3 (-525)) (-14 *4 (-713)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1057 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) + (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) + ((*1 *1 *2) + (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) + (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 (-632 *4))) (-4 *4 (-160)) + (-5 *2 (-1172 (-632 (-385 (-886 *4))))) (-5 *1 (-171 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *3)) + (-4 *3 + (-13 (-789) + (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) + (-15 -2460 ((-1177) $))))) + (-5 *1 (-195 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-935 10)) (-5 *1 (-198)))) + ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-225 *3)) (-4 *3 (-789)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1012 (-294 *4))) + (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1012 (-357))) + (-5 *1 (-237 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1148 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1157 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) + (-14 *5 (-1090)) (-14 *6 *4) + (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) + (-5 *1 (-291 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-308)))) + ((*1 *2 *1) + (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5)) + (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) + ((*1 *2 *3) + (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2)) + (-4 *3 (-307 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3)) + (-4 *3 (-307 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) + (-5 *2 (-1194 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) + (-5 *2 (-1185 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) + (-4 *1 (-361)))) + ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-361)))) + ((*1 *1 *2) (-12 (-5 *2 (-632 (-641))) (-4 *1 (-361)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) + (-4 *1 (-362)))) + ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-362)))) + ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367)))) + ((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1019)))) + ((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-372)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) + (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-374)))) + ((*1 *1 *2) + (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-273 (-294 (-636)))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-273 (-294 (-641)))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-273 (-294 (-643)))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-636))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-641))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-643))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) + (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) + (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-308))) (-5 *1 (-376 *3 *4 *5 *6)) + (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) + (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-789) (-21))) + (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525))))) + (-4 *3 (-13 (-789) (-21))))) + ((*1 *1 *2) + (-12 (-5 *2 (-385 (-886 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789)) + (-4 *1 (-408 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-886 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789)) + (-4 *1 (-408 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-789)) + (-4 *1 (-408 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1042 *3 (-565 *1))) (-4 *3 (-976)) (-4 *3 (-789)) + (-4 *1 (-408 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-412)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-415)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) + (-4 *1 (-417)))) + ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-417)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 (-641))) (-4 *1 (-417)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -3919 (-592 (-308))))) + (-4 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-418)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-385 (-886 *3)))) (-4 *3 (-160)) + (-14 *6 (-1172 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-14 *4 (-855)) (-14 *5 (-592 (-1090))))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-445)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1157 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090)) + (-14 *5 *3) (-5 *1 (-451 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-935 16)) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) + ((*1 *1 *2) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-475)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-125)) (-5 *1 (-559)))) + ((*1 *1 *2) + (-12 (-4 *3 (-160)) (-5 *1 (-560 *3 *2)) (-4 *2 (-687 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-976)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) + (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) + (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) + ((*1 *1 *2) + (-12 (-4 *3 (-160)) (-5 *1 (-584 *3 *2)) (-4 *2 (-687 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) + (-12 (-5 *2 (-891 (-891 (-891 *3)))) (-5 *1 (-620 *3)) + (-4 *3 (-1019)))) + ((*1 *1 *2) + (-12 (-5 *2 (-891 (-891 (-891 *3)))) (-4 *3 (-1019)) + (-5 *1 (-620 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1019)))) + ((*1 *1 *2) + (-12 (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3)) + (-4 *2 (-351 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))) + ((*1 *1 *2) (-12 (-5 *2 (-157 (-643))) (-5 *1 (-636)))) + ((*1 *1 *2) (-12 (-5 *2 (-157 (-641))) (-5 *1 (-636)))) + ((*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-636)))) + ((*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))) + ((*1 *1 *2) (-12 (-5 *2 (-643)) (-5 *1 (-641)))) + ((*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-641)))) + ((*1 *2 *3) + (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-643))) (-5 *1 (-643)))) + ((*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1019)))) + ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))) + ((*1 *2 *1) + (-12 (-4 *2 (-160)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3381 *3) (|:| -1737 *4))) + (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1019)) + (-14 *5 (-1 (-108) *2 *2)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| -3381 *3) (|:| -1737 *4))) (-4 *3 (-789)) + (-4 *4 (-1019)) (-5 *1 (-656 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-160)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-2 (|:| -2059 *3) (|:| -1784 *4)))) (-4 *3 (-976)) + (-4 *4 (-669)) (-5 *1 (-678 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-706)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (|:| |mdnia| + (-2 (|:| |fn| (-294 (-205))) + (|:| -2853 (-592 (-1014 (-782 (-205))))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) + (-5 *1 (-711)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-294 (-205))) + (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *1 (-711)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *1 (-711)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-711)))) + ((*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1126)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))) + (-5 *1 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-750)))) + ((*1 *2 *1) + (-12 (-4 *2 (-834 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1019)) + (-14 *4 *3))) + ((*1 *1 *2) + (-12 (-4 *3 (-1019)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4)) + (-4 *2 (-834 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-766)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) + (|:| |lb| (-592 (-782 (-205)))) + (|:| |cf| (-592 (-294 (-205)))) + (|:| |ub| (-592 (-782 (-205)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-592 (-294 (-205)))) + (|:| -2039 (-592 (-205))))))) + (-5 *1 (-780)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) + (-5 *1 (-780)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) + (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) + (|:| |ub| (-592 (-782 (-205)))))) + (-5 *1 (-780)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-780)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *3)) (-14 *3 (-1090)) (-5 *1 (-794 *3 *4 *5 *6)) + (-4 *4 (-976)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) + ((*1 *1 *2) + (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-5 *1 (-800 *3 *4 *5 *6)) + (-14 *4 (-592 (-1090))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) + ((*1 *2 *1) + (-12 (-5 *2 (-886 *3)) (-5 *1 (-800 *3 *4 *5 *6)) (-4 *3 (-976)) + (-14 *4 (-592 (-1090))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) + ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) + ((*1 *2 *3) + (-12 (-5 *3 (-886 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-809)))) + ((*1 *2 *3) + (-12 (-5 *3 (-385 (-886 (-47)))) (-5 *2 (-294 (-525))) + (-5 *1 (-809)))) + ((*1 *1 *2) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |pde| (-592 (-294 (-205)))) + (|:| |constraints| + (-592 + (-2 (|:| |start| (-205)) (|:| |finish| (-205)) + (|:| |grid| (-713)) (|:| |boundaryType| (-525)) + (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) + (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) + (|:| |tol| (-205)))) + (-5 *1 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-832)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1113 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1019)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-838 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-848 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) + ((*1 *2 *3) + (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-853 *4)) + (-4 *4 (-13 (-789) (-517))))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) + ((*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-903)))) + ((*1 *2 *1) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) + ((*1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *1 (-963 *3)) (-4 *3 (-1126)))) + ((*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-963 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *2 (-883 *3 *4 *5)) + (-14 *6 (-592 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1126)))) + ((*1 *2 *3) + (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-972 *3)) (-4 *3 (-517)))) + ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-976)))) + ((*1 *2 *1) + (-12 (-5 *2 (-632 *5)) (-5 *1 (-980 *3 *4 *5)) (-14 *3 (-713)) + (-14 *4 (-713)) (-4 *5 (-976)))) + ((*1 *1 *2) + (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-5 *1 (-1043 *3 *4 *2)) + (-4 *2 (-883 *3 (-497 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-976)) (-4 *2 (-789)) (-5 *1 (-1043 *3 *2 *4)) + (-4 *4 (-883 *3 (-497 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-797)))) + ((*1 *2 *1) + (-12 (-5 *2 (-632 *4)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-713)) + (-4 *4 (-976)))) + ((*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1059)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1145 *4 *3)) (-4 *3 (-976)) (-14 *4 (-1090)) + (-14 *5 *3) (-5 *1 (-1088 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1089)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))) + ((*1 *2 *1) (-12 (-5 *2 (-1100 (-1090) (-415))) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1095)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1095)))) + ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1095)))) + ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1099 *3)) (-4 *3 (-1019)))) + ((*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1106 *3)) (-4 *3 (-1019)))) + ((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1107)))) + ((*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-5 *1 (-1121 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1121 *3)) (-4 *3 (-976)))) + ((*1 *1 *2) + (-12 (-5 *2 (-891 *3)) (-4 *3 (-1126)) (-5 *1 (-1124 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-976)) (-4 *1 (-1134 *3 *2)) (-4 *2 (-1163 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1014 *3)) (-4 *3 (-1126)) (-5 *1 (-1139 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *3)) (-14 *3 (-1090)) (-5 *1 (-1145 *3 *4)) + (-4 *4 (-976)))) + ((*1 *1 *2) + (-12 (-4 *3 (-976)) (-4 *1 (-1155 *3 *2)) (-4 *2 (-1132 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1145 *4 *3)) (-4 *3 (-976)) (-14 *4 (-1090)) + (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1168 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1173)))) + ((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1173)) (-5 *1 (-1176)))) + ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1177)))) + ((*1 *1 *2) + (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) + (-5 *1 (-1182 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-883 *3 *5 *4)) + (-14 *7 (-592 (-713))) (-14 *8 (-713)))) + ((*1 *2 *1) + (-12 (-4 *2 (-883 *3 *5 *4)) (-5 *1 (-1182 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) + (-14 *7 (-592 (-713))) (-14 *8 (-713)))) + ((*1 *1 *2) (-12 (-4 *1 (-1184 *2)) (-4 *2 (-976)))) + ((*1 *1 *2) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-160)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-160)))) + ((*1 *1 *2) + (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) + (-5 *1 (-1190 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)) (-4 *2 (-785))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789)) + (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8)) + (-4 *8 (-883 *3 *7 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976)))) + ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976))))) +(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-969))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) + (-12 (-4 *3 (-1148 (-385 (-525)))) (-5 *1 (-847 *3 *2)) + (-4 *2 (-1148 (-385 *3)))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-520))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-525)) (|has| *1 (-6 -4255)) (-4 *1 (-351 *3)) + (-4 *3 (-1126))))) +(((*1 *2 *1) + (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *1 *1) (-4 *1 (-466))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1131 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517))))) -(((*1 *2 *1) - (-12 (-5 *2 (-806 (-898 *3) (-898 *3))) (-5 *1 (-898 *3)) - (-4 *3 (-899))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) - (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) - (-5 *2 (-631 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-5 *2 (-1072))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1091 (-385 (-525)))) (-5 *2 (-385 (-525))) - (-5 *1 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-525)) (-4 *4 (-975)) - (-5 *1 (-1074 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-525)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-975)) - (-14 *4 (-1089)) (-14 *5 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-138)) - (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-908 *3 *4 *5 *6))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-128))) ((*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 - (-13 (-788) - (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) - (-15 -3829 ((-1176) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1125)))) + (-13 (-789) + (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) + (-15 -2460 ((-1177) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) - ((*1 *1 *1) (-5 *1 (-796))) ((*1 *1 *1 *1) (-5 *1 (-796))) + ((*1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-21))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-501))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-975)) - (-5 *1 (-1074 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-4 *8 (-882 *5 *7 *6)) - (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) - (-4 *7 (-734)) - (-5 *2 - (-591 - (-2 (|:| -2193 (-712)) - (|:| |eqns| - (-591 - (-2 (|:| |det| *8) (|:| |rows| (-591 (-525))) - (|:| |cols| (-591 (-525)))))) - (|:| |fgb| (-591 *8))))) - (-5 *1 (-857 *5 *6 *7 *8)) (-5 *4 (-712))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-21))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789))))) +(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284))))) +(((*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1177)) (-5 *1 (-798))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-712)) (-5 *1 (-724 *2)) (-4 *2 (-37 (-385 (-525)))) - (-4 *2 (-160))))) -(((*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-642)))) - ((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-642))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-697))))) -(((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1072)) (-5 *1 (-652))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1005))))) -(((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-712))))) + (-12 (-5 *3 (-385 (-525))) + (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) + ((*1 *1 *1 *1) (-4 *1 (-450))) + ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) + ((*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-817)))) + ((*1 *1 *1) (-5 *1 (-903))) + ((*1 *1 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) +(((*1 *1 *1) (-5 *1 (-988)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-632 *3)) + (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) +(((*1 *2) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-855)) (-5 *1 (-728))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-146))) ((*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 - (-13 (-788) - (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) - (-15 -3829 ((-1176) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1125)))) + (-13 (-789) + (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) + (-15 -2460 ((-1177) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1126)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1126)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-126)))) + (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-126)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *2)) - (-4 *2 (-1147 *3)))) + (-4 *2 (-1148 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) - (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) + (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) + (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-501))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-25))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *3 (-517))))) -(((*1 *2 *3) - (-12 (-4 *4 (-734)) - (-4 *5 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) (-4 *6 (-517)) - (-5 *2 (-2 (|:| -3343 (-885 *6)) (|:| -2329 (-885 *6)))) - (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-882 (-385 (-885 *6)) *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-591 *8))) (-5 *3 (-591 *8)) - (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-108)) (-5 *1 (-908 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *5)) (-5 *4 (-854)) (-4 *5 (-788)) - (-5 *2 (-57 (-591 (-616 *5)))) (-5 *1 (-616 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) (-5 *2 (-890 (-1036))) - (-5 *1 (-324 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) - (-5 *1 (-163 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-876 (-205)))) (-5 *1 (-1172))))) -(((*1 *1 *1 *1) (-4 *1 (-450))) ((*1 *1 *1 *1) (-4 *1 (-703)))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-591 (-1089))) (-4 *4 (-1018)) - (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) - (-5 *1 (-997 *4 *5 *2)) - (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1018)) - (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))) - (-5 *1 (-997 *3 *4 *2)) - (-4 *2 (-13 (-408 *4) (-819 *3) (-566 (-825 *3))))))) -(((*1 *1 *1) (-4 *1 (-510)))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-225 *3))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *6)))) - (-5 *4 (-955 (-781 (-525)))) (-5 *5 (-1089)) (-5 *7 (-385 (-525))) - (-4 *6 (-975)) (-5 *2 (-796)) (-5 *1 (-550 *6))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-564 *3)) (-5 *5 (-1 (-1085 *3) (-1085 *3))) - (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-788) (-517))) - (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-25))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-712))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-973))))) -(((*1 *1 *1) - (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-975) (-788))) - (-14 *3 (-591 (-1089)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-822 *5 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) - (-4 *3 (-154 *6)) (-4 (-885 *6) (-819 *5)) - (-4 *6 (-13 (-819 *5) (-160))) (-5 *1 (-165 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-822 *4 *1)) (-5 *3 (-825 *4)) (-4 *1 (-819 *4)) - (-4 *4 (-1018)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-822 *5 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) - (-4 *6 (-13 (-1018) (-966 *3))) (-4 *3 (-819 *5)) - (-5 *1 (-864 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-822 *5 *3)) (-4 *5 (-1018)) - (-4 *3 (-13 (-408 *6) (-566 *4) (-819 *5) (-966 (-564 $)))) - (-5 *4 (-825 *5)) (-4 *6 (-13 (-517) (-788) (-819 *5))) - (-5 *1 (-865 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-822 (-525) *3)) (-5 *4 (-825 (-525))) (-4 *3 (-510)) - (-5 *1 (-866 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-822 *5 *6)) (-5 *3 (-564 *6)) (-4 *5 (-1018)) - (-4 *6 (-13 (-788) (-966 (-564 $)) (-566 *4) (-819 *5))) - (-5 *4 (-825 *5)) (-5 *1 (-867 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-818 *5 *6 *3)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) - (-4 *6 (-819 *5)) (-4 *3 (-611 *6)) (-5 *1 (-868 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-822 *6 *3) *8 (-825 *6) (-822 *6 *3))) - (-4 *8 (-788)) (-5 *2 (-822 *6 *3)) (-5 *4 (-825 *6)) - (-4 *6 (-1018)) (-4 *3 (-13 (-882 *9 *7 *8) (-566 *4))) - (-4 *7 (-734)) (-4 *9 (-13 (-975) (-788) (-819 *6))) - (-5 *1 (-869 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-822 *5 *3)) (-4 *5 (-1018)) - (-4 *3 (-13 (-882 *8 *6 *7) (-566 *4))) (-5 *4 (-825 *5)) - (-4 *7 (-819 *5)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *8 (-13 (-975) (-788) (-819 *5))) (-5 *1 (-869 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-822 *5 *3)) (-4 *5 (-1018)) (-4 *3 (-923 *6)) - (-4 *6 (-13 (-517) (-819 *5) (-566 *4))) (-5 *4 (-825 *5)) - (-5 *1 (-872 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-822 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-825 *5)) - (-4 *5 (-1018)) (-5 *1 (-873 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-591 (-825 *7))) (-5 *5 (-1 *9 (-591 *9))) - (-5 *6 (-1 (-822 *7 *9) *9 (-825 *7) (-822 *7 *9))) (-4 *7 (-1018)) - (-4 *9 (-13 (-975) (-566 (-825 *7)) (-966 *8))) (-5 *2 (-822 *7 *9)) - (-5 *3 (-591 *9)) (-4 *8 (-13 (-975) (-788))) - (-5 *1 (-874 *7 *8 *9))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-689))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) - (-4 *5 (-13 (-788) (-966 (-525)) (-429) (-587 (-525)))) - (-5 *2 (-2 (|:| -2760 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *5)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-224 *2)) (-4 *2 (-1125))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-701))))) + (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126))))) (((*1 *2 *1) - (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) - (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-1182 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-591 *8)) (-5 *3 (-1 (-108) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) - (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-1182 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1125)) (-5 *2 (-108))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) - ((*1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-975))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) - (-4 *2 (-13 (-788) (-21)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-408 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) - (-4 *3 (-1018)))) + (|partial| -12 + (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) + (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) + (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-591 *1)) (-4 *1 (-882 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) - (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-591 *3)) - (-5 *1 (-883 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-341) - (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) - (-15 -1396 (*7 $)))))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3612 (-591 *1)))) - (-4 *1 (-345 *3)))) - ((*1 *2) (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-430 *3 *4 *5 *6)) - (|:| -3612 (-591 (-430 *3 *4 *5 *6))))) - (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) + (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) + (-5 *2 (-782 *4)) (-5 *1 (-1158 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) + (-14 *6 *4)))) +(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) + ((*1 *2 *2) + (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) + (-5 *1 (-1041 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) - (-4 *2 (-1162 *3)))) + (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) + (-5 *1 (-163 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-695))))) +(((*1 *1) (-5 *1 (-415)))) +(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) + (-4 *4 (-13 (-789) (-517)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) + (-5 *1 (-920 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) + (-5 *1 (-1026 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1090))) + (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-4 *4 (-1147 *3)) - (-4 *5 (-666 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-5 *1 (-507 *3 *2)) - (-4 *2 (-1162 *3)))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-517) (-138))) - (-5 *1 (-1066 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-788)) (-5 *2 (-108)))) - ((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *3) - (-12 (-5 *3 (-885 *5)) (-4 *5 (-975)) (-5 *2 (-457 *4 *5)) - (-5 *1 (-877 *4 *5)) (-14 *4 (-591 (-1089)))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) - (-5 *2 (-964)) (-5 *1 (-687))))) -(((*1 *2 *2) - (-12 (-5 *2 (-591 *7)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) - (-5 *1 (-919 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-591 *7)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) - (-5 *1 (-1025 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1147 *5)) - (-5 *1 (-669 *5 *2)) (-4 *5 (-341))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-4 *1 (-907 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-989 *3 *4 *2)) (-4 *2 (-788)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1147 *3)) (-4 *3 (-975))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-591 *1)) (-5 *3 (-591 *7)) (-4 *1 (-994 *4 *5 *6 *7)) - (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 *1)) - (-4 *1 (-994 *4 *5 *6 *3))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-353 *4 *2)) - (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4251))))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-788)) (-5 *2 (-108)))) - ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-837 *3)) (-4 *3 (-1018))))) + (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-4 *4 (-976)) + (-5 *1 (-959 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) + (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-909 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1126)) (-5 *2 (-525))))) (((*1 *2 *3) - (-12 (-4 *4 (-923 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3)) - (-4 *3 (-351 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-923 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3)) - (-4 *5 (-351 *2)) (-4 *3 (-351 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 *4)) (-4 *4 (-923 *2)) (-4 *2 (-517)) - (-5 *1 (-634 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-923 *2)) (-4 *2 (-517)) (-5 *1 (-1140 *2 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-591 *5) *6)) - (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) - (-5 *2 (-591 (-2 (|:| |poly| *6) (|:| -2203 *3)))) - (-5 *1 (-750 *5 *6 *3 *7)) (-4 *3 (-601 *6)) - (-4 *7 (-601 (-385 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-591 *5) *6)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *6 (-1147 *5)) - (-5 *2 (-591 (-2 (|:| |poly| *6) (|:| -2203 (-599 *6 (-385 *6)))))) - (-5 *1 (-753 *5 *6)) (-5 *3 (-599 *6 (-385 *6)))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-1072)) (-5 *5 (-631 (-205))) - (-5 *2 (-964)) (-5 *1 (-689))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-591 (-385 (-885 *6)))) - (-5 *3 (-385 (-885 *6))) - (-4 *6 (-13 (-517) (-966 (-525)) (-138))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-531 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1156 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5)) - (-4 *3 (-13 (-341) (-788))) (-14 *4 (-1089)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-640)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1018)) (-5 *1 (-655 *3 *2 *4)) (-4 *3 (-788)) - (-14 *4 - (-1 (-108) (-2 (|:| -3229 *3) (|:| -3987 *2)) - (-2 (|:| -3229 *3) (|:| -3987 *2))))))) -(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) - ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1085 *3))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1089))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-712)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) - (-4 *3 (-989 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-992 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) + (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1093)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-992 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-712)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) - (-4 *3 (-989 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1027 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1027 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-788)) (-5 *2 (-108)))) - ((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2) - (-12 (-4 *4 (-341)) (-5 *2 (-712)) (-5 *1 (-306 *3 *4)) - (-4 *3 (-307 *4)))) - ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-712))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) - (-5 *2 (-591 (-591 (-876 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-591 (-591 (-876 *4)))) (-5 *3 (-108)) (-4 *4 (-975)) - (-4 *1 (-1050 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-591 (-876 *3)))) (-4 *3 (-975)) - (-4 *1 (-1050 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-591 (-591 (-591 *4)))) (-5 *3 (-108)) - (-4 *1 (-1050 *4)) (-4 *4 (-975)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-591 (-591 (-876 *4)))) (-5 *3 (-108)) - (-4 *1 (-1050 *4)) (-4 *4 (-975)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-591 (-591 (-591 *5)))) (-5 *3 (-591 (-159))) - (-5 *4 (-159)) (-4 *1 (-1050 *5)) (-4 *5 (-975)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-591 (-591 (-876 *5)))) (-5 *3 (-591 (-159))) - (-5 *4 (-159)) (-4 *1 (-1050 *5)) (-4 *5 (-975))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-591 *6)) (-5 *4 (-591 (-227 *5 *6))) (-4 *6 (-429)) - (-5 *2 (-227 *5 *6)) (-14 *5 (-591 (-1089))) (-5 *1 (-579 *5 *6))))) + (-12 (-5 *4 (-592 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1177)) + (-5 *1 (-1093)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-592 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1177)) + (-5 *1 (-1093))))) (((*1 *2 *3) - (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-1147 *4)) - (-4 *5 (-1147 (-385 *3))) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) + (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) (((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-395 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *1 (-445))))) -(((*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-286))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) + (-12 (-4 *4 (-37 (-385 (-525)))) + (-5 *2 (-2 (|:| -3737 (-1071 *4)) (|:| -3749 (-1071 *4)))) + (-5 *1 (-1077 *4)) (-5 *3 (-1071 *4))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-729)) (-5 *2 (-965)) + (-5 *3 + (-2 (|:| |fn| (-294 (-205))) + (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-729)) (-5 *2 (-965)) + (-5 *3 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205))))))) (((*1 *2 *3) - (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *2 (-1176)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-882 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-788)) (-5 *2 (-108)))) - ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1018)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1018)) (-5 *2 (-108))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-712)) (-5 *1 (-1019 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *3)) - (-4 *3 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-763))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) - (-14 *4 *2)))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092))))) -(((*1 *1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) - (-14 *4 (-591 (-1089))))) - ((*1 *1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) - (-14 *4 (-591 (-1089))))) - ((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341)) - (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) - (-4 *2 (-320 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-160)))) - ((*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-666 *2 *3)) (-4 *3 (-1147 *2))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2428 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-341)) (-4 *7 (-1147 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) - (-2 (|:| -2428 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) - (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) + (-12 (-5 *3 (-713)) (-5 *2 (-1086 *4)) (-5 *1 (-495 *4)) + (-4 *4 (-327))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-797))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-327)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -1908 (-591 (-2 (|:| |irr| *3) (|:| -3630 (-525))))))) - (-5 *1 (-197 *5 *3)) (-4 *3 (-1147 *5))))) + (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) + (-5 *1 (-310))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3)) - (-4 *4 (-13 (-341) (-786))) (-4 *3 (-1147 *2))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1164 *3 *2)) - (-4 *2 (-1162 *3))))) + (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-789))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) - (-5 *2 - (-2 (|:| |contp| (-525)) - (|:| -1908 (-591 (-2 (|:| |irr| *3) (|:| -3630 (-525))))))) - (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) - (-5 *2 - (-2 (|:| |contp| (-525)) - (|:| -1908 (-591 (-2 (|:| |irr| *3) (|:| -3630 (-525))))))) - (-5 *1 (-1136 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-385 (-525))) (-5 *1 (-357))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-122 *3))))) -(((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4250)) (-4 *1 (-464 *3)) (-4 *3 (-1125)) - (-4 *3 (-1018)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-838 *4)) (-4 *4 (-1018)) (-5 *2 (-108)) - (-5 *1 (-837 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-854)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *5)) (-5 *4 (-854)) (-4 *5 (-788)) - (-5 *2 (-591 (-616 *5))) (-5 *1 (-616 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1018)) - (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))) - (-5 *2 (-591 (-1089))) (-5 *1 (-997 *3 *4 *5)) - (-4 *5 (-13 (-408 *4) (-819 *3) (-566 (-825 *3))))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-764)) (-5 *1 (-763))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-786))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1908 (-396 *3)))) - (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5)) - (|:| |c2| (-385 *5)) (|:| |deg| (-712)))) - (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1147 (-385 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-788))) (-5 *2 (-157 *5)) - (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-932) (-1111))) - (-4 *3 (-13 (-408 (-157 *4)) (-932) (-1111)))))) -(((*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174))))) -(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)) (-4 *2 (-1018)))) - ((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1018))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) - ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-955 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1) (-5 *1 (-987)))) -(((*1 *2 *1) (-12 (-4 *3 (-975)) (-5 *2 (-591 *1)) (-4 *1 (-1050 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-631 (-385 (-885 (-525))))) - (-5 *2 (-591 (-631 (-294 (-525))))) (-5 *1 (-960))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -4171 (-591 *3)) (|:| -1924 (-591 *3)))) - (-5 *1 (-1126 *3)) (-4 *3 (-1018))))) + (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1172 *5)) (-4 *5 (-286)) + (-4 *5 (-976)) (-5 *2 (-632 *5)) (-5 *1 (-959 *5))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1090)) + (-4 *5 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *4 *5 *6)) - (-4 *4 (-566 (-501))) (-4 *5 (-1125)) (-4 *6 (-1125))))) + (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) + (-5 *2 (-1172 (-525))) (-5 *1 (-1197 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1111) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) (-4 *5 (-138)) - (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) - (-5 *2 (-294 *5)) (-5 *1 (-545 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-429)) (-4 *3 (-788)) (-4 *3 (-966 (-525))) - (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) - (-4 *2 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) - (-15 -1396 ((-1041 *3 (-564 $)) $)) - (-15 -2686 ($ (-1041 *3 (-564 $)))))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) - (-4 *5 (-1147 *4)) (-5 *2 (-591 (-2 (|:| -1708 *5) (|:| -3045 *5)))) - (-5 *1 (-748 *4 *5 *3 *6)) (-4 *3 (-601 *5)) - (-4 *6 (-601 (-385 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) - (-4 *4 (-1147 *5)) (-5 *2 (-591 (-2 (|:| -1708 *4) (|:| -3045 *4)))) - (-5 *1 (-748 *5 *4 *3 *6)) (-4 *3 (-601 *4)) - (-4 *6 (-601 (-385 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) - (-4 *5 (-1147 *4)) (-5 *2 (-591 (-2 (|:| -1708 *5) (|:| -3045 *5)))) - (-5 *1 (-748 *4 *5 *6 *3)) (-4 *6 (-601 *5)) - (-4 *3 (-601 (-385 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) - (-4 *4 (-1147 *5)) (-5 *2 (-591 (-2 (|:| -1708 *4) (|:| -3045 *4)))) - (-5 *1 (-748 *5 *4 *6 *3)) (-4 *6 (-601 *4)) - (-4 *3 (-601 (-385 *4)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-115 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3) - (-12 - (-5 *2 - (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) - (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) - (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))) - (-5 *4 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) - (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))) (-5 *4 (-385 (-525))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-385 (-525))) - (-5 *2 (-591 (-2 (|:| -3178 *5) (|:| -3192 *5)))) (-5 *1 (-949 *3)) - (-4 *3 (-1147 (-525))) (-5 *4 (-2 (|:| -3178 *5) (|:| -3192 *5))))) - ((*1 *2 *3) + (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) + (-5 *1 (-1142 *4 *2)) (-4 *2 (-1148 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) - (-5 *1 (-950 *3)) (-4 *3 (-1147 (-385 (-525)))))) - ((*1 *2 *3 *4) + (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3)))) + (-5 *1 (-364 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1 *1) (-12 (-5 *2 - (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) - (-5 *1 (-950 *3)) (-4 *3 (-1147 (-385 (-525)))) - (-5 *4 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-385 (-525))) - (-5 *2 (-591 (-2 (|:| -3178 *4) (|:| -3192 *4)))) (-5 *1 (-950 *3)) - (-4 *3 (-1147 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-385 (-525))) - (-5 *2 (-591 (-2 (|:| -3178 *5) (|:| -3192 *5)))) (-5 *1 (-950 *3)) - (-4 *3 (-1147 *5)) (-5 *4 (-2 (|:| -3178 *5) (|:| -3192 *5)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-712)) (-5 *1 (-522))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-591 (-591 (-205)))) (-5 *4 (-205)) - (-5 *2 (-591 (-876 *4))) (-5 *1 (-1122)) (-5 *3 (-876 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *1 (-745 *4 *2)) (-4 *2 (-13 (-29 *4) (-1111) (-891)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-525)) (-4 *4 (-1147 (-385 *3))) (-5 *2 (-854)) - (-5 *1 (-846 *4 *5)) (-4 *5 (-1147 (-385 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *1)) (-5 *4 (-1171 *1)) (-4 *1 (-587 *5)) - (-4 *5 (-975)) - (-5 *2 (-2 (|:| -2928 (-631 *5)) (|:| |vec| (-1171 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 *1)) (-4 *1 (-587 *4)) (-4 *4 (-975)) - (-5 *2 (-631 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-108)) (-5 *1 (-770))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-727))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *3 (-525)) - (-5 *2 (-964)) (-5 *1 (-698))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3854 (-110)) (|:| |arg| (-591 (-825 *3))))) - (-5 *1 (-825 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-110)) (-5 *2 (-591 (-825 *4))) - (-5 *1 (-825 *4)) (-4 *4 (-1018))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-698))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) - ((*1 *1 *1) (|partial| -4 *1 (-664)))) + (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3)))) + (-5 *1 (-761 *3)) (-4 *3 (-789))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) - (-5 *2 - (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6)) - (|:| |polypart| *6))) - (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) - (|:| |expense| (-357)) (|:| |accuracy| (-357)) - (|:| |intermediateResults| (-357)))) - (-5 *2 (-964)) (-5 *1 (-284))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *2 (-2 (|:| -3854 (-110)) (|:| |w| (-205)))) (-5 *1 (-186))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-135))) (-5 *1 (-132)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-132))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-940 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-564 *3)) (-4 *3 (-788))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-429)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1085 *6)) (-4 *6 (-882 *5 *3 *4)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-434 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-842))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106))))) + (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4)) + (-5 *1 (-246))))) (((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) + (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-976)) (-4 *3 (-789)) + (-4 *4 (-245 *3)) (-4 *5 (-735))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) (((*1 *2 *3) (-12 (-5 *3 - (-591 - (-2 (|:| -2193 (-712)) - (|:| |eqns| - (-591 - (-2 (|:| |det| *7) (|:| |rows| (-591 (-525))) - (|:| |cols| (-591 (-525)))))) - (|:| |fgb| (-591 *7))))) - (-4 *7 (-882 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) - (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-712)) - (-5 *1 (-857 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-995 *5 *6 *7 *3 *4)) - (-4 *4 (-994 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) - (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-975))))) -(((*1 *2 *3) - (-12 (-4 *4 (-327)) - (-5 *2 (-591 (-2 (|:| |deg| (-712)) (|:| -1582 *3)))) - (-5 *1 (-197 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-847 *3)) (-4 *3 (-286))))) -(((*1 *2 *3) - (-12 (-4 *4 (-327)) (-5 *2 (-890 (-1085 *4))) (-5 *1 (-335 *4)) - (-5 *3 (-1085 *4))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) - (-5 *2 (-2 (|:| -2976 *1) (|:| |gap| (-712)) (|:| -2449 *1))) - (-4 *1 (-989 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-2 (|:| -2976 *1) (|:| |gap| (-712)) (|:| -2449 *1))) - (-4 *1 (-989 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) - ((*1 *2 *3) - (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)) (-5 *2 (-396 *3)) - (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-882 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)) - (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-396 (-1085 *7))) - (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-429)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-396 *1)) (-4 *1 (-882 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-429)) (-5 *2 (-396 *3)) - (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-882 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-429)) - (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-396 (-1085 (-385 *7)))) - (-5 *1 (-1084 *4 *5 *6 *7)) (-5 *3 (-1085 (-385 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1129)))) - ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1150 *4 *3)) - (-4 *3 (-13 (-1147 *4) (-517) (-10 -8 (-15 -2124 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-972 *4 *5)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) - (-14 *5 (-591 (-1089))) - (-5 *2 - (-591 (-1060 *4 (-497 (-798 *6)) (-798 *6) (-721 *4 (-798 *6))))) - (-5 *1 (-1195 *4 *5 *6)) (-14 *6 (-591 (-1089)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1072)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) - (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *3 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) - (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-882 *4 *3 *5))))) -(((*1 *1) (-5 *1 (-415)))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3) - (-12 (-5 *3 (-885 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-591 *7) *7 (-1085 *7))) (-5 *5 (-1 (-396 *7) *7)) - (-4 *7 (-1147 *6)) (-4 *6 (-13 (-341) (-138) (-966 (-385 (-525))))) - (-5 *2 (-591 (-2 (|:| |frac| (-385 *7)) (|:| -2203 *3)))) - (-5 *1 (-750 *6 *7 *3 *8)) (-4 *3 (-601 *7)) - (-4 *8 (-601 (-385 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1147 *5)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 - (-591 (-2 (|:| |frac| (-385 *6)) (|:| -2203 (-599 *6 (-385 *6)))))) - (-5 *1 (-753 *5 *6)) (-5 *3 (-599 *6 (-385 *6)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1171 *5)) (-5 *3 (-712)) (-5 *4 (-1036)) (-4 *5 (-327)) - (-5 *1 (-495 *5))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-4 *2 (-882 *3 *5 *4)) (-5 *1 (-918 *3 *4 *5 *2)) - (-4 *3 (-429)) (-4 *4 (-788)) (-4 *5 (-734))))) -(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-640)) (-5 *1 (-284))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-110))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-517)) - (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-1142 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-525)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6)) - (|:| -2744 *6))) - (-5 *1 (-945 *5 *6)) (-5 *3 (-385 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-905))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-591 (-712))) (-5 *1 (-901 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-591 (-723 *3))) (-5 *1 (-723 *3)) (-4 *3 (-517)) - (-4 *3 (-975))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) - (-4 *3 (-13 (-1018) (-33)))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *6 (-205)) - (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-693))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-159)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-796)))) - ((*1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 *4)) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-712)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-734)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-788)) - (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-308))))) -(((*1 *2 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) - (-5 *1 (-163 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1093))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-876 (-205)) (-205) (-205))) - (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234))))) -(((*1 *2 *1) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) - (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-668)) (-5 *2 (-108))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-712)) (-5 *1 (-543 *2)) (-4 *2 (-510))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) - (-4 *4 (-351 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1147 *4)) - (-5 *1 (-718 *3 *4 *5 *2 *6)) (-4 *2 (-1147 *5)) (-14 *6 (-854)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) - ((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-341)) (-4 *2 (-346))))) -(((*1 *1 *1) (-12 (-5 *1 (-1112 *2)) (-4 *2 (-1018))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1004 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1004 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-788) (-566 (-1089)))) - (-4 *5 (-734)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-882 *3 *5 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1072)) (|:| -3419 (-1072)))) - (-5 *1 (-763))))) -(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)))) - ((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1054 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) - (-4 *5 (-13 (-1018) (-33))) (-4 *6 (-13 (-1018) (-33))) - (-5 *2 (-108)) (-5 *1 (-1055 *5 *6))))) -(((*1 *1 *2) - (-12 (-4 *3 (-975)) (-5 *1 (-768 *2 *3)) (-4 *2 (-650 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *4 *5 *6)) (-4 *4 (-341)) - (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *1 (-427 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341)) + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) (-5 *2 - (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) - (-5 *1 (-909 *6)) (-5 *3 (-631 *6))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1089)) - (-4 *5 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *5)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1089)) - (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-591 (-205))) (-5 *1 (-174)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1089)) - (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-591 (-205))) (-5 *1 (-279))))) -(((*1 *2) - (-12 (-5 *2 (-1176)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *3 (-525)) - (-5 *2 (-964)) (-5 *1 (-698))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-697))))) -(((*1 *2 *3) - (-12 - (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -2007,12789 +2060,12040 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1070 (-205))) + (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3756 + (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-964)) (-5 *1 (-284))))) -(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4250)) (-4 *1 (-215 *3)) - (-4 *3 (-1018)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4250)) (-4 *1 (-215 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)) (-4 *2 (-1018)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-562 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1018)) - (-5 *1 (-679 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-5 *1 (-679 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) - (-4 *4 (-13 (-1018) (-33))) (-5 *1 (-1055 *3 *4))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-788)) (-4 *5 (-734)) - (-4 *6 (-517)) (-4 *7 (-882 *6 *5 *3)) - (-5 *1 (-439 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-966 (-385 (-525))) (-341) - (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) - (-15 -1396 (*7 $)))))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-591 *1)) (-4 *1 (-989 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-697))))) -(((*1 *2) - (-12 (-14 *4 (-712)) (-4 *5 (-1125)) (-5 *2 (-128)) - (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4)) - (-4 *3 (-307 *4)))) - ((*1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-160)))) - ((*1 *2 *1) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-525)) - (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *6)) (-4 *6 (-788)) (-4 *4 (-341)) (-4 *5 (-734)) - (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-882 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-975)) (-5 *2 (-854)))) - ((*1 *2) (-12 (-4 *1 (-1178 *3)) (-4 *3 (-341)) (-5 *2 (-128))))) + (-5 *1 (-520))))) +(((*1 *1) (-5 *1 (-765)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *1) - (-12 (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) - (-5 *2 (-1171 *6)) (-5 *1 (-314 *3 *4 *5 *6)) - (-4 *6 (-320 *3 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-525)) (-5 *1 (-221))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) - (-4 *2 (-408 *3))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-854)) (-5 *1 (-1019 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-964)) - (-5 *1 (-690))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1125)) (-5 *2 (-1176))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *3 (-591 (-242))) - (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-242)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-445)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-445))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1176)) (-5 *1 (-195 *4)) - (-4 *4 - (-13 (-788) - (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 (*2 $)) - (-15 -3829 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1176)) (-5 *1 (-195 *3)) - (-4 *3 - (-13 (-788) - (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 (*2 $)) - (-15 -3829 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-475))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-975)) (-4 *3 (-788)) - (-4 *5 (-245 *3)) (-4 *6 (-734)) (-5 *2 (-591 (-712))))) - ((*1 *2 *1) - (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) - (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-591 (-712)))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-564 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1111))) - (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1018))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-591 *3)) (-5 *1 (-878 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-825 *4)) (-4 *4 (-1018)) (-5 *1 (-822 *4 *3)) - (-4 *3 (-1018))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-396 (-1085 *6)) (-1085 *6))) - (-4 *6 (-341)) - (-5 *2 - (-591 - (-2 (|:| |outval| *7) (|:| |outmult| (-525)) - (|:| |outvect| (-591 (-631 *7)))))) - (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-786)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4)) - (-4 *4 (-1147 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1036)) (-5 *2 (-108)) (-5 *1 (-762))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-591 (-997 *4 *5 *2))) (-4 *4 (-1018)) - (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) - (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))) - (-5 *1 (-53 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-591 (-997 *5 *6 *2))) (-5 *4 (-854)) (-4 *5 (-1018)) - (-4 *6 (-13 (-975) (-819 *5) (-788) (-566 (-825 *5)))) - (-4 *2 (-13 (-408 *6) (-819 *5) (-566 (-825 *5)))) - (-5 *1 (-53 *5 *6 *2))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1144 *4 *5)) (-5 *3 (-591 *5)) (-14 *4 (-1089)) - (-4 *5 (-341)) (-5 *1 (-856 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *5)) (-4 *5 (-341)) (-5 *2 (-1085 *5)) - (-5 *1 (-856 *4 *5)) (-14 *4 (-1089)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-591 *6)) (-5 *4 (-712)) (-4 *6 (-341)) - (-5 *2 (-385 (-885 *6))) (-5 *1 (-976 *5 *6)) (-14 *5 (-1089))))) -(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) - (-4 *2 (-1162 *3)))) + (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) + (-5 *1 (-701))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-4 *4 (-1147 *3)) - (-4 *5 (-666 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-5 *1 (-507 *3 *2)) - (-4 *2 (-1162 *3)))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-517) (-138))) - (-5 *1 (-1066 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-764)) (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160))))) -(((*1 *1 *1 *1) (-4 *1 (-134))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) - ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-973)) - (-5 *3 (-525))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-591 (-1085 *13))) (-5 *3 (-1085 *13)) - (-5 *4 (-591 *12)) (-5 *5 (-591 *10)) (-5 *6 (-591 *13)) - (-5 *7 (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| *13))))) - (-5 *8 (-591 (-712))) (-5 *9 (-1171 (-591 (-1085 *10)))) - (-4 *12 (-788)) (-4 *10 (-286)) (-4 *13 (-882 *10 *11 *12)) - (-4 *11 (-734)) (-5 *1 (-649 *11 *12 *10 *13))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1092))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-723 *3)) (|:| |polden| *3) (|:| -2362 (-712)))) - (-5 *1 (-723 *3)) (-4 *3 (-975)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2362 (-712)))) - (-4 *1 (-989 *3 *4 *5))))) -(((*1 *1 *1) (-5 *1 (-987)))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) - (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) - (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-975)))) - ((*1 *2 *1) - (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-572 *3 *4)) - (-4 *4 (-1147 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-668)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) - (-5 *2 (-108))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-591 *10)) (-5 *5 (-108)) (-4 *10 (-994 *6 *7 *8 *9)) - (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *9 (-989 *6 *7 *8)) - (-5 *2 - (-591 - (-2 (|:| -2203 (-591 *9)) (|:| -3585 *10) (|:| |ineq| (-591 *9))))) - (-5 *1 (-919 *6 *7 *8 *9 *10)) (-5 *3 (-591 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-591 *10)) (-5 *5 (-108)) (-4 *10 (-994 *6 *7 *8 *9)) - (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *9 (-989 *6 *7 *8)) - (-5 *2 - (-591 - (-2 (|:| -2203 (-591 *9)) (|:| -3585 *10) (|:| |ineq| (-591 *9))))) - (-5 *1 (-1025 *6 *7 *8 *9 *10)) (-5 *3 (-591 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-281)))) - ((*1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-5 *1 (-796)))) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) + (-5 *2 (-2 (|:| |num| (-1172 *4)) (|:| |den| *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) (((*1 *2 *1) - (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-445)) (-5 *4 (-854)) (-5 *2 (-1176)) (-5 *1 (-1172))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *1)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-108)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1119 *5 *6 *7 *3)) - (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-108))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-357)) (-5 *1 (-987))))) -(((*1 *1 *1) (-4 *1 (-577))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932) (-1111)))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-564 *3)) - (-4 *3 (-13 (-408 *5) (-27) (-1111))) - (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) - (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1018))))) -(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1036)) (-5 *1 (-105)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1018)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1107))))) + (|partial| -12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) + (-4 *2 (-1132 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) + (-4 *2 (-602 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1018) (-33))) - (-4 *2 (-13 (-1018) (-33)))))) + (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1112) (-892)))))) (((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) -(((*1 *1) - (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) - (-4 *4 (-160))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 *4)) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-936))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-907 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)) (-4 *5 (-989 *3 *4 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *1 (-810 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *1 (-812 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-5 *1 (-815 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1107))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 *1)) - (-4 *1 (-994 *4 *5 *6 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-5 *2 (-712)) (-5 *1 (-364 *4)) (-4 *4 (-1018)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-594 *4 *2 *5)) - (-4 *4 (-1018)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-5 *2 (-712)) (-5 *1 (-760 *4)) (-4 *4 (-788))))) + (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) + (-14 *4 (-592 (-1090))))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) + (-14 *4 (-592 (-1090)))))) +(((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1) (-5 *1 (-797)))) (((*1 *2 *3) - (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *2 (-591 *3)) (-5 *1 (-908 *4 *5 *6 *3)) - (-4 *3 (-989 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *3 (-525)) - (-5 *2 (-964)) (-5 *1 (-696))))) -(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135))) - ((*1 *1 *1) (-4 *1 (-1058)))) -(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796))))) + (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-728))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-855)) (-5 *2 (-1086 *3)) (-5 *1 (-1101 *3)) + (-4 *3 (-341))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-105))))) -(((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525)))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) ((*1 *2 *2) - (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) - (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3) - (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)) - (-5 *2 (-591 (-712))) (-5 *1 (-719 *3 *4 *5 *6 *7)) - (-4 *3 (-1147 *6)) (-4 *7 (-882 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1018)) (-5 *2 (-712))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-48))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-591 (-591 (-591 *4)))) (-5 *2 (-591 (-591 *4))) - (-4 *4 (-788)) (-5 *1 (-1097 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-975)) - (-5 *2 (-457 *4 *5)) (-5 *1 (-877 *4 *5))))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) (-4 *1 (-466))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-713))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-631 *5))) (-4 *5 (-286)) (-4 *5 (-975)) - (-5 *2 (-1171 (-1171 *5))) (-5 *1 (-958 *5)) (-5 *4 (-1171 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1018)) (-4 *6 (-1018)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-286) (-138))) - (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) - (-5 *2 - (-591 - (-2 (|:| |eqzro| (-591 *7)) (|:| |neqzro| (-591 *7)) - (|:| |wcond| (-591 (-885 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *4)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *4)))))))))) - (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-882 *4 *6 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-412)) - (-5 *2 - (-591 - (-3 (|:| -3419 (-1089)) - (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525))))))))) - (-5 *1 (-1093))))) + (-12 (-4 *5 (-1019)) (-4 *3 (-834 *5)) (-5 *2 (-632 *3)) + (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) + (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254))))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1019)) + (-5 *1 (-622 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) +(((*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976))))) (((*1 *2 *3) - (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-173)) (-5 *3 (-525)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-724 *2)) (-4 *2 (-160)))) + (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1148 *5)) + (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) + (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-108)) + (-5 *1 (-845 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525))))) -(((*1 *2 *1) - (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1125)) - (-5 *2 (-591 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1129)) (-4 *5 (-1147 *3)) (-4 *6 (-1147 (-385 *5))) - (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) + (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) + (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4))) + (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108)) + (-5 *1 (-846 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) - (-4 *5 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) + (-12 (-5 *4 (-108)) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-591 (-564 *3))) - (|:| |vals| (-591 *3)))) - (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781 (-357))) (-5 *2 (-781 (-205))) (-5 *1 (-284))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-1013 (-385 (-525))))) (-5 *1 (-242)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-242))))) -(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1072)) (-5 *1 (-284))))) -(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-2 (|:| |contp| (-525)) + (|:| -2826 (-592 (-2 (|:| |irr| *3) (|:| -3862 (-525))))))) + (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-5 *2 - (-2 (|:| |solns| (-591 *5)) - (|:| |maps| (-591 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1044 *3 *5)) (-4 *3 (-1147 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *1 *1) (|partial| -4 *1 (-136))) ((*1 *1 *1) (-4 *1 (-327))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-842))))) + (-2 (|:| |contp| (-525)) + (|:| -2826 (-592 (-2 (|:| |irr| *3) (|:| -3862 (-525))))))) + (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) + ((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-734)) + (-4 *5 (-789)) (-5 *2 (-108))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860))))) (((*1 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1119 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-357))) (-5 *1 (-968)) (-5 *3 (-357))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-108) *7 (-591 *7))) (-4 *1 (-1119 *4 *5 *6 *7)) - (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-989 *4 *5 *6)) - (-5 *2 (-108))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-160)))) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) + (-5 *2 (-2 (|:| |num| (-1172 *4)) (|:| |den| *4)))))) +(((*1 *1 *1) (-4 *1 (-985))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-975))))) + (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-976)) (-5 *1 (-828 *2 *3)) (-4 *2 (-1148 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) (-4 *1 (-466))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1103 *4 *5)) - (-4 *4 (-1018)) (-4 *5 (-1018))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1036)) (-5 *2 (-1176)) (-5 *1 (-772))))) + (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) + ((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382)))) + ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) + ((*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-1071 (-525)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-227 *3 *4)) - (-14 *3 (-591 (-1089))) (-4 *4 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-525))) (-14 *3 (-591 (-1089))) - (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-975)) - (-4 *5 (-218 (-2028 *3) (-712))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-457 *3 *4)) - (-14 *3 (-591 (-1089))) (-4 *4 (-975))))) -(((*1 *2 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) - (-5 *1 (-163 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1193 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-160)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-760 *3)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-975)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1089)) - (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *1 (-1092))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1147 *5)) - (-4 *5 (-13 (-27) (-408 *4))) - (-4 *4 (-13 (-788) (-517) (-966 (-525)))) - (-4 *7 (-1147 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2)) - (-4 *2 (-320 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1018)) (-4 *6 (-819 *5)) (-5 *2 (-818 *5 *6 (-591 *6))) - (-5 *1 (-820 *5 *6 *4)) (-5 *3 (-591 *6)) (-4 *4 (-566 (-825 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1018)) (-5 *2 (-591 (-273 *3))) (-5 *1 (-820 *5 *3 *4)) - (-4 *3 (-966 (-1089))) (-4 *3 (-819 *5)) (-4 *4 (-566 (-825 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1018)) (-5 *2 (-591 (-273 (-885 *3)))) - (-5 *1 (-820 *5 *3 *4)) (-4 *3 (-975)) - (-3389 (-4 *3 (-966 (-1089)))) (-4 *3 (-819 *5)) - (-4 *4 (-566 (-825 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1018)) (-5 *2 (-822 *5 *3)) (-5 *1 (-820 *5 *3 *4)) - (-3389 (-4 *3 (-966 (-1089)))) (-3389 (-4 *3 (-975))) - (-4 *3 (-819 *5)) (-4 *4 (-566 (-825 *5)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-286)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-424 *3 *4 *5 *6)))) + (-12 (-5 *2 (-855)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) + ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) + ((*1 *2 *1) + (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-591 *7)) (-5 *3 (-1072)) (-4 *7 (-882 *4 *5 *6)) - (-4 *4 (-286)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *1 (-424 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-591 *7)) (-5 *3 (-1072)) (-4 *7 (-882 *4 *5 *6)) - (-4 *4 (-286)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *1 (-424 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-591 (-591 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-591 (-3 (|:| |array| (-591 *3)) (|:| |scalar| (-1089))))) - (-5 *6 (-591 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1022)) - (-5 *1 (-375)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-591 (-591 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-591 (-3 (|:| |array| (-591 *3)) (|:| |scalar| (-1089))))) - (-5 *6 (-591 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1022)) - (-5 *1 (-375)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-591 (-1089))) (-5 *5 (-1092)) (-5 *3 (-1089)) - (-5 *2 (-1022)) (-5 *1 (-375))))) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-855)) (-4 *4 (-327)) + (-5 *1 (-495 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) + (-4 *5 (-218 *3 *2)) (-4 *2 (-976))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1019))))) (((*1 *2 *3) - (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1085 (-1085 *4)))) - (-5 *1 (-1124 *4)) (-5 *3 (-1085 (-1085 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-1093))))) -(((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) - (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) - (-4 *3 (-13 (-1111) (-29 *5)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-224 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1) (-5 *1 (-987)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-712)) (-5 *2 (-108))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2428 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1147 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-308))))) + (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-1172 (-294 (-357)))) + (-5 *1 (-284))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-341)) (-4 *3 (-976)) + (-5 *1 (-1075 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-698))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525))))) + (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1085 *4)) (-5 *1 (-495 *4)) - (-4 *4 (-327))))) -(((*1 *2 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-989 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-774 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-781 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1147 *4)) (-5 *1 (-750 *4 *2 *3 *5)) - (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *3 (-601 *2)) - (-4 *5 (-601 (-385 *2)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-807)) (-5 *3 (-591 (-242))) (-5 *1 (-240))))) + (|partial| -12 (-5 *3 (-565 *4)) (-4 *4 (-789)) (-4 *2 (-789)) + (-5 *1 (-564 *2 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1148 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1148 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-713))) + (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1148 *3))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) - (-5 *1 (-995 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) - (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-1086 *4)) + (-5 *1 (-495 *4))))) +(((*1 *1 *1) (-5 *1 (-205))) ((*1 *1 *1) (-5 *1 (-357))) + ((*1 *1) (-5 *1 (-357)))) (((*1 *2 *2) - (-12 (-4 *3 (-517)) (-4 *4 (-923 *3)) (-5 *1 (-133 *3 *4 *2)) - (-4 *2 (-351 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-923 *4)) (-4 *2 (-351 *4)) - (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-923 *4)) (-4 *4 (-517)) - (-5 *2 (-631 *4)) (-5 *1 (-634 *4 *5)))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) ((*1 *2 *2) - (-12 (-4 *3 (-517)) (-4 *4 (-923 *3)) (-5 *1 (-1140 *3 *4 *2)) - (-4 *2 (-1147 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-762)) (-5 *2 (-51)) (-5 *1 (-772))))) -(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1072)) (-5 *1 (-284))))) -(((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-591 (-110)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-1012 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-734)) (-4 *4 (-788)) (-4 *6 (-286)) (-5 *2 (-396 *3)) - (-5 *1 (-684 *5 *4 *6 *3)) (-4 *3 (-882 *6 *5 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-429)) - (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-908 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1018) (-33))) - (-4 *4 (-13 (-1018) (-33)))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-429)) (-4 *3 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) - (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-882 *4 *3 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1171 *5)) (-4 *5 (-733)) (-5 *2 (-108)) - (-5 *1 (-783 *4 *5)) (-14 *4 (-712))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) (-4 *1 (-466))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-695))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-837 *3)) (-4 *3 (-1019)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1019)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-698))))) (((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-2 (|:| -2542 *4) (|:| -2743 (-525))))) - (-4 *4 (-1147 (-525))) (-5 *2 (-712)) (-5 *1 (-419 *4))))) + (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) + (-4 *3 (-13 (-341) (-1112) (-933)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1019))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-205) (-205) (-205))) + (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) + (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205))) + (-5 *1 (-639))))) +(((*1 *1) (-5 *1 (-135)))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-807)) (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *3) - (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-286)) (-5 *2 (-396 *3)) - (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-882 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1171 (-525))) (-5 *3 (-525)) (-5 *1 (-1028)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1171 (-525))) (-5 *3 (-591 (-525))) (-5 *4 (-525)) - (-5 *1 (-1028))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-964)) (-5 *1 (-690))))) -(((*1 *2 *3) - (-12 (-4 *2 (-341)) (-4 *2 (-786)) (-5 *1 (-878 *2 *3)) - (-4 *3 (-1147 *2))))) + (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1090)) + (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *1 (-1093))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1129)) (-4 *5 (-1147 (-385 *2))) - (-4 *2 (-1147 *4)) (-5 *1 (-319 *3 *4 *2 *5)) - (-4 *3 (-320 *4 *2 *5)))) + (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) + (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) ((*1 *2) - (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1129)) - (-4 *4 (-1147 (-385 *2))) (-4 *2 (-1147 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-504 *4 *2 *5 *6)) - (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-712)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-457 *4 *5))) (-14 *4 (-591 (-1089))) - (-4 *5 (-429)) + (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) + (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |gblist| (-591 (-227 *4 *5))) - (|:| |gvlist| (-591 (-525))))) - (-5 *1 (-579 *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-606))) ((*1 *1 *1 *1) (-5 *1 (-1036)))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1096))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2428 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-591 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1147 *7)) - (-5 *3 (-385 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-535 *7 *8))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-564 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089))) - (-4 *2 (-13 (-408 *5) (-27) (-1111))) - (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-591 *5))) (-4 *5 (-1162 *4)) - (-4 *4 (-37 (-385 (-525)))) - (-5 *2 (-1 (-1070 *4) (-591 (-1070 *4)))) (-5 *1 (-1164 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) - (-5 *1 (-697))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-712)) (-4 *6 (-1018)) (-4 *3 (-833 *6)) - (-5 *2 (-631 *3)) (-5 *1 (-633 *6 *3 *7 *4)) (-4 *7 (-351 *3)) - (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4250))))))) -(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160))))) + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1090)) + (|:| |arrayIndex| (-592 (-886 (-525)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1090)) (|:| |rand| (-797)) + (|:| |ints2Floats?| (-108)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1089)) (|:| |thenClause| (-308)) + (|:| |elseClause| (-308)))) + (|:| |returnBranch| + (-2 (|:| -3086 (-108)) + (|:| -3067 + (-2 (|:| |ints2Floats?| (-108)) (|:| -2778 (-797)))))) + (|:| |blockBranch| (-592 (-308))) + (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073)) + (|:| |forBranch| + (-2 (|:| -2853 (-1012 (-886 (-525)))) + (|:| |span| (-886 (-525))) (|:| -2336 (-308)))) + (|:| |labelBranch| (-1037)) + (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -2336 (-308)))) + (|:| |commonBranch| + (-2 (|:| -3515 (-1090)) (|:| |contents| (-592 (-1090))))) + (|:| |printBranch| (-592 (-797))))) + (-5 *1 (-308))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-205))) (-5 *2 (-1171 (-640))) (-5 *1 (-284))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-5 *1 (-838 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-765))))) -(((*1 *1 *1 *1) (-4 *1 (-606))) ((*1 *1 *1 *1) (-5 *1 (-1036)))) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1183 *4 *5 *6 *7))) + (-5 *1 (-1183 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) + (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1183 *6 *7 *8 *9))) + (-5 *1 (-1183 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) + (-5 *2 + (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) + (|:| |success| (-108)))) + (-5 *1 (-731)) (-5 *5 (-525))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *1 *1) (-4 *1 (-466))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) + (-5 *2 (-2 (|:| -3081 (-385 *6)) (|:| |coeff| (-385 *6)))) + (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3)) - (-4 *3 (-13 (-382) (-1111))))) - ((*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111)))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-591 (-1171 *4))) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) + (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) + (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4)))) ((*1 *2) - (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) - (-5 *2 (-591 (-1171 *3)))))) -(((*1 *1 *2) (-12 (-5 *1 (-1112 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-1112 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-591 (-1112 *2))) (-5 *1 (-1112 *2)) (-4 *2 (-1018))))) -(((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3)))) - (-5 *1 (-364 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1 *1) - (-12 + (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) + (-14 *4 (-855)))) + ((*1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) + (-14 *4 + (-3 (-1086 *3) + (-1172 (-592 (-2 (|:| -3067 *3) (|:| -3381 (-1037))))))))) + ((*1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) + (-14 *4 (-855))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1086 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *2 *3) + (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1086 *4)) + (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787)))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 - (-2 (|:| |lm| (-760 *3)) (|:| |mm| (-760 *3)) (|:| |rm| (-760 *3)))) - (-5 *1 (-760 *3)) (-4 *3 (-788))))) -(((*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510))))) + (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) + (|:| |success| (-108)))) + (-5 *1 (-731)) (-5 *5 (-525))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900))))) +(((*1 *2) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *1 *1) (-4 *1 (-466))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138)) + (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-909 *3 *4 *5 *6))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-956 *3)) (-4 *3 (-1126))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1037)) (-5 *2 (-1177)) (-5 *1 (-773))))) (((*1 *2 *3) - (-12 (-5 *3 (-825 *4)) (-4 *4 (-1018)) (-5 *2 (-1 (-108) *5)) - (-5 *1 (-823 *4 *5)) (-4 *5 (-1125))))) + (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *4 (-1090)) + (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279))))) (((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-591 *7)) (|:| |badPols| (-591 *7)))) - (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) - (-5 *2 (-712)))) - ((*1 *2 *1) - (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) - (-5 *2 (-712)))) - ((*1 *2 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-668))))) -(((*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111)))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-788))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-591 *6))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3))))) + (-12 (-5 *3 (-1099 (-592 *4))) (-4 *4 (-789)) + (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1019)) + (-4 *6 (-1126)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1019)) + (-4 *2 (-1126)) (-5 *1 (-589 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1019)) + (-4 *5 (-1126)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1019)) + (-4 *2 (-1126)) (-5 *1 (-589 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) + (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *1 (-589 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1019)) (-4 *2 (-1126)) (-5 *1 (-589 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-135)) (-5 *2 (-713))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))) +(((*1 *1 *2) + (-12 (-4 *3 (-976)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-4 *4 (-1147 *3)) - (-5 *2 - (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-631 *3)))) - (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) + (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-525)) (-4 *4 (-1147 *3)) - (-5 *2 - (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-631 *3)))) - (-5 *1 (-709 *4 *5)) (-4 *5 (-387 *3 *4)))) + (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-279)))) ((*1 *2 *3) - (-12 (-4 *4 (-327)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 *3)) - (-5 *2 - (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-631 *3)))) - (-5 *1 (-916 *4 *3 *5 *6)) (-4 *6 (-666 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-327)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 *3)) - (-5 *2 - (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-631 *3)))) - (-5 *1 (-1180 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-108)) - (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-4 *3 (-13 (-27) (-1111) (-408 *6) (-10 -8 (-15 -2686 ($ *7))))) - (-4 *7 (-786)) - (-4 *8 - (-13 (-1149 *3 *7) (-341) (-1111) - (-10 -8 (-15 -2209 ($ $)) (-15 -2452 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) - (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-914 *8)) - (-14 *10 (-1089))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-525)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525))))) -(((*1 *2 *1) (-12 (-5 *2 (-902)) (-5 *1 (-838 *3)) (-4 *3 (-1018))))) + (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-284))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1148 (-385 *2))) + (-4 *2 (-1148 *5)) (-5 *1 (-196 *5 *2 *6 *3)) + (-4 *3 (-320 *5 *2 *6))))) +(((*1 *2) + (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) + (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) + (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-788))) - (-4 *2 (-13 (-408 *4) (-932) (-1111))) (-5 *1 (-554 *4 *2 *3)) - (-4 *3 (-13 (-408 (-157 *4)) (-932) (-1111)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) + (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2858 *4))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-796) (-796) (-796))) (-5 *4 (-525)) (-5 *2 (-796)) - (-5 *1 (-594 *5 *6 *7)) (-4 *5 (-1018)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-796)) (-5 *1 (-792 *3 *4 *5)) (-4 *3 (-975)) - (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-796)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-796)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-796)))) - ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-796)) (-5 *1 (-1085 *3)) (-4 *3 (-975))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-174))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) - (-5 *2 (-964)) (-5 *1 (-696))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-591 *3)) (-5 *1 (-878 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *2) (-12 (-5 *2 (-591 (-854))) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-591 (-854))) (-5 *1 (-1174))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *1 *1) (-4 *1 (-466))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-320 *5 *6 *7)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *2) + (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) + (-5 *1 (-163 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) + (-4 *3 (-900))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) + ((*1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-415)) (-5 *1 (-1094))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) + (-4 *3 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) - (-5 *1 (-747 *5 *6 *7 *4))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *2 (-964)) (-5 *1 (-694))))) + (-592 + (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) + (|:| |radvect| (-592 (-632 (-294 (-525)))))))) + (-5 *1 (-961))))) (((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 *4)))) - (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-1018)) (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-5 *2 (-592 *4)) (-5 *1 (-1056 *3 *4)) + (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33)))))) +(((*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-341)) (-5 *1 (-829 *2 *4)) - (-4 *2 (-1147 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *2 (-964)) - (-5 *1 (-690))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-1131 *4)) (-4 *4 (-975)) (-4 *4 (-517)) - (-5 *2 (-385 (-885 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-1131 *4)) (-4 *4 (-975)) (-4 *4 (-517)) - (-5 *2 (-385 (-885 *4)))))) -(((*1 *1 *1) (-4 *1 (-517)))) -(((*1 *2) - (-12 (-4 *1 (-327)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1094))) (-5 *1 (-169))))) + (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089))))) + (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-13 (-286) (-138))) + (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) + (-5 *2 (-592 (-385 (-886 *4)))) (-5 *1 (-858 *4 *5 *6 *7)) + (-4 *7 (-883 *4 *6 *5))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-964)) - (-5 *1 (-688))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) - (-4 *7 (-1147 (-385 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -2108 *3))) - (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) + (-12 (-4 *3 (-341)) (-4 *3 (-976)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3258 *1))) + (-4 *1 (-791 *3))))) +(((*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-735)) (-4 *5 (-976)) (-4 *6 (-883 *5 *4 *2)) + (-4 *2 (-789)) (-5 *1 (-884 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-341) + (-10 -8 (-15 -4044 ($ *6)) (-15 -1936 (*6 $)) + (-15 -1945 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) + (-5 *2 (-1090)) (-5 *1 (-972 *4))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1073)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) + (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1006))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1073)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1019)) + (-4 *4 (-1019)))) + ((*1 *1 *2) + (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))) +(((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-429))))) +(((*1 *2) + (-12 (-4 *3 (-976)) (-5 *2 (-891 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) + (-4 *4 (-1148 *3))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1090)) + (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1090)) + (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 - (-2 (|:| |answer| (-385 *6)) (|:| -2108 (-385 *6)) - (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) - (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6))))) + (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) + (|:| |success| (-108)))) + (-5 *1 (-731)) (-5 *5 (-525))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8)) + (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) + (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-108)) + (-5 *1 (-858 *5 *6 *7 *8))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-855)) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *3 (-990 *4 *5 *6)) + (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *1)))) + (-4 *1 (-995 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) + (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) + ((*1 *2) + (-12 (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)) + (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) + (-5 *2 (-632 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1086 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3)) + (-4 *3 (-341))))) +(((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) + (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-457 *4 *5))) (-14 *4 (-591 (-1089))) - (-4 *5 (-429)) (-5 *2 (-591 (-227 *4 *5))) (-5 *1 (-579 *4 *5))))) + (-12 (-5 *2 (-2 (|:| -1951 (-525)) (|:| -2826 (-592 *3)))) + (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-909 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 *2))) - (-5 *2 (-825 *3)) (-5 *1 (-997 *3 *4 *5)) - (-4 *5 (-13 (-408 *4) (-819 *3) (-566 *2)))))) -(((*1 *2) - (-12 (-4 *3 (-975)) (-5 *2 (-890 (-654 *3 *4))) (-5 *1 (-654 *3 *4)) - (-4 *4 (-1147 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) - ((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) + (-12 (-5 *2 (-1021 *3)) (-5 *1 (-839 *3)) (-4 *3 (-346)) + (-4 *3 (-1019))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))) +(((*1 *1 *2) + (-12 (-5 *2 (-632 *4)) (-4 *4 (-976)) (-5 *1 (-1057 *3 *4)) + (-14 *3 (-713))))) +(((*1 *1 *1) + (-12 (-4 *2 (-286)) (-4 *3 (-924 *2)) (-4 *4 (-1148 *3)) + (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-967 *3)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *6)) (-4 *1 (-882 *4 *5 *6)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 (-712))))) + (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-882 *4 *5 *3)) (-4 *4 (-975)) (-4 *5 (-734)) - (-4 *3 (-788)) (-5 *2 (-712))))) + (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357))))) (((*1 *2 *3) - (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-975))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-281)))) - ((*1 *1 *1) (-4 *1 (-281))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) - ((*1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-591 (-591 (-591 *4)))) (-5 *3 (-591 *4)) (-4 *4 (-788)) - (-5 *1 (-1097 *4))))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-891 (-1037))) + (-5 *1 (-324 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-385 (-885 (-157 (-525)))))) - (-5 *2 (-591 (-591 (-273 (-885 (-157 *4)))))) (-5 *1 (-356 *4)) - (-4 *4 (-13 (-341) (-786))))) + (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) + (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) + (-5 *1 (-1046 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-13 (-286) (-789) (-138))) + (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1046 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-273 (-385 (-885 (-157 (-525))))))) - (-5 *2 (-591 (-591 (-273 (-885 (-157 *4)))))) (-5 *1 (-356 *4)) - (-4 *4 (-13 (-341) (-786))))) + (-12 (-5 *3 (-273 (-385 (-886 *5)))) (-5 *4 (-1090)) + (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) + (-5 *1 (-1046 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-273 (-385 (-886 *4)))) + (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) + (-5 *1 (-1046 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 (-157 (-525))))) - (-5 *2 (-591 (-273 (-885 (-157 *4))))) (-5 *1 (-356 *4)) - (-4 *4 (-13 (-341) (-786))))) + (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) + (-4 *5 (-13 (-286) (-789) (-138))) + (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-385 (-886 *4)))) + (-4 *4 (-13 (-286) (-789) (-138))) + (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1046 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-273 (-385 (-885 (-157 (-525)))))) - (-5 *2 (-591 (-273 (-885 (-157 *4))))) (-5 *1 (-356 *4)) - (-4 *4 (-13 (-341) (-786)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)))) (-5 *1 (-170 *3 *2)) - (-4 *2 (-13 (-27) (-1111) (-408 (-157 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) - (-4 *3 (-13 (-341) (-1111) (-932)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-975)) (-5 *1 (-550 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1131 *3)) (-4 *3 (-975)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1162 *3)) (-4 *3 (-975))))) -(((*1 *1 *1) (-5 *1 (-47))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1125)) - (-4 *2 (-1125)) (-5 *1 (-56 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1018)) (|has| *1 (-6 -4250)) - (-4 *1 (-142 *2)) (-4 *2 (-1125)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4250)) (-4 *1 (-142 *2)) - (-4 *2 (-1125)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4250)) (-4 *1 (-142 *2)) - (-4 *2 (-1125)))) + (-12 (-5 *3 (-592 (-273 (-385 (-886 *5))))) (-5 *4 (-592 (-1090))) + (-4 *5 (-13 (-286) (-789) (-138))) + (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-975)) - (-5 *2 (-2 (|:| -2217 (-1085 *4)) (|:| |deg| (-854)))) - (-5 *1 (-201 *4 *5)) (-5 *3 (-1085 *4)) (-4 *5 (-13 (-517) (-788))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-712)) - (-4 *6 (-1125)) (-4 *2 (-1125)) (-5 *1 (-219 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1147 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-788)))) + (-12 (-5 *3 (-592 (-273 (-385 (-886 *4))))) + (-4 *4 (-13 (-286) (-789) (-138))) + (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1046 *4))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) + (-5 *2 (-965)) (-5 *1 (-699))))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-205))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) ((*1 *1 *1) - (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1147 *2)) - (-4 *4 (-1147 (-385 *3))) (-4 *5 (-320 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1125)) (-4 *2 (-1125)) - (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1018)) (-4 *2 (-1018)) - (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2)))) - ((*1 *1 *1) (-5 *1 (-468))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-591 *5)) (-4 *5 (-1125)) - (-4 *2 (-1125)) (-5 *1 (-589 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-975)) (-4 *2 (-975)) - (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2)) - (-4 *9 (-351 *2)) (-5 *1 (-627 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-629 *5 *6 *7)) (-4 *10 (-629 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-975)) (-5 *1 (-654 *3 *2)) (-4 *2 (-1147 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1147 *3)) (-4 *3 (-341)) - (-4 *3 (-160)) (-4 *1 (-666 *3 *4)))) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *1 *1 *1) (-5 *1 (-357))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-395 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-205)) + (-5 *2 (-965)) (-5 *1 (-692))))) +(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-341)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) + (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1148 *2)) + (-4 *5 (-1148 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6)) + (-4 *6 (-320 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-341)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3))) + (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-160)) (-4 *1 (-666 *3 *2)) (-4 *2 (-1147 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-890 *5)) (-4 *5 (-1125)) - (-4 *2 (-1125)) (-5 *1 (-889 *5 *2)))) + (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) + (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-963 *3 *4 *5 *2 *6)) (-4 *2 (-882 *3 *4 *5)) - (-14 *6 (-591 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-975)) (-4 *2 (-975)) - (-14 *5 (-712)) (-14 *6 (-712)) (-4 *8 (-218 *6 *7)) - (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2)) - (-5 *1 (-980 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-978 *5 *6 *7 *8 *9)) (-4 *12 (-978 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1125)) - (-4 *2 (-1125)) (-5 *1 (-1068 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) - (-4 *1 (-1119 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-734)) - (-4 *7 (-788)) (-4 *2 (-989 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1171 *5)) (-4 *5 (-1125)) - (-4 *2 (-1125)) (-5 *1 (-1170 *5 *2))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1147 *3)) - (-4 *3 (-13 (-341) (-138) (-966 (-525)))) (-5 *1 (-529 *3 *4))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-157 (-205)))) (-5 *2 (-964)) - (-5 *1 (-696))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860))))) + (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341)) + (-4 *1 (-313 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-976) (-789))) + (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1090)))))) +(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1071 *4))) (-5 *1 (-264 *4 *5)) + (-5 *3 (-1071 *4)) (-4 *5 (-1163 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1062 *3))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-429))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) + (-5 *2 (-965)) (-5 *1 (-697))))) (((*1 *2 *2) - (-12 (-5 *2 (-1171 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286)) - (-4 *3 (-517)) (-5 *1 (-42 *3 *4)))) + (-12 + (-5 *2 + (-477 (-385 (-525)) (-220 *4 (-713)) (-799 *3) + (-227 *3 (-385 (-525))))) + (-14 *3 (-592 (-1090))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) + (-5 *2 (-1086 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) + (-5 *2 (-1086 *3))))) +(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097))))) +(((*1 *2 *3) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525)) + (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-716)) (-5 *1 (-110)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1023)) (-5 *1 (-898))))) +(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *5 (-1148 *4)) (-5 *2 (-1086 (-385 *5))) (-5 *1 (-568 *4 *5)) + (-5 *3 (-385 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) + (-4 *5 (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525))))) + (-5 *2 (-1086 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) + (-5 *1 (-310))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) + (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-883 *6 *5 *4))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4256 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) + (-4 *2 (-976)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1148 *2)) + (-4 *4 (-630 *2 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-1099 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-695))))) +(((*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-855)) (-5 *2 (-357)) (-5 *1 (-727 *3)) + (-4 *3 (-567 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-854)) (-4 *4 (-341)) (-5 *2 (-1171 *1)) + (-12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 *2)) + (-5 *2 (-357)) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) + (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 *2)) + (-5 *2 (-357)) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) + (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) + (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) + (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1086 *6)) (-4 *6 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-1086 *7)) (-5 *1 (-299 *4 *5 *6 *7)) + (-4 *7 (-883 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-396 (-1086 *7))) + (-5 *1 (-840 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5))) + (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5))))) +(((*1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-855)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1086 *1)) (-4 *1 (-307 *4)))) - ((*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1171 *1)) (-4 *1 (-307 *3)))) - ((*1 *2) - (-12 (-4 *3 (-160)) (-4 *4 (-1147 *3)) (-5 *2 (-1171 *1)) - (-4 *1 (-387 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-286)) (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) - (-5 *2 (-1171 *6)) (-5 *1 (-391 *3 *4 *5 *6)) - (-4 *6 (-13 (-387 *4 *5) (-966 *4))))) + ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1086 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-286)) (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) - (-5 *2 (-1171 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)) - (-4 *6 (-387 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1171 *1)) (-4 *1 (-395 *3)))) + (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341)) + (-4 *2 (-1148 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-495 *4)) - (-4 *4 (-327))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *4)) (-4 *4 (-341)) (-4 *2 (-1147 *4)) - (-5 *1 (-855 *4 *2))))) + (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-1086 *4)) + (-5 *1 (-495 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) + ((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365))))) +(((*1 *1) (-5 *1 (-146)))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-965))))) +(((*1 *2 *3) + (-12 (-4 *1 (-778)) + (-5 *3 + (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) + (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) + (|:| |ub| (-592 (-782 (-205)))))) + (-5 *2 (-965)))) + ((*1 *2 *3) + (-12 (-4 *1 (-778)) + (-5 *3 + (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) + (-5 *2 (-965))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3)))) + ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2) + (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-98 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1019))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-1017 *3)))) + ((*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108)) + (-5 *1 (-1197 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) + (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7)) + (-4 *3 (-1148 *6)) (-4 *7 (-883 *6 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) + (-14 *4 (-855))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-695))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *1 *1) (-4 *1 (-803 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3)))) + ((*1 *1 *1) (-4 *1 (-1115)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-564 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1111))) - (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 (-1085 (-385 (-1085 *6)))) (-5 *1 (-521 *5 *6 *7)) - (-5 *3 (-1085 *6)) (-4 *7 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1147 *3)) (-5 *1 (-654 *3 *2)) (-4 *3 (-975)))) + (-12 (-5 *4 (-1 (-592 *5) *6)) + (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) + (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -3941 *3)))) + (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) + (-4 *7 (-602 (-385 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-592 *5) *6)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *6 (-1148 *5)) + (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -3941 (-600 *6 (-385 *6)))))) + (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-592 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-666 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1147 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1085 *11)) (-5 *6 (-591 *10)) - (-5 *7 (-591 (-712))) (-5 *8 (-591 *11)) (-4 *10 (-788)) - (-4 *11 (-286)) (-4 *9 (-734)) (-4 *5 (-882 *11 *9 *10)) - (-5 *2 (-591 (-1085 *5))) (-5 *1 (-684 *9 *10 *11 *5)) - (-5 *3 (-1085 *5)))) + (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) + (-5 *2 (-592 *3))))) +(((*1 *2 *1) + (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) + (-14 *6 + (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *2)) + (-2 (|:| -3381 *5) (|:| -1737 *2)))) + (-4 *2 (-218 (-1696 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-789)) (-4 *7 (-883 *4 *2 (-799 *3)))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1175))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-1122 *3)) + (-4 *3 (-906))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1148 *5)) + (-4 *5 (-13 (-27) (-408 *4))) + (-4 *4 (-13 (-789) (-517) (-967 (-525)))) + (-4 *7 (-1148 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2)) + (-4 *2 (-320 *5 *6 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-510)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) + (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-341)) (-4 *3 (-976)) + (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-791 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-976)) + (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-792 *5 *3)) + (-4 *3 (-791 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *2 (-882 *3 *4 *5)) (-5 *1 (-963 *3 *4 *5 *2 *6)) - (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-14 *6 (-591 *2))))) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-694))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3)))) + ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))))) (((*1 *2 *3) (-12 (-5 *3 - (-591 - (-2 (|:| -2193 (-712)) - (|:| |eqns| - (-591 - (-2 (|:| |det| *7) (|:| |rows| (-591 (-525))) - (|:| |cols| (-591 (-525)))))) - (|:| |fgb| (-591 *7))))) - (-4 *7 (-882 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) - (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) (-5 *2 (-712)) - (-5 *1 (-857 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-14 *4 (-591 (-1089))) (-14 *5 (-712)) - (-5 *2 - (-591 - (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) - (-227 *4 (-385 (-525)))))) - (-5 *1 (-478 *4 *5)) - (-5 *3 - (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) - (-227 *4 (-385 (-525)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-429)) - (-5 *2 - (-591 - (-2 (|:| |eigval| (-3 (-385 (-885 *4)) (-1079 (-1089) (-885 *4)))) - (|:| |eigmult| (-712)) - (|:| |eigvec| (-591 (-631 (-385 (-885 *4)))))))) - (-5 *1 (-271 *4)) (-5 *3 (-631 (-385 (-885 *4))))))) + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *2 (-108)) (-5 *1 (-279))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) + (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) + (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4)) + (-4 *4 (-160))))) +(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-860)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-860)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-861)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-861))))) +(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) + ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735)) + (-4 *3 (-789)) (-5 *2 (-713))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) (((*1 *2 *2) - (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) - (-15 -1396 ((-1041 *3 (-564 $)) $)) - (-15 -2686 ($ (-1041 *3 (-564 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) - (-15 -1396 ((-1041 *3 (-564 $)) $)) - (-15 -2686 ($ (-1041 *3 (-564 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *2)) - (-4 *2 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *4 (-564 $)) $)) - (-15 -1396 ((-1041 *4 (-564 $)) $)) - (-15 -2686 ($ (-1041 *4 (-564 $))))))) - (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-591 (-564 *2))) - (-4 *2 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *4 (-564 $)) $)) - (-15 -1396 ((-1041 *4 (-564 $)) $)) - (-15 -2686 ($ (-1041 *4 (-564 $))))))) - (-4 *4 (-517)) (-5 *1 (-40 *4 *2))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-825 *4)) (-4 *4 (-1018)) (-5 *1 (-822 *4 *3)) - (-4 *3 (-1018))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *3 (-205)) - (-5 *2 (-964)) (-5 *1 (-691))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-697))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3)))) + ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))) + (-5 *2 (-357)) (-5 *1 (-187))))) +(((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) ((*1 *1) (-4 *1 (-510))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) + ((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019))))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525)))))) (((*1 *2 *1) - (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) + (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 - (-2 (|:| -1291 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -1421 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 - (-2 (|:| |poly| *6) (|:| -3749 (-385 *6)) + (-2 (|:| |poly| *6) (|:| -2357 (-385 *6)) (|:| |special| (-385 *6)))) - (-5 *1 (-669 *5 *6)) (-5 *3 (-385 *6)))) + (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-591 *3)) (-5 *1 (-829 *3 *4)) - (-4 *3 (-1147 *4)))) + (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-830 *3 *4)) + (-4 *3 (-1148 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-712)) (-4 *5 (-341)) - (-5 *2 (-2 (|:| -3178 *3) (|:| -3192 *3))) (-5 *1 (-829 *3 *5)) - (-4 *3 (-1147 *5)))) + (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341)) + (-5 *2 (-2 (|:| -3347 *3) (|:| -3356 *3))) (-5 *1 (-830 *3 *5)) + (-4 *3 (-1148 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-591 *9)) (-5 *3 (-591 *8)) (-5 *4 (-108)) - (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) - (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-992 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) + (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) + (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-591 *9)) (-5 *3 (-591 *8)) (-5 *4 (-108)) - (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) - (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-992 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) + (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) + (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-591 *9)) (-5 *3 (-591 *8)) (-5 *4 (-108)) - (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-1027 *5 *6 *7 *8)) (-4 *5 (-429)) - (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) + (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) + (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-591 *9)) (-5 *3 (-591 *8)) (-5 *4 (-108)) - (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-1027 *5 *6 *7 *8)) (-4 *5 (-429)) - (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-429)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-426 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) - ((*1 *1 *1) (-5 *1 (-1036)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1125)) (-4 *2 (-788)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-788))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-964)) - (-5 *1 (-688))))) -(((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) + (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) + (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) + (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053))))) +(((*1 *2 *1) + (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) + (-4 *3 (-900))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-973))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-4 *3 (-1018)) - (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1107))))) -(((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) - ((*1 *1 *1 *1) (-5 *1 (-1036)))) + (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-174)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-279)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-284))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) + (-5 *1 (-691))))) (((*1 *2 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1147 (-525))) (-5 *1 (-461 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1171 *4)) (-5 *3 (-1036)) (-4 *4 (-327)) - (-5 *1 (-495 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-564 *1))) (-4 *1 (-281))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1162 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-4 *1 (-215 *3)))) - ((*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3 *2) (-12 (-5 *2 - (-591 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-712)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-734)) (-4 *3 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-788)) - (-5 *1 (-426 *4 *5 *6 *3))))) + (-592 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-735)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) + (-5 *1 (-426 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3)))) + ((*1 *1 *1) (-4 *1 (-1115)))) (((*1 *2 *1) - (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-126)) - (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 *4)))))) + (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| -2976 *3) (|:| -2990 *4)))) - (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) (-4 *4 (-668)))) + (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) + ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) - (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) - ((*1 *1 *1 *1) (-5 *1 (-1036)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1049 (-205))) (-5 *3 (-591 (-242))) (-5 *1 (-1173)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1049 (-205))) (-5 *3 (-1072)) (-5 *1 (-1173)))) - ((*1 *1 *1) (-5 *1 (-1173)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-286)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3)))) - (-5 *1 (-364 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2746 (-712)) (|:| -2449 (-712)))) - (-5 *1 (-712)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) - (-5 *2 (-964)) (-5 *1 (-699))))) + (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) + ((*1 *2 *1) + (-12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-939 *3)) (-4 *3 (-967 (-385 (-525))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) + (-5 *2 + (-2 (|:| -2017 (-713)) (|:| |curves| (-713)) + (|:| |polygons| (-713)) (|:| |constructs| (-713))))))) (((*1 *2 *1) - (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-788)) - (-4 *5 (-734)) (-4 *2 (-245 *4))))) + (-12 (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-789)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1126)) + (-5 *2 (-108))))) +(((*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-429)) (-4 *4 (-517)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -4082 *4))) (-5 *1 (-902 *4 *3)) + (-4 *3 (-1148 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3)) + (-4 *3 (-1019))))) +(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-134))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974)) + (-5 *3 (-525))))) (((*1 *2 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) - (-5 *1 (-163 *3))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3)))) + ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138)) + (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-909 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) + (-5 *2 (-2 (|:| -2059 (-385 *5)) (|:| |poly| *3))) + (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5)))))) (((*1 *2 *1) - (-12 (-5 *2 (-955 (-781 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-975))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) + (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4)) + (-4 *4 (-13 (-341) (-787)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-1086 *3)) (-5 *1 (-40 *4 *3)) + (-4 *3 + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *4 (-565 $)) $)) + (-15 -1945 ((-1042 *4 (-565 $)) $)) + (-15 -4044 ($ (-1042 *4 (-565 $)))))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *3 (-592 (-525))) + (-5 *1 (-817))))) +(((*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-680 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1019)))) + ((*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1019))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1090)) (-5 *2 (-501)) (-5 *1 (-500 *4)) + (-4 *4 (-1126))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2262 *3))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1))))) +(((*1 *1 *1) (-4 *1 (-578))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933) (-1112)))))) +(((*1 *1) (-5 *1 (-1174)))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1120 *5 *6 *7 *8)) (-4 *5 (-517)) + (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) + (-4 *3 (-1148 *4)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) + (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-698))))) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) ((*1 *2 *3) - (-12 (-5 *2 (-1085 (-385 (-525)))) (-5 *1 (-875)) (-5 *3 (-525))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *2 (-964)) (-5 *1 (-693))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *4 *5 *6)) (-4 *4 (-286)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-424 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-108)) - (-5 *2 (-964)) (-5 *1 (-695))))) -(((*1 *2 *3) - (-12 (-4 *4 (-975)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) - (-4 *3 (-1147 *4)) - (-4 *5 (-13 (-382) (-966 *4) (-341) (-1111) (-263)))))) -(((*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-357)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-357))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-680))))) + (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1148 *6)) + (-4 *6 (-13 (-341) (-138) (-967 *4))) (-5 *4 (-525)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) + (|:| -3941 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-946 *6 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-885 (-525))) (-5 *2 (-308)) - (-5 *1 (-310))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-697))))) -(((*1 *2 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-375))))) -(((*1 *1) (-4 *1 (-327)))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-712)) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-1169 *3)) (-4 *3 (-23)) (-4 *3 (-1125))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341)) + (-5 *2 (-2 (|:| -2357 (-396 *3)) (|:| |special| (-396 *3)))) + (-5 *1 (-670 *5 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1074 *4)) - (-4 *4 (-975))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-357)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-357))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5))) + (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525))))) + (-14 *6 (-855))))) +(((*1 *2 *1) + (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1019)) (-5 *2 (-713))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1171 *5)) (-4 *5 (-587 *4)) (-4 *4 (-517)) - (-5 *2 (-1171 *4)) (-5 *1 (-586 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1184 (-1089) *3)) (-4 *3 (-975)) (-5 *1 (-1191 *3)))) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) + (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) + (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) + (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-933))))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281)))) + ((*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108)) + (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) + (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) + (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-933) (-1112)))))) +(((*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1090)) (-5 *1 (-501))))) +(((*1 *2 *1) + (-12 (-5 *2 (-159)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) + (-5 *2 (-965)) (-5 *1 (-699))))) +(((*1 *2 *1) + (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) + (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) + (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-883 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-108)) + (-5 *1 (-335 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242))))) +(((*1 *2 *3) + (-12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-294 (-525)))) + (-5 *1 (-961))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713)) + (-5 *2 (-632 (-205))) (-5 *1 (-246))))) +(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) + ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160))))) +(((*1 *1 *1) (-4 *1 (-578))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933) (-1112)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1019))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) + (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1079 *4 *5)) + (-14 *4 (-855)) (-4 *5 (-976))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)) + (-4 *6 (-1019)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) + (-5 *2 (-391 *4 (-385 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) - (-5 *1 (-1193 *3 *4))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) - (-5 *2 (-2 (|:| -2428 (-385 *6)) (|:| |coeff| (-385 *6)))) - (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6))))) + (-12 (-5 *2 (-1172 *6)) (-4 *6 (-13 (-387 *4 *5) (-967 *4))) + (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *3 (-286)) + (-5 *1 (-391 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 *6)) (-4 *6 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-1085 *7)) (-5 *1 (-299 *4 *5 *6 *7)) - (-4 *7 (-882 *6 *4 *5))))) + (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) + (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-883 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *1 (-842)) (-5 *2 (-396 (-1085 *1))) (-5 *3 (-1085 *1))))) -(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-712)) (-5 *1 (-206)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-157 (-205))) (-5 *3 (-712)) (-5 *1 (-206)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-335 *3)) (-4 *3 (-327))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) + (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-395 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1126)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-797))) (-5 *1 (-110)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-592 (-797)))) (-5 *1 (-110)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-797) (-592 (-797)))) (-5 *1 (-110)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1177)) (-5 *1 (-195 *3)) + (-4 *3 + (-13 (-789) + (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 (*2 $)) + (-15 -2460 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-372)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-372)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-475)))) + ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-653)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1107)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1107))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-567 (-826 (-525)))) + (-4 *5 (-820 (-525))) + (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) + (-4 *3 (-13 (-27) (-1112) (-408 *5)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) + (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) + (-5 *2 (-713)))) + ((*1 *2 *1) + (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) + (-5 *2 (-713)))) + ((*1 *2 *1) + (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-669))))) +(((*1 *2 *1) + (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) + (-5 *2 (-592 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) + (-5 *2 (-592 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) + ((*1 *2 *1) + (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-669)))) + ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-592 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1163 *3)) (-4 *3 (-976)) (-5 *2 (-1071 *3))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-565 *4)) (-5 *6 (-1090)) + (-4 *4 (-13 (-408 *7) (-27) (-1112))) + (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 - (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) - (|:| |success| (-108)))) - (-5 *1 (-730)) (-5 *5 (-525))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) + (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) +(((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-1094))))) +(((*1 *2 *1) + (-12 (-4 *1 (-637 *3)) (-4 *3 (-1019)) + (-5 *2 (-592 (-2 (|:| -3978 *3) (|:| -3053 (-713)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1019)) (-5 *2 (-108)) (-5 *1 (-819 *3 *4 *5)) + (-4 *3 (-1019)) (-4 *5 (-612 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-838 *4)) (-4 *4 (-1018)) (-5 *2 (-591 (-712))) - (-5 *1 (-837 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1 *1) (-4 *1 (-899)))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1072)) (-5 *1 (-727))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-788) (-517) (-966 (-525)))) (-5 *2 (-1176)) - (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-712)) - (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4)) + (-4 *4 (-1126)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) + (-4 *3 (-900))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-525)) (-4 *1 (-1013 *3)) (-4 *3 (-1126))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-308))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) + (-5 *2 (-965)) (-5 *1 (-690))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) + (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-976))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1111) (-408 *3))) - (-14 *4 (-1089)) (-14 *5 *2))) + (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1019)) (-4 *5 (-1019)) + (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1090)) (-5 *3 (-1023)) (-5 *1 (-270))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1097))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-694))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517))) + (-5 *2 (-797)) (-5 *1 (-31 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-4 *2 (-13 (-27) (-1111) (-408 *3) (-10 -8 (-15 -2686 ($ *4))))) - (-4 *4 (-786)) - (-4 *5 - (-13 (-1149 *2 *4) (-341) (-1111) - (-10 -8 (-15 -2209 ($ $)) (-15 -2452 ($ $))))) - (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-914 *5)) (-14 *7 (-1089))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1019) (-967 *5))) + (-4 *5 (-820 *4)) (-4 *4 (-1019)) (-5 *2 (-1 (-108) *5)) + (-5 *1 (-865 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))) + ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) + (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) + (-5 *1 (-730)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) + (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) + (-5 *1 (-730))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-1173)))) + (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) + (-4 *5 (-789)) (-5 *2 (-886 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) + (-4 *5 (-789)) (-5 *2 (-886 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173))))) + (-12 (-5 *3 (-713)) (-4 *1 (-1163 *4)) (-4 *4 (-976)) + (-5 *2 (-886 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-1163 *4)) (-4 *4 (-976)) + (-5 *2 (-886 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) + (-5 *1 (-163 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-396 (-1085 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1085 *1)) - (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-788)))) - ((*1 *2 *3) - (-12 (-4 *1 (-842)) (-5 *2 (-396 (-1085 *1))) (-5 *3 (-1085 *1))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525))))) -(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1 *1) (-4 *1 (-899)))) -(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-825 *4)) (-4 *4 (-1018)) (-5 *1 (-822 *4 *3)) - (-4 *3 (-1018))))) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) + (-4 *4 (-13 (-789) (-517)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5)) + (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787))) + (-5 *2 (-592 (-2 (|:| -2826 (-592 *3)) (|:| -2263 *5)))) + (-5 *1 (-167 *5 *3)) (-4 *3 (-1148 (-157 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-341) (-787))) + (-5 *2 (-592 (-2 (|:| -2826 (-592 *3)) (|:| -2263 *4)))) + (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *1) (-5 *1 (-520)))) (((*1 *2 *3) - (-12 (-14 *4 (-591 (-1089))) (-4 *5 (-429)) - (-5 *2 - (-2 (|:| |glbase| (-591 (-227 *4 *5))) (|:| |glval| (-591 (-525))))) - (-5 *1 (-579 *4 *5)) (-5 *3 (-591 (-227 *4 *5)))))) + (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) + (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-698))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1090)) + (-4 *4 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-89 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-385 (-1086 (-294 *3)))) (-4 *3 (-13 (-517) (-789))) + (-5 *1 (-1047 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-592 (-357))) (-5 *2 (-357)) (-5 *1 (-187))))) +(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) + (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-701))))) (((*1 *2 *1) - (-12 (-5 *2 (-591 (-1112 *3))) (-5 *1 (-1112 *3)) (-4 *3 (-1018))))) -(((*1 *2 *2) - (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *6 (-989 *3 *4 *5)) (-5 *1 (-573 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-994 *3 *4 *5 *6)) (-4 *2 (-1027 *3 *4 *5 *6))))) -(((*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1162 *4)) (-5 *1 (-1164 *4 *2)) - (-4 *4 (-37 (-385 (-525))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1788 *4))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-854)))) ((*1 *1) (-4 *1 (-510))) - ((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-640)))) - ((*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-640)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-837 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92))))) + (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-990 *3 *4 *2)) (-4 *2 (-789)))) + ((*1 *2 *1) + (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789))))) (((*1 *2 *1) - (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-591 *5))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172))))) -(((*1 *1 *1 *1) (-4 *1 (-510)))) -(((*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) + (-12 (-5 *2 (-592 (-877 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-903)) + (-5 *3 (-592 (-525)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) - (-5 *2 - (-2 (|:| -3175 (-712)) (|:| |curves| (-712)) - (|:| |polygons| (-712)) (|:| |constructs| (-712))))))) -(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-807)))) - ((*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-712)) (-4 *5 (-160)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-712)) (-4 *5 (-160)))) - ((*1 *2 *2 *3) (-12 (-5 *2 - (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) - (-227 *4 (-385 (-525))))) - (-5 *3 (-591 (-798 *4))) (-14 *4 (-591 (-1089))) (-14 *5 (-712)) - (-5 *1 (-478 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) - (-4 *2 (-408 *3)))) + (-592 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-525))))) + (-5 *1 (-396 *3)) (-4 *3 (-517)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1148 *3)) + (-5 *2 (-592 (-1086 *3))) (-5 *1 (-471 *3 *5 *6)) + (-4 *6 (-1148 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-517) (-789))) + (-4 *2 (-13 (-408 (-157 *4)) (-933) (-1112))) + (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-933) (-1112)))))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) + (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-1183 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) + (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1183 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-592 (-1086 *11))) (-5 *3 (-1086 *11)) + (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713))) + (-5 *7 (-1172 (-592 (-1086 *8)))) (-4 *10 (-789)) + (-4 *8 (-286)) (-4 *11 (-883 *8 *9 *10)) (-4 *9 (-735)) + (-5 *1 (-650 *9 *10 *8 *11))))) +(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808))))) +(((*1 *2 *3) + (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-771)) (-5 *3 (-1073))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-811 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-813 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-816 *2)) (-4 *2 (-1126))))) +(((*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-976))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-341)) (-4 *7 (-1148 *5)) (-4 *4 (-667 *5 *7)) + (-5 *2 (-2 (|:| -3471 (-632 *6)) (|:| |vec| (-1172 *5)))) + (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1086 *6)) (-1086 *6))) + (-4 *6 (-341)) + (-5 *2 + (-592 + (-2 (|:| |outval| *7) (|:| |outmult| (-525)) + (|:| |outvect| (-592 (-632 *7)))))) + (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *1 *2) + (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-967 *4)) (-4 *3 (-286)) + (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *6 (-387 *4 *5)) + (-14 *7 (-1172 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 *6)) (-4 *6 (-387 *4 *5)) (-4 *4 (-924 *3)) + (-4 *5 (-1148 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) + (-4 *3 (-1148 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3)) + (-4 *5 (-602 (-385 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-147 *4 *2)) - (-4 *2 (-408 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1089)))) - ((*1 *1 *1) (-4 *1 (-149)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510))))) -(((*1 *1) (-5 *1 (-205))) ((*1 *1) (-5 *1 (-357)))) + (-12 (-5 *3 (-385 *5)) + (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) + (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 *3))))) +(((*1 *1) (-5 *1 (-415)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-525))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2)) + (-4 *2 (-1126))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510))))) (((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) + (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2734 (-592 *1)))) + (-4 *1 (-345 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-430 *3 *4 *5 *6)) + (|:| -2734 (-592 (-430 *3 *4 *5 *6))))) + (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-713)) (-4 *5 (-976)) (-5 *2 (-525)) + (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1148 *5)) + (-4 *6 (-13 (-382) (-967 *5) (-341) (-1112) (-263))))) + ((*1 *2 *3) + (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) + (-4 *3 (-1148 *4)) + (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263)))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-215 *3)))) + ((*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1019))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) +(((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-903))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-592 *3)) (-4 *3 (-1028 *5 *6 *7 *8)) + (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-547 *5 *6 *7 *8 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) + ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *1) (-5 *1 (-1005)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-525)) (-4 *4 (-975)) - (-5 *1 (-1074 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-525)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-975)) - (-14 *4 (-1089)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228))))) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *3 (-592 (-242))) + (-5 *1 (-240)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *1 (-242)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-592 (-457 *5 *6))) (-5 *3 (-457 *5 *6)) + (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-1172 *6)) + (-5 *1 (-580 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-414))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128))))) + (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) + (-5 *1 (-310))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) + (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3941 (-592 *9)) (|:| -2249 *4) (|:| |ineq| (-592 *9)))) + (-5 *1 (-920 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) + (-4 *4 (-995 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) + (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3941 (-592 *9)) (|:| -2249 *4) (|:| |ineq| (-592 *9)))) + (-5 *1 (-1026 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) + (-4 *4 (-995 *6 *7 *8 *9))))) +(((*1 *1 *1) (-5 *1 (-988)))) (((*1 *2 *1) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-765))))) -(((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) + (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-933)) + (-4 *2 (-976))))) +(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522))))) +(((*1 *2 *1) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6)) + (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-712)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-734)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-788)) - (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)))) - ((*1 *1) (-4 *1 (-1065)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-712)) (-5 *2 (-108)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-1126 *3)) (-4 *3 (-788)) - (-4 *3 (-1018))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-1072)) (-5 *5 (-631 (-205))) - (-5 *2 (-964)) (-5 *1 (-689))))) -(((*1 *2 *1) - (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1111))) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-991 *4 *3)) (-4 *4 (-13 (-786) (-341))) - (-4 *3 (-1147 *4)) (-5 *2 (-108))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) + (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) + (-227 *4 (-385 (-525))))) + (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108)) + (-5 *1 (-478 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1013 (-781 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) - (-5 *1 (-284)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) - (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-517)) (-4 *3 (-975)) - (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-790 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-975)) - (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-791 *5 *3)) - (-4 *3 (-790 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-341) (-138))) - (-5 *2 (-591 (-2 (|:| -3987 (-712)) (|:| -1708 *4) (|:| |num| *4)))) - (-5 *1 (-377 *3 *4)) (-4 *4 (-1147 *3))))) -(((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1171 *1)) (-4 *1 (-345 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-591 (-357))) (-5 *2 (-357)) (-5 *1 (-187))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1071 (-205))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2853 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-520))))) +(((*1 *1) (-5 *1 (-135))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-242))))) (((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-510)))) -(((*1 *2 *3) - (-12 (-4 *4 (-842)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-396 (-1085 *7))) - (-5 *1 (-839 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-842)) (-4 *5 (-1147 *4)) (-5 *2 (-396 (-1085 *5))) - (-5 *1 (-840 *4 *5)) (-5 *3 (-1085 *5))))) + (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1172 *4)) + (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) + (-5 *2 (-965)) (-5 *1 (-690))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *5)) (-4 *5 (-1147 *3)) (-4 *3 (-286)) - (-5 *2 (-108)) (-5 *1 (-432 *3 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-712)))) - ((*1 *1 *1) (-4 *1 (-380)))) -(((*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-357))))) -(((*1 *1) - (-12 (-4 *1 (-382)) (-3389 (|has| *1 (-6 -4241))) - (-3389 (|has| *1 (-6 -4233))))) - ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1018)) (-4 *2 (-788)))) - ((*1 *1 *1 *1) (-4 *1 (-788))) - ((*1 *2 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-788)))) - ((*1 *1) (-5 *1 (-1036)))) -(((*1 *2 *3) - (-12 (-5 *3 (-525)) (|has| *1 (-6 -4241)) (-4 *1 (-382)) - (-5 *2 (-854))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-205) (-205) (-205))) - (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) - (-5 *5 (-1013 (-205))) (-5 *6 (-591 (-242))) (-5 *2 (-1049 (-205))) - (-5 *1 (-638)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-205))) - (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-638)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1049 (-205))) (-5 *3 (-1 (-876 (-205)) (-205) (-205))) - (-5 *4 (-1013 (-205))) (-5 *5 (-591 (-242))) (-5 *1 (-638))))) + (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1127 *2)) + (-4 *2 (-1019)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-789)) + (-5 *1 (-1127 *2))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) + (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-883 *4 *3 *5))))) +(((*1 *1) (-5 *1 (-132)))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-592 *3)) (-5 *5 (-855)) (-4 *3 (-1148 *4)) + (-4 *4 (-286)) (-5 *1 (-437 *4 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246))))) (((*1 *2 *1) - (-12 (-5 *2 (-796)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-712)) - (-14 *4 (-712)) (-4 *5 (-160))))) -(((*1 *2 *3) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-423)) (-5 *3 (-525))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1147 *4)) (-4 *4 (-1129)) - (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1147 (-385 *3)))))) -(((*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-341)) (-4 *3 (-975)) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-205)) - (-5 *2 (-964)) (-5 *1 (-691))))) -(((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-1052)))) + (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-542 *3)) (-4 *3 (-341))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6)) + (|:| -2858 *6))) + (-5 *1 (-946 *5 *6)) (-5 *3 (-385 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2)) + (-4 *2 (-1019)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1019)) + (-5 *1 (-109 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1019)) + (-5 *1 (-109 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-796))) (-5 *2 (-1176)) (-5 *1 (-1052))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4250)) (-4 *1 (-464 *4)) - (-4 *4 (-1125)) (-5 *2 (-108))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-110)) (-5 *4 (-712)) (-4 *5 (-429)) (-4 *5 (-788)) - (-4 *5 (-966 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2)) - (-4 *2 (-408 *5)) - (-4 *2 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *5 (-564 $)) $)) - (-15 -1396 ((-1041 *5 (-564 $)) $)) - (-15 -2686 ($ (-1041 *5 (-564 $)))))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-1089))))) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4))) + (-5 *1 (-109 *4)) (-4 *4 (-1019)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-976)) + (-5 *1 (-657 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-776 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3048 *4))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-228))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1108))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-395 *4))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *3) + (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) + (-4 *4 (-327))))) +(((*1 *2 *3) + (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1041 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *2 (-396 *4)) + (-5 *1 (-397 *4)))) + ((*1 *1 *1) (-5 *1 (-860))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) + ((*1 *1 *1) (-5 *1 (-861))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) + (-5 *4 (-385 (-525))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) + (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) + (-5 *4 (-385 (-525))) (-5 *1 (-951 *3)) (-4 *3 (-1148 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) + (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) + (-4 *3 (-1148 *2))))) +(((*1 *2 *3) + (-12 (-14 *4 (-592 (-1090))) (-14 *5 (-713)) + (-5 *2 + (-592 + (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) + (-227 *4 (-385 (-525)))))) + (-5 *1 (-478 *4 *5)) + (-5 *3 + (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) + (-227 *4 (-385 (-525)))))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-591 *5) *6)) - (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *6 (-1147 *5)) - (-5 *2 (-591 (-2 (|:| -2277 *5) (|:| -2203 *3)))) - (-5 *1 (-750 *5 *6 *3 *7)) (-4 *3 (-601 *6)) - (-4 *7 (-601 (-385 *6)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-604 *4 *2)) - (-4 *2 (-601 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1125)) (-4 *2 (-788)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-975)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) - (-14 *3 (-854)) (-4 *4 (-975)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) - (-4 *3 (-13 (-1018) (-33)))))) -(((*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1125)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-712)))) - ((*1 *2 *3) - (-12 (-4 *4 (-975)) - (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) - (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) - ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796))))) -(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-968))))) -(((*1 *2 *1) - (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) - (-4 *5 (-218 (-2028 *3) (-712))) - (-14 *6 - (-1 (-108) (-2 (|:| -3229 *2) (|:| -3987 *5)) - (-2 (|:| -3229 *2) (|:| -3987 *5)))) - (-4 *2 (-788)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-882 *4 *5 (-798 *3)))))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-808)))) + ((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) (((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018))))) -(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1125))))) + (-12 (-4 *4 (-160)) (-5 *2 (-1086 (-886 *4))) (-5 *1 (-394 *3 *4)) + (-4 *3 (-395 *4)))) + ((*1 *2) + (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) + (-5 *2 (-1086 (-886 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126))))) +(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-854))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-886 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) + (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) + (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) + (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-632 (-525))) (-5 *5 (-108)) (-5 *7 (-632 (-205))) + (-5 *3 (-525)) (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-697))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))) +(((*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) + (-5 *1 (-1142 *4 *2)) (-4 *2 (-1148 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) - (-4 *2 (-1162 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-4 *4 (-1147 *3)) - (-4 *5 (-666 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-341) (-346) (-566 (-525)))) (-5 *1 (-507 *3 *2)) - (-4 *2 (-1162 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-517) (-138))) - (-5 *1 (-1066 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-286)) (-5 *1 (-641 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-564 *1))) (-5 *3 (-591 *1)) (-4 *1 (-281)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-273 *1))) (-4 *1 (-281)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281))))) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-886 (-157 *4))) (-4 *4 (-160)) + (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-886 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-160)) + (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357))) + (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) + (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) + (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) + (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-385 (-886 (-157 *4)))) (-4 *4 (-517)) + (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-385 (-886 (-157 *5)))) (-5 *4 (-855)) + (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) + (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) + (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) + (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) + (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) + (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-517)) + (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) + (-5 *1 (-727 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-286)) - (-5 *2 (-712)) (-5 *1 (-432 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1148 *5)) + (-5 *1 (-749 *5 *2 *3 *6)) + (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) + (-4 *3 (-602 *2)) (-4 *6 (-602 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1148 *5)) + (-5 *1 (-749 *5 *2 *3 *6)) + (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) + (-4 *6 (-602 (-385 *2)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-698))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-592 (-799 *5))) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 - (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) - (|:| |success| (-108)))) - (-5 *1 (-730)) (-5 *5 (-525))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-690))))) + (-2 (|:| |dpolys| (-592 (-227 *5 *6))) + (|:| |coords| (-592 (-525))))) + (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) + (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6) + (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -2858 *6))) + (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6))))) +(((*1 *2) + (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-843)) + (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-883 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-843)) + (-5 *1 (-840 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-843)) (-5 *1 (-841 *2 *3)) (-4 *3 (-1148 *2))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205)) + (-5 *2 (-592 (-877 *4))) (-5 *1 (-1123)) (-5 *3 (-877 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-525)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525))))) +(((*1 *2 *3) + (-12 (-5 *3 (-855)) + (-5 *2 + (-3 (-1086 *4) + (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037))))))) + (-5 *1 (-324 *4)) (-4 *4 (-327))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3))))) +(((*1 *1) (-5 *1 (-108)))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1) (-5 *1 (-581)))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807))))) + (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-2 (|:| |deg| (-712)) (|:| -1582 *5)))) - (-4 *5 (-1147 *4)) (-4 *4 (-327)) (-5 *2 (-591 *5)) - (-5 *1 (-197 *4 *5)))) + (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *2 (-1177)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242))))) +(((*1 *2 *1) (-12 (-4 *1 (-967 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1019))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) + (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-385 (-886 *6)) (-1080 (-1090) (-886 *6)))) + (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *6))))) + (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-886 *6)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-2 (|:| -2542 *5) (|:| -2743 (-525))))) - (-5 *4 (-525)) (-4 *5 (-1147 *4)) (-5 *2 (-591 *5)) - (-5 *1 (-637 *5))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) - ((*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) - ((*1 *2 *2) (-12 (-5 *2 (-854)) (|has| *1 (-6 -4241)) (-4 *1 (-382)))) - ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-854)))) - ((*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-5 *2 (-1070 (-525)))))) -(((*1 *2 *3) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-522)) (-5 *3 (-525))))) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-385 (-886 *5)) (-1080 (-1090) (-886 *5)))) + (|:| |eigmult| (-713)) (|:| |eigvec| (-592 *4)))) + (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *5))))) + (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-886 *5))))))) +(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-510)))) +(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1095))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) + (-5 *1 (-691))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-341) (-787))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2826 (-396 *3)))) + (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-110)))) + ((*1 *2 *1) + (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-1019)))) + ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-416 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-898)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-997 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-5 *1 (-1090)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *8 (-990 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-957 *5 *6 *7 *8))))) + (-5 *1 (-957 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *8 (-990 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-592 *8)) + (|:| |towers| (-592 (-1061 *5 *6 *7 *8))))) + (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-592 *8))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) + (-5 *2 (-1172 (-385 (-525)))) (-5 *1 (-1197 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) + (-4 *4 (-351 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172))))) (((*1 *1 *2) - (-12 (-5 *2 (-1056 *3 *4)) (-14 *3 (-854)) (-4 *4 (-341)) - (-5 *1 (-924 *3 *4))))) -(((*1 *1) (-5 *1 (-415)))) -(((*1 *2 *1) - (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-5 *2 (-108))))) -(((*1 *1) (-5 *1 (-415)))) + (-12 (-5 *2 (-855)) (-4 *1 (-218 *3 *4)) (-4 *4 (-976)) + (-4 *4 (-1126)))) + ((*1 *1 *2) + (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) + (-4 *5 (-218 (-1696 *3) (-713))) + (-14 *6 + (-1 (-108) (-2 (|:| -3381 *2) (|:| -1737 *5)) + (-2 (|:| -3381 *2) (|:| -1737 *5)))) + (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-789)) + (-4 *7 (-883 *4 *5 (-799 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *3 (-989 *4 *5 *6)) - (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *1)))) - (-4 *1 (-994 *4 *5 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-591 (-2 (|:| |func| *2) (|:| |pole| (-108))))) - (-4 *2 (-13 (-408 *4) (-932))) (-4 *4 (-13 (-788) (-517))) - (-5 *1 (-255 *4 *2))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2)) - (-4 *2 (-1162 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-566 *3))) - (-4 *5 (-1147 *4)) (-4 *6 (-666 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2)) - (-4 *2 (-1162 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-566 *3))) - (-5 *1 (-507 *4 *2)) (-4 *2 (-1162 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) - (-5 *1 (-1066 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-273 (-885 (-525)))) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) + (-4 *1 (-995 *4 *5 *6 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-5 *2 (-108))))) +(((*1 *1) (-5 *1 (-765)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |varOrder| (-591 (-1089))) - (|:| |inhom| (-3 (-591 (-1171 (-712))) "failed")) - (|:| |hom| (-591 (-1171 (-712)))))) - (-5 *1 (-216))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) (((*1 *2 *1) - (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-712)) (-5 *1 (-153 *3 *4)) - (-4 *3 (-154 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1125)) (-5 *2 (-712)) - (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-788)) (-5 *2 (-712)) (-5 *1 (-407 *3 *4)) - (-4 *3 (-408 *4)))) - ((*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-509 *3)) (-4 *3 (-510)))) - ((*1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-712)))) - ((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-712)) (-5 *1 (-737 *3 *4)) - (-4 *3 (-738 *4)))) - ((*1 *2) - (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-922 *3 *4)) - (-4 *3 (-923 *4)))) - ((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-712)) (-5 *1 (-926 *3 *4)) - (-4 *3 (-927 *4)))) - ((*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-941 *3)) (-4 *3 (-942)))) - ((*1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-712)))) - ((*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-983 *3)) (-4 *3 (-984))))) -(((*1 *2 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-899))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) - ((*1 *1 *1 *1) (-4 *1 (-510))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) - ((*1 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-712))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1089)) (-5 *6 (-108)) - (-4 *7 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-4 *3 (-13 (-1111) (-891) (-29 *7))) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-3 (|:| |f1| (-781 *3)) (|:| |f2| (-591 (-781 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-199 *7 *3)) (-5 *5 (-781 *3))))) + (-592 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-735)) (-4 *3 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) + (-5 *1 (-426 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1071 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286))))) (((*1 *1 *1) - (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-788)) - (-4 *4 (-734)) (-5 *1 (-918 *2 *3 *4 *5)) (-4 *5 (-882 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1035)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-564 *4)) (-5 *6 (-1085 *4)) - (-4 *4 (-13 (-408 *7) (-27) (-1111))) - (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *3) + (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) + (-4 *4 (-327))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) +(((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286))))) +(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7)) + (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) + (-4 *1 (-995 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1019)) (-5 *2 (-823 *3 *5)) (-5 *1 (-819 *3 *4 *5)) + (-4 *3 (-1019)) (-4 *5 (-612 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) + (-4 *9 (-789)) (-4 *3 (-990 *7 *8 *9)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) - (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1018)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-564 *4)) (-5 *6 (-385 (-1085 *4))) - (-4 *4 (-13 (-408 *7) (-27) (-1111))) - (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-993 *7 *8 *9 *3 *4)) (-4 *4 (-995 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) + (-4 *3 (-990 *6 *7 *8)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) - (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-104)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1018)) (-4 *2 (-1018)))) - ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-416 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-897)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-996 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-5 *1 (-1089)))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) + (-4 *9 (-789)) (-4 *3 (-990 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1028 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) + (-4 *3 (-990 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1028 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-327)) + (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -3963 *3)))) + (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-242)))) + ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242))))) +(((*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-713)) (-4 *5 (-160)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-713)) (-4 *5 (-160)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) + (-227 *4 (-385 (-525))))) + (-5 *3 (-592 (-799 *4))) (-14 *4 (-592 (-1090))) (-14 *5 (-713)) + (-5 *1 (-478 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2)) + (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255))))))) (((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) - (-14 *4 (-591 (-1089))))) + (-12 (-4 *3 (-213)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) + (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1125)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) - (-14 *4 (-591 (-1089))))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-620 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-788))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 *4)))) - (-4 *3 (-1018)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-594 *3 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-564 *1)) (-4 *1 (-281))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-807)) - (-5 *5 (-854)) (-5 *6 (-591 (-242))) (-5 *2 (-1172)) - (-5 *1 (-1175)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-591 (-242))) - (-5 *2 (-1172)) (-5 *1 (-1175))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-936))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-975)) (-4 *4 (-788)) - (-5 *2 (-2 (|:| |var| (-564 *1)) (|:| -3987 (-525)))) - (-4 *1 (-408 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-110)) (-4 *4 (-975)) (-4 *4 (-788)) - (-5 *2 (-2 (|:| |var| (-564 *1)) (|:| -3987 (-525)))) - (-4 *1 (-408 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1030)) (-4 *3 (-788)) - (-5 *2 (-2 (|:| |var| (-564 *1)) (|:| -3987 (-525)))) + (-12 (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) + (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1148 *2)) (-4 *2 (-1130)) (-5 *1 (-139 *2 *4 *3)) + (-4 *3 (-1148 (-385 *4)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1029))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525)))) + (-5 *1 (-858 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-883 *4 *6 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) + (-4 *3 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126))))) +(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-797))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-698))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) + (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) + (-5 *1 (-31 *4 *2))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-108)) (-5 *1 (-826 *4)) + (-4 *4 (-1019))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) + (-5 *1 (-284))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2249 *9)))) + (-5 *4 (-713)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1177)) + (-5 *1 (-993 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2249 *9)))) + (-5 *4 (-713)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1177)) + (-5 *1 (-1060 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1090)) + (-4 *5 (-13 (-517) (-967 (-525)) (-138))) + (-5 *2 + (-2 (|:| -3081 (-385 (-886 *5))) (|:| |coeff| (-385 (-886 *5))))) + (-5 *1 (-531 *5)) (-5 *3 (-385 (-886 *5)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-341)) + (-5 *2 + (-2 (|:| A (-632 *5)) + (|:| |eqs| + (-592 + (-2 (|:| C (-632 *5)) (|:| |g| (-1172 *5)) (|:| -3941 *6) + (|:| |rh| *5)))))) + (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) + (-4 *6 (-602 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-341)) (-4 *6 (-602 *5)) + (-5 *2 (-2 (|:| -3471 (-632 *6)) (|:| |vec| (-1172 *5)))) + (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1172 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-375))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -3987 (-712)))) - (-5 *1 (-825 *3)) (-4 *3 (-1018)))) + (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) + (-4 *3 (-1019)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-882 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-2 (|:| |var| *5) (|:| -3987 (-712)))))) + (|partial| -12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) - (-4 *7 (-882 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3987 (-525)))) - (-5 *1 (-883 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) + (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *3)) + (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) - (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) - (-15 -1396 (*7 $)))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) - (-4 *3 (-989 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-992 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) + (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) + (-15 -1945 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-1126)) (-5 *2 (-713))))) +(((*1 *2 *3) + (-12 (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-396 (-1086 *7))) + (-5 *1 (-840 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5))) + (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-855)) (-5 *1 (-1020 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1112) (-892)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1148 *4)) + (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1148 *5)) (-14 *6 (-855)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) + ((*1 *1 *1) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-341)) (-4 *2 (-346))))) +(((*1 *1) (-5 *1 (-1006)))) +(((*1 *2) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-100))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-1095))))) +(((*1 *2 *3) + (-12 (-4 *4 (-429)) (-5 *2 - (-2 (|:| |done| (-591 *4)) - (|:| |todo| (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1027 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-205))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) + (-592 + (-2 (|:| |eigval| (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4)))) + (|:| |eigmult| (-713)) + (|:| |eigvec| (-592 (-632 (-385 (-886 *4)))))))) + (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-886 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) + (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) + ((*1 *2 *1) + (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) + (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-956 (-782 (-525)))) + (-5 *3 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-976)) + (-5 *1 (-550 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-146)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1090)) (-5 *1 (-542 *2)) (-4 *2 (-967 *3)) + (-4 *2 (-341)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)) + (-4 *2 (-13 (-408 *4) (-933) (-1112))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1012 *2)) (-4 *2 (-13 (-408 *4) (-933) (-1112))) + (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-892)) (-5 *2 (-1090)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-892))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-221)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-592 (-1073))) (-5 *3 (-525)) (-5 *4 (-1073)) + (-5 *1 (-221)))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) + ((*1 *2 *1) (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976))))) +(((*1 *2 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-632 (-886 *4))) (-5 *1 (-958 *4)) + (-4 *4 (-976))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1019)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5)) + (-4 *4 (-1019)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1019)) (-4 *4 (-1019)) + (-4 *6 (-1019)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6))))) +(((*1 *1 *1) (-4 *1 (-134))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1 (-357))) (-5 *1 (-968)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) + ((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1019))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5)) + (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1163 *5)) + (-5 *1 (-1165 *5 *2))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108)) + (-5 *1 (-784 *4 *5)) (-14 *4 (-713))))) +(((*1 *2 *1) + (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) + (-14 *4 *2) (-4 *5 (-160)))) + ((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-855)) (-5 *1 (-153 *3 *4)) + (-4 *3 (-154 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-855)))) + ((*1 *2) + (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) + (-5 *2 (-855)))) + ((*1 *2 *3) + (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) + (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-341)) + (-5 *2 (-713)) (-5 *1 (-613 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) + (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-713)) + (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) + ((*1 *2 *3) + (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) + (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) + (-4 *3 (-630 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) + (-5 *2 (-713))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -2249 *7)))) + (-4 *6 (-990 *3 *4 *5)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -2249 *7)))) + (-4 *6 (-990 *3 *4 *5)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1026 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-592 (-898))) (-5 *1 (-270))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-988))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1147 (-525)))))) + (-12 (-4 *4 (-789)) + (-5 *2 + (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4)))) + (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4)))))) + (-5 *1 (-1098 *4)) (-5 *3 (-592 (-592 (-592 *4))))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))) - (-5 *2 (-357)) (-5 *1 (-187))))) -(((*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-351 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1) - (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-591 (-591 *7))) - (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) - (-4 *7 (-788)) (-4 *8 (-882 *5 *6 *7)) (-5 *2 (-591 (-591 *8))) - (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-591 *8)))) + (-2 (|:| |pde| (-592 (-294 (-205)))) + (|:| |constraints| + (-592 + (-2 (|:| |start| (-205)) (|:| |finish| (-205)) + (|:| |grid| (-713)) (|:| |boundaryType| (-525)) + (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) + (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) + (|:| |tol| (-205)))) + (-5 *2 (-108)) (-5 *1 (-192))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) + (-5 *2 (-965)) (-5 *1 (-696))))) +(((*1 *2 *3) + (-12 (-5 *2 (-396 (-1086 (-525)))) (-5 *1 (-173)) (-5 *3 (-525))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-752 *4 *2)) + (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-591 (-591 *7))) - (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) - (-4 *7 (-788)) (-4 *8 (-882 *5 *6 *7)) (-5 *2 (-591 (-591 *8))) - (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-591 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-798 *5))) (-14 *5 (-591 (-1089))) (-4 *6 (-429)) - (-5 *2 - (-2 (|:| |dpolys| (-591 (-227 *5 *6))) - (|:| |coords| (-591 (-525))))) - (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-591 (-227 *5 *6))) (-4 *7 (-429))))) + (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1148 *4)) + (-5 *1 (-752 *4 *2)) + (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1005 *3)) (-4 *3 (-127))))) +(((*1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) + ((*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1030)) (-4 *3 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-408 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) - (-4 *3 (-1018)))) + (-12 (-5 *2 (-797)) (-5 *1 (-1071 *3)) (-4 *3 (-1019)) + (-4 *3 (-1126))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-429)) (-4 *4 (-517)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4082 *4))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) + (-4 *2 (-1148 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525))) + (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) + (-4 *2 + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) + (-15 -1945 ((-1042 *3 (-565 $)) $)) + (-15 -4044 ($ (-1042 *3 (-565 $)))))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)) + (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 *4)))))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-591 *1)) (-4 *1 (-882 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) - (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-591 *3)) - (-5 *1 (-883 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-341) - (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) - (-15 -1396 (*7 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284)))) + (-12 (-5 *2 (-592 (-2 (|:| -2059 *3) (|:| -1784 *4)))) + (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-825 *3)) (|:| |den| (-825 *3)))) - (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-5 *1 (-57 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-57 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-694))))) + (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) + (-5 *2 (-1071 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) + (-4 *3 (-990 *6 *7 *8)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-996 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2249 *9)))) + (-5 *5 (-108)) (-4 *8 (-990 *6 *7 *4)) (-4 *9 (-995 *6 *7 *4 *8)) + (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) + (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -2249 *9)))) + (-5 *1 (-996 *6 *7 *4 *8 *9))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-848 *3)) (-4 *3 (-286))))) +(((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *2)) + (-4 *4 (-37 (-385 (-525))))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-854)) - (-5 *2 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) - (-5 *1 (-324 *4)) (-4 *4 (-327))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-51))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-712)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) - (-4 *2 (-1147 *4))))) -(((*1 *1) (-5 *1 (-744)))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))) -(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1) (-4 *1 (-899))) ((*1 *1 *1) (-5 *1 (-1036)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-1013 (-205))) (-5 *2 (-860)) - (-5 *1 (-858 *3)) (-4 *3 (-566 (-501))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-860)) (-5 *1 (-858 *3)) - (-4 *3 (-566 (-501))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-860)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-860))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-286)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3965 *1))) - (-4 *1 (-286))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-727))))) + (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1172 (-641))) (-5 *1 (-284))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-1130)) + (-4 *6 (-1148 (-385 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-320 *4 *5 *6))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4250)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1018)) - (-4 *3 (-1125)) (-4 *3 (-1018)) (-5 *2 (-108))))) + (-12 (-4 *1 (-908 *4 *5 *6 *3)) (-4 *4 (-976)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1073)) (-5 *2 (-195 (-475))) (-5 *1 (-777))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2)) + (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) + (-4 *5 (-517)) (-5 *2 (-592 (-592 (-886 *5)))) (-5 *1 (-1096 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-976)) (-5 *2 (-1172 *3)) (-5 *1 (-655 *3 *4)) + (-4 *4 (-1148 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1126)) (-4 *3 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090))))) +(((*1 *1) (-4 *1 (-327)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341)) + (-5 *2 (-713)) (-5 *1 (-879 *5 *6)) (-4 *6 (-1148 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-592 *5)) (-4 *5 (-1148 *3)) (-4 *3 (-286)) + (-5 *2 (-108)) (-5 *1 (-432 *3 *5))))) (((*1 *2) - (-12 (-4 *4 (-341)) (-5 *2 (-854)) (-5 *1 (-306 *3 *4)) - (-4 *3 (-307 *4)))) - ((*1 *2) - (-12 (-4 *4 (-341)) (-5 *2 (-774 (-854))) (-5 *1 (-306 *3 *4)) - (-4 *3 (-307 *4)))) - ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-854)))) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900))))) +(((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-764))))) +(((*1 *2) + (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) + (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-774 (-854)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-723 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-895 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517)) - (-4 *3 (-975)) (-4 *2 (-733)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-1085 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-902)) (-4 *2 (-126)) (-5 *1 (-1091 *3)) (-4 *3 (-517)) - (-4 *3 (-975)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-1144 *4 *3)) (-14 *4 (-1089)) - (-4 *3 (-975))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-713))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) - ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) - ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))) + (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242))))) (((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-429)) - (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-908 *3 *4 *5 *6)))) + (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2)) + (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-591 *7)) (-5 *3 (-108)) (-4 *7 (-989 *4 *5 *6)) - (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *1 (-908 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) -(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-902))))) + (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)))) + (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-1116 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308)))) + ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308)))) + ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308)))) + ((*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-308)))) + ((*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-308)))) + ((*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-308)))) + ((*1 *1) (-5 *1 (-308)))) +(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))) (((*1 *2 *3) - (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1147 *4)) - (-5 *2 (-2 (|:| -3125 (-572 *4 *5)) (|:| -3484 (-385 *5)))) - (-5 *1 (-572 *4 *5)) (-5 *3 (-385 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) - (-14 *3 (-854)) (-4 *4 (-975)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-429)) (-4 *3 (-975)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1147 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-591 (-1089))) (-4 *2 (-160)) - (-4 *4 (-218 (-2028 *5) (-712))) - (-14 *6 - (-1 (-108) (-2 (|:| -3229 *3) (|:| -3987 *4)) - (-2 (|:| -3229 *3) (|:| -3987 *4)))) - (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-788)) - (-4 *7 (-882 *2 *4 (-798 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1085 (-1085 *5)))) - (-5 *1 (-1124 *5)) (-5 *3 (-1085 (-1085 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-341)) (-4 *3 (-975)) - (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-790 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-975)) - (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-791 *5 *3)) - (-4 *3 (-790 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) - ((*1 *1 *1 *1) (-4 *1 (-450))) - ((*1 *1 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) - ((*1 *2 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-816)))) - ((*1 *1 *1) (-5 *1 (-902))) - ((*1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160))))) -(((*1 *2) - (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) - (-5 *1 (-995 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) - (-5 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-796))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-138) (-27) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *5 (-1147 *4)) (-5 *2 (-1085 (-385 *5))) (-5 *1 (-567 *4 *5)) - (-5 *3 (-385 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1147 *5)) - (-4 *5 (-13 (-138) (-27) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 (-1085 (-385 *6))) (-5 *1 (-567 *5 *6)) (-5 *3 (-385 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284))))) + (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *2 (-592 *3)) (-5 *1 (-909 *4 *5 *6 *3)) + (-4 *3 (-990 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1018) (-966 *5))) - (-4 *5 (-819 *4)) (-4 *4 (-1018)) (-5 *2 (-1 (-108) *5)) - (-5 *1 (-864 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-591 (-876 *4))) (-4 *1 (-1050 *4)) (-4 *4 (-975)) - (-5 *2 (-712))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-699))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-1085 *3)) - (-4 *3 (-13 (-408 *6) (-27) (-1111))) - (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) - (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1018)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-385 (-1085 *3))) - (-4 *3 (-13 (-408 *6) (-27) (-1111))) - (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 (-2 (|:| -2428 *3) (|:| |coeff| *3))) - (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1018))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1111)))) - ((*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-564 *3)) (-4 *3 (-788))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-108)) - (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD)))) - (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) - (-5 *2 (-964)) (-5 *1 (-698))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-525))) (-5 *4 (-838 (-525))) - (-5 *2 (-631 (-525))) (-5 *1 (-546)))) + (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) + (-5 *2 (-886 *5)) (-5 *1 (-878 *4 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 *2)) + (-5 *2 (-357)) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) + (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-591 (-631 (-525)))) - (-5 *1 (-546)))) + (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) + (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) + (-4 *5 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) + (-4 *4 (-567 *2)) (-5 *2 (-357)) (-5 *1 (-727 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-525))) (-5 *4 (-591 (-838 (-525)))) - (-5 *2 (-591 (-631 (-525)))) (-5 *1 (-546))))) + (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) + (-4 *5 (-789)) (-4 *5 (-567 *2)) (-5 *2 (-357)) + (-5 *1 (-727 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *6)) (-5 *4 (-591 (-1089))) (-4 *6 (-341)) - (-5 *2 (-591 (-273 (-885 *6)))) (-5 *1 (-503 *5 *6 *7)) - (-4 *5 (-429)) (-4 *7 (-13 (-341) (-786)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3))))) -(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *2 (-357)) (-5 *1 (-174))))) + (-592 + (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) + (|:| |wcond| (-592 (-886 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *5)))))))))) + (-5 *4 (-1073)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-883 *5 *7 *6)) + (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-525)) + (-5 *1 (-858 *5 *6 *7 *8))))) +(((*1 *1 *1) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-1019))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-5 *2 (-1177)) (-5 *1 (-1093)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1090)) + (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *2 (-1177)) + (-5 *1 (-1093)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1090)) + (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) (-5 *2 (-1177)) + (-5 *1 (-1093))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) + (-4 *5 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *5)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) + (-4 *5 (-976)) (-4 *7 (-976)) (-4 *2 (-1148 *5)) + (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1148 *2))))) (((*1 *2) - (-12 (-5 *2 (-1171 (-1019 *3 *4))) (-5 *1 (-1019 *3 *4)) - (-14 *3 (-854)) (-14 *4 (-854))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-712)) (-5 *4 (-854)) (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-712)) (-5 *4 (-854)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1070 (-525))) (-5 *1 (-1074 *4)) (-4 *4 (-975)) - (-5 *3 (-525))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019))))) +(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-903))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) + (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) + (-5 *2 + (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-592 *8)) + (|:| |Lfact| + (-592 (-2 (|:| -2961 (-1086 *8)) (|:| -1737 (-525))))) + (|:| |ctpol| *8))) + (-5 *1 (-685 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-1085 (-385 (-885 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *1 *1) (-5 *1 (-205))) - ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *1 *1) (-5 *1 (-357))) ((*1 *1) (-5 *1 (-357)))) + (|partial| -12 (-5 *2 (-986 (-954 *3) (-1086 (-954 *3)))) + (-5 *1 (-954 *3)) (-4 *3 (-13 (-787) (-341) (-952)))))) +(((*1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-346)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4)) + (-4 *4 (-327)))) + ((*1 *2 *1) + (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1019)) + (-14 *4 + (-1 (-108) (-2 (|:| -3381 *2) (|:| -1737 *3)) + (-2 (|:| -3381 *2) (|:| -1737 *3))))))) (((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) - (-4 *4 (-327))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-712)) - (-4 *3 (-13 (-668) (-346) (-10 -7 (-15 ** (*3 *3 (-525)))))) - (-5 *1 (-226 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111))))) - ((*1 *1 *1 *1) (-4 *1 (-734)))) + (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1109 *3)) (-4 *3 (-976))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3048 *3) (|:| |coef1| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) - (-4 *3 (-13 (-341) (-1111) (-932)))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) - (-12 (-5 *2 (-885 (-357))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-385 (-885 (-357)))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-357))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-885 (-525))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-385 (-885 (-525)))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) - (-4 *5 (-966 (-525))) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 *2)) - (-14 *4 (-591 *2)) (-4 *5 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) - (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))))) - ((*1 *1 *2) (-12 (-5 *2 (-631 (-385 (-885 (-525))))) (-4 *1 (-362)))) - ((*1 *1 *2) (-12 (-5 *2 (-631 (-385 (-885 (-357))))) (-4 *1 (-362)))) - ((*1 *1 *2) (-12 (-5 *2 (-631 (-885 (-525)))) (-4 *1 (-362)))) - ((*1 *1 *2) (-12 (-5 *2 (-631 (-885 (-357)))) (-4 *1 (-362)))) - ((*1 *1 *2) (-12 (-5 *2 (-631 (-294 (-525)))) (-4 *1 (-362)))) - ((*1 *1 *2) (-12 (-5 *2 (-631 (-294 (-357)))) (-4 *1 (-362)))) - ((*1 *1 *2) (-12 (-5 *2 (-385 (-885 (-525)))) (-4 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-385 (-885 (-357)))) (-4 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-885 (-525))) (-4 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-885 (-357))) (-4 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 (-385 (-885 (-525))))) (-4 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 (-385 (-885 (-357))))) (-4 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 (-885 (-525)))) (-4 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 (-885 (-357)))) (-4 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 (-294 (-525)))) (-4 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 (-294 (-357)))) (-4 *1 (-418)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (|:| |mdnia| - (-2 (|:| |fn| (-294 (-205))) - (|:| -3756 (-591 (-1013 (-781 (-205))))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) - (-5 *1 (-710)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))) - (-5 *1 (-749)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) - (|:| |lb| (-591 (-781 (-205)))) - (|:| |cf| (-591 (-294 (-205)))) - (|:| |ub| (-591 (-781 (-205)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-591 (-294 (-205)))) - (|:| -3492 (-591 (-205))))))) - (-5 *1 (-779)))) - ((*1 *2 *1) - (-12 + (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 - (-2 (|:| |pde| (-591 (-294 (-205)))) - (|:| |constraints| - (-591 - (-2 (|:| |start| (-205)) (|:| |finish| (-205)) - (|:| |grid| (-712)) (|:| |boundaryType| (-525)) - (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) - (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) - (|:| |tol| (-205)))) - (-5 *1 (-831)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *1 (-907 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) - (-3150 - (-12 (-5 *2 (-885 *3)) - (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) - (-3389 (-4 *3 (-37 (-525)))) (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) - (-4 *5 (-788))) - (-12 (-5 *2 (-885 *3)) - (-12 (-3389 (-4 *3 (-510))) (-3389 (-4 *3 (-37 (-385 (-525))))) - (-4 *3 (-37 (-525))) (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) - (-4 *5 (-788))) - (-12 (-5 *2 (-885 *3)) - (-12 (-3389 (-4 *3 (-923 (-525)))) (-4 *3 (-37 (-385 (-525)))) - (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) (-4 *4 (-734)) - (-4 *5 (-788))))) - ((*1 *1 *2) - (-3150 - (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) - (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) - (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))) - (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))))) - ((*1 *1 *2) - (-12 (-5 *2 (-885 (-385 (-525)))) (-4 *1 (-989 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089))) (-4 *3 (-975)) - (-4 *4 (-734)) (-4 *5 (-788))))) -(((*1 *2) - (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) - (-5 *2 (-712)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-712))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) - (-4 *9 (-989 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-734)) - (-4 *8 (-788)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1505 (-591 *9)))) - (-5 *3 (-591 *9)) (-4 *1 (-1119 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -1505 (-591 *8)))) - (-5 *3 (-591 *8)) (-4 *1 (-1119 *5 *6 *7 *8))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-942))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1018)) (-4 *2 (-833 *4)) (-5 *1 (-633 *4 *2 *5 *3)) - (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4250))))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *1 *1) (-4 *1 (-1053)))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-126)))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-591 *9)) (-5 *3 (-1 (-108) *9)) - (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-989 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-734)) (-4 *8 (-788)) - (-5 *1 (-908 *6 *7 *8 *9))))) + (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) + (|:| |success| (-108)))) + (-5 *1 (-731)) (-5 *5 (-525))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-396 *2)) (-4 *2 (-517))))) +(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-932) (-1111))) - (-4 *4 (-13 (-517) (-788))) - (-4 *2 (-13 (-408 (-157 *4)) (-932) (-1111))) - (-5 *1 (-554 *4 *5 *2))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-510)))) -(((*1 *1 *1) (-4 *1 (-984))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1147 *6)) - (-4 *6 (-13 (-341) (-138) (-966 *4))) (-5 *4 (-525)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) - (|:| -2203 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-945 *6 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-712)) (-4 *5 (-327)) (-4 *6 (-1147 *5)) - (-5 *2 - (-591 - (-2 (|:| -3612 (-631 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-631 *6))))) - (-5 *1 (-471 *5 *6 *7)) - (-5 *3 - (-2 (|:| -3612 (-631 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-631 *6)))) - (-4 *7 (-1147 *6))))) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) + (-5 *1 (-1029))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-385 *6)) (-4 *5 (-1129)) (-4 *6 (-1147 *5)) - (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *3) (|:| |radicand| *6))) - (-5 *1 (-139 *5 *6 *7)) (-5 *4 (-712)) (-4 *7 (-1147 *3))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-788)) - (-4 *5 (-734)) (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-882 *3 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-975)) (-5 *1 (-1143 *4 *2)) - (-4 *2 (-1147 *4))))) + (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) (((*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-837 *4)) - (-4 *4 (-1018)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-837 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) - (-5 *1 (-698))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-357)) (-5 *1 (-987))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-517)) (-4 *4 (-788)) - (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-414))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-712)) (-4 *5 (-341)) (-5 *2 (-385 *6)) - (-5 *1 (-800 *5 *4 *6)) (-4 *4 (-1162 *5)) (-4 *6 (-1147 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-712)) (-5 *4 (-1163 *5 *6 *7)) (-4 *5 (-341)) - (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-385 (-1144 *6 *5))) - (-5 *1 (-801 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-712)) (-5 *4 (-1163 *5 *6 *7)) (-4 *5 (-341)) - (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-385 (-1144 *6 *5))) - (-5 *1 (-801 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653))))) (((*1 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *5 (-346)) - (-5 *2 (-712))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-414))))) -(((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-902))))) -(((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) - (-4 *4 (-327))))) + (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) + (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-592 (-2 (|:| |k| (-827 *3)) (|:| |c| *4)))) + (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) + (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) + ((*1 *2 *1) + (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-827 *3)) (-4 *3 (-789))))) +(((*1 *2 *1) + (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-5 *2 (-108))))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-169))))) +(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969))))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-385 (-885 *5)))) (-5 *4 (-591 (-1089))) - (-4 *5 (-517)) (-5 *2 (-591 (-591 (-885 *5)))) (-5 *1 (-1095 *5))))) + (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-883 *7 *5 *6)) + (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-286))))) +(((*1 *1) (-5 *1 (-445)))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) - (-4 *4 (-1147 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-846 *4 *5)) - (-4 *5 (-1147 (-385 *4)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-712)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1163 *4)) + (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1071 *4) (-1071 *4))) + (-5 *1 (-1165 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) + (-4 *3 (-1148 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-592 *11)) + (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -2249 *11)))))) + (-5 *6 (-713)) + (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -2249 *11)))) + (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-990 *7 *8 *9)) + (-4 *11 (-995 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) + (-4 *9 (-789)) (-5 *1 (-993 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-592 *11)) + (|:| |todo| (-592 (-2 (|:| |val| *3) (|:| -2249 *11)))))) + (-5 *6 (-713)) + (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -2249 *11)))) + (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-4 *10 (-990 *7 *8 *9)) + (-4 *11 (-1028 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) + (-4 *9 (-789)) (-5 *1 (-1060 *7 *8 *9 *10 *11))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713)))) + ((*1 *1 *1) (-4 *1 (-380)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-1148 *4)) (-4 *4 (-976)) + (-5 *2 (-1172 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) + (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) + (-4 *2 (-630 *3 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) + (-4 *3 (-1148 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1122 *3)) + (-5 *1 (-732 *3)) (-4 *3 (-906)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-108)) + (-5 *1 (-1122 *2)) (-4 *2 (-906))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) + (-4 *2 (-1148 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1073)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-838 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))) + ((*1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3)) + (-4 *3 (-351 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3523 *3) (|:| -3987 (-712)))) (-5 *1 (-543 *3)) - (-4 *3 (-510))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-591 *3)) (|:| |image| (-591 *3)))) - (-5 *1 (-838 *3)) (-4 *3 (-1018))))) -(((*1 *2 *2) (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-975)))) - ((*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-975))))) -(((*1 *1 *1) - (-12 (-4 *2 (-286)) (-4 *3 (-923 *2)) (-4 *4 (-1147 *3)) - (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-966 *3)))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) + (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-924 *4)) (-4 *4 (-517)) + (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) + (-5 *1 (-635 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) + (-4 *6 (-1148 *5)) + (-5 *2 (-2 (|:| -3941 *7) (|:| |rh| (-592 (-385 *6))))) + (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6))) + (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1141 *4 *5 *3)) + (-4 *3 (-1148 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)) + (-4 *4 (-976))))) +(((*1 *1 *1) (-5 *1 (-47))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1126)) + (-4 *2 (-1126)) (-5 *1 (-56 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1019)) (|has| *1 (-6 -4254)) + (-4 *1 (-142 *2)) (-4 *2 (-1126)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) + (-4 *2 (-1126)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) + (-4 *2 (-1126)))) + ((*1 *2 *3) + (-12 (-4 *4 (-976)) + (-5 *2 (-2 (|:| -3932 (-1086 *4)) (|:| |deg| (-855)))) + (-5 *1 (-201 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-13 (-517) (-789))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) + (-4 *6 (-1126)) (-4 *2 (-1126)) (-5 *1 (-219 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1148 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789)))) + ((*1 *1 *1) + (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1148 *2)) + (-4 *4 (-1148 (-385 *3))) (-4 *5 (-320 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1126)) (-4 *2 (-1126)) + (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1019)) (-4 *2 (-1019)) + (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2)))) + ((*1 *1 *1) (-5 *1 (-468))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1126)) + (-4 *2 (-1126)) (-5 *1 (-590 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-976)) (-4 *2 (-976)) + (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2)) + (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-341)) + (-4 *3 (-160)) (-4 *1 (-667 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1148 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-891 *5)) (-4 *5 (-1126)) + (-4 *2 (-1126)) (-5 *1 (-890 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *2 (-883 *3 *4 *5)) + (-14 *6 (-592 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-976)) (-4 *2 (-976)) + (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) + (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2)) + (-5 *1 (-981 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-979 *5 *6 *7 *8 *9)) (-4 *12 (-979 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1071 *5)) (-4 *5 (-1126)) + (-4 *2 (-1126)) (-5 *1 (-1069 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) + (-4 *1 (-1120 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735)) + (-4 *7 (-789)) (-4 *2 (-990 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1172 *5)) (-4 *5 (-1126)) + (-4 *2 (-1126)) (-5 *1 (-1171 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) + (-5 *2 (-965)) (-5 *1 (-697))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-108)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) + (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3048 *4))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-4 *2 (-1019)) + (-5 *1 (-823 *4 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) + (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125))))) +(((*1 *2 *2) + (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) + (-15 -1945 ((-1042 *3 (-565 $)) $)) + (-15 -4044 ($ (-1042 *3 (-565 $)))))))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-682 *4 *5)) (-4 *4 (-975)) - (-4 *5 (-788)) (-5 *2 (-885 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-682 *4 *5)) (-4 *4 (-975)) - (-4 *5 (-788)) (-5 *2 (-885 *4)))) + (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-1162 *4)) (-4 *4 (-975)) - (-5 *2 (-885 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-1162 *4)) (-4 *4 (-975)) - (-5 *2 (-885 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-712)) (-5 *2 (-108)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1126 *3)) (-4 *3 (-1018)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1018)) (-5 *2 (-108)) - (-5 *1 (-1126 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-510))))) -(((*1 *1) (-5 *1 (-1092)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1072)) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-964)) - (-5 *1 (-692))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-691))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1085 *3)) (-4 *3 (-975)) (-4 *1 (-1147 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-689))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-357)) (-5 *1 (-92))))) -(((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-429))))) -(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1125))))) + (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1112))) + (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 (-1086 (-385 (-1086 *6)))) (-5 *1 (-521 *5 *6 *7)) + (-5 *3 (-1086 *6)) (-4 *7 (-1019)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1148 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-976)))) + ((*1 *2 *1) + (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-592 *10)) + (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789)) + (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-883 *11 *9 *10)) + (-5 *2 (-592 (-1086 *5))) (-5 *1 (-685 *9 *10 *11 *5)) + (-5 *3 (-1086 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-883 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *2 *6)) + (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2))))) (((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-712)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-854)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-713)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-855)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) + (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-146)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-854)) (-5 *1 (-146)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-146)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111))) + (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112))) (-5 *1 (-207 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1125)) (-4 *2 (-668)))) + (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1125)) (-4 *2 (-668)))) + (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-273 *2)) (-4 *2 (-1030)) (-4 *2 (-1125)))) + (-12 (-5 *1 (-273 *2)) (-4 *2 (-1031)) (-4 *2 (-1126)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-273 *2)) (-4 *2 (-1030)) (-4 *2 (-1125)))) + (-12 (-5 *1 (-273 *2)) (-4 *2 (-1031)) (-4 *2 (-1126)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-126)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1018)))) + (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-126)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1019)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1019)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-359 *3 *2)) (-4 *3 (-975)) (-4 *2 (-788)))) + (-12 (-5 *1 (-359 *3 *2)) (-4 *3 (-976)) (-4 *2 (-789)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-975)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) + (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1019)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) - (-4 *6 (-218 (-2028 *3) (-712))) + (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) + (-4 *6 (-218 (-1696 *3) (-713))) (-14 *7 - (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *6)) - (-2 (|:| -3229 *5) (|:| -3987 *6)))) - (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-788)) - (-4 *2 (-882 *4 *6 (-798 *3))))) + (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *6)) + (-2 (|:| -3381 *5) (|:| -1737 *6)))) + (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-789)) + (-4 *2 (-883 *4 *6 (-799 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) - (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) + (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) + (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) ((*1 *1 *1 *1) (-5 *1 (-501))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-975)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-975)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-982)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-626 *5 *6 *7)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-976)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-976)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-983)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1019)) + (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-627 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-629 *3 *2 *4)) (-4 *3 (-975)) (-4 *2 (-351 *3)) + (-12 (-4 *1 (-630 *3 *2 *4)) (-4 *3 (-976)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-629 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-351 *3)) + (-12 (-4 *1 (-630 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) + (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-662))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) + ((*1 *1 *1 *1) (-4 *1 (-663))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1147 *3)) (-4 *3 (-517)) - (-5 *1 (-901 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-981 *2)) (-4 *2 (-982)))) - ((*1 *1 *1 *1) (-4 *1 (-1030))) + (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-517)) + (-5 *1 (-902 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-983)))) + ((*1 *1 *1 *1) (-4 *1 (-1031))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-975)) (-4 *2 (-218 *3 *4)) + (-12 (-4 *1 (-1040 *3 *4 *2 *5)) (-4 *4 (-976)) (-4 *2 (-218 *3 *4)) (-4 *5 (-218 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1039 *3 *4 *5 *2)) (-4 *4 (-975)) (-4 *5 (-218 *3 *4)) + (-12 (-4 *1 (-1040 *3 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-788)) (-5 *1 (-1042 *3 *4 *2)) - (-4 *2 (-882 *3 (-497 *4) *4)))) + (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-5 *1 (-1043 *3 *4 *2)) + (-4 *2 (-883 *3 (-497 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-876 (-205))) (-5 *3 (-205)) (-5 *1 (-1122)))) + (-12 (-5 *2 (-877 (-205))) (-5 *3 (-205)) (-5 *1 (-1123)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-668)))) + (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-668)))) + (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-525)) (-4 *1 (-1169 *3)) (-4 *3 (-1125)) (-4 *3 (-21)))) + (-12 (-5 *2 (-525)) (-4 *1 (-1170 *3)) (-4 *3 (-1126)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) + (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-788)) (-4 *2 (-975)))) + (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-975)) (-4 *3 (-784))))) -(((*1 *1) (-5 *1 (-1005)))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-339 (-110))) (-4 *2 (-975)) (-5 *1 (-656 *2 *4)) - (-4 *4 (-593 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-339 (-110))) (-5 *1 (-775 *2)) (-4 *2 (-975))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1018)) (-4 *2 (-833 *5)) (-5 *1 (-633 *5 *2 *3 *4)) - (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4250))))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1111))) (-5 *2 (-108))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-357)) (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173))))) + (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-976)) + (-5 *2 (-525)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1148 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-976)) + (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1148 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-976)) + (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1148 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) - (-5 *2 (-591 (-885 *4))))) - ((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-591 (-885 *4))) (-5 *1 (-394 *3 *4)) - (-4 *3 (-395 *4)))) - ((*1 *2) - (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-591 (-885 *3))))) - ((*1 *2) - (-12 (-5 *2 (-591 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 (-430 *4 *5 *6 *7))) (-5 *2 (-591 (-885 *4))) - (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *4 (-160)) - (-14 *5 (-854)) (-14 *6 (-591 (-1089))) (-14 *7 (-1171 (-631 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-806 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-157 (-205)))) - (-5 *2 (-964)) (-5 *1 (-696))))) + (-12 (-4 *4 (-327)) (-5 *2 (-891 (-1086 *4))) (-5 *1 (-335 *4)) + (-5 *3 (-1086 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-138)) - (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-908 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *2 (-591 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1147 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1089)) - (-4 *4 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1121 *3)) - (-5 *1 (-731 *3)) (-4 *3 (-905)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-108)) - (-5 *1 (-1121 *2)) (-4 *2 (-905))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-741)) - (-5 *3 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))) - (-5 *2 (-964))))) -(((*1 *2 *3) - (-12 (-4 *1 (-828)) - (-5 *3 - (-2 (|:| |pde| (-591 (-294 (-205)))) - (|:| |constraints| - (-591 - (-2 (|:| |start| (-205)) (|:| |finish| (-205)) - (|:| |grid| (-712)) (|:| |boundaryType| (-525)) - (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) - (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) - (|:| |tol| (-205)))) - (-5 *2 (-964))))) -(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-712))) - ((*1 *1 *1 *1) (-5 *1 (-796)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) + (-14 *4 *2)))) +(((*1 *1 *1 *1) (-4 *1 (-900)))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) + (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517))) + (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-897))) (-5 *1 (-104)))) - ((*1 *2 *1) (-12 (-5 *2 (-44 (-1072) (-715))) (-5 *1 (-110))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 (-294 (-205)))) (-5 *2 (-1171 (-294 (-357)))) - (-5 *1 (-284))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1018))))) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2124 *3))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-31 *3 *4)) - (-4 *4 (-408 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-712)) (-5 *1 (-110)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-110)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *4)) - (-4 *4 (-408 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-110)) (-5 *1 (-151)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *4)) - (-4 *4 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281)))) - ((*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *4 (-788)) (-5 *1 (-407 *3 *4)) - (-4 *3 (-408 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *4)) - (-4 *4 (-408 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *4)) - (-4 *4 (-13 (-408 *3) (-932) (-1111)))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1070 *4)) (-5 *3 (-525)) (-4 *4 (-975)) - (-5 *1 (-1074 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-525)) (-5 *1 (-1163 *3 *4 *5)) (-4 *3 (-975)) - (-14 *4 (-1089)) (-14 *5 *3)))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-92))))) -(((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *1)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1119 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-822 *4 *5)) (-5 *3 (-822 *4 *6)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-611 *5)) (-5 *1 (-818 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) - (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-784))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-4 *2 (-1018)) (-5 *1 (-623 *5 *6 *2))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-422 *3)) (-4 *3 (-975))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-964)) (-5 *3 (-1089)) (-5 *1 (-246))))) -(((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-989 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3192 *6) (|:| |sol?| (-108))) (-525) - *6)) - (-4 *6 (-341)) (-4 *7 (-1147 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) - (-2 (|:| -2428 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) - (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-591 *1)) (|has| *1 (-6 -4251)) (-4 *1 (-940 *3)) - (-4 *3 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-4 *8 (-882 *5 *7 *6)) - (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) - (-4 *7 (-734)) - (-5 *2 - (-591 - (-2 (|:| |eqzro| (-591 *8)) (|:| |neqzro| (-591 *8)) - (|:| |wcond| (-591 (-885 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *5)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *5)))))))))) - (-5 *1 (-857 *5 *6 *7 *8)) (-5 *4 (-591 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-591 (-1089))) (-4 *8 (-882 *5 *7 *6)) - (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) - (-4 *7 (-734)) - (-5 *2 - (-591 - (-2 (|:| |eqzro| (-591 *8)) (|:| |neqzro| (-591 *8)) - (|:| |wcond| (-591 (-885 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *5)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *5)))))))))) - (-5 *1 (-857 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 *7)) (-4 *7 (-882 *4 *6 *5)) - (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) - (-5 *2 - (-591 - (-2 (|:| |eqzro| (-591 *7)) (|:| |neqzro| (-591 *7)) - (|:| |wcond| (-591 (-885 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *4)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *4)))))))))) - (-5 *1 (-857 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *5 (-854)) (-4 *9 (-882 *6 *8 *7)) - (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-788) (-566 (-1089)))) - (-4 *8 (-734)) - (-5 *2 - (-591 - (-2 (|:| |eqzro| (-591 *9)) (|:| |neqzro| (-591 *9)) - (|:| |wcond| (-591 (-885 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *6)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *6)))))))))) - (-5 *1 (-857 *6 *7 *8 *9)) (-5 *4 (-591 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-591 (-1089))) (-5 *5 (-854)) - (-4 *9 (-882 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) - (-4 *7 (-13 (-788) (-566 (-1089)))) (-4 *8 (-734)) - (-5 *2 - (-591 - (-2 (|:| |eqzro| (-591 *9)) (|:| |neqzro| (-591 *9)) - (|:| |wcond| (-591 (-885 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *6)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *6)))))))))) - (-5 *1 (-857 *6 *7 *8 *9)))) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) + (-4 *3 (-995 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-854)) (-4 *8 (-882 *5 *7 *6)) - (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) - (-4 *7 (-734)) - (-5 *2 - (-591 - (-2 (|:| |eqzro| (-591 *8)) (|:| |neqzro| (-591 *8)) - (|:| |wcond| (-591 (-885 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *5)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *5)))))))))) - (-5 *1 (-857 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-591 *9)) (-5 *5 (-1072)) - (-4 *9 (-882 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) - (-4 *7 (-13 (-788) (-566 (-1089)))) (-4 *8 (-734)) (-5 *2 (-525)) - (-5 *1 (-857 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-591 (-1089))) (-5 *5 (-1072)) - (-4 *9 (-882 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) - (-4 *7 (-13 (-788) (-566 (-1089)))) (-4 *8 (-734)) (-5 *2 (-525)) - (-5 *1 (-857 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-1072)) (-4 *8 (-882 *5 *7 *6)) - (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) - (-4 *7 (-734)) (-5 *2 (-525)) (-5 *1 (-857 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-631 *10)) (-5 *4 (-591 *10)) (-5 *5 (-854)) - (-5 *6 (-1072)) (-4 *10 (-882 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) - (-4 *8 (-13 (-788) (-566 (-1089)))) (-4 *9 (-734)) (-5 *2 (-525)) - (-5 *1 (-857 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-631 *10)) (-5 *4 (-591 (-1089))) (-5 *5 (-854)) - (-5 *6 (-1072)) (-4 *10 (-882 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) - (-4 *8 (-13 (-788) (-566 (-1089)))) (-4 *9 (-734)) (-5 *2 (-525)) - (-5 *1 (-857 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *9)) (-5 *4 (-854)) (-5 *5 (-1072)) - (-4 *9 (-882 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) - (-4 *7 (-13 (-788) (-566 (-1089)))) (-4 *8 (-734)) (-5 *2 (-525)) - (-5 *1 (-857 *6 *7 *8 *9))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *3 (-517))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) - (-5 *1 (-690))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *1) (-5 *1 (-445)))) -(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-712))) - ((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-975))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 (-157 (-525))))) (-5 *2 (-591 (-157 *4))) - (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-786))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 (-385 (-885 (-157 (-525)))))) - (-5 *4 (-591 (-1089))) (-5 *2 (-591 (-591 (-157 *5)))) - (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-786)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-847 *3)) (-4 *3 (-286))))) -(((*1 *2 *1) - (-12 (-4 *3 (-975)) (-5 *2 (-1171 *3)) (-5 *1 (-654 *3 *4)) - (-4 *4 (-1147 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *3)) - (-4 *3 (-994 *4 *5 *6 *7)))) + (-12 (-5 *4 (-592 *3)) (-4 *3 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) + (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-920 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *1 (-1121 *3)) - (-4 *3 (-905))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-712))) (-5 *3 (-108)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-854)) (-4 *5 (-975))))) -(((*1 *1 *2) (-12 (-5 *2 (-854)) (-4 *1 (-346)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1171 *4)) (-5 *1 (-495 *4)) - (-4 *4 (-327)))) - ((*1 *2 *1) - (-12 (-4 *2 (-788)) (-5 *1 (-655 *2 *3 *4)) (-4 *3 (-1018)) - (-14 *4 - (-1 (-108) (-2 (|:| -3229 *2) (|:| -3987 *3)) - (-2 (|:| -3229 *2) (|:| -3987 *3))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) (-4 *7 (-1147 *5)) (-4 *4 (-666 *5 *7)) - (-5 *2 (-2 (|:| -2928 (-631 *6)) (|:| |vec| (-1171 *5)))) - (-5 *1 (-752 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 *10)) - (-5 *1 (-573 *5 *6 *7 *8 *9 *10)) (-4 *9 (-994 *5 *6 *7 *8)) - (-4 *10 (-1027 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) - (-14 *6 (-591 (-1089))) (-5 *2 (-591 (-972 *5 *6))) - (-5 *1 (-576 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) - (-14 *6 (-591 (-1089))) - (-5 *2 - (-591 (-1060 *5 (-497 (-798 *6)) (-798 *6) (-721 *5 (-798 *6))))) - (-5 *1 (-576 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-591 (-956 *5 *6 *7 *8))) (-5 *1 (-956 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-591 (-956 *5 *6 *7 *8))) (-5 *1 (-956 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) - (-14 *6 (-591 (-1089))) (-5 *2 (-591 (-972 *5 *6))) - (-5 *1 (-972 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-994 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-591 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-591 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-1119 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1138 (-525))) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-596 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-517))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-760 *3)) (|:| |rm| (-760 *3)))) - (-5 *1 (-760 *3)) (-4 *3 (-788)))) - ((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) -(((*1 *1 *1 *1) (-4 *1 (-510)))) -(((*1 *2 *1) - (-12 (-4 *2 (-1018)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) - (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-784))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-4 *3 (-1018)) - (-5 *2 (-108))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1018)) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1171 *6)) (-5 *4 (-1171 (-525))) (-5 *5 (-525)) - (-4 *6 (-1018)) (-5 *2 (-1 *6)) (-5 *1 (-947 *6))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1018)) (-5 *2 (-108)) - (-5 *1 (-822 *4 *5)) (-4 *5 (-1018)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-825 *5)) (-4 *5 (-1018)) (-5 *2 (-108)) - (-5 *1 (-823 *5 *3)) (-4 *3 (-1125)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *6)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) - (-4 *6 (-1125)) (-5 *2 (-108)) (-5 *1 (-823 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-975))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1013 (-205))) - (-5 *5 (-108)) (-5 *2 (-1173)) (-5 *1 (-236))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1171 *4)) (-4 *4 (-587 *5)) (-4 *5 (-341)) - (-4 *5 (-517)) (-5 *2 (-1171 *5)) (-5 *1 (-586 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1171 *4)) (-4 *4 (-587 *5)) - (-3389 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1171 (-385 *5))) - (-5 *1 (-586 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-763))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-1112 *3))) (-5 *1 (-1112 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)) - (-4 *2 (-517)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-517))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) - (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-712))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-517)))) - ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1147 *3)) (-4 *3 (-517)) - (-5 *1 (-901 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-978 *3 *4 *2 *5 *6)) (-4 *2 (-975)) - (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-694))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517)) - (-4 *3 (-1125))))) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-592 *3)) (-4 *3 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) + (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-1026 *5 *6 *7 *8 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) + (-4 *4 (-1148 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-847 *4 *5)) + (-4 *5 (-1148 (-385 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) - (-4 *1 (-666 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1147 *5)) - (-5 *2 (-631 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-854)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1085 *1)) - (-4 *1 (-307 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1085 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341)) - (-4 *2 (-1147 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-327)) (-5 *2 (-1085 *4)) - (-5 *1 (-495 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-712)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1072)) - (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-542 *3)) (-4 *3 (-341))))) -(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-591 (-294 (-205)))) - (|:| |constraints| - (-591 - (-2 (|:| |start| (-205)) (|:| |finish| (-205)) - (|:| |grid| (-712)) (|:| |boundaryType| (-525)) - (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) - (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) - (|:| |tol| (-205)))) - (-5 *2 (-108)) (-5 *1 (-192))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-985 (-953 *3) (-1085 (-953 *3)))) - (-5 *1 (-953 *3)) (-4 *3 (-13 (-786) (-341) (-951)))))) + (-12 (-5 *3 (-273 (-886 (-525)))) + (-5 *2 + (-2 (|:| |varOrder| (-592 (-1090))) + (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed")) + (|:| |hom| (-592 (-1172 (-713)))))) + (-5 *1 (-216))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) - (-5 *1 (-744))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-762))))) + (-5 *1 (-745))))) +(((*1 *1 *1) (-4 *1 (-510)))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1005 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1005 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) + ((*1 *1 *1) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-976)) (-14 *3 (-592 (-1090))))) + ((*1 *1 *1) + (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789))) + (-14 *3 (-592 (-1090))))) + ((*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1019)))) + ((*1 *1 *1) + (-12 (-14 *2 (-592 (-1090))) (-4 *3 (-160)) + (-4 *5 (-218 (-1696 *2) (-713))) + (-14 *6 + (-1 (-108) (-2 (|:| -3381 *4) (|:| -1737 *5)) + (-2 (|:| -3381 *4) (|:| -1737 *5)))) + (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789)) + (-4 *7 (-883 *3 *5 (-799 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-789)))) + ((*1 *1 *1) + (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-976)))) + ((*1 *1 *1) + (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-976)) + (-4 *3 (-669)))) + ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)))) + ((*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) + (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) + (|:| |ub| (-592 (-782 (-205)))))) + (-5 *1 (-246))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) + (-4 *3 (-1148 (-157 *2)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1172 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-1091 (-385 (-525)))) - (-5 *1 (-172))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1018) (-33))) - (-4 *3 (-13 (-1018) (-33)))))) -(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) + (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1148 *4)) + (-5 *2 (-2 (|:| -2486 (-573 *4 *5)) (|:| -2571 (-385 *5)))) + (-5 *1 (-573 *4 *5)) (-5 *3 (-385 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) - (-4 *3 (-1147 *2))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-525)) (-5 *1 (-1070 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899))))) + (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) + (-14 *3 (-855)) (-4 *4 (-976)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-429)) (-4 *3 (-976)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1148 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-777)) - (-5 *3 - (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) - (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) - (|:| |ub| (-591 (-781 (-205)))))) - (-5 *2 (-964)))) + (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-800 *4 *5 *6 *7)) + (-4 *4 (-976)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 *3)) + (-14 *7 *3))) ((*1 *2 *3) - (-12 (-4 *1 (-777)) - (-5 *3 - (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) - (-5 *2 (-964))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-286))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-712)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) - (-4 *2 (-1147 *4))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1018))))) -(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) + (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-4 *5 (-789)) (-4 *6 (-735)) + (-14 *8 (-592 *5)) (-5 *2 (-1177)) + (-5 *1 (-1182 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-883 *4 *6 *5)) + (-14 *9 (-592 *3)) (-14 *10 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) - (-5 *2 (-385 (-525))))) + (-12 (-5 *2 (-797)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) + (-14 *4 (-713)) (-4 *5 (-160))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-797))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-1023)) (-5 *1 (-270))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-542 *3) *3 (-1090))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1090))) + (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-967 *4)) (-4 *3 (-408 *7)) + (-5 *4 (-1090)) (-4 *7 (-567 (-826 (-525)))) (-4 *7 (-429)) + (-4 *7 (-820 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3)) + (-5 *1 (-534 *7 *3))))) +(((*1 *2) + (-12 + (-5 *2 + (-1172 (-592 (-2 (|:| -3067 (-844 *3)) (|:| -3381 (-1037)))))) + (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) + ((*1 *2) + (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3067 *3) (|:| -3381 (-1037)))))) + (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1086 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3067 *3) (|:| -3381 (-1037)))))) + (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855))))) +(((*1 *2 *1) + (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-883 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-592 (-525))) + (|:| |cols| (-592 (-525))))) + (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-886 *9)))) + (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525)) + (-4 *9 (-13 (-286) (-138))) (-4 *12 (-883 *9 *11 *10)) + (-4 *10 (-13 (-789) (-567 (-1090)))) (-4 *11 (-735)) + (-5 *2 + (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12)) + (|:| |wcond| (-592 (-886 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *9)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *9))))))))) + (-5 *1 (-858 *9 *10 *11 *12))))) +(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) + (-4 *4 (-160)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) + (-4 *2 (-408 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1012 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) + (-5 *1 (-147 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-149)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-160))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) + (-5 *2 (-592 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) + (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) - (-4 *3 (-517)))) - ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1094))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) + ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))) +(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) ((*1 *2 *1) - (-12 (-4 *1 (-738 *3)) (-4 *3 (-160)) (-4 *3 (-510)) - (-5 *2 (-385 (-525))))) + (-12 (-4 *2 (-976)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1090))))) ((*1 *2 *1) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-774 *3)) (-4 *3 (-510)) - (-4 *3 (-1018)))) + (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) + (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) + ((*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-976)))) ((*1 *2 *1) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-781 *3)) (-4 *3 (-510)) - (-4 *3 (-1018)))) + (-12 (-14 *3 (-592 (-1090))) (-4 *5 (-218 (-1696 *3) (-713))) + (-14 *6 + (-1 (-108) (-2 (|:| -3381 *4) (|:| -1737 *5)) + (-2 (|:| -3381 *4) (|:| -1737 *5)))) + (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789)) + (-4 *7 (-883 *2 *5 (-799 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1019)))) ((*1 *2 *1) - (-12 (-4 *1 (-927 *3)) (-4 *3 (-160)) (-4 *3 (-510)) - (-5 *2 (-385 (-525))))) - ((*1 *2 *3) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-938 *3)) (-4 *3 (-966 *2))))) + (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-976)))) + ((*1 *2 *1) + (-12 (-4 *2 (-976)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) + (-4 *3 (-669)))) + ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)))) + ((*1 *2 *1) + (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789)) + (-4 *2 (-976)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) +(((*1 *2 *3) + (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1148 *4)) (-5 *2 (-1177)) + (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1148 (-385 *5))) (-14 *7 *6)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1095))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) + (-4 *5 (-1148 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-947 *4 *5)) + (-5 *3 (-385 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1125)) (-4 *2 (-975)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-796)))) - ((*1 *1 *1) (-5 *1 (-796))) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-954 *3)) + (-4 *3 (-13 (-787) (-341) (-952))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) + (-4 *3 (-1148 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-992 *2 *3)) (-4 *2 (-13 (-787) (-341))) + (-4 *3 (-1148 *2))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1086 *3)) + (-4 *3 (-13 (-408 *7) (-27) (-1112))) + (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1019)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) + (-5 *6 (-385 (-1086 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1112))) + (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1019))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) + ((*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1019)))) + ((*1 *2 *1) + (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) + (-4 *6 (-218 (-1696 *3) (-713))) + (-14 *7 + (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *6)) + (-2 (|:| -3381 *5) (|:| -1737 *6)))) + (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-789)) (-4 *8 (-883 *4 *6 (-799 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2)) + (-4 *3 (-976)))) + ((*1 *1 *1) + (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-734)) + (-4 *4 (-789))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) + (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3)) + (-5 *1 (-1142 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861))))) +(((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1173)))) + ((*1 *1 *1) (-5 *1 (-1173)))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-909 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) + ((*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789))))) +(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-270))) + ((*1 *1) (-5 *1 (-797))) + ((*1 *1) + (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) + (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1006))) + ((*1 *1) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) + (-4 *3 (-13 (-1019) (-33))))) + ((*1 *1) (-5 *1 (-1093))) ((*1 *1) (-5 *1 (-1094)))) +(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860))))) +(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)))) + ((*1 *2 *2) + (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-504 *4 *2 *5 *6)) + (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1073) (-716))) (-5 *1 (-110))))) +(((*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-339 (-110))) (-4 *2 (-976)) (-5 *1 (-657 *2 *4)) + (-4 *4 (-594 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-976))))) +(((*1 *1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) + (-14 *4 (-592 (-1090))))) + ((*1 *1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) + (-14 *4 (-592 (-1090))))) + ((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341)) + (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) + (-4 *2 (-320 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-160)))) + ((*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1148 *2))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) + (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) + ((*1 *2 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) + (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) + (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766))))) +(((*1 *2 *3) + (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284))))) +(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246))))) +(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1073)) (-5 *1 (-51))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-713)) (-4 *3 (-1126)) (-4 *1 (-55 *3 *4 *5)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) + ((*1 *1) (-5 *1 (-159))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367)))) + ((*1 *1) (-5 *1 (-372))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) + ((*1 *1) + (-12 (-4 *3 (-1019)) (-5 *1 (-819 *2 *3 *4)) (-4 *2 (-1019)) + (-4 *4 (-612 *3)))) + ((*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) + ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) + ((*1 *1 *1) (-5 *1 (-1090))) ((*1 *1) (-5 *1 (-1090))) + ((*1 *1) (-5 *1 (-1107)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1073)) (-5 *2 (-592 (-1095))) (-5 *1 (-1052))))) +(((*1 *2 *3) + (-12 (-5 *3 (-525)) (-4 *4 (-1148 (-385 *3))) (-5 *2 (-855)) + (-5 *1 (-847 *4 *5)) (-4 *5 (-1148 (-385 *4)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-876 (-205))) (-5 *2 (-205)) (-5 *1 (-1122)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-975))))) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) + ((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) +(((*1 *1 *1) (-4 *1 (-223))) + ((*1 *1 *1) + (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-3215 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1126))) + (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1126))))) + ((*1 *1 *1) (-4 *1 (-450))) + ((*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1130)) (-4 *5 (-1148 *3)) (-4 *6 (-1148 (-385 *5))) + (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) (((*1 *2 *3) - (-12 (-4 *4 (-429)) + (-12 + (-5 *3 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *2 (-1071 (-205))) (-5 *1 (-174)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1090))) + (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *4 (-592 (-1090))) + (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090)) + (-5 *2 (-592 *4)) (-5 *1 (-1033 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-259))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-5 *2 - (-591 - (-2 (|:| |eigval| (-3 (-385 (-885 *4)) (-1079 (-1089) (-885 *4)))) - (|:| |geneigvec| (-591 (-631 (-385 (-885 *4)))))))) - (-5 *1 (-271 *4)) (-5 *3 (-631 (-385 (-885 *4))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) - (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-591 *3)) - (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1027 *5 *6 *7 *8)))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-855)) (-5 *1 (-419 *2)) + (-4 *2 (-1148 (-525))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-855)) (-5 *4 (-713)) (-5 *1 (-419 *2)) + (-4 *2 (-1148 (-525))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2)) + (-4 *2 (-1148 (-525))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) + (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) + (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) - (-5 *2 - (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) - (-5 *1 (-999 *5 *6)) (-5 *3 (-591 (-885 *5))) - (-14 *6 (-591 (-1089))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-286) (-138))) - (-5 *2 - (-591 (-2 (|:| -3237 (-1085 *4)) (|:| -1671 (-591 (-885 *4)))))) - (-5 *1 (-999 *4 *5)) (-5 *3 (-591 (-885 *4))) - (-14 *5 (-591 (-1089))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) + (-12 (-5 *3 (-855)) (-5 *4 (-396 *2)) (-4 *2 (-1148 *5)) + (-5 *1 (-421 *5 *2)) (-4 *5 (-976))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) - (-5 *1 (-999 *5 *6)) (-5 *3 (-591 (-885 *5))) - (-14 *6 (-591 (-1089)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-698))))) -(((*1 *1) (-5 *1 (-132)))) -(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) - (-4 *3 (-1147 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-591 *6) "failed") (-525) *6 *6)) (-4 *6 (-341)) - (-4 *7 (-1147 *6)) - (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) - (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) - (-5 *2 (-591 (-591 (-591 (-712)))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1013 *3)) (-4 *3 (-882 *7 *6 *4)) (-4 *6 (-734)) - (-4 *4 (-788)) (-4 *7 (-517)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) - (-5 *1 (-549 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-734)) (-4 *4 (-788)) (-4 *6 (-517)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) - (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-882 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-796))) ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1) (-5 *1 (-796))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-1081 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1111))))) + (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) + (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) + (-5 *1 (-1089))))) +(((*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-891 *3)) (-5 *1 (-1078 *4 *3)) + (-4 *3 (-1148 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) + (-15 -1945 ((-1042 *3 (-565 $)) $)) + (-15 -4044 ($ (-1042 *3 (-565 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) + (-15 -1945 ((-1042 *3 (-565 $)) $)) + (-15 -4044 ($ (-1042 *3 (-565 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1011 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1111))) - (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-1081 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-517) (-788) (-966 (-525)))) - (-5 *2 (-385 (-885 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-885 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-517) (-788) (-966 (-525)))) - (-5 *2 (-3 (-385 (-885 *5)) (-294 *5))) (-5 *1 (-1082 *5)) - (-5 *3 (-385 (-885 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1011 (-885 *5))) (-5 *3 (-885 *5)) - (-4 *5 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-385 *3)) - (-5 *1 (-1082 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1011 (-385 (-885 *5)))) (-5 *3 (-385 (-885 *5))) - (-4 *5 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-3 *3 (-294 *5))) - (-5 *1 (-1082 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-591 (-1085 *7))) (-5 *3 (-1085 *7)) - (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-842)) (-4 *5 (-734)) - (-4 *6 (-788)) (-5 *1 (-839 *4 *5 *6 *7)))) + (-12 (-5 *3 (-592 *2)) + (-4 *2 + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *4 (-565 $)) $)) + (-15 -1945 ((-1042 *4 (-565 $)) $)) + (-15 -4044 ($ (-1042 *4 (-565 $))))))) + (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-591 (-1085 *5))) (-5 *3 (-1085 *5)) - (-4 *5 (-1147 *4)) (-4 *4 (-842)) (-5 *1 (-840 *4 *5))))) + (-12 (-5 *3 (-592 (-565 *2))) + (-4 *2 + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *4 (-565 $)) $)) + (-15 -1945 ((-1042 *4 (-565 $)) $)) + (-15 -4044 ($ (-1042 *4 (-565 $))))))) + (-4 *4 (-517)) (-5 *1 (-40 *4 *2))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-592 (-632 *6))) (-5 *4 (-108)) (-5 *5 (-525)) + (-5 *2 (-632 *6)) (-5 *1 (-959 *6)) (-4 *6 (-341)) (-4 *6 (-976)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-592 (-632 *4))) (-5 *2 (-632 *4)) (-5 *1 (-959 *4)) + (-4 *4 (-341)) (-4 *4 (-976)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-5 *2 (-632 *5)) + (-5 *1 (-959 *5)) (-4 *5 (-341)) (-4 *5 (-976))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-734)) - (-4 *3 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) (-4 *5 (-517)) - (-5 *1 (-674 *4 *3 *5 *2)) (-4 *2 (-882 (-385 (-885 *5)) *4 *3)))) + (-12 (-4 *4 (-735)) + (-4 *3 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) (-4 *5 (-517)) + (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-883 (-385 (-886 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-975)) (-4 *5 (-734)) + (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 - (-13 (-788) - (-10 -8 (-15 -1300 ((-1089) $)) - (-15 -1592 ((-3 $ "failed") (-1089)))))) - (-5 *1 (-915 *4 *5 *3 *2)) (-4 *2 (-882 (-885 *4) *5 *3)))) + (-13 (-789) + (-10 -8 (-15 -2923 ((-1090) $)) + (-15 -2818 ((-3 $ "failed") (-1090)))))) + (-5 *1 (-916 *4 *5 *3 *2)) (-4 *2 (-883 (-886 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *6)) + (-12 (-5 *3 (-592 *6)) (-4 *6 - (-13 (-788) - (-10 -8 (-15 -1300 ((-1089) $)) - (-15 -1592 ((-3 $ "failed") (-1089)))))) - (-4 *4 (-975)) (-4 *5 (-734)) (-5 *1 (-915 *4 *5 *6 *2)) - (-4 *2 (-882 (-885 *4) *5 *6))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-221)) (-5 *3 (-1072)))) - ((*1 *2 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *3 (-591 (-807))) - (-5 *4 (-591 (-854))) (-5 *5 (-591 (-242))) (-5 *1 (-445)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *3 (-591 (-807))) - (-5 *4 (-591 (-854))) (-5 *1 (-445)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *1 (-445)))) - ((*1 *1 *1) (-5 *1 (-445)))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-591 *3)) (-5 *5 (-854)) (-4 *3 (-1147 *4)) - (-4 *4 (-286)) (-5 *1 (-437 *4 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1085 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-788) (-517))) - (-5 *1 (-31 *4 *2))))) + (-13 (-789) + (-10 -8 (-15 -2923 ((-1090) $)) + (-15 -2818 ((-3 $ "failed") (-1090)))))) + (-4 *4 (-976)) (-4 *5 (-735)) (-5 *1 (-916 *4 *5 *6 *2)) + (-4 *2 (-883 (-886 *4) *5 *6))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514))))) +(((*1 *2 *2) + (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525))) + (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) + (-4 *2 + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) + (-15 -1945 ((-1042 *3 (-565 $)) $)) + (-15 -4044 ($ (-1042 *3 (-565 $)))))))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *3) - (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) -(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-270))) - ((*1 *1) (-5 *1 (-796))) - ((*1 *1) - (-12 (-4 *2 (-429)) (-4 *3 (-788)) (-4 *4 (-734)) - (-5 *1 (-918 *2 *3 *4 *5)) (-4 *5 (-882 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1005))) - ((*1 *1) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) - (-4 *3 (-13 (-1018) (-33))))) - ((*1 *1) (-5 *1 (-1092))) ((*1 *1) (-5 *1 (-1093)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975))))) -(((*1 *1 *1) (-5 *1 (-987)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)) (-4 *2 (-341)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-604 *4 *2)) - (-4 *2 (-601 *4))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1019)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-626 *4 *5)) (-4 *4 (-1019)))) + ((*1 *2 *2) + (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))) + ((*1 *2 *1) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976)))) + ((*1 *2 *1) (-12 (-4 *2 (-976)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-785))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) + (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) - (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) - (-5 *1 (-1088))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-1 (-108) *8))) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-2 (|:| |goodPols| (-591 *8)) (|:| |badPols| (-591 *8)))) - (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-591 *8))))) + (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) + (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) + (-5 *1 (-1089))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126))))) (((*1 *2 *3) - (-12 (-5 *3 (-1020 *4)) (-4 *4 (-1018)) (-5 *2 (-1 *4)) - (-5 *1 (-947 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-357))) (-5 *1 (-968)) (-5 *3 (-357)))) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) + (-4 *5 (-13 (-27) (-1112) (-408 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-1013 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-973))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3)) - (-5 *1 (-95 *4 *3)) (-4 *3 (-1147 *4)))) + (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-13 (-429) (-138))) - (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-689))))) -(((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) + (-12 (-5 *4 (-385 (-525))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) + (-4 *3 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) + (-5 *5 (-1139 (-385 (-525)))) (-5 *6 (-385 (-525))) + (-4 *8 (-13 (-27) (-1112) (-408 *7))) + (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-385 (-525)))) + (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *8))) + (-4 *8 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-385 (-525))) (-4 *4 (-976)) (-4 *1 (-1155 *4 *3)) + (-4 *3 (-1132 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *1 *1) - (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)) - (-4 *2 (-429)))) - ((*1 *1 *1) - (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-1147 *2)) - (-4 *4 (-1147 (-385 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-429)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)) (-4 *3 (-429)))) - ((*1 *1 *1) - (-12 (-4 *1 (-882 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-429)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1077 *3 *2)) - (-4 *2 (-1147 *3))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) - (-5 *2 (-964)) (-5 *1 (-699))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) - (-4 *6 (-351 *3)) (-5 *1 (-630 *3 *5 *6 *2)) - (-4 *2 (-629 *3 *5 *6))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) - (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) - (-5 *1 (-1088))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) - (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-882 *4 *5 *3)))) + (-12 (-5 *2 (-1014 *3)) (-5 *1 (-1012 *3)) (-4 *3 (-1126)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2) (-12 (-5 *1 (-1139 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2262 (-724 *3)) (|:| |coef1| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-975)) (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) - (-4 *1 (-1147 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-765))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1089)) - (|:| |arrayIndex| (-591 (-885 (-525)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1089)) (|:| |rand| (-796)) - (|:| |ints2Floats?| (-108)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1088)) (|:| |thenClause| (-308)) - (|:| |elseClause| (-308)))) - (|:| |returnBranch| - (-2 (|:| -2077 (-108)) - (|:| -2940 - (-2 (|:| |ints2Floats?| (-108)) (|:| -1555 (-796)))))) - (|:| |blockBranch| (-591 (-308))) - (|:| |commentBranch| (-591 (-1072))) (|:| |callBranch| (-1072)) - (|:| |forBranch| - (-2 (|:| -3756 (-1011 (-885 (-525)))) - (|:| |span| (-885 (-525))) (|:| -2226 (-308)))) - (|:| |labelBranch| (-1036)) - (|:| |loopBranch| (-2 (|:| |switch| (-1088)) (|:| -2226 (-308)))) - (|:| |commonBranch| - (-2 (|:| -3419 (-1089)) (|:| |contents| (-591 (-1089))))) - (|:| |printBranch| (-591 (-796))))) - (-5 *1 (-308))))) -(((*1 *2 *2) (-12 (-5 *2 (-591 (-294 (-205)))) (-5 *1 (-246))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-930 *3))))) + (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-2 (|:| -2262 *1) (|:| |coef1| *1))) + (-4 *1 (-990 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-1049 *4 *2)) + (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4254) (-6 -4255)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-789)) (-4 *3 (-1126)) (-5 *1 (-1049 *3 *2)) + (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4254) (-6 -4255))))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) + ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1090)) (-5 *1 (-620 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) + ((*1 *1 *1 *1) (-4 *1 (-735)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 (-1145 *5 *4))) + (-5 *1 (-1033 *4 *5)) (-5 *3 (-1145 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-525)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-591 (-457 *4 *5))) (-5 *3 (-798 *4)) - (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *1 (-579 *4 *5))))) + (-12 (-4 *2 (-1019)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1019))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-108))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1090)))) + (-4 *5 (-735)) (-5 *1 (-858 *3 *4 *5 *2)) (-4 *2 (-883 *3 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *1 *1) (-5 *1 (-1088))) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) + (-4 *5 (-13 (-27) (-1112) (-408 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-789) (-967 *4) (-588 *4))) + (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-429) (-789) (-967 *5) (-588 *5))) (-5 *5 (-525)) + (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-525))) + (-4 *7 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-525))) + (-4 *3 (-13 (-27) (-1112) (-408 *7))) + (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-525)) (-4 *4 (-976)) (-4 *1 (-1134 *4 *3)) + (-4 *3 (-1163 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) + (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) + (-5 *2 (-632 *3))))) +(((*1 *1 *1) (-5 *1 (-1089))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) - (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) - (-5 *1 (-1088))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-975)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1147 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-2 (|:| |val| (-591 *8)) (|:| -3585 *9)))) - (-5 *4 (-712)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-994 *5 *6 *7 *8)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-1176)) - (-5 *1 (-992 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-2 (|:| |val| (-591 *8)) (|:| -3585 *9)))) - (-5 *4 (-712)) (-4 *8 (-989 *5 *6 *7)) (-4 *9 (-1027 *5 *6 *7 *8)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) (-5 *2 (-1176)) - (-5 *1 (-1059 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-975)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1147 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566 (-825 *3))) (-4 *3 (-819 *3)) - (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-566 (-825 *3))) (-4 *2 (-819 *3)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1788 *3) (|:| |coef2| (-723 *3)))) - (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-357)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242))))) -(((*1 *2 *3) (-12 (-5 *3 (-885 (-205))) (-5 *2 (-205)) (-5 *1 (-284))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) - (-4 *4 (-351 *2))))) + (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) + (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) + (-5 *1 (-1089))))) (((*1 *2 *3) - (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284))))) + (-12 (-5 *3 (-525)) (|has| *1 (-6 -4245)) (-4 *1 (-382)) + (-5 *2 (-855))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) + (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) + (-4 *7 (-924 *4)) (-4 *2 (-630 *7 *8 *9)) + (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) + (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) + (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) + (-4 *2 (-630 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-976)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1040 *2 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341)))) + ((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1098 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-98 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-976)) + (-5 *1 (-657 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-776 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-396 *5)) (-4 *5 (-517)) + (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1112) (-408 *5))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 - (-2 (|:| -3987 (-712)) (|:| -2976 *5) (|:| |radicand| (-591 *5)))) - (-5 *1 (-298 *5)) (-5 *4 (-712)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-932)) (-5 *2 (-525))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1147 *3)) (-5 *1 (-377 *3 *2)) - (-4 *3 (-13 (-341) (-138)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-327)) (-5 *2 (-1171 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-136)) (-4 *1 (-842)) - (-5 *2 (-1171 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))) -(((*1 *1) (-5 *1 (-270)))) -(((*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-286))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-591 *11)) - (|:| |todo| (-591 (-2 (|:| |val| *3) (|:| -3585 *11)))))) - (-5 *6 (-712)) - (-5 *2 (-591 (-2 (|:| |val| (-591 *10)) (|:| -3585 *11)))) - (-5 *3 (-591 *10)) (-5 *4 (-591 *11)) (-4 *10 (-989 *7 *8 *9)) - (-4 *11 (-994 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-734)) - (-4 *9 (-788)) (-5 *1 (-992 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) + (-3 (-782 *3) + (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) + (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) + "failed")) + (-5 *1 (-585 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1073)) + (-4 *3 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-273 (-782 (-886 *5)))) (-4 *5 (-429)) + (-5 *2 + (-3 (-782 (-385 (-886 *5))) + (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-782 (-385 (-886 *5))) "failed"))) + "failed")) + (-5 *1 (-586 *5)) (-5 *3 (-385 (-886 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-273 (-385 (-886 *5)))) (-5 *3 (-385 (-886 *5))) + (-4 *5 (-429)) + (-5 *2 + (-3 (-782 *3) + (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) + (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) + "failed")) + (-5 *1 (-586 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-273 (-385 (-886 *6)))) (-5 *5 (-1073)) + (-5 *3 (-385 (-886 *6))) (-4 *6 (-429)) (-5 *2 (-782 *3)) + (-5 *1 (-586 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-592 (-1090))) (-4 *2 (-160)) + (-4 *4 (-218 (-1696 *5) (-713))) + (-14 *6 + (-1 (-108) (-2 (|:| -3381 *3) (|:| -1737 *4)) + (-2 (|:| -3381 *3) (|:| -1737 *4)))) + (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789)) + (-4 *7 (-883 *2 *4 (-799 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1126)) (-5 *2 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-798)))) + ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-798)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1073)) (-5 *4 (-797)) (-5 *2 (-1177)) (-5 *1 (-798)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1071 *4)) + (-4 *4 (-1019)) (-4 *4 (-1126))))) +(((*1 *2 *1 *1) (-12 - (-5 *5 - (-2 (|:| |done| (-591 *11)) - (|:| |todo| (-591 (-2 (|:| |val| *3) (|:| -3585 *11)))))) - (-5 *6 (-712)) - (-5 *2 (-591 (-2 (|:| |val| (-591 *10)) (|:| -3585 *11)))) - (-5 *3 (-591 *10)) (-5 *4 (-591 *11)) (-4 *10 (-989 *7 *8 *9)) - (-4 *11 (-1027 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-734)) - (-4 *9 (-788)) (-5 *1 (-1059 *7 *8 *9 *10 *11))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-445)) (-5 *3 (-591 (-242))) (-5 *1 (-1172)))) - ((*1 *1 *1) (-5 *1 (-1172)))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-701))))) -(((*1 *2 *1) - (-12 (-4 *2 (-517)) (-5 *1 (-572 *2 *3)) (-4 *3 (-1147 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1171 *5)) (-4 *5 (-733)) (-5 *2 (-108)) - (-5 *1 (-783 *4 *5)) (-14 *4 (-712))))) -(((*1 *2) (-12 (-5 *2 (-1049 (-205))) (-5 *1 (-1109))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-591 (-1085 *7))) (-5 *3 (-1085 *7)) - (-4 *7 (-882 *5 *6 *4)) (-4 *5 (-842)) (-4 *6 (-734)) - (-4 *4 (-788)) (-5 *1 (-839 *5 *6 *4 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *2 (-591 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1147 *3))))) + (-5 *2 + (-2 (|:| -2262 (-724 *3)) (|:| |coef1| (-724 *3)) + (|:| |coef2| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-2 (|:| -2262 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-990 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) (((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3872 (-525)) (|:| -1908 (-591 *3)))) - (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-351 *3)) (-4 *3 (-1125)) (-4 *3 (-788)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1125)) - (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) - (-5 *2 (-591 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) - (-5 *2 (-591 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-551 *3)) (-4 *3 (-975)))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 *3)) (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-668)))) - ((*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-975)) (-5 *2 (-591 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1162 *3)) (-4 *3 (-975)) (-5 *2 (-1070 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108)))) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) + (-4 *5 (-13 (-27) (-1112) (-408 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) (-5 *2 (-108)) - (-5 *1 (-335 *4)))) + (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-713)) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-273 *3)) (-5 *5 (-713)) + (-4 *3 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) + (-4 *6 (-13 (-27) (-1112) (-408 *5))) + (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-713))) + (-4 *7 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-713))) + (-4 *3 (-13 (-27) (-1112) (-408 *7))) + (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) + (-5 *2 (-2 (|:| -2059 *1) (|:| |gap| (-713)) (|:| -2097 *1))) + (-4 *1 (-990 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-2 (|:| -2059 *1) (|:| |gap| (-713)) (|:| -2097 *1))) + (-4 *1 (-990 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5)) + (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-933) (-1112))) + (-4 *3 (-13 (-408 (-157 *4)) (-933) (-1112)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))) ((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-327)) (-5 *2 (-108)) - (-5 *1 (-495 *4))))) + (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525))))) +(((*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414))))) (((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-788))))) + (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-108)) + (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-4 *3 (-13 (-27) (-1112) (-408 *6) (-10 -8 (-15 -4044 ($ *7))))) + (-4 *7 (-787)) + (-4 *8 + (-13 (-1150 *3 *7) (-341) (-1112) + (-10 -8 (-15 -1576 ($ $)) (-15 -2313 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) + (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-915 *8)) + (-14 *10 (-1090))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1092 (-385 (-525)))) + (-5 *1 (-172))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1173)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-525)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *4 (-788)) (-5 *2 (-1098 (-591 *4))) (-5 *1 (-1097 *4)) - (-5 *3 (-591 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) - (-5 *5 (-1013 (-205))) (-5 *6 (-525)) (-5 *2 (-1121 (-859))) - (-5 *1 (-296)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) - (-5 *5 (-1013 (-205))) (-5 *6 (-525)) (-5 *7 (-1072)) - (-5 *2 (-1121 (-859))) (-5 *1 (-296)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) - (-5 *5 (-1013 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) - (-5 *2 (-1121 (-859))) (-5 *1 (-296)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) - (-5 *5 (-1013 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1072)) - (-5 *2 (-1121 (-859))) (-5 *1 (-296))))) + (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789)) + (-4 *8 (-883 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1172 (-385 *8)) "failed")) + (|:| -2734 (-592 (-1172 (-385 *8)))))) + (-5 *1 (-615 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4252 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) - (-4 *2 (-975)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1147 *2)) - (-4 *4 (-629 *2 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-517)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1147 *2))))) + (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) + (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1072)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-242))))) -(((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-631 (-385 *4)))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) - (-4 *3 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *1) (-5 *1 (-415)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-836 *3)) (-4 *3 (-1018)) (-5 *2 (-1020 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1018)) (-5 *2 (-1020 (-591 *4))) (-5 *1 (-837 *4)) - (-5 *3 (-591 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1018)) (-5 *2 (-1020 (-1020 *4))) (-5 *1 (-837 *4)) - (-5 *3 (-1020 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1020 *3)) (-5 *1 (-837 *3)) (-4 *3 (-1018))))) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1 (-1070 (-885 *4)) (-1070 (-885 *4)))) - (-5 *1 (-1179 *4)) (-4 *4 (-341))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1018)) (-5 *1 (-896 *3 *2)) (-4 *3 (-1018))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-591 (-357))) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-591 (-357))) (-5 *1 (-445)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 (-357))) (-5 *1 (-445)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-807)) (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172))))) -(((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-591 (-591 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-591 (-591 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 (-591 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-517)) - (-5 *2 (-2 (|:| -2928 (-631 *5)) (|:| |vec| (-1171 (-591 (-854)))))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-854)) (-4 *3 (-601 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-4 *5 (-341)) (-5 *2 (-591 (-1120 *5))) - (-5 *1 (-1179 *5)) (-5 *4 (-1120 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) - (-14 *4 *2)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1171 (-712))) (-5 *1 (-619 *3)) (-4 *3 (-1018))))) -(((*1 *2 *2) - (-12 (-4 *3 (-975)) (-5 *1 (-654 *3 *2)) (-4 *2 (-1147 *3))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1072)) (-5 *3 (-525)) (-5 *1 (-987))))) -(((*1 *2 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-975)))) - ((*1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-975))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-761)) (-14 *5 (-1089)) - (-5 *2 (-591 *4)) (-5 *1 (-1032 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-694))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-429)) (-4 *4 (-761)) - (-14 *5 (-1089)) (-5 *2 (-525)) (-5 *1 (-1032 *4 *5))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346)) - (-4 *6 (-975)) (-5 *2 (-591 (-591 (-631 *6)))) (-5 *1 (-958 *6)) - (-5 *3 (-591 (-631 *6))))) + (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) + (-4 *3 (-1148 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-975)) - (-5 *2 (-591 (-591 (-631 *4)))) (-5 *1 (-958 *4)) - (-5 *3 (-591 (-631 *4))))) + (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-975)) - (-5 *2 (-591 (-591 (-631 *5)))) (-5 *1 (-958 *5)) - (-5 *3 (-591 (-631 *5))))) + (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) + (-4 *3 (-1148 (-525))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-854)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-975)) - (-5 *2 (-591 (-591 (-631 *5)))) (-5 *1 (-958 *5)) - (-5 *3 (-591 (-631 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-564 *5))) (-4 *4 (-788)) (-5 *2 (-564 *5)) - (-5 *1 (-534 *4 *5)) (-4 *5 (-408 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-4 *1 (-836 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) + (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) + (-4 *3 (-1148 (-525))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) + (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) + (-4 *3 (-1148 (-525))))) + ((*1 *2 *3) + (-12 (-5 *2 (-396 *3)) (-5 *1 (-938 *3)) + (-4 *3 (-1148 (-385 (-525)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-396 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-986 (-954 *4) (-1086 (-954 *4)))) (-5 *3 (-797)) + (-5 *1 (-954 *4)) (-4 *4 (-13 (-787) (-341) (-952)))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-539))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-975)) - (-4 *2 (-1162 *3))))) -(((*1 *1 *1) (-5 *1 (-987)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-712)) (-5 *2 (-1176))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2124 (-723 *3)) (|:| |coef2| (-723 *3)))) - (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-2 (|:| -2124 *1) (|:| |coef2| *1))) - (-4 *1 (-989 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-854)) (|has| *4 (-6 (-4252 "*"))) - (-4 *4 (-975)) (-5 *1 (-957 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-591 (-631 *4))) (-5 *3 (-854)) - (|has| *4 (-6 (-4252 "*"))) (-4 *4 (-975)) (-5 *1 (-957 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))) -(((*1 *1 *1) (-5 *1 (-205))) ((*1 *1 *1) (-5 *1 (-357))) - ((*1 *1) (-5 *1 (-357)))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1072))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-715)) (-5 *1 (-110)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1022)) (-5 *1 (-897))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *3 (-591 (-242))) (-5 *1 (-240))))) -(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111)))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-117 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) - (-5 *2 (-964)) (-5 *1 (-687))))) + (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 *4)))) + (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 (-157 (-525))))) (-5 *2 (-592 (-157 *4))) + (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 (-385 (-886 (-157 (-525)))))) + (-5 *4 (-592 (-1090))) (-5 *2 (-592 (-592 (-157 *5)))) + (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787)))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1006))) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-713))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 (-631 *4))) (-4 *4 (-160)) - (-5 *2 (-1171 (-631 (-885 *4)))) (-5 *1 (-171 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-335 *3)) (-4 *3 (-327))))) + (-12 (-4 *4 (-976)) + (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) + (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-855)) (-4 *5 (-976)) + (-4 *2 (-13 (-382) (-967 *5) (-341) (-1112) (-263))) + (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1148 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1139 *3)) (-4 *3 (-1126))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-341)) + (-5 *2 (-108)) (-5 *1 (-613 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) + (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-108)) + (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-60 *3)) (-14 *3 (-1090)))) + ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-67 *3)) (-14 *3 (-1090)))) + ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-70 *3)) (-14 *3 (-1090)))) + ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1177)))) + ((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1177)) (-5 *1 (-375)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1073)) (-5 *4 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) + ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1112))) + (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1019))))) (((*1 *2 *1) - (-12 (-4 *4 (-1018)) (-5 *2 (-822 *3 *4)) (-5 *1 (-818 *3 *4 *5)) - (-4 *3 (-1018)) (-4 *5 (-611 *4))))) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) + (-5 *2 (-592 (-592 (-592 (-877 *3)))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-825 *4)) (-4 *4 (-1018)) (-5 *1 (-823 *4 *3)) - (-4 *3 (-1125)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-987))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1125))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1092)))) - ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-1092))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) - (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-2 (|:| |goodPols| (-591 *8)) (|:| |badPols| (-591 *8)))) - (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-591 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-712))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-517)) - (-4 *8 (-882 *7 *5 *6)) - (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *3) (|:| |radicand| *3))) - (-5 *1 (-886 *5 *6 *7 *8 *3)) (-5 *4 (-712)) - (-4 *3 - (-13 (-341) - (-10 -8 (-15 -1384 (*8 $)) (-15 -1396 (*8 $)) (-15 -2686 ($ *8)))))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4)) - (-4 *6 (-351 *4)) (-5 *1 (-630 *4 *5 *6 *2)) - (-4 *2 (-629 *4 *5 *6))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-920)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1013 *4)) (-4 *4 (-1125)) - (-5 *1 (-1011 *4))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 (-294 (-205)))) + (-5 *2 + (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) + (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525)))) + (-5 *1 (-284))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 (-294 (-205)))) (-5 *4 (-591 (-1089))) - (-5 *2 (-631 (-294 (-205)))) (-5 *1 (-187)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1018)) (-4 *6 (-833 *5)) (-5 *2 (-631 *6)) - (-5 *1 (-633 *5 *6 *3 *4)) (-4 *3 (-351 *6)) - (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4250))))))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-902 *4 *3)) + (-4 *3 (-1148 *4))))) (((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-788) (-966 (-525)) (-587 (-525)) (-429))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1156 *4 *5 *6)) - (|:| |%expon| (-297 *4 *5 *6)) - (|:| |%expTerms| - (-591 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))))) - (|:| |%type| (-1072)))) - (-5 *1 (-1157 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1111) (-408 *3))) - (-14 *5 (-1089)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-769) (-788) (-975))) - (-5 *2 (-1072)) (-5 *1 (-767 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 *5)) (-5 *4 (-108)) - (-4 *5 (-13 (-769) (-788) (-975))) (-5 *2 (-1072)) - (-5 *1 (-767 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-763)) (-5 *4 (-294 *5)) - (-4 *5 (-13 (-769) (-788) (-975))) (-5 *2 (-1176)) - (-5 *1 (-767 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-763)) (-5 *4 (-294 *6)) (-5 *5 (-108)) - (-4 *6 (-13 (-769) (-788) (-975))) (-5 *2 (-1176)) - (-5 *1 (-767 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-769)) (-5 *2 (-1072)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-769)) (-5 *3 (-108)) (-5 *2 (-1072)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-769)) (-5 *3 (-763)) (-5 *2 (-1176)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-769)) (-5 *3 (-763)) (-5 *4 (-108)) (-5 *2 (-1176))))) + (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-567 (-826 (-525)))) + (-4 *5 (-820 (-525))) + (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) + (-4 *3 (-13 (-27) (-1112) (-408 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-782 *2)) (-4 *2 (-1054)) + (-4 *2 (-13 (-27) (-1112) (-408 *5))) + (-4 *5 (-567 (-826 (-525)))) (-4 *5 (-820 (-525))) + (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) + (-5 *1 (-528 *5 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-110)) (-4 *4 (-976)) (-5 *1 (-657 *4 *2)) + (-4 *2 (-594 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-976))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-426 *4 *5 *6 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-135)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-631 (-525))) (-5 *3 (-591 (-525))) (-5 *1 (-1028))))) -(((*1 *1 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) - ((*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-975)) (-4 *3 (-784))))) -(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-968))))) + (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| -1737 (-713)))) (-5 *1 (-543 *3)) + (-4 *3 (-510))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1142 *3 *2)) + (-4 *2 (-1148 *3))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-369))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) + (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| -3448 *5) (|:| -2360 *5)))) + (-5 *1 (-749 *4 *5 *3 *6)) (-4 *3 (-602 *5)) + (-4 *6 (-602 (-385 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) + (-4 *4 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -3448 *4) (|:| -2360 *4)))) + (-5 *1 (-749 *5 *4 *3 *6)) (-4 *3 (-602 *4)) + (-4 *6 (-602 (-385 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) + (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| -3448 *5) (|:| -2360 *5)))) + (-5 *1 (-749 *4 *5 *6 *3)) (-4 *6 (-602 *5)) + (-4 *3 (-602 (-385 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) + (-4 *4 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -3448 *4) (|:| -2360 *4)))) + (-5 *1 (-749 *5 *4 *6 *3)) (-4 *6 (-602 *4)) + (-4 *3 (-602 (-385 *4)))))) (((*1 *2 *2) - (-12 + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-5 *2 - (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) - (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) - (|:| |ub| (-591 (-781 (-205)))))) - (-5 *1 (-246))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5)) + (|:| |c2| (-385 *5)) (|:| |deg| (-713)))) + (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5)))))) +(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) + (-4 *2 (-1148 (-157 *3)))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) + (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) + (-5 *1 (-730))))) +(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)))) + ((*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-108)) + (-5 *1 (-823 *4 *5)) (-4 *5 (-1019)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-5 *2 (-108)) + (-5 *1 (-824 *5 *3)) (-4 *3 (-1126)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *6)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) + (-4 *6 (-1126)) (-5 *2 (-108)) (-5 *1 (-824 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) + (-5 *1 (-691))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-205) (-205) (-205))) + (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) + (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205))) + (-5 *1 (-639)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-205))) + (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-1 (-877 (-205)) (-205) (-205))) + (-5 *4 (-1014 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5)) + (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1098 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-346))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-965)) + (-5 *1 (-692))))) +(((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1177)) (-5 *1 (-369)))) + ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-369))))) +(((*1 *1) (-5 *1 (-132)))) +(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1108))))) +(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))) + ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *2 (-1070 (-205))) (-5 *1 (-174)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 (-205))) (-5 *4 (-591 (-1089))) - (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-1070 (-205))) (-5 *1 (-279)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1171 (-294 (-205)))) (-5 *4 (-591 (-1089))) - (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-1070 (-205))) (-5 *1 (-279))))) -(((*1 *2 *3) - (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) - (-4 *3 (-1147 *4)))) + (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) + (-5 *2 (-592 (-1090))) (-5 *1 (-246)))) ((*1 *2 *3) - (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) - (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-712))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) - (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-591 (-712))) (-5 *5 (-712)) (-5 *2 (-396 *3)) - (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) - (-4 *3 (-1147 (-525))))) + (-12 (-5 *3 (-1086 *7)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-976)) (-5 *2 (-592 *5)) + (-5 *1 (-299 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-365)))) + ((*1 *2 *1) + (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1090))))) + ((*1 *2 *1) + (-12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1) + (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-592 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-396 *3)) (-5 *1 (-937 *3)) - (-4 *3 (-1147 (-385 (-525)))))) + (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) + (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *5)) + (-5 *1 (-884 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-341) + (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1021 (-1090))) (-5 *1 (-899 *3)) (-4 *3 (-900)))) + ((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-734)) + (-4 *5 (-789)) (-5 *2 (-592 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-396 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *1 *1) (-4 *1 (-984)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1125)) - (-4 *5 (-351 *4)) (-4 *3 (-351 *4))))) + (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1090))) + (-5 *1 (-972 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) + (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3))) + (|:| |vals| (-592 *3)))) + (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3081 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-341)) (-4 *7 (-1148 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) + (-2 (|:| -3081 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) + (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2)) + (-4 *3 (-13 (-789) (-517)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-713)) (-4 *5 (-517)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *3) + (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) + (-5 *1 (-117 *3)) (-4 *3 (-789)))) + ((*1 *2 *2) + (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1112))) + (-4 *3 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) + (-5 *1 (-540 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-542 (-385 (-886 *3)))) + (-4 *3 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) + (-5 *1 (-545 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341)) + (-5 *2 (-2 (|:| -2357 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1172 *5)) (-4 *5 (-341)) (-4 *5 (-976)) + (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) + (-5 *3 (-592 (-632 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1172 (-1172 *5))) (-4 *5 (-341)) (-4 *5 (-976)) + (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) + (-5 *3 (-592 (-632 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1059)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1059))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-976)) (-5 *1 (-94 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-94 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-94 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *4 *2 *5)) (-4 *4 (-975)) (-4 *5 (-218 *3 *4)) - (-4 *2 (-218 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-108)) (-5 *1 (-110)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1089)) (-5 *2 (-108)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-108)) (-5 *1 (-564 *4)) (-4 *4 (-788)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-564 *4)) (-4 *4 (-788)))) + (-12 (-5 *2 (-2 (|:| |cd| (-1073)) (|:| -3515 (-1073)))) + (-5 *1 (-764))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1019)) (-4 *2 (-834 *5)) (-5 *1 (-634 *5 *2 *3 *4)) + (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254))))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1086 (-385 (-1086 *2)))) (-5 *4 (-565 *2)) + (-4 *2 (-13 (-408 *5) (-27) (-1112))) + (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1019)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1086 *1)) (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *3 (-789)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1086 *4)) (-4 *4 (-976)) (-4 *1 (-883 *4 *5 *3)) + (-4 *5 (-735)) (-4 *3 (-789)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1018)) (-5 *2 (-108)) (-5 *1 (-820 *5 *3 *4)) - (-4 *3 (-819 *5)) (-4 *4 (-566 (-825 *5))))) + (-12 (-5 *3 (-385 (-1086 *2))) (-4 *5 (-735)) (-4 *4 (-789)) + (-4 *6 (-976)) + (-4 *2 + (-13 (-341) + (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))) + (-5 *1 (-884 *5 *4 *6 *7 *2)) (-4 *7 (-883 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *6)) (-4 *6 (-819 *5)) (-4 *5 (-1018)) - (-5 *2 (-108)) (-5 *1 (-820 *5 *6 *4)) (-4 *4 (-566 (-825 *5)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-205) (-205) (-205))) - (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) - (-5 *5 (-1013 (-205))) (-5 *6 (-591 (-242))) (-5 *2 (-1049 (-205))) - (-5 *1 (-638))))) + (-12 (-5 *3 (-385 (-1086 (-385 (-886 *5))))) (-5 *4 (-1090)) + (-5 *2 (-385 (-886 *5))) (-5 *1 (-972 *5)) (-4 *5 (-517))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-734)) (-4 *5 (-975)) (-4 *6 (-882 *5 *4 *2)) - (-4 *2 (-788)) (-5 *1 (-883 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-341) - (-10 -8 (-15 -2686 ($ *6)) (-15 -1384 (*6 $)) - (-15 -1396 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) - (-5 *2 (-1089)) (-5 *1 (-971 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860))))) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) + (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1086 (-1086 *5)))) + (-5 *1 (-1125 *5)) (-5 *3 (-1086 (-1086 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-1019))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 (-415))))) + (-5 *1 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1112)))) + ((*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108))))) + (-4 *2 (-13 (-408 *4) (-933))) (-4 *4 (-13 (-789) (-517))) + (-5 *1 (-255 *4 *2))))) (((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) + (-4 *3 (-13 (-341) (-1112) (-933)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1041 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-976)) (-4 *3 (-1019))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1171 (-1089))) (-5 *3 (-1171 (-430 *4 *5 *6 *7))) - (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-854)) - (-14 *6 (-591 (-1089))) (-14 *7 (-1171 (-631 *4))))) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-430 *4 *5 *6 *7))) - (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-854)) - (-14 *6 (-591 *2)) (-14 *7 (-1171 (-631 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-430 *3 *4 *5 *6))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) - (-14 *6 (-1171 (-631 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-1089))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-160)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))) - (-14 *6 (-1171 (-631 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) - (-14 *4 (-854)) (-14 *5 (-591 *2)) (-14 *6 (-1171 (-631 *3))))) - ((*1 *1) - (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-854)) - (-14 *4 (-591 (-1089))) (-14 *5 (-1171 (-631 *2)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-760 *3)) (-4 *3 (-788)) (-5 *1 (-616 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1022)) (-5 *1 (-259))))) -(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1085 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-591 (-1089))) (-5 *2 (-1089)) (-5 *1 (-308))))) -(((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-975)) (-14 *3 (-591 (-1089))))) + (-12 (-5 *3 (-592 (-855))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-855)) + (-4 *2 (-341)) (-14 *5 (-925 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789)) + (-4 *6 (-218 (-1696 *4) (-713))) + (-14 *7 + (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *6)) + (-2 (|:| -3381 *5) (|:| -1737 *6)))) + (-14 *4 (-592 (-1090))) (-4 *2 (-160)) + (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-883 *2 *6 (-799 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-789)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) + (-4 *4 (-1148 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-976)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-976)) (-4 *3 (-669)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) + (-4 *4 (-976)) (-4 *5 (-789)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-976)) + (-4 *2 (-789)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-976)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-883 *4 *5 *6)) + (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-883 *4 *5 *2)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *2 (-789)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-905 *4 *5 *6)) + (-4 *4 (-976)) (-4 *5 (-734)) (-4 *6 (-789)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-905 *4 *3 *2)) (-4 *4 (-976)) (-4 *3 (-734)) + (-4 *2 (-789))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-886 (-525))) (-5 *3 (-1090)) + (-5 *4 (-1014 (-385 (-525)))) (-5 *1 (-30))))) +(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-695))))) +(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)))) + ((*1 *2 *3) + (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) + (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3)) + (-4 *3 (-594 *2)))) ((*1 *1 *1) - (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-975) (-788))) - (-14 *3 (-591 (-1089)))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-788) (-966 (-525)) (-587 (-525)) (-429))) - (-5 *2 (-781 *4)) (-5 *1 (-291 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1111) (-408 *3))) (-14 *5 (-1089)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-788) (-966 (-525)) (-587 (-525)) (-429))) - (-5 *2 (-781 *4)) (-5 *1 (-1157 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1111) (-408 *3))) (-14 *5 (-1089)) - (-14 *6 *4)))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) - (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) - (-5 *1 (-1088))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) - (-5 *2 - (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) - (|:| |success| (-108)))) - (-5 *1 (-730)) (-5 *5 (-525))))) + (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3)) + (-4 *3 (-594 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976)))) + ((*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-1 (-108) *8))) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-517)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-2 (|:| |goodPols| (-591 *8)) (|:| |badPols| (-591 *8)))) - (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-591 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) + (|partial| -12 (-5 *4 (-592 (-385 *6))) (-5 *3 (-385 *6)) + (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-529 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) - (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *1) (-5 *1 (-1177)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-742)) + (-5 *3 + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))) + (-5 *2 (-965))))) +(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) + (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) + (-4 *4 (-13 (-1019) (-33)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-205) (-205) (-205))) + (-5 *4 (-1 (-205) (-205) (-205) (-205))) + (-5 *2 (-1 (-877 (-205)) (-205) (-205))) (-5 *1 (-639))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-591 (-1085 *5))) (-5 *3 (-1085 *5)) - (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-591 *3)) (-4 *3 (-1147 *5)) - (-4 *5 (-1147 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-591 (-1085 (-525)))) (-5 *3 (-1085 (-525))) - (-5 *1 (-533)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-591 (-1085 *1))) (-5 *3 (-1085 *1)) - (-4 *1 (-842))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-838 (-525))) (-5 *4 (-525)) (-5 *2 (-631 *4)) - (-5 *1 (-957 *5)) (-4 *5 (-975)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-631 (-525))) (-5 *1 (-957 *4)) - (-4 *4 (-975)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-838 (-525)))) (-5 *4 (-525)) - (-5 *2 (-591 (-631 *4))) (-5 *1 (-957 *5)) (-4 *5 (-975)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-591 (-525)))) (-5 *2 (-591 (-631 (-525)))) - (-5 *1 (-957 *4)) (-4 *4 (-975))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1184 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) - (-5 *1 (-609 *3 *4)))) + (|partial| -12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-1090)) + (-4 *4 (-13 (-517) (-967 (-525)) (-138))) (-5 *1 (-531 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382)))) + ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855))))) +(((*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341))))) +(((*1 *1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-4 *1 (-281)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-609 *3 *4)) (-5 *1 (-1189 *3 *4)) - (-4 *3 (-788)) (-4 *4 (-160))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) - (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) - (-5 *1 (-1088))))) -(((*1 *2 *1) - (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) - (-5 *2 (-1085 *3))))) + (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) + (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-785))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517))))) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-789))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) + (-5 *2 (-965)) (-5 *1 (-690))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) (-4 *4 (-517)) (-4 *4 (-789)) + (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *2)) (-4 *2 (-882 (-385 (-885 *6)) *5 *4)) - (-5 *1 (-674 *5 *4 *6 *2)) (-4 *5 (-734)) - (-4 *4 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) - (-4 *6 (-517))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456))))) + (-12 (-5 *4 (-1090)) + (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) + (-4 *3 (-13 (-1112) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-967 (-525)) (-138))) + (-5 *2 (-542 (-385 (-886 *5)))) (-5 *1 (-531 *5)) + (-5 *3 (-385 (-886 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) - (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) - (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-788) (-517) (-966 (-525)))) - (-5 *2 (-2 (|:| -1676 (-712)) (|:| -1954 *8))) - (-5 *1 (-844 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) - (-4 *4 (-1147 (-385 (-525)))) (-4 *5 (-1147 (-385 *4))) - (-4 *6 (-320 (-385 (-525)) *4 *5)) - (-5 *2 (-2 (|:| -1676 (-712)) (|:| -1954 *6))) - (-5 *1 (-845 *4 *5 *6))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-591 - (-2 - (|:| -1265 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (|:| -1568 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1070 (-205))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3756 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-520)))) + (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284))))) +(((*1 *1 *1) + (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) + (-4 *3 (-13 (-341) (-1112) (-933)))))) +(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) + ((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-898)))) + ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-921)))) + ((*1 *2 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-1126)))) ((*1 *2 *1) - (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1125)) - (-5 *2 (-591 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-697))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) -(((*1 *1) (-5 *1 (-135))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-1049 (-205))) (-5 *1 (-242))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-918 (-385 (-525)) (-798 *3) (-220 *4 (-712)) - (-227 *3 (-385 (-525))))) - (-14 *3 (-591 (-1089))) (-14 *4 (-712)) (-5 *1 (-917 *3 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-525)) (|has| *1 (-6 -4251)) (-4 *1 (-351 *3)) - (-4 *3 (-1125))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-341)) (-4 *3 (-1147 *4)) (-4 *5 (-1147 (-385 *3))) - (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1147 *2)) - (-4 *5 (-1147 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6)) - (-4 *6 (-320 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-341)) (-4 *3 (-1147 *2)) (-4 *4 (-1147 (-385 *3))) - (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) - (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341)) - (-4 *1 (-313 *3 *4 *5 *6))))) + (-12 (-4 *2 (-13 (-1019) (-33))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-13 (-1019) (-33)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-830 *2 *4)) + (-4 *2 (-1148 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1018)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-525)) (-5 *2 (-1070 *3)) (-5 *1 (-1074 *3)) - (-4 *3 (-975)))) + (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1174)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-760 *4)) (-4 *4 (-788)) (-4 *1 (-1186 *4 *3)) - (-4 *3 (-975))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1162 *3))))) -(((*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174))))) -(((*1 *2 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-1018)) (-5 *2 (-591 *1)) - (-4 *1 (-360 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 (-677 *3 *4))) (-5 *1 (-677 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-668)))) - ((*1 *2 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-882 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) - (-4 *6 (-351 *3)) (-5 *1 (-630 *3 *5 *6 *2)) - (-4 *2 (-629 *3 *5 *6))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-525)) (|has| *1 (-6 -4251)) (-4 *1 (-1159 *3)) - (-4 *3 (-1125))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1020 *3)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1020 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1018))))) + (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-1073)) (-5 *1 (-1174)))) + ((*1 *1 *1) (-5 *1 (-1174)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) - (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-712)))) - (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1147 (-385 *5)))))) + (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7)) + (-4 *4 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)) + (-4 *7 (-1126))))) +(((*1 *2 *1) + (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-860)) - (-5 *2 - (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) - (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) - (-5 *1 (-144)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-860)) (-5 *4 (-385 (-525))) - (-5 *2 - (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) - (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) - (-5 *1 (-144)))) - ((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) - (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) - (-5 *1 (-144)) (-5 *3 (-591 (-876 (-205)))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) - (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) - (-5 *1 (-144)) (-5 *3 (-591 (-591 (-876 (-205))))))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-1013 (-357)))) (-5 *1 (-242)))) - ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-712)) (-4 *6 (-341)) (-5 *4 (-1120 *6)) - (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1179 *6)) - (-5 *5 (-1070 *4))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-591 *6)) (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) - (-4 *3 (-517))))) + (-5 *3 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *2 (-357)) (-5 *1 (-174))))) (((*1 *1) - (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1193 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-788)) - (-4 *2 (-160)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-788)) (-4 *2 (-975)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-760 *4)) (-4 *1 (-1186 *4 *2)) (-4 *4 (-788)) - (-4 *2 (-975)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-975)) (-5 *1 (-1192 *2 *3)) (-4 *3 (-784))))) + (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) + (-4 *4 (-160))))) +(((*1 *1 *2) + (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3)) + (-4 *3 (-13 (-382) (-1112))))) + ((*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92))))) +(((*1 *2 *2) + (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3)) + (-4 *3 (-594 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976))))) (((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1131 *3)) - (-5 *2 (-385 (-525)))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-693))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-689))))) -(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-501))))) -(((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-108))))) -(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) - ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173))))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-525)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) + (-4 *3 (-1019)) (-5 *2 (-713)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4)) + (-4 *4 (-1126)) (-5 *2 (-713))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-396 *4)) (-4 *4 (-517))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-632 *3)))) + (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1126)) (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-5 *2 (-1085 (-385 (-885 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525)))) - (-5 *1 (-284))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-766))))) -(((*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) - (-5 *1 (-708 *3 *4)) (-4 *3 (-650 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-341)) (-4 *3 (-975)) - (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-790 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-975)) - (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-791 *5 *3)) - (-4 *3 (-790 *5))))) -(((*1 *1) (-5 *1 (-146)))) + (-12 (-5 *2 (-592 (-2 (|:| -3160 (-1090)) (|:| -3978 *4)))) + (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) + (-4 *7 (-1019)) (-5 *2 (-592 *1)) (-4 *1 (-1022 *3 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)) (-4 *3 (-160)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-160))))) (((*1 *2 *3) - (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-770)) (-5 *3 (-1072))))) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1090))) (-5 *4 (-1090)) + (-5 *1 (-1093)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1094)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1090))) (-5 *1 (-1094))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4250)) (-4 *1 (-464 *3)) (-4 *3 (-1125)) - (-4 *3 (-1018)) (-5 *2 (-712)))) + (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-104)) (-5 *1 (-162)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4250)) (-4 *1 (-464 *4)) - (-4 *4 (-1125)) (-5 *2 (-712))))) -(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1147 *2)) (-4 *2 (-1129)) (-5 *1 (-139 *2 *4 *3)) - (-4 *3 (-1147 (-385 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-876 (-205)) (-205))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-876 (-205)) (-205))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-815 (-1 (-205) (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-815 (-1 (-205) (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1049 (-205))) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-812 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) - (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1049 (-205))) - (-5 *1 (-238 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-812 *5)) (-5 *4 (-1011 (-357))) - (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1049 (-205))) - (-5 *1 (-238 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) - (-5 *2 (-1049 (-205))) (-5 *1 (-238 *3)) - (-4 *3 (-13 (-566 (-501)) (-1018))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1011 (-357))) (-5 *2 (-1049 (-205))) (-5 *1 (-238 *3)) - (-4 *3 (-13 (-566 (-501)) (-1018))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-815 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) - (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1049 (-205))) - (-5 *1 (-238 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-815 *5)) (-5 *4 (-1011 (-357))) - (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1049 (-205))) - (-5 *1 (-238 *5))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) - (-4 *3 (-989 *6 *7 *8)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-995 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 (-2 (|:| |val| (-591 *8)) (|:| -3585 *9)))) - (-5 *5 (-108)) (-4 *8 (-989 *6 *7 *4)) (-4 *9 (-994 *6 *7 *4 *8)) - (-4 *6 (-429)) (-4 *7 (-734)) (-4 *4 (-788)) - (-5 *2 (-591 (-2 (|:| |val| *8) (|:| -3585 *9)))) - (-5 *1 (-995 *6 *7 *4 *8 *9))))) -(((*1 *1 *1) - (-12 (-4 *2 (-327)) (-4 *2 (-975)) (-5 *1 (-654 *2 *3)) - (-4 *3 (-1147 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-591 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-975)) - (-5 *1 (-958 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-341)) (-4 *3 (-975)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3965 *1))) - (-4 *1 (-790 *3))))) + (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-104)) (-5 *1 (-1006))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *2 (-108)) (-5 *1 (-279))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-975)) - (-5 *1 (-791 *5 *2)) (-4 *2 (-790 *5))))) + (-12 (-5 *3 (-525)) (|has| *1 (-6 -4245)) (-4 *1 (-382)) + (-5 *2 (-855))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-788) (-517))) - (-5 *2 (-796)) (-5 *1 (-31 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-643 *3 *5 *6 *7)) - (-4 *3 (-566 (-501))) (-4 *5 (-1125)) (-4 *6 (-1125)) - (-4 *7 (-1125)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-648 *3 *5 *6)) - (-4 *3 (-566 (-501))) (-4 *5 (-1125)) (-4 *6 (-1125))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-477 (-385 (-525)) (-220 *4 (-712)) (-798 *3) - (-227 *3 (-385 (-525))))) - (-14 *3 (-591 (-1089))) (-14 *4 (-712)) (-5 *1 (-478 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-1061 (-1072))) (-5 *1 (-369))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) - (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) + (-12 (-4 *4 (-13 (-341) (-967 (-385 *2)))) (-5 *2 (-525)) + (-5 *1 (-111 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1090))))) + (-5 *6 (-592 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1023)) + (-5 *1 (-375)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-592 (-592 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-592 (-3 (|:| |array| (-592 *3)) (|:| |scalar| (-1090))))) + (-5 *6 (-592 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1023)) + (-5 *1 (-375)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-592 (-1090))) (-5 *5 (-1093)) (-5 *3 (-1090)) + (-5 *2 (-1023)) (-5 *1 (-375))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-591 (-885 *4))) (-5 *3 (-591 (-1089))) (-4 *4 (-429)) - (-5 *1 (-851 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-385 (-525)))) - (-5 *2 - (-591 - (-2 (|:| |outval| *4) (|:| |outmult| (-525)) - (|:| |outvect| (-591 (-631 *4)))))) - (-5 *1 (-720 *4)) (-4 *4 (-13 (-341) (-786)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *2 (-964)) (-5 *1 (-694))))) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1112) (-892))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *3) + (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976))))) +(((*1 *2 *3) (-12 (-5 *3 (-886 (-205))) (-5 *2 (-205)) (-5 *1 (-284))))) (((*1 *2 *1) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) - (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *6)) (-4 *6 (-788)) (-4 *4 (-341)) (-4 *5 (-734)) - (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-882 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-795)))) - ((*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-897)))) - ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-920)))) - ((*1 *2 *1) (-12 (-4 *1 (-940 *2)) (-4 *2 (-1125)))) + (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-5 *2 (-1073))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) + (-5 *2 (-592 (-592 (-592 (-713)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2257 *4))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-2 (|:| |k| (-1090)) (|:| |c| (-1192 *3))))) + (-5 *1 (-1192 *3)) (-4 *3 (-976)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1018) (-33))) (-5 *1 (-1054 *2 *3)) - (-4 *3 (-13 (-1018) (-33)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-221)))) + (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1194 *3 *4))))) + (-5 *1 (-1194 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341)) + (-4 *5 (-976)) (-5 *2 (-108)) (-5 *1 (-959 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-1176)) (-5 *1 (-221))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) + (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-976)) + (-5 *2 (-108)) (-5 *1 (-959 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) + (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-713))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) + (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108)))) + (-5 *1 (-946 *4 *5)) (-5 *3 (-385 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) ((*1 *1 *1) (-4 *1 (-510))) ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-1036))))) + ((*1 *2 *1) (-12 (-4 *1 (-1019)) (-5 *2 (-1037))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-855)) (-4 *1 (-382)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1022 *3 *4 *5 *2 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1172 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341)) + (-5 *1 (-613 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-341)) + (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4255)))) + (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))) + (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341)) + (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-692))))) +(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1126)) (-4 *1 (-218 *3 *4))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-877 (-205))) (-5 *4 (-808)) (-5 *5 (-855)) + (-5 *2 (-1177)) (-5 *1 (-445)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-445)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *4 (-808)) (-5 *5 (-855)) + (-5 *2 (-1177)) (-5 *1 (-445))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-808)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))) +(((*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) + ((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1) (-5 *1 (-415)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-879 *4 *3)) + (-4 *3 (-1148 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1073)) + (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1112) (-29 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-1017 *3)))) + ((*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) + (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD)))) + (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) + (-5 *2 (-965)) (-5 *1 (-699))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525))))) +(((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) + (-4 *2 (-1148 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *8)) (-5 *4 (-712)) (-4 *8 (-882 *5 *7 *6)) - (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-788) (-566 (-1089)))) - (-4 *7 (-734)) + (-12 (-5 *4 (-108)) (-4 *5 (-327)) (-5 *2 - (-591 - (-2 (|:| |det| *8) (|:| |rows| (-591 (-525))) - (|:| |cols| (-591 (-525)))))) - (-5 *1 (-857 *5 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-726 *3)) (-4 *3 (-566 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-854)) (-5 *2 (-357)) (-5 *1 (-726 *3)) - (-4 *3 (-566 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-885 *4)) (-4 *4 (-975)) (-4 *4 (-566 *2)) - (-5 *2 (-357)) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 *5)) (-5 *4 (-854)) (-4 *5 (-975)) - (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) + (-2 (|:| |cont| *5) + (|:| -2826 (-592 (-2 (|:| |irr| *3) (|:| -3862 (-525))))))) + (-5 *1 (-197 *5 *3)) (-4 *3 (-1148 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) ((*1 *2 *3) - (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) (-4 *4 (-566 *2)) - (-5 *2 (-357)) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-854)) (-4 *5 (-517)) - (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) + (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-294 *4)) + (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-126)))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1093)))) + ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-965)) + (-5 *1 (-697))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-259)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-525) (-205) (-1090) (-1073) (-1095))) + (-5 *1 (-1095))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) + ((*1 *1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-115 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) + (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-883 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-976)) (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) + (-4 *1 (-1148 *3))))) +(((*1 *2) + (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) ((*1 *2 *3) - (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-788)) - (-4 *4 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 *5)) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-788)) - (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-712)) (-4 *4 (-975)) - (-5 *1 (-632 *4))))) + (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-294 *4)) + (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) + ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4)))) + (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) + (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090)) + (-5 *2 (-525)) (-5 *1 (-1033 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) + (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) + ((*1 *1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-1019)))) + ((*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1019))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-321 *3 *4)) (-14 *3 (-855)) + (-14 *4 (-855)))) + ((*1 *2) + (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327)) + (-14 *4 (-1086 *3)))) + ((*1 *2) + (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327)) + (-14 *4 (-855))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *2 (-591 (-205))) (-5 *1 (-186))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-591 (-385 *7))) - (-4 *7 (-1147 *6)) (-5 *3 (-385 *7)) (-4 *6 (-341)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-535 *6 *7))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-733)) (-4 *3 (-160))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-631 (-385 (-885 (-525))))) - (-5 *2 (-591 (-631 (-294 (-525))))) (-5 *1 (-960)) - (-5 *3 (-294 (-525)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) + (-12 (-5 *3 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))) + (-5 *2 (-385 (-525))) (-5 *1 (-950 *4)) (-4 *4 (-1148 (-525)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) + (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *6)))) + (-5 *4 (-956 (-782 (-525)))) (-5 *5 (-1090)) (-5 *7 (-385 (-525))) + (-4 *6 (-976)) (-5 *2 (-797)) (-5 *1 (-550 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-150))) + ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-205))) (-5 *4 (-712)) (-5 *2 (-631 (-205))) - (-5 *1 (-284))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-975)) (-4 *4 (-566 *2)) - (-5 *2 (-357)) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-885 *5)) (-5 *4 (-854)) (-4 *5 (-975)) - (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) - (-4 *4 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-854)) (-4 *5 (-517)) - (-4 *5 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-788)) - (-4 *4 (-566 *2)) (-5 *2 (-357)) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-854)) (-4 *5 (-517)) - (-4 *5 (-788)) (-4 *5 (-566 *2)) (-5 *2 (-357)) - (-5 *1 (-726 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-854)) (-4 *1 (-382)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *2 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-591 (-631 *6))) (-5 *4 (-108)) (-5 *5 (-525)) - (-5 *2 (-631 *6)) (-5 *1 (-958 *6)) (-4 *6 (-341)) (-4 *6 (-975)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-591 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-958 *4)) - (-4 *4 (-341)) (-4 *4 (-975)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-591 (-631 *5))) (-5 *4 (-525)) (-5 *2 (-631 *5)) - (-5 *1 (-958 *5)) (-4 *5 (-341)) (-4 *5 (-975))))) -(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-763))))) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))) + (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-256 *4 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) + (-14 *4 (-713)) (-4 *5 (-160))))) +(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) + ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))) +(((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) + ((*1 *1 *1) (-4 *1 (-933))) + ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-943)))) + ((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-943)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-713)))) + ((*1 *1 *1) (-4 *1 (-943)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-525)) (|has| *1 (-6 -4255)) (-4 *1 (-1160 *3)) + (-4 *3 (-1126))))) (((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |k| (-1089)) (|:| |c| (-1191 *3))))) - (-5 *1 (-1191 *3)) (-4 *3 (-975)))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |k| *3) (|:| |c| (-1193 *3 *4))))) - (-5 *1 (-1193 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-788)) (-4 *2 (-975)))) - ((*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-564 *4)) (-4 *4 (-788)) (-4 *2 (-788)) - (-5 *1 (-563 *2 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-975) (-788))) - (-5 *1 (-203 *3 *4)) (-14 *4 (-591 (-1089)))))) -(((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160))))) + (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) + (-4 *3 (-1148 *4)) (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-591 *3)))) + (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5))))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4250)) (-4 *1 (-464 *3)) (-4 *3 (-1125)) - (-5 *2 (-591 *3))))) + (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1019))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))) +(((*1 *2) + (-12 (-5 *2 (-1172 (-1020 *3 *4))) (-5 *1 (-1020 *3 *4)) + (-14 *3 (-855)) (-14 *4 (-855))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1018)) (-4 *5 (-1018)) - (-5 *2 (-1 *5)) (-5 *1 (-625 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1072)) (-5 *1 (-92)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1072)) (-5 *1 (-92))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1172)) (-5 *1 (-234)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1172)) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-810 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1172)) (-5 *1 (-234)))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *2 (-965)) + (-5 *1 (-691))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2)) + (-4 *2 (-1163 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3))) + (-4 *5 (-1148 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2)) + (-4 *2 (-1163 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 *3))) + (-5 *1 (-507 *4 *2)) (-4 *2 (-1163 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) + (-5 *1 (-1067 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *1) (-5 *1 (-988)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1037)) (-5 *2 (-108)) (-5 *1 (-763))))) +(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-135)))) + ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135))))) +(((*1 *2 *1) + (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) + (-4 *3 (-1148 (-47))))) + ((*1 *2 *3) + (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-810 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1172)) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) + (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) + (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-883 (-47) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1173)) (-5 *1 (-234)))) + (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) + (-4 *7 (-883 (-47) *6 *5)) (-5 *2 (-396 (-1086 *7))) + (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1086 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1148 (-157 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-876 (-205)) (-205))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) + (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) + (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-876 (-205)) (-205))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1173)) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1173)) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-876 (-205)) (-205) (-205))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1173)) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-815 (-1 (-205) (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *5 (-591 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-815 (-1 (-205) (-205) (-205)))) (-5 *4 (-1013 (-357))) - (-5 *2 (-1173)) (-5 *1 (-234)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-273 *7)) (-5 *4 (-1089)) (-5 *5 (-591 (-242))) - (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-788) (-966 (-525)))) - (-5 *2 (-1172)) (-5 *1 (-235 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1172)) - (-5 *1 (-238 *3)) (-4 *3 (-13 (-566 (-501)) (-1018))))) + (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) + (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) + (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) + (-4 *3 (-1148 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1011 (-357))) (-5 *2 (-1172)) (-5 *1 (-238 *3)) - (-4 *3 (-13 (-566 (-501)) (-1018))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-810 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) - (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1172)) - (-5 *1 (-238 *6)))) + (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) + (-4 *3 (-1148 (-525))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-810 *5)) (-5 *4 (-1011 (-357))) - (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1172)) - (-5 *1 (-238 *5)))) + (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) + (-4 *3 (-1148 (-525))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-812 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) - (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1173)) - (-5 *1 (-238 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-812 *5)) (-5 *4 (-1011 (-357))) - (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1173)) - (-5 *1 (-238 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) (-5 *2 (-1173)) - (-5 *1 (-238 *3)) (-4 *3 (-13 (-566 (-501)) (-1018))))) + (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) + (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1011 (-357))) (-5 *2 (-1173)) (-5 *1 (-238 *3)) - (-4 *3 (-13 (-566 (-501)) (-1018))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-815 *6)) (-5 *4 (-1011 (-357))) (-5 *5 (-591 (-242))) - (-4 *6 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1173)) - (-5 *1 (-238 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-815 *5)) (-5 *4 (-1011 (-357))) - (-4 *5 (-13 (-566 (-501)) (-1018))) (-5 *2 (-1173)) - (-5 *1 (-238 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-591 (-205))) (-5 *2 (-1172)) (-5 *1 (-239)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-591 (-205))) (-5 *4 (-591 (-242))) (-5 *2 (-1172)) - (-5 *1 (-239)))) + (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) + (-4 *3 (-1148 (-525))))) + ((*1 *2 *3) + (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423)) + (-5 *3 (-157 (-525))))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-876 (-205)))) (-5 *2 (-1172)) (-5 *1 (-239)))) + (-12 + (-4 *4 + (-13 (-789) + (-10 -8 (-15 -2923 ((-1090) $)) + (-15 -2818 ((-3 $ "failed") (-1090)))))) + (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3)) + (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517)) + (-4 *3 (-883 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1086 *4))) (-5 *1 (-435 *4)) + (-5 *3 (-1086 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-876 (-205)))) (-5 *4 (-591 (-242))) - (-5 *2 (-1172)) (-5 *1 (-239)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-591 (-205))) (-5 *2 (-1173)) (-5 *1 (-239)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-591 (-205))) (-5 *4 (-591 (-242))) (-5 *2 (-1173)) - (-5 *1 (-239))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-591 (-1089))) (-4 *5 (-517)) - (-5 *2 (-591 (-591 (-273 (-385 (-885 *5)))))) (-5 *1 (-711 *5)))) + (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) + (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3)) + (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1148 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-396 (-1086 *7)) (-1086 *7))) + (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) + (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3)) + (-4 *3 (-883 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-396 (-1086 *7)) (-1086 *7))) + (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) + (-4 *8 (-883 *7 *6 *5)) (-5 *2 (-396 (-1086 *8))) + (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-592 *5) *6)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *6 (-1148 *5)) (-5 *2 (-592 (-599 (-385 *6)))) + (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-517)) - (-5 *2 (-591 (-591 (-273 (-385 (-885 *4)))))) (-5 *1 (-711 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-631 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3612 (-591 *6))) - *7 *6)) - (-4 *6 (-341)) (-4 *7 (-601 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1171 *6) "failed")) - (|:| -3612 (-591 (-1171 *6))))) - (-5 *1 (-754 *6 *7)) (-5 *4 (-1171 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-108)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4250)) (-4 *1 (-142 *2)) (-4 *2 (-1125)) - (-4 *2 (-1018))))) -(((*1 *1) (-5 *1 (-132)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-966 (-385 *2)))) (-5 *2 (-525)) - (-5 *1 (-111 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-975)) (-4 *2 (-1018))))) -(((*1 *2) - (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) - (-5 *2 (-591 (-591 *4))) (-5 *1 (-319 *3 *4 *5 *6)) - (-4 *3 (-320 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-591 (-591 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1162 *4)) - (-4 *4 (-37 (-385 (-525)))) - (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1164 *4 *5))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) - (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *5 (-1148 *4)) (-5 *2 (-592 (-599 (-385 *5)))) + (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) - (-4 *7 (-923 *4)) (-4 *2 (-629 *7 *8 *9)) - (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) - (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) - (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *1 (-630 *3 *4 *5 *2)) - (-4 *2 (-629 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-341)) (-4 *2 (-975)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1039 *2 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341)))) - ((*1 *2 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-1097 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-5 *3 (-108)) (-5 *1 (-106)))) - ((*1 *2 *2) (-12 (-5 *2 (-854)) (|has| *1 (-6 -4241)) (-4 *1 (-382)))) - ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-854))))) -(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1094))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-591 *1)) (-4 *1 (-281)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-564 *3)) (-4 *3 (-788)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-110)) (-5 *3 (-591 *5)) (-5 *4 (-712)) (-4 *5 (-788)) - (-5 *1 (-564 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-259)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-525) (-205) (-1089) (-1072) (-1094))) - (-5 *1 (-1094))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *2) - (-12 (-5 *2 (-591 *7)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) - (-5 *1 (-919 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-591 *7)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) - (-5 *1 (-1025 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-975)) - (-5 *2 (-885 *5)) (-5 *1 (-877 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-885 *4)) (-4 *4 (-13 (-286) (-138))) - (-4 *2 (-882 *4 *6 *5)) (-5 *1 (-857 *4 *5 *6 *2)) - (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-1018)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) - ((*1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-4 *1 (-1016 *3)))) - ((*1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1018)))) + (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4))) + (-5 *1 (-617 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-591 *5) (-591 *5))) (-5 *4 (-525)) - (-5 *2 (-591 *5)) (-5 *1 (-624 *5)) (-4 *5 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-591 (-205)))) (-5 *1 (-859))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1176)) (-5 *1 (-763))))) + (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3)) + (-4 *3 (-1148 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3)) + (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) + (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-396 (-1086 *7))) + (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-735)) + (-4 *5 + (-13 (-789) + (-10 -8 (-15 -2923 ((-1090) $)) + (-15 -2818 ((-3 $ "failed") (-1090)))))) + (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3)) + (-4 *3 (-883 (-886 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-735)) + (-4 *5 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) (-4 *6 (-517)) + (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3)) + (-4 *3 (-883 (-385 (-886 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138))) + (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3)) + (-4 *3 (-883 (-385 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) + (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3)) + (-4 *3 (-883 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) + (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-396 (-1086 *7))) + (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-396 *3)) (-5 *1 (-938 *3)) + (-4 *3 (-1148 (-385 (-525)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-396 *3)) (-5 *1 (-970 *3)) + (-4 *3 (-1148 (-385 (-886 (-525))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1148 (-385 (-525)))) + (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4))) + (-5 *2 (-396 *3)) (-5 *1 (-1001 *4 *5 *3)) (-4 *3 (-1148 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1148 (-385 (-886 (-525))))) + (-4 *5 (-13 (-341) (-138) (-667 (-385 (-886 (-525))) *4))) + (-5 *2 (-396 *3)) (-5 *1 (-1003 *4 *5 *3)) (-4 *3 (-1148 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) + (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 (-385 *7)))) + (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1086 (-385 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1130)))) + ((*1 *2 *3) + (-12 (-5 *2 (-396 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) + (-4 *5 (-13 (-1019) (-33))) (-4 *6 (-13 (-1019) (-33))) + (-5 *2 (-108)) (-5 *1 (-1055 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) - (-5 *2 (-591 (-591 (-591 (-876 *3)))))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125))))) + (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1019) (-33))) + (-4 *4 (-13 (-1019) (-33)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-591 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525)))))) - (-5 *2 (-591 (-385 (-525)))) (-5 *1 (-949 *4)) - (-4 *4 (-1147 (-525)))))) -(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1119 *2 *3 *4 *5)) (-4 *2 (-517)) - (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-989 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-1159 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1) (-12 (-4 *1 (-966 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1018))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-955 (-781 (-525)))) - (-5 *3 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-975)) - (-5 *1 (-550 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-854)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-242))))) -(((*1 *2 *2) - (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) - (-15 -1396 ((-1041 *3 (-564 $)) $)) - (-15 -2686 ($ (-1041 *3 (-564 $)))))))))) -(((*1 *2 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-712))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) (-5 *2 (-385 (-885 *4))) (-5 *1 (-857 *4 *5 *6 *3)) - (-4 *3 (-882 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 *7)) (-4 *7 (-882 *4 *6 *5)) - (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) (-5 *2 (-631 (-385 (-885 *4)))) - (-5 *1 (-857 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *6 *5)) - (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) (-5 *2 (-591 (-385 (-885 *4)))) - (-5 *1 (-857 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-135)))) - ((*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-135))))) -(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110))) - ((*1 *1 *1) (-5 *1 (-159))) ((*1 *1 *1) (-4 *1 (-510))) - ((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-975)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) - (-4 *3 (-13 (-1018) (-33)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1018)) (-4 *3 (-788)) - (-4 *2 (-1125)))) - ((*1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) - ((*1 *2 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) + (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341)) + (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-1125)) (-5 *1 (-806 *2 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-826 *3)) (-4 *3 (-788)))) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) + (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) + ((*1 *2 *3) + (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) + (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-1159 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) + (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) + (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-713)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-1170 *3)) (-4 *3 (-23)) (-4 *3 (-1126))))) +(((*1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2) (-12 (-5 *1 (-1139 *2)) (-4 *2 (-1126))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-157 (-385 (-525))))) (-5 *2 (-591 (-157 *4))) - (-5 *1 (-706 *4)) (-4 *4 (-13 (-341) (-786)))))) -(((*1 *1) (-5 *1 (-764)))) -(((*1 *1 *1) (-4 *1 (-1058)))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-679 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1018)))) - ((*1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-1018))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1851 *1) (|:| -4237 *1) (|:| |associate| *1))) - (-4 *1 (-517))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5)) - (-4 *5 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) - (-5 *1 (-295 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-591 *7)) - (-4 *7 (-408 *6)) (-4 *6 (-13 (-788) (-517) (-566 (-501)))) - (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-591 (-273 *7))) (-5 *4 (-591 (-110))) (-5 *5 (-273 *7)) - (-4 *7 (-408 *6)) (-4 *6 (-13 (-788) (-517) (-566 (-501)))) - (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-591 (-273 *8))) (-5 *4 (-591 (-110))) (-5 *5 (-273 *8)) - (-5 *6 (-591 *8)) (-4 *8 (-408 *7)) - (-4 *7 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) - (-5 *1 (-295 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-591 *7)) (-5 *4 (-591 (-110))) (-5 *5 (-273 *7)) - (-4 *7 (-408 *6)) (-4 *6 (-13 (-788) (-517) (-566 (-501)))) - (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 (-110))) (-5 *6 (-591 (-273 *8))) - (-4 *8 (-408 *7)) (-5 *5 (-273 *8)) - (-4 *7 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) - (-5 *1 (-295 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6)) - (-4 *6 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) - (-5 *1 (-295 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) - (-4 *6 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) - (-5 *1 (-295 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) - (-4 *6 (-13 (-788) (-517) (-566 (-501)))) (-5 *2 (-51)) - (-5 *1 (-295 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-591 *3)) - (-4 *3 (-408 *7)) (-4 *7 (-13 (-788) (-517) (-566 (-501)))) - (-5 *2 (-51)) (-5 *1 (-295 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-712)) (-4 *5 (-517)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-901 *5 *3)) (-4 *3 (-1147 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-51)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-108))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-966 (-47))) - (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-4 *5 (-408 *4)) - (-5 *2 (-396 (-1085 (-47)))) (-5 *1 (-413 *4 *5 *3)) - (-4 *3 (-1147 *5))))) -(((*1 *1 *1) (-4 *1 (-577))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932) (-1111)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514))))) -(((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1147 *2)) - (-4 *2 (-160)))) - ((*1 *2) - (-12 (-4 *4 (-1147 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4)) - (-4 *3 (-387 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1147 *2)) (-4 *2 (-160)))) - ((*1 *2) - (-12 (-4 *3 (-1147 *2)) (-5 *2 (-525)) (-5 *1 (-709 *3 *4)) - (-4 *4 (-387 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)) (-4 *3 (-160)))) - ((*1 *2 *3) - (-12 (-4 *2 (-517)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1147 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-160))))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-4 *7 (-789)) + (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) (-4 *8 (-286)) + (-5 *2 (-592 (-713))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-713))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1144 *5 *4)) (-5 *1 (-1087 *4 *5 *6)) - (-4 *4 (-975)) (-14 *5 (-1089)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1144 *5 *4)) (-5 *1 (-1163 *4 *5 *6)) - (-4 *4 (-975)) (-14 *5 (-1089)) (-14 *6 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1072)) (-5 *5 (-631 (-205))) (-5 *6 (-631 (-525))) - (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-699))))) -(((*1 *2 *3) - (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-429)) - (-5 *2 (-457 *4 *5)) (-5 *1 (-579 *4 *5))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1070 (-205))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3756 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-520))))) -(((*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-5 *1 (-1100 *2)) (-4 *2 (-341))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1096))))) + (|partial| -12 (-5 *4 (-273 (-775 *3))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-273 (-775 (-886 *5)))) (-4 *5 (-429)) + (-5 *2 (-775 (-385 (-886 *5)))) (-5 *1 (-586 *5)) + (-5 *3 (-385 (-886 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-273 (-385 (-886 *5)))) (-5 *3 (-385 (-886 *5))) + (-4 *5 (-429)) (-5 *2 (-775 *3)) (-5 *1 (-586 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) + ((*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) + ((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-501))) (-5 *1 (-501))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-788))) - (-4 *2 (-13 (-408 (-157 *4)) (-932) (-1111))) - (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-932) (-1111)))))) -(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1125)) - (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4251)) (-4 *1 (-115 *3)) - (-4 *3 (-1125)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4251)) (-4 *1 (-115 *3)) - (-4 *3 (-1125)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1018)) - (-4 *2 (-1125)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-580)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1138 (-525))) (|has| *1 (-6 -4251)) (-4 *1 (-596 *2)) - (-4 *2 (-1125)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-591 (-525))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4251)) (-4 *1 (-940 *2)) - (-4 *2 (-1125)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1102 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) - (-4 *2 (-1125)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4251)) (-4 *1 (-1159 *3)) - (-4 *3 (-1125)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) - (-4 *2 (-1125))))) -(((*1 *2 *1) - (-12 (-5 *2 (-796)) (-5 *1 (-1070 *3)) (-4 *3 (-1018)) - (-4 *3 (-1125))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-539))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1072)) (-5 *5 (-631 (-205))) (-5 *6 (-205)) - (-5 *7 (-631 (-525))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-694))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *2 (-964)) (-5 *1 (-694))))) -(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-104))) (-5 *1 (-162))))) -(((*1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-854)) (-5 *1 (-727))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3192 *7) (|:| |sol?| (-108))) - (-525) *7)) - (-5 *6 (-591 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1147 *7)) - (-5 *3 (-385 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-535 *7 *8))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) - (|:| |genIdeal| (-477 *3 *4 *5 *6)))) - (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) - (-5 *1 (-995 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-1176)) - (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1125)) (-5 *2 (-712)) - (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-126)) - (-5 *2 (-712)))) - ((*1 *2) - (-12 (-4 *4 (-341)) (-5 *2 (-712)) (-5 *1 (-306 *3 *4)) - (-4 *3 (-307 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-339 *3)) (-4 *3 (-1018)))) - ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-364 *3)) (-4 *3 (-1018)))) - ((*1 *2) - (-12 (-4 *4 (-1018)) (-5 *2 (-712)) (-5 *1 (-402 *3 *4)) - (-4 *3 (-403 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-1018)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-160)) (-4 *5 (-1147 *4)) (-5 *2 (-712)) - (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-666 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-760 *3)) (-4 *3 (-788)))) - ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-936)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) - (-4 *3 (-1147 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-854)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-712))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-788)) - (-5 *2 (-2 (|:| -2976 (-525)) (|:| |var| (-564 *1)))) - (-4 *1 (-408 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-786)) (-5 *1 (-282 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-228))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1788 *4))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) + (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284))))) +(((*1 *1 *1) + (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-976)) (-4 *3 (-789)) + (-4 *4 (-245 *3)) (-4 *5 (-735))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107))))) (((*1 *2 *1) - (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)) - (-4 *2 (-429)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *4)) (-4 *4 (-1147 (-525))) (-5 *2 (-591 (-525))) - (-5 *1 (-461 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-429)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)) (-4 *3 (-429))))) -(((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860))))) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1019)))) + ((*1 *1 *2) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1019))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-974))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-4 *5 (-408 *4)) - (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1147 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1126 *2)) - (-4 *2 (-1018)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-1018)) (-4 *2 (-788)) - (-5 *1 (-1126 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) + (-12 (-5 *2 - (-2 (|:| A (-631 *5)) - (|:| |eqs| - (-591 - (-2 (|:| C (-631 *5)) (|:| |g| (-1171 *5)) (|:| -2203 *6) - (|:| |rh| *5)))))) - (-5 *1 (-754 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1171 *5)) - (-4 *6 (-601 *5)))) + (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) + (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) (-4 *6 (-601 *5)) - (-5 *2 (-2 (|:| -2928 (-631 *6)) (|:| |vec| (-1171 *5)))) - (-5 *1 (-754 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1171 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-5 *2 (-1176)) (-5 *1 (-1092)))) + (-12 + (-5 *2 + (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) + (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))) + (-5 *4 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) - (-5 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *2 (-1176)) - (-5 *1 (-1092)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1089)) - (-5 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) (-5 *2 (-1176)) - (-5 *1 (-1092))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-640)))) - ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-640))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-341) (-786))) (-5 *1 (-167 *3 *2)) - (-4 *2 (-1147 (-157 *3)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160)))) + (-12 + (-5 *2 + (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) + (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-385 (-525))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-385 (-525))) + (-5 *2 (-592 (-2 (|:| -3347 *5) (|:| -3356 *5)))) (-5 *1 (-950 *3)) + (-4 *3 (-1148 (-525))) (-5 *4 (-2 (|:| -3347 *5) (|:| -3356 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -1908 (-591 (-2 (|:| |irr| *10) (|:| -3630 (-525))))))) - (-5 *6 (-591 *3)) (-5 *7 (-591 *8)) (-4 *8 (-788)) (-4 *3 (-286)) - (-4 *10 (-882 *3 *9 *8)) (-4 *9 (-734)) - (-5 *2 - (-2 (|:| |polfac| (-591 *10)) (|:| |correct| *3) - (|:| |corrfact| (-591 (-1085 *3))))) - (-5 *1 (-574 *8 *9 *3 *10)) (-5 *4 (-591 (-1085 *3)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-341)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-591 *7)) (-5 *5 (-591 (-591 *8))) (-4 *7 (-788)) - (-4 *8 (-286)) (-4 *6 (-734)) (-4 *9 (-882 *8 *6 *7)) + (-12 (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-591 (-2 (|:| -2542 (-1085 *9)) (|:| -3987 (-525))))))) - (-5 *1 (-684 *6 *7 *8 *9)) (-5 *3 (-1085 *9))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-593 *5)) (-4 *5 (-975)) - (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-790 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-631 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-975)) - (-5 *1 (-791 *2 *3)) (-4 *3 (-790 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-631 (-205))) (-5 *6 (-631 (-525))) (-5 *3 (-525)) - (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-694))))) + (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) + (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) + (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))) + (-5 *4 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-385 (-525))) + (-5 *2 (-592 (-2 (|:| -3347 *4) (|:| -3356 *4)))) (-5 *1 (-951 *3)) + (-4 *3 (-1148 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-385 (-525))) + (-5 *2 (-592 (-2 (|:| -3347 *5) (|:| -3356 *5)))) (-5 *1 (-951 *3)) + (-4 *3 (-1148 *5)) (-5 *4 (-2 (|:| -3347 *5) (|:| -3356 *5)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-855)) (-5 *1 (-960 *2)) + (-4 *2 (-13 (-1019) (-10 -8 (-15 -4017 ($ $ $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2257 *4))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1014 (-205))) + (-5 *5 (-108)) (-5 *2 (-1174)) (-5 *1 (-236))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -3214 (-592 *7)))) + (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) + (-4 *4 (-351 *2))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-695))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1037)) (-5 *1 (-105)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1019)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1108))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1073)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) + (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-700))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1104 *4 *5)) + (-4 *4 (-1019)) (-4 *5 (-1019))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-797) (-797) (-797))) (-5 *4 (-525)) (-5 *2 (-797)) + (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1019)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-797)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-976)) + (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-797)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-797)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-797)))) + ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1086 *3)) (-4 *3 (-976))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 *4)) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) - (-4 *4 (-327)) (-5 *2 (-631 *4)) (-5 *1 (-324 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) + (-12 + (-5 *3 + (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) + (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-950 *4)) + (-4 *4 (-1148 (-525)))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-567 *2) (-160))) (-5 *2 (-826 *4)) + (-5 *1 (-158 *4 *5 *3)) (-4 *4 (-1019)) (-4 *3 (-154 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-966 (-525))))) + (-12 (-5 *3 (-592 (-1014 (-782 (-357))))) + (-5 *2 (-592 (-1014 (-782 (-205))))) (-5 *1 (-284)))) + ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-372)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) + (-4 *4 (-1148 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-712)) (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-286)) - (-5 *1 (-849 *3 *4 *5 *2)) (-4 *2 (-882 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1085 *6)) (-4 *6 (-882 *5 *3 *4)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *5 (-286)) (-5 *1 (-849 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *6 *4 *5)) - (-5 *1 (-849 *4 *5 *6 *2)) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *6 (-286))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-1018)) (-4 *2 (-1125))))) -(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) + (-5 *2 (-1172 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517)) + (-4 *3 (-789)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-440 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-501)))) + ((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2) + (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1148 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-912 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-987)))) + ((*1 *1 *2) + (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) + (-4 *5 (-567 (-1090))) (-4 *4 (-735)) (-4 *5 (-789)))) + ((*1 *1 *2) + (-3215 + (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) + (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) + (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))) + (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))))) + ((*1 *1 *2) + (-12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976)) + (-4 *4 (-735)) (-4 *5 (-789)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2249 *8))) + (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1073)) + (-5 *1 (-993 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1004)))) + ((*1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *2)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1022 *3 *4 *5 *2 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *2 (-1019)) (-4 *6 (-1019)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1022 *3 *4 *2 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *2 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1022 *3 *2 *4 *5 *6)) (-4 *3 (-1019)) (-4 *2 (-1019)) + (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019)) + (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *1)) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) + (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2249 *8))) + (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-1028 *4 *5 *6 *7)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1073)) + (-5 *1 (-1060 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-1095)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-1107)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-1107)))) + ((*1 *2 *3) + (-12 (-5 *3 (-722 *4 (-799 *5))) + (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) + (-5 *2 (-722 *4 (-799 *6))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *6 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-5 *3 (-886 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-886 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-5 *3 (-722 *4 (-799 *6))) + (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *6 (-592 (-1090))) + (-5 *2 (-886 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-1086 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) ((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1171 *4)) (-5 *1 (-495 *4)) - (-4 *4 (-327))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) - (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-146)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *3)) - (-4 *3 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) - (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-919 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) - (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7)) (-5 *2 (-108)) - (-5 *1 (-1025 *5 *6 *7 *8 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) + (-12 + (-5 *3 (-1061 *4 (-497 (-799 *6)) (-799 *6) (-722 *4 (-799 *6)))) + (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *6 (-592 (-1090))) + (-5 *2 (-592 (-722 *4 (-799 *6)))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-592 (-1090)))))) (((*1 *1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-619 *3)) (-4 *3 (-975)) (-4 *3 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-697)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366)) - (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-697))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-1018)) (-4 *2 (-1125))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-907 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)) (-4 *5 (-989 *3 *4 *2))))) + (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) + (-14 *3 (-525)) (-14 *4 (-713))))) (((*1 *2 *3) - (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-525))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) - (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) - (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) - (-5 *1 (-729)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) - (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) - (-5 *1 (-729))))) -(((*1 *2) - (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-5 *2 (-1177)) + (-5 *1 (-1127 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-5 *2 (-1177)) + (-5 *1 (-1127 *4))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1090)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-592 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3081 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1112) (-27) (-408 *8))) + (-4 *8 (-13 (-429) (-789) (-138) (-967 *3) (-588 *3))) + (-5 *3 (-525)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3356 *4) (|:| |sol?| (-108)))) + (-5 *1 (-944 *8 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1086 (-886 *4)) (-886 *4))) + (-5 *1 (-1180 *4)) (-4 *4 (-341))))) (((*1 *2 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) - (-5 *1 (-163 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-695))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) - (-14 *4 (-712)) (-4 *5 (-160))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-591 *2)) (-4 *2 (-1018)) (-4 *2 (-1125))))) -(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1072))))) + (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-414))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1126)) + (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *6 *2 *7)) (-4 *6 (-976)) + (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *3 (-525)) + (-5 *2 (-965)) (-5 *1 (-699))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1128))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *1 *1) (-5 *1 (-988)))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *2 (-965)) (-5 *1 (-694))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-976))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-592 (-713))) + (-5 *1 (-838 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) - (-5 *2 (-591 (-2 (|:| C (-631 *5)) (|:| |g| (-1171 *5))))) - (-5 *1 (-909 *5)) (-5 *3 (-631 *5)) (-5 *4 (-1171 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-308))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-668)) (-4 *2 (-1125))))) -(((*1 *1 *1) (-4 *1 (-1058)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-591 (-294 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) - (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) - (-4 *4 (-13 (-788) (-517)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-308))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *2 (-1018)) (-4 *3 (-1018)) - (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018))))) -(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-788)) (-4 *2 (-517)))) - ((*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517))))) -(((*1 *2) - (-12 (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) - (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-4 *4 (-1147 *3)) - (-5 *2 - (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-631 *3)))) - (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1147 (-525))) - (-5 *2 - (-2 (|:| -3612 (-631 (-525))) (|:| |basisDen| (-525)) - (|:| |basisInv| (-631 (-525))))) - (-5 *1 (-709 *3 *4)) (-4 *4 (-387 (-525) *3)))) - ((*1 *2) - (-12 (-4 *3 (-327)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 *4)) - (-5 *2 - (-2 (|:| -3612 (-631 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-631 *4)))) - (-5 *1 (-916 *3 *4 *5 *6)) (-4 *6 (-666 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-327)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 *4)) + (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) + (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) + (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 - (-2 (|:| -3612 (-631 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-631 *4)))) - (-5 *1 (-1180 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-110)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1072)) (-4 *4 (-788)) (-5 *1 (-862 *4 *2)) - (-4 *2 (-408 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-1072)) (-5 *2 (-294 (-525))) - (-5 *1 (-863))))) + (-2 (|:| |minor| (-592 (-855))) (|:| -3941 *3) + (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 *3)))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-855)) (-4 *3 (-602 *5))))) +(((*1 *1 *1) (-5 *1 (-988)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) + (-4 *5 (-1148 *4)) + (-5 *2 (-2 (|:| -3081 (-385 *5)) (|:| |coeff| (-385 *5)))) + (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) + (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) + (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3214 (-592 *9)))) + (-5 *3 (-592 *9)) (-4 *1 (-1120 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3214 (-592 *8)))) + (-5 *3 (-592 *8)) (-4 *1 (-1120 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8)) + (-4 *7 (-789)) (-4 *8 (-976)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) + (-5 *2 (-1086 *8)) (-5 *1 (-299 *6 *7 *8 *9))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3048 *4))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860))))) +(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1092 (-385 (-525)))) (-5 *2 (-385 (-525))) + (-5 *1 (-172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)) + (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-525)) (-5 *1 (-221)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-525)) (-5 *1 (-221))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-689))))) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-690))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *6)) (-5 *4 (-1089)) (-4 *6 (-408 *5)) - (-4 *5 (-788)) (-5 *2 (-591 (-564 *6))) (-5 *1 (-534 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-975)) (-4 *2 (-629 *4 *5 *6)) - (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1147 *4)) (-4 *5 (-351 *4)) - (-4 *6 (-351 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975))))) -(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) - ((*1 *1 *1) (-4 *1 (-984)))) + (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) + (-4 *4 (-327)) (-5 *2 (-1177)) (-5 *1 (-495 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1019))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-973))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-108)) (-5 *1 (-825 *4)) - (-4 *4 (-1018))))) + (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1086 (-1086 *4)))) + (-5 *1 (-1125 *4)) (-5 *3 (-1086 (-1086 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-789))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808))) + (-5 *1 (-445))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-592 (-1090))) (-4 *2 (-160)) + (-4 *3 (-218 (-1696 *4) (-713))) + (-14 *6 + (-1 (-108) (-2 (|:| -3381 *5) (|:| -1737 *3)) + (-2 (|:| -3381 *5) (|:| -1737 *3)))) + (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789)) + (-4 *7 (-883 *2 *3 (-799 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) + (-5 *2 (-2 (|:| -3671 (-592 *6)) (|:| -3864 (-592 *6))))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-1055 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) + (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33))) + (-5 *1 (-1056 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-592 (-1055 *3 *4))) (-4 *3 (-13 (-1019) (-33))) + (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-713)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-713)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1174))))) (((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *2 (-1018)) (-4 *3 (-1018)) - (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1094))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796))))) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1018)) - (-4 *3 (-1018))))) -(((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-712)) (-5 *2 (-591 (-1089))) (-5 *1 (-192)) - (-5 *3 (-1089)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-205))) (-5 *4 (-712)) (-5 *2 (-591 (-1089))) - (-5 *1 (-246)))) - ((*1 *2 *1) - (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) - (-5 *2 (-591 *3)))) + (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1086 (-1086 *4)))) + (-5 *1 (-1125 *4)) (-5 *3 (-1086 (-1086 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1086 *3)) (-4 *3 (-976)) (-4 *1 (-1148 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) + (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-967 *2)))) ((*1 *2 *1) - (-12 (-5 *2 (-591 *3)) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) - (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-620 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-760 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-826 *3)) (-4 *3 (-788)))) + (-12 (-4 *1 (-1022 *3 *4 *2 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-735)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) + (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)))) ((*1 *2 *1) - (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) - (-5 *2 (-591 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-290)) (-5 *1 (-275)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-290)) (-5 *1 (-275)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-290)) (-5 *1 (-275)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-1072))) (-5 *3 (-1072)) (-5 *2 (-290)) - (-5 *1 (-275))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) - (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) - (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) - (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-932))))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281)))) - ((*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *5 (-788)) (-5 *2 (-108)) - (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) - (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-110)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) - (-5 *1 (-578 *4 *5)) (-4 *5 (-13 (-408 *4) (-932) (-1111)))))) -(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *1 *1) (-4 *1 (-1053)))) -(((*1 *1) (-5 *1 (-308)))) + (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-713))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))) +(((*1 *2 *1) + (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-976)) + (-5 *1 (-633 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-385 (-885 (-525))))) - (-5 *2 (-591 (-591 (-273 (-885 *4))))) (-5 *1 (-358 *4)) - (-4 *4 (-13 (-786) (-341))))) + (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *2 (-108)) + (-5 *1 (-242))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-734)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-49 *3 *4)) + (-14 *4 (-592 (-1090))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-273 (-385 (-885 (-525)))))) - (-5 *2 (-591 (-591 (-273 (-885 *4))))) (-5 *1 (-358 *4)) - (-4 *4 (-13 (-786) (-341))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) + (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) + (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 (-525)))) (-5 *2 (-591 (-273 (-885 *4)))) - (-5 *1 (-358 *4)) (-4 *4 (-13 (-786) (-341))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160)) + (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-976) (-789))) + (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1090))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) + (-4 *6 (-1126)) (-4 *7 (-1126)) (-5 *2 (-220 *5 *7)) + (-5 *1 (-219 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-273 (-385 (-885 (-525))))) - (-5 *2 (-591 (-273 (-885 *4)))) (-5 *1 (-358 *4)) - (-4 *4 (-13 (-786) (-341))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-273 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1089)) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-4 *4 (-13 (-29 *6) (-1111) (-891))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3612 (-591 *4)))) - (-5 *1 (-597 *6 *4 *3)) (-4 *3 (-601 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-591 *2)) - (-4 *2 (-13 (-29 *6) (-1111) (-891))) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *1 (-597 *6 *2 *3)) (-4 *3 (-601 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-565 *6)) + (-4 *6 (-281)) (-4 *2 (-1126)) (-5 *1 (-276 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-341)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1171 *5) "failed")) - (|:| -3612 (-591 (-1171 *5))))) - (-5 *1 (-612 *5)) (-5 *4 (-1171 *5)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-565 *5)) (-4 *5 (-281)) + (-4 *2 (-281)) (-5 *1 (-277 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-565 *1)) (-4 *1 (-281)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-591 *5))) (-4 *5 (-341)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1171 *5) "failed")) - (|:| -3612 (-591 (-1171 *5))))) - (-5 *1 (-612 *5)) (-5 *4 (-1171 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-632 *5)) (-4 *5 (-976)) + (-4 *6 (-976)) (-5 *2 (-632 *6)) (-5 *1 (-283 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-341)) - (-5 *2 - (-591 - (-2 (|:| |particular| (-3 (-1171 *5) "failed")) - (|:| -3612 (-591 (-1171 *5)))))) - (-5 *1 (-612 *5)) (-5 *4 (-591 (-1171 *5))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-789)) + (-4 *6 (-789)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-591 *5))) (-4 *5 (-341)) - (-5 *2 - (-591 - (-2 (|:| |particular| (-3 (-1171 *5) "failed")) - (|:| -3612 (-591 (-1171 *5)))))) - (-5 *1 (-612 *5)) (-5 *4 (-591 (-1171 *5))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341)) + (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) + (-4 *9 (-341)) (-4 *10 (-1148 *9)) (-4 *11 (-1148 (-385 *10))) + (-5 *2 (-314 *9 *10 *11 *12)) + (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-320 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1019)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4251)))) - (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4251)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) - (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1130)) (-4 *8 (-1130)) + (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *9 (-1148 *8)) + (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1148 (-385 *9))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4251)))) - (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4251)))) - (-5 *2 - (-591 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3612 (-591 *7))))) - (-5 *1 (-613 *5 *6 *7 *3)) (-5 *4 (-591 *7)) - (-4 *3 (-629 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) + (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-1019)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-591 (-1089))) (-4 *5 (-517)) - (-5 *2 (-591 (-591 (-273 (-385 (-885 *5)))))) (-5 *1 (-711 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-517)) - (-5 *2 (-591 (-591 (-273 (-385 (-885 *4)))))) (-5 *1 (-711 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1089)) - (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *1 (-713 *5 *2)) (-4 *2 (-13 (-29 *5) (-1111) (-891))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1089)) - (-4 *7 (-13 (-29 *6) (-1111) (-891))) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517)) + (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517)) + (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286)) + (-4 *6 (-924 *5)) (-4 *7 (-1148 *6)) + (-4 *8 (-13 (-387 *6 *7) (-967 *6))) (-4 *9 (-286)) + (-4 *10 (-924 *9)) (-4 *11 (-1148 *10)) + (-5 *2 (-391 *9 *10 *11 *12)) + (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-387 *10 *11) (-967 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) + (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-976) (-789))) + (-4 *6 (-13 (-976) (-789))) (-4 *2 (-408 *6)) + (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) + (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1126)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-789)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341)) + (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -3081 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-341)) (-4 *6 (-341)) + (-5 *2 (-2 (|:| -3081 *6) (|:| |coeff| *6))) + (-5 *1 (-541 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 - (-2 (|:| |particular| (-1171 *7)) (|:| -3612 (-591 (-1171 *7))))) - (-5 *1 (-743 *6 *7)) (-5 *4 (-1171 *7)))) + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-541 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1089)) - (-4 *6 (-13 (-29 *5) (-1111) (-891))) - (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 (-591 (-1171 *6))) (-5 *1 (-743 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-591 (-273 *7))) (-5 *4 (-591 (-110))) - (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1111) (-891))) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 - (-2 (|:| |particular| (-1171 *7)) (|:| -3612 (-591 (-1171 *7))))) - (-5 *1 (-743 *6 *7)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7)) + (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-555 *8)) + (-5 *1 (-553 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-591 *7)) (-5 *4 (-591 (-110))) - (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1111) (-891))) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 - (-2 (|:| |particular| (-1171 *7)) (|:| -3612 (-591 (-1171 *7))))) - (-5 *1 (-743 *6 *7)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-555 *7)) + (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8)) + (-5 *1 (-553 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1089)) - (-4 *7 (-13 (-29 *6) (-1111) (-891))) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -3612 (-591 *7))) *7 "failed")) - (-5 *1 (-743 *6 *7)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1071 *7)) + (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8)) + (-5 *1 (-553 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-110)) (-5 *5 (-1089)) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -3612 (-591 *3))) *3 "failed")) - (-5 *1 (-743 *6 *3)) (-4 *3 (-13 (-29 *6) (-1111) (-891))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-591 *2)) - (-4 *2 (-13 (-29 *6) (-1111) (-891))) (-5 *1 (-743 *6 *2)) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-591 *2)) - (-4 *2 (-13 (-29 *6) (-1111) (-891))) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *1 (-743 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-964)) (-5 *1 (-746)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-592 *6)) (-5 *5 (-592 *7)) + (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-592 *8)) + (-5 *1 (-591 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-987)) (-5 *2 (-964)) (-5 *1 (-746)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1171 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-591 *4)) - (-5 *2 (-964)) (-5 *1 (-746)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1171 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-591 *4)) - (-5 *2 (-964)) (-5 *1 (-746)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1171 (-294 *4))) (-5 *5 (-591 (-357))) - (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-964)) (-5 *1 (-746)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1171 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-591 *4)) - (-5 *2 (-964)) (-5 *1 (-746)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1171 (-294 *4))) (-5 *5 (-591 (-357))) - (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-964)) (-5 *1 (-746)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1171 (-294 *4))) (-5 *5 (-591 (-357))) - (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-964)) (-5 *1 (-746)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-976)) (-4 *8 (-976)) + (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) + (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) + (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-976)) + (-4 *8 (-976)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) + (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517)) + (-4 *6 (-1148 *5)) (-4 *2 (-1148 (-385 *8))) + (-5 *1 (-652 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1148 (-385 *6))) + (-4 *8 (-1148 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-976)) (-4 *9 (-976)) (-4 *5 (-789)) + (-4 *6 (-735)) (-4 *2 (-883 *9 *7 *5)) + (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) + (-4 *4 (-883 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-4 *7 (-735)) + (-4 *9 (-976)) (-4 *2 (-883 *9 *8 *6)) + (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-735)) + (-4 *4 (-883 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-976)) + (-4 *6 (-976)) (-4 *7 (-669)) (-5 *2 (-678 *6 *7)) + (-5 *1 (-677 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-678 *3 *4)) + (-4 *4 (-669)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-976)) + (-4 *6 (-976)) (-5 *2 (-724 *6)) (-5 *1 (-723 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) + (-4 *2 (-739 *6)) (-5 *1 (-740 *4 *5 *2 *6)) (-4 *4 (-739 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1019)) + (-4 *6 (-1019)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *1 (-774 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1019)) + (-4 *6 (-1019)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-782 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *1 (-781 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-823 *5 *6)) (-4 *5 (-1019)) + (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-823 *5 *7)) + (-5 *1 (-822 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) + (-4 *6 (-1019)) (-5 *2 (-826 *6)) (-5 *1 (-825 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-976)) + (-4 *6 (-976)) (-5 *2 (-886 *6)) (-5 *1 (-880 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -3612 (-591 *6))) "failed") - *7 *6)) - (-4 *6 (-341)) (-4 *7 (-601 *6)) - (-5 *2 (-2 (|:| |particular| (-1171 *6)) (|:| -3612 (-631 *6)))) - (-5 *1 (-754 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1171 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-964)) (-5 *1 (-830)))) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-789)) + (-4 *8 (-976)) (-4 *6 (-735)) + (-4 *2 + (-13 (-1019) + (-10 -8 (-15 -4017 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) + (-5 *1 (-885 *6 *7 *8 *5 *2)) (-4 *5 (-883 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-987)) (-5 *2 (-964)) (-5 *1 (-830)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-712)) (-5 *6 (-591 (-591 (-294 *3)))) (-5 *7 (-1072)) - (-5 *8 (-205)) (-5 *5 (-591 (-294 (-357)))) (-5 *3 (-357)) - (-5 *2 (-964)) (-5 *1 (-830)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-712)) (-5 *6 (-591 (-591 (-294 *3)))) (-5 *7 (-1072)) - (-5 *5 (-591 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-964)) - (-5 *1 (-830)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 (-385 (-525)))) (-5 *2 (-591 (-357))) - (-5 *1 (-952)) (-5 *4 (-357)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-976)) + (-4 *6 (-976)) (-5 *2 (-877 *6)) (-5 *1 (-913 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-886 *4))) (-4 *4 (-976)) + (-4 *2 (-883 (-886 *4) *5 *6)) (-4 *5 (-735)) + (-4 *6 + (-13 (-789) + (-10 -8 (-15 -2923 ((-1090) $)) + (-15 -2818 ((-3 $ "failed") (-1090)))))) + (-5 *1 (-916 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 (-525))) (-5 *2 (-591 (-357))) (-5 *1 (-952)) - (-5 *4 (-357)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 (-591 (-273 (-294 *4)))) (-5 *1 (-1047 *4)) - (-5 *3 (-294 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 (-591 (-273 (-294 *4)))) (-5 *1 (-1047 *4)) - (-5 *3 (-273 (-294 *4))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517)) + (-4 *2 (-924 *6)) (-5 *1 (-922 *5 *6 *4 *2)) (-4 *4 (-924 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) - (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 (-591 (-273 (-294 *5)))) (-5 *1 (-1047 *5)) - (-5 *3 (-273 (-294 *5))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) + (-4 *2 (-928 *6)) (-5 *1 (-929 *4 *5 *2 *6)) (-4 *4 (-928 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-979 *3 *4 *5 *6 *7)) + (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) - (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 (-591 (-273 (-294 *5)))) (-5 *1 (-1047 *5)) - (-5 *3 (-294 *5)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-976)) (-4 *10 (-976)) + (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) + (-4 *9 (-218 *5 *7)) (-4 *2 (-979 *5 *6 *10 *11 *12)) + (-5 *1 (-981 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-979 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10)) + (-4 *12 (-218 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-1089))) - (-4 *5 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 (-591 (-591 (-273 (-294 *5))))) (-5 *1 (-1047 *5)) - (-5 *3 (-591 (-273 (-294 *5)))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1014 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-1014 *6)) (-5 *1 (-1010 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-385 (-885 *5)))) (-5 *4 (-591 (-1089))) - (-4 *5 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *5)))))) - (-5 *1 (-1095 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1014 *5)) (-4 *5 (-787)) + (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-592 *6)) + (-5 *1 (-1010 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-1089))) (-4 *5 (-517)) - (-5 *2 (-591 (-591 (-273 (-385 (-885 *5)))))) (-5 *1 (-1095 *5)) - (-5 *3 (-591 (-273 (-385 (-885 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-385 (-885 *4)))) (-4 *4 (-517)) - (-5 *2 (-591 (-591 (-273 (-385 (-885 *4)))))) (-5 *1 (-1095 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1012 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-1012 *6)) (-5 *1 (-1011 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1015 *4 *2)) (-4 *4 (-787)) + (-4 *2 (-1064 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-1071 *6)) (-5 *1 (-1069 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-1071 *7)) + (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8)) + (-5 *1 (-1070 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-976)) + (-4 *6 (-976)) (-5 *2 (-1086 *6)) (-5 *1 (-1084 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1103 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5 *7 *9)) (-4 *5 (-976)) + (-4 *6 (-976)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1136 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1090)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-1139 *6)) (-5 *1 (-1138 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-787)) + (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1071 *6)) + (-5 *1 (-1138 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1145 *5 *6)) (-14 *5 (-1090)) + (-4 *6 (-976)) (-4 *8 (-976)) (-5 *2 (-1145 *7 *8)) + (-5 *1 (-1140 *5 *6 *7 *8)) (-14 *7 (-1090)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-976)) (-4 *6 (-976)) + (-4 *2 (-1148 *6)) (-5 *1 (-1146 *5 *4 *6 *2)) (-4 *4 (-1148 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5 *7 *9)) (-4 *5 (-976)) + (-4 *6 (-976)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1157 *6 *8 *10)) (-5 *1 (-1152 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1090)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-976)) (-4 *6 (-976)) + (-4 *2 (-1163 *6)) (-5 *1 (-1161 *5 *6 *4 *2)) (-4 *4 (-1163 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1126)) + (-4 *6 (-1126)) (-5 *2 (-1172 *6)) (-5 *1 (-1171 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1172 *5)) + (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1172 *6)) + (-5 *1 (-1171 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-976)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-1193 *3 *4)) + (-4 *4 (-785))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-591 (-591 (-273 (-385 (-885 *4)))))) - (-5 *1 (-1095 *4)) (-5 *3 (-591 (-273 (-385 (-885 *4))))))) + (-12 (-4 *4 (-160)) (-4 *2 (-1148 *4)) (-5 *1 (-164 *4 *2 *3)) + (-4 *3 (-667 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-517)) - (-5 *2 (-591 (-273 (-385 (-885 *5))))) (-5 *1 (-1095 *5)) - (-5 *3 (-385 (-885 *5))))) + (-12 (-5 *3 (-632 (-385 (-886 *5)))) (-5 *4 (-1090)) + (-5 *2 (-886 *5)) (-5 *1 (-271 *5)) (-4 *5 (-429)))) + ((*1 *2 *3) + (-12 (-5 *3 (-632 (-385 (-886 *4)))) (-5 *2 (-886 *4)) + (-5 *1 (-271 *4)) (-4 *4 (-429)))) + ((*1 *2 *1) + (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-632 (-157 (-385 (-525))))) + (-5 *2 (-886 (-157 (-385 (-525))))) (-5 *1 (-707 *4)) + (-4 *4 (-13 (-341) (-787))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-517)) - (-5 *2 (-591 (-273 (-385 (-885 *5))))) (-5 *1 (-1095 *5)) - (-5 *3 (-273 (-385 (-885 *5)))))) + (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1090)) + (-5 *2 (-886 (-157 (-385 (-525))))) (-5 *1 (-707 *5)) + (-4 *5 (-13 (-341) (-787))))) ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-591 (-273 (-385 (-885 *4))))) - (-5 *1 (-1095 *4)) (-5 *3 (-385 (-885 *4))))) + (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-886 (-385 (-525)))) + (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1090)) + (-5 *2 (-886 (-385 (-525)))) (-5 *1 (-721 *5)) + (-4 *5 (-13 (-341) (-787)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) + (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-592 (-998 *4 *5 *2))) (-4 *4 (-1019)) + (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) + (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))) + (-5 *1 (-53 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-592 (-998 *5 *6 *2))) (-5 *4 (-855)) (-4 *5 (-1019)) + (-4 *6 (-13 (-976) (-820 *5) (-789) (-567 (-826 *5)))) + (-4 *2 (-13 (-408 *6) (-820 *5) (-567 (-826 *5)))) + (-5 *1 (-53 *5 *6 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-713)) (-4 *4 (-327)) + (-5 *1 (-495 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1019) (-33))) + (-4 *2 (-13 (-1019) (-33)))))) +(((*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341)) + (-4 *5 (-517)) (-5 *2 (-1172 *5)) (-5 *1 (-587 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 *5)) + (-2823 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1172 (-385 *5))) + (-5 *1 (-587 *5 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) + (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-591 (-273 (-385 (-885 *4))))) - (-5 *1 (-1095 *4)) (-5 *3 (-273 (-385 (-885 *4))))))) -(((*1 *1 *2) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-1089))))) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-976)) + (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-883 *2 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969))))) +(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-837 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-1078 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1049 (-205))) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049 (-205))) (-5 *1 (-1173))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1125)))) + (-12 (-4 *1 (-1022 *3 *2 *4 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-592 (-799 *5))) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) + (-5 *2 (-592 (-592 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7)) + (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-385 (-525))))) (-5 *1 (-242)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1029))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-592 (-1086 *7))) (-5 *3 (-1086 *7)) + (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-843)) (-4 *5 (-735)) + (-4 *6 (-789)) (-5 *1 (-840 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-592 (-1086 *5))) (-5 *3 (-1086 *5)) + (-4 *5 (-1148 *4)) (-4 *4 (-843)) (-5 *1 (-841 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *3 (-1126)) (-5 *2 (-592 *1)) (-4 *1 (-941 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *1) (-5 *1 (-415)))) +(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284))))) +(((*1 *2 *3) + (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-780)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-779)))) + ((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-965)) (-5 *1 (-779)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) + (-5 *6 (-592 (-294 (-357)))) (-5 *3 (-294 (-357))) (-5 *2 (-965)) + (-5 *1 (-779)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) + (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-965)) (-5 *1 (-779)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-965)) + (-5 *1 (-779)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) + (-5 *2 (-965)) (-5 *1 (-779))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))) +(((*1 *2 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1071 (-886 *4)) (-1071 (-886 *4)))) + (-5 *1 (-1180 *4)) (-4 *4 (-341))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1071 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-767))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) + (-14 *4 (-592 (-1090))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) ((*1 *2 *2) - (-12 (-4 *3 (-975)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1147 *3)))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *1 *1) (-4 *1 (-263))) ((*1 *1 *1) - (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5)) + (-14 *5 (-855)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525))))) + (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) + (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-517)) + (-5 *2 (-2 (|:| -3471 (-632 *5)) (|:| |vec| (-1172 (-592 (-855)))))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-855)) (-4 *3 (-602 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-839 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-429))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-882 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) - (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) - (-4 *4 (-327))))) -(((*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1 (-357))) (-5 *1 (-968))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) - ((*1 *2 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) - (-14 *4 (-591 (-1089))))) - ((*1 *2 *1) - (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) - (-14 *4 (-591 (-1089))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-975)) (-4 *3 (-788)) - (-4 *5 (-245 *3)) (-4 *6 (-734)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-254)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *8)) (-5 *4 (-591 *6)) (-4 *6 (-788)) - (-4 *8 (-882 *7 *5 *6)) (-4 *5 (-734)) (-4 *7 (-975)) - (-5 *2 (-591 (-712))) (-5 *1 (-299 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-854)))) - ((*1 *2 *1) - (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) - (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-572 *3 *4)) - (-4 *4 (-1147 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-650 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-790 *3)) (-4 *3 (-975)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *6)) (-4 *1 (-882 *4 *5 *6)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 (-712))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-882 *4 *5 *3)) (-4 *4 (-975)) (-4 *5 (-734)) - (-4 *3 (-788)) (-5 *2 (-712)))) - ((*1 *2 *1) - (-12 (-4 *1 (-904 *3 *2 *4)) (-4 *3 (-975)) (-4 *4 (-788)) - (-4 *2 (-733)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-712)))) + (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-771))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-713)) (-5 *3 (-877 *5)) (-4 *5 (-976)) + (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1079 *4 *5)) + (-14 *4 (-855)) (-4 *5 (-976)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-713))) (-5 *3 (-877 *5)) (-4 *5 (-976)) + (-5 *1 (-1079 *4 *5)) (-14 *4 (-855))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-713)) (-5 *4 (-1172 *2)) (-4 *5 (-286)) + (-4 *6 (-924 *5)) (-4 *2 (-13 (-387 *6 *7) (-967 *6))) + (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1148 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) + ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160))))) +(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-697))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 (-525))))) + (-5 *1 (-339 *3)) (-4 *3 (-1019)))) ((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1162 *3)) - (-5 *2 (-525)))) + (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 (-713))))) + (-5 *1 (-364 *3)) (-4 *3 (-1019)))) ((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1131 *3)) - (-5 *2 (-385 (-525))))) + (-12 (-5 *2 (-592 (-2 (|:| -2961 *3) (|:| -1737 (-525))))) + (-5 *1 (-396 *3)) (-4 *3 (-517)))) ((*1 *2 *1) - (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-774 (-854))))) + (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 (-713))))) + (-5 *1 (-761 *3)) (-4 *3 (-789))))) +(((*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1175))))) +(((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713))))) +(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1) (-4 *1 (-900))) ((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *2 *1) + (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-990 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))) +(((*1 *1 *1 *1) (-5 *1 (-125)))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-48))))) +(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-799 *3)) (-14 *3 (-592 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-921)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1012 *3)) (-4 *3 (-1126)))) ((*1 *2 *1) - (-12 (-4 *1 (-1190 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) - (-5 *2 (-712))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-804 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-14 *2 (-525)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-525)) (-14 *3 *2) (-5 *1 (-805 *3 *4)) - (-4 *4 (-802 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-525)) (-5 *1 (-805 *2 *3)) (-4 *3 (-802 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-525)) (-4 *1 (-1133 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-1162 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1133 *2 *3)) (-4 *2 (-975)) (-4 *3 (-1162 *2))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) + (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) + (-5 *2 (-1090)))) + ((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1168 *3)) (-14 *3 *2)))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-694))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-286)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1177))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) + (-4 *2 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3)) + (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) + (-4 *2 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138))) + (-5 *1 (-1067 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-429))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-501)) (-5 *1 (-500 *4)) - (-4 *4 (-1125))))) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-690))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-734)) (-4 *6 (-788)) (-4 *7 (-517)) - (-4 *3 (-882 *7 *5 *6)) - (-5 *2 - (-2 (|:| -3987 (-712)) (|:| -2976 *3) (|:| |radicand| (-591 *3)))) - (-5 *1 (-886 *5 *6 *7 *3 *8)) (-5 *4 (-712)) - (-4 *8 - (-13 (-341) - (-10 -8 (-15 -1384 (*3 $)) (-15 -1396 (*3 $)) (-15 -2686 ($ *3)))))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-631 *2)) (-5 *4 (-712)) - (-4 *2 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-4 *5 (-1147 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) (-4 *7 (-882 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-108)) (|:| |z0| (-591 *7)) (|:| |n0| (-591 *7)))) - (-5 *1 (-857 *4 *5 *6 *7)) (-5 *3 (-591 *7))))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1090)) (-4 *5 (-408 *4)) + (-4 *4 (-789)) (-5 *1 (-534 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-125)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1147 *6)) - (-4 *6 (-13 (-27) (-408 *5))) - (-4 *5 (-13 (-788) (-517) (-966 (-525)))) (-4 *8 (-1147 (-385 *7))) - (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) - (-4 *3 (-320 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-108)) - (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-4 *3 (-13 (-27) (-1111) (-408 *6) (-10 -8 (-15 -2686 ($ *7))))) - (-4 *7 (-786)) - (-4 *8 - (-13 (-1149 *3 *7) (-341) (-1111) - (-10 -8 (-15 -2209 ($ $)) (-15 -2452 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) - (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-914 *8)) - (-14 *10 (-1089))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-108)) (-5 *3 (-885 *6)) (-5 *4 (-1089)) - (-5 *5 (-781 *7)) - (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-4 *7 (-13 (-1111) (-29 *6))) (-5 *1 (-204 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1085 *6)) (-5 *4 (-781 *6)) - (-4 *6 (-13 (-1111) (-29 *5))) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-204 *5 *6))))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) (((*1 *2 *3) - (-12 (-4 *4 (-788)) - (-5 *2 - (-2 (|:| |f1| (-591 *4)) (|:| |f2| (-591 (-591 (-591 *4)))) - (|:| |f3| (-591 (-591 *4))) (|:| |f4| (-591 (-591 (-591 *4)))))) - (-5 *1 (-1097 *4)) (-5 *3 (-591 (-591 (-591 *4))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1156 *3 *4 *5)) (-4 *3 (-13 (-341) (-788))) - (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-968)) (-5 *3 (-357))))) + (-12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-592 *5)) + (-5 *1 (-824 *4 *5)) (-4 *5 (-1126))))) +(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) + ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-1072)) (-5 *5 (-631 (-205))) - (-5 *2 (-964)) (-5 *1 (-689))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-765))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -1924 (-591 (-1089))) (|:| -4171 (-591 (-1089))))) - (-5 *1 (-1127))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1028))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1125)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2928 (-631 (-385 (-885 *4)))) - (|:| |vec| (-591 (-385 (-885 *4)))) (|:| -2193 (-712)) - (|:| |rows| (-591 (-525))) (|:| |cols| (-591 (-525))))) - (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) - (-5 *2 - (-2 (|:| |partsol| (-1171 (-385 (-885 *4)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *4))))))) - (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-882 *4 *6 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1018)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2)) - (-4 *2 (-1125))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *2 (-396 *4)) - (-5 *1 (-397 *4)))) - ((*1 *1 *1) (-5 *1 (-859))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-859)))) - ((*1 *1 *1) (-5 *1 (-860))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) - (-5 *4 (-385 (-525))) (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) - (-5 *1 (-949 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) - (-5 *4 (-385 (-525))) (-5 *1 (-950 *3)) (-4 *3 (-1147 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) - (-5 *1 (-950 *3)) (-4 *3 (-1147 (-385 (-525)))))) + (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) + (-5 *2 (-227 *4 *5)) (-5 *1 (-878 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-205))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) - (-4 *3 (-1147 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-591 (-259))) (-5 *1 (-259)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 (-1094))) (-5 *1 (-1094))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1085 *7)) - (-4 *5 (-975)) (-4 *7 (-975)) (-4 *2 (-1147 *5)) - (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1147 *2))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-975)) - (-5 *2 (-525)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1147 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-975)) - (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1147 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-975)) - (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1147 *4))))) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *1 *1) (-5 *1 (-357))) ((*1 *1) (-5 *1 (-357)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-591 *3)) - (-5 *1 (-1141 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-591 (-1 *4 (-591 *4)))) (-4 *4 (-1018)) - (-5 *1 (-109 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1018)) - (-5 *1 (-109 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-110)) (-5 *2 (-591 (-1 *4 (-591 *4)))) - (-5 *1 (-109 *4)) (-4 *4 (-1018))))) + (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1163 *4)) + (-4 *4 (-37 (-385 (-525)))) + (-5 *2 (-1 (-1071 *4) (-592 (-1071 *4)))) (-5 *1 (-1165 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) + ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) + ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) - ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))) -(((*1 *2) - (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-847 *3)) (-4 *3 (-286))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-591 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1119 *5 *6 *7 *8)) (-4 *5 (-517)) - (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-989 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-975)) (-4 *5 (-1147 *4)) (-5 *2 (-1 *6 (-591 *6))) - (-5 *1 (-1165 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1162 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-4 *1 (-142 *3)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-591 (-2 (|:| -3987 (-712)) (|:| -1708 *4) (|:| |num| *4)))) - (-4 *4 (-1147 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-108)) (-5 *1 (-415)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-5 *3 (-591 (-1089))) (-5 *4 (-108)) (-5 *1 (-415)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1070 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-582 *2)) (-4 *2 (-160)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-616 *3)) (-4 *3 (-788)) (-5 *1 (-609 *3 *4)) - (-4 *4 (-160)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-616 *3)) (-4 *3 (-788)) (-5 *1 (-609 *3 *4)) - (-4 *4 (-160)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-616 *3)) (-4 *3 (-788)) (-5 *1 (-609 *3 *4)) - (-4 *4 (-160)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-591 (-591 *3)))) (-4 *3 (-1018)) - (-5 *1 (-619 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-788)) (-4 *3 (-1018)) - (-14 *4 - (-1 (-108) (-2 (|:| -3229 *2) (|:| -3987 *3)) - (-2 (|:| -3229 *2) (|:| -3987 *3)))))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-806 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 *4)))) - (-4 *4 (-1018)) (-5 *1 (-822 *3 *4)) (-4 *3 (-1018)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *5)) (-4 *5 (-13 (-1018) (-33))) - (-5 *2 (-591 (-1054 *3 *5))) (-5 *1 (-1054 *3 *5)) - (-4 *3 (-13 (-1018) (-33))))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-2 (|:| |val| *4) (|:| -3585 *5)))) - (-4 *4 (-13 (-1018) (-33))) (-4 *5 (-13 (-1018) (-33))) - (-5 *2 (-591 (-1054 *4 *5))) (-5 *1 (-1054 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3585 *4))) - (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33))) - (-5 *1 (-1054 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) - (-4 *3 (-13 (-1018) (-33))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1018) (-33))) - (-4 *3 (-13 (-1018) (-33))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-1018) (-33))) - (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1018) (-33))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-591 (-1054 *2 *3))) (-4 *2 (-13 (-1018) (-33))) - (-4 *3 (-13 (-1018) (-33))) (-5 *1 (-1055 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-591 (-1055 *2 *3))) (-5 *1 (-1055 *2 *3)) - (-4 *2 (-13 (-1018) (-33))) (-4 *3 (-13 (-1018) (-33))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) - (-4 *4 (-13 (-1018) (-33))) (-5 *1 (-1055 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-429)) - (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-908 *3 *4 *5 *6))))) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1148 (-525))) (-5 *1 (-461 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-882 *3 *4 *5))))) + (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) + (-5 *1 (-163 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6)) + (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1148 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1164 *5 *6 *7)) (-4 *5 (-341)) + (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-385 (-1145 *6 *5))) + (-5 *1 (-802 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1164 *5 *6 *7)) (-4 *5 (-341)) + (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-385 (-1145 *6 *5))) + (-5 *1 (-802 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108))))) +(((*1 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-510))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1126)) (-5 *2 (-1177))))) (((*1 *2 *3) - (-12 (-4 *4 (-788)) (-5 *2 (-591 (-591 (-591 *4)))) - (-5 *1 (-1097 *4)) (-5 *3 (-591 (-591 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-37 (-385 (-525)))) - (-4 *2 (-160))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-859)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) -(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-341)) (-14 *6 (-1171 (-631 *3))) - (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-854)) (-14 *5 (-591 (-1089))))) - ((*1 *1 *2) (-12 (-5 *2 (-1041 (-525) (-564 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695 'JINT 'X 'ELAM) (-2695) (-640)))) - (-5 *1 (-59 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 'XC) (-640)))) - (-5 *1 (-61 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-2695 'X) (-2695) (-640))) (-5 *1 (-62 *3)) - (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-631 (-317 (-2695) (-2695 'X 'HESS) (-640)))) - (-5 *1 (-63 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-2695) (-2695 'XC) (-640))) (-5 *1 (-64 *3)) - (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695 'X) (-2695 '-1389) (-640)))) - (-5 *1 (-69 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 'X) (-640)))) - (-5 *1 (-72 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695 'X 'EPS) (-2695 '-1389) (-640)))) - (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1089)) (-14 *4 (-1089)) - (-14 *5 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695 'EPS) (-2695 'YA 'YB) (-640)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1089)) (-14 *4 (-1089)) - (-14 *5 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-2695) (-2695 'X) (-640))) (-5 *1 (-75 *3)) - (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-2695) (-2695 'X) (-640))) (-5 *1 (-76 *3)) - (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 'XC) (-640)))) - (-5 *1 (-77 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 'X) (-640)))) - (-5 *1 (-78 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695) (-2695 'X) (-640)))) - (-5 *1 (-79 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695 'X '-1389) (-2695) (-640)))) - (-5 *1 (-80 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-631 (-317 (-2695 'X '-1389) (-2695) (-640)))) - (-5 *1 (-81 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-631 (-317 (-2695 'X) (-2695) (-640)))) (-5 *1 (-82 *3)) - (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695 'X) (-2695) (-640)))) - (-5 *1 (-83 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-317 (-2695 'X) (-2695 '-1389) (-640)))) - (-5 *1 (-84 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-631 (-317 (-2695 'XL 'XR 'ELAM) (-2695) (-640)))) - (-5 *1 (-85 *3)) (-14 *3 (-1089)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-2695 'X) (-2695 '-1389) (-640))) (-5 *1 (-87 *3)) - (-14 *3 (-1089)))) - ((*1 *2 *1) (-12 (-5 *2 (-934 2)) (-5 *1 (-103)))) - ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) - ((*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-125)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-130 *3 *4 *5))) (-5 *1 (-130 *3 *4 *5)) - (-14 *3 (-525)) (-14 *4 (-712)) (-4 *5 (-160)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) - (-14 *3 (-525)) (-14 *4 (-712)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1056 *4 *5)) (-14 *4 (-712)) (-4 *5 (-160)) - (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) - ((*1 *1 *2) - (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-712)) (-4 *5 (-160)) - (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) + (-12 (-5 *3 (-855)) (-5 *2 (-1172 (-1172 (-525)))) (-5 *1 (-443))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) ((*1 *2 *3) - (-12 (-5 *3 (-1171 (-631 *4))) (-4 *4 (-160)) - (-5 *2 (-1171 (-631 (-385 (-885 *4))))) (-5 *1 (-171 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) - (-4 *3 - (-13 (-788) - (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) - (-15 -3829 ((-1176) $))))) - (-5 *1 (-195 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-934 10)) (-5 *1 (-198)))) - ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 *3)) (-5 *1 (-225 *3)) (-4 *3 (-788)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-225 *3)))) + (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) + ((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1) (-4 *1 (-803 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-734)) + (-4 *4 (-789))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1148 *4)) (-5 *1 (-749 *4 *2 *3 *5)) + (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) + (-4 *5 (-602 (-385 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1148 *4)) (-5 *1 (-749 *4 *2 *5 *3)) + (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-602 *2)) + (-4 *3 (-602 (-385 *2)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *6)) (-5 *4 (-1090)) (-4 *6 (-408 *5)) + (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) + (-4 *3 (-1148 *4)) (-5 *2 (-525)))) ((*1 *2 *3) - (-12 (-5 *3 (-1011 (-294 *4))) - (-4 *4 (-13 (-788) (-517) (-566 (-357)))) (-5 *2 (-1011 (-357))) - (-5 *1 (-237 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-788)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-254)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1147 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1156 *4 *5 *6)) (-4 *4 (-13 (-27) (-1111) (-408 *3))) - (-14 *5 (-1089)) (-14 *6 *4) - (-4 *3 (-13 (-788) (-966 (-525)) (-587 (-525)) (-429))) - (-5 *1 (-291 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-308)))) - ((*1 *2 *1) - (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5)) - (-14 *3 (-591 (-1089))) (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) + (|partial| -12 (-4 *4 (-13 (-517) (-789) (-967 *2) (-588 *2) (-429))) + (-5 *2 (-525)) (-5 *1 (-1034 *4 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-782 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-517) (-789) (-967 *2) (-588 *2) (-429))) + (-5 *2 (-525)) (-5 *1 (-1034 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073)) + (-4 *6 (-13 (-517) (-789) (-967 *2) (-588 *2) (-429))) + (-5 *2 (-525)) (-5 *1 (-1034 *6 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2)) - (-4 *3 (-307 *4)))) + (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-429)) (-5 *2 (-525)) + (-5 *1 (-1035 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-782 (-385 (-886 *6)))) + (-5 *3 (-385 (-886 *6))) (-4 *6 (-429)) (-5 *2 (-525)) + (-5 *1 (-1035 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1090)) + (-5 *5 (-1073)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1035 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3)) - (-4 *3 (-307 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) - (-5 *2 (-1193 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) - (-5 *2 (-1184 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-788)) (-4 *3 (-160)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) - (-4 *1 (-361)))) - ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-361)))) - ((*1 *1 *2) (-12 (-5 *2 (-631 (-640))) (-4 *1 (-361)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) - (-4 *1 (-362)))) - ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-362)))) - ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-367)))) - ((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1018)))) - ((*1 *1 *2) (-12 (-5 *2 (-796)) (-5 *1 (-372)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) - (-4 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-374)))) - ((*1 *1 *2) - (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-273 (-294 (-635)))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-273 (-294 (-640)))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-273 (-294 (-642)))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-635))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-640))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-642))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) - (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) - (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-308))) (-5 *1 (-376 *3 *4 *5 *6)) - (-14 *3 (-1089)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1089)) - (-14 *4 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-14 *5 (-591 (-1089))) (-14 *6 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-788) (-21))) - (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525))))) - (-4 *3 (-13 (-788) (-21))))) - ((*1 *1 *2) - (-12 (-5 *2 (-385 (-885 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-788)) - (-4 *1 (-408 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-885 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-788)) - (-4 *1 (-408 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-788)) - (-4 *1 (-408 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1041 *3 (-564 *1))) (-4 *3 (-975)) (-4 *3 (-788)) - (-4 *1 (-408 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-412)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-412)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-412)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-412)))) - ((*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415)))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-415)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) - (-4 *1 (-417)))) - ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-417)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 (-640))) (-4 *1 (-417)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1093)) (|:| -3145 (-591 (-308))))) - (-4 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-4 *1 (-418)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 (-385 (-885 *3)))) (-4 *3 (-160)) - (-14 *6 (-1171 (-631 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-14 *4 (-854)) (-14 *5 (-591 (-1089))))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *1 (-445)))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-445)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1156 *3 *4 *5)) (-4 *3 (-975)) (-14 *4 (-1089)) - (-14 *5 *3) (-5 *1 (-451 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-451 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-934 16)) (-5 *1 (-462)))) - ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) - ((*1 *1 *2) (-12 (-5 *2 (-1041 (-525) (-564 (-468)))) (-5 *1 (-468)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-475)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-341)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-4 *3 (-160)) (-5 *1 (-559 *3 *2)) (-4 *2 (-686 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-975)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1189 *3 *4)) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) - (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) + (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1109 *3)) (-4 *3 (-976))))) +(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *2)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) + (-5 *2 (-108)) (-5 *1 (-919 *3 *4 *5 *6)) + (-4 *6 (-883 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) - (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) - ((*1 *1 *2) - (-12 (-4 *3 (-160)) (-5 *1 (-583 *3 *2)) (-4 *2 (-686 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-760 *3)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) + (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) + (-4 *4 (-13 (-1019) (-33)))))) +(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1073)) (-5 *1 (-284))))) +(((*1 *2 *2) + (-12 (-4 *3 (-967 (-525))) (-4 *3 (-13 (-789) (-517))) + (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3)))) + ((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-1086 *4)) (-5 *1 (-153 *3 *4)) + (-4 *3 (-154 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-976)) (-4 *1 (-281)))) + ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1086 *3)))) + ((*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-890 (-890 (-890 *3)))) (-5 *1 (-619 *3)) - (-4 *3 (-1018)))) - ((*1 *1 *2) - (-12 (-5 *2 (-890 (-890 (-890 *3)))) (-4 *3 (-1018)) - (-5 *1 (-619 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-760 *3)) (-5 *1 (-620 *3)) (-4 *3 (-788)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1018)))) + (-12 (-4 *1 (-992 *3 *2)) (-4 *3 (-13 (-787) (-341))) + (-4 *2 (-1148 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-896 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517)) + (-4 *3 (-976)) (-4 *2 (-734)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-713)) (-5 *1 (-1086 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-903)) (-4 *2 (-126)) (-5 *1 (-1092 *3)) (-4 *3 (-517)) + (-4 *3 (-976)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-713)) (-5 *1 (-1145 *4 *3)) (-14 *4 (-1090)) + (-4 *3 (-976))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-986 *4 *3)) + (-4 *3 (-1148 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) + (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713)))) + (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1126)))) ((*1 *1 *2) - (-12 (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *2)) (-4 *4 (-351 *3)) - (-4 *2 (-351 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-635)))) - ((*1 *1 *2) (-12 (-5 *2 (-157 (-642))) (-5 *1 (-635)))) - ((*1 *1 *2) (-12 (-5 *2 (-157 (-640))) (-5 *1 (-635)))) - ((*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-635)))) - ((*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-635)))) - ((*1 *1 *2) (-12 (-5 *2 (-642)) (-5 *1 (-640)))) - ((*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-640)))) - ((*1 *2 *3) - (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-642))) (-5 *1 (-642)))) - ((*1 *1 *2) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1018)))) - ((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1072)) (-5 *1 (-652)))) - ((*1 *2 *1) - (-12 (-4 *2 (-160)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (|partial| -12 (-5 *2 (-886 (-357))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) ((*1 *1 *2) - (-12 (-4 *3 (-975)) (-5 *1 (-654 *3 *2)) (-4 *2 (-1147 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3229 *3) (|:| -3987 *4))) - (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-788)) (-4 *4 (-1018)) - (-14 *5 (-1 (-108) *2 *2)))) + (|partial| -12 (-5 *2 (-385 (-886 (-357)))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -3229 *3) (|:| -3987 *4))) (-4 *3 (-788)) - (-4 *4 (-1018)) (-5 *1 (-655 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-160)) (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) ((*1 *1 *2) - (-12 (-5 *2 (-591 (-2 (|:| -2976 *3) (|:| -2990 *4)))) (-4 *3 (-975)) - (-4 *4 (-668)) (-5 *1 (-677 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-705)))) + (|partial| -12 (-5 *2 (-886 (-525))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (|:| |mdnia| - (-2 (|:| |fn| (-294 (-205))) - (|:| -3756 (-591 (-1013 (-781 (-205))))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) - (-5 *1 (-710)))) + (|partial| -12 (-5 *2 (-385 (-886 (-525)))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-294 (-205))) - (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *1 (-710)))) + (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *1 (-710)))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-710)))) - ((*1 *2 *3) (-12 (-5 *2 (-715)) (-5 *1 (-714 *3)) (-4 *3 (-1125)))) + (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-317 *3 *4 *5)) + (-14 *3 (-592 *2)) (-14 *4 (-592 *2)) (-4 *5 (-365)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))) - (-5 *1 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-749)))) - ((*1 *2 *1) - (-12 (-4 *2 (-833 *3)) (-5 *1 (-758 *3 *2 *4)) (-4 *3 (-1018)) - (-14 *4 *3))) + (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365)) + (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))))) ((*1 *1 *2) - (-12 (-4 *3 (-1018)) (-14 *4 *3) (-5 *1 (-758 *3 *2 *4)) - (-4 *2 (-833 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-765)))) + (|partial| -12 (-5 *2 (-632 (-385 (-886 (-525))))) (-4 *1 (-362)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) - (|:| |lb| (-591 (-781 (-205)))) - (|:| |cf| (-591 (-294 (-205)))) - (|:| |ub| (-591 (-781 (-205)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-591 (-294 (-205)))) - (|:| -3492 (-591 (-205))))))) - (-5 *1 (-779)))) + (|partial| -12 (-5 *2 (-632 (-385 (-886 (-357))))) (-4 *1 (-362)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) - (-5 *1 (-779)))) + (|partial| -12 (-5 *2 (-632 (-886 (-525)))) (-4 *1 (-362)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) - (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) - (|:| |ub| (-591 (-781 (-205)))))) - (-5 *1 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-779)))) + (|partial| -12 (-5 *2 (-632 (-886 (-357)))) (-4 *1 (-362)))) ((*1 *1 *2) - (-12 (-5 *2 (-1167 *3)) (-14 *3 (-1089)) (-5 *1 (-793 *3 *4 *5 *6)) - (-4 *4 (-975)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-795)))) + (|partial| -12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) ((*1 *1 *2) - (-12 (-5 *2 (-885 *3)) (-4 *3 (-975)) (-5 *1 (-799 *3 *4 *5 *6)) - (-14 *4 (-591 (-1089))) (-14 *5 (-591 (-712))) (-14 *6 (-712)))) - ((*1 *2 *1) - (-12 (-5 *2 (-885 *3)) (-5 *1 (-799 *3 *4 *5 *6)) (-4 *3 (-975)) - (-14 *4 (-591 (-1089))) (-14 *5 (-591 (-712))) (-14 *6 (-712)))) - ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807)))) - ((*1 *2 *3) - (-12 (-5 *3 (-885 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-808)))) - ((*1 *2 *3) - (-12 (-5 *3 (-385 (-885 (-47)))) (-5 *2 (-294 (-525))) - (-5 *1 (-808)))) - ((*1 *1 *2) (-12 (-5 *1 (-826 *2)) (-4 *2 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-760 *3)) (-5 *1 (-826 *3)) (-4 *3 (-788)))) + (|partial| -12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |pde| (-591 (-294 (-205)))) - (|:| |constraints| - (-591 - (-2 (|:| |start| (-205)) (|:| |finish| (-205)) - (|:| |grid| (-712)) (|:| |boundaryType| (-525)) - (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) - (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) - (|:| |tol| (-205)))) - (-5 *1 (-831)))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-831)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1112 *3)) (-5 *1 (-834 *3)) (-4 *3 (-1018)))) + (|partial| -12 (-5 *2 (-385 (-886 (-525)))) (-4 *1 (-374)))) ((*1 *1 *2) - (-12 (-5 *2 (-591 (-838 *3))) (-4 *3 (-1018)) (-5 *1 (-837 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 (-838 *3))) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-838 *3)))) + (|partial| -12 (-5 *2 (-385 (-886 (-357)))) (-4 *1 (-374)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-525))) (-4 *1 (-374)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-357))) (-4 *1 (-374)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) ((*1 *1 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-5 *1 (-838 *3)))) + (|partial| -12 (-5 *2 (-1172 (-385 (-886 (-525))))) (-4 *1 (-418)))) ((*1 *1 *2) - (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-847 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-847 *3)) (-4 *3 (-286)))) - ((*1 *2 *3) - (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-852 *4)) - (-4 *4 (-13 (-788) (-517))))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) - ((*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-899)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-902)))) - ((*1 *2 *1) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525)))) - ((*1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *1 (-962 *3)) (-4 *3 (-1125)))) - ((*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-962 *2)) (-4 *2 (-1125)))) + (|partial| -12 (-5 *2 (-1172 (-385 (-886 (-357))))) (-4 *1 (-418)))) ((*1 *1 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-963 *3 *4 *5 *2 *6)) (-4 *2 (-882 *3 *4 *5)) - (-14 *6 (-591 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-1125)))) - ((*1 *2 *3) - (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-971 *3)) (-4 *3 (-517)))) - ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-975)))) - ((*1 *2 *1) - (-12 (-5 *2 (-631 *5)) (-5 *1 (-979 *3 *4 *5)) (-14 *3 (-712)) - (-14 *4 (-712)) (-4 *5 (-975)))) + (|partial| -12 (-5 *2 (-1172 (-886 (-525)))) (-4 *1 (-418)))) ((*1 *1 *2) - (-12 (-4 *3 (-975)) (-4 *4 (-788)) (-5 *1 (-1042 *3 *4 *2)) - (-4 *2 (-882 *3 (-497 *4) *4)))) + (|partial| -12 (-5 *2 (-1172 (-886 (-357)))) (-4 *1 (-418)))) ((*1 *1 *2) - (-12 (-4 *3 (-975)) (-4 *2 (-788)) (-5 *1 (-1042 *3 *2 *4)) - (-4 *4 (-882 *3 (-497 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-796)))) - ((*1 *2 *1) - (-12 (-5 *2 (-631 *4)) (-5 *1 (-1056 *3 *4)) (-14 *3 (-712)) - (-4 *4 (-975)))) - ((*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1058)))) + (|partial| -12 (-5 *2 (-1172 (-294 (-525)))) (-4 *1 (-418)))) ((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3)))) + (|partial| -12 (-5 *2 (-1172 (-294 (-357)))) (-4 *1 (-418)))) ((*1 *2 *3) - (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-975)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1080 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1086 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1144 *4 *3)) (-4 *3 (-975)) (-14 *4 (-1089)) - (-14 *5 *3) (-5 *1 (-1087 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1088)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1089)))) - ((*1 *2 *1) (-12 (-5 *2 (-1099 (-1089) (-415))) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1094)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1094)))) - ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1094)))) - ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-1098 *3)) (-4 *3 (-1018)))) - ((*1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *1 (-1105 *3)) (-4 *3 (-1018)))) - ((*1 *1 *2) (-12 (-5 *2 (-796)) (-5 *1 (-1106)))) - ((*1 *1 *2) (-12 (-5 *2 (-885 *3)) (-4 *3 (-975)) (-5 *1 (-1120 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1120 *3)) (-4 *3 (-975)))) - ((*1 *1 *2) - (-12 (-5 *2 (-890 *3)) (-4 *3 (-1125)) (-5 *1 (-1123 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-975)) (-4 *1 (-1133 *3 *2)) (-4 *2 (-1162 *3)))) + (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1148 *5)) + (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-719 *4 *5 *6 *3 *7)) + (-4 *3 (-1148 *6)) (-14 *7 (-855)))) ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1135 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) + (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) + (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *1 (-908 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-967 *2)) (-4 *2 (-1126)))) ((*1 *1 *2) - (-12 (-5 *2 (-1013 *3)) (-4 *3 (-1125)) (-5 *1 (-1138 *3)))) + (|partial| -3215 + (-12 (-5 *2 (-886 *3)) + (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) + (-2823 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) + (-4 *5 (-789))) + (-12 (-5 *2 (-886 *3)) + (-12 (-2823 (-4 *3 (-510))) (-2823 (-4 *3 (-37 (-385 (-525))))) + (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) + (-4 *5 (-789))) + (-12 (-5 *2 (-886 *3)) + (-12 (-2823 (-4 *3 (-924 (-525)))) (-4 *3 (-37 (-385 (-525)))) + (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) + (-4 *5 (-789))))) ((*1 *1 *2) - (-12 (-5 *2 (-1167 *3)) (-14 *3 (-1089)) (-5 *1 (-1144 *3 *4)) - (-4 *4 (-975)))) + (|partial| -3215 + (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) + (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) + (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))) + (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))))) ((*1 *1 *2) - (-12 (-4 *3 (-975)) (-4 *1 (-1154 *3 *2)) (-4 *2 (-1131 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1156 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1163 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1144 *4 *3)) (-4 *3 (-975)) (-14 *4 (-1089)) - (-14 *5 *3) (-5 *1 (-1163 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1167 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-1172)))) - ((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1172)) (-5 *1 (-1175)))) - ((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-1176)))) - ((*1 *1 *2) - (-12 (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-734)) (-14 *6 (-591 *4)) - (-5 *1 (-1181 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-882 *3 *5 *4)) - (-14 *7 (-591 (-712))) (-14 *8 (-712)))) - ((*1 *2 *1) - (-12 (-4 *2 (-882 *3 *5 *4)) (-5 *1 (-1181 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-734)) (-14 *6 (-591 *4)) - (-14 *7 (-591 (-712))) (-14 *8 (-712)))) - ((*1 *1 *2) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-975)))) - ((*1 *1 *2) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-160)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-160)))) - ((*1 *1 *2) - (-12 (-5 *2 (-609 *3 *4)) (-4 *3 (-788)) (-4 *4 (-160)) - (-5 *1 (-1189 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-1192 *3 *2)) (-4 *3 (-975)) (-4 *2 (-784))))) -(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) - ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 *4)) (-5 *3 (-712)) (-4 *4 (-327)) - (-5 *1 (-495 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-205))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-591 *3)) (-5 *1 (-901 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-854)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-712))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-429)) (-4 *4 (-788)) (-4 *5 (-734)) - (-5 *2 (-108)) (-5 *1 (-918 *3 *4 *5 *6)) - (-4 *6 (-882 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) - (-4 *4 (-13 (-1018) (-33)))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-1085 (-885 *4))) (-5 *1 (-394 *3 *4)) - (-4 *3 (-395 *4)))) - ((*1 *2) - (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) - (-5 *2 (-1085 (-885 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1085 (-385 (-885 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1104))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) - (-5 *1 (-697))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-591 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-429) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-518 *6 *3))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-308)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-308))))) + (|partial| -12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976)) + (-4 *4 (-735)) (-4 *5 (-789))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-517) (-138))) - (-5 *2 (-2 (|:| -3178 *3) (|:| -3192 *3))) (-5 *1 (-1141 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) - ((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) - (-5 *3 (-591 (-525))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) - (-5 *3 (-591 (-525)))))) -(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160))))) -(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-501))) (-5 *1 (-501))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *5 *6)) (-4 *6 (-566 (-1089))) - (-4 *4 (-341)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *2 (-1079 (-591 (-885 *4)) (-591 (-273 (-885 *4))))) - (-5 *1 (-477 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) - (-5 *2 (-964)) (-5 *1 (-695))))) + (-12 (-4 *4 (-976)) (-4 *3 (-1148 *4)) (-4 *2 (-1163 *4)) + (-5 *1 (-1166 *4 *3 *5 *2)) (-4 *5 (-602 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-98 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-205))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) + (-4 *8 (-883 *7 *5 *6)) + (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *3) (|:| |radicand| *3))) + (-5 *1 (-887 *5 *6 *7 *8 *3)) (-5 *4 (-713)) + (-4 *3 + (-13 (-341) + (-10 -8 (-15 -1936 (*8 $)) (-15 -1945 (*8 $)) (-15 -4044 ($ *8)))))))) (((*1 *2 *3) - (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1099 (-854) (-712)))))) -(((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) - ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-13 (-975) (-659 (-385 (-525))))) - (-4 *5 (-788)) (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1190 *5 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-616 *3)) (-4 *3 (-788)) (-4 *1 (-352 *3 *4)) - (-4 *4 (-160))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1171 (-591 *3))) (-4 *4 (-286)) - (-5 *2 (-591 *3)) (-5 *1 (-432 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2) (-12 (-5 *2 (-1061 (-1072))) (-5 *1 (-369))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) + (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) + (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5))))) (((*1 *2) - (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) - (-5 *2 (-712)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-712))))) + (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))) -(((*1 *1 *1) (-5 *1 (-108)))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) - ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) - ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899))))) -(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-712)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-712))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-943))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-967 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)) + (-4 *2 (-429)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-1148 (-525))) (-5 *2 (-592 (-525))) + (-5 *1 (-461 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-429)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)) (-4 *3 (-429))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976)) + (-5 *1 (-1075 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) + (-14 *4 (-1090)) (-14 *5 *3)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 *7)) (-5 *3 (-525)) (-4 *7 (-882 *6 *4 *5)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) - (-5 *1 (-299 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-781 *4)) (-5 *3 (-564 *4)) (-5 *5 (-108)) - (-4 *4 (-13 (-1111) (-29 *6))) - (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-204 *6 *4))))) + (-12 (-4 *4 (-735)) + (-4 *3 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) (-4 *5 (-517)) + (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-883 (-385 (-886 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-976)) (-4 *5 (-735)) + (-4 *3 + (-13 (-789) + (-10 -8 (-15 -2923 ((-1090) $)) + (-15 -2818 ((-3 $ "failed") (-1090)))))) + (-5 *1 (-916 *4 *5 *3 *2)) (-4 *2 (-883 (-886 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-592 *6)) + (-4 *6 + (-13 (-789) + (-10 -8 (-15 -2923 ((-1090) $)) + (-15 -2818 ((-3 $ "failed") (-1090)))))) + (-4 *4 (-976)) (-4 *5 (-735)) (-5 *1 (-916 *4 *5 *6 *2)) + (-4 *2 (-883 (-886 *4) *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) + (-4 *4 (-351 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-788)) (-5 *2 (-591 (-591 *4))) (-5 *1 (-1097 *4)) - (-5 *3 (-591 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1 (-357))) (-5 *1 (-968))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *2 (-592 (-205))) (-5 *1 (-186))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-1049 *4 *2)) + (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4254) (-6 -4255)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-789)) (-4 *3 (-1126)) (-5 *1 (-1049 *3 *2)) + (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4254) (-6 -4255))))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))) (((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-631 (-205))) + (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) - (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-695))))) + (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-696))))) +(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-110))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-592 (-1086 *5))) (-5 *3 (-1086 *5)) + (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1148 *5)) + (-4 *5 (-1148 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-592 (-1086 (-525)))) (-5 *3 (-1086 (-525))) + (-5 *1 (-533)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-592 (-1086 *1))) (-5 *3 (-1086 *1)) + (-4 *1 (-843))))) +(((*1 *2 *3) + (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1014 (-782 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) + (-5 *1 (-284)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) + (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5))))) (((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-631 (-385 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-357)) (-5 *1 (-987))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-294 (-205)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) - (-5 *1 (-187))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-1093))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-591 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-525))))) - (-4 *2 (-517)) (-5 *1 (-396 *2)))) - ((*1 *2 *3) - (-12 + (-12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-1 (-108) *5)) + (-5 *1 (-824 *4 *5)) (-4 *5 (-1126))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-525)) (-5 *3 - (-2 (|:| |contp| (-525)) - (|:| -1908 (-591 (-2 (|:| |irr| *4) (|:| -3630 (-525))))))) - (-4 *4 (-1147 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 (-1 *6 (-591 *6)))) - (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1162 *5)) (-5 *2 (-591 *6)) - (-5 *1 (-1164 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-126)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-339 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-364 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1018)) (-5 *1 (-594 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-631 (-385 *4)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) - (-5 *2 - (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) - (|:| |success| (-108)))) - (-5 *1 (-730)) (-5 *5 (-525))))) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-735)) (-4 *4 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) + (-5 *1 (-426 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-975)) - (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) - (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4))))) + (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-395 *4))))) +(((*1 *1 *1) (-5 *1 (-988)))) (((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) - (-4 *4 (-13 (-788) (-517)))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) - (-4 *8 (-788)) (-4 *9 (-989 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2203 (-591 *9)) (|:| -3585 *4) (|:| |ineq| (-591 *9)))) - (-5 *1 (-919 *6 *7 *8 *9 *4)) (-5 *3 (-591 *9)) - (-4 *4 (-994 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) - (-4 *8 (-788)) (-4 *9 (-989 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2203 (-591 *9)) (|:| -3585 *4) (|:| |ineq| (-591 *9)))) - (-5 *1 (-1025 *6 *7 *8 *9 *4)) (-5 *3 (-591 *9)) - (-4 *4 (-994 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1070 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) - (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) - (|:| |args| (-591 (-796))))) - (-5 *1 (-1089)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-591 (-796)))) (-5 *1 (-1089))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-385 *2))) (-4 *2 (-1147 *4)) (-5 *1 (-751 *4 *2)) - (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 *2 (-385 *2))) (-4 *2 (-1147 *4)) - (-5 *1 (-751 *4 *2)) - (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525)))))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) - (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) - (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) - (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *1 *2) - (-12 + (-12 (-5 *3 (-592 (-565 *5))) (-4 *4 (-789)) (-5 *2 (-565 *5)) + (-5 *1 (-534 *4 *5)) (-4 *5 (-408 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1126)) + (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *6 *7 *2)) (-4 *6 (-976)) + (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-690))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789)) (-5 *4 (-592 *6)) + (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-592 *4)))) + (-5 *1 (-1098 *6)) (-5 *5 (-592 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1172 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286)) + (-4 *3 (-517)) (-5 *1 (-42 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-855)) (-4 *4 (-341)) (-5 *2 (-1172 *1)) + (-4 *1 (-307 *4)))) + ((*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1172 *1)) (-4 *1 (-307 *3)))) + ((*1 *2) + (-12 (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-1172 *1)) + (-4 *1 (-387 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) + (-5 *2 (-1172 *6)) (-5 *1 (-391 *3 *4 *5 *6)) + (-4 *6 (-13 (-387 *4 *5) (-967 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) + (-5 *2 (-1172 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)) + (-4 *6 (-387 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1172 *1)) (-4 *1 (-395 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-855)) (-5 *2 (-1172 (-1172 *4))) (-5 *1 (-495 *4)) + (-4 *4 (-327))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177)) + (-5 *1 (-426 *4 *5 *6 *7))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3)) + (-4 *3 (-1019))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3356 *6) (|:| |sol?| (-108))) (-525) + *6)) + (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 - (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) - (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) - (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) - (-5 *1 (-242)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173)))) + (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) + (-2 (|:| -3081 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) + (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-1132 *4)) (-4 *4 (-976)) (-4 *4 (-517)) + (-5 *2 (-385 (-886 *4))))) ((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-1132 *4)) (-4 *4 (-976)) (-4 *4 (-517)) + (-5 *2 (-385 (-886 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713))))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-369))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-976)) (-4 *7 (-976)) + (-4 *6 (-1148 *5)) (-5 *2 (-1086 (-1086 *7))) + (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1148 *6))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) - (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) - (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) - (-5 *2 (-1176)) (-5 *1 (-1173)))) - ((*1 *2 *1) - (-12 + (-2 (|:| -3471 (-632 (-385 (-886 *4)))) + (|:| |vec| (-592 (-385 (-886 *4)))) (|:| -3439 (-713)) + (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) + (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-5 *2 - (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -1735 (-205)) - (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) - (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) - (-5 *1 (-1173)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-712)) (-4 *5 (-517)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-901 *5 *3)) (-4 *3 (-1147 *5))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *3 (-205)) - (-5 *2 (-964)) (-5 *1 (-690))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-631 *2)) (-5 *4 (-525)) - (-4 *2 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-4 *5 (-1147 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-159)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-1018) (-33))) - (-4 *5 (-13 (-1018) (-33))) (-5 *2 (-108)) (-5 *1 (-1055 *4 *5))))) + (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *4))))))) + (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)))) (-5 *1 (-170 *3 *2)) - (-4 *2 (-13 (-27) (-1111) (-408 (-157 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-517) (-788) (-966 (-525)))) - (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 (-157 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-1115 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-305 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1125)) - (-14 *4 (-525))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-108))))) -(((*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) (((*1 *2 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1147 (-525))) (-5 *1 (-461 *3))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1107)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1107))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-351 *2)) (-4 *2 (-1125)) - (-4 *2 (-788)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4251)) - (-4 *1 (-351 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899))))) -(((*1 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-510))))) -(((*1 *1 *1) (-5 *1 (-796))) - ((*1 *2 *1) - (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018)))) - ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1071)))) - ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3 *4)) (-4 *2 (-975)) (-14 *3 (-1089)) + (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *2) (-12 (-5 *2 (-591 (-294 (-205)))) (-5 *1 (-246))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-5 *2 (-108))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *4 (-517)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2596 *4))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-838 *3))) (-4 *3 (-1018)) (-5 *1 (-837 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-859))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 *4)))) - (-5 *1 (-822 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)))) +(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2) + (-12 (-5 *2 (-632 (-844 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) + (-14 *4 (-855)))) + ((*1 *2) + (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) + (-14 *4 + (-3 (-1086 *3) + (-1172 (-592 (-2 (|:| -3067 *3) (|:| -3381 (-1037))))))))) + ((*1 *2) + (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) + (-14 *4 (-855))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) + (-5 *7 (-632 (-525))) + (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) + (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-696))))) +(((*1 *1 *1) (-5 *1 (-797))) ((*1 *2 *1) - (-12 (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-4 *7 (-1018)) (-5 *2 (-591 *1)) (-4 *1 (-1021 *3 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) + ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 (-294 (-205)))) + (|partial| -12 (-5 *3 (-855)) + (-5 *2 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) + (-5 *1 (-324 *4)) (-4 *4 (-327))))) +(((*1 *1) (-5 *1 (-1173)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) + ((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-967 (-525))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10)) + (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-995 *5 *6 *7 *8)) + (-4 *10 (-1028 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) + (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6))) + (-5 *1 (-577 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) + (-14 *6 (-592 (-1090))) (-5 *2 - (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) - (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525)))) - (-5 *1 (-284))))) + (-592 (-1061 *5 (-497 (-799 *6)) (-799 *6) (-722 *5 (-799 *6))))) + (-5 *1 (-577 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) + (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6))) + (-5 *1 (-973 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-995 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-1120 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861)) + (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861)) + (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-860)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-860)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-861)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-861)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1014 (-205))) + (-5 *1 (-861)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1014 (-205))) + (-5 *1 (-861)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-861)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-861))))) +(((*1 *1) + (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) + (-4 *4 (-160))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1))) + (-4 *1 (-995 *4 *5 *6 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-943)) (-5 *2 (-797))))) +(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126))))) +(((*1 *1 *1) + (-12 (-4 *1 (-883 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-429)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *3 (-990 *4 *5 *6)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *1)))) + (-4 *1 (-995 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1130))) + ((*1 *2 *2) + (-12 (-4 *3 (-517)) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-1148 *3) (-517) (-10 -8 (-15 -2262 ($ $ $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-525)) (|has| *1 (-6 -4241)) (-4 *1 (-382)) - (-5 *2 (-854))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-525)) (-5 *2 (-108))))) + (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)) + (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976))))) +(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) + (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-630 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-642 *3)) + (-4 *3 (-286))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1126))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-215 *3)) + (-4 *3 (-1019)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-690))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-713)) (-4 *5 (-976)) (-4 *2 (-1148 *5)) + (-5 *1 (-1166 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1163 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126))))) (((*1 *2 *1) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525))))) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789))))) +(((*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1101 *2)) (-4 *2 (-341))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4)) + (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2)) + (-4 *2 (-630 *4 *5 *6))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1))) + (-4 *1 (-995 *4 *5 *6 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |rm| (-761 *3)))) + (-5 *1 (-761 *3)) (-4 *3 (-789)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-901 *2 *3)) - (-4 *3 (-1147 *2))))) + (-12 (-4 *4 (-517)) + (-5 *2 (-2 (|:| -2059 *4) (|:| -2877 *3) (|:| -2097 *3))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-990 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-517)) (-4 *3 (-976)) + (-5 *2 (-2 (|:| -2059 *3) (|:| -2877 *1) (|:| -2097 *1))) + (-4 *1 (-1148 *3))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) + (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-855)) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-698))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) + (-5 *2 (-592 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1019))))) +(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-308))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1019) (-33))) + (-5 *2 (-108)) (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1019) (-33)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-745 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1111) (-891)))))) + (-12 + (-5 *3 + (-592 + (-2 (|:| -3439 (-713)) + (|:| |eqns| + (-592 + (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) + (|:| |cols| (-592 (-525)))))) + (|:| |fgb| (-592 *7))))) + (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) + (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-713)) + (-5 *1 (-858 *4 *5 *6 *7))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1085 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3)) - (-4 *3 (-341))))) + (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)) + (-4 *2 (-517)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-517))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) + (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-713))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-517)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-517)) + (-5 *1 (-902 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-979 *3 *4 *2 *5 *6)) (-4 *2 (-976)) + (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7))) + (-4 *7 (-1148 *6)) (-5 *3 (-385 *7)) (-4 *6 (-341)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-535 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) + (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-886 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) + (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-976)) (-4 *2 (-630 *4 *5 *6)) + (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1148 *4)) (-4 *5 (-351 *4)) + (-4 *6 (-351 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851))))) (((*1 *2 *1) - (-12 (-5 *2 (-806 (-898 *3) (-898 *3))) (-5 *1 (-898 *3)) - (-4 *3 (-899))))) + (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1132 *3)) + (-5 *2 (-385 (-525)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-877 *4)) (-4 *4 (-976)) (-5 *1 (-1079 *3 *4)) + (-14 *3 (-855))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3048 *4))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-636 *3)) (-4 *3 (-1018)) - (-5 *2 (-591 (-2 (|:| -1568 *3) (|:| -2960 (-712)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-631 (-294 (-525)))) (-5 *1 (-960))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1072)) (-5 *1 (-174)))) - ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1072)) (-5 *1 (-279)))) - ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1072)) (-5 *1 (-284))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1119 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-734)) - (-4 *3 (-788)) (-4 *6 (-989 *4 *5 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-108))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-698))))) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *5 (-346)) + (-5 *2 (-713))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-517)) (-4 *3 (-976)) + (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-791 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-976)) + (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-792 *5 *3)) + (-4 *3 (-791 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-273 (-781 *3))) (-4 *3 (-13 (-27) (-1111) (-408 *5))) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *2)) + (-4 *4 (-37 (-385 (-525))))))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-855)) (-4 *5 (-286)) (-4 *3 (-1148 *5)) + (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5))) + (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-632 *2)) (-5 *4 (-525)) + (-4 *2 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-4 *5 (-1148 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-632 (-385 (-886 (-525))))) + (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-961))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1037)) (-4 *4 (-327)) + (-5 *1 (-495 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-3 (-781 *3) - (-2 (|:| |leftHandLimit| (-3 (-781 *3) "failed")) - (|:| |rightHandLimit| (-3 (-781 *3) "failed"))) - "failed")) - (-5 *1 (-584 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1072)) - (-4 *3 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-781 *3)) (-5 *1 (-584 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-273 (-781 (-885 *5)))) (-4 *5 (-429)) + (-2 (|:| -2059 *3) (|:| |gap| (-713)) (|:| -2877 (-724 *3)) + (|:| -2097 (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-976)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 - (-3 (-781 (-385 (-885 *5))) - (-2 (|:| |leftHandLimit| (-3 (-781 (-385 (-885 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-781 (-385 (-885 *5))) "failed"))) - "failed")) - (-5 *1 (-585 *5)) (-5 *3 (-385 (-885 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-273 (-385 (-885 *5)))) (-5 *3 (-385 (-885 *5))) - (-4 *5 (-429)) + (-2 (|:| -2059 *1) (|:| |gap| (-713)) (|:| -2877 *1) + (|:| -2097 *1))) + (-4 *1 (-990 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 - (-3 (-781 *3) - (-2 (|:| |leftHandLimit| (-3 (-781 *3) "failed")) - (|:| |rightHandLimit| (-3 (-781 *3) "failed"))) - "failed")) - (-5 *1 (-585 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-273 (-385 (-885 *6)))) (-5 *5 (-1072)) - (-5 *3 (-385 (-885 *6))) (-4 *6 (-429)) (-5 *2 (-781 *3)) - (-5 *1 (-585 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) (-4 *2 (-1147 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-517))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-975)) (-4 *2 (-629 *4 *5 *6)) - (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1147 *4)) (-4 *5 (-351 *4)) - (-4 *6 (-351 *4))))) + (-2 (|:| -2059 *1) (|:| |gap| (-713)) (|:| -2877 *1) + (|:| -2097 *1))) + (-4 *1 (-990 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-221)) (-5 *3 (-1073)))) + ((*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) + (-12 (-5 *3 (-1090)) (-4 *5 (-341)) (-5 *2 (-592 (-1121 *5))) + (-5 *1 (-1180 *5)) (-5 *4 (-1121 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-525)) (-5 *2 (-592 (-2 (|:| -2961 *3) (|:| -1486 *4)))) + (-5 *1 (-638 *3)) (-4 *3 (-1148 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1125)) (-4 *1 (-218 *3 *4))))) -(((*1 *1) (-5 *1 (-415)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1125)) - (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *6 *2 *7)) (-4 *6 (-975)) - (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6))))) -(((*1 *2 *2 *2) - (-12 + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-2 (|:| -2961 *4) (|:| -1486 (-525))))) + (-4 *4 (-1148 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-396 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-976)) + (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-861)) (-5 *2 - (-591 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-712)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-734)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-788)) - (-5 *1 (-426 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1013 (-205))) - (-5 *2 (-1173)) (-5 *1 (-236))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-631 *11)) (-5 *4 (-591 (-385 (-885 *8)))) - (-5 *5 (-712)) (-5 *6 (-1072)) (-4 *8 (-13 (-286) (-138))) - (-4 *11 (-882 *8 *10 *9)) (-4 *9 (-13 (-788) (-566 (-1089)))) - (-4 *10 (-734)) + (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) + (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) + (-5 *1 (-144)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-861)) (-5 *4 (-385 (-525))) (-5 *2 - (-2 - (|:| |rgl| - (-591 - (-2 (|:| |eqzro| (-591 *11)) (|:| |neqzro| (-591 *11)) - (|:| |wcond| (-591 (-885 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *8)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *8)))))))))) - (|:| |rgsz| (-525)))) - (-5 *1 (-857 *8 *9 *10 *11)) (-5 *7 (-525))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-591 (-457 *5 *6))) (-5 *4 (-798 *5)) - (-14 *5 (-591 (-1089))) (-5 *2 (-457 *5 *6)) (-5 *1 (-579 *5 *6)) - (-4 *6 (-429)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-457 *5 *6))) (-5 *4 (-798 *5)) - (-14 *5 (-591 (-1089))) (-5 *2 (-457 *5 *6)) (-5 *1 (-579 *5 *6)) - (-4 *6 (-429))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-919 *4 *5 *6 *7 *3)) - (-4 *3 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) + (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) + (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) + (-5 *1 (-144)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-294 *4)) - (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 (-157 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3)))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1085 *9)) (-5 *4 (-591 *7)) (-4 *7 (-788)) - (-4 *9 (-882 *8 *6 *7)) (-4 *6 (-734)) (-4 *8 (-286)) - (-5 *2 (-591 (-712))) (-5 *1 (-684 *6 *7 *8 *9)) (-5 *5 (-712))))) -(((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1171 (-1171 (-525)))) (-5 *1 (-443))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-5 *2 (-2 (|:| -1265 *3) (|:| -1568 *4)))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-631 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) - (-5 *7 (-631 (-525))) - (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) - (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-695))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 *5)) (-4 *5 (-587 *4)) (-4 *4 (-517)) - (-5 *2 (-108)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-712)) (-4 *5 (-341)) (-5 *2 (-161 *6)) - (-5 *1 (-800 *5 *4 *6)) (-4 *4 (-1162 *5)) (-4 *6 (-1147 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-341)) (-5 *1 (-708 *2 *3)) (-4 *2 (-650 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) + (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) + (-5 *1 (-144)) (-5 *3 (-592 (-877 (-205)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-294 *4)) - (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 (-157 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) - ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517))))) -(((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2) (-12 (-5 *2 - (-591 - (-2 - (|:| -1265 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) - (|:| |yinit| (-591 (-205))) (|:| |intvals| (-591 (-205))) - (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (|:| -1568 - (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) - (|:| |expense| (-357)) (|:| |accuracy| (-357)) - (|:| |intermediateResults| (-357))))))) - (-5 *1 (-744))))) -(((*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125)))) + (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) + (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) + (-5 *1 (-144)) (-5 *3 (-592 (-592 (-877 (-205))))))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242))))) +(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-855)) (-5 *2 (-445)) (-5 *1 (-1173))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) + (-5 *2 (-592 (-2 (|:| -3671 *1) (|:| -3864 (-592 *7))))) + (-5 *3 (-592 *7)) (-4 *1 (-1120 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-699))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) + (-5 *2 (-965)) (-5 *1 (-696))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-1019)) + (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) + (-5 *1 (-998 *4 *5 *2)) + (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1019)) + (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) + (-5 *1 (-998 *3 *4 *2)) + (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) + (-5 *2 (-965)) (-5 *1 (-697))))) +(((*1 *1 *1) (-4 *1 (-510)))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445))))) +(((*1 *2 *1) + (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1090)) (-5 *6 (-108)) + (-4 *7 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-4 *3 (-13 (-1112) (-892) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-134))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) + (-14 *4 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1126)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) + (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) + (-14 *4 (-592 (-1090))))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-789))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-1159 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) + (-12 (-5 *2 (-855)) (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-734)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1153 *3)) (-4 *3 (-976))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-341)) (-5 *1 (-954 *3 *2)) (-4 *2 (-601 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -2203 *3) (|:| -3854 (-591 *5)))) - (-5 *1 (-954 *5 *3)) (-5 *4 (-591 *5)) (-4 *3 (-601 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-885 (-525))) (-5 *2 (-308)) - (-5 *1 (-310))))) -(((*1 *2) - (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) - (-5 *1 (-995 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) - (-5 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525)))) - ((*1 *1 *1) (-4 *1 (-932))) - ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-942)))) - ((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-942)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-712)))) - ((*1 *1 *1) (-4 *1 (-942)))) -(((*1 *2 *2) + (|partial| -12 (-5 *3 (-713)) (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-5 *2 (-2 (|:| -3160 *3) (|:| -3978 *4)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-591 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-712)) (|:| |poli| *6) + (-592 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-734)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-788)) + (-4 *4 (-735)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-591 *6)) (-4 *6 (-788)) (-4 *4 (-341)) (-4 *5 (-734)) - (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-882 *4 *5 *6)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-713)) (-4 *4 (-976)) + (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-1148 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1071 *4)) (-4 *4 (-37 *3)) (-4 *4 (-976)) + (-5 *3 (-385 (-525))) (-5 *1 (-1075 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) + (-5 *2 (-108)) (-5 *1 (-587 *4 *5))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-517)) + (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-1143 *4 *3)) + (-4 *3 (-1148 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-126))))) +(((*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-882 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-341)) - (-4 *4 (-975)) (-5 *2 (-1070 *4)) (-5 *1 (-1074 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-929 *3)) (-4 *3 (-160)) (-5 *1 (-740 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-525)) (-4 *6 (-734)) (-4 *7 (-788)) (-4 *8 (-286)) - (-4 *9 (-882 *8 *6 *7)) - (-5 *2 (-2 (|:| -2217 (-1085 *9)) (|:| |polval| (-1085 *8)))) - (-5 *1 (-684 *6 *7 *8 *9)) (-5 *3 (-1085 *9)) (-5 *4 (-1085 *8))))) + (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) + ((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4255)) (-4 *1 (-941 *3)) + (-4 *3 (-1126))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-691))))) (((*1 *2 *3) - (-12 (-5 *3 (-631 (-385 (-885 *4)))) (-4 *4 (-429)) - (-5 *2 (-591 (-3 (-385 (-885 *4)) (-1079 (-1089) (-885 *4))))) - (-5 *1 (-271 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) - (-4 *3 (-1147 (-47))))) - ((*1 *2 *3) - (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1147 (-47))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-47))) (-4 *5 (-788)) (-4 *6 (-734)) - (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-882 (-47) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-47))) (-4 *5 (-788)) (-4 *6 (-734)) - (-4 *7 (-882 (-47) *6 *5)) (-5 *2 (-396 (-1085 *7))) - (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1085 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1147 (-157 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) - (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) - (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) - (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) - (-4 *3 (-1147 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) - (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-712))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) - (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-591 (-712))) (-5 *5 (-712)) (-5 *2 (-396 *3)) - (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-712)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) - (-4 *3 (-1147 (-525))))) - ((*1 *2 *3) - (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423)) - (-5 *3 (-157 (-525))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-788) - (-10 -8 (-15 -1300 ((-1089) $)) - (-15 -1592 ((-3 $ "failed") (-1089)))))) - (-4 *5 (-734)) (-4 *7 (-517)) (-5 *2 (-396 *3)) - (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517)) - (-4 *3 (-882 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1085 *4))) (-5 *1 (-435 *4)) - (-5 *3 (-1085 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1147 *5)) (-4 *5 (-341)) - (-4 *7 (-13 (-341) (-138) (-666 *5 *6))) (-5 *2 (-396 *3)) - (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1147 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-396 (-1085 *7)) (-1085 *7))) - (-4 *7 (-13 (-286) (-138))) (-4 *5 (-788)) (-4 *6 (-734)) - (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3)) - (-4 *3 (-882 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-396 (-1085 *7)) (-1085 *7))) - (-4 *7 (-13 (-286) (-138))) (-4 *5 (-788)) (-4 *6 (-734)) - (-4 *8 (-882 *7 *6 *5)) (-5 *2 (-396 (-1085 *8))) - (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1085 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-591 *5) *6)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *6 (-1147 *5)) (-5 *2 (-591 (-598 (-385 *6)))) - (-5 *1 (-602 *5 *6)) (-5 *3 (-598 (-385 *6))))) + (-12 (-14 *4 (-592 (-1090))) (-4 *5 (-429)) + (-5 *2 + (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525))))) + (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5)))))) +(((*1 *1 *1) (-5 *1 (-988)))) +(((*1 *1 *1) (-4 *1 (-517)))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906))))) +(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *5 (-1147 *4)) (-5 *2 (-591 (-598 (-385 *5)))) - (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-385 *5))))) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *2 *3) + (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-967 (-525))) + (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1086 *5)) (-5 *1 (-31 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-760 *4)) (-4 *4 (-788)) (-5 *2 (-591 (-616 *4))) - (-5 *1 (-616 *4)))) + (-12 (-5 *3 (-565 *1)) (-4 *1 (-976)) (-4 *1 (-281)) + (-5 *2 (-1086 *1))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *4 (-592 (-1090))) + (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-525)) (-5 *2 (-591 *3)) (-5 *1 (-637 *3)) - (-4 *3 (-1147 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-327)) (-5 *2 (-396 *3)) - (-5 *1 (-639 *4 *5 *6 *3)) (-4 *3 (-882 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-327)) - (-4 *7 (-882 *6 *5 *4)) (-5 *2 (-396 (-1085 *7))) - (-5 *1 (-639 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-734)) - (-4 *5 - (-13 (-788) - (-10 -8 (-15 -1300 ((-1089) $)) - (-15 -1592 ((-3 $ "failed") (-1089)))))) - (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-672 *4 *5 *6 *3)) - (-4 *3 (-882 (-885 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-734)) - (-4 *5 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) (-4 *6 (-517)) - (-5 *2 (-396 *3)) (-5 *1 (-674 *4 *5 *6 *3)) - (-4 *3 (-882 (-385 (-885 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-13 (-286) (-138))) - (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3)) - (-4 *3 (-882 (-385 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-13 (-286) (-138))) - (-5 *2 (-396 *3)) (-5 *1 (-683 *4 *5 *6 *3)) - (-4 *3 (-882 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-734)) (-4 *6 (-13 (-286) (-138))) - (-4 *7 (-882 *6 *5 *4)) (-5 *2 (-396 (-1085 *7))) - (-5 *1 (-683 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-396 *3)) (-5 *1 (-937 *3)) - (-4 *3 (-1147 (-385 (-525)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-396 *3)) (-5 *1 (-969 *3)) - (-4 *3 (-1147 (-385 (-885 (-525))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1147 (-385 (-525)))) - (-4 *5 (-13 (-341) (-138) (-666 (-385 (-525)) *4))) - (-5 *2 (-396 *3)) (-5 *1 (-1000 *4 *5 *3)) (-4 *3 (-1147 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1147 (-385 (-885 (-525))))) - (-4 *5 (-13 (-341) (-138) (-666 (-385 (-885 (-525))) *4))) - (-5 *2 (-396 *3)) (-5 *1 (-1002 *4 *5 *3)) (-4 *3 (-1147 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-429)) - (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-396 (-1085 (-385 *7)))) - (-5 *1 (-1084 *4 *5 *6 *7)) (-5 *3 (-1085 (-385 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1129)))) - ((*1 *2 *3) - (-12 (-5 *2 (-396 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1147 (-525)))))) + (-12 (-4 *5 (-1019)) (-4 *6 (-834 *5)) (-5 *2 (-632 *6)) + (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6)) + (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1073)) (-5 *2 (-525)) (-5 *1 (-1109 *4)) + (-4 *4 (-976))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) + (-5 *2 (-965)) (-5 *1 (-697))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1090))) + (-4 *4 (-429)) (-5 *1 (-580 *3 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) + (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-147 *4 *2)) - (-4 *2 (-408 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1011 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-788) (-517))) - (-5 *1 (-147 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 *1)) (-4 *1 (-149)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1089))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-860))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-897))) (-5 *1 (-270))))) + (-12 (-5 *2 (-1086 *7)) (-5 *3 (-525)) (-4 *7 (-883 *6 *4 *5)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) + (-5 *1 (-299 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))) + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) - (-5 *1 (-187))))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-174))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1090))) (-5 *1 (-767))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-877 (-205)) (-205) (-205))) + (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4250)) (-4 *1 (-142 *2)) (-4 *2 (-1125)) - (-4 *2 (-1018)))) + (-12 (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)) + (-4 *2 (-1019)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4250)) (-4 *1 (-142 *3)) - (-4 *3 (-1125)))) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *3)) + (-4 *3 (-1126)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1125)))) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1126)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1018)) - (-5 *1 (-679 *4)))) + (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1019)) + (-5 *1 (-680 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-5 *1 (-679 *2)) (-4 *2 (-1018)))) + (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1019)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) - (-4 *4 (-13 (-1018) (-33))) (-5 *1 (-1055 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-796))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1 (-1070 (-885 *4)) (-1070 (-885 *4)))) - (-5 *1 (-1179 *4)) (-4 *4 (-341))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1125)) (-4 *3 (-975)) - (-5 *2 (-631 *3))))) + (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) + (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-592 *1)) (-4 *1 (-1051 *3))))) +(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1148 *4)) + (-5 *1 (-856 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-786))) - (-5 *2 (-591 (-2 (|:| -1908 (-591 *3)) (|:| -2757 *5)))) - (-5 *1 (-167 *5 *3)) (-4 *3 (-1147 (-157 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-341) (-786))) - (-5 *2 (-591 (-2 (|:| -1908 (-591 *3)) (|:| -2757 *4)))) - (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-885 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-788) (-517))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-788) (-517)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-135))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-108)) (-5 *1 (-770))))) -(((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4251)) (-4 *4 (-341)) (-4 *5 (-351 *4)) - (-4 *6 (-351 *4)) (-5 *2 (-591 *6)) (-5 *1 (-492 *4 *5 *6 *3)) - (-4 *3 (-629 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4251)) (-4 *4 (-517)) (-4 *5 (-351 *4)) - (-4 *6 (-351 *4)) (-4 *7 (-923 *4)) (-4 *8 (-351 *7)) - (-4 *9 (-351 *7)) (-5 *2 (-591 *6)) - (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-629 *4 *5 *6)) - (-4 *10 (-629 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-591 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) - (-4 *6 (-351 *4)) (-5 *2 (-591 *6)) (-5 *1 (-630 *4 *5 *6 *3)) - (-4 *3 (-629 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) - (-5 *2 (-591 *7))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) (((*1 *2 *3) - (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1147 *5)) - (-4 *7 (-1147 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) - (-4 *4 (-13 (-788) (-517) (-966 (-525)))) (-5 *2 (-108)) - (-5 *1 (-844 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) - (-4 *4 (-1147 (-385 (-525)))) (-4 *5 (-1147 (-385 *4))) - (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108)) - (-5 *1 (-845 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-647 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125))))) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) + (-4 *4 (-13 (-789) (-517)))))) (((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-135))))) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-976)) (-14 *3 (-592 (-1090))))) + ((*1 *1 *1) + (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789))) + (-14 *3 (-592 (-1090)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-990 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-885 *6))) (-5 *4 (-591 (-1089))) - (-4 *6 (-13 (-517) (-966 *5))) (-4 *5 (-517)) - (-5 *2 (-591 (-591 (-273 (-385 (-885 *6)))))) (-5 *1 (-967 *5 *6))))) + (-12 (-5 *3 (-396 *5)) (-4 *5 (-517)) + (-5 *2 + (-2 (|:| -1737 (-713)) (|:| -2059 *5) (|:| |radicand| (-592 *5)))) + (-5 *1 (-298 *5)) (-5 *4 (-713)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-525))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-592 (-886 *3))) (-4 *3 (-429)) + (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1090))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-592 (-722 *3 (-799 *4)))) (-4 *3 (-429)) + (-14 *4 (-592 (-1090))) (-5 *1 (-577 *3 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) + (-5 *1 (-920 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) + (-5 *1 (-1026 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) + (-5 *1 (-698))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-713)) (-4 *6 (-341)) (-5 *4 (-1121 *6)) + (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1180 *6)) + (-5 *5 (-1071 *4))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3048 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-591 (-1089))) (|:| |pred| (-51)))) - (-5 *1 (-825 *3)) (-4 *3 (-1018))))) + (-12 (-4 *3 (-13 (-341) (-138))) + (-5 *2 (-592 (-2 (|:| -1737 (-713)) (|:| -3448 *4) (|:| |num| *4)))) + (-5 *1 (-377 *3 *4)) (-4 *4 (-1148 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) + (-14 *6 (-592 (-1090))) + (-5 *2 + (-592 (-1061 *5 (-497 (-799 *6)) (-799 *6) (-722 *5 (-799 *6))))) + (-5 *1 (-577 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1090))) + (-4 *2 (-13 (-408 (-157 *5)) (-933) (-1112))) + (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2)) + (-4 *6 (-13 (-408 *5) (-933) (-1112)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-761)) (-14 *5 (-1089)) - (-5 *2 (-525)) (-5 *1 (-1032 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6))))) + (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4))) + (-5 *1 (-1098 *4)) (-4 *4 (-789))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) + ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) + ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51)) + (-5 *1 (-936))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1071 *3))) (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) + (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-564 *1)) (-4 *1 (-408 *4)) (-4 *4 (-788)) - (-4 *4 (-517)) (-5 *2 (-385 (-1085 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-564 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1111))) - (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 (-1085 (-385 (-1085 *3)))) (-5 *1 (-521 *6 *3 *7)) - (-5 *5 (-1085 *3)) (-4 *7 (-1018)))) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) + (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1019)) (-4 *2 (-834 *4)) (-5 *1 (-634 *4 *2 *5 *3)) + (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4254))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1126)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-619 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-976))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *5)) (-5 *4 (-855)) (-4 *5 (-789)) + (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-160)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-761 *3)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-976)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976))))) +(((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-886 (-525)))) (-5 *1 (-415)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1167 *5)) (-14 *5 (-1089)) (-4 *6 (-975)) - (-5 *2 (-1144 *5 (-885 *6))) (-5 *1 (-880 *5 *6)) (-5 *3 (-885 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-1085 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) (-5 *2 (-1085 *1)) - (-4 *1 (-882 *4 *5 *3)))) + (-12 (-5 *3 (-1090)) (-5 *4 (-632 (-205))) (-5 *2 (-1023)) + (-5 *1 (-702)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-734)) (-4 *4 (-788)) (-4 *6 (-975)) - (-4 *7 (-882 *6 *5 *4)) (-5 *2 (-385 (-1085 *3))) - (-5 *1 (-883 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-341) - (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1085 *3)) - (-4 *3 - (-13 (-341) - (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))) - (-4 *7 (-882 *6 *5 *4)) (-4 *5 (-734)) (-4 *4 (-788)) (-4 *6 (-975)) - (-5 *1 (-883 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-517)) - (-5 *2 (-385 (-1085 (-385 (-885 *5))))) (-5 *1 (-971 *5)) - (-5 *3 (-385 (-885 *5)))))) -(((*1 *1 *1) (-5 *1 (-796))) ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) (-12 (-5 *1 (-1138 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-412)) (-4 *5 (-788)) - (-5 *1 (-1024 *5 *4)) (-4 *4 (-408 *5))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-876 *5)) (-5 *3 (-712)) (-4 *5 (-975)) - (-5 *1 (-1078 *4 *5)) (-14 *4 (-854))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-572 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3192 *4) (|:| |sol?| (-108))) - (-525) *4)) - (-4 *4 (-341)) (-4 *5 (-1147 *4)) (-5 *1 (-535 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-341) (-786))) (-5 *1 (-167 *3 *2)) - (-4 *2 (-1147 (-157 *3)))))) + (-12 (-5 *3 (-1090)) (-5 *4 (-632 (-525))) (-5 *2 (-1023)) + (-5 *1 (-702))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) + (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) + (-4 *3 (-13 (-1112) (-29 *5)))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126)) + (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) + (-4 *2 (-1126))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-902 *4 *2)) + (-4 *2 (-1148 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) + (-4 *3 (-1148 *4)) + (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263)))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1073)) (-5 *1 (-92)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1073)) (-5 *1 (-92))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) + (-227 *4 (-385 (-525))))) + (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108)) + (-5 *1 (-478 *4 *5))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *3 (-592 (-242))) + (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-445)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-445))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-734)) (-4 *3 (-160))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) -(((*1 *1) (-5 *1 (-987)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) + (-4 *3 (-1126))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-886 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1090)) (-4 *2 (-408 *5)) + (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-855)) (-4 *1 (-943)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-855)) (-5 *4 (-797)) + (-4 *1 (-943)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-855)) (-4 *4 (-13 (-787) (-341))) + (-4 *1 (-992 *4 *2)) (-4 *2 (-1148 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-592 (-877 *4))) (-4 *1 (-1051 *4)) (-4 *4 (-976)) + (-5 *2 (-713))))) +(((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764))))) +(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) + (-14 *4 *2)))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-525)))) + (-4 *4 (-13 (-1148 *3) (-517) (-10 -8 (-15 -2262 ($ $ $))))) + (-4 *3 (-517)) (-5 *1 (-1151 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-825 *4)) (-4 *4 (-1018)) (-5 *2 (-591 *5)) - (-5 *1 (-823 *4 *5)) (-4 *5 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-564 *1))) (-4 *1 (-281))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-876 *4)) (-4 *4 (-975)) (-5 *1 (-1078 *3 *4)) - (-14 *3 (-854))))) + (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-1075 *4)) (-4 *4 (-976)) + (-5 *3 (-525))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) + (-4 *3 (-990 *6 *7 *8)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-1027 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -2249 *9)))) + (-5 *5 (-108)) (-4 *8 (-990 *6 *7 *4)) (-4 *9 (-995 *6 *7 *4 *8)) + (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) + (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -2249 *9)))) + (-5 *1 (-1027 *6 *7 *4 *8 *9))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) + (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) + (|:| |args| (-592 (-797))))) + (-5 *1 (-1090))))) +(((*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205)))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-591 (-956 *5 *6 *7 *8))) (-5 *1 (-956 *5 *6 *7 *8)))) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-108)) (-4 *8 (-989 *5 *6 *7)) - (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-591 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) + (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) + (-5 *1 (-850 *3 *4 *5 *2)) (-4 *2 (-883 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *6 *4 *5)) + (-5 *1 (-850 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *6 (-286))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1157 *4 *5 *6)) + (|:| |%expon| (-297 *4 *5 *6)) + (|:| |%expTerms| + (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))))) + (|:| |%type| (-1073)))) + (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) + (-14 *5 (-1090)) (-14 *6 *4)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1171 *4)) (-4 *4 (-587 (-525))) - (-5 *2 (-1171 (-385 (-525)))) (-5 *1 (-1196 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-907 *4 *5 *6 *3)) (-4 *4 (-975)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-4 *4 (-517)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-996 *5 *6 *7 *3 *4)) + (-4 *4 (-995 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) + (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2124 (-723 *3)) (|:| |coef1| (-723 *3)) - (|:| |coef2| (-723 *3)))) - (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-2 (|:| -2124 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-989 *3 *4 *5))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) + (-14 *4 *2)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-592 *6)) (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) + (-4 *3 (-517))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) + (-5 *2 (-965)) (-5 *1 (-697))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) + ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))) +(((*1 *2 *3) + (-12 (-4 *4 (-976)) + (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) + (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) + ((*1 *1 *1) (-4 *1 (-510))) + ((*1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1124 *3)) (-4 *3 (-1126)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-933)) + (-4 *2 (-976))))) +(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1014 (-205))))) + ((*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-713)) (-5 *3 (-877 *4)) (-4 *1 (-1051 *4)) + (-4 *4 (-976)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-713)) (-5 *4 (-877 (-205))) (-5 *2 (-1177)) + (-5 *1 (-1174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-975)) (-5 *2 (-1085 *3))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) + (-12 (-5 *2 (-592 (-1113 *3))) (-5 *1 (-1113 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-525)))) + (-12 (-5 *2 (-1021 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-591 (-457 *4 *5))) (-5 *3 (-591 (-798 *4))) - (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6)) - (-4 *6 (-429))))) + (-12 (-5 *2 (-1021 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1019))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) + (-5 *1 (-698))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1014 (-205))) + (-5 *2 (-1174)) (-5 *1 (-236))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 *2))) + (-5 *2 (-826 *3)) (-5 *1 (-998 *3 *4 *5)) + (-4 *5 (-13 (-408 *4) (-820 *3) (-567 *2)))))) +(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1014 (-205))))) + ((*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) + (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-501))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4)) + (-4 *3 (-1148 (-157 (-525)))) (-4 *4 (-13 (-341) (-787))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) + (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) + (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) - (-4 *4 (-327)) (-5 *2 (-712)) (-5 *1 (-324 *4)))) + (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) + (-5 *2 (-886 *5)) (-5 *1 (-878 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-153 *3 *4)) + (-4 *3 (-154 *4)))) ((*1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-329 *3 *4)) (-14 *3 (-854)) - (-14 *4 (-854)))) + (-12 (-14 *4 *2) (-4 *5 (-1126)) (-5 *2 (-713)) + (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) - (-14 *4 - (-3 (-1085 *3) - (-1171 (-591 (-2 (|:| -2940 *3) (|:| -3229 (-1036))))))))) + (-12 (-4 *4 (-789)) (-5 *2 (-713)) (-5 *1 (-407 *3 *4)) + (-4 *3 (-408 *4)))) + ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-509 *3)) (-4 *3 (-510)))) + ((*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-713)))) ((*1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) - (-14 *4 (-854))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1171 (-3 (-445) "undefined"))) (-5 *1 (-1172))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1089)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-591 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2428 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1111) (-27) (-408 *8))) - (-4 *8 (-13 (-429) (-788) (-138) (-966 *3) (-587 *3))) - (-5 *3 (-525)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3192 *4) (|:| |sol?| (-108)))) - (-5 *1 (-943 *8 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-838 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-157 (-357))) (-5 *1 (-726 *3)) (-4 *3 (-566 (-357))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-854)) (-5 *2 (-157 (-357))) (-5 *1 (-726 *3)) - (-4 *3 (-566 (-357))))) - ((*1 *2 *3) - (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-566 (-357))) - (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-157 *5)) (-5 *4 (-854)) (-4 *5 (-160)) - (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-885 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-566 (-357))) - (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 (-157 *5))) (-5 *4 (-854)) (-4 *5 (-160)) - (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-885 *4)) (-4 *4 (-975)) (-4 *4 (-566 (-357))) - (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 *5)) (-5 *4 (-854)) (-4 *5 (-975)) - (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) (-4 *4 (-566 (-357))) - (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-854)) (-4 *5 (-517)) - (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-385 (-885 (-157 *4)))) (-4 *4 (-517)) - (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 (-157 *5)))) (-5 *4 (-854)) (-4 *5 (-517)) - (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-788)) - (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) + (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-738 *3 *4)) + (-4 *3 (-739 *4)))) + ((*1 *2) + (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-923 *3 *4)) + (-4 *3 (-924 *4)))) + ((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-927 *3 *4)) + (-4 *3 (-928 *4)))) + ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) + ((*1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-713)))) + ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-984 *3)) (-4 *3 (-985))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *8)) (-4 *8 (-883 *5 *7 *6)) + (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) + (-4 *7 (-735)) + (-5 *2 + (-592 + (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) + (|:| |wcond| (-592 (-886 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *5)))))))))) + (-5 *1 (-858 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 *5)) (-5 *4 (-854)) (-4 *5 (-517)) (-4 *5 (-788)) - (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-592 (-1090))) (-4 *8 (-883 *5 *7 *6)) + (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) + (-4 *7 (-735)) + (-5 *2 + (-592 + (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) + (|:| |wcond| (-592 (-886 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *5)))))))))) + (-5 *1 (-858 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-788)) - (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) + (-12 (-5 *3 (-632 *7)) (-4 *7 (-883 *4 *6 *5)) + (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) + (-5 *2 + (-592 + (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) + (|:| |wcond| (-592 (-886 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *4)))))))))) + (-5 *1 (-858 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-632 *9)) (-5 *5 (-855)) (-4 *9 (-883 *6 *8 *7)) + (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) + (-4 *8 (-735)) + (-5 *2 + (-592 + (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) + (|:| |wcond| (-592 (-886 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *6)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *6)))))))))) + (-5 *1 (-858 *6 *7 *8 *9)) (-5 *4 (-592 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1090))) (-5 *5 (-855)) + (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) + (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) + (-5 *2 + (-592 + (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) + (|:| |wcond| (-592 (-886 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *6)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *6)))))))))) + (-5 *1 (-858 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-854)) (-4 *5 (-517)) - (-4 *5 (-788)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) - (-5 *1 (-726 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1788 *4))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-975))))) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-855)) (-4 *8 (-883 *5 *7 *6)) + (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) + (-4 *7 (-735)) + (-5 *2 + (-592 + (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) + (|:| |wcond| (-592 (-886 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *5)))))))))) + (-5 *1 (-858 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 *9)) (-5 *5 (-1073)) + (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) + (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525)) + (-5 *1 (-858 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1090))) (-5 *5 (-1073)) + (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) + (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525)) + (-5 *1 (-858 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-1073)) (-4 *8 (-883 *5 *7 *6)) + (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) + (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 *10)) (-5 *5 (-855)) + (-5 *6 (-1073)) (-4 *10 (-883 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) + (-4 *8 (-13 (-789) (-567 (-1090)))) (-4 *9 (-735)) (-5 *2 (-525)) + (-5 *1 (-858 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 (-1090))) (-5 *5 (-855)) + (-5 *6 (-1073)) (-4 *10 (-883 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) + (-4 *8 (-13 (-789) (-567 (-1090)))) (-4 *9 (-735)) (-5 *2 (-525)) + (-5 *1 (-858 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-632 *9)) (-5 *4 (-855)) (-5 *5 (-1073)) + (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) + (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525)) + (-5 *1 (-858 *6 *7 *8 *9))))) (((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-592 + (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 *2)) + (|:| |logand| (-1086 *2))))) + (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-341)) (-5 *1 (-542 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-414))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) + (-5 *2 (-761 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-976))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-712)) (-4 *5 (-975)) (-5 *2 (-525)) - (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1147 *5)) - (-4 *6 (-13 (-382) (-966 *5) (-341) (-1111) (-263))))) - ((*1 *2 *3) - (-12 (-4 *4 (-975)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) - (-4 *3 (-1147 *4)) - (-4 *5 (-13 (-382) (-966 *4) (-341) (-1111) (-263)))))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) (((*1 *2 *3) - (-12 (-5 *3 (-854)) - (-5 *2 - (-3 (-1085 *4) - (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036))))))) - (-5 *1 (-324 *4)) (-4 *4 (-327))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-697))))) -(((*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308)))) - ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308)))) - ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308)))) - ((*1 *1 *2) (-12 (-5 *2 (-294 (-635))) (-5 *1 (-308)))) - ((*1 *1 *2) (-12 (-5 *2 (-294 (-642))) (-5 *1 (-308)))) - ((*1 *1 *2) (-12 (-5 *2 (-294 (-640))) (-5 *1 (-308)))) - ((*1 *1) (-5 *1 (-308)))) -(((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-838 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) - ((*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-108)) (-5 *1 (-110))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) - (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) - (-5 *1 (-1088))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-525)) (-5 *5 (-631 (-205))) (-5 *6 (-619 (-205))) - (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-692))))) -(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-694))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) + (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2262 *3))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-429))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4250)) (-4 *1 (-142 *3)) - (-4 *3 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-618 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1119 *4 *5 *3 *2)) (-4 *4 (-517)) - (-4 *5 (-734)) (-4 *3 (-788)) (-4 *2 (-989 *4 *5 *3)))) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-510)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -3932 *4))) (-5 *5 (-713)) + (-4 *4 (-883 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-426 *6 *7 *8 *4))))) +(((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1172 *1)) (-4 *1 (-345 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) + (-4 *5 (-351 *2)) (-4 *2 (-1126)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-5 *1 (-1123 *2)) (-4 *2 (-1125))))) + (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) + (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-976))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-525)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1148 *3)) (-5 *1 (-377 *3 *2)) + (-4 *3 (-13 (-341) (-138)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-1075 *4)) (-4 *4 (-976)) + (-5 *3 (-525))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) + (-4 *2 (-160))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517))))) +(((*1 *2 *3) + (-12 (-4 *4 (-976)) + (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) + (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) + (-4 *3 (-13 (-341) (-1112) (-933)))))) +(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) + (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-341)) - (-5 *2 (-2 (|:| -3749 (-396 *3)) (|:| |special| (-396 *3)))) - (-5 *1 (-669 *5 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) - (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-631 *3))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-788)) (-5 *3 (-591 *6)) (-5 *5 (-591 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-591 *5)) (|:| |f3| *5) - (|:| |f4| (-591 *5)))) - (-5 *1 (-1097 *6)) (-5 *4 (-591 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)) + (-4 *6 (-1019)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) + ((*1 *1 *1) (-4 *1 (-985)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) - (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-396 *3)) - (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-594 *2 *3 *4)) (-4 *2 (-1018)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1) (-5 *1 (-501)))) -(((*1 *2 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) - ((*1 *2 *1) + (-12 (-5 *5 (-713)) (-4 *6 (-1019)) (-4 *3 (-834 *6)) + (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3)) + (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4254))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3081 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-341)) (-4 *7 (-1148 *6)) + (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) + (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789))) + (-14 *3 (-592 (-1090)))))) +(((*1 *2 *3 *1) (-12 (-5 *2 - (-2 (|:| -2070 (-591 (-796))) (|:| -3343 (-591 (-796))) - (|:| |presup| (-591 (-796))) (|:| -3820 (-591 (-796))) - (|:| |args| (-591 (-796))))) - (-5 *1 (-1089))))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-205))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *1 *1 *1) (-5 *1 (-357))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-517)) (-4 *2 (-975)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) (-4 *2 (-1147 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *3 (-989 *4 *5 *6)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *1)))) - (-4 *1 (-994 *4 *5 *6 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3))))) + (-2 (|:| |cycle?| (-108)) (|:| -1819 (-713)) (|:| |period| (-713)))) + (-5 *1 (-1071 *4)) (-4 *4 (-1126)) (-5 *3 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))) + ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-1113 *3))) (-5 *1 (-1113 *3)) (-4 *3 (-1019))))) +(((*1 *2) + (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) + (-5 *1 (-920 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) + (-5 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) + (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) + (-4 *3 (-1148 *4)) (-5 *2 (-108))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-712)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-734)) (-4 *2 (-882 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2)) - (-4 *4 (-429)) (-4 *6 (-788))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-4 *1 (-102 *3))))) + (-592 + (-2 (|:| -3439 (-713)) + (|:| |eqns| + (-592 + (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) + (|:| |cols| (-592 (-525)))))) + (|:| |fgb| (-592 *7))))) + (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) + (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-713)) + (-5 *1 (-858 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-839 *3)) (-4 *3 (-1019))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-195 *4)) + (-4 *4 + (-13 (-789) + (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 (*2 $)) + (-15 -2460 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1177)) (-5 *1 (-195 *3)) + (-4 *3 + (-13 (-789) + (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 (*2 $)) + (-15 -2460 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-475))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-395 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-429))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1011 (-781 *3))) (-4 *3 (-13 (-1111) (-891) (-29 *5))) - (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 - (-3 (|:| |f1| (-781 *3)) (|:| |f2| (-591 (-781 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-199 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1011 (-781 *3))) (-5 *5 (-1072)) - (-4 *3 (-13 (-1111) (-891) (-29 *6))) - (-4 *6 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 - (-3 (|:| |f1| (-781 *3)) (|:| |f2| (-591 (-781 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-199 *6 *3)))) + (-12 (-5 *4 (-632 (-385 (-886 (-525))))) + (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961)) + (-5 *3 (-294 (-525)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-976))) + (-5 *2 (-1073)) (-5 *1 (-768 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1011 (-781 (-294 *5)))) - (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 - (-3 (|:| |f1| (-781 (-294 *5))) (|:| |f2| (-591 (-781 (-294 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-200 *5)))) + (-12 (-5 *3 (-294 *5)) (-5 *4 (-108)) + (-4 *5 (-13 (-770) (-789) (-976))) (-5 *2 (-1073)) + (-5 *1 (-768 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-764)) (-5 *4 (-294 *5)) + (-4 *5 (-13 (-770) (-789) (-976))) (-5 *2 (-1177)) + (-5 *1 (-768 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-385 (-885 *6))) (-5 *4 (-1011 (-781 (-294 *6)))) - (-5 *5 (-1072)) - (-4 *6 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) + (-12 (-5 *3 (-764)) (-5 *4 (-294 *6)) (-5 *5 (-108)) + (-4 *6 (-13 (-770) (-789) (-976))) (-5 *2 (-1177)) + (-5 *1 (-768 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1073)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1073)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1177)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1177))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-990 *4 *5 *6)) + (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *1 (-909 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-3 (|:| |f1| (-781 (-294 *6))) (|:| |f2| (-591 (-781 (-294 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-200 *6)))) + (-592 + (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 *3)) + (|:| |logand| (-1086 *3))))) + (-5 *1 (-542 *3)) (-4 *3 (-341))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808))) + (-5 *4 (-592 (-855))) (-5 *5 (-592 (-242))) (-5 *1 (-445)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808))) + (-5 *4 (-592 (-855))) (-5 *1 (-445)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445)))) + ((*1 *1 *1) (-5 *1 (-445)))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-713)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-976)) (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) + (-4 *5 (-218 *3 *2))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) + (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) + (-5 *1 (-1089))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112)))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4)) + (-4 *4 (-1126)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) + (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6)) + (-4 *3 (-320 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135))))) +(((*1 *2 *3) + (-12 (-5 *2 (-592 (-1086 (-525)))) (-5 *1 (-173)) (-5 *3 (-525))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) + (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-592 *3)) + (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1028 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1011 (-781 (-385 (-885 *5))))) (-5 *3 (-385 (-885 *5))) - (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 - (-3 (|:| |f1| (-781 (-294 *5))) (|:| |f2| (-591 (-781 (-294 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-200 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1011 (-781 (-385 (-885 *6))))) (-5 *5 (-1072)) - (-5 *3 (-385 (-885 *6))) - (-4 *6 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) + (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) + (-5 *1 (-1000 *5 *6)) (-5 *3 (-592 (-886 *5))) + (-14 *6 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-286) (-138))) (-5 *2 - (-3 (|:| |f1| (-781 (-294 *6))) (|:| |f2| (-591 (-781 (-294 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-200 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) - (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-3 *3 (-591 *3))) (-5 *1 (-406 *5 *3)) - (-4 *3 (-13 (-1111) (-891) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-451 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-781 (-357)))) - (-5 *5 (-357)) (-5 *6 (-987)) (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3) (-12 (-5 *3 (-710)) (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-781 (-357)))) - (-5 *5 (-357)) (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-781 (-357)))) - (-5 *5 (-357)) (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-781 (-357)))) - (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-1013 (-781 (-357))))) - (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-1013 (-781 (-357))))) - (-5 *5 (-357)) (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-1013 (-781 (-357))))) - (-5 *5 (-357)) (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-1013 (-781 (-357))))) - (-5 *5 (-357)) (-5 *6 (-987)) (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1011 (-781 (-357)))) - (-5 *5 (-1072)) (-5 *2 (-964)) (-5 *1 (-526)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1011 (-781 (-357)))) - (-5 *5 (-1089)) (-5 *2 (-964)) (-5 *1 (-526)))) + (-592 (-2 (|:| -3162 (-1086 *4)) (|:| -1625 (-592 (-886 *4)))))) + (-5 *1 (-1000 *4 *5)) (-5 *3 (-592 (-886 *4))) + (-14 *5 (-592 (-1090))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) + (-5 *2 + (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) + (-5 *1 (-1000 *5 *6)) (-5 *3 (-592 (-886 *5))) + (-14 *6 (-592 (-1090)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2)) + (-4 *3 (-13 (-789) (-517)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-632 (-385 (-886 (-525))))) + (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) + (-14 *4 (-855))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126))))) +(((*1 *2) + (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-395 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-1105))))) +(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-138) (-966 (-525)))) (-4 *5 (-1147 *4)) - (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))) + (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4)) + (-4 *4 (-327))))) +(((*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-127))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *2 (-990 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3)) + (-4 *3 (-995 *4 *5 *6 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-886 *4)) (-4 *4 (-13 (-286) (-138))) + (-4 *2 (-883 *4 *6 *5)) (-5 *1 (-858 *4 *5 *6 *2)) + (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735))))) +(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1126)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 (-1145 *5 *4))) + (-5 *1 (-1033 *4 *5)) (-5 *3 (-1145 *5 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) + (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-909 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-990 *4 *5 *6)) + (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *1 (-909 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-525))) (-5 *4 (-839 (-525))) + (-5 *2 (-632 (-525))) (-5 *1 (-546)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) + (-5 *1 (-546)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) (-4 *5 (-138)) - (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) - (-5 *2 (-3 (-294 *5) (-591 (-294 *5)))) (-5 *1 (-545 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-682 *3 *2)) (-4 *3 (-975)) (-4 *2 (-788)) - (-4 *3 (-37 (-385 (-525)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-885 *3)) (-4 *3 (-37 (-385 (-525)))) - (-4 *3 (-975)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-4 *2 (-788)) - (-5 *1 (-1042 *3 *2 *4)) (-4 *4 (-882 *3 (-497 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) - (-5 *1 (-1074 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1080 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1086 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *1 (-1120 *3)) (-4 *3 (-37 (-385 (-525)))) - (-4 *3 (-975)))) - ((*1 *1 *1 *2) - (-3150 - (-12 (-5 *2 (-1089)) (-4 *1 (-1131 *3)) (-4 *3 (-975)) - (-12 (-4 *3 (-29 (-525))) (-4 *3 (-891)) (-4 *3 (-1111)) - (-4 *3 (-37 (-385 (-525)))))) - (-12 (-5 *2 (-1089)) (-4 *1 (-1131 *3)) (-4 *3 (-975)) - (-12 (|has| *3 (-15 -1444 ((-591 *2) *3))) - (|has| *3 (-15 -2452 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1131 *2)) (-4 *2 (-975)) (-4 *2 (-37 (-385 (-525)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1135 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-37 (-385 (-525)))))) - ((*1 *1 *1 *2) - (-3150 - (-12 (-5 *2 (-1089)) (-4 *1 (-1152 *3)) (-4 *3 (-975)) - (-12 (-4 *3 (-29 (-525))) (-4 *3 (-891)) (-4 *3 (-1111)) - (-4 *3 (-37 (-385 (-525)))))) - (-12 (-5 *2 (-1089)) (-4 *1 (-1152 *3)) (-4 *3 (-975)) - (-12 (|has| *3 (-15 -1444 ((-591 *2) *3))) - (|has| *3 (-15 -2452 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1152 *2)) (-4 *2 (-975)) (-4 *2 (-37 (-385 (-525)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1156 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3150 - (-12 (-5 *2 (-1089)) (-4 *1 (-1162 *3)) (-4 *3 (-975)) - (-12 (-4 *3 (-29 (-525))) (-4 *3 (-891)) (-4 *3 (-1111)) - (-4 *3 (-37 (-385 (-525)))))) - (-12 (-5 *2 (-1089)) (-4 *1 (-1162 *3)) (-4 *3 (-975)) - (-12 (|has| *3 (-15 -1444 ((-591 *2) *3))) - (|has| *3 (-15 -2452 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1162 *2)) (-4 *2 (-975)) (-4 *2 (-37 (-385 (-525)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1163 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-712)) (-4 *5 (-517)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-901 *5 *3)) (-4 *3 (-1147 *5))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1072)) (-5 *5 (-631 (-205))) (-5 *6 (-205)) - (-5 *7 (-631 (-525))) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-694))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-907 *4 *5 *6 *3)) (-4 *4 (-975)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-4 *4 (-517)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) + (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-839 (-525)))) + (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-385 (-525))) (-4 *4 (-966 (-525))) - (-4 *4 (-13 (-788) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4)))) + (-12 (-5 *3 (-385 (-525))) (-4 *4 (-967 (-525))) + (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4)))) ((*1 *1 *1 *1) (-5 *1 (-128))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) ((*1 *1 *1 *1) (-5 *1 (-205))) ((*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) - (-4 *5 (-1162 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1133 *4 *5)))) + (-4 *5 (-1163 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1134 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 *3)) - (-4 *5 (-1131 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1154 *4 *5)) - (-4 *6 (-914 *5)))) + (-4 *5 (-1132 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1155 *4 *5)) + (-4 *6 (-915 *5)))) ((*1 *1 *1 *1) (-4 *1 (-263))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1018)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1019)))) ((*1 *1 *1 *1) (-5 *1 (-357))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-5 *1 (-364 *2)) (-4 *2 (-1018)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1019)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-408 *3)) (-4 *3 (-788)) (-4 *3 (-1030)))) + (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1031)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) + (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 *4)) (-5 *3 (-525)) (-4 *4 (-327)) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-501)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-712)) (-4 *4 (-1018)) - (-5 *1 (-624 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1019)) + (-5 *1 (-625 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) + (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) + (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-712)) (-4 *4 (-975)) - (-5 *1 (-632 *4)))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-976)) + (-5 *1 (-633 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-525)) (-4 *3 (-975)) (-5 *1 (-656 *3 *4)) - (-4 *4 (-593 *3)))) + (-12 (-5 *2 (-525)) (-4 *3 (-976)) (-5 *1 (-657 *3 *4)) + (-4 *4 (-594 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-975)) - (-5 *1 (-656 *4 *5)) (-4 *5 (-593 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-854)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-712)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-668)) (-5 *2 (-712)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-5 *1 (-760 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-775 *3)) (-4 *3 (-975)))) + (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-976)) + (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-976)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-775 *4)) (-4 *4 (-975)))) - ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-932)) (-5 *2 (-385 (-525))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-854)))) + (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-976)))) + ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-385 (-525))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-855)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-1039 *3 *4 *5 *6)) (-4 *4 (-975)) + (-12 (-5 *2 (-525)) (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) - (-4 *3 (-1147 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-975)) - (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) - (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4)))) - ((*1 *1 *1) (-4 *1 (-510))) - ((*1 *2 *1) (-12 (-5 *2 (-854)) (-5 *1 (-616 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-854)) (-5 *1 (-620 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-760 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-826 *3)) (-4 *3 (-788)))) - ((*1 *2 *1) (-12 (-4 *1 (-925 *3)) (-4 *3 (-1125)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-1123 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-932)) - (-4 *2 (-975))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1103 *4 *5)) - (-4 *4 (-1018)) (-4 *5 (-1018))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-712)) (-5 *3 (-876 *5)) (-4 *5 (-975)) - (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-712))) (-5 *3 (-712)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-854)) (-4 *5 (-975)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-712))) (-5 *3 (-876 *5)) (-4 *5 (-975)) - (-5 *1 (-1078 *4 *5)) (-14 *4 (-854))))) -(((*1 *2) - (-12 (-5 *2 (-631 (-843 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-854)) - (-14 *4 (-854)))) - ((*1 *2) - (-12 (-5 *2 (-631 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) - (-14 *4 - (-3 (-1085 *3) - (-1171 (-591 (-2 (|:| -2940 *3) (|:| -3229 (-1036))))))))) - ((*1 *2) - (-12 (-5 *2 (-631 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) - (-14 *4 (-854))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *1) (-5 *1 (-764)))) -(((*1 *2 *1) - (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1 *1) (-4 *1 (-899)))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-854)) (-4 *6 (-13 (-517) (-788))) - (-5 *2 (-591 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6)) - (-4 *5 (-975)))) - ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) - ((*1 *2 *3) - (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1111))) - (-4 *4 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) - (-5 *2 (-591 *5)) (-5 *1 (-540 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-542 (-385 (-885 *4)))) - (-4 *4 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) - (-5 *2 (-591 (-294 *4))) (-5 *1 (-545 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1014 *3 *2)) (-4 *3 (-786)) (-4 *2 (-1063 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *1)) (-4 *1 (-1014 *4 *2)) (-4 *4 (-786)) - (-4 *2 (-1063 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1184 (-1089) *3)) (-5 *1 (-1191 *3)) (-4 *3 (-975)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-975))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-640)))) - ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-640))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-562 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018))))) -(((*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341))))) -(((*1 *2) - (-12 (-5 *2 (-854)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525))))) - ((*1 *2 *2) - (-12 (-5 *2 (-854)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1174)))) - ((*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1174))))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-931 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-174)))) + (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1172 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-279)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-284))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1125)) (-5 *1 (-806 *3 *2)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-128))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1112 *3)) (-4 *3 (-1018))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-308))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-668) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-631 (-525))) (-5 *5 (-108)) (-5 *7 (-631 (-205))) - (-5 *3 (-525)) (-5 *6 (-205)) (-5 *2 (-964)) (-5 *1 (-696))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) -(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) - ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-701))))) -(((*1 *1) (-5 *1 (-308)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-591 (-2 (|:| -2542 (-1085 *6)) (|:| -3987 (-525))))) - (-4 *6 (-286)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) - (-5 *1 (-684 *4 *5 *6 *7)) (-4 *7 (-882 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-975))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) - (-5 *2 - (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) - (|:| |success| (-108)))) - (-5 *1 (-730)) (-5 *5 (-525))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1114)))) -(((*1 *1 *1) (-4 *1 (-802 *2)))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1147 *9)) (-4 *7 (-734)) (-4 *8 (-788)) (-4 *9 (-286)) - (-4 *10 (-882 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-591 (-1085 *10))) - (|:| |dterm| - (-591 (-591 (-2 (|:| -2063 (-712)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-591 *6)) (|:| |nlead| (-591 *10)))) - (-5 *1 (-719 *6 *7 *8 *9 *10)) (-5 *3 (-1085 *10)) (-5 *4 (-591 *6)) - (-5 *5 (-591 *10))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-631 (-205))) (-5 *6 (-108)) (-5 *7 (-631 (-525))) - (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) - (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-695))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-796))))) + (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-843)) + (-5 *2 (-1172 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *5 (-1147 *4)) (-5 *2 (-591 (-598 (-385 *5)))) - (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-385 *5)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1018)) - (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))) - (-5 *2 (-591 (-997 *3 *4 *5))) (-5 *1 (-998 *3 *4 *5)) - (-4 *5 (-13 (-408 *4) (-819 *3) (-566 (-825 *3))))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1042 *4 *3 *5))) (-4 *4 (-37 (-385 (-525)))) - (-4 *4 (-975)) (-4 *3 (-788)) (-5 *1 (-1042 *4 *3 *5)) - (-4 *5 (-882 *4 (-497 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1120 *4))) (-5 *3 (-1089)) (-5 *1 (-1120 *4)) - (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-975))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *2 (-989 *4 *5 *6)) (-5 *1 (-717 *4 *5 *6 *2 *3)) - (-4 *3 (-994 *4 *5 *6 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) + (-12 (-5 *3 (-1172 (-632 *4))) (-4 *4 (-160)) + (-5 *2 (-1172 (-632 (-886 *4)))) (-5 *1 (-171 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1126)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1114)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1171 (-591 (-525)))) (-5 *1 (-456)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3))))) + (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126)) + (-14 *4 (-525))))) (((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) - ((*1 *1 *1) (|partial| -4 *1 (-664)))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-591 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-712)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-734)) (-4 *6 (-882 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-788)) - (-5 *1 (-426 *4 *3 *5 *6))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1172)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1172)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1172)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1173)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1173)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160))))) -(((*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) - (-227 *4 (-385 (-525))))) - (-14 *4 (-591 (-1089))) (-14 *5 (-712)) (-5 *2 (-108)) - (-5 *1 (-478 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-510)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-108))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1114)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-643 *4 *5 *6 *7)) - (-4 *4 (-566 (-501))) (-4 *5 (-1125)) (-4 *6 (-1125)) - (-4 *7 (-1125))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-1054 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) - (-4 *4 (-13 (-1018) (-33))) (-4 *5 (-13 (-1018) (-33))) - (-5 *1 (-1055 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-591 (-1054 *3 *4))) (-4 *3 (-13 (-1018) (-33))) - (-4 *4 (-13 (-1018) (-33))) (-5 *1 (-1055 *3 *4))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-689))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1176)) - (-5 *1 (-426 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-2 (|:| -2542 *4) (|:| -2743 (-525))))) - (-4 *4 (-1147 (-525))) (-5 *2 (-679 (-712))) (-5 *1 (-419 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-396 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-975)) - (-5 *2 (-679 (-712))) (-5 *1 (-421 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-968))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-591 - (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 *2)) - (|:| |logand| (-1085 *2))))) - (-5 *4 (-591 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-341)) (-5 *1 (-542 *2))))) -(((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 (-631 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1114)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-932)) - (-4 *2 (-975))))) -(((*1 *1 *1) (-12 (-5 *1 (-560 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1) (-5 *1 (-580)))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *2 *1) - (-12 (-4 *3 (-975)) (-5 *2 (-1171 *3)) (-5 *1 (-654 *3 *4)) - (-4 *4 (-1147 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1072)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-341)) (-4 *5 (-1147 *4)) (-5 *2 (-1176)) - (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1147 (-385 *5))) (-14 *7 *6)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-890 *3)) (-5 *1 (-1077 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-110)) (-4 *4 (-975)) (-5 *1 (-656 *4 *2)) - (-4 *2 (-593 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-775 *2)) (-4 *2 (-975))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-788)))) +(((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1114)))) -(((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) - ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *1 *1) (-4 *1 (-1053)))) + (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789)) + (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-855)))) + ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976))))) (((*1 *2 *1) - (-12 (-5 *2 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *3)))) - (-5 *1 (-550 *3)) (-4 *3 (-975))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-712)) (-5 *5 (-591 *3)) (-4 *3 (-286)) (-4 *6 (-788)) - (-4 *7 (-734)) (-5 *2 (-108)) (-5 *1 (-574 *6 *7 *3 *8)) - (-4 *8 (-882 *3 *7 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-631 *4)) (-4 *4 (-341)) (-5 *2 (-1085 *4)) - (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-786)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-525)) - (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-1085 *3)) (-5 *1 (-40 *4 *3)) - (-4 *3 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *4 (-564 $)) $)) - (-15 -1396 ((-1041 *4 (-564 $)) $)) - (-15 -2686 ($ (-1041 *4 (-564 $)))))))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-566 (-825 (-525)))) - (-4 *5 (-819 (-525))) - (-4 *5 (-13 (-788) (-966 (-525)) (-429) (-587 (-525)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-528 *5 *3)) (-4 *3 (-577)) - (-4 *3 (-13 (-27) (-1111) (-408 *5)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-341)) (-4 *3 (-975)) - (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 (-825 *6))) - (-5 *5 (-1 (-822 *6 *8) *8 (-825 *6) (-822 *6 *8))) (-4 *6 (-1018)) - (-4 *8 (-13 (-975) (-566 (-825 *6)) (-966 *7))) (-5 *2 (-822 *6 *8)) - (-4 *7 (-13 (-975) (-788))) (-5 *1 (-874 *6 *7 *8))))) + (-12 (-5 *2 (-1172 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1019))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) + (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3)))) - ((*1 *1 *1) (-4 *1 (-1114)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) + (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) ((*1 *1 *1) (-4 *1 (-263))) ((*1 *2 *3) (-12 (-5 *3 (-396 *4)) (-4 *4 (-517)) - (-5 *2 (-591 (-2 (|:| -2976 (-712)) (|:| |logand| *4)))) + (-5 *2 (-592 (-2 (|:| -2059 (-713)) (|:| |logand| *4)))) (-5 *1 (-298 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) ((*1 *2 *1) - (-12 (-5 *2 (-609 *3 *4)) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) - (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) + (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) + (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) + (-5 *1 (-1077 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-13 (-975) (-659 (-385 (-525))))) - (-4 *5 (-788)) (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1190 *5 *4)))) + (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525))))) + (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-1189 *3 *4)) - (-4 *4 (-659 (-385 (-525)))) (-4 *3 (-788)) (-4 *4 (-160))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850))))) + (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) + (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160))))) +(((*1 *1) (-5 *1 (-146)))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) + ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-855)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1173))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517))))) +(((*1 *1 *1 *1) (-4 *1 (-704)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-632 (-1086 *8))) (-4 *5 (-976)) (-4 *8 (-976)) + (-4 *6 (-1148 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8)) + (-4 *7 (-1148 *6))))) (((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-1147 *4)) - (-4 *5 (-1147 (-385 *3))) (-5 *2 (-108)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-591 (-564 *2))) (-5 *4 (-1089)) - (-4 *2 (-13 (-27) (-1111) (-408 *5))) - (-4 *5 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-256 *5 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) - (-5 *2 (-385 (-525))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) - (-4 *3 (-517)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-738 *3)) (-4 *3 (-160)) (-4 *3 (-510)) - (-5 *2 (-385 (-525))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-774 *3)) (-4 *3 (-510)) - (-4 *3 (-1018)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-781 *3)) (-4 *3 (-510)) - (-4 *3 (-1018)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-927 *3)) (-4 *3 (-160)) (-4 *3 (-510)) - (-5 *2 (-385 (-525))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-938 *3)) - (-4 *3 (-966 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108))))) -(((*1 *1 *1) (-4 *1 (-577))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932) (-1111)))))) -(((*1 *2) (-12 (-5 *2 (-591 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-127))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-788)) (-5 *4 (-591 *6)) - (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-591 *4)))) - (-5 *1 (-1097 *6)) (-5 *5 (-591 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-692))))) -(((*1 *2 *3) - (-12 (-5 *3 (-972 *4 *5)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) - (-14 *5 (-591 (-1089))) (-5 *2 (-591 (-591 (-953 (-385 *4))))) - (-5 *1 (-1195 *4 *5 *6)) (-14 *6 (-591 (-1089))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-885 *4))) - (-4 *4 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-591 (-953 (-385 *4))))) (-5 *1 (-1195 *4 *5 *6)) - (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-5 *2 (-108))))) -(((*1 *2 *2) - (-12 (-5 *2 (-591 (-457 *3 *4))) (-14 *3 (-591 (-1089))) - (-4 *4 (-429)) (-5 *1 (-579 *3 *4))))) -(((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-341)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| (-591 *3)) (|:| -3585 *4)))) - (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-632 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) - ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) - ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-760 *3)) (-4 *3 (-788)) (-5 *1 (-616 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-715)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037 *3)) (-4 *3 (-1125)) (-5 *2 (-712))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *4)) (-4 *4 (-786)) (-4 *4 (-341)) (-5 *2 (-712)) - (-5 *1 (-878 *4 *5)) (-4 *5 (-1147 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) - (-5 *1 (-1040 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-341)) (-5 *1 (-829 *2 *3)) - (-4 *2 (-1147 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) - (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4252 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) - (-4 *2 (-975)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1147 *2)) - (-4 *4 (-629 *2 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-89 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1089)) - (-4 *6 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-4 *4 (-13 (-29 *6) (-1111) (-891))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3612 (-591 *4)))) - (-5 *1 (-742 *6 *4 *3)) (-4 *3 (-601 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) - (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 (-157 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-157 *3)) (-5 *1 (-1115 *4 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *4)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-975))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1162 *4)) - (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1070 *4) (-1070 *4))) - (-5 *1 (-1164 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-761)) (-14 *5 (-1089)) (-5 *2 (-591 (-1144 *5 *4))) - (-5 *1 (-1032 *4 *5)) (-5 *3 (-1144 *5 *4))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1018) (-33))) - (-5 *2 (-108)) (-5 *1 (-1054 *4 *5)) (-4 *4 (-13 (-1018) (-33)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-975)) - (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) - (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) - (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-591 *1)) (-5 *3 (-591 *7)) (-4 *1 (-994 *4 *5 *6 *7)) - (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 *1)) - (-4 *1 (-994 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1072)) - (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *1 *2) - (-12 +(((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-995 *6 *7 *8 *9)) + (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 - (-591 - (-2 - (|:| -1265 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (|:| -1568 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1070 (-205))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3756 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-520))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-108)) (-5 *5 (-1020 (-712))) (-5 *6 (-712)) + (-592 + (-2 (|:| -3941 (-592 *9)) (|:| -2249 *10) (|:| |ineq| (-592 *9))))) + (-5 *1 (-920 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-995 *6 *7 *8 *9)) + (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 - (-2 (|:| |contp| (-525)) - (|:| -1908 (-591 (-2 (|:| |irr| *3) (|:| -3630 (-525))))))) - (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) - ((*1 *2 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-286)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) - ((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-525))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) - (-5 *2 (-591 (-2 (|:| -1269 *1) (|:| -1472 (-591 *7))))) - (-5 *3 (-591 *7)) (-4 *1 (-1119 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-712)) (-4 *4 (-286)) (-4 *6 (-1147 *4)) - (-5 *2 (-1171 (-591 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-591 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-591 *7)) (|:| -3585 *8))) - (-4 *7 (-989 *4 *5 *6)) (-4 *8 (-994 *4 *5 *6 *7)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-919 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-591 *7)) (|:| -3585 *8))) - (-4 *7 (-989 *4 *5 *6)) (-4 *8 (-994 *4 *5 *6 *7)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *8))))) -(((*1 *1 *1) (-4 *1 (-577))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932) (-1111)))))) -(((*1 *1) (-5 *1 (-132)))) -(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173)))) - ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1173))))) + (-592 + (-2 (|:| -3941 (-592 *9)) (|:| -2249 *10) (|:| |ineq| (-592 *9))))) + (-5 *1 (-1026 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-967 (-47))) + (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) + (-5 *2 (-396 (-1086 (-47)))) (-5 *1 (-413 *4 *5 *3)) + (-4 *3 (-1148 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-592 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) + (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-692))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-876 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-876 *3))) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-876 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796))))) -(((*1 *1 *1) - (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) - (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5))))) + (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-574 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-995 *3 *4 *5 *6)) (-4 *2 (-1028 *3 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1019)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *6))) + (-4 *6 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-518 *6 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) - (-5 *2 (-2 (|:| |num| (-1171 *4)) (|:| |den| *4)))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-876 (-205)) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-859)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-876 (-205)) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-859)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-876 (-205)) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-860)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-876 (-205)) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-860))))) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-632 *3)) + (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-632 *3)) + (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) - (-4 *3 (-1147 *4)) (-5 *1 (-750 *4 *3 *2 *5)) (-4 *2 (-601 *3)) - (-4 *5 (-601 (-385 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-385 *5)) - (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *5 (-1147 *4)) - (-5 *1 (-750 *4 *5 *2 *6)) (-4 *2 (-601 *5)) (-4 *6 (-601 *3))))) + (-12 (-5 *2 (-855)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-341)) (-14 *5 (-925 *3 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-854)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-341)) (-14 *5 (-924 *3 *4))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-712)) (-4 *4 (-13 (-517) (-138))) - (-5 *1 (-1141 *4 *2)) (-4 *2 (-1147 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *3)) - (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-591 *5)) (-5 *4 (-525)) (-4 *5 (-786)) (-4 *5 (-341)) - (-5 *2 (-712)) (-5 *1 (-878 *5 *6)) (-4 *6 (-1147 *5))))) + (-12 (-5 *2 (-1157 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) + (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-132))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-855)) + (-4 *2 (-13 (-976) (-10 -7 (-6 (-4256 "*"))))) (-5 *1 (-836 *4 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) (((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-591 (-1094))) (-5 *1 (-813))))) + (-12 (-4 *4 (-13 (-517) (-789))) + (-4 *2 (-13 (-408 *4) (-933) (-1112))) (-5 *1 (-554 *4 *2 *3)) + (-4 *3 (-13 (-408 (-157 *4)) (-933) (-1112)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-712)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-975))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162))))) + (-12 (-5 *3 (-855)) (-5 *4 (-396 *6)) (-4 *6 (-1148 *5)) + (-4 *5 (-976)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-788)) (-5 *1 (-1097 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-5 *1 (-202 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-4 *1 (-233 *3)))) - ((*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) - (-14 *4 (-591 (-1089))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *1 *1) (-4 *1 (-263))) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702))))) +(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *1) (-4 *1 (-900)))) +(((*1 *2 *2) + (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) + (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) + (-4 *7 (-924 *4)) (-4 *2 (-630 *7 *8 *9)) + (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) + (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-609 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-5 *1 (-575 *3 *4 *5)) - (-14 *5 (-854)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) + (-4 *4 (-351 *2)) (-4 *2 (-286)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3)))) + (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) + (-4 *2 (-630 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-13 (-975) (-659 (-385 (-525))))) - (-4 *5 (-788)) (-5 *1 (-1185 *4 *5 *2)) (-4 *2 (-1190 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-1189 *3 *4)) - (-4 *4 (-659 (-385 (-525)))) (-4 *3 (-788)) (-4 *4 (-160))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-308)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-308))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1171 *4)) (-5 *3 (-631 *4)) (-4 *4 (-341)) - (-5 *1 (-612 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-341)) - (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4251)))) - (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4251)))) - (-5 *1 (-613 *4 *5 *2 *3)) (-4 *3 (-629 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-591 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341)) - (-5 *1 (-755 *2 *3)) (-4 *3 (-601 *2)))) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-979 *2 *3 *4 *5 *6)) (-4 *4 (-976)) + (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-883 (-385 (-886 *6)) *5 *4)) + (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) + (-4 *4 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) + (-4 *6 (-517))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-976)) (-4 *2 (-630 *4 *5 *6)) + (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1148 *4)) (-4 *5 (-351 *4)) + (-4 *6 (-351 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) + (-5 *2 (-592 *3))))) +(((*1 *2) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4)))))) +(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *1) (-4 *1 (-900)))) +(((*1 *1) (-4 *1 (-327))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1 *1) (-4 *1 (-510)))) -(((*1 *2 *3) - (-12 (-5 *3 (-710)) - (-5 *2 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964)))) - (-5 *1 (-526)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-710)) (-5 *4 (-987)) + (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) + (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))) (|:| |extra| (-964)))) - (-5 *1 (-526)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-728)) (-5 *3 (-987)) - (-5 *4 - (-2 (|:| |fn| (-294 (-205))) - (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1086 *5))) + (|:| |prim| (-1086 *5)))) + (-5 *1 (-410 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 - (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) - (|:| |extra| (-964)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-728)) (-5 *3 (-987)) - (-5 *4 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) + (|:| |pol2| (-1086 *3)) (|:| |prim| (-1086 *3)))) + (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-886 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-341) (-138))) (-5 *2 - (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)) - (|:| |extra| (-964)))))) + (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) + (|:| |prim| (-1086 *5)))) + (-5 *1 (-893 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-741)) (-5 *3 (-987)) - (-5 *4 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))) - (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-749)) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) + (-4 *5 (-13 (-341) (-138))) (-5 *2 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))))) - (-5 *1 (-746)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-987)) + (-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 *5))) + (|:| |prim| (-1086 *5)))) + (-5 *1 (-893 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-5 *5 (-1090)) + (-4 *6 (-13 (-341) (-138))) (-5 *2 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))))) - (-5 *1 (-746)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-777)) (-5 *3 (-987)) - (-5 *4 - (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) - (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-777)) (-5 *3 (-987)) - (-5 *4 - (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) - (|:| |lb| (-591 (-781 (-205)))) (|:| |cf| (-591 (-294 (-205)))) - (|:| |ub| (-591 (-781 (-205)))))) - (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-779)) + (-2 (|:| -2059 (-592 (-525))) (|:| |poly| (-592 (-1086 *6))) + (|:| |prim| (-1086 *6)))) + (-5 *1 (-893 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3)) + (-4 *3 (-1148 *4))))) +(((*1 *2) + (-12 (-14 *4 (-713)) (-4 *5 (-1126)) (-5 *2 (-128)) + (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4)) + (-4 *3 (-307 *4)))) + ((*1 *2) + (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-160)))) + ((*1 *2 *1) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) + (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) + (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-976)) (-5 *2 (-855)))) + ((*1 *2) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-341)) (-5 *2 (-128))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) + (-4 *3 (-990 *6 *7 *8)) (-5 *2 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))))) - (-5 *1 (-778)))) + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-779)) (-5 *4 (-987)) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) (-5 *2 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))))) - (-5 *1 (-778)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-828)) (-5 *3 (-987)) - (-5 *4 - (-2 (|:| |pde| (-591 (-294 (-205)))) - (|:| |constraints| - (-591 - (-2 (|:| |start| (-205)) (|:| |finish| (-205)) - (|:| |grid| (-712)) (|:| |boundaryType| (-525)) - (|:| |dStart| (-631 (-205))) (|:| |dFinish| (-631 (-205)))))) - (|:| |f| (-591 (-591 (-294 (-205))))) (|:| |st| (-1072)) - (|:| |tol| (-205)))) - (-5 *2 (-2 (|:| -2282 (-357)) (|:| |explanations| (-1072)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-831)) + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) + (-4 *3 (-990 *6 *7 *8)) (-5 *2 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))))) - (-5 *1 (-830)))) + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1028 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-987)) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) (-5 *2 - (-2 (|:| -2282 (-357)) (|:| -3419 (-1072)) - (|:| |explanations| (-591 (-1072))))) - (-5 *1 (-830))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *6 (-205)) - (-5 *3 (-525)) (-5 *2 (-964)) (-5 *1 (-694))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) - (-4 *2 (-13 (-788) (-21)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-712)) (-5 *1 (-619 *2)) (-4 *2 (-1018))))) + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1018)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-625 *4 *5)) (-4 *4 (-1018)))) - ((*1 *2 *2) - (-12 (-4 *3 (-788)) (-5 *1 (-862 *3 *2)) (-4 *2 (-408 *3)))) + (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) + (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) ((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-294 (-525))) (-5 *1 (-863)))) - ((*1 *2 *1) (-12 (-4 *1 (-1186 *3 *2)) (-4 *3 (-788)) (-4 *2 (-975)))) - ((*1 *2 *1) (-12 (-4 *2 (-975)) (-5 *1 (-1192 *2 *3)) (-4 *3 (-784))))) -(((*1 *1 *1 *1) (-5 *1 (-150))) - ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150))))) -(((*1 *2 *1) (-12 (-4 *3 (-1125)) (-5 *2 (-591 *1)) (-4 *1 (-940 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1162 *4)) (-5 *1 (-1164 *4 *2)) - (-4 *4 (-37 (-385 (-525))))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-525)))) - (-4 *4 (-13 (-1147 *3) (-517) (-10 -8 (-15 -2124 ($ $ $))))) - (-4 *3 (-517)) (-5 *1 (-1150 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1018)) (-5 *2 (-822 *3 *5)) (-5 *1 (-818 *3 *4 *5)) - (-4 *3 (-1018)) (-4 *5 (-611 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-854))) (-5 *1 (-1019 *3 *4)) (-14 *3 (-854)) - (-14 *4 (-854))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-854)) (-5 *1 (-1019 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) - (-5 *2 - (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) - (|:| |success| (-108)))) - (-5 *1 (-730)) (-5 *5 (-525))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) - (-5 *2 (-591 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-591 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-885 *1)) (-4 *1 (-27)) (-5 *2 (-591 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-591 *1)) - (-4 *1 (-29 *4)))) + (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) + (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) + (-4 *3 (-630 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *2 (-591 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1089)) (-5 *1 (-619 *3)) (-4 *3 (-1018))))) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) + (-5 *2 (-713))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 *3) + (-5 *3 (-525)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-805 *4)) (-14 *4 *3) + (-5 *3 (-525)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-385 (-525))) (-5 *1 (-806 *4 *5)) + (-5 *3 (-525)) (-4 *5 (-803 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-943)) (-5 *2 (-385 (-525))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-992 *2 *3)) (-4 *2 (-13 (-787) (-341))) + (-4 *3 (-1148 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4044 (*2 (-1090)))) + (-4 *2 (-976))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-517)) (-4 *3 (-976)) + (-5 *2 (-2 (|:| -2877 *1) (|:| -2097 *1))) (-4 *1 (-791 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-976)) + (-5 *2 (-2 (|:| -2877 *3) (|:| -2097 *3))) (-5 *1 (-792 *5 *3)) + (-4 *3 (-791 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) + (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) + (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1072)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-242)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) + (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-242)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-976)) (-5 *2 (-1172 *4)) + (-5 *1 (-1091 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-855)) (-5 *2 (-1172 *3)) (-5 *1 (-1091 *3)) + (-4 *3 (-976))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-525))) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-517)) (-4 *8 (-882 *7 *5 *6)) - (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *9) (|:| |radicand| *9))) - (-5 *1 (-886 *5 *6 *7 *8 *9)) (-5 *4 (-712)) - (-4 *9 - (-13 (-341) - (-10 -8 (-15 -1384 (*8 $)) (-15 -1396 (*8 $)) (-15 -2686 ($ *8)))))))) + (-12 (-5 *3 (-632 (-385 (-525)))) + (-5 *2 + (-592 + (-2 (|:| |outval| *4) (|:| |outmult| (-525)) + (|:| |outvect| (-592 (-632 *4)))))) + (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787)))))) +(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) (((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) - (-4 *4 (-327))))) -(((*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-357)) (-5 *1 (-968))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-1125))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1163 *4)) + (-4 *4 (-37 (-385 (-525)))) + (-5 *2 (-1 (-1071 *4) (-1071 *4) (-1071 *4))) (-5 *1 (-1165 *4 *5))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-921)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1014 *4)) (-4 *4 (-1126)) + (-5 *1 (-1012 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-886 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284))))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-699))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-525)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-735)) (-4 *4 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) + (-5 *1 (-426 *5 *6 *7 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) + (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-695))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-4 *6 (-429)) + (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341)) + (-4 *5 (-13 (-341) (-787)))))) +(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-643)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-643))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-1019)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1019)) (-5 *2 (-108)) + (-5 *1 (-1127 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365)))) - ((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-591 (-1089))) - (-14 *4 (-591 (-1089))) (-4 *5 (-365))))) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1023)) (-5 *3 (-716)) (-5 *1 (-51))))) (((*1 *2 *1) - (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1111))) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-786)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-991 *4 *3)) (-4 *4 (-13 (-786) (-341))) - (-4 *3 (-1147 *4)) (-5 *2 (-108))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) - (-14 *4 (-712)) (-4 *5 (-160))))) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525))))) (((*1 *2 *3) - (-12 (-5 *3 (-525)) (-5 *2 (-591 (-591 (-205)))) (-5 *1 (-1122))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-341) (-138) (-966 (-525)))) (-4 *5 (-1147 *4)) - (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108)))) - (-5 *1 (-945 *4 *5)) (-5 *3 (-385 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-631 (-1085 *8))) (-4 *5 (-975)) (-4 *8 (-975)) - (-4 *6 (-1147 *5)) (-5 *2 (-631 *6)) (-5 *1 (-474 *5 *6 *7 *8)) - (-4 *7 (-1147 *6))))) + (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) + (-4 *3 (-13 (-341) (-1112) (-933)))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-286)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3258 *1))) + (-4 *1 (-286))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1126))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)))) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-985 (-953 *4) (-1085 (-953 *4)))) (-5 *3 (-796)) - (-5 *1 (-953 *4)) (-4 *4 (-13 (-786) (-341) (-951)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) - (-4 *5 (-13 (-286) (-788) (-138) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) - (-4 *3 (-13 (-1111) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-517) (-966 (-525)) (-138))) - (-5 *2 (-542 (-385 (-885 *5)))) (-5 *1 (-531 *5)) - (-5 *3 (-385 (-885 *5)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-975)) (-4 *3 (-788)) - (-4 *4 (-245 *3)) (-4 *5 (-734))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-242))) (-5 *4 (-1089)) (-5 *2 (-108)) - (-5 *1 (-242))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1022)) (-5 *3 (-715)) (-5 *1 (-51))))) + (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))) +(((*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-591 (-591 *4)))) (-5 *2 (-591 (-591 *4))) - (-5 *1 (-1097 *4)) (-4 *4 (-788))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2428 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-341)) (-4 *7 (-1147 *6)) - (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) - (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1125)))) - ((*1 *2 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1125)) - (-14 *4 (-525))))) -(((*1 *2 *1) (-12 (-4 *3 (-975)) (-5 *2 (-591 *1)) (-4 *1 (-1050 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-693))))) + (-12 (-4 *1 (-854)) (-5 *2 (-2 (|:| -2059 (-592 *1)) (|:| -3258 *1))) + (-5 *3 (-592 *1))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1018)) - (-4 *2 (-126))))) -(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1) - (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-975)) (-4 *3 (-788)) - (-4 *4 (-245 *3)) (-4 *5 (-734))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-591 (-591 (-591 *5)))) (-5 *3 (-1 (-108) *5 *5)) - (-5 *4 (-591 *5)) (-4 *5 (-788)) (-5 *1 (-1097 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1127))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-786) (-341))) (-5 *2 (-108)) (-5 *1 (-985 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1788 *3) (|:| |coef1| (-723 *3)) (|:| |coef2| (-723 *3)))) - (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975))))) -(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-48))))) + (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126)) + (-4 *2 (-1019)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1019)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1019)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *2 (-1019)) (-5 *1 (-595 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1037)))) +(((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-48))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) + (-4 *2 (-408 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1012 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) + (-5 *1 (-147 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-149)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090))))) +(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-965)) (-5 *3 (-1090)) (-5 *1 (-174))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-976)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-976))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1018)) (-4 *3 (-833 *5)) (-5 *2 (-631 *3)) - (-5 *1 (-633 *5 *3 *6 *4)) (-4 *6 (-351 *3)) - (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4250))))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) - (-5 *2 (-1085 *3)))) + (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1090))) (-4 *6 (-341)) + (-5 *2 (-592 (-273 (-886 *6)))) (-5 *1 (-503 *5 *6 *7)) + (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-902 *4 *2)) + (-4 *2 (-1148 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))) +(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *2) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-1019)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-1113 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-592 (-1113 *2))) (-5 *1 (-1113 *2)) (-4 *2 (-1019))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-941 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) + (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) - (-5 *2 (-1085 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-566 (-825 (-525)))) - (-4 *5 (-819 (-525))) - (-4 *5 (-13 (-788) (-966 (-525)) (-429) (-587 (-525)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-528 *5 *3)) (-4 *3 (-577)) - (-4 *3 (-13 (-27) (-1111) (-408 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-781 *2)) (-4 *2 (-1053)) - (-4 *2 (-13 (-27) (-1111) (-408 *5))) - (-4 *5 (-566 (-825 (-525)))) (-4 *5 (-819 (-525))) - (-4 *5 (-13 (-788) (-966 (-525)) (-429) (-587 (-525)))) - (-5 *1 (-528 *5 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-525))) (-5 *1 (-254))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-694))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-286)) (-5 *1 (-641 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-712)) (-4 *2 (-1018)) - (-5 *1 (-621 *2))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-785))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) + (-4 *3 (-1019))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-327)) (-5 *2 (-1085 *4)) - (-5 *1 (-495 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))) - ((*1 *1 *1 *1) (-5 *1 (-1036)))) + (|partial| -12 (-4 *4 (-13 (-517) (-138))) + (-5 *2 (-2 (|:| -3347 *3) (|:| -3356 *3))) (-5 *1 (-1142 *4 *3)) + (-4 *3 (-1148 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1172 *6)) (-5 *4 (-1172 (-525))) (-5 *5 (-525)) + (-4 *6 (-1019)) (-5 *2 (-1 *6)) (-5 *1 (-948 *6))))) (((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) (-4 *2 (-1147 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-698))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-429)) (-4 *4 (-788)) - (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1100 *2)) (-4 *2 (-341))))) + (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)) + (-4 *2 (-429)))) + ((*1 *1 *1) + (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-1148 *2)) + (-4 *4 (-1148 (-385 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-429)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)) (-4 *3 (-429)))) + ((*1 *1 *1) + (-12 (-4 *1 (-883 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-429)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1078 *3 *2)) + (-4 *2 (-1148 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) + (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-174)))) + ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-279)))) + ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-51))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514))))) (((*1 *2 *1) - (-12 + (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1012 (-782 *3))) (-4 *3 (-13 (-1112) (-892) (-29 *5))) + (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 - (-591 - (-591 - (-3 (|:| -3419 (-1089)) - (|:| |bounds| (-591 (-3 (|:| S (-1089)) (|:| P (-885 (-525)))))))))) - (-5 *1 (-1093))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-712)) (-4 *1 (-211 *4)) - (-4 *4 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-712)))) - ((*1 *1 *1) (-4 *1 (-213))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-245 *3)) (-4 *3 (-788)))) - ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) - (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))))) + (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-199 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1012 (-782 *3))) (-5 *5 (-1073)) + (-4 *3 (-13 (-1112) (-892) (-29 *6))) + (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 + (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-199 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1012 (-782 (-294 *5)))) + (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 + (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-200 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1012 (-782 (-294 *6)))) + (-5 *5 (-1073)) + (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 + (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-200 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1012 (-782 (-385 (-886 *5))))) (-5 *3 (-385 (-886 *5))) + (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 + (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-200 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1012 (-782 (-385 (-886 *6))))) (-5 *5 (-1073)) + (-5 *3 (-385 (-886 *6))) + (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 + (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-200 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) + (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3)) + (-4 *3 (-13 (-1112) (-892) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) - (-4 *4 (-1147 *3)))) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) + (-5 *5 (-357)) (-5 *6 (-988)) (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) + (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) + (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) + (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) + (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) + (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) + (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) + (-5 *5 (-357)) (-5 *6 (-988)) (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1012 (-782 (-357)))) + (-5 *5 (-1073)) (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1012 (-782 (-357)))) + (-5 *5 (-1090)) (-5 *2 (-965)) (-5 *1 (-526)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) + (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-138)) + (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) + (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) - (-4 *3 (-1147 *2)))) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-451 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-341)) (-4 *2 (-833 *3)) (-5 *1 (-542 *2)) - (-5 *3 (-1089)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-796)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 *4)) (-5 *3 (-591 (-712))) (-4 *1 (-833 *4)) - (-4 *4 (-1018)))) + (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-976)) (-4 *2 (-789)) + (-4 *3 (-37 (-385 (-525)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1090)) (-5 *1 (-886 *3)) (-4 *3 (-37 (-385 (-525)))) + (-4 *3 (-976)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-833 *2)) (-4 *2 (-1018)))) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-4 *2 (-789)) + (-5 *1 (-1043 *3 *2 *4)) (-4 *4 (-883 *3 (-497 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) + (-5 *1 (-1075 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *1 (-833 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-833 *2)) (-4 *2 (-1018)))) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1080 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1086 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *1 (-1121 *3)) (-4 *3 (-37 (-385 (-525)))) + (-4 *3 (-976)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) + (-3215 + (-12 (-5 *2 (-1090)) (-4 *1 (-1132 *3)) (-4 *3 (-976)) + (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112)) + (-4 *3 (-37 (-385 (-525)))))) + (-12 (-5 *2 (-1090)) (-4 *1 (-1132 *3)) (-4 *3 (-976)) + (-12 (|has| *3 (-15 -3122 ((-592 *2) *3))) + (|has| *3 (-15 -2313 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1132 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1135 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-975)))) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1156 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3))) + (-3215 + (-12 (-5 *2 (-1090)) (-4 *1 (-1153 *3)) (-4 *3 (-976)) + (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112)) + (-4 *3 (-37 (-385 (-525)))))) + (-12 (-5 *2 (-1090)) (-4 *1 (-1153 *3)) (-4 *3 (-976)) + (-12 (|has| *3 (-15 -3122 ((-592 *2) *3))) + (|has| *3 (-15 -2313 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1153 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1167 *4)) (-14 *4 (-1089)) (-5 *1 (-1163 *3 *4 *5)) - (-4 *3 (-975)) (-14 *5 *3)))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1011 (-885 (-525)))) (-5 *3 (-885 (-525))) - (-5 *1 (-308)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1011 (-885 (-525)))) (-5 *1 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-385 (-885 *5)) (-1079 (-1089) (-885 *5)))) - (-4 *5 (-429)) (-5 *2 (-591 (-631 (-385 (-885 *5))))) - (-5 *1 (-271 *5)) (-5 *4 (-631 (-385 (-885 *5))))))) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3215 + (-12 (-5 *2 (-1090)) (-4 *1 (-1163 *3)) (-4 *3 (-976)) + (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112)) + (-4 *3 (-37 (-385 (-525)))))) + (-12 (-5 *2 (-1090)) (-4 *1 (-1163 *3)) (-4 *3 (-976)) + (-12 (|has| *3 (-15 -3122 ((-592 *2) *3))) + (|has| *3 (-15 -2313 (*3 *3 *2))) (-4 *3 (-37 (-385 (-525)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-592 (-565 *6))) (-5 *4 (-1090)) (-5 *2 (-565 *6)) + (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))) (((*1 *2 *3) - (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3)) - (-4 *3 (-1147 *4))))) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) + (-4 *4 (-13 (-789) (-517)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-517)) - (-4 *7 (-882 *3 *5 *6)) - (-5 *2 (-2 (|:| -3987 (-712)) (|:| -2976 *8) (|:| |radicand| *8))) - (-5 *1 (-886 *5 *6 *3 *7 *8)) (-5 *4 (-712)) + (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517)) + (-4 *7 (-883 *3 *5 *6)) + (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *8) (|:| |radicand| *8))) + (-5 *1 (-887 *5 *6 *3 *7 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) - (-10 -8 (-15 -1384 (*7 $)) (-15 -1396 (*7 $)) (-15 -2686 ($ *7)))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) - (-4 *3 (-13 (-341) (-1111) (-932)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108))))) -(((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-335 *3)) (-4 *3 (-327))))) -(((*1 *1 *1 *1) (-4 *1 (-899)))) -(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-205) (-205) (-205))) - (-5 *4 (-1 (-205) (-205) (-205) (-205))) - (-5 *2 (-1 (-876 (-205)) (-205) (-205))) (-5 *1 (-638))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) (-4 *5 (-517)) - (-5 *2 - (-2 (|:| |minor| (-591 (-854))) (|:| -2203 *3) - (|:| |minors| (-591 (-591 (-854)))) (|:| |ops| (-591 *3)))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-854)) (-4 *3 (-601 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1147 *4)) (-5 *1 (-748 *4 *2 *3 *5)) - (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *3 (-601 *2)) - (-4 *5 (-601 (-385 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1147 *4)) (-5 *1 (-748 *4 *2 *5 *3)) - (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *5 (-601 *2)) - (-4 *3 (-601 (-385 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-525)) (-5 *2 (-591 (-2 (|:| -2542 *3) (|:| -2743 *4)))) - (-5 *1 (-637 *3)) (-4 *3 (-1147 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-712)) (-5 *3 (-876 *4)) (-4 *1 (-1050 *4)) - (-4 *4 (-975)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-712)) (-5 *4 (-876 (-205))) (-5 *2 (-1176)) - (-5 *1 (-1173))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-5 *2 (-525))))) -(((*1 *2 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) - (-14 *4 *2) (-4 *5 (-160)))) - ((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-854)) (-5 *1 (-153 *3 *4)) - (-4 *3 (-154 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-854)))) - ((*1 *2) - (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) - (-5 *2 (-854)))) - ((*1 *2 *3) - (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) - (-5 *2 (-712)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-341)) - (-5 *2 (-712)) (-5 *1 (-612 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4251)))) - (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-5 *2 (-712)) - (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-712)))) - ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) - (-4 *6 (-351 *4)) (-5 *2 (-712)) (-5 *1 (-630 *4 *5 *6 *3)) - (-4 *3 (-629 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) - (-5 *2 (-712))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-1171 *3))))) + (-10 -8 (-15 -1936 (*7 $)) (-15 -1945 (*7 $)) (-15 -4044 ($ *7)))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) (((*1 *1 *2) - (-12 (-5 *2 (-854)) (-4 *1 (-218 *3 *4)) (-4 *4 (-975)) - (-4 *4 (-1125)))) - ((*1 *1 *2) - (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) - (-4 *5 (-218 (-2028 *3) (-712))) - (-14 *6 - (-1 (-108) (-2 (|:| -3229 *2) (|:| -3987 *5)) - (-2 (|:| -3229 *2) (|:| -3987 *5)))) - (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-788)) - (-4 *7 (-882 *4 *5 (-798 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122))))) -(((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) -(((*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1138 *3)) (-4 *3 (-1125))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) + (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) + (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-1183 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) + (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1183 *5 *6 *7 *8))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-573 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3356 *4) (|:| |sol?| (-108))) + (-525) *4)) + (-4 *4 (-341)) (-4 *5 (-1148 *4)) (-5 *1 (-535 *4 *5))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))) +(((*1 *1 *1) (-4 *1 (-578))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933) (-1112)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5)) + (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-5 *1 (-858 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1148 (-525))) (-5 *1 (-461 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) (((*1 *2 *1) - (-12 (-5 *2 (-1020 (-1020 *3))) (-5 *1 (-837 *3)) (-4 *3 (-1018))))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-1028)) (-5 *3 (-525))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1125)) (-5 *2 (-108))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1096))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-525)) - (-5 *6 - (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357)))) - (-5 *7 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) - (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) - (-5 *1 (-729)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-525)) - (-5 *6 - (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -3289 (-357)))) - (-5 *7 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) - (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) - (-5 *1 (-729))))) + (-12 (-4 *3 (-1019)) + (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) + (-5 *2 (-592 (-1090))) (-5 *1 (-998 *3 *4 *5)) + (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3))))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138))) + (-5 *1 (-377 *3 *4))))) +(((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *2 (-965)) + (-5 *1 (-691))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))) + (-4 *3 (-13 (-1019) (-33)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-396 (-1085 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1085 *1)) - (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-788)))) - ((*1 *2 *3) - (-12 (-4 *1 (-842)) (-5 *2 (-396 (-1085 *1))) (-5 *3 (-1085 *1))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126)) - (-4 *2 (-1018)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1018)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1018)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *2 (-1018)) (-5 *1 (-594 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-760 *2)) (-4 *2 (-788))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) - (-5 *2 (-964)) (-5 *1 (-691)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) - (-5 *8 (-366)) (-5 *2 (-964)) (-5 *1 (-691))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-564 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089))) (-5 *5 (-1085 *2)) - (-4 *2 (-13 (-408 *6) (-27) (-1111))) - (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1018)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-564 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089))) - (-5 *5 (-385 (-1085 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1111))) - (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1018))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-115 *2)) (-4 *2 (-1125))))) + (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1123))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-5 *2 (-108)) - (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1111) (-408 (-157 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-108)) (-5 *1 (-1115 *4 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-631 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-160)) (-4 *2 (-1147 *4)) (-5 *1 (-164 *4 *2 *3)) - (-4 *3 (-666 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-385 (-885 *5)))) (-5 *4 (-1089)) - (-5 *2 (-885 *5)) (-5 *1 (-271 *5)) (-4 *5 (-429)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 (-385 (-885 *4)))) (-5 *2 (-885 *4)) - (-5 *1 (-271 *4)) (-4 *4 (-429)))) - ((*1 *2 *1) - (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1147 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 (-157 (-385 (-525))))) - (-5 *2 (-885 (-157 (-385 (-525))))) (-5 *1 (-706 *4)) - (-4 *4 (-13 (-341) (-786))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-157 (-385 (-525))))) (-5 *4 (-1089)) - (-5 *2 (-885 (-157 (-385 (-525))))) (-5 *1 (-706 *5)) - (-4 *5 (-13 (-341) (-786))))) - ((*1 *2 *3) - (-12 (-5 *3 (-631 (-385 (-525)))) (-5 *2 (-885 (-385 (-525)))) - (-5 *1 (-720 *4)) (-4 *4 (-13 (-341) (-786))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-385 (-525)))) (-5 *4 (-1089)) - (-5 *2 (-885 (-385 (-525)))) (-5 *1 (-720 *5)) - (-4 *5 (-13 (-341) (-786)))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-369))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236))))) -(((*1 *2 *3 *1) (-12 - (-5 *2 - (-2 (|:| |cycle?| (-108)) (|:| -3023 (-712)) (|:| |period| (-712)))) - (-5 *1 (-1070 *4)) (-4 *4 (-1125)) (-5 *3 (-712))))) -(((*1 *2 *3) - (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *1 (-542 *2)) (-4 *2 (-966 *3)) - (-4 *2 (-341)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) + (-5 *3 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *2 (-525)) (-5 *1 (-186))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1019)) (-5 *2 (-823 *3 *4)) (-5 *1 (-819 *3 *4 *5)) + (-4 *3 (-1019)) (-4 *5 (-612 *4))))) +(((*1 *1) (-5 *1 (-132)))) +(((*1 *1 *2) + (-12 (-5 *2 (-632 *5)) (-4 *5 (-976)) (-5 *1 (-980 *3 *4 *5)) + (-14 *3 (-713)) (-14 *4 (-713))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-47)))) (-5 *1 (-47)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-565 (-47))) (-5 *1 (-47)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-578 *4 *2)) - (-4 *2 (-13 (-408 *4) (-932) (-1111))))) + (-12 (-5 *2 (-1086 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1011 *2)) (-4 *2 (-13 (-408 *4) (-932) (-1111))) - (-4 *4 (-13 (-788) (-517))) (-5 *1 (-578 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-891)) (-5 *2 (-1089)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 *1)) (-4 *1 (-891))))) -(((*1 *2 *1) - (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-908 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1107))))) -(((*1 *2 *3) - (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1111))) - (-5 *1 (-540 *4 *2)) - (-4 *4 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-542 (-385 (-885 *4)))) - (-4 *4 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) - (-5 *2 (-294 *4)) (-5 *1 (-545 *4))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-60 *3)) (-14 *3 (-1089)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-67 *3)) (-14 *3 (-1089)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-70 *3)) (-14 *3 (-1089)))) - ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1176)))) - ((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1176)) (-5 *1 (-375)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-796)) (-5 *2 (-1176)) (-5 *1 (-1052)))) - ((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-1052)))) + (-12 (-5 *2 (-1086 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47)))) + ((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-796))) (-5 *2 (-1176)) (-5 *1 (-1052))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1070 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-591 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205))))) - (-5 *1 (-520)))) - ((*1 *2 *1) - (-12 (-4 *1 (-562 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-5 *2 (-591 *3)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-591 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205))))) - (-5 *1 (-744))))) -(((*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-966 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018))))) -(((*1 *2 *1) - (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) - ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-738 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) + (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) + (-4 *3 (-1148 (-157 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-855)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) + ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-774 *3)) (-4 *3 (-510)) (-4 *3 (-1018)))) + (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160)))) ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-781 *3)) (-4 *3 (-510)) (-4 *3 (-1018)))) + (-12 (-4 *4 (-1148 *2)) (-4 *2 (-924 *3)) (-5 *1 (-391 *3 *2 *4 *5)) + (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-967 *2))))) ((*1 *2 *1) - (-12 (-4 *1 (-927 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-938 *3)) (-4 *3 (-966 (-385 (-525))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *2) - (-12 (-5 *2 (-591 (-885 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) - (-14 *4 (-591 (-1089))))) - ((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-429)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-427 *3 *4 *5 *6)))) + (-12 (-4 *4 (-1148 *2)) (-4 *2 (-924 *3)) + (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4)) + (-14 *6 (-1172 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-855)) (-4 *5 (-976)) + (-4 *2 (-13 (-382) (-967 *5) (-341) (-1112) (-263))) + (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1148 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-468)))) (-5 *1 (-468)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-565 (-468))) (-5 *1 (-468)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-591 *7)) (-5 *3 (-1072)) (-4 *7 (-882 *4 *5 *6)) - (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *1 (-427 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-591 *7)) (-5 *3 (-1072)) (-4 *7 (-882 *4 *5 *6)) - (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *1 (-427 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-341)) (-4 *3 (-734)) (-4 *4 (-788)) - (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-591 (-721 *3 (-798 *4)))) (-4 *3 (-429)) - (-14 *4 (-591 (-1089))) (-5 *1 (-576 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-525)) (-5 *1 (-637 *2)) (-4 *2 (-1147 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-905))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-135))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-110)) (-5 *4 (-591 *2)) (-5 *1 (-109 *2)) - (-4 *2 (-1018)))) + (-12 (-5 *2 (-1086 (-468))) (-5 *3 (-592 (-565 (-468)))) + (-5 *1 (-468)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-591 *4))) (-4 *4 (-1018)) - (-5 *1 (-109 *4)))) + (-12 (-5 *2 (-1086 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1018)) - (-5 *1 (-109 *4)))) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-855)) (-4 *4 (-327)) + (-5 *1 (-495 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-591 *4))) - (-5 *1 (-109 *4)) (-4 *4 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-593 *3)) (-4 *3 (-975)) - (-5 *1 (-656 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-775 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 *6)) (-4 *5 (-1018)) - (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-588 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 *2)) (-4 *5 (-1018)) - (-4 *2 (-1125)) (-5 *1 (-588 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 *6)) (-5 *4 (-591 *5)) (-4 *6 (-1018)) - (-4 *5 (-1125)) (-5 *2 (-1 *5 *6)) (-5 *1 (-588 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 *2)) (-4 *5 (-1018)) - (-4 *2 (-1125)) (-5 *1 (-588 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-591 *5)) (-5 *4 (-591 *6)) - (-4 *5 (-1018)) (-4 *6 (-1125)) (-5 *1 (-588 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-591 *5)) (-5 *4 (-591 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1018)) (-4 *2 (-1125)) (-5 *1 (-588 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-135)) (-5 *2 (-712))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-591 *2))) (-5 *4 (-591 *5)) - (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1162 *5)) - (-5 *1 (-1164 *5 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-369))))) -(((*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-146))))) + (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1148 *4)) + (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1148 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) + ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) + ((*1 *1 *1) (-4 *1 (-985)))) (((*1 *2 *3) - (-12 (-5 *2 (-1085 (-525))) (-5 *1 (-875)) (-5 *3 (-525))))) + (-12 (-4 *4 (-37 (-385 (-525)))) + (-5 *2 (-2 (|:| -3886 (-1071 *4)) (|:| -3901 (-1071 *4)))) + (-5 *1 (-1077 *4)) (-5 *3 (-1071 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-341)) (-4 *3 (-976)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3258 *1))) + (-4 *1 (-791 *3))))) +(((*1 *1) (-5 *1 (-108)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-976)) (-5 *1 (-550 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1132 *3)) (-4 *3 (-976)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1163 *3)) (-4 *3 (-976))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-965)) + (-5 *1 (-699))))) +(((*1 *2) + (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) + (-4 *3 (-307 *4)))) + ((*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-713))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-110)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1073)) (-4 *4 (-789)) (-5 *1 (-863 *4 *2)) + (-4 *2 (-408 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1090)) (-5 *4 (-1073)) (-5 *2 (-294 (-525))) + (-5 *1 (-864))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) + (-5 *1 (-691))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-591 (-564 *4))) (-4 *4 (-408 *3)) (-4 *3 (-788)) + (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789)) (-5 *1 (-534 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-822 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *9)) (-4 *8 (-989 *5 *6 *7)) - (-4 *9 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) - (-4 *7 (-788)) (-5 *2 (-712)) (-5 *1 (-992 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *9)) (-4 *8 (-989 *5 *6 *7)) - (-4 *9 (-1027 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) - (-4 *7 (-788)) (-5 *2 (-712)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) - (-5 *2 (-2 (|:| |num| (-1171 *4)) (|:| |den| *4)))))) -(((*1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-770))))) -(((*1 *1) (-5 *1 (-108)))) -(((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-591 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-395 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-876 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5)) + (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))) +(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) - (-5 *1 (-1040 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) - (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) - (-5 *1 (-729))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 *4)) (-5 *1 (-1055 *3 *4)) - (-4 *3 (-13 (-1018) (-33))) (-4 *4 (-13 (-1018) (-33)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-1089))))) -(((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1176)) (-5 *1 (-369)))) - ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-369))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-429)))) + (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) + (|:| |success| (-108)))) + (-5 *1 (-731)) (-5 *5 (-525))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-700))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-694))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-861))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *2 (-965)) (-5 *1 (-695))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *2 (-965)) + (-5 *1 (-691))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-275)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-290)) (-5 *1 (-275)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-275)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-592 (-1073))) (-5 *3 (-1073)) (-5 *2 (-290)) + (-5 *1 (-275))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) ((*1 *1 *1 *1) (-4 *1 (-429))) ((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1147 (-525))))) + (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1148 (-525))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-525)) (-5 *1 (-637 *2)) (-4 *2 (-1147 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-712))) + (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-713))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-734)) (-4 *4 (-788)) (-4 *5 (-286)) - (-5 *1 (-849 *3 *4 *5 *2)) (-4 *2 (-882 *5 *3 *4)))) + (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) + (-5 *1 (-850 *3 *4 *5 *2)) (-4 *2 (-883 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-882 *6 *4 *5)) - (-5 *1 (-849 *4 *5 *6 *2)) (-4 *4 (-734)) (-4 *5 (-788)) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *6 *4 *5)) + (-5 *1 (-850 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1085 *6)) (-4 *6 (-882 *5 *3 *4)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *5 (-286)) (-5 *1 (-849 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-1085 *7))) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *6 (-286)) (-5 *2 (-1085 *7)) (-5 *1 (-849 *4 *5 *6 *7)) - (-4 *7 (-882 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-854))) + (-12 (-5 *3 (-592 (-1086 *7))) (-4 *4 (-735)) (-4 *5 (-789)) + (-4 *6 (-286)) (-5 *2 (-1086 *7)) (-5 *1 (-850 *4 *5 *6 *7)) + (-4 *7 (-883 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-855))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-901 *3 *2)) - (-4 *2 (-1147 *3)))) + (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) + (-4 *2 (-1148 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-429))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *2 *4 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018))))) -(((*1 *1 *1) (-5 *1 (-796)))) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-429))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1147 *5)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) - (-5 *1 (-751 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-385 *6))) (-4 *6 (-1147 *5)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 (-2 (|:| -3612 (-591 (-385 *6))) (|:| -2928 (-631 *5)))) - (-5 *1 (-751 *5 *6)) (-5 *4 (-591 (-385 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1147 *5)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) - (-5 *1 (-751 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-385 *6))) (-4 *6 (-1147 *5)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 (-2 (|:| -3612 (-591 (-385 *6))) (|:| -2928 (-631 *5)))) - (-5 *1 (-751 *5 *6)) (-5 *4 (-591 (-385 *6)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *2 (-964)) - (-5 *1 (-690))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1085 (-385 (-525)))) (-5 *1 (-875)) (-5 *3 (-525))))) -(((*1 *2 *1) (-12 (-4 *1 (-966 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1) (|partial| -4 *1 (-1065)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-905))))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) (((*1 *1 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-341)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-169))))) -(((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 (-631 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-885 (-525)))) (-5 *1 (-415)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-631 (-205))) (-5 *2 (-1022)) - (-5 *1 (-701)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-631 (-525))) (-5 *2 (-1022)) - (-5 *1 (-701))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-591 - (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1085 *3)) - (|:| |logand| (-1085 *3))))) - (-5 *1 (-542 *3)) (-4 *3 (-341))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *3)) (-4 *3 (-994 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-134))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-147 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) + (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -2840 *4)))) + (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-882 *7 *5 *6)) - (-5 *1 (-684 *5 *6 *7 *2)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-286))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-1147 *4)) (-5 *1 (-504 *4 *2 *5 *6)) - (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-712)))))) -(((*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1018)) (-4 *2 (-346))))) -(((*1 *2 *3) - (-12 (-5 *3 (-631 *2)) (-4 *4 (-1147 *2)) - (-4 *2 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) - (-4 *5 (-218 *3 *2)) (-4 *2 (-975))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) - ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) - ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-859))))) -(((*1 *1 *2) - (-12 (-5 *2 (-631 *4)) (-4 *4 (-975)) (-5 *1 (-1056 *3 *4)) - (-14 *3 (-712))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-2 (|:| -1265 (-1089)) (|:| -1568 (-415))))) - (-5 *1 (-1093))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-622 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018))))) -(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-535 *5 *3))))) +(((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) (-5 *2 (-108)) - (-5 *1 (-335 *4))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-591 (-1085 *11))) (-5 *3 (-1085 *11)) - (-5 *4 (-591 *10)) (-5 *5 (-591 *8)) (-5 *6 (-591 (-712))) - (-5 *7 (-1171 (-591 (-1085 *8)))) (-4 *10 (-788)) - (-4 *8 (-286)) (-4 *11 (-882 *8 *9 *10)) (-4 *9 (-734)) - (-5 *1 (-649 *9 *10 *8 *11))))) -(((*1 *2 *3) (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-357)))) - ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-357))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-1072)) (-5 *5 (-631 (-205))) - (-5 *2 (-964)) (-5 *1 (-689))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *8 (-989 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-591 *8)) (|:| |towers| (-591 (-956 *5 *6 *7 *8))))) - (-5 *1 (-956 *5 *6 *7 *8)) (-5 *3 (-591 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *8 (-989 *5 *6 *7)) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1148 *2)) + (-4 *2 (-160)))) + ((*1 *2) + (-12 (-4 *4 (-1148 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4)) + (-4 *3 (-387 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160)))) + ((*1 *2) + (-12 (-4 *3 (-1148 *2)) (-5 *2 (-525)) (-5 *1 (-710 *3 *4)) + (-4 *4 (-387 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)) (-4 *3 (-160)))) + ((*1 *2 *3) + (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-160))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) + ((*1 *1 *1) (|partial| -4 *1 (-665)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-990 *4 *5 *6)) (-4 *4 (-517)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) + (-4 *2 (-13 (-789) (-21)))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-592 *7) *7 (-1086 *7))) (-5 *5 (-1 (-396 *7) *7)) + (-4 *7 (-1148 *6)) (-4 *6 (-13 (-341) (-138) (-967 (-385 (-525))))) + (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -3941 *3)))) + (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7)) + (-4 *8 (-602 (-385 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 - (-2 (|:| |val| (-591 *8)) - (|:| |towers| (-591 (-1060 *5 *6 *7 *8))))) - (-5 *1 (-1060 *5 *6 *7 *8)) (-5 *3 (-591 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-774 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-781 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-591 - (-2 (|:| |eqzro| (-591 *8)) (|:| |neqzro| (-591 *8)) - (|:| |wcond| (-591 (-885 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *5)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *5)))))))))) - (-5 *4 (-1072)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-882 *5 *7 *6)) - (-4 *6 (-13 (-788) (-566 (-1089)))) (-4 *7 (-734)) (-5 *2 (-525)) - (-5 *1 (-857 *5 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111)))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-1028)) (-5 *3 (-525))))) + (-592 (-2 (|:| |frac| (-385 *6)) (|:| -3941 (-600 *6 (-385 *6)))))) + (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6)))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1148 *4)) + (-5 *2 (-1172 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281))))) (((*1 *2 *2 *3) - (-12 (-5 *1 (-622 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-544 *4)) - (-4 *4 (-327))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) + (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1090)) + (-4 *2 (-13 (-27) (-1112) (-408 *5))) + (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-256 *5 *2))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-445)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173))))) (((*1 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) - (-5 *2 (-2 (|:| -1269 (-591 *6)) (|:| -1472 (-591 *6))))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-429)))) - ((*1 *1 *1 *1) (-4 *1 (-429)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-788))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-885 (-385 (-525)))) (-5 *4 (-1089)) - (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-591 (-205))) (-5 *1 (-279))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-854)) (-5 *1 (-419 *2)) - (-4 *2 (-1147 (-525))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-854)) (-5 *4 (-712)) (-5 *1 (-419 *2)) - (-4 *2 (-1147 (-525))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-854)) (-5 *4 (-591 (-712))) (-5 *1 (-419 *2)) - (-4 *2 (-1147 (-525))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-854)) (-5 *4 (-591 (-712))) (-5 *5 (-712)) - (-5 *1 (-419 *2)) (-4 *2 (-1147 (-525))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-854)) (-5 *4 (-591 (-712))) (-5 *5 (-712)) - (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1147 (-525))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-396 *2)) (-4 *2 (-1147 *5)) - (-5 *1 (-421 *5 *2)) (-4 *5 (-975))))) -(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *3 (-429)) (-4 *4 (-788)) (-4 *5 (-734)) (-5 *2 (-108)) - (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-882 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) - (-4 *4 (-13 (-1018) (-33)))))) -(((*1 *1) (-5 *1 (-987)))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) - ((*1 *1 *1) (-5 *1 (-796)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-712))) (-5 *3 (-159)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-854)) (-4 *5 (-975))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-273 (-774 *3))) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-774 *3)) (-5 *1 (-584 *5 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-273 (-774 (-885 *5)))) (-4 *5 (-429)) - (-5 *2 (-774 (-385 (-885 *5)))) (-5 *1 (-585 *5)) - (-5 *3 (-385 (-885 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-273 (-385 (-885 *5)))) (-5 *3 (-385 (-885 *5))) - (-4 *5 (-429)) (-5 *2 (-774 *3)) (-5 *1 (-585 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-135))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) + (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159))))) +(((*1 *2 *1) + (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-789)) + (-4 *5 (-735)) (-4 *2 (-245 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-976)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1148 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-510))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1089)) (-5 *2 (-591 (-897))) (-5 *1 (-270))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-341) (-786))) (-5 *1 (-167 *2 *3)) - (-4 *3 (-1147 (-157 *2)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-593 *3)) (-4 *3 (-975)) - (-5 *1 (-656 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-775 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-1061 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-940 *3)) (-4 *3 (-1125)) (-5 *2 (-591 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-854)) (-5 *1 (-961 *2)) - (-4 *2 (-13 (-1018) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-415)) (-5 *1 (-1093))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) + (-12 (-4 *1 (-1120 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735)) + (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-838 *4)) + (-4 *4 (-1019)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-838 *3)) (-4 *3 (-1019))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) + (-5 *2 (-965)) (-5 *1 (-690))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 - (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) - (|:| |success| (-108)))) - (-5 *1 (-730)) (-5 *5 (-525))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) + (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-596 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-807))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 (-1171 (-525)))) (-5 *3 (-854)) (-5 *1 (-443))))) + (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1126))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *5 (-1129)) (-4 *6 (-1147 *5)) - (-4 *7 (-1147 (-385 *6))) (-5 *2 (-591 (-885 *5))) - (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1129)) - (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) (-4 *4 (-341)) - (-5 *2 (-591 (-885 *4)))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) - ((*1 *1) - (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) - (-4 *4 (-160)))) - ((*1 *1) (-4 *1 (-668))) ((*1 *1) (-5 *1 (-1089)))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-591 (-1089))) (-4 *2 (-160)) - (-4 *3 (-218 (-2028 *4) (-712))) - (-14 *6 - (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *3)) - (-2 (|:| -3229 *5) (|:| -3987 *3)))) - (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-788)) - (-4 *7 (-882 *2 *3 (-798 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1070 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2))))) + (-12 (-5 *3 (-861)) + (-5 *2 + (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) + (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) + (-5 *1 (-144)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-861)) (-5 *4 (-385 (-525))) + (-5 *2 + (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) + (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) + (-5 *1 (-144))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-51)) (-5 *1 (-826 *4)) + (-4 *4 (-1019))))) (((*1 *2 *2) - (-12 (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) - (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1125))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-1018)) (-5 *1 (-838 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) + (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) + ((*1 *1 *1) (-5 *1 (-357))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) + (-5 *2 (-965)) (-5 *1 (-692)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) + (-5 *8 (-366)) (-5 *2 (-965)) (-5 *1 (-692))))) +(((*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382)))) + ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) + ((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-681))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) + ((*1 *1 *1 *1) (-4 *1 (-429)))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-591 *4)) (-4 *4 (-341)) (-5 *2 (-1171 *4)) - (-5 *1 (-755 *4 *3)) (-4 *3 (-601 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) - (-5 *2 (-2 (|:| |k| (-760 *3)) (|:| |c| *4)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) - (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-1129)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) - (-5 *2 (-1171 *1)) (-4 *1 (-320 *3 *4 *5))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1126)) + (-4 *5 (-1126)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713)) + (-4 *7 (-1126)) (-4 *5 (-1126)) (-5 *2 (-220 *6 *5)) + (-5 *1 (-219 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1126)) (-4 *5 (-1126)) + (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1019)) (-4 *5 (-1019)) + (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1126)) + (-4 *5 (-1126)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-891 *6)) (-4 *6 (-1126)) + (-4 *5 (-1126)) (-5 *2 (-891 *5)) (-5 *1 (-890 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1071 *6)) (-4 *6 (-1126)) + (-4 *3 (-1126)) (-5 *2 (-1071 *3)) (-5 *1 (-1069 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1172 *6)) (-4 *6 (-1126)) + (-4 *5 (-1126)) (-5 *2 (-1172 *5)) (-5 *1 (-1171 *6 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-37 (-385 (-525)))) - (-5 *2 (-2 (|:| -2360 (-1070 *4)) (|:| -2370 (-1070 *4)))) - (-5 *1 (-1076 *4)) (-5 *3 (-1070 *4))))) + (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) + (-4 *3 (-13 (-341) (-1112) (-933)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-1177)) + (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -3529 (-592 (-797))) (|:| -3207 (-592 (-797))) + (|:| |presup| (-592 (-797))) (|:| -3853 (-592 (-797))) + (|:| |args| (-592 (-797))))) + (-5 *1 (-1090)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-797)))) (-5 *1 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) + (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6)) + (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *3)) - (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-989 *4 *5 *6)) (-4 *4 (-517)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *1 (-908 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-591 *7) (-591 *7))) (-5 *2 (-591 *7)) - (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *1 (-908 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) - ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160))))) + (|partial| -12 (-4 *3 (-1126)) (-5 *1 (-168 *3 *2)) + (-4 *2 (-619 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) + (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-395 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-976)) + (-4 *7 (-976)) (-4 *2 (-1148 *5)) (-5 *1 (-474 *5 *2 *6 *7)) + (-4 *6 (-1148 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-976)) (-4 *7 (-976)) + (-4 *4 (-1148 *5)) (-5 *2 (-1086 *7)) (-5 *1 (-474 *5 *4 *6 *7)) + (-4 *6 (-1148 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) + (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) + (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) + (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) + (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-592 *3)) (-5 *1 (-894 *3)) (-4 *3 (-510))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-976)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1148 *3))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-157 (-205))) (-5 *6 (-1073)) + (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-765)) (-5 *1 (-764))))) +(((*1 *2) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-782 *3)) (-4 *3 (-1019))))) +(((*1 *1) (-5 *1 (-270)))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-422 *3)) (-4 *3 (-976))))) +(((*1 *2 *1) + (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) + (-5 *2 (-1172 *6)) (-5 *1 (-314 *3 *4 *5 *6)) + (-4 *6 (-320 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-592 (-592 (-877 (-205))))))) + ((*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-592 (-592 (-877 (-205)))))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) + (-5 *2 (-965)) (-5 *1 (-700))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) + (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-284))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *1)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1119 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108))))) + (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-517)) + (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-712 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-632 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2734 (-592 *6))) + *7 *6)) + (-4 *6 (-341)) (-4 *7 (-602 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1172 *6) "failed")) + (|:| -2734 (-592 (-1172 *6))))) + (-5 *1 (-755 *6 *7)) (-5 *4 (-1172 *6))))) +(((*1 *2 *1) + (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) + (-4 *5 (-218 (-1696 *3) (-713))) + (-14 *6 + (-1 (-108) (-2 (|:| -3381 *2) (|:| -1737 *5)) + (-2 (|:| -3381 *2) (|:| -1737 *5)))) + (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-883 *4 *5 (-799 *3)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) - ((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-975)) - (-4 *3 (-517)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-517))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-1089))) (-5 *2 (-1176)) (-5 *1 (-1127)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-591 (-1089))) (-5 *2 (-1176)) (-5 *1 (-1127))))) -(((*1 *2 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-286))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-631 (-205))) (-5 *5 (-631 (-525))) (-5 *3 (-525)) - (-5 *2 (-964)) (-5 *1 (-698))))) -(((*1 *2) - (-12 (-4 *3 (-975)) (-5 *2 (-890 (-654 *3 *4))) (-5 *1 (-654 *3 *4)) - (-4 *4 (-1147 *3))))) + (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1090))) + (-4 *5 (-429)) + (-5 *2 + (-2 (|:| |gblist| (-592 (-227 *4 *5))) + (|:| |gvlist| (-592 (-525))))) + (-5 *1 (-580 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-592 (-294 (-205)))) (-5 *3 (-205)) (-5 *2 (-108)) + (-5 *1 (-192))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1139 (-525)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-591 (-591 *4))) (-5 *2 (-591 *4)) (-4 *4 (-286)) - (-5 *1 (-166 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 *8)) - (-5 *4 - (-591 - (-2 (|:| -3612 (-631 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-631 *7))))) - (-5 *5 (-712)) (-4 *8 (-1147 *7)) (-4 *7 (-1147 *6)) (-4 *6 (-327)) + (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2262 *3))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110))))) +(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341)) + (-4 *7 (-1148 *6)) + (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) + (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1086 *3)) + (-4 *3 (-13 (-408 *6) (-27) (-1112))) + (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) + (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1086 *3))) + (-4 *3 (-13 (-408 *6) (-27) (-1112))) + (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) + (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -3612 (-631 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-631 *7)))) - (-5 *1 (-471 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-631 (-205))) - (-5 *2 (-964)) (-5 *1 (-697))))) -(((*1 *2) - (-12 (-5 *2 (-1176)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1072)) (-5 *1 (-652))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4250)) (-4 *1 (-33)) (-5 *2 (-712)))) + (-592 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205))))) + (-5 *1 (-520)))) ((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-525)))) + (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-5 *2 (-592 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-784))))) -(((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) - ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-631 (-385 (-885 (-525))))) - (-5 *2 (-631 (-294 (-525)))) (-5 *1 (-960))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1018)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-712) (-712))) (-5 *1 (-364 *3)) (-4 *3 (-1018)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-594 *3 *4 *5)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-591 *3)) (-5 *6 (-1085 *3)) - (-4 *3 (-13 (-408 *7) (-27) (-1111))) - (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1018)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-591 *3)) - (-5 *6 (-385 (-1085 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1111))) - (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1018))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1018))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-174))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-591 (-1089))) (-4 *4 (-1018)) - (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) - (-5 *1 (-53 *4 *5 *2)) - (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4))))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-517)) (-5 *1 (-901 *4 *2)) - (-4 *2 (-1147 *4))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-853))))) -(((*1 *2 *2) - (-12 (-5 *2 (-591 (-2 (|:| |val| (-591 *6)) (|:| -3585 *7)))) - (-4 *6 (-989 *3 *4 *5)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-591 (-2 (|:| |val| (-591 *6)) (|:| -3585 *7)))) - (-4 *6 (-989 *3 *4 *5)) (-4 *7 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-1025 *3 *4 *5 *6 *7))))) + (-592 + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205))))) + (-5 *1 (-745))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-592 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-735)) (-4 *6 (-883 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789)) + (-5 *1 (-426 *4 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *3 (-1126)) (-5 *2 (-592 *1)) (-4 *1 (-941 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) + (-14 *3 (-855)) (-4 *4 (-976))))) +(((*1 *2 *1) + (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1126)) (-4 *2 (-1019)) + (-4 *2 (-789))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1788 *3) (|:| |coef1| (-723 *3)))) - (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-138)) - (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-908 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) - ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) - (-5 *2 (-1171 (-631 *4))))) - ((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-1171 (-631 *4))) (-5 *1 (-394 *3 *4)) - (-4 *3 (-395 *4)))) - ((*1 *2) - (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1171 (-631 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-1089))) (-4 *5 (-341)) - (-5 *2 (-1171 (-631 (-385 (-885 *5))))) (-5 *1 (-1006 *5)) - (-5 *4 (-631 (-385 (-885 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-1089))) (-4 *5 (-341)) - (-5 *2 (-1171 (-631 (-885 *5)))) (-5 *1 (-1006 *5)) - (-5 *4 (-631 (-885 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-631 *4))) (-4 *4 (-341)) - (-5 *2 (-1171 (-631 *4))) (-5 *1 (-1006 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) - (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-294 *5))) - (-5 *1 (-1045 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-385 (-885 *5)))) (-5 *4 (-591 (-1089))) - (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-591 (-294 *5)))) - (-5 *1 (-1045 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-854)) (|has| *1 (-6 -4241)) (-4 *1 (-382)))) - ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-854)))) - ((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-640)))) - ((*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-640))))) -(((*1 *1 *2) - (-12 (-5 *2 (-631 *5)) (-4 *5 (-975)) (-5 *1 (-979 *3 *4 *5)) - (-14 *3 (-712)) (-14 *4 (-712))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1089)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-591 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2428 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1111) (-27) (-408 *8))) - (-4 *8 (-13 (-429) (-788) (-138) (-966 *3) (-587 *3))) - (-5 *3 (-525)) (-5 *2 (-591 *4)) (-5 *1 (-944 *8 *4))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-591 *8)) (-5 *3 (-1 (-108) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) - (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-908 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) - (-5 *2 (-631 *4)))) - ((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-631 *4)) (-5 *1 (-394 *3 *4)) - (-4 *3 (-395 *4)))) - ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-631 *3))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-3 *3 (-591 *1))) - (-4 *1 (-994 *4 *5 *6 *3))))) + (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517)) + (-4 *3 (-976))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) + (-4 *2 (-1148 (-157 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) - (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-631 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-395 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-242)))) - ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242))))) -(((*1 *2 *1) - (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) + (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-108)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1120 *5 *6 *7 *3)) + (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-825 *4)) (-4 *4 (-1018)) (-4 *2 (-1018)) - (-5 *1 (-822 *4 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) - (-5 *2 (-591 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |k| (-826 *3)) (|:| |c| *4)))) - (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) - (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854)))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 (-616 *3))) (-5 *1 (-826 *3)) (-4 *3 (-788))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-898))) (-5 *1 (-270))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1148 *3)) (-4 *3 (-976)) + (-4 *3 (-517)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1073)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) + (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-695))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) + (-12 (-4 *3 (-567 (-826 *3))) (-4 *3 (-820 *3)) + (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-567 (-826 *3))) (-4 *2 (-820 *3)) + (-4 *2 (-13 (-408 *3) (-1112)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-631 (-525))) (-5 *1 (-1028))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-126)) - (-4 *3 (-733))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-854)) (-5 *1 (-727))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-788)) (-4 *5 (-842)) (-4 *6 (-734)) - (-4 *8 (-882 *5 *6 *7)) (-5 *2 (-396 (-1085 *8))) - (-5 *1 (-839 *5 *6 *7 *8)) (-5 *4 (-1085 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-842)) (-4 *5 (-1147 *4)) (-5 *2 (-396 (-1085 *5))) - (-5 *1 (-840 *4 *5)) (-5 *3 (-1085 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-205)) - (-5 *2 - (-2 (|:| |brans| (-591 (-591 (-876 *4)))) - (|:| |xValues| (-1013 *4)) (|:| |yValues| (-1013 *4)))) - (-5 *1 (-144)) (-5 *3 (-591 (-591 (-876 *4))))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-885 (-525))) (-5 *3 (-1089)) - (-5 *4 (-1013 (-385 (-525)))) (-5 *1 (-30))))) + (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242))))) +(((*1 *1 *1 *1) (-4 *1 (-510)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-385 *5)) (-4 *4 (-1129)) (-4 *5 (-1147 *4)) - (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1147 *3)))) + (-12 (-5 *3 (-385 *5)) (-4 *4 (-1130)) (-4 *5 (-1148 *4)) + (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1148 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1091 (-385 (-525)))) (-5 *2 (-385 (-525))) + (-12 (-5 *3 (-1092 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-631 (-294 (-205)))) (-5 *3 (-591 (-1089))) - (-5 *4 (-1171 (-294 (-205)))) (-5 *1 (-187)))) + (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1090))) + (-5 *4 (-1172 (-294 (-205)))) (-5 *1 (-187)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1018)) - (-4 *3 (-1125)) (-5 *1 (-273 *3)))) + (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1019)) + (-4 *3 (-1126)) (-5 *1 (-273 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-288 *2)) (-4 *2 (-1018)) (-4 *2 (-1125)) + (-12 (-4 *2 (-288 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)) (-5 *1 (-273 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-591 *1))) (-4 *1 (-281)))) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-110))) (-5 *3 (-591 (-1 *1 (-591 *1)))) + (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-110))) (-5 *3 (-591 (-1 *1 *1))) (-4 *1 (-281)))) + (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) + (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-591 *1))) (-4 *1 (-281)))) + (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-591 (-1 *1 (-591 *1)))) + (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-591 (-1 *1 *1))) (-4 *1 (-281)))) + (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1018)))) + (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1019)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1018)))) + (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1019)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1091 (-385 (-525)))) + (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1092 (-385 (-525)))) (-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 *4)) (-5 *3 (-591 *1)) (-4 *1 (-352 *4 *5)) - (-4 *4 (-788)) (-4 *5 (-160)))) + (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *1)) (-4 *1 (-352 *4 *5)) + (-4 *4 (-789)) (-4 *5 (-160)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-788)) (-4 *3 (-160)))) + (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-712)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-408 *5)) (-4 *5 (-788)) (-4 *5 (-975)))) + (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-712)) (-5 *4 (-1 *1 (-591 *1))) - (-4 *1 (-408 *5)) (-4 *5 (-788)) (-4 *5 (-975)))) + (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1))) + (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-591 (-712))) - (-5 *4 (-591 (-1 *1 (-591 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-788)) - (-4 *5 (-975)))) + (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-713))) + (-5 *4 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-789)) + (-4 *5 (-976)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-591 (-712))) - (-5 *4 (-591 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-788)) - (-4 *5 (-975)))) + (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-713))) + (-5 *4 (-592 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) + (-4 *5 (-976)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-591 (-110))) (-5 *3 (-591 *1)) (-5 *4 (-1089)) - (-4 *1 (-408 *5)) (-4 *5 (-788)) (-4 *5 (-566 (-501))))) + (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1090)) + (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-567 (-501))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-1089)) (-4 *1 (-408 *4)) (-4 *4 (-788)) - (-4 *4 (-566 (-501))))) + (-12 (-5 *2 (-110)) (-5 *3 (-1090)) (-4 *1 (-408 *4)) (-4 *4 (-789)) + (-4 *4 (-567 (-501))))) ((*1 *1 *1) - (-12 (-4 *1 (-408 *2)) (-4 *2 (-788)) (-4 *2 (-566 (-501))))) + (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-567 (-501))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-1089))) (-4 *1 (-408 *3)) (-4 *3 (-788)) - (-4 *3 (-566 (-501))))) + (-12 (-5 *2 (-592 (-1090))) (-4 *1 (-408 *3)) (-4 *3 (-789)) + (-4 *3 (-567 (-501))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1089)) (-4 *1 (-408 *3)) (-4 *3 (-788)) - (-4 *3 (-566 (-501))))) + (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)) + (-4 *3 (-567 (-501))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1125)))) + (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1126)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 *4)) (-5 *3 (-591 *5)) (-4 *1 (-486 *4 *5)) - (-4 *4 (-1018)) (-4 *5 (-1125)))) + (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *5)) (-4 *1 (-486 *4 *5)) + (-4 *4 (-1019)) (-4 *5 (-1126)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-774 *3)) (-4 *3 (-341)) (-5 *1 (-660 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1018)))) + (-12 (-5 *2 (-775 *3)) (-4 *3 (-341)) (-5 *1 (-661 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-837 *2)) (-4 *2 (-1019)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-385 (-885 *4))) (-5 *3 (-1089)) (-4 *4 (-517)) - (-5 *1 (-971 *4)))) + (-12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-1090)) (-4 *4 (-517)) + (-5 *1 (-972 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-591 (-1089))) (-5 *4 (-591 (-385 (-885 *5)))) - (-5 *2 (-385 (-885 *5))) (-4 *5 (-517)) (-5 *1 (-971 *5)))) + (-12 (-5 *3 (-592 (-1090))) (-5 *4 (-592 (-385 (-886 *5)))) + (-5 *2 (-385 (-886 *5))) (-4 *5 (-517)) (-5 *1 (-972 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-273 (-385 (-885 *4)))) (-5 *2 (-385 (-885 *4))) - (-4 *4 (-517)) (-5 *1 (-971 *4)))) + (-12 (-5 *3 (-273 (-385 (-886 *4)))) (-5 *2 (-385 (-886 *4))) + (-4 *4 (-517)) (-5 *1 (-972 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-591 (-273 (-385 (-885 *4))))) (-5 *2 (-385 (-885 *4))) - (-4 *4 (-517)) (-5 *1 (-971 *4)))) + (-12 (-5 *3 (-592 (-273 (-385 (-886 *4))))) (-5 *2 (-385 (-886 *4))) + (-4 *4 (-517)) (-5 *1 (-972 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3)))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-712)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *6)) (-4 *1 (-882 *4 *5 *6)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-712)))) - ((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-712))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-591 *7)) (-5 *3 (-525)) (-4 *7 (-882 *4 *5 *6)) - (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *1 (-426 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018))))) -(((*1 *1) (-5 *1 (-415)))) -(((*1 *1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-242)))) - ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1074 *3)) - (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-975))))) -(((*1 *1 *1 *1) (-4 *1 (-703)))) -(((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-854)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-327)) (-5 *2 (-854)) - (-5 *1 (-495 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))) - (-5 *2 (-357)) (-5 *1 (-187))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 *1)) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-975)) (-5 *1 (-631 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *4)) (-4 *4 (-975)) (-4 *1 (-1039 *3 *4 *5 *6)) - (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1125)) (-14 *4 *2)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-591 (-227 *4 *5))) (-5 *2 (-227 *4 *5)) - (-14 *4 (-591 (-1089))) (-4 *5 (-429)) (-5 *1 (-579 *4 *5))))) + (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1071 *3))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-501))) (-5 *2 (-1089)) (-5 *1 (-501))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1176)) (-5 *1 (-1173))))) + (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1019)) (-4 *2 (-789)) + (-5 *1 (-109 *2))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1090)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-592 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3081 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1112) (-27) (-408 *8))) + (-4 *8 (-13 (-429) (-789) (-138) (-967 *3) (-588 *3))) + (-5 *3 (-525)) (-5 *2 (-592 *4)) (-5 *1 (-945 *8 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-788)) (-5 *1 (-681 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-854))) (-5 *1 (-1019 *3 *4)) (-14 *3 (-854)) - (-14 *4 (-854))))) -(((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) -(((*1 *2 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174)))) - ((*1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-1174))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-396 *4)) (-4 *4 (-517))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-1048 *4 *2)) - (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4250) (-6 -4251)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-788)) (-4 *3 (-1125)) (-5 *1 (-1048 *3 *2)) - (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4250) (-6 -4251))))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-1089)) (-5 *1 (-501)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-646 *3)) (-4 *3 (-566 (-501))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-646 *3)) (-4 *3 (-566 (-501))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1089)) (-5 *1 (-646 *3)) (-4 *3 (-566 (-501))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-591 (-1089))) (-5 *2 (-1089)) (-5 *1 (-646 *3)) - (-4 *3 (-566 (-501)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-953 *3)) - (-4 *3 (-13 (-786) (-341) (-951))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-786) (-341))) (-5 *1 (-985 *2 *3)) - (-4 *3 (-1147 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-991 *2 *3)) (-4 *2 (-13 (-786) (-341))) - (-4 *3 (-1147 *2))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-876 (-205))) (-5 *4 (-807)) (-5 *5 (-854)) - (-5 *2 (-1176)) (-5 *1 (-445)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-876 (-205))) (-5 *2 (-1176)) (-5 *1 (-445)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-591 (-876 (-205)))) (-5 *4 (-807)) (-5 *5 (-854)) - (-5 *2 (-1176)) (-5 *1 (-445))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-429)) (-4 *3 (-788)) (-4 *3 (-966 (-525))) - (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) - (-4 *2 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) - (-15 -1396 ((-1041 *3 (-564 $)) $)) - (-15 -2686 ($ (-1041 *3 (-564 $)))))))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *1 *1) (-5 *1 (-987)))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-591 (-876 (-205))))) - (-5 *2 (-591 (-1013 (-205)))) (-5 *1 (-861))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-764)) (-5 *1 (-763))))) + (-12 (-5 *2 (-713)) + (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) - (-4 *3 (-13 (-341) (-1111) (-932))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1129)) (-4 *5 (-1147 (-385 *2))) - (-4 *2 (-1147 *4)) (-5 *1 (-319 *3 *4 *2 *5)) - (-4 *3 (-320 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1129)) - (-4 *4 (-1147 (-385 *2))) (-4 *2 (-1147 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-591 (-108))) (-5 *5 (-631 (-205))) - (-5 *6 (-631 (-525))) (-5 *7 (-205)) (-5 *3 (-525)) (-5 *2 (-964)) - (-5 *1 (-696))))) -(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-986)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-986))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-975)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) -(((*1 *1) (-5 *1 (-764)))) -(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1018)) (-4 *5 (-1018)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))) -(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-876 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-876 *3))) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-876 *3))) (-4 *1 (-1050 *3)) (-4 *3 (-975))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 *4)) (-5 *3 (-525)) (-4 *4 (-327)) - (-5 *1 (-495 *4))))) -(((*1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1174))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-897))) (-5 *1 (-104))))) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5)) + (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-858 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-286) (-138))) + (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-108)) + (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-837 (-525))) (-5 *1 (-850)))) - ((*1 *2) (-12 (-5 *2 (-837 (-525))) (-5 *1 (-850))))) + (-12 (-4 *3 (-1148 (-385 (-525)))) + (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))) + (-5 *1 (-847 *3 *4)) (-4 *4 (-1148 (-385 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1148 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-847 *4 *3)) + (-4 *3 (-1148 (-385 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-525)) (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-975)) - (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-882 *2 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-3 (-108) (-591 *1))) - (-4 *1 (-994 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-876 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51)) - (-5 *1 (-935))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) + (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-4 *4 (-1148 *3)) + (-5 *2 + (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-632 *3)))) + (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-525)) (-4 *4 (-1148 *3)) + (-5 *2 + (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-632 *3)))) + (-5 *1 (-710 *4 *5)) (-4 *5 (-387 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-327)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 *3)) + (-5 *2 + (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-632 *3)))) + (-5 *1 (-917 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-327)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 *3)) + (-5 *2 + (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-632 *3)))) + (-5 *1 (-1181 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-429)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125))))) -(((*1 *1) - (-12 (-4 *1 (-382)) (-3389 (|has| *1 (-6 -4241))) - (-3389 (|has| *1 (-6 -4233))))) - ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1018)) (-4 *2 (-788)))) - ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *1) (-4 *1 (-788))) ((*1 *1) (-5 *1 (-1036)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) - (-4 *4 (-160)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *1 (-147 *4 *2)) - (-4 *2 (-408 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1011 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-788) (-517))) - (-5 *1 (-147 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1011 *1)) (-4 *1 (-149)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1089)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-160))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-975)) (-5 *1 (-94 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-94 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-94 *3))))) + (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *5 (-843)) (-5 *1 (-434 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-843))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-631 *5))) (-5 *4 (-525)) (-4 *5 (-341)) - (-4 *5 (-975)) (-5 *2 (-108)) (-5 *1 (-958 *5)))) + (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *6 (-1148 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) + (-5 *5 (-1 (-396 *7) *7)) + (-4 *6 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *7 (-1148 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *6 (-1148 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) + (-5 *5 (-1 (-396 *7) *7)) + (-4 *6 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *7 (-1148 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1148 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) + (-4 *6 (-1148 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1148 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) + (-4 *6 (-1148 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) + (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) + (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-855)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-631 *4))) (-4 *4 (-341)) (-4 *4 (-975)) - (-5 *2 (-108)) (-5 *1 (-958 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 (-885 (-525)))) (-5 *4 (-591 (-1089))) - (-5 *2 (-591 (-591 (-357)))) (-5 *1 (-952)) (-5 *5 (-357)))) + (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341))) + (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-4 *7 (-320 *4 *5 *6)) + (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-855))))) + ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) + ((*1 *2 *1) + (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) + (-4 *4 (-1148 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-976)) + (-4 *3 (-789)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-976)) (-4 *3 (-789)) + (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) ((*1 *2 *3) - (-12 (-5 *3 (-972 *4 *5)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) - (-14 *5 (-591 (-1089))) (-5 *2 (-591 (-591 (-953 (-385 *4))))) - (-5 *1 (-1195 *4 *5 *6)) (-14 *6 (-591 (-1089))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-591 (-953 (-385 *5))))) (-5 *1 (-1195 *5 *6 *7)) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-885 *4))) - (-4 *4 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-591 (-953 (-385 *4))))) (-5 *1 (-1195 *4 *5 *6)) - (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089)))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-907 *3 *4 *2 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)) (-4 *5 (-989 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-162))) (-5 *1 (-1005))))) -(((*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-701))))) -(((*1 *1) (-5 *1 (-520)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-1089))) (-5 *2 (-1176)) (-5 *1 (-1092)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1176)) - (-5 *1 (-1092)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-591 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1176)) - (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3) - (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-1147 *4)) - (-4 *5 (-1147 (-385 *3))) (-5 *2 (-108)))) + (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) + (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) + (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) + (-5 *2 (-713)) (-5 *1 (-845 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-694))))) + (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) + (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4))) + (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713)) + (-5 *1 (-846 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341)) + (-4 *7 (-1148 *6)) (-4 *4 (-1148 (-385 *7))) (-4 *8 (-320 *6 *7 *4)) + (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713)) + (-5 *1 (-949 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-4 *3 (-517)) (-5 *2 (-713)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) + ((*1 *2 *1) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734))))) +(((*1 *1) (-5 *1 (-415)))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205))) + (-5 *8 (-632 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) + (-5 *2 (-965)) (-5 *1 (-697))))) +(((*1 *2) + (-12 (-4 *3 (-976)) (-5 *2 (-891 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) + (-4 *4 (-1148 *3))))) +(((*1 *1) + (-12 (-4 *1 (-382)) (-2823 (|has| *1 (-6 -4245))) + (-2823 (|has| *1 (-6 -4237))))) + ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-789)))) + ((*1 *1 *1 *1) (-4 *1 (-789))) + ((*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789)))) + ((*1 *1) (-5 *1 (-1037)))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1073)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) + (-4 *4 (-990 *6 *7 *8)) (-5 *2 (-1177)) + (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-995 *6 *7 *8 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) (((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 (-525))))) - (-5 *1 (-339 *3)) (-4 *3 (-1018)))) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) + (-5 *2 (-592 (-592 (-877 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-592 (-592 (-877 *4)))) (-5 *3 (-108)) (-4 *4 (-976)) + (-4 *1 (-1051 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-592 (-877 *3)))) (-4 *3 (-976)) + (-4 *1 (-1051 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108)) + (-4 *1 (-1051 *4)) (-4 *4 (-976)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-592 (-592 (-877 *4)))) (-5 *3 (-108)) + (-4 *1 (-1051 *4)) (-4 *4 (-976)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159))) + (-5 *4 (-159)) (-4 *1 (-1051 *5)) (-4 *5 (-976)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-592 (-592 (-877 *5)))) (-5 *3 (-592 (-159))) + (-5 *4 (-159)) (-4 *1 (-1051 *5)) (-4 *5 (-976))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-855))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) + (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) ((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 (-712))))) - (-5 *1 (-364 *3)) (-4 *3 (-1018)))) + (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) + (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-699))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-1172 *5))) (-5 *4 (-525)) (-5 *2 (-1172 *5)) + (-5 *1 (-959 *5)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) + (-5 *1 (-699))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-221))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) + (-4 *4 (-1019))))) +(((*1 *1) (-5 *1 (-1093)))) +(((*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713)))) + ((*1 *2 *3) + (-12 (-4 *4 (-976)) + (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) + (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) + ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) + (-4 *2 (-630 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-824 *4 *3)) + (-4 *3 (-1126)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-728))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) + (-4 *4 (-13 (-789) (-517)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) + (-5 *2 (-385 (-525))))) ((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| -2542 *3) (|:| -3987 (-525))))) - (-5 *1 (-396 *3)) (-4 *3 (-517)))) + (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) + (-4 *3 (-517)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) ((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |gen| *3) (|:| -2288 (-712))))) - (-5 *1 (-760 *3)) (-4 *3 (-788))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) - (-4 *3 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 (-885 *6))) (-4 *6 (-517)) - (-4 *2 (-882 (-385 (-885 *6)) *5 *4)) (-5 *1 (-674 *5 *4 *6 *2)) - (-4 *5 (-734)) - (-4 *4 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)))))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-1036)) (-5 *2 (-108)) (-5 *1 (-762))))) + (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) + (-5 *2 (-385 (-525))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) + (-4 *3 (-1019)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) + (-4 *3 (-1019)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) + (-5 *2 (-385 (-525))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-939 *3)) + (-4 *3 (-967 *2))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-1090)) (-5 *1 (-501)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-592 (-1090))) (-5 *2 (-1090)) (-5 *1 (-647 *3)) + (-4 *3 (-567 (-501)))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-565 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) (-5 *5 (-1086 *2)) + (-4 *2 (-13 (-408 *6) (-27) (-1112))) + (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1019)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-565 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) + (-5 *5 (-385 (-1086 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1112))) + (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1019))))) (((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1056 *4 *2)) (-14 *4 (-854)) - (-4 *2 (-13 (-975) (-10 -7 (-6 (-4252 "*"))))) (-5 *1 (-835 *4 *2))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1125)) (-5 *1 (-168 *3 *2)) (-4 *2 (-618 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-972 *5 *6))) (-5 *1 (-1195 *5 *6 *7)) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-108)) - (-4 *5 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-972 *5 *6))) (-5 *1 (-1195 *5 *6 *7)) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-885 *4))) - (-4 *4 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-591 (-972 *4 *5))) (-5 *1 (-1195 *4 *5 *6)) - (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089)))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-964))))) -(((*1 *2) (-12 (-5 *2 (-781 (-525))) (-5 *1 (-499)))) - ((*1 *1) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1018))))) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525))))) +(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-975)) - (-4 *2 (-1131 *3))))) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) + (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) + (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1120 *4 *5 *6 *7)) + (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) + (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3356 *6) (|:| |sol?| (-108))) (-525) + *6)) + (-4 *6 (-341)) (-4 *7 (-1148 *6)) + (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) + (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1172 *5)) (-5 *3 (-713)) (-5 *4 (-1037)) (-4 *5 (-327)) + (-5 *1 (-495 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) - (-4 *5 (-13 (-27) (-1111) (-408 *4))))) + (-12 (-5 *3 (-1014 (-782 (-357)))) (-5 *2 (-1014 (-782 (-205)))) + (-5 *1 (-284))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1019)) + (-5 *1 (-98 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1019)) (-5 *1 (-98 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) + (-4 *3 (-13 (-1019) (-33)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1172 (-1172 (-525)))) (-5 *3 (-855)) (-5 *1 (-443))))) +(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-357)) (-5 *1 (-988))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *2 (-713)) + (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1079 *4 *5)) + (-14 *4 (-855)) (-4 *5 (-976)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-713))) (-5 *3 (-877 *5)) (-4 *5 (-976)) + (-5 *1 (-1079 *4 *5)) (-14 *4 (-855))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-837 *3)) (-4 *3 (-1019)) (-5 *2 (-1021 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1019)) (-5 *2 (-1021 (-592 *4))) (-5 *1 (-838 *4)) + (-5 *3 (-592 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1019)) (-5 *2 (-1021 (-1021 *4))) (-5 *1 (-838 *4)) + (-5 *3 (-1021 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1021 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) + (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1126)) (-4 *2 (-1019)) + (-4 *2 (-789))))) +(((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-855)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-385 (-525))) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) - (-4 *3 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) - (-4 *6 (-13 (-27) (-1111) (-408 *5))) - (-4 *5 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1138 (-525))) - (-4 *7 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-525))) - (-4 *3 (-13 (-27) (-1111) (-408 *7))) - (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) - (-5 *5 (-1138 (-385 (-525)))) (-5 *6 (-385 (-525))) - (-4 *8 (-13 (-27) (-1111) (-408 *7))) - (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-385 (-525)))) - (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1111) (-408 *8))) - (-4 *8 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *3)))) - (-4 *3 (-975)) (-5 *1 (-550 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-551 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1070 (-2 (|:| |k| (-525)) (|:| |c| *3)))) - (-4 *3 (-975)) (-4 *1 (-1131 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-712)) - (-5 *3 (-1070 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))) - (-4 *4 (-975)) (-4 *1 (-1152 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-4 *1 (-1162 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1070 (-2 (|:| |k| (-712)) (|:| |c| *3)))) - (-4 *3 (-975)) (-4 *1 (-1162 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-703)))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-564 *3)) (-5 *5 (-1085 *3)) - (-4 *3 (-13 (-408 *6) (-27) (-1111))) - (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1018)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-564 *3)) (-5 *5 (-385 (-1085 *3))) - (-4 *3 (-13 (-408 *6) (-27) (-1111))) - (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1018))))) -(((*1 *1) (-5 *1 (-132)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-957 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-591 (-631 *3))) (-4 *3 (-975)) (-5 *1 (-957 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-975)) (-5 *1 (-957 *3)))) + (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-855)) + (-5 *1 (-495 *4))))) +(((*1 *1 *1) (-4 *1 (-578))) ((*1 *2 *2) - (-12 (-5 *2 (-591 (-631 *3))) (-4 *3 (-975)) (-5 *1 (-957 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-975)) - (-14 *4 (-591 (-1089))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933) (-1112)))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2826 (-592 (-2 (|:| |irr| *10) (|:| -3862 (-525))))))) + (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286)) + (-4 *10 (-883 *3 *9 *8)) (-4 *9 (-735)) + (-5 *2 + (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3) + (|:| |corrfact| (-592 (-1086 *3))))) + (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1086 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))) + ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-965)) (-5 *3 (-1090)) (-5 *1 (-246))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284)))) ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-975) (-788))) - (-14 *4 (-591 (-1089)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-631 (-385 (-885 (-525))))) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-826 *3)) (|:| |den| (-826 *3)))) + (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) + (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) + (-4 *2 (-630 *3 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-591 - (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) - (|:| |radvect| (-591 (-631 (-294 (-525)))))))) - (-5 *1 (-960))))) -(((*1 *2) (-12 (-5 *2 (-781 (-525))) (-5 *1 (-499)))) - ((*1 *1) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-762))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1072)) - (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) - (-14 *3 (-525)) (-14 *4 (-712))))) -(((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1072)) (-5 *1 (-652))))) -(((*1 *1) - (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) - (-4 *4 (-160))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1125)) - (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) - (-4 *5 (-351 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-591 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) - (-14 *4 (-525)) (-14 *5 (-712)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-712)))) + (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) + (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) + (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) + (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) + (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) + (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) + (-5 *1 (-242)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-712)))) + (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-712)))) + (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-712)))) + (-12 + (-5 *3 + (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) + (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) + (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) + (-5 *2 (-1177)) (-5 *1 (-1174)))) ((*1 *2 *1) - (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525)) - (-14 *4 (-712)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-225 (-1072))) (-5 *1 (-195 *4)) - (-4 *4 - (-13 (-788) - (-10 -8 (-15 -1881 ((-1072) $ *3)) (-15 -1285 ((-1176) $)) - (-15 -3829 ((-1176) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-920)) (-5 *1 (-195 *3)) - (-4 *3 - (-13 (-788) - (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 ((-1176) $)) - (-15 -3829 ((-1176) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-712)) (-5 *1 (-225 *4)) (-4 *4 (-788)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-788)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-788)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1125)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1125)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1147 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-591 *1)) (-4 *1 (-281)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-1147 *2)) - (-4 *4 (-1147 (-385 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-475)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-51)) (-5 *1 (-580)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1138 (-525))) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-712)) (-5 *1 (-619 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-591 (-525))) (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *3 (-591 (-825 *4))) (-5 *1 (-825 *4)) - (-4 *4 (-1018)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1018)))) + (-12 + (-5 *2 + (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2409 (-205)) + (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) + (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) + (-5 *1 (-1174)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-976)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1090))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-838 *4)) (-5 *1 (-837 *4)) - (-4 *4 (-1018)))) + (-12 (-5 *3 (-592 (-855))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5)) + (-14 *4 (-855)) (-14 *5 (-925 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) + (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-126)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-854)) (-4 *2 (-341)) - (-5 *1 (-924 *4 *2)))) + (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-976)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-940 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *2 *6 *7)) (-4 *2 (-975)) - (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *2 *6 *7)) - (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-975)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-854)) (-4 *4 (-1018)) - (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) - (-5 *1 (-997 *4 *5 *2)) - (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-854)) (-4 *4 (-1018)) - (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) - (-5 *1 (-998 *4 *5 *2)) - (-4 *2 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-525))) (-4 *1 (-1021 *3 *4 *5 *6 *7)) - (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-4 *7 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) - (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)))) - ((*1 *1 *1 *1) (-4 *1 (-1058))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-1089)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-385 *1)) (-4 *1 (-1147 *2)) (-4 *2 (-975)) - (-4 *2 (-341)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-385 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-975)) - (-4 *3 (-517)))) + (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) + (-4 *4 (-1148 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-976)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)))) + (-12 (-4 *2 (-976)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) + (-4 *4 (-976)) (-4 *5 (-789)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-976)) + (-4 *2 (-789)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-976)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-883 *4 *5 *6)) + (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-883 *4 *5 *2)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *2 (-789)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1159 *3)) (-4 *3 (-1125)))) + (-12 (-5 *3 (-713)) (-4 *2 (-883 *4 (-497 *5) *5)) + (-5 *1 (-1043 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-789)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) - (-4 *5 (-13 (-1018) (-33))) (-4 *6 (-13 (-1018) (-33))) - (-5 *2 (-108)) (-5 *1 (-1054 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1070 (-525))) (-5 *1 (-1074 *4)) (-4 *4 (-975)) - (-5 *3 (-525))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-591 (-591 (-159))))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *1 (-1044 *3 *2)) (-4 *3 (-1147 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-712) *2)) (-5 *4 (-712)) (-4 *2 (-1018)) - (-5 *1 (-621 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-712) *3)) (-4 *3 (-1018)) (-5 *1 (-624 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-721 *5 (-798 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) - (-14 *6 (-591 (-1089))) (-5 *2 (-591 (-972 *5 *6))) - (-5 *1 (-576 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-564 *5)) (-4 *5 (-408 *4)) (-4 *4 (-966 (-525))) - (-4 *4 (-13 (-788) (-517))) (-5 *2 (-1085 *5)) (-5 *1 (-31 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-564 *1)) (-4 *1 (-975)) (-4 *1 (-281)) - (-5 *2 (-1085 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-796)))) - ((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-894))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1018) (-33))) - (-4 *3 (-13 (-1018) (-33)))))) -(((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-591 (-591 (-876 (-205))))))) - ((*1 *2 *1) (-12 (-4 *1 (-905)) (-5 *2 (-591 (-591 (-876 (-205)))))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1072)) - (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-601 *3)) (-4 *3 (-975)) (-4 *3 (-341)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-712)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) - (-5 *1 (-604 *5 *2)) (-4 *2 (-601 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-876 (-205))) (-5 *4 (-807)) (-5 *2 (-1176)) - (-5 *1 (-445)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-975)) (-4 *1 (-911 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-876 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-975)) (-4 *1 (-1050 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-876 *3)) (-4 *1 (-1050 *3)) (-4 *3 (-975)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122)) (-5 *3 (-205))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-353 *4 *2)) - (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4251))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) - (-5 *2 (-1085 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-668)) (-4 *2 (-1125))))) -(((*1 *2 *1) - (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-984)) (-4 *3 (-1111)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-1138 (-525)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-942)) (-5 *2 (-796))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-351 *2)) - (-4 *4 (-351 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1018)) - (-4 *2 (-1125))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-564 *4)) (-5 *6 (-1089)) - (-4 *4 (-13 (-408 *7) (-27) (-1111))) - (-4 *7 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3612 (-591 *4)))) - (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-807)) - (-5 *5 (-854)) (-5 *6 (-591 (-242))) (-5 *2 (-445)) (-5 *1 (-1175)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *2 (-445)) - (-5 *1 (-1175)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *4 (-591 (-242))) - (-5 *2 (-445)) (-5 *1 (-1175))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1018)) (-4 *3 (-833 *5)) (-5 *2 (-1171 *3)) - (-5 *1 (-633 *5 *3 *6 *4)) (-4 *6 (-351 *3)) - (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4250))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-157 (-385 (-525))))) - (-5 *2 - (-591 - (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525)) - (|:| |outvect| (-591 (-631 (-157 *4))))))) - (-5 *1 (-706 *4)) (-4 *4 (-13 (-341) (-786)))))) -(((*1 *1 *1) (-4 *1 (-510)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-942))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-357))) (-5 *1 (-242)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) - ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517))))) -(((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) - (-4 *4 (-327))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) + (-12 (-5 *3 (-713)) (-5 *2 (-886 *4)) (-5 *1 (-1121 *4)) + (-4 *4 (-976))))) +(((*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) + ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1019))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1108)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1108))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-908 *4 *5 *6 *3)) (-4 *4 (-976)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-429)) (-4 *3 (-788)) (-4 *3 (-966 (-525))) - (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) - (-4 *2 - (-13 (-341) (-281) - (-10 -8 (-15 -1384 ((-1041 *3 (-564 $)) $)) - (-15 -1396 ((-1041 *3 (-564 $)) $)) - (-15 -2686 ($ (-1041 *3 (-564 $)))))))))) + (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) + (-4 *3 (-13 (-341) (-138) (-967 (-525)))) (-5 *1 (-529 *3 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-716)) (-5 *1 (-110))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-396 *2)) (-4 *2 (-517))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1089)) (-5 *2 (-1022)) (-5 *1 (-270))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *2 (-591 *4)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-1147 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) - (-5 *2 (-591 *3)) (-5 *1 (-1044 *4 *3)) (-4 *4 (-1147 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-108))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 (-1182 *4 *5 *6 *7))) - (-5 *1 (-1182 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 *9)) (-5 *4 (-1 (-108) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-989 *6 *7 *8)) (-4 *6 (-517)) - (-4 *7 (-734)) (-4 *8 (-788)) (-5 *2 (-591 (-1182 *6 *7 *8 *9))) - (-5 *1 (-1182 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-501))) ((*1 *1) (-4 *1 (-664))) - ((*1 *1) (-4 *1 (-668))) - ((*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018)))) - ((*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-788))))) -(((*1 *2 *3) - (-12 (-5 *3 (-631 (-385 (-885 (-525))))) (-5 *2 (-591 (-294 (-525)))) - (-5 *1 (-960))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-964)) (-5 *1 (-690))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 *2)) - (-4 *3 (-975))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1072)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) - (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-564 *3)) (-5 *5 (-591 *3)) - (-4 *3 (-13 (-408 *6) (-27) (-1111))) - (-4 *6 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) + (-12 (-5 *2 (-1090)) (-5 *3 (-412)) (-4 *5 (-789)) + (-5 *1 (-1025 *5 *4)) (-4 *4 (-408 *5))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517))))) +(((*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) + ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1019))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3081 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1148 *7)) + (-5 *3 (-385 *8)) (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1018))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) - (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) - (-5 *1 (-1088))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-591 (-956 *5 *6 *7 *3))) (-5 *1 (-956 *5 *6 *7 *3)) - (-4 *3 (-989 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-591 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-429)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-591 (-1060 *5 *6 *7 *3))) (-5 *1 (-1060 *5 *6 *7 *3)) - (-4 *3 (-989 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-146)))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-501))) - ((*1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *4)) (-4 *4 (-975)) (-5 *2 (-1171 *4)) - (-5 *1 (-1090 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-854)) (-5 *2 (-1171 *3)) (-5 *1 (-1090 *3)) - (-4 *3 (-975))))) -(((*1 *1 *2) - (-12 (-5 *2 (-385 *4)) (-4 *4 (-1147 *3)) (-4 *3 (-13 (-341) (-138))) - (-5 *1 (-377 *3 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *1) - (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1018)) - (-4 *2 (-788))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-510)))) + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-535 *7 *8))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-525)) (-4 *4 (-327)) + (-5 *1 (-495 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1112) (-408 *3))) + (-14 *4 (-1090)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-4 *2 (-13 (-27) (-1112) (-408 *3) (-10 -8 (-15 -4044 ($ *4))))) + (-4 *4 (-787)) + (-4 *5 + (-13 (-1150 *2 *4) (-341) (-1112) + (-10 -8 (-15 -1576 ($ $)) (-15 -2313 ($ $))))) + (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-915 *5)) (-14 *7 (-1090))))) (((*1 *2 *3) - (-12 (-5 *3 (-1072)) - (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1111) (-29 *4)))))) -(((*1 *1 *2 *2) (-12 + (-5 *3 + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 - (-3 (|:| I (-294 (-525))) (|:| -1730 (-294 (-357))) - (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1088)))) - (-5 *1 (-1088))))) -(((*1 *2 *2) (-12 (-5 *2 (-591 (-631 (-294 (-525))))) (-5 *1 (-960))))) + (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) + (-5 *1 (-187))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) + (-5 *2 (-108))))) (((*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-108)) (-5 *1 (-1094)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-108)) (-5 *1 (-1094)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1094)))) + (-12 (-5 *3 (-713)) (-5 *2 (-1145 *5 *4)) (-5 *1 (-1088 *4 *5 *6)) + (-4 *4 (-976)) (-14 *5 (-1090)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1094))))) -(((*1 *1 *2) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)))) - ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) - (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-160)) (-4 *2 (-975)) (-5 *1 (-656 *2 *3)) - (-4 *3 (-593 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-160)) (-4 *2 (-975)) (-5 *1 (-656 *2 *3)) - (-4 *3 (-593 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-160)) (-4 *2 (-975)))) - ((*1 *1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-160)) (-4 *2 (-975))))) + (-12 (-5 *3 (-713)) (-5 *2 (-1145 *5 *4)) (-5 *1 (-1164 *4 *5 *6)) + (-4 *4 (-976)) (-14 *5 (-1090)) (-14 *6 *4)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-988))))) +(((*1 *2 *1) + (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) + (-4 *3 (-900))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3178 (-385 (-525))) (|:| -3192 (-385 (-525))))) - (-5 *2 (-385 (-525))) (-5 *1 (-949 *4)) (-4 *4 (-1147 (-525)))))) + (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) + (-4 *3 (-1148 (-157 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) + (-4 *3 (-1148 (-157 *2)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-734))))) (((*1 *2 *3) - (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1085 (-1085 *4)))) - (-5 *1 (-1124 *4)) (-5 *3 (-1085 (-1085 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1125)) (-5 *1 (-1048 *4 *2)) - (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4250) (-6 -4251)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-788)) (-4 *3 (-1125)) (-5 *1 (-1048 *3 *2)) - (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4250) (-6 -4251))))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796)))) - ((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-591 *3)) (-4 *3 (-1125))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *4)) (-5 *3 (-854)) (-4 *4 (-975)) - (-5 *1 (-957 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-591 (-631 *4))) (-5 *3 (-854)) (-4 *4 (-975)) - (-5 *1 (-957 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *1 (-684 *4 *5 *6 *7)) (-4 *7 (-882 *6 *4 *5))))) + (-12 (-5 *3 (-1073)) (-5 *2 (-592 (-1095))) (-5 *1 (-814))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (-4 *4 (-842)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-396 (-1085 *7))) - (-5 *1 (-839 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-842)) (-4 *5 (-1147 *4)) (-5 *2 (-396 (-1085 *5))) - (-5 *1 (-840 *4 *5)) (-5 *3 (-1085 *5))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1176) (-1171 *5) (-1171 *5) (-357))) - (-5 *3 (-1171 (-357))) (-5 *5 (-357)) (-5 *2 (-1176)) - (-5 *1 (-729))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-2 (|:| |k| (-616 *3)) (|:| |c| *4)))) - (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) - (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) -(((*1 *2 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) - (|has| *2 (-6 (-4252 "*"))) (-4 *2 (-975)))) + (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1128)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1128))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423)))) ((*1 *2 *3) - (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) - (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-629 *2 *4 *5)))) + (-12 + (-5 *3 + (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) + (-227 *4 (-385 (-525))))) + (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108)) + (-5 *1 (-478 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-510)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2) + (-12 (-5 *2 (-886 (-357))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-385 (-886 (-357)))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-886 (-525))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-385 (-886 (-525)))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) + (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) + (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1090)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 *2)) + (-14 *4 (-592 *2)) (-4 *5 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) + (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))))) + ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-886 (-525))))) (-4 *1 (-362)))) + ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-886 (-357))))) (-4 *1 (-362)))) + ((*1 *1 *2) (-12 (-5 *2 (-632 (-886 (-525)))) (-4 *1 (-362)))) + ((*1 *1 *2) (-12 (-5 *2 (-632 (-886 (-357)))) (-4 *1 (-362)))) + ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) + ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) + ((*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-525)))) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-357)))) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-886 (-357))) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 (-525))))) (-4 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 (-357))))) (-4 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 (-886 (-525)))) (-4 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 (-886 (-357)))) (-4 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 (-294 (-525)))) (-4 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 (-294 (-357)))) (-4 *1 (-418)))) ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) - (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4252 "*"))) (-4 *2 (-975))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-761)) (-14 *5 (-1089)) (-5 *2 (-591 (-1144 *5 *4))) - (-5 *1 (-1032 *4 *5)) (-5 *3 (-1144 *5 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-975)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-876 (-205))) (-5 *1 (-1122)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1125)) (-4 *2 (-975))))) -(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-689))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-885 (-525))) (-5 *2 (-308)) - (-5 *1 (-310)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-1011 (-885 (-525)))) (-5 *2 (-308)) - (-5 *1 (-310)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-619 *3)) (-4 *3 (-975)) (-4 *3 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-591 (-876 (-205))))) (-5 *2 (-591 (-205))) - (-5 *1 (-445))))) -(((*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-308))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1788 *4))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-838 *3))) (-5 *1 (-837 *3)) (-4 *3 (-1018))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-712)) (-4 *1 (-211 *4)) - (-4 *4 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-712)))) - ((*1 *1 *1) (-4 *1 (-213))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) - (-4 *4 (-1147 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) - (-4 *3 (-1147 *2)))) - ((*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-975)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 *4)) (-5 *3 (-591 (-712))) (-4 *1 (-833 *4)) - (-4 *4 (-1018)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-833 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *1 (-833 *3)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-833 *2)) (-4 *2 (-1018))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-975)))) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (|:| |mdnia| + (-2 (|:| |fn| (-294 (-205))) + (|:| -2853 (-592 (-1014 (-782 (-205))))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) + (-5 *1 (-711)))) ((*1 *2 *1) - (-12 (-4 *1 (-904 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-733)) - (-4 *5 (-788)) (-5 *2 (-108))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *1) (-12 (-5 *2 - (-591 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-525))))) - (-5 *1 (-396 *3)) (-4 *3 (-517)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-712)) (-4 *3 (-327)) (-4 *5 (-1147 *3)) - (-5 *2 (-591 (-1085 *3))) (-5 *1 (-471 *3 *5 *6)) - (-4 *6 (-1147 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -1411 "void"))) - (-5 *1 (-415))))) + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))) + (-5 *1 (-750)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) + (|:| |lb| (-592 (-782 (-205)))) + (|:| |cf| (-592 (-294 (-205)))) + (|:| |ub| (-592 (-782 (-205)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-592 (-294 (-205)))) + (|:| -2039 (-592 (-205))))))) + (-5 *1 (-780)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-592 (-294 (-205)))) + (|:| |constraints| + (-592 + (-2 (|:| |start| (-205)) (|:| |finish| (-205)) + (|:| |grid| (-713)) (|:| |boundaryType| (-525)) + (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) + (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) + (|:| |tol| (-205)))) + (-5 *1 (-832)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-908 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2) + (-3215 + (-12 (-5 *2 (-886 *3)) + (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) + (-2823 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) + (-4 *5 (-789))) + (-12 (-5 *2 (-886 *3)) + (-12 (-2823 (-4 *3 (-510))) (-2823 (-4 *3 (-37 (-385 (-525))))) + (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) + (-4 *5 (-789))) + (-12 (-5 *2 (-886 *3)) + (-12 (-2823 (-4 *3 (-924 (-525)))) (-4 *3 (-37 (-385 (-525)))) + (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) + (-4 *5 (-789))))) + ((*1 *1 *2) + (-3215 + (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) + (-12 (-2823 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) + (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))) + (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) + (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) + (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))))) + ((*1 *1 *2) + (-12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5)) + (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976)) + (-4 *4 (-735)) (-4 *5 (-789))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-357)) (-5 *1 (-988))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) + (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-909 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1072) (-715))) (-5 *1 (-110))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-882 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)) (-4 *3 (-160)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-517)) (-5 *1 (-901 *2 *3)) (-4 *3 (-1147 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975)) (-4 *2 (-160))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) + (-4 *2 (-408 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1126)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-57 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) + (-4 *5 (-408 *4)) (-5 *2 (-396 (-1086 (-385 (-525))))) + (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1079 *4 *5)) + (-14 *4 (-855)) (-4 *5 (-976))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-735)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) + (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1194 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789)) + (-4 *2 (-160)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-761 *4)) (-4 *1 (-1187 *4 *2)) (-4 *4 (-789)) + (-4 *2 (-976)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-976)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-785))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *1) (-12 (-4 *1 (-967 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1019))))) +(((*1 *2 *2) + (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525))) + (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) + (-4 *2 + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *3 (-565 $)) $)) + (-15 -1945 ((-1042 *3 (-565 $)) $)) + (-15 -4044 ($ (-1042 *3 (-565 $)))))))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) + (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-694))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) + (-5 *2 (-2 (|:| -2059 (-525)) (|:| |var| (-565 *1)))) + (-4 *1 (-408 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-985)))) + ((*1 *1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-985)))) + ((*1 *1 *1) (-4 *1 (-787))) + ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)) (-4 *2 (-985)))) + ((*1 *1 *1) (-4 *1 (-985))) ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766))))) +(((*1 *2 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1071 (-886 *4)) (-1071 (-886 *4)))) + (-5 *1 (-1180 *4)) (-4 *4 (-341))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) (((*1 *2) - (-12 (-4 *4 (-1129)) (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) - (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) + (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1089)) (-5 *2 (-104)) (-5 *1 (-162)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1089)) (-5 *2 (-104)) (-5 *1 (-1005))))) + (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175))))) +(((*1 *1 *1) (-4 *1 (-578))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933) (-1112)))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *2 (-965)) (-5 *1 (-694))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1019))))) +(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-813 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) + (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) + (-5 *1 (-238 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-813 *5)) (-5 *4 (-1012 (-357))) + (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) + (-5 *1 (-238 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) + (-5 *2 (-1050 (-205))) (-5 *1 (-238 *3)) + (-4 *3 (-13 (-567 (-501)) (-1019))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *3)) + (-4 *3 (-13 (-567 (-501)) (-1019))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-816 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) + (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) + (-5 *1 (-238 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-816 *5)) (-5 *4 (-1012 (-357))) + (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) + (-5 *1 (-238 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)))) + ((*1 *1) (-4 *1 (-1066)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-159))))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3048 *3) (|:| |coef2| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1073)) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-965)) + (-5 *1 (-693))))) (((*1 *2 *3) - (-12 (-4 *4 (-1147 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-846 *4 *3)) - (-4 *3 (-1147 (-385 *4)))))) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-135)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1073)) (-5 *1 (-728))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1174)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) + (-5 *2 (-108))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) + (-4 *3 (-154 *6)) (-4 (-886 *6) (-820 *5)) + (-4 *6 (-13 (-820 *5) (-160))) (-5 *1 (-165 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-823 *4 *1)) (-5 *3 (-826 *4)) (-4 *1 (-820 *4)) + (-4 *4 (-1019)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-823 *5 *6)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) + (-4 *6 (-13 (-1019) (-967 *3))) (-4 *3 (-820 *5)) + (-5 *1 (-865 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1019)) + (-4 *3 (-13 (-408 *6) (-567 *4) (-820 *5) (-967 (-565 $)))) + (-5 *4 (-826 *5)) (-4 *6 (-13 (-517) (-789) (-820 *5))) + (-5 *1 (-866 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-823 (-525) *3)) (-5 *4 (-826 (-525))) (-4 *3 (-510)) + (-5 *1 (-867 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-823 *5 *6)) (-5 *3 (-565 *6)) (-4 *5 (-1019)) + (-4 *6 (-13 (-789) (-967 (-565 $)) (-567 *4) (-820 *5))) + (-5 *4 (-826 *5)) (-5 *1 (-868 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-819 *5 *6 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) + (-4 *6 (-820 *5)) (-4 *3 (-612 *6)) (-5 *1 (-869 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-823 *6 *3) *8 (-826 *6) (-823 *6 *3))) + (-4 *8 (-789)) (-5 *2 (-823 *6 *3)) (-5 *4 (-826 *6)) + (-4 *6 (-1019)) (-4 *3 (-13 (-883 *9 *7 *8) (-567 *4))) + (-4 *7 (-735)) (-4 *9 (-13 (-976) (-789) (-820 *6))) + (-5 *1 (-870 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1019)) + (-4 *3 (-13 (-883 *8 *6 *7) (-567 *4))) (-5 *4 (-826 *5)) + (-4 *7 (-820 *5)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *8 (-13 (-976) (-789) (-820 *5))) (-5 *1 (-870 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-823 *5 *3)) (-4 *5 (-1019)) (-4 *3 (-924 *6)) + (-4 *6 (-13 (-517) (-820 *5) (-567 *4))) (-5 *4 (-826 *5)) + (-5 *1 (-873 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-823 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-826 *5)) + (-4 *5 (-1019)) (-5 *1 (-874 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-592 (-826 *7))) (-5 *5 (-1 *9 (-592 *9))) + (-5 *6 (-1 (-823 *7 *9) *9 (-826 *7) (-823 *7 *9))) (-4 *7 (-1019)) + (-4 *9 (-13 (-976) (-567 (-826 *7)) (-967 *8))) (-5 *2 (-823 *7 *9)) + (-5 *3 (-592 *9)) (-4 *8 (-13 (-976) (-789))) + (-5 *1 (-875 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1090)) (-4 *5 (-1130)) (-4 *6 (-1148 *5)) + (-4 *7 (-1148 (-385 *6))) (-5 *2 (-592 (-886 *5))) + (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1090)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1130)) + (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-4 *4 (-341)) + (-5 *2 (-592 (-886 *4)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-713)) (-4 *5 (-517)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4254)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1019)) + (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) - (-4 *4 (-13 (-788) (-517)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1162 *3))))) + (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-544 *4)) + (-4 *4 (-327))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-174)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-279)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-205))) (-5 *2 (-591 (-1072))) (-5 *1 (-284))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1089)) (-5 *3 (-1022)) (-5 *1 (-270))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-693))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3612 (-591 *1)))) - (-4 *1 (-345 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-430 *3 *4 *5 *6)) - (|:| -3612 (-591 (-430 *3 *4 *5 *6))))) - (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)))) + (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1089)) - (-4 *5 (-13 (-517) (-966 (-525)) (-138))) - (-5 *2 - (-2 (|:| -2428 (-385 (-885 *5))) (|:| |coeff| (-385 (-885 *5))))) - (-5 *1 (-531 *5)) (-5 *3 (-385 (-885 *5)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-1129)) - (-4 *6 (-1147 (-385 *5))) + (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) + (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7)) + (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) + (-4 *1 (-995 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-592 (-592 *4))) (-5 *2 (-592 *4)) (-4 *4 (-286)) + (-5 *1 (-166 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 *8)) + (-5 *4 + (-592 + (-2 (|:| -2734 (-632 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-632 *7))))) + (-5 *5 (-713)) (-4 *8 (-1148 *7)) (-4 *7 (-1148 *6)) (-4 *6 (-327)) (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-320 *4 *5 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1018)) (-4 *2 (-788)) - (-5 *1 (-109 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-762))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2) (-12 (-5 *2 (-591 (-712))) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-591 (-712))) (-5 *1 (-1174))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-1013 (-205))) (-5 *2 (-860)) - (-5 *1 (-858 *3)) (-4 *3 (-566 (-501))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-1013 (-205))) (-5 *2 (-860)) - (-5 *1 (-858 *3)) (-4 *3 (-566 (-501))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-859)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-859)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-859)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 (-205))) (-5 *1 (-860)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-860)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-860)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-591 (-1 (-205) (-205)))) (-5 *3 (-1013 (-205))) - (-5 *1 (-860)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-591 (-1 (-205) (-205)))) (-5 *3 (-1013 (-205))) - (-5 *1 (-860)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-860)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1013 (-205))) - (-5 *1 (-860))))) + (-2 (|:| -2734 (-632 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-632 *7)))) + (-5 *1 (-471 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-115 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) + (-4 *2 (-160))))) (((*1 *2 *3) + (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-14 *5 (-592 (-1090))) + (-5 *2 + (-592 (-2 (|:| -3162 (-1086 *4)) (|:| -1625 (-592 (-886 *4)))))) + (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 + (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) + (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5))) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 + (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) + (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5))) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 + (-592 (-2 (|:| -3162 (-1086 *5)) (|:| -1625 (-592 (-886 *5)))))) + (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5))) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 + (-592 (-2 (|:| -3162 (-1086 *4)) (|:| -1625 (-592 (-886 *4)))))) + (-5 *1 (-1196 *4 *5 *6)) (-5 *3 (-592 (-886 *4))) + (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) +(((*1 *1 *2 *2) (-12 - (-5 *3 - (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) - (-227 *4 (-385 (-525))))) - (-14 *4 (-591 (-1089))) (-14 *5 (-712)) (-5 *2 (-108)) - (-5 *1 (-478 *4 *5))))) + (-5 *2 + (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) + (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) + (-5 *1 (-1089))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-159)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-855)) (-4 *5 (-517)) (-5 *2 (-632 *5)) + (-5 *1 (-889 *5 *3)) (-4 *3 (-602 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-789)) + (-4 *3 (-1019))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-510)))) +(((*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-885 (-157 *4))) (-4 *4 (-160)) - (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) + (-12 (-5 *3 (-1086 (-525))) (-5 *2 (-525)) (-5 *1 (-876))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) + (-5 *2 + (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) + (|:| |genIdeal| (-477 *4 *5 *6 *7)))) + (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-885 (-157 *5))) (-5 *4 (-854)) (-4 *5 (-160)) - (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-885 *4)) (-4 *4 (-975)) (-4 *4 (-566 (-357))) - (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) + (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1173)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-811 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-885 *5)) (-5 *4 (-854)) (-4 *5 (-975)) - (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) - (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) + (-12 (-5 *3 (-811 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1173)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-854)) (-4 *5 (-517)) - (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-385 (-885 (-157 *4)))) (-4 *4 (-517)) - (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) + (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1174)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-385 (-885 (-157 *5)))) (-5 *4 (-854)) - (-4 *5 (-517)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) - (-5 *1 (-726 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-788)) - (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) + (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1174)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1174)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1174)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) + (-5 *2 (-1174)) (-5 *1 (-234)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-273 *7)) (-5 *4 (-1090)) (-5 *5 (-592 (-242))) + (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-967 (-525)))) + (-5 *2 (-1173)) (-5 *1 (-235 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1173)) + (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-854)) (-4 *5 (-517)) - (-4 *5 (-788)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) - (-5 *1 (-726 *5)))) + (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1173)) (-5 *1 (-238 *3)) + (-4 *3 (-13 (-567 (-501)) (-1019))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-811 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) + (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1173)) + (-5 *1 (-238 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-811 *5)) (-5 *4 (-1012 (-357))) + (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1173)) + (-5 *1 (-238 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-813 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) + (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) + (-5 *1 (-238 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-813 *5)) (-5 *4 (-1012 (-357))) + (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) + (-5 *1 (-238 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) + (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1174)) (-5 *1 (-238 *3)) + (-4 *3 (-13 (-567 (-501)) (-1019))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-816 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) + (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) + (-5 *1 (-238 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-816 *5)) (-5 *4 (-1012 (-357))) + (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) + (-5 *1 (-238 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1173)) (-5 *1 (-239)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1173)) + (-5 *1 (-239)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-788)) - (-4 *4 (-566 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-726 *4)))) + (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *2 (-1173)) (-5 *1 (-239)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-854)) (-4 *5 (-517)) - (-4 *5 (-788)) (-4 *5 (-566 (-357))) (-5 *2 (-157 (-357))) - (-5 *1 (-726 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-631 (-885 *4))) (-5 *1 (-957 *4)) - (-4 *4 (-975))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-408 *3) (-932))) (-5 *1 (-255 *3 *2)) - (-4 *3 (-13 (-788) (-517)))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) - (-5 *1 (-163 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1098 (-591 *4))) (-4 *4 (-788)) - (-5 *2 (-591 (-591 *4))) (-5 *1 (-1097 *4))))) -(((*1 *1) (-5 *1 (-1173)))) + (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *4 (-592 (-242))) + (-5 *2 (-1173)) (-5 *1 (-239)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174)) (-5 *1 (-239)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1174)) + (-5 *1 (-239))))) +(((*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) + (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) + (-5 *1 (-1089))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) + (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-883 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-592 (-2 (|:| -2961 (-1086 *9)) (|:| -1737 (-525))))))) + (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1086 *9))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-797))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-855)) (-5 *1 (-1020 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1086 *9))) + (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713))) + (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-883 *9 *10 *11)) + (-4 *10 (-735)) (-5 *2 (-592 (-1086 *12))) + (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1086 *12))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789)) + (-5 *1 (-565 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 (-385 (-886 (-525))))) (-5 *4 (-592 (-1090))) + (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5)) + (-4 *5 (-13 (-787) (-341))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4)) + (-4 *4 (-13 (-787) (-341)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-273 (-385 (-885 *5)))) (-5 *4 (-1089)) - (-4 *5 (-13 (-286) (-788) (-138))) - (-5 *2 (-1079 (-591 (-294 *5)) (-591 (-273 (-294 *5))))) - (-5 *1 (-1045 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) - (-4 *5 (-13 (-286) (-788) (-138))) - (-5 *2 (-1079 (-591 (-294 *5)) (-591 (-273 (-294 *5))))) - (-5 *1 (-1045 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-591 (-712)))) (-5 *1 (-837 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1085 *3)) (-5 *1 (-847 *3)) (-4 *3 (-286))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-701))))) -(((*1 *2 *3) - (-12 (-4 *4 (-37 (-385 (-525)))) - (-5 *2 (-2 (|:| -4058 (-1070 *4)) (|:| -4073 (-1070 *4)))) - (-5 *1 (-1076 *4)) (-5 *3 (-1070 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-591 (-108))) (-5 *7 (-631 (-205))) - (-5 *8 (-631 (-525))) (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) - (-5 *2 (-964)) (-5 *1 (-696))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-975))))) -(((*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(((*1 *2 *1) - (-12 (-5 *2 (-806 (-898 *3) (-898 *3))) (-5 *1 (-898 *3)) - (-4 *3 (-899))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-591 (-564 *2))) (-5 *4 (-591 (-1089))) - (-4 *2 (-13 (-408 (-157 *5)) (-932) (-1111))) - (-4 *5 (-13 (-517) (-788))) (-5 *1 (-554 *5 *6 *2)) - (-4 *6 (-13 (-408 *5) (-932) (-1111)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) - (-4 *4 (-13 (-788) (-517)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-429)) (-4 *4 (-788)) (-4 *5 (-734)) (-5 *2 (-591 *6)) - (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-882 *3 *5 *4))))) + (-12 (-4 *6 (-517)) (-4 *2 (-883 *3 *5 *4)) + (-5 *1 (-675 *5 *4 *6 *2)) (-5 *3 (-385 (-886 *6))) (-4 *5 (-735)) + (-4 *4 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1108))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) + (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) + (-5 *1 (-1089))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) + (-4 *4 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))) + ((*1 *1 *1) (-4 *1 (-213))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) + (-4 *4 (-1148 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) + (-4 *3 (-1148 *2)))) + ((*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-834 *4)) + (-4 *4 (-1019)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-834 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *1 (-834 *3)) (-4 *3 (-1019)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1019))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -3480 (-592 (-1090))) (|:| -4171 (-592 (-1090))))) + (-5 *1 (-1128))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-695))))) +(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517)))) + ((*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *1 (-630 *3 *4 *5 *2)) - (-4 *2 (-629 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1005))) (-5 *1 (-270))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-591 *7)) (-5 *3 (-108)) (-4 *7 (-989 *4 *5 *6)) - (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-5 *1 (-908 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-517)) (-4 *3 (-975)) - (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-790 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-975)) - (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-791 *5 *3)) - (-4 *3 (-790 *5))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-936)))) - ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-936))))) -(((*1 *2 *3) - (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-975))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-1171 (-631 *4))) (-5 *1 (-88 *4 *5)) - (-5 *3 (-631 *4)) (-4 *5 (-601 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108))))) + (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) + (-4 *2 (-630 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *1) (-5 *1 (-308)))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-294 (-525))) (|:| -1896 (-294 (-357))) + (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) + (-5 *1 (-1089))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-763))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-565 *3)) + (-4 *3 (-13 (-408 *5) (-27) (-1112))) + (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 (-2 (|:| -3081 *3) (|:| |coeff| *3))) + (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1019))))) +(((*1 *1 *1) (|partial| -4 *1 (-1066)))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-565 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) + (-4 *2 (-13 (-408 *5) (-27) (-1112))) + (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1019))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) - (-4 *4 (-13 (-788) (-517)))))) + (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-976))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) - (-4 *3 (-13 (-341) (-1111) (-932)))))) + (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1172 (-3 (-445) "undefined"))) (-5 *1 (-1173))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976))))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1111))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) - ((*1 *1 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) + (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-357)) (-5 *2 (-1176)) (-5 *1 (-1172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1036)) (-5 *1 (-105)))) - ((*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-712)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1125)) - (-4 *3 (-1018)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-351 *3)) (-4 *3 (-1125)) (-4 *3 (-1018)) - (-5 *2 (-525)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1125)) - (-5 *2 (-525)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-525)) (-5 *3 (-132)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-525))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1094))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-385 (-885 *3))) (-5 *1 (-430 *3 *4 *5 *6)) - (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-854)) - (-14 *5 (-591 (-1089))) (-14 *6 (-1171 (-631 *3)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1 (-357))) (-5 *1 (-968))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-1091 (-385 (-525)))) - (-5 *1 (-172))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) - (-4 *3 (-13 (-341) (-1111) (-932)))))) -(((*1 *2 *1) (-12 (-5 *1 (-955 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1147 (-385 (-525)))) (-5 *1 (-846 *3 *2)) - (-4 *2 (-1147 (-385 *3)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-712)) (-4 *1 (-1147 *3)) (-4 *3 (-975))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))) + (-12 (-5 *3 (-855)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-4 *4 (-1126)) (-5 *2 (-108)) + (-5 *1 (-1071 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1071 *7))) (-4 *6 (-789)) + (-4 *7 (-883 *5 (-497 *6) *6)) (-4 *5 (-976)) + (-5 *2 (-1 (-1071 *7) *7)) (-5 *1 (-1043 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-989 *3 *4 *5))))) + (-12 (-4 *2 (-1019)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1019))))) +(((*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499)))) + ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1019))))) (((*1 *2 *3) - (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-975)) - (-5 *2 (-227 *4 *5)) (-5 *1 (-877 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-882 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-429)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *3 (-989 *4 *5 *6)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *1)))) - (-4 *1 (-994 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1129))) - ((*1 *2 *2) - (-12 (-4 *3 (-517)) (-5 *1 (-1150 *3 *2)) - (-4 *2 (-13 (-1147 *3) (-517) (-10 -8 (-15 -2124 ($ $ $)))))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1193 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-788)) + (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3)) + (-4 *3 (-13 (-408 *4) (-933)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205))) + (-5 *2 (-965)) (-5 *1 (-698))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-898))) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-44 (-1073) (-716))) (-5 *1 (-110))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-525)) (-5 *5 (-632 (-205))) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *3 (-205)) + (-5 *2 (-965)) (-5 *1 (-691))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2)) + (-4 *3 (-13 (-789) (-517))))) + ((*1 *1) + (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) + (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) + ((*1 *1) (-5 *1 (-454))) ((*1 *1) (-4 *1 (-1112)))) +(((*1 *2 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286))))) +(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1112) (-892) (-29 *4)))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) + ((*1 *1) + (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-760 *3)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-975)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-385 (-1085 (-294 *3)))) (-4 *3 (-13 (-517) (-788))) - (-5 *1 (-1046 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-591 *4)) - (-5 *1 (-995 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2124 (-723 *3)) (|:| |coef1| (-723 *3)))) - (-5 *1 (-723 *3)) (-4 *3 (-517)) (-4 *3 (-975)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-517)) (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-2 (|:| -2124 *1) (|:| |coef1| *1))) - (-4 *1 (-989 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-51))))) + ((*1 *1) (-4 *1 (-669))) ((*1 *1) (-5 *1 (-1090)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-975)) (-4 *3 (-788)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3987 (-525)))) (-4 *1 (-408 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-825 *3)) (|:| -3987 (-825 *3)))) - (-5 *1 (-825 *3)) (-4 *3 (-1018)))) + (-12 (-5 *2 (-956 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-976))))) +(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) - (-4 *7 (-882 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3987 (-525)))) - (-5 *1 (-883 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-341) - (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) - (-15 -1396 (*7 $)))))))) + (-12 (-5 *3 (-592 (-2 (|:| -2961 *4) (|:| -1486 (-525))))) + (-4 *4 (-1148 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) + (-4 *3 (-1148 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) - (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)))) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) + (-5 *2 (-632 *4)))) ((*1 *2) - (-12 (-4 *4 (-160)) (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)) - (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) - (-5 *2 (-631 *3))))) + (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) + (-4 *3 (-395 *4)))) + ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-854)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-807)) - (-5 *2 (-1176)) (-5 *1 (-1172))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1018) (-33))) - (-4 *4 (-13 (-1018) (-33)))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-525)) (-5 *1 (-221)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-591 (-1072))) (-5 *3 (-525)) (-5 *4 (-1072)) - (-5 *1 (-221)))) - ((*1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975))))) -(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1126 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1144 *5 *4)) (-4 *4 (-429)) (-4 *4 (-761)) - (-14 *5 (-1089)) (-5 *2 (-525)) (-5 *1 (-1032 *4 *5))))) -(((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-631 (-385 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-712)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-395 *4))))) + (-12 (-4 *2 (-883 *3 *5 *4)) (-5 *1 (-919 *3 *4 *5 *2)) + (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797)))) (((*1 *2 *3) - (-12 (-4 *3 (-1147 (-385 (-525)))) - (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))) - (-5 *1 (-846 *3 *4)) (-4 *4 (-1147 (-385 *3))))) + (-12 (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-385 (-525))) + (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5)) + (-4 *5 (-13 (-789) (-517) (-967 (-525)))) + (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-411 *5 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-843)) (-4 *6 (-735)) + (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-396 (-1086 *8))) + (-5 *1 (-840 *5 *6 *7 *8)) (-5 *4 (-1086 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-1147 (-385 *2))) (-5 *2 (-525)) (-5 *1 (-846 *4 *3)) - (-4 *3 (-1147 (-385 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) - (-4 *5 (-408 *4)) (-5 *2 (-396 (-1085 (-385 (-525))))) - (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1147 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525))))) + (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5))) + (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-898))) (-5 *1 (-104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-924 *2)) (-4 *4 (-1148 *3)) (-4 *2 (-286)) + (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-967 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1042 *3 (-565 *1))) + (-4 *1 (-408 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468)))) + ((*1 *2 *1) + (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) + (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) + (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 *4)) (-4 *4 (-1018)) (-5 *2 (-1176)) - (-5 *1 (-1126 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *4)) (-4 *4 (-1018)) (-5 *2 (-1176)) - (-5 *1 (-1126 *4))))) + (-12 (-5 *2 (-396 (-1086 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1086 *1)) + (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)))) + ((*1 *2 *3) + (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-351 *2)) (-4 *2 (-1126)) + (-4 *2 (-789)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4255)) + (-4 *1 (-351 *3)) (-4 *3 (-1126))))) (((*1 *2 *3) - (-12 (-4 *4 (-975)) (-4 *3 (-1147 *4)) (-4 *2 (-1162 *4)) - (-5 *1 (-1165 *4 *3 *5 *2)) (-4 *5 (-601 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-4 *1 (-1147 *3)) (-4 *3 (-975)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-854)) (-4 *1 (-1149 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-733)))) + (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-108)) + (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-108)) (-5 *1 (-1116 *4 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *4)))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *3 (-525)) + (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-695))))) +(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501))))) +(((*1 *1) (-5 *1 (-1006)))) +(((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-937))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) + (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-883 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1152 *3)) (-4 *3 (-975))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) + (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) + (-5 *2 (-1172 *6)) (-5 *1 (-391 *3 *4 *5 *6)) + (-4 *6 (-13 (-387 *4 *5) (-967 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-976)) (-4 *3 (-789)) (-5 *2 (-1042 *3 (-565 *1))) + (-4 *1 (-408 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468)))) + ((*1 *2 *1) + (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-669) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-669) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-477 (-385 (-525)) (-220 *5 (-712)) (-798 *4) - (-227 *4 (-385 (-525))))) - (-14 *4 (-591 (-1089))) (-14 *5 (-712)) (-5 *2 (-108)) - (-5 *1 (-478 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-213)) (-4 *3 (-975)) (-4 *4 (-788)) (-4 *5 (-245 *4)) - (-4 *6 (-734)) (-5 *2 (-1 *1 (-712))) (-4 *1 (-232 *3 *4 *5 *6)))) + (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) + ((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) ((*1 *2 *3) - (-12 (-4 *4 (-975)) (-4 *3 (-788)) (-4 *5 (-245 *3)) (-4 *6 (-734)) - (-5 *2 (-1 *1 (-712))) (-4 *1 (-232 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-245 *2)) (-4 *2 (-788))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)))) (-5 *1 (-170 *3 *2)) - (-4 *2 (-13 (-27) (-1111) (-408 (-157 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-517) (-788) (-966 (-525)))) - (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 (-157 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-1115 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-1115 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-542 *3) *3 (-1089))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1089))) - (-4 *3 (-263)) (-4 *3 (-577)) (-4 *3 (-966 *4)) (-4 *3 (-408 *7)) - (-5 *4 (-1089)) (-4 *7 (-566 (-825 (-525)))) (-4 *7 (-429)) - (-4 *7 (-819 (-525))) (-4 *7 (-788)) (-5 *2 (-542 *3)) - (-5 *1 (-534 *7 *3))))) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-975)) - (-4 *2 (-13 (-382) (-966 *4) (-341) (-1111) (-263))) - (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1147 *4)))) + (-12 (-4 *4 (-517)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-88 *4 *5)) + (-5 *3 (-632 *4)) (-4 *5 (-602 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-385 (-886 (-525))))) + (-5 *2 (-592 (-592 (-273 (-886 *4))))) (-5 *1 (-358 *4)) + (-4 *4 (-13 (-787) (-341))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-854)) (-4 *5 (-975)) - (-4 *2 (-13 (-382) (-966 *5) (-341) (-1111) (-263))) - (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1147 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) (-4 *4 (-975)) - (-5 *2 (-760 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-784)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-975))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1004 *3)) (-4 *3 (-127))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3)) (-4 *3 (-1125)) (-5 *2 (-712))))) -(((*1 *2 *3) - (-12 (-5 *2 (-564 *4)) (-5 *1 (-563 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-788))))) -(((*1 *2 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) - (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))) - (-5 *2 (-357)) (-5 *1 (-187))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525))))) -(((*1 *2 *2) - (-12 (-4 *3 (-975)) (-4 *4 (-1147 *3)) (-5 *1 (-152 *3 *4 *2)) - (-4 *2 (-1147 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2 *3) - (-12 + (-12 (-5 *3 (-592 (-273 (-385 (-886 (-525)))))) + (-5 *2 (-592 (-592 (-273 (-886 *4))))) (-5 *1 (-358 *4)) + (-4 *4 (-13 (-787) (-341))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 (-525)))) (-5 *2 (-592 (-273 (-886 *4)))) + (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-273 (-385 (-886 (-525))))) + (-5 *2 (-592 (-273 (-886 *4)))) (-5 *1 (-358 *4)) + (-4 *4 (-13 (-787) (-341))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1090)) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-4 *4 (-13 (-29 *6) (-1112) (-892))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2734 (-592 *4)))) + (-5 *1 (-598 *6 *4 *3)) (-4 *3 (-602 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 *2)) + (-4 *2 (-13 (-29 *6) (-1112) (-892))) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *1 (-598 *6 *2 *3)) (-4 *3 (-602 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 - (-2 (|:| |partsol| (-1171 (-385 (-885 *4)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *4))))))) - (-5 *3 (-591 *7)) (-4 *4 (-13 (-286) (-138))) - (-4 *7 (-882 *4 *6 *5)) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) (-5 *1 (-857 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-1003)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-854)) (-5 *1 (-640)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-631 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-341)) (-5 *1 (-909 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-445)) (-5 *4 (-854)) (-5 *2 (-1176)) (-5 *1 (-1172))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-308))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-964)) (-5 *3 (-1089)) (-5 *1 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-860)) + (-2 (|:| |particular| (-3 (-1172 *5) "failed")) + (|:| -2734 (-592 (-1172 *5))))) + (-5 *1 (-613 *5)) (-5 *4 (-1172 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 - (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) - (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) - (-5 *1 (-144)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-860)) (-5 *4 (-385 (-525))) + (-2 (|:| |particular| (-3 (-1172 *5) "failed")) + (|:| -2734 (-592 (-1172 *5))))) + (-5 *1 (-613 *5)) (-5 *4 (-1172 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 - (-2 (|:| |brans| (-591 (-591 (-876 (-205))))) - (|:| |xValues| (-1013 (-205))) (|:| |yValues| (-1013 (-205))))) - (-5 *1 (-144))))) -(((*1 *2 *1) - (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) - (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-712)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-975)) (-4 *3 (-788)) - (-4 *5 (-245 *3)) (-4 *6 (-734)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-788)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-854)))) - ((*1 *2 *3) - (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341))) - (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) (-4 *7 (-320 *4 *5 *6)) - (-5 *2 (-712)) (-5 *1 (-370 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-774 (-854))))) - ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-551 *3)) (-4 *3 (-975)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-551 *3)) (-4 *3 (-975)))) - ((*1 *2 *1) - (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-572 *3 *4)) - (-4 *4 (-1147 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-682 *4 *3)) (-4 *4 (-975)) - (-4 *3 (-788)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-682 *4 *3)) (-4 *4 (-975)) (-4 *3 (-788)) - (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) - (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) - (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-788) (-517) (-966 (-525)))) - (-5 *2 (-712)) (-5 *1 (-844 *4 *5 *6 *7 *8)))) + (-592 + (-2 (|:| |particular| (-3 (-1172 *5) "failed")) + (|:| -2734 (-592 (-1172 *5)))))) + (-5 *1 (-613 *5)) (-5 *4 (-592 (-1172 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) + (-5 *2 + (-592 + (-2 (|:| |particular| (-3 (-1172 *5) "failed")) + (|:| -2734 (-592 (-1172 *5)))))) + (-5 *1 (-613 *5)) (-5 *4 (-592 (-1172 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) + (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) + (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) + (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4255)))) + (-5 *2 + (-592 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2734 (-592 *7))))) + (-5 *1 (-614 *5 *6 *7 *3)) (-5 *4 (-592 *7)) + (-4 *3 (-630 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) + (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-712 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) - (-4 *4 (-1147 (-385 (-525)))) (-4 *5 (-1147 (-385 *4))) - (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-712)) - (-5 *1 (-845 *4 *5 *6)))) + (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-517)) + (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-712 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1090)) + (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *1 (-714 *5 *2)) (-4 *2 (-13 (-29 *5) (-1112) (-892))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341)) - (-4 *7 (-1147 *6)) (-4 *4 (-1147 (-385 *7))) (-4 *8 (-320 *6 *7 *4)) - (-4 *9 (-13 (-346) (-341))) (-5 *2 (-712)) - (-5 *1 (-948 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-975)) (-4 *3 (-517)) (-5 *2 (-712)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1125)) - (-5 *2 (-108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) - ((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-908 *4 *5 *6 *3)) (-4 *3 (-989 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) - (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-691))))) -(((*1 *2 *3) - (-12 (-5 *3 (-385 *5)) (-4 *5 (-1147 *4)) (-4 *4 (-517)) - (-4 *4 (-975)) (-4 *2 (-1162 *4)) (-5 *1 (-1165 *4 *5 *6 *2)) - (-4 *6 (-601 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-876 (-205)) (-876 (-205)))) (-5 *1 (-242)))) + (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1090)) + (-4 *7 (-13 (-29 *6) (-1112) (-892))) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 + (-2 (|:| |particular| (-1172 *7)) (|:| -2734 (-592 (-1172 *7))))) + (-5 *1 (-744 *6 *7)) (-5 *4 (-1172 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1090)) + (-4 *6 (-13 (-29 *5) (-1112) (-892))) + (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 (-592 (-1172 *6))) (-5 *1 (-744 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) + (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 + (-2 (|:| |particular| (-1172 *7)) (|:| -2734 (-592 (-1172 *7))))) + (-5 *1 (-744 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) + (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 + (-2 (|:| |particular| (-1172 *7)) (|:| -2734 (-592 (-1172 *7))))) + (-5 *1 (-744 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1090)) + (-4 *7 (-13 (-29 *6) (-1112) (-892))) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -2734 (-592 *7))) *7 "failed")) + (-5 *1 (-744 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-110)) (-5 *5 (-1090)) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -2734 (-592 *3))) *3 "failed")) + (-5 *1 (-744 *6 *3)) (-4 *3 (-13 (-29 *6) (-1112) (-892))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-592 *2)) + (-4 *2 (-13 (-29 *6) (-1112) (-892))) (-5 *1 (-744 *6 *2)) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-592 *2)) + (-4 *2 (-13 (-29 *6) (-1112) (-892))) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *1 (-744 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-965)) (-5 *1 (-747)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-750)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-747)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) + (-5 *2 (-965)) (-5 *1 (-747)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) + (-5 *2 (-965)) (-5 *1 (-747)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1172 (-294 *4))) (-5 *5 (-592 (-357))) + (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-965)) (-5 *1 (-747)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 *4)) + (-5 *2 (-965)) (-5 *1 (-747)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1172 (-294 *4))) (-5 *5 (-592 (-357))) + (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-965)) (-5 *1 (-747)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1172 (-294 *4))) (-5 *5 (-592 (-357))) + (-5 *6 (-294 (-357))) (-5 *4 (-357)) (-5 *2 (-965)) (-5 *1 (-747)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2734 (-592 *6))) "failed") + *7 *6)) + (-4 *6 (-341)) (-4 *7 (-602 *6)) + (-5 *2 (-2 (|:| |particular| (-1172 *6)) (|:| -2734 (-632 *6)))) + (-5 *1 (-755 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1172 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-965)) (-5 *1 (-831)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-832)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-831)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-713)) (-5 *6 (-592 (-592 (-294 *3)))) (-5 *7 (-1073)) + (-5 *8 (-205)) (-5 *5 (-592 (-294 (-357)))) (-5 *3 (-357)) + (-5 *2 (-965)) (-5 *1 (-831)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-713)) (-5 *6 (-592 (-592 (-294 *3)))) (-5 *7 (-1073)) + (-5 *5 (-592 (-294 (-357)))) (-5 *3 (-357)) (-5 *2 (-965)) + (-5 *1 (-831)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *2 (-592 (-357))) + (-5 *1 (-953)) (-5 *4 (-357)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-886 (-525))) (-5 *2 (-592 (-357))) (-5 *1 (-953)) + (-5 *4 (-357)))) ((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341)) - (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1171 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) - (-5 *2 (-631 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) - (-5 *2 (-1171 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) - (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) - (-4 *5 (-1147 *4)) (-5 *2 (-1171 *4)))) + (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160)) - (-4 *5 (-1147 *4)) (-5 *2 (-631 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) - (-5 *2 (-1171 *3)))) + (-12 (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)) + (-5 *3 (-294 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160)) - (-5 *2 (-631 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1171 *3)))) + (-12 (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)) + (-5 *3 (-273 (-294 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-341)) - (-5 *2 (-1171 *5)) (-5 *1 (-1006 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1147 *6)) - (-4 *6 (-13 (-27) (-408 *5))) - (-4 *5 (-13 (-788) (-517) (-966 (-525)))) (-4 *8 (-1147 (-385 *7))) - (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) - (-4 *3 (-320 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-591 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *2 (-525)) (-5 *1 (-186))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-854)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-242))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-975))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -1505 (-591 *7)))) - (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7))))) -(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) - ((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1) (-4 *1 (-802 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-904 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-733)) - (-4 *4 (-788))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-698))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-591 (-157 *4))) (-5 *1 (-145 *3 *4)) - (-4 *3 (-1147 (-157 (-525)))) (-4 *4 (-13 (-341) (-786))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-591 (-157 *4))) - (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4))))) + (-12 (-5 *4 (-1090)) + (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)) + (-5 *3 (-273 (-294 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-341) (-786))) (-5 *2 (-591 (-157 *4))) - (-5 *1 (-167 *4 *3)) (-4 *3 (-1147 (-157 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-876 (-205)) (-876 (-205)))) (-5 *3 (-591 (-242))) - (-5 *1 (-240)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-876 (-205)) (-876 (-205)))) (-5 *1 (-242)))) + (-12 (-5 *4 (-1090)) + (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)) + (-5 *3 (-294 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-457 *5 *6))) (-5 *3 (-457 *5 *6)) - (-14 *5 (-591 (-1089))) (-4 *6 (-429)) (-5 *2 (-1171 *6)) - (-5 *1 (-579 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-1089))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-1070 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *7)) (-4 *7 (-788)) - (-4 *8 (-882 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-734)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1171 (-385 *8)) "failed")) - (|:| -3612 (-591 (-1171 (-385 *8)))))) - (-5 *1 (-614 *5 *6 *7 *8))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1119 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *5 (-989 *2 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-964)) (-5 *1 (-778)))) + (-12 (-5 *4 (-592 (-1090))) + (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)) + (-5 *3 (-592 (-273 (-294 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-294 (-357)))) (-5 *4 (-591 (-357))) - (-5 *2 (-964)) (-5 *1 (-778))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-762)) (-5 *4 (-51)) (-5 *2 (-1176)) (-5 *1 (-772))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1129)) - (-4 *5 (-1147 *4)) (-4 *6 (-1147 (-385 *5))) - (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-4 *5 (-341)) (-5 *2 (-1070 (-1070 (-885 *5)))) - (-5 *1 (-1179 *5)) (-5 *4 (-1070 (-885 *5)))))) -(((*1 *1 *1) (-5 *1 (-987)))) -(((*1 *2 *3) - (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-286)) - (-5 *2 (-385 (-396 (-885 *4)))) (-5 *1 (-970 *4))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-728)) (-5 *2 (-964)) - (-5 *3 - (-2 (|:| |fn| (-294 (-205))) - (|:| -3756 (-591 (-1013 (-781 (-205))))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-728)) (-5 *2 (-964)) - (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) - (-5 *5 (-1013 (-205))) (-5 *6 (-591 (-242))) (-5 *2 (-1049 (-205))) - (-5 *1 (-638))))) -(((*1 *2 *3) - (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1147 (-47))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) - (-5 *1 (-117 *3)) (-4 *3 (-788)))) - ((*1 *2 *2) - (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1111))) - (-4 *3 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) - (-5 *1 (-540 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-542 (-385 (-885 *3)))) - (-4 *3 (-13 (-429) (-966 (-525)) (-788) (-587 (-525)))) - (-5 *1 (-545 *3)))) + (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) + (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) + (-5 *1 (-1096 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-341)) - (-5 *2 (-2 (|:| -3749 *3) (|:| |special| *3))) (-5 *1 (-669 *5 *3)))) + (-12 (-5 *4 (-592 (-1090))) (-4 *5 (-517)) + (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-1096 *5)) + (-5 *3 (-592 (-273 (-385 (-886 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-385 (-886 *4)))) (-4 *4 (-517)) + (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-1096 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) + (-5 *1 (-1096 *4)) (-5 *3 (-592 (-273 (-385 (-886 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1171 *5)) (-4 *5 (-341)) (-4 *5 (-975)) - (-5 *2 (-591 (-591 (-631 *5)))) (-5 *1 (-958 *5)) - (-5 *3 (-591 (-631 *5))))) + (-12 (-5 *4 (-1090)) (-4 *5 (-517)) + (-5 *2 (-592 (-273 (-385 (-886 *5))))) (-5 *1 (-1096 *5)) + (-5 *3 (-385 (-886 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1171 (-1171 *5))) (-4 *5 (-341)) (-4 *5 (-975)) - (-5 *2 (-591 (-591 (-631 *5)))) (-5 *1 (-958 *5)) - (-5 *3 (-591 (-631 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-591 *1)) (-4 *1 (-1058)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-591 *1)) (-4 *1 (-1058))))) + (-12 (-5 *4 (-1090)) (-4 *5 (-517)) + (-5 *2 (-592 (-273 (-385 (-886 *5))))) (-5 *1 (-1096 *5)) + (-5 *3 (-273 (-385 (-886 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *4))))) + (-5 *1 (-1096 *4)) (-5 *3 (-385 (-886 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *4))))) + (-5 *1 (-1096 *4)) (-5 *3 (-273 (-385 (-886 *4))))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -3932 *3)))) + (-5 *4 (-713)) (-4 *3 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) + (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-105)))) + ((*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1126)) + (-4 *3 (-1019)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) + (-5 *2 (-525)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1126)) + (-5 *2 (-525)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-525)) (-5 *3 (-132)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-525))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1148 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286)) + (-4 *10 (-883 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-592 (-1086 *10))) + (|:| |dterm| + (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10)))) + (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-592 *6)) + (-5 *5 (-592 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2858 *4))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) + (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976))))) +(((*1 *2) + (-12 (-4 *4 (-341)) (-5 *2 (-855)) (-5 *1 (-306 *3 *4)) + (-4 *3 (-307 *4)))) + ((*1 *2) + (-12 (-4 *4 (-341)) (-5 *2 (-775 (-855))) (-5 *1 (-306 *3 *4)) + (-4 *3 (-307 *4)))) + ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-855)))) + ((*1 *2) + (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-855)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-1019) (-33))) (-5 *1 (-1055 *3 *2)) + (-4 *3 (-13 (-1019) (-33)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108)) + (-5 *1 (-784 *4 *5)) (-14 *4 (-713))))) (((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-591 *7)) (|:| |badPols| (-591 *7)))) - (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4)) + (-4 *4 (-1148 *2))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -3892 (-110)) (|:| |arg| (-592 (-826 *3))))) + (-5 *1 (-826 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-826 *4))) + (-5 *1 (-826 *4)) (-4 *4 (-1019))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2734 (-592 *1)))) + (-4 *1 (-345 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-430 *3 *4 *5 *6)) + (|:| -2734 (-592 (-430 *3 *4 *5 *6))))) + (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))) +(((*1 *2) + (-12 (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) + (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-4 *4 (-1148 *3)) (-5 *2 - (-2 (|:| -2976 *3) (|:| |gap| (-712)) (|:| -2746 (-723 *3)) - (|:| -2449 (-723 *3)))) - (-5 *1 (-723 *3)) (-4 *3 (-975)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) + (-2 (|:| -2734 (-632 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-632 *3)))) + (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1148 (-525))) (-5 *2 - (-2 (|:| -2976 *1) (|:| |gap| (-712)) (|:| -2746 *1) - (|:| -2449 *1))) - (-4 *1 (-989 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) + (-2 (|:| -2734 (-632 (-525))) (|:| |basisDen| (-525)) + (|:| |basisInv| (-632 (-525))))) + (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3)))) + ((*1 *2) + (-12 (-4 *3 (-327)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 *4)) (-5 *2 - (-2 (|:| -2976 *1) (|:| |gap| (-712)) (|:| -2746 *1) - (|:| -2449 *1))) - (-4 *1 (-989 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-591 *7)) (|:| |badPols| (-591 *7)))) - (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-517)) (-4 *2 (-882 *3 *5 *4)) - (-5 *1 (-674 *5 *4 *6 *2)) (-5 *3 (-385 (-885 *6))) (-4 *5 (-734)) - (-4 *4 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $)))))))) + (-2 (|:| -2734 (-632 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-632 *4)))) + (-5 *1 (-917 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-327)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 *4)) + (-5 *2 + (-2 (|:| -2734 (-632 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-632 *4)))) + (-5 *1 (-1181 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) - (-14 *6 (-712)) (-4 *7 (-160)) (-4 *8 (-160)) - (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *9)) (-4 *9 (-975)) (-4 *5 (-788)) (-4 *6 (-734)) - (-4 *8 (-975)) (-4 *2 (-882 *9 *7 *5)) - (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-734)) - (-4 *4 (-882 *8 *6 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-854)) (-4 *5 (-286)) (-4 *3 (-1147 *5)) - (-5 *2 (-2 (|:| |plist| (-591 *3)) (|:| |modulo| *5))) - (-5 *1 (-437 *5 *3)) (-5 *4 (-591 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-2 (|:| -2542 (-1085 *6)) (|:| -3987 (-525))))) - (-4 *6 (-286)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-525)) - (-5 *1 (-684 *4 *5 *6 *7)) (-4 *7 (-882 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-591 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-395 *4))))) + (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-883 *5 *7 *6)) + (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) + (-4 *7 (-735)) + (-5 *2 + (-592 + (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) + (|:| |cols| (-592 (-525)))))) + (-5 *1 (-858 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-885 (-525))) (-5 *2 (-591 *1)) (-4 *1 (-942)))) + (-12 (-5 *3 (-1021 *4)) (-4 *4 (-1019)) (-5 *2 (-1 *4)) + (-5 *1 (-948 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357)))) ((*1 *2 *3) - (-12 (-5 *3 (-885 (-385 (-525)))) (-5 *2 (-591 *1)) (-4 *1 (-942)))) - ((*1 *2 *3) (-12 (-5 *3 (-885 *1)) (-4 *1 (-942)) (-5 *2 (-591 *1)))) + (-12 (-5 *3 (-1014 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-974))))) +(((*1 *2 *1) + (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) + (-5 *2 (-1172 *6)) (-5 *1 (-314 *3 *4 *5 *6)) + (-4 *6 (-320 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205)))) + (-5 *2 (-965)) (-5 *1 (-698))))) +(((*1 *1) (-5 *1 (-270)))) +(((*1 *1) (-5 *1 (-988)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) + (-4 *3 (-883 *7 *5 *6)) + (-5 *2 + (-2 (|:| -1737 (-713)) (|:| -2059 *3) (|:| |radicand| (-592 *3)))) + (-5 *1 (-887 *5 *6 *7 *3 *8)) (-5 *4 (-713)) + (-4 *8 + (-13 (-341) + (-10 -8 (-15 -1936 (*3 $)) (-15 -1945 (*3 $)) (-15 -4044 ($ *3)))))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702))))) +(((*1 *2 *1) + (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) + (-5 *2 (-1086 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) + (-5 *1 (-691))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-227 *5 *6))) (-4 *6 (-429)) + (-5 *2 (-227 *5 *6)) (-14 *5 (-592 (-1090))) (-5 *1 (-580 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-5 *2 (-592 (-592 *4))) + (-4 *4 (-789)) (-5 *1 (-1098 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-886 *5)) (-4 *5 (-976)) (-5 *2 (-227 *4 *5)) + (-5 *1 (-878 *4 *5)) (-14 *4 (-592 (-1090)))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-988)) (-5 *3 (-1073))))) +(((*1 *2 *2) + (-12 (-4 *3 (-517)) (-4 *4 (-924 *3)) (-5 *1 (-133 *3 *4 *2)) + (-4 *2 (-351 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1085 (-525))) (-5 *2 (-591 *1)) (-4 *1 (-942)))) + (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-4 *2 (-351 *4)) + (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1085 (-385 (-525)))) (-5 *2 (-591 *1)) (-4 *1 (-942)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-942)) (-5 *2 (-591 *1)))) + (-12 (-5 *3 (-632 *5)) (-4 *5 (-924 *4)) (-4 *4 (-517)) + (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-517)) (-4 *4 (-924 *3)) (-5 *1 (-1141 *3 *4 *2)) + (-4 *2 (-1148 *4))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-699))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-592 (-1086 *13))) (-5 *3 (-1086 *13)) + (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13)) + (-5 *7 (-592 (-592 (-2 (|:| -4111 (-713)) (|:| |pcoef| *13))))) + (-5 *8 (-592 (-713))) (-5 *9 (-1172 (-592 (-1086 *10)))) + (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-883 *10 *11 *12)) + (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) + (-5 *2 + (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) + (|:| |success| (-108)))) + (-5 *1 (-731)) (-5 *5 (-525))))) +(((*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-961))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) + (-4 *6 (-13 (-517) (-967 *5))) (-4 *5 (-517)) + (-5 *2 (-592 (-592 (-273 (-385 (-886 *6)))))) (-5 *1 (-968 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-713)) (-4 *6 (-1019)) (-4 *7 (-834 *6)) + (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7)) + (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4254))))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-695))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3603 *1) (|:| -4241 *1) (|:| |associate| *1))) + (-4 *1 (-517))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-592 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-525))))) + (-4 *2 (-517)) (-5 *1 (-396 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-786) (-341))) (-4 *3 (-1147 *4)) (-5 *2 (-591 *1)) - (-4 *1 (-991 *4 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-591 (-525))) (-5 *3 (-631 (-525))) (-5 *1 (-1028))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-712)) (-4 *5 (-517)) + (-12 + (-5 *3 + (-2 (|:| |contp| (-525)) + (|:| -2826 (-592 (-2 (|:| |irr| *4) (|:| -3862 (-525))))))) + (-4 *4 (-1148 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4))))) +(((*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1148 *5)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-901 *5 *3)) (-4 *3 (-1147 *5))))) + (-592 + (-2 (|:| -2734 (-632 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-632 *6))))) + (-5 *1 (-471 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2734 (-632 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-632 *6)))) + (-4 *7 (-1148 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) + (-4 *3 (-13 (-341) (-1112) (-933))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 (-385 *2))) + (-4 *2 (-1148 *4)) (-5 *1 (-319 *3 *4 *2 *5)) + (-4 *3 (-320 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1130)) + (-4 *4 (-1148 (-385 *2))) (-4 *2 (-1148 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))) (((*1 *2 *2) - (-12 (-4 *2 (-160)) (-4 *2 (-975)) (-5 *1 (-656 *2 *3)) - (-4 *3 (-593 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-775 *2)) (-4 *2 (-160)) (-4 *2 (-975))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-640))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1018))))) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4)) + (-4 *4 (-408 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *1 (-110)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-110)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4)) + (-4 *4 (-408 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-110)) (-5 *1 (-151)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4)) + (-4 *4 (-13 (-408 *3) (-933))))) + ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281)))) + ((*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4)) + (-4 *3 (-408 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4)) + (-4 *4 (-408 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4)) + (-4 *4 (-13 (-408 *3) (-933) (-1112)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) + (-5 *1 (-163 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-562 *3 *4)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-5 *2 (-108))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) - (-5 *2 (-2 (|:| -2976 *4) (|:| -2746 *3) (|:| -2449 *3))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-989 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-517)) (-4 *3 (-975)) - (-5 *2 (-2 (|:| -2976 *3) (|:| -2746 *1) (|:| -2449 *1))) - (-4 *1 (-1147 *3))))) + (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) + (-4 *3 (-1019)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-108)) + (-5 *1 (-838 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-855)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-876 *3) (-876 *3))) (-5 *1 (-163 *3)) - (-4 *3 (-13 (-341) (-1111) (-932)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-517)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-908 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-964)) (-5 *1 (-284)))) - ((*1 *2 *3) (-12 (-5 *3 (-591 (-964))) (-5 *2 (-964)) (-5 *1 (-284)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 *1)) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *1) (-5 *1 (-987))) - ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1067 *4)) - (-4 *4 (-1125)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1125))))) + (-12 (-5 *3 (-385 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-517)) + (-4 *4 (-976)) (-4 *2 (-1163 *4)) (-5 *1 (-1166 *4 *5 *6 *2)) + (-4 *6 (-602 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-855)) (-5 *2 (-713)) (-5 *1 (-1020 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1172 (-1090))) (-5 *3 (-1172 (-430 *4 *5 *6 *7))) + (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-855)) + (-14 *6 (-592 (-1090))) (-14 *7 (-1172 (-632 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-430 *4 *5 *6 *7))) + (-5 *1 (-430 *4 *5 *6 *7)) (-4 *4 (-160)) (-14 *5 (-855)) + (-14 *6 (-592 *2)) (-14 *7 (-1172 (-632 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-430 *3 *4 *5 *6))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) + (-14 *6 (-1172 (-632 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 (-1090))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) + (-14 *6 (-1172 (-632 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1090)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) + (-14 *4 (-855)) (-14 *5 (-592 *2)) (-14 *6 (-1172 (-632 *3))))) + ((*1 *1) + (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-855)) + (-14 *4 (-592 (-1090))) (-14 *5 (-1172 (-632 *2)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1125)) (-5 *2 (-108))))) + (-12 (-5 *2 (-713)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-976)) (-4 *4 (-160)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)) + (-4 *3 (-160))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) + (-4 *2 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3)) + (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) + (-4 *2 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138))) + (-5 *1 (-1067 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-838 *4)) (-4 *4 (-1018)) (-5 *2 (-591 (-712))) - (-5 *1 (-837 *4))))) + (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1019) (-33))) + (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1056 *4 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-445)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-965)) (-5 *1 (-691))))) +(((*1 *2 *1) + (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-108)) + (-5 *1 (-335 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-108)) + (-5 *1 (-495 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-341)) (-4 *3 (-976)) + (-5 *1 (-1075 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) + (-5 *2 (-965)) (-5 *1 (-696))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1071 *4))) (-4 *4 (-341)) + (-4 *4 (-976)) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-976)) (-5 *1 (-655 *3 *4)) + (-4 *4 (-1148 *3))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-789)) (-5 *3 (-592 *6)) (-5 *5 (-592 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-592 *5)) (|:| |f3| *5) + (|:| |f4| (-592 *5)))) + (-5 *1 (-1098 *6)) (-5 *4 (-592 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-618 *3)) (-4 *3 (-1125)))) + (-12 (-5 *3 (-273 (-385 (-886 *5)))) (-5 *4 (-1090)) + (-4 *5 (-13 (-286) (-789) (-138))) + (-5 *2 (-1080 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) + (-5 *1 (-1046 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) + (-4 *5 (-13 (-286) (-789) (-138))) + (-5 *2 (-1080 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) + (-5 *1 (-1046 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 (-1172 *4))) (-4 *4 (-976)) (-5 *2 (-632 *4)) + (-5 *1 (-959 *4))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976)) + (-5 *1 (-1075 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) + (-14 *4 (-1090)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-712)) (-4 *1 (-682 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-788)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525)))) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *1 (-911 *3)) (-4 *3 (-975)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-591 *1)) (-5 *3 (-591 *7)) (-4 *1 (-994 *4 *5 *6 *7)) - (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-994 *4 *5 *6 *7)))) + (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-591 *1)) (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-591 *1)) - (-4 *1 (-994 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-975)) (-4 *2 (-733))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-712)) (-4 *5 (-160)))) - ((*1 *1 *1) - (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-712)) - (-4 *4 (-160)))) - ((*1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) - (-4 *4 (-351 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-975)) (-4 *1 (-629 *3 *2 *4)) (-4 *2 (-351 *3)) - (-4 *4 (-351 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1056 *2 *3)) (-14 *2 (-712)) (-4 *3 (-975))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 *4)) (-4 *4 (-37 *3)) (-4 *4 (-975)) - (-5 *3 (-385 (-525))) (-5 *1 (-1074 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018))))) + (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-855)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-808)) + (-5 *2 (-1177)) (-5 *1 (-1173))))) (((*1 *2 *3) - (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) - (-5 *2 (-712)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-712)))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) + (-5 *2 (-357)) (-5 *1 (-246)))) ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) - (-4 *6 (-351 *4)) (-5 *2 (-712)) (-5 *1 (-630 *4 *5 *6 *3)) - (-4 *3 (-629 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) - (-5 *2 (-712))))) -(((*1 *2 *1) (-12 (-5 *2 (-1036)) (-5 *1 (-781 *3)) (-4 *3 (-1018))))) + (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284))))) (((*1 *2 *3) - (-12 (-5 *3 (-1013 (-781 (-357)))) (-5 *2 (-1013 (-781 (-205)))) - (-5 *1 (-284))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) (-4 *4 (-1018)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-631 *5))) (-5 *4 (-1171 *5)) (-4 *5 (-286)) - (-4 *5 (-975)) (-5 *2 (-631 *5)) (-5 *1 (-958 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-525)) (-5 *5 (-1072)) (-5 *6 (-631 (-205))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-691))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *4)) (-4 *4 (-341)) (-5 *2 (-631 *4)) - (-5 *1 (-755 *4 *5)) (-4 *5 (-601 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *5)) (-5 *4 (-712)) (-4 *5 (-341)) - (-5 *2 (-631 *5)) (-5 *1 (-755 *5 *6)) (-4 *6 (-601 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1147 (-385 *2))) - (-4 *2 (-1147 *5)) (-5 *1 (-196 *5 *2 *6 *3)) - (-4 *3 (-320 *5 *2 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1091 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) + (|:| |lb| (-592 (-782 (-205)))) + (|:| |cf| (-592 (-294 (-205)))) + (|:| |ub| (-592 (-782 (-205)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-592 (-294 (-205)))) + (|:| -2039 (-592 (-205))))))) + (-5 *2 (-592 (-1073))) (-5 *1 (-246))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-976)) (-4 *4 (-789)) + (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1737 (-525)))) + (-4 *1 (-408 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-110)) (-4 *4 (-976)) (-4 *4 (-789)) + (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1737 (-525)))) + (-4 *1 (-408 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-789)) + (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1737 (-525)))) + (-4 *1 (-408 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-826 *3)) (|:| -1737 (-713)))) + (-5 *1 (-826 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -1737 (-713)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) + (-4 *7 (-883 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -1737 (-525)))) + (-5 *1 (-884 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-341) + (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) + (-15 -1945 (*7 $)))))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-632 (-205))) (-5 *6 (-108)) (-5 *7 (-632 (-525))) + (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) + (-5 *3 (-525)) (-5 *4 (-205)) (-5 *2 (-965)) (-5 *1 (-696))))) (((*1 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-517)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-908 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1018)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788))))) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) + (-14 *4 *2)))) (((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1085 *9)) (-5 *4 (-591 *7)) (-5 *5 (-591 (-591 *8))) - (-4 *7 (-788)) (-4 *8 (-286)) (-4 *9 (-882 *8 *6 *7)) (-4 *6 (-734)) - (-5 *2 - (-2 (|:| |upol| (-1085 *8)) (|:| |Lval| (-591 *8)) - (|:| |Lfact| - (-591 (-2 (|:| -2542 (-1085 *8)) (|:| -3987 (-525))))) - (|:| |ctpol| *8))) - (-5 *1 (-684 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1072)) (-5 *1 (-51))))) -(((*1 *1 *1) - (-12 (-4 *2 (-429)) (-4 *3 (-788)) (-4 *4 (-734)) - (-5 *1 (-918 *2 *3 *4 *5)) (-4 *5 (-882 *2 *4 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-788)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-798 *3)) (-14 *3 (-591 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-898 *3)) (-4 *3 (-899)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-920)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1011 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) - (-5 *2 (-1089)))) - ((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1167 *3)) (-14 *3 *2)))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1119 *3 *4 *5 *2)) (-4 *3 (-517)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *2 (-989 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-631 (-157 (-205)))) - (-5 *2 (-964)) (-5 *1 (-697))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) + (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789)) + (-4 *5 (-967 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2)) + (-4 *2 (-408 *5)) (-4 *2 - (-13 (-380) - (-10 -7 (-15 -2686 (*2 *4)) (-15 -1970 ((-854) *2)) - (-15 -3612 ((-1171 *2) (-854))) (-15 -3861 (*2 *2))))) - (-5 *1 (-334 *2 *4))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4251)) (-4 *1 (-224 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-591 (-242))) (-5 *4 (-1089)) - (-5 *1 (-241 *2)) (-4 *2 (-1125)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-591 (-242))) (-5 *4 (-1089)) (-5 *2 (-51)) - (-5 *1 (-242))))) + (-13 (-341) (-281) + (-10 -8 (-15 -1936 ((-1042 *5 (-565 $)) $)) + (-15 -1945 ((-1042 *5 (-565 $)) $)) + (-15 -4044 ($ (-1042 *5 (-565 $)))))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-1079 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1174))))) (((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-429))))) -(((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) - ((*1 *1 *1) (-4 *1 (-984)))) -(((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) - ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) - ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) - ((*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) - ((*1 *2 *1) - (-12 (-5 *2 (-385 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525)))) - ((*1 *1 *1) (-4 *1 (-984)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-796))) ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-341)) (-5 *2 (-591 (-1070 *4))) (-5 *1 (-264 *4 *5)) - (-5 *3 (-1070 *4)) (-4 *5 (-1162 *4))))) + (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1126))))) +(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-294 (-205)))) (-5 *4 (-712)) - (-5 *2 (-631 (-205))) (-5 *1 (-246))))) -(((*1 *2 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-13 (-341) (-1111) (-932))) - (-5 *1 (-163 *3))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-525)) (-5 *5 (-1072)) (-5 *6 (-631 (-205))) - (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-205)) (-5 *2 (-964)) (-5 *1 (-691))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *1 *1) (-4 *1 (-510)))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)))) - ((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-975)) (-14 *3 (-591 (-1089))))) - ((*1 *1 *1) - (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-975) (-788))) - (-14 *3 (-591 (-1089))))) - ((*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-975)) (-4 *3 (-1018)))) - ((*1 *1 *1) - (-12 (-14 *2 (-591 (-1089))) (-4 *3 (-160)) - (-4 *5 (-218 (-2028 *2) (-712))) - (-14 *6 - (-1 (-108) (-2 (|:| -3229 *4) (|:| -3987 *5)) - (-2 (|:| -3229 *4) (|:| -3987 *5)))) - (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-788)) - (-4 *7 (-882 *3 *5 (-798 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-788)))) - ((*1 *1 *1) - (-12 (-4 *2 (-517)) (-5 *1 (-572 *2 *3)) (-4 *3 (-1147 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-975)))) - ((*1 *1 *1) - (-12 (-5 *1 (-677 *2 *3)) (-4 *3 (-788)) (-4 *2 (-975)) - (-4 *3 (-668)))) - ((*1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)))) + (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) + (-5 *1 (-1041 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 (-385 (-886 *6)))) + (-5 *3 (-385 (-886 *6))) + (-4 *6 (-13 (-517) (-967 (-525)) (-138))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-531 *6))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) + (-4 *2 (-1148 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1126)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788)))) - ((*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3)) (-4 *2 (-975)) (-4 *3 (-784))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-907 *4 *5 *3 *6)) (-4 *4 (-975)) (-4 *5 (-734)) - (-4 *3 (-788)) (-4 *6 (-989 *4 *5 *3)) (-5 *2 (-108))))) + (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126)) (-14 *4 *2)))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *1) (-5 *1 (-415)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) - (-5 *1 (-717 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 (-591 *3))) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-591 (-796)))) (-5 *1 (-796)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1056 *3 *4)) (-5 *1 (-924 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-341)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-591 *5))) (-4 *5 (-975)) - (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5)) - (-4 *7 (-218 *3 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-1089))) (-4 *4 (-13 (-286) (-138))) - (-4 *5 (-13 (-788) (-566 (-1089)))) (-4 *6 (-734)) - (-5 *2 (-591 (-385 (-885 *4)))) (-5 *1 (-857 *4 *5 *6 *7)) - (-4 *7 (-882 *4 *6 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-964)) - (-5 *1 (-690))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *2 (-964)) - (-5 *1 (-690))))) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) + (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) + (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *9)) (-4 *9 (-976)) (-4 *5 (-789)) (-4 *6 (-735)) + (-4 *8 (-976)) (-4 *2 (-883 *9 *7 *5)) + (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) + (-4 *4 (-883 *8 *6 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-632 *2)) (-5 *4 (-713)) + (-4 *2 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-4 *5 (-1148 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -14802,3348 +14106,4049 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1070 (-205))) + (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3756 + (|:| -2853 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-520))))) -(((*1 *2 *1) (-12 (-4 *3 (-1125)) (-5 *2 (-591 *1)) (-4 *1 (-940 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) - (-14 *3 (-854)) (-4 *4 (-975))))) -(((*1 *2 *1) - (-12 (-5 *2 (-806 (-898 *3) (-898 *3))) (-5 *1 (-898 *3)) - (-4 *3 (-899))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-796))))) -(((*1 *2 *1) - (-12 (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *1)) - (-4 *1 (-882 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *6)) (-5 *4 (-591 (-1070 *7))) (-4 *6 (-788)) - (-4 *7 (-882 *5 (-497 *6) *6)) (-4 *5 (-975)) - (-5 *2 (-1 (-1070 *7) *7)) (-5 *1 (-1042 *5 *6 *7))))) + (-5 *2 (-965)) (-5 *1 (-284))))) +(((*1 *2 *2) + (-12 (-4 *3 (-976)) (-4 *4 (-1148 *3)) (-5 *1 (-152 *3 *4 *2)) + (-4 *2 (-1148 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))) + ((*1 *1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1071 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) - (-4 *4 (-327)) (-5 *2 (-1176)) (-5 *1 (-495 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-975))))) + (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2)) + (-4 *3 (-967 *4)) (-4 *3 (-13 (-789) (-517)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-429)) (-4 *4 (-517)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2596 *4))) (-5 *1 (-901 *4 *3)) - (-4 *3 (-1147 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-341)) (-4 *4 (-1147 *3)) (-4 *5 (-1147 (-385 *4))) - (-5 *2 (-1171 *6)) (-5 *1 (-314 *3 *4 *5 *6)) - (-4 *6 (-320 *3 *4 *5))))) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 (-1171 *4))) (-4 *4 (-975)) (-5 *2 (-631 *4)) - (-5 *1 (-958 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1125)) - (-4 *3 (-351 *4)) (-4 *5 (-351 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)))) - ((*1 *2 *1) - (-12 (-4 *2 (-975)) (-5 *1 (-49 *2 *3)) (-14 *3 (-591 (-1089))))) - ((*1 *2 *1) - (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) - (-4 *3 (-13 (-975) (-788))) (-14 *4 (-591 (-1089))))) - ((*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1018)) (-4 *2 (-975)))) - ((*1 *2 *1) - (-12 (-14 *3 (-591 (-1089))) (-4 *5 (-218 (-2028 *3) (-712))) - (-14 *6 - (-1 (-108) (-2 (|:| -3229 *4) (|:| -3987 *5)) - (-2 (|:| -3229 *4) (|:| -3987 *5)))) - (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-788)) - (-4 *7 (-882 *2 *5 (-798 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1018)))) - ((*1 *2 *1) - (-12 (-4 *2 (-517)) (-5 *1 (-572 *2 *3)) (-4 *3 (-1147 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-975)))) - ((*1 *2 *1) - (-12 (-4 *2 (-975)) (-5 *1 (-677 *2 *3)) (-4 *3 (-788)) - (-4 *3 (-668)))) - ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)))) - ((*1 *2 *1) - (-12 (-4 *1 (-904 *2 *3 *4)) (-4 *3 (-733)) (-4 *4 (-788)) - (-4 *2 (-975)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *2 (-788))))) + (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) + (-5 *2 (-457 *4 *5)) (-5 *1 (-878 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-699))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1029))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 (-886 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) + (-14 *4 (-592 (-1090))))) + ((*1 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) + (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *1 (-427 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) + (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *1 (-427 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) + (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-592 (-722 *3 (-799 *4)))) (-4 *3 (-429)) + (-14 *4 (-592 (-1090))) (-5 *1 (-577 *3 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))) +(((*1 *1 *1 *1) (-4 *1 (-900)))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019))))) (((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *2)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018))))) -(((*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1147 *4)) (-4 *4 (-1129)) - (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1147 (-385 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1171 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-160)) - (-4 *1 (-345 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1171 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-160)) - (-4 *1 (-348 *4 *5)) (-4 *5 (-1147 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) - (-4 *4 (-1147 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3))))) + (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) + (-14 *4 (-713)) (-4 *5 (-160))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-808)) + (-5 *5 (-855)) (-5 *6 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1176)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-445)) + (-5 *1 (-1176)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-592 (-242))) + (-5 *2 (-445)) (-5 *1 (-1176))))) +(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) - (-5 *2 - (-2 (|:| |zeros| (-1070 (-205))) (|:| |ones| (-1070 (-205))) - (|:| |singularities| (-1070 (-205))))) - (-5 *1 (-100))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *6 (-567 (-1090))) + (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *2 (-1080 (-592 (-886 *4)) (-592 (-273 (-886 *4))))) + (-5 *1 (-477 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) + (-4 *2 + (-13 (-380) + (-10 -7 (-15 -4044 (*2 *4)) (-15 -2111 ((-855) *2)) + (-15 -2734 ((-1172 *2) (-855))) (-15 -3459 (*2 *2))))) + (-5 *1 (-334 *2 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1090)) (-5 *1 (-308))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-965)) (-5 *1 (-284)))) + ((*1 *2 *3) (-12 (-5 *3 (-592 (-965))) (-5 *2 (-965)) (-5 *1 (-284)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1 *1) (-5 *1 (-988))) + ((*1 *2 *3) + (-12 (-5 *3 (-1071 (-1071 *4))) (-5 *2 (-1071 *4)) (-5 *1 (-1068 *4)) + (-4 *4 (-1126)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) + (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205))) + (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *3 (-525)) (-5 *2 (-965)) (-5 *1 (-697))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-631 *3)) - (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-631 *3)) - (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-853)) (-5 *2 (-2 (|:| -2976 (-591 *1)) (|:| -3965 *1))) - (-5 *3 (-591 *1))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1147 *5)) (-4 *5 (-341)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-535 *5 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)))) - ((*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1018)))) + (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5)) + (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) + (-5 *1 (-295 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7)) + (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) + (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) + (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) + (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8)) + (-5 *6 (-592 *8)) (-4 *8 (-408 *7)) + (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) + (-5 *1 (-295 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) + (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) + (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *6 (-592 (-273 *8))) + (-4 *8 (-408 *7)) (-5 *5 (-273 *8)) + (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) + (-5 *1 (-295 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6)) + (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) + (-5 *1 (-295 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) + (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) + (-5 *1 (-295 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) + (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) + (-5 *1 (-295 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3)) + (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) + (-5 *2 (-51)) (-5 *1 (-295 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789))))) +(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) ((*1 *2 *1) - (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) - (-4 *6 (-218 (-2028 *3) (-712))) - (-14 *7 - (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *6)) - (-2 (|:| -3229 *5) (|:| -3987 *6)))) - (-5 *2 (-655 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-788)) (-4 *8 (-882 *4 *6 (-798 *3))))) + (-12 (-4 *3 (-1019)) + (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))) + (-5 *1 (-998 *3 *4 *2)) + (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-668)) (-4 *2 (-788)) (-5 *1 (-677 *3 *2)) - (-4 *3 (-975)))) - ((*1 *1 *1) - (-12 (-4 *1 (-904 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-733)) - (-4 *4 (-788))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-975)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1147 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3192 *6) (|:| |sol?| (-108))) (-525) - *6)) - (-4 *6 (-341)) (-4 *7 (-1147 *6)) - (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) - (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7))))) + (-12 (-4 *2 (-1019)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1019))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1147 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-160)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *2 (-160)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 (-308))) (-5 *1 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-781 (-205)))) (-5 *4 (-205)) (-5 *2 (-591 *4)) - (-5 *1 (-246))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *3 (-591 (-525))) - (-5 *1 (-816))))) -(((*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)))) - ((*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-788))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 (-1072))) (-5 *2 (-1072)) (-5 *1 (-174)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 (-796))) (-5 *1 (-796))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-631 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) - (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-964)) - (-5 *1 (-691))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *2 *3) - (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284))))) -(((*1 *2) - (-12 (-4 *3 (-517)) (-5 *2 (-591 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-395 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-591 *6)) (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) - (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) - (-4 *3 (-517))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-525)) (-5 *5 (-1073)) (-5 *6 (-632 (-205))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-692))))) (((*1 *2 *1) - (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-975)) (-4 *4 (-733)) - (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-788)) (-5 *2 (-108))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) + (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) + (-4 *2 (-1163 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) (-4 *4 (-429)) (-4 *4 (-789)) + (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) - (-5 *2 (-631 *4)))) - ((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-631 *4)) (-5 *1 (-394 *3 *4)) - (-4 *3 (-395 *4)))) - ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-631 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-859))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-520))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-126))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-564 (-47)))) (-5 *1 (-47)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564 (-47))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 (-47))) (-5 *3 (-591 (-564 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 (-47))) (-5 *3 (-564 (-47))) (-5 *1 (-47)))) - ((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) + (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-341) (-786))) (-5 *1 (-167 *2 *3)) - (-4 *3 (-1147 (-157 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-854)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) - ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) - ((*1 *2 *1) - (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1147 *2)) (-4 *2 (-160)))) + (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976)) + (-5 *1 (-1075 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) + (-14 *4 (-1090)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) ((*1 *2 *1) - (-12 (-4 *4 (-1147 *2)) (-4 *2 (-923 *3)) (-5 *1 (-391 *3 *2 *4 *5)) - (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-966 *2))))) + (-12 (-4 *3 (-1019)) + (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))) + (-5 *1 (-998 *3 *4 *2)) + (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))))) ((*1 *2 *1) - (-12 (-4 *4 (-1147 *2)) (-4 *2 (-923 *3)) - (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4)) - (-14 *6 (-1171 *5)))) + (-12 (-4 *2 (-1019)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1019))))) +(((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-525)) (-5 *5 (-1073)) (-5 *6 (-632 (-205))) + (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-692))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3)) + (-4 *3 (-567 (-501))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-205) (-205) (-205))) + (-5 *1 (-646 *3)) (-4 *3 (-567 (-501)))))) +(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1019)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-854)) (-4 *5 (-975)) - (-4 *2 (-13 (-382) (-966 *5) (-341) (-1111) (-263))) - (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1147 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-564 (-468)))) (-5 *1 (-468)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-564 (-468))) (-5 *1 (-468)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 (-468))) (-5 *3 (-591 (-564 (-468)))) - (-5 *1 (-468)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 (-468))) (-5 *3 (-564 (-468))) (-5 *1 (-468)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 *4)) (-5 *3 (-854)) (-4 *4 (-327)) - (-5 *1 (-495 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-666 *4 *2)) (-4 *2 (-1147 *4)) - (-5 *1 (-716 *4 *2 *5 *3)) (-4 *3 (-1147 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)))) - ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)))) - ((*1 *1 *1) (-4 *1 (-984)))) + (-12 (-5 *4 (-525)) (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) + (-4 *3 (-976)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1187 *4 *3)) + (-4 *3 (-976))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2124 *3))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *1 *1) (-4 *1 (-223))) - ((*1 *1 *1) - (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1147 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3150 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1125))) - (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1125))))) - ((*1 *1 *1) (-4 *1 (-450))) - ((*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)) (-4 *2 (-341))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-854)) (-4 *3 (-341)) - (-14 *4 (-924 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1147 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-657 *2 *3 *4 *5 *6)) (-4 *2 (-160)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) - ((*1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-341)))) - ((*1 *1 *1) (|partial| -4 *1 (-664))) - ((*1 *1 *1) (|partial| -4 *1 (-668))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-717 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-991 *3 *2)) (-4 *3 (-13 (-786) (-341))) - (-4 *2 (-1147 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-788)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-788)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -1265 - (-2 (|:| |var| (-1089)) (|:| |fn| (-294 (-205))) - (|:| -3756 (-1013 (-781 (-205)))) (|:| |abserr| (-205)) - (|:| |relerr| (-205)))) - (|:| -1568 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1070 (-205))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3756 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-520)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-636 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -1265 - (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) - (|:| |fn| (-1171 (-294 (-205)))) (|:| |yinit| (-591 (-205))) - (|:| |intvals| (-591 (-205))) (|:| |g| (-294 (-205))) - (|:| |abserr| (-205)) (|:| |relerr| (-205)))) - (|:| -1568 - (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) - (|:| |expense| (-357)) (|:| |accuracy| (-357)) - (|:| |intermediateResults| (-357)))))) - (-5 *1 (-744)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1176)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) - (-5 *2 - (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) - (|:| |success| (-108)))) - (-5 *1 (-730)) (-5 *5 (-525))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2)) - (-4 *3 (-966 *4)) (-4 *3 (-13 (-788) (-517)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *1 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-308))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *1) - (-12 (-5 *2 (-591 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1162 *3))))) -(((*1 *2) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-100))))) -(((*1 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174)))) - ((*1 *2 *2) (-12 (-5 *2 (-807)) (-5 *1 (-1174))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1147 (-525)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) - (-4 *5 (-13 (-27) (-1111) (-408 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *4))))) + (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3)) + (-5 *1 (-95 *4 *3)) (-4 *3 (-1148 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-385 (-525))) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *5))))) + (-12 (-5 *4 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-13 (-429) (-138))) + (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-848 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) + (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) + (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-849 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) - (-4 *3 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) - (-5 *5 (-1138 (-385 (-525)))) (-5 *6 (-385 (-525))) - (-4 *8 (-13 (-27) (-1111) (-408 *7))) - (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-385 (-525)))) - (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1111) (-408 *8))) - (-4 *8 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-385 (-525))) (-4 *4 (-975)) (-4 *1 (-1154 *4 *3)) - (-4 *3 (-1131 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-591 *4)) (-4 *4 (-1018)) (-4 *4 (-1125)) (-5 *2 (-108)) - (-5 *1 (-1070 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-712)) (-4 *5 (-975)) (-4 *2 (-1147 *5)) - (-5 *1 (-1165 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1162 *5))))) + (-12 (-5 *4 (-396 (-886 *6))) (-5 *5 (-1090)) (-5 *3 (-886 *6)) + (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-849 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 *2)) + (-4 *3 (-976))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2)) + (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)))) + (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-1116 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4)))))) +(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-826 *6))) + (-5 *5 (-1 (-823 *6 *8) *8 (-826 *6) (-823 *6 *8))) (-4 *6 (-1019)) + (-4 *8 (-13 (-976) (-567 (-826 *6)) (-967 *7))) (-5 *2 (-823 *6 *8)) + (-4 *7 (-13 (-976) (-789))) (-5 *1 (-875 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-5 *2 (-1013 *3)) (-5 *1 (-1011 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) (-12 (-5 *1 (-1138 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) - (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) - (-5 *4 (-294 (-357))) (-5 *1 (-308)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) - (-5 *4 (-294 (-525))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-157 (-357))))) - (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-357)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-525)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-157 (-357))))) - (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-357)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-525)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-357))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-525))) (-5 *1 (-308)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) - (-5 *4 (-294 (-635))) (-5 *1 (-308)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) - (-5 *4 (-294 (-640))) (-5 *1 (-308)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-885 (-525)))) - (-5 *4 (-294 (-642))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-635)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-640)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-294 (-642)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-635)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-640)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-294 (-642)))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-635))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-640))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-1171 (-642))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-635))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-640))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-631 (-642))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-635))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-640))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-294 (-642))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-308)))) - ((*1 *1 *1 *1) (-5 *1 (-796)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-788) (-517) (-966 (-525)))) (-5 *2 (-385 (-525))) - (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-564 *3)) (-4 *3 (-408 *5)) - (-4 *5 (-13 (-788) (-517) (-966 (-525)))) - (-5 *2 (-1085 (-385 (-525)))) (-5 *1 (-411 *5 *3))))) + (-12 (-5 *2 (-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51)))) + (-5 *1 (-826 *3)) (-4 *3 (-1019))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-294 (-205))) (|:| -3492 (-591 (-205))) - (|:| |lb| (-591 (-781 (-205)))) - (|:| |cf| (-591 (-294 (-205)))) - (|:| |ub| (-591 (-781 (-205)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-591 (-294 (-205)))) - (|:| -3492 (-591 (-205))))))) - (-5 *2 (-591 (-1072))) (-5 *1 (-246))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713)) + (-5 *1 (-879 *4 *5)) (-4 *5 (-1148 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-591 (-591 (-876 (-205))))) (-5 *3 (-591 (-807))) - (-5 *1 (-445))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) - (-4 *5 (-13 (-27) (-1111) (-408 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-788) (-966 *4) (-587 *4))) - (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *5))))) + (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1172 (-525))) (-5 *3 (-525)) (-5 *1 (-1029)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1172 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525)) + (-5 *1 (-1029))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-525)) (-5 *6 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) + (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) + (-5 *1 (-241 *2)) (-4 *2 (-1126)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-429) (-788) (-966 *5) (-587 *5))) (-5 *5 (-525)) - (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1138 (-525))) - (-4 *7 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-525))) - (-4 *3 (-13 (-27) (-1111) (-408 *7))) - (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-525)) (-4 *4 (-975)) (-4 *1 (-1133 *4 *3)) - (-4 *3 (-1162 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1131 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-591 (-591 *6))) (-4 *6 (-882 *3 *5 *4)) - (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-788) (-566 (-1089)))) - (-4 *5 (-734)) (-5 *1 (-857 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *5 (-205)) - (-5 *2 (-964)) (-5 *1 (-693))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-157 (-205)))) - (-5 *2 (-964)) (-5 *1 (-696))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-510)))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) + (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *2 (-51)) + (-5 *1 (-242))))) +(((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) - ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899))))) -(((*1 *2 *1) - (-12 (-5 *2 (-796)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-712)) - (-14 *4 (-712)) (-4 *5 (-160))))) -(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-797)))) - ((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-797)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-796)) (-5 *2 (-1176)) (-5 *1 (-797)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-1070 *4)) - (-4 *4 (-1018)) (-4 *4 (-1125))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-797))))) (((*1 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) - (-4 *5 (-13 (-27) (-1111) (-408 *4))))) + (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *4))))) + (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284))))) +(((*1 *2 *2) + (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) + (-5 *1 (-163 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1019)) (-4 *6 (-820 *5)) (-5 *2 (-819 *5 *6 (-592 *6))) + (-5 *1 (-821 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-826 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-712)) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *5))))) + (-12 (-4 *5 (-1019)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-821 *5 *3 *4)) + (-4 *3 (-967 (-1090))) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-273 *3)) (-5 *5 (-712)) - (-4 *3 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) + (-12 (-4 *5 (-1019)) (-5 *2 (-592 (-273 (-886 *3)))) + (-5 *1 (-821 *5 *3 *4)) (-4 *3 (-976)) + (-2823 (-4 *3 (-967 (-1090)))) (-4 *3 (-820 *5)) + (-4 *4 (-567 (-826 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) - (-4 *6 (-13 (-27) (-1111) (-408 *5))) - (-4 *5 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) - (-4 *3 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1138 (-712))) - (-4 *7 (-13 (-27) (-1111) (-408 *6))) - (-4 *6 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1089)) (-5 *5 (-273 *3)) (-5 *6 (-1138 (-712))) - (-4 *3 (-13 (-27) (-1111) (-408 *7))) - (-4 *7 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-975)) (-4 *2 (-1162 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-631 (-385 (-525)))) (-5 *2 (-591 *4)) (-5 *1 (-720 *4)) - (-4 *4 (-13 (-341) (-786)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) - (-5 *2 (-964)) (-5 *1 (-695))))) + (-12 (-4 *5 (-1019)) (-5 *2 (-823 *5 *3)) (-5 *1 (-821 *5 *3 *4)) + (-2823 (-4 *3 (-967 (-1090)))) (-2823 (-4 *3 (-976))) + (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-704)))) (((*1 *2 *3 *4) (-12 (-5 *4 (-108)) - (-4 *5 (-13 (-429) (-788) (-966 (-525)) (-587 (-525)))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |%expansion| (-291 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) - (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1111) (-408 *5))) - (-14 *6 (-1089)) (-14 *7 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-854)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) - ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) - ((*1 *2 *1) - (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1147 *2)) (-4 *2 (-160)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 *4)) (-5 *3 (-854)) (-4 *4 (-327)) - (-5 *1 (-495 *4)))) + (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) + (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) + (-14 *6 (-1090)) (-14 *7 *3)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1126)) + (-4 *3 (-351 *4)) (-4 *5 (-351 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) + ((*1 *1 *1) (-4 *1 (-281))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228))))) +(((*1 *2 *3) + (-12 (-4 *4 (-789)) (-5 *2 (-1099 (-592 *4))) (-5 *1 (-1098 *4)) + (-5 *3 (-592 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-735)) + (-4 *5 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $))))) (-4 *6 (-517)) + (-5 *2 (-2 (|:| -3207 (-886 *6)) (|:| -4134 (-886 *6)))) + (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-883 (-385 (-886 *6)) *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-976)) (-4 *5 (-1148 *4)) (-5 *2 (-1 *6 (-592 *6))) + (-5 *1 (-1166 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1163 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-838 *3)) (-4 *3 (-1019))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-976)) + (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1172 (-592 *3))) (-4 *4 (-286)) + (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-205)) + (-5 *2 + (-2 (|:| |brans| (-592 (-592 (-877 *4)))) + (|:| |xValues| (-1014 *4)) (|:| |yValues| (-1014 *4)))) + (-5 *1 (-144)) (-5 *3 (-592 (-592 (-877 *4))))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-976)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3)) + (-4 *3 (-1148 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) - (-4 *5 (-218 *3 *2)) (-4 *2 (-975))))) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-108))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *4))))))) + (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138))) + (-4 *7 (-883 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-5 *1 (-858 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) + (-4 *4 (-13 (-1019) (-33)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-976)) + (-5 *2 (-1172 (-1172 *5))) (-5 *1 (-959 *5)) (-5 *4 (-1172 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-885 *4))) (-4 *4 (-429)) (-5 *2 (-108)) - (-5 *1 (-338 *4 *5)) (-14 *5 (-591 (-1089))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1130)) + (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) + (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-221)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-721 *4 (-798 *5)))) (-4 *4 (-429)) - (-14 *5 (-591 (-1089))) (-5 *2 (-108)) (-5 *1 (-576 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-890 (-1036))) (-5 *1 (-321 *3 *4)) (-14 *3 (-854)) - (-14 *4 (-854)))) - ((*1 *2) - (-12 (-5 *2 (-890 (-1036))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327)) - (-14 *4 (-1085 *3)))) - ((*1 *2) - (-12 (-5 *2 (-890 (-1036))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327)) - (-14 *4 (-854))))) + (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1177)) (-5 *1 (-221))))) +(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) + ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1093))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-713)) (-4 *5 (-517)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))) (((*1 *2 *1) - (-12 (-4 *1 (-629 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-108)))) + (-12 (-5 *2 (-1157 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5)) + (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468))))) + (-12 (-4 *2 (-1019)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789)) + (-14 *4 + (-1 (-108) (-2 (|:| -3381 *3) (|:| -1737 *2)) + (-2 (|:| -3381 *3) (|:| -1737 *2))))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))) +(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-592 (-205))) + (-5 *1 (-445))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) - (-5 *1 (-630 *3 *4 *5 *6)) (-4 *6 (-629 *3 *4 *5)))) + (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-4 *7 (-883 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7)))) + (-5 *1 (-858 *4 *5 *6 *7)) (-5 *3 (-592 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7)) + (-4 *3 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)) + (-4 *7 (-1126)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6)) + (-4 *3 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) + (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) + (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) + (-5 *1 (-1041 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-877 (-205)))) (-5 *1 (-1173))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-855)) (-5 *1 (-728))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1019)) (-4 *3 (-834 *5)) (-5 *2 (-1172 *3)) + (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) + (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2249 *8))) + (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-920 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2746 *3) (|:| -2449 *3))) (-5 *1 (-641 *3)) - (-4 *3 (-286))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4250)) (-4 *1 (-464 *4)) - (-4 *4 (-1125)) (-5 *2 (-108))))) + (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -2249 *8))) + (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *8))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1101 *2)) (-4 *2 (-341))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-882 *4 *5 *6)) (-5 *2 (-591 (-591 *7))) - (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-591 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-734)) - (-4 *7 (-788)) (-4 *8 (-882 *5 *6 *7)) (-5 *2 (-591 (-591 *8))) - (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-591 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1072)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1018)) - (-4 *4 (-1018)))) - ((*1 *1 *2) - (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018))))) + (-12 (-5 *3 (-1172 *4)) (-4 *4 (-976)) (-4 *2 (-1148 *4)) + (-5 *1 (-421 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-385 (-1086 (-294 *5)))) (-5 *3 (-1172 (-294 *5))) + (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1047 *5))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3)) (-4 *3 (-1019)) + (-4 *3 (-1126))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-696))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-855)) (-4 *4 (-341)) + (-5 *1 (-925 *3 *4))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)) + (-4 *2 (-1019))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-976)) (-4 *2 (-1019))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-591 (-51))) (-5 *1 (-825 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3) - (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1141 *3 *2)) - (-4 *2 (-1147 *3))))) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4)) + (-14 *3 (-592 (-1090))) (-4 *4 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1090))) + (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-976)) + (-4 *5 (-218 (-1696 *3) (-713))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4)) + (-14 *3 (-592 (-1090))) (-4 *4 (-976))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-690))))) (((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1147 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1147 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-712))) - (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1147 *3))))) + (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) + ((*1 *1 *1) (|partial| -4 *1 (-665)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-885 (-525))) (-5 *2 (-308)) - (-5 *1 (-310))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-108)) (-5 *6 (-631 (-205))) - (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-697))))) -(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135))) - ((*1 *1 *1) (-4 *1 (-1058)))) -(((*1 *2 *3) - (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-1147 *4)) - (-4 *5 (-1147 (-385 *3))) (-5 *2 (-108)))) - ((*1 *2 *3) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) -(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-984)))) + (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) + (-5 *2 (-592 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1090))) + (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279))))) +(((*1 *2 *1) (-12 (-4 *1 (-1019)) (-5 *2 (-1073))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1090)) (-4 *5 (-341)) (-5 *2 (-1071 (-1071 (-886 *5)))) + (-5 *1 (-1180 *5)) (-5 *4 (-1071 (-886 *5)))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1019))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) + (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1073)) (-5 *1 (-174)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))) +(((*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-385 *6)) (-4 *5 (-1130)) (-4 *6 (-1148 *5)) + (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *3) (|:| |radicand| *6))) + (-5 *1 (-139 *5 *6 *7)) (-5 *4 (-713)) (-4 *7 (-1148 *3))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-33)) (-5 *2 (-713)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-525)))) + ((*1 *2 *1) + (-12 (-5 *2 (-713)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-785))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789)))) ((*1 *1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-738 *2)) (-4 *2 (-160)) (-4 *2 (-984)))) - ((*1 *1 *1) (-4 *1 (-786))) - ((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-160)) (-4 *2 (-984)))) - ((*1 *1 *1) (-4 *1 (-984))) ((*1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *3) - (-12 (-4 *4 (-429)) (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-712)) - (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-882 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) + (|partial| -12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *2 (-517)) + (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-990 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-565 *3)) (-5 *5 (-1086 *3)) + (-4 *3 (-13 (-408 *6) (-27) (-1112))) + (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1086 *3))) + (-4 *3 (-13 (-408 *6) (-27) (-1112))) + (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) ((*1 *2 *3) - (-12 (-5 *2 (-1085 (-385 (-525)))) (-5 *1 (-875)) (-5 *3 (-525))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) - (-5 *2 (-964)) (-5 *1 (-696))))) + (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525))))) +(((*1 *2 *1) + (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1148 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-976)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525))))) +(((*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1148 *4)) (-4 *4 (-1130)) + (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1148 (-385 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-160)) + (-4 *1 (-345 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-160)) + (-4 *1 (-348 *4 *5)) (-4 *5 (-1148 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) + (-4 *4 (-1148 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-1174))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1071 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-1126))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-965)) (-5 *1 (-691))))) +(((*1 *2 *1) + (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1019)) (-4 *3 (-789)) + (-4 *2 (-1126)))) + ((*1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) + ((*1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1126)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1126)))) + ((*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) + ((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-308))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-712)) (|:| -2217 *4))) (-5 *5 (-712)) - (-4 *4 (-882 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-426 *6 *7 *8 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788))))) + (-12 (-5 *5 (-1090)) + (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) + (-4 *4 (-13 (-29 *6) (-1112) (-892))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2734 (-592 *4)))) + (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1090)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-591 (-1089))) (-4 *5 (-975)) - (-5 *2 (-885 *5)) (-5 *1 (-877 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-591 (-525))) - (|:| |cols| (-591 (-525))))) - (-5 *4 (-631 *12)) (-5 *5 (-591 (-385 (-885 *9)))) - (-5 *6 (-591 (-591 *12))) (-5 *7 (-712)) (-5 *8 (-525)) - (-4 *9 (-13 (-286) (-138))) (-4 *12 (-882 *9 *11 *10)) - (-4 *10 (-13 (-788) (-566 (-1089)))) (-4 *11 (-734)) + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) (-5 *2 - (-2 (|:| |eqzro| (-591 *12)) (|:| |neqzro| (-591 *12)) - (|:| |wcond| (-591 (-885 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1171 (-385 (-885 *9)))) - (|:| -3612 (-591 (-1171 (-385 (-885 *9))))))))) - (-5 *1 (-857 *9 *10 *11 *12))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-964)) - (-5 *1 (-690))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-174))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1018)) (-5 *1 (-1103 *3 *2)) (-4 *3 (-1018))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-591 (-525))) (-5 *1 (-1028)) (-5 *3 (-525))))) -(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1096))))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) + (-5 *2 (-1172 (-592 (-2 (|:| -3067 *4) (|:| -3381 (-1037)))))) + (-5 *1 (-324 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-169))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-1095)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-1095))) (-5 *1 (-1095))))) (((*1 *2 *1) - (-12 (-4 *4 (-1018)) (-5 *2 (-108)) (-5 *1 (-818 *3 *4 *5)) - (-4 *3 (-1018)) (-4 *5 (-611 *4)))) + (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) + (-5 *2 (-385 (-525))))) ((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-822 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-854)) (-4 *1 (-686 *3)) (-4 *3 (-160))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *7)) (-5 *3 (-591 *7)) (-4 *7 (-882 *4 *6 *5)) - (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-788) (-566 (-1089)))) - (-4 *6 (-734)) (-5 *1 (-857 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 (-385 (-885 (-525))))) (-5 *4 (-591 (-1089))) - (-5 *2 (-591 (-591 *5))) (-5 *1 (-358 *5)) - (-4 *5 (-13 (-786) (-341))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 (-525)))) (-5 *2 (-591 *4)) (-5 *1 (-358 *4)) - (-4 *4 (-13 (-786) (-341)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) - (-5 *2 (-591 (-1089))) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1085 *7)) (-4 *7 (-882 *6 *4 *5)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-975)) (-5 *2 (-591 *5)) - (-5 *1 (-299 *4 *5 *6 *7)))) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) + (-4 *3 (-517)))) + ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) ((*1 *2 *1) - (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-365)))) + (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) + (-5 *2 (-385 (-525))))) ((*1 *2 *1) - (-12 (-4 *1 (-408 *3)) (-4 *3 (-788)) (-5 *2 (-591 (-1089))))) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) + (-4 *3 (-1019)))) ((*1 *2 *1) - (-12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) + (-4 *3 (-1019)))) ((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-591 *5)))) + (-12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) + (-5 *2 (-385 (-525))))) ((*1 *2 *3) - (-12 (-4 *4 (-734)) (-4 *5 (-788)) (-4 *6 (-975)) - (-4 *7 (-882 *6 *4 *5)) (-5 *2 (-591 *5)) - (-5 *1 (-883 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-341) - (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))))) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-939 *3)) (-4 *3 (-967 *2))))) +(((*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1019))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) + (-5 *5 (-1014 (-205))) (-5 *6 (-525)) (-5 *2 (-1122 (-860))) + (-5 *1 (-296)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) + (-5 *5 (-1014 (-205))) (-5 *6 (-525)) (-5 *7 (-1073)) + (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) + (-5 *5 (-1014 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) + (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) + (-5 *5 (-1014 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1073)) + (-5 *2 (-1122 (-860))) (-5 *1 (-296))))) +(((*1 *1 *1) (-4 *1 (-578))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933) (-1112)))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) + (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-395 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-357)) (-5 *1 (-988))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1073)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) + (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) + (-5 *2 + (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) + (|:| |success| (-108)))) + (-5 *1 (-731)) (-5 *5 (-525))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-92))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) + (-5 *2 (-965)) (-5 *1 (-696))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) + (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-909 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-690))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) + (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205))) + (-5 *1 (-639))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4)))))) +(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1148 *4)) (-5 *1 (-751 *4 *2 *3 *5)) + (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) + (-4 *5 (-602 (-385 *2)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789)) + (-5 *1 (-1098 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *5 (-1148 *4)) (-5 *2 (-592 (-599 (-385 *5)))) + (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5)))))) +(((*1 *1) (-5 *1 (-1004)))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1126)) (-5 *2 (-713)) + (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-1020 (-1089))) (-5 *1 (-898 *3)) (-4 *3 (-899)))) + (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)) + (-5 *2 (-713)))) + ((*1 *2) + (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) + (-4 *3 (-307 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-339 *3)) (-4 *3 (-1019)))) + ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) + ((*1 *2) + (-12 (-4 *4 (-1019)) (-5 *2 (-713)) (-5 *1 (-402 *3 *4)) + (-4 *3 (-403 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-904 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-733)) - (-4 *5 (-788)) (-5 *2 (-591 *5)))) + (-12 (-5 *2 (-713)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-713)) + (-5 *1 (-666 *3 *4 *5)) (-4 *3 (-667 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) + ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))) ((*1 *2 *1) - (-12 (-4 *1 (-907 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-591 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-517)) (-5 *2 (-591 (-1089))) - (-5 *1 (-971 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-854)) (-5 *2 (-445)) (-5 *1 (-1172))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-882 *4 *6 *5)) (-4 *4 (-429)) - (-4 *5 (-788)) (-4 *6 (-734)) (-5 *1 (-918 *4 *5 *6 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-987)) (-5 *3 (-1072))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -3612 (-631 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-631 *3)))) - (-4 *3 (-13 (-286) (-10 -8 (-15 -3898 ((-396 $) $))))) - (-4 *4 (-1147 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1085 (-885 *4)) (-885 *4))) - (-5 *1 (-1179 *4)) (-4 *4 (-341))))) + (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) + (-4 *3 (-1148 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1148 *5)) + (-5 *1 (-670 *5 *2)) (-4 *5 (-341))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1174))))) -(((*1 *1 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-762))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-975)) (-5 *1 (-827 *2 *3)) (-4 *2 (-1147 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-975)) (-5 *1 (-1074 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1085 (-385 (-1085 *2)))) (-5 *4 (-564 *2)) - (-4 *2 (-13 (-408 *5) (-27) (-1111))) - (-4 *5 (-13 (-429) (-966 (-525)) (-788) (-138) (-587 (-525)))) - (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1018)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085 *1)) (-4 *1 (-882 *4 *5 *3)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *3 (-788)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085 *4)) (-4 *4 (-975)) (-4 *1 (-882 *4 *5 *3)) - (-4 *5 (-734)) (-4 *3 (-788)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-1085 *2))) (-4 *5 (-734)) (-4 *4 (-788)) - (-4 *6 (-975)) - (-4 *2 - (-13 (-341) - (-10 -8 (-15 -2686 ($ *7)) (-15 -1384 (*7 $)) (-15 -1396 (*7 $))))) - (-5 *1 (-883 *5 *4 *6 *7 *2)) (-4 *7 (-882 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-1085 (-385 (-885 *5))))) (-5 *4 (-1089)) - (-5 *2 (-385 (-885 *5))) (-5 *1 (-971 *5)) (-4 *5 (-517))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-964))))) + (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) + (-5 *1 (-163 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090)) + (-5 *2 (-525)) (-5 *1 (-1033 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1019)) (-4 *6 (-1019)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1019))))) (((*1 *2 *1) - (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) - (-5 *2 (-391 *4 (-385 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 *6)) (-4 *6 (-13 (-387 *4 *5) (-966 *4))) - (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) (-4 *3 (-286)) - (-5 *1 (-391 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-882 *3 *4 *5)) (-4 *3 (-341)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-477 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-975)) (-5 *1 (-654 *3 *4)) - (-4 *4 (-1147 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-975)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1147 *3))))) -(((*1 *2) (-12 (-5 *2 (-774 (-525))) (-5 *1 (-499)))) - ((*1 *1) (-12 (-5 *1 (-774 *2)) (-4 *2 (-1018))))) + (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3089 "void"))) + (-5 *1 (-415))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-855)) (-4 *3 (-341)) + (-14 *4 (-925 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) + ((*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) + ((*1 *1 *1) (|partial| -4 *1 (-665))) + ((*1 *1 *1) (|partial| -4 *1 (-669))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-992 *3 *2)) (-4 *3 (-13 (-787) (-341))) + (-4 *2 (-1148 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-883 *3 *5 *4)) + (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1090)))) + (-4 *5 (-735)) (-5 *1 (-858 *3 *4 *5 *6))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-930 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 *7)) (-4 *7 (-882 *6 *4 *5)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-975)) (-5 *2 (-1085 *6)) + (-12 (-5 *3 (-1086 *7)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-976)) (-5 *2 (-1086 *6)) (-5 *1 (-299 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) + ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-215 *3)) + (-4 *3 (-1019)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4254)) (-4 *1 (-215 *2)) (-4 *2 (-1019)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-1019)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1019)) + (-5 *1 (-680 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1019)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) + (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) + ((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246))))) -(((*1 *1 *1) (-4 *1 (-606))) ((*1 *1 *1) (-5 *1 (-1036)))) -(((*1 *2) - (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-1147 *3)) - (-4 *5 (-1147 (-385 *4))) (-5 *2 (-108))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-408 *3) (-932))) (-5 *1 (-255 *3 *2)) - (-4 *3 (-13 (-788) (-517)))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-525)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-712)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-734)) (-4 *4 (-882 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-788)) - (-5 *1 (-426 *5 *6 *7 *4))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-975)) (-4 *3 (-733)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-591 (-854))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-854)) - (-4 *2 (-341)) (-14 *5 (-924 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-655 *5 *6 *7)) (-4 *5 (-788)) - (-4 *6 (-218 (-2028 *4) (-712))) - (-14 *7 - (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *6)) - (-2 (|:| -3229 *5) (|:| -3987 *6)))) - (-14 *4 (-591 (-1089))) (-4 *2 (-160)) - (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-882 *2 *6 (-798 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-788)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-572 *2 *4)) - (-4 *4 (-1147 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-650 *2)) (-4 *2 (-975)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-677 *2 *3)) (-4 *2 (-975)) (-4 *3 (-668)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 *5)) (-5 *3 (-591 (-712))) (-4 *1 (-682 *4 *5)) - (-4 *4 (-975)) (-4 *5 (-788)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-682 *4 *2)) (-4 *4 (-975)) - (-4 *2 (-788)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-712)) (-4 *1 (-790 *2)) (-4 *2 (-975)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 *6)) (-5 *3 (-591 (-712))) (-4 *1 (-882 *4 *5 *6)) - (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-882 *4 *5 *2)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *2 (-788)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 *6)) (-5 *3 (-591 *5)) (-4 *1 (-904 *4 *5 *6)) - (-4 *4 (-975)) (-4 *5 (-733)) (-4 *6 (-788)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-904 *4 *3 *2)) (-4 *4 (-975)) (-4 *3 (-733)) - (-4 *2 (-788))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-788) (-286) (-966 (-525)) (-587 (-525)) (-138))) - (-5 *1 (-745 *4 *2)) (-4 *2 (-13 (-29 *4) (-1111) (-891))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-796))) ((*1 *1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *1) (-5 *1 (-796))) - ((*1 *2 *3) - (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-975))))) -(((*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(((*1 *1) (-5 *1 (-1172)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-591 (-885 *3))) (-4 *3 (-429)) - (-5 *1 (-338 *3 *4)) (-14 *4 (-591 (-1089))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-591 (-721 *3 (-798 *4)))) (-4 *3 (-429)) - (-14 *4 (-591 (-1089))) (-5 *1 (-576 *3 *4))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-408 *3) (-932))) (-5 *1 (-255 *3 *2)) - (-4 *3 (-13 (-788) (-517))))) - ((*1 *1) - (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-591 (-1089))) - (-14 *3 (-591 (-1089))) (-4 *4 (-365)))) - ((*1 *1) (-5 *1 (-454))) ((*1 *1) (-4 *1 (-1111)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-712)) (-4 *3 (-975)) (-4 *1 (-629 *3 *4 *5)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-975)) (-4 *1 (-1039 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) - (-4 *5 (-218 *3 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228))))) + (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-789)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789))))) (((*1 *2 *3) - (-12 (-5 *2 (-396 (-1085 (-525)))) (-5 *1 (-173)) (-5 *3 (-525))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-919 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7)))) + (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) + ((*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1145 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1090)) + (-4 *5 (-341)) (-5 *1 (-857 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-591 *7)) (-4 *7 (-989 *4 *5 *6)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)) - (-5 *1 (-1025 *4 *5 *6 *7 *8)) (-4 *8 (-994 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-1176)))) -(((*1 *2 *3) - (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1040 *4 *5 *6 *3)) (-4 *3 (-629 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-591 (-885 *4))) (-5 *3 (-591 (-1089))) (-4 *4 (-429)) - (-5 *1 (-851 *4))))) -(((*1 *2 *1) + (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1086 *5)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-1090)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341)) + (-5 *2 (-385 (-886 *6))) (-5 *1 (-977 *5 *6)) (-14 *5 (-1090))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-1171 - (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) - (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3175 (-525)) - (|:| -1320 (-525)) (|:| |spline| (-525)) (|:| -3701 (-525)) - (|:| |axesColor| (-807)) (|:| -3094 (-525)) - (|:| |unitsColor| (-807)) (|:| |showing| (-525))))) - (-5 *1 (-1172))))) -(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-744))))) + (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -1870 (-713)))) + (-5 *1 (-724 *3)) (-4 *3 (-976)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1870 (-713)))) + (-4 *1 (-990 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| (-108)) (|:| -3585 *4)))) - (-5 *1 (-1026 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-591 *2) *2 *2 *2)) (-4 *2 (-1018)) - (-5 *1 (-98 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1018)) (-5 *1 (-98 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-972 *4 *5)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) - (-14 *5 (-591 (-1089))) - (-5 *2 - (-591 (-2 (|:| -3237 (-1085 *4)) (|:| -1671 (-591 (-885 *4)))))) - (-5 *1 (-1195 *4 *5 *6)) (-14 *6 (-591 (-1089))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 - (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) - (-5 *1 (-1195 *5 *6 *7)) (-5 *3 (-591 (-885 *5))) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 - (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) - (-5 *1 (-1195 *5 *6 *7)) (-5 *3 (-591 (-885 *5))) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) + (-12 (-5 *4 (-592 (-592 *8))) (-5 *3 (-592 *8)) + (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-108)) (-5 *1 (-909 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-976)) + (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-791 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-632 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-976)) + (-5 *1 (-792 *2 *3)) (-4 *3 (-791 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-351 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1) + (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *1 (-242)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341)) + (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1172 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) + (-5 *2 (-632 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) + (-5 *2 (-1172 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) + (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) + (-4 *5 (-1148 *4)) (-5 *2 (-1172 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160)) + (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) + (-5 *2 (-1172 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160)) + (-5 *2 (-632 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-108)) (-4 *5 (-13 (-786) (-286) (-138) (-951))) + (-12 (-5 *4 (-592 (-632 *5))) (-5 *3 (-632 *5)) (-4 *5 (-341)) + (-5 *2 (-1172 *5)) (-5 *1 (-1007 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 - (-591 (-2 (|:| -3237 (-1085 *5)) (|:| -1671 (-591 (-885 *5)))))) - (-5 *1 (-1195 *5 *6 *7)) (-5 *3 (-591 (-885 *5))) - (-14 *6 (-591 (-1089))) (-14 *7 (-591 (-1089))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-786) (-286) (-138) (-951))) + (-592 + (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525)) + (|:| |outvect| (-592 (-632 (-157 *4))))))) + (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-286)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-424 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) + (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *1 (-424 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) + (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *1 (-424 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-902 *4 *3)) + (-4 *3 (-1148 *4))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-808)) + (-5 *5 (-855)) (-5 *6 (-592 (-242))) (-5 *2 (-1173)) + (-5 *1 (-1176)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-592 (-242))) + (-5 *2 (-1173)) (-5 *1 (-1176))))) +(((*1 *2 *3) + (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) + (-4 *4 (-327))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 - (-591 (-2 (|:| -3237 (-1085 *4)) (|:| -1671 (-591 (-885 *4)))))) - (-5 *1 (-1195 *4 *5 *6)) (-5 *3 (-591 (-885 *4))) - (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) + (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6)) + (|:| |polypart| *6))) + (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1148 *6)) + (-4 *6 (-13 (-27) (-408 *5))) + (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-4 *8 (-1148 (-385 *7))) + (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) + (-4 *3 (-320 *6 *7 *8))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090))))) +(((*1 *1) (-5 *1 (-745)))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-351 *2)) + (-4 *4 (-351 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1019)) + (-4 *2 (-1126))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308))))) +(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-429)) (-5 *2 (-108)) + (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-722 *4 (-799 *5)))) (-4 *4 (-429)) + (-14 *5 (-592 (-1090))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1062 (-1073))) (-5 *1 (-369))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-883 *4 *5 *6)) + (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *1 (-426 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) + (-5 *3 (-205)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *3) + (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) + (-4 *3 (-1148 *4)) + (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263)))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2940 *4) (|:| -2757 *4) (|:| |totalpts| (-525)) - (|:| |success| (-108)))) - (-5 *1 (-730)) (-5 *5 (-525))))) + (-592 + (-592 + (-3 (|:| -3515 (-1090)) + (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))))) + (-5 *1 (-1094))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3048 *4))) + (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1090)) + (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-536 *4 *2)) + (-4 *2 (-13 (-1112) (-892) (-1054) (-29 *4)))))) +(((*1 *2) (-12 (-5 *2 (-1062 (-1073))) (-5 *1 (-369))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) + (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-909 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-341)) (-5 *1 (-830 *2 *3)) + (-4 *2 (-1148 *3))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-712)) (-5 *4 (-1171 *2)) (-4 *5 (-286)) - (-4 *6 (-923 *5)) (-4 *2 (-13 (-387 *6 *7) (-966 *6))) - (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1147 *6))))) + (-12 (-5 *4 (-1 (-592 *5) *6)) + (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) + (-5 *2 (-592 (-2 (|:| -3219 *5) (|:| -3941 *3)))) + (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) + (-4 *7 (-602 (-385 *6)))))) +(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1126)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976))))) (((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-668)) (-5 *2 (-712)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-854))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-975)) - (-5 *2 (-2 (|:| -2746 *1) (|:| -2449 *1))) (-4 *1 (-1147 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-763))))) -(((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-788)) (-4 *3 (-160)))) - ((*1 *1 *1) - (-12 (-5 *1 (-575 *2 *3 *4)) (-4 *2 (-788)) - (-4 *3 (-13 (-160) (-659 (-385 (-525))))) (-14 *4 (-854)))) - ((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) (-12 (-5 *1 (-760 *2)) (-4 *2 (-788)))) - ((*1 *1 *1) (-12 (-4 *1 (-1186 *2 *3)) (-4 *2 (-788)) (-4 *3 (-975))))) -(((*1 *2) - (-12 (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-842)) - (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-882 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-734)) (-4 *4 (-788)) (-4 *2 (-842)) - (-5 *1 (-839 *2 *3 *4 *5)) (-4 *5 (-882 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-842)) (-5 *1 (-840 *2 *3)) (-4 *3 (-1147 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1041 (-525) (-564 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-923 *2)) (-4 *4 (-1147 *3)) (-4 *2 (-286)) - (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-966 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-517)) (-4 *3 (-788)) (-5 *2 (-1041 *3 (-564 *1))) - (-4 *1 (-408 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1041 (-525) (-564 (-468)))) (-5 *1 (-468)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-855))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789)) + (-4 *5 (-735)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-501))))) +(((*1 *2 *1) + (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4256 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) + (-4 *2 (-976)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1148 *2)) + (-4 *4 (-630 *2 *5 *6))))) +(((*1 *1) (-5 *1 (-765)))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) + (-12 (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-592 *1)) + (-4 *1 (-360 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-668) *4)) - (-5 *1 (-570 *3 *4 *2)) (-4 *3 (-37 *4)))) + (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-669)))) ((*1 *2 *1) - (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-668) *4)) - (-5 *1 (-607 *3 *4 *2)) (-4 *3 (-659 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517))))) + (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-883 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) + (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-695))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1018)) (-4 *4 (-1018)) - (-4 *6 (-1018)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-341) (-138) (-966 (-525)))) - (-4 *5 (-1147 *4)) (-5 *2 (-591 (-385 *5))) (-5 *1 (-946 *4 *5)) - (-5 *3 (-385 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-525)))) + (-12 (-5 *3 (-839 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4)) + (-5 *1 (-958 *5)) (-4 *5 (-976)))) ((*1 *2 *3) - (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-525)))) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-958 *4)) + (-4 *4 (-976)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-839 (-525)))) (-5 *4 (-525)) + (-5 *2 (-592 (-632 *4))) (-5 *1 (-958 *5)) (-4 *5 (-976)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525)))) + (-5 *1 (-958 *4)) (-4 *4 (-976))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2262 (-724 *3)) (|:| |coef2| (-724 *3)))) + (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-2 (|:| -2262 *1) (|:| |coef2| *1))) + (-4 *1 (-990 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-132)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-976)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797)))) + ((*1 *1 *1) (-5 *1 (-797))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) (-5 *3 (-525))))) -(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501))))) -(((*1 *1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-4 *1 (-281)))) + (-12 (-5 *3 (-877 (-205))) (-5 *2 (-205)) (-5 *1 (-1123)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-976))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-902 *2 *4)) + (-4 *4 (-1148 *2))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-592 (-713))) + (-5 *1 (-838 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) + (-4 *4 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))) + ((*1 *1 *1) (-4 *1 (-213))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-245 *3)) (-4 *3 (-789)))) + ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) + (-4 *4 (-1148 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) + (-4 *3 (-1148 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-341)) (-4 *2 (-834 *3)) (-5 *1 (-542 *2)) + (-5 *3 (-1090)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-834 *4)) + (-4 *4 (-1019)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-713)) (-4 *1 (-834 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *1 (-834 *3)) (-4 *3 (-1019)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5)) + (-4 *3 (-976)) (-14 *5 *3)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019)) + (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) - (-5 *1 (-1194 *4)) (-4 *4 (-1125)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-591 (-1070 *5)) (-591 (-1070 *5)))) (-5 *4 (-525)) - (-5 *2 (-591 (-1070 *5))) (-5 *1 (-1194 *5)) (-4 *5 (-1125))))) -(((*1 *2 *1) - (-12 (-5 *2 (-108)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-854)) - (-4 *4 (-975))))) -(((*1 *1 *1 *1) (-5 *1 (-796))) ((*1 *1 *1) (-5 *1 (-796))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085 (-525))) (-5 *3 (-525)) (-4 *1 (-802 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-694))))) -(((*1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-1041 (-525) (-564 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-286)) (-4 *4 (-923 *3)) (-4 *5 (-1147 *4)) - (-5 *2 (-1171 *6)) (-5 *1 (-391 *3 *4 *5 *6)) - (-4 *6 (-13 (-387 *4 *5) (-966 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-975)) (-4 *3 (-788)) (-5 *2 (-1041 *3 (-564 *1))) - (-4 *1 (-408 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1041 (-525) (-564 (-468)))) (-5 *1 (-468)))) - ((*1 *2 *1) - (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-570 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-668) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-160)) (-4 *2 (-659 *3)) (-5 *1 (-607 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-668) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-517))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-694))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-854)) (-5 *3 (-591 (-242))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-854)) (-5 *1 (-242))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) - (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-1182 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-591 *8)) (-5 *3 (-1 (-108) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-989 *5 *6 *7)) (-4 *5 (-517)) - (-4 *6 (-734)) (-4 *7 (-788)) (-5 *1 (-1182 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-975)) (-4 *7 (-975)) - (-4 *6 (-1147 *5)) (-5 *2 (-1085 (-1085 *7))) - (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1147 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-415)) (-5 *3 (-1089)) (-5 *1 (-1092)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1089)) (-5 *1 (-1092)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-415)) (-5 *3 (-591 (-1089))) (-5 *4 (-1089)) - (-5 *1 (-1092)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-415)) (-5 *3 (-1089)) (-5 *1 (-1092)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-415)) (-5 *3 (-1089)) (-5 *1 (-1093)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-415)) (-5 *3 (-591 (-1089))) (-5 *1 (-1093))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-975)) (-5 *2 (-108))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-734)) - (-4 *3 (-13 (-788) (-10 -8 (-15 -1300 ((-1089) $))))) (-4 *5 (-517)) - (-5 *1 (-674 *4 *3 *5 *2)) (-4 *2 (-882 (-385 (-885 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-975)) (-4 *5 (-734)) - (-4 *3 - (-13 (-788) - (-10 -8 (-15 -1300 ((-1089) $)) - (-15 -1592 ((-3 $ "failed") (-1089)))))) - (-5 *1 (-915 *4 *5 *3 *2)) (-4 *2 (-882 (-885 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *6)) - (-4 *6 - (-13 (-788) - (-10 -8 (-15 -1300 ((-1089) $)) - (-15 -1592 ((-3 $ "failed") (-1089)))))) - (-4 *4 (-975)) (-4 *5 (-734)) (-5 *1 (-915 *4 *5 *6 *2)) - (-4 *2 (-882 (-885 *4) *5 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-591 (-385 *6))) (-5 *3 (-385 *6)) - (-4 *6 (-1147 *5)) (-4 *5 (-13 (-341) (-138) (-966 (-525)))) + (-12 (-4 *4 (-976)) + (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) + (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-450))) ((*1 *1 *1 *1) (-4 *1 (-704)))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3356 *7) (|:| |sol?| (-108))) + (-525) *7)) + (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1148 *7)) + (-5 *3 (-385 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-535 *7 *8))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1023)) (-5 *1 (-259))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-702))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) + (-4 *3 (-13 (-408 *6) (-27) (-1112))) + (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-529 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1018)) (-4 *1 (-1016 *3)))) - ((*1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *5)) (-4 *5 (-341)) (-5 *2 (-591 *6)) - (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-786)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-591 *3)) (-5 *1 (-893 *3)) (-4 *3 (-510))))) + (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1019))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 (-854))) (-5 *2 (-837 (-525))) (-5 *1 (-850))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-341) (-786))) (-5 *1 (-167 *2 *3)) - (-4 *3 (-1147 (-157 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-341) (-786))) (-5 *1 (-167 *2 *3)) - (-4 *3 (-1147 (-157 *2)))))) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177)) + (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 (-525))) (-5 *2 (-525)) (-5 *1 (-875))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1171 *5)) (-4 *5 (-733)) (-5 *2 (-108)) - (-5 *1 (-783 *4 *5)) (-14 *4 (-712))))) -(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) - ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) - ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) -(((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-286)) (-5 *1 (-641 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-798 *5))) (-14 *5 (-591 (-1089))) (-4 *6 (-429)) - (-5 *2 (-591 (-591 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7)) - (-5 *3 (-591 (-227 *5 *6))) (-4 *7 (-429))))) + (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-879 *2 *3)) + (-4 *3 (-1148 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019)) + (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019))))) (((*1 *2 *3) - (-12 (-4 *4 (-975)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) - (-4 *3 (-1147 *4)) - (-4 *5 (-13 (-382) (-966 *4) (-341) (-1111) (-263)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-108))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1070 (-591 (-525)))) (-5 *1 (-816)) - (-5 *3 (-591 (-525)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-964)) - (-5 *1 (-700))))) -(((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-1176)) (-5 *1 (-1052)))) + (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) + (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-796))) (-5 *2 (-1176)) (-5 *1 (-1052))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-631 (-205))) (-5 *4 (-205)) - (-5 *2 (-964)) (-5 *1 (-694))))) + (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *2 (-157 *3)) (-5 *1 (-1116 *4 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-734)) (-4 *6 (-788)) - (-4 *7 (-989 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-591 *7)) (|:| |badPols| (-591 *7)))) - (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-591 *7))))) + (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-286) (-138))) + (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) + (-5 *2 + (-592 + (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) + (|:| |wcond| (-592 (-886 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *4)))))))))) + (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) - (-5 *2 (-591 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-591 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-885 *1)) (-4 *1 (-27)) (-5 *2 (-591 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-788) (-517))) (-5 *2 (-591 *1)) - (-4 *1 (-29 *4)))) + (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1090))) (-5 *1 (-192)) + (-5 *3 (-1090)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1090))) + (-5 *1 (-246)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *2 (-591 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 (-205))) (-5 *4 (-591 (-1089))) - (-5 *5 (-1013 (-781 (-205)))) (-5 *2 (-1070 (-205))) (-5 *1 (-279))))) -(((*1 *2 *3) - (-12 (-5 *3 (-631 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1018))))) -(((*1 *1 *1) (-5 *1 (-205))) - ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) - ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-408 *3)))) - ((*1 *1 *1) (-4 *1 (-1053))) ((*1 *1 *1 *1) (-4 *1 (-1053)))) + (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) + (-5 *2 (-592 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) + (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) + (-5 *2 (-592 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-308)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-308))))) (((*1 *2 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) - (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-629 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) - (-4 *7 (-923 *4)) (-4 *2 (-629 *7 *8 *9)) - (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-629 *4 *5 *6)) - (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-629 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-351 *2)) - (-4 *4 (-351 *2)) (-4 *2 (-286)))) - ((*1 *2 *2) - (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *1 (-630 *3 *4 *5 *2)) - (-4 *2 (-629 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-631 *3)) (-4 *3 (-286)) (-5 *1 (-641 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4 *5 *6)) (-4 *4 (-975)) - (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286))))) -(((*1 *1 *1) (-4 *1 (-577))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932) (-1111)))))) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138)) + (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-909 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-146)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1125)) - (-4 *5 (-1125)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-712)) - (-4 *7 (-1125)) (-4 *5 (-1125)) (-5 *2 (-220 *6 *5)) - (-5 *1 (-219 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1125)) (-4 *5 (-1125)) - (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1018)) (-4 *5 (-1018)) - (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-591 *6)) (-4 *6 (-1125)) - (-4 *5 (-1125)) (-5 *2 (-591 *5)) (-5 *1 (-589 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-890 *6)) (-4 *6 (-1125)) - (-4 *5 (-1125)) (-5 *2 (-890 *5)) (-5 *1 (-889 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1125)) - (-4 *3 (-1125)) (-5 *2 (-1070 *3)) (-5 *1 (-1068 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1171 *6)) (-4 *6 (-1125)) - (-4 *5 (-1125)) (-5 *2 (-1171 *5)) (-5 *1 (-1170 *6 *5))))) + (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286)) + (-4 *9 (-883 *8 *6 *7)) + (-5 *2 (-2 (|:| -3932 (-1086 *9)) (|:| |polval| (-1086 *8)))) + (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-385 *6))) (-5 *4 (-1 (-591 *5) *6)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *6 (-1147 *5)) (-5 *2 (-591 (-385 *6))) (-5 *1 (-753 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 (-385 *7))) (-5 *4 (-1 (-591 *6) *7)) - (-5 *5 (-1 (-396 *7) *7)) - (-4 *6 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *7 (-1147 *6)) (-5 *2 (-591 (-385 *7))) (-5 *1 (-753 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-385 *6))) (-5 *4 (-1 (-591 *5) *6)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *6 (-1147 *5)) (-5 *2 (-591 (-385 *6))) (-5 *1 (-753 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-599 *7 (-385 *7))) (-5 *4 (-1 (-591 *6) *7)) - (-5 *5 (-1 (-396 *7) *7)) - (-4 *6 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-4 *7 (-1147 *6)) (-5 *2 (-591 (-385 *7))) (-5 *1 (-753 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-385 *5))) (-4 *5 (-1147 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 (-591 (-385 *5))) (-5 *1 (-753 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) - (-4 *6 (-1147 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 (-591 (-385 *6))) (-5 *1 (-753 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 *5 (-385 *5))) (-4 *5 (-1147 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 (-591 (-385 *5))) (-5 *1 (-753 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-599 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) - (-4 *6 (-1147 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-341) (-138) (-966 (-525)) (-966 (-385 (-525))))) - (-5 *2 (-591 (-385 *6))) (-5 *1 (-753 *5 *6))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-975)) (-4 *3 (-734)) - (-4 *4 (-788)) (-4 *2 (-517))))) -(((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1072)) (-5 *1 (-727))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1089)) (-5 *3 (-591 (-501))) (-5 *1 (-501))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-788) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3)) - (-4 *3 (-13 (-408 *4) (-932)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-807)) (-5 *3 (-591 (-242))) (-5 *1 (-240))))) -(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796))))) -(((*1 *2 *1) (-12 (-5 *2 (-591 (-1089))) (-5 *1 (-766))))) -(((*1 *2 *2) - (-12 (-4 *3 (-966 (-525))) (-4 *3 (-13 (-788) (-517))) - (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3)))) - ((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-1085 *4)) (-5 *1 (-153 *3 *4)) - (-4 *3 (-154 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-975)) (-4 *1 (-281)))) - ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1085 *3)))) - ((*1 *2) (-12 (-4 *1 (-666 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1147 *3)))) + (-12 (-4 *5 (-341)) + (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1172 *5))))) + (-5 *1 (-910 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1172 *5))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-698))))) +(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1126)))) ((*1 *2 *1) - (-12 (-4 *1 (-991 *3 *2)) (-4 *3 (-13 (-786) (-341))) - (-4 *2 (-1147 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1074 *4)) - (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-975))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-914 *2)) (-4 *2 (-1111))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) - (-4 *3 (-989 *6 *7 *8)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-1026 *6 *7 *8 *3 *4)) (-4 *4 (-994 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 (-2 (|:| |val| (-591 *8)) (|:| -3585 *9)))) - (-5 *5 (-108)) (-4 *8 (-989 *6 *7 *4)) (-4 *9 (-994 *6 *7 *4 *8)) - (-4 *6 (-429)) (-4 *7 (-734)) (-4 *4 (-788)) - (-5 *2 (-591 (-2 (|:| |val| *8) (|:| -3585 *9)))) - (-5 *1 (-1026 *6 *7 *4 *8 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-580))))) + (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126)) + (-14 *4 (-525))))) +(((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1090))))) (((*1 *2) - (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) - (-5 *1 (-919 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-429)) (-4 *4 (-734)) (-4 *5 (-788)) - (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-1176)) - (-5 *1 (-1025 *3 *4 *5 *6 *7)) (-4 *7 (-994 *3 *4 *5 *6))))) + (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) + (-4 *3 (-345 *4)))) + ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-525)) + (-5 *6 + (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357)))) + (-5 *7 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) + (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) + (-5 *1 (-730)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-525)) + (-5 *6 + (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2692 (-357)))) + (-5 *7 (-1 (-1177) (-1172 *5) (-1172 *5) (-357))) + (-5 *3 (-1172 (-357))) (-5 *5 (-357)) (-5 *2 (-1177)) + (-5 *1 (-730))))) +(((*1 *2 *2) + (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) + (-4 *3 (-1019))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-631 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-341)) - (-5 *2 (-108)) (-5 *1 (-612 *5)))) + (-12 (-5 *3 (-592 (-385 (-886 (-157 (-525)))))) + (-5 *2 (-592 (-592 (-273 (-886 (-157 *4)))))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-341) (-787))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4251)))) - (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4251)))) (-5 *2 (-108)) - (-5 *1 (-613 *5 *6 *4 *3)) (-4 *3 (-629 *5 *6 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-882 *5 *6 *7)) (-4 *5 (-429)) - (-4 *6 (-734)) (-4 *7 (-788)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-426 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2) - (-12 (-5 *2 (-1176)) (-5 *1 (-1103 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018))))) -(((*1 *2 *3) (-12 (-5 *3 (-876 *2)) (-5 *1 (-913 *2)) (-4 *2 (-975))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1020 *3)) (-5 *1 (-838 *3)) (-4 *3 (-346)) - (-4 *3 (-1018))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-501) (-591 (-501)))) (-5 *1 (-110)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-591 (-501)))) (-5 *1 (-110))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-591 (-273 *4))) (-5 *1 (-575 *3 *4 *5)) (-4 *3 (-788)) - (-4 *4 (-13 (-160) (-659 (-385 (-525))))) (-14 *5 (-854))))) + (-12 (-5 *3 (-592 (-273 (-385 (-886 (-157 (-525))))))) + (-5 *2 (-592 (-592 (-273 (-886 (-157 *4)))))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-341) (-787))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 (-157 (-525))))) + (-5 *2 (-592 (-273 (-886 (-157 *4))))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-341) (-787))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-273 (-385 (-886 (-157 (-525)))))) + (-5 *2 (-592 (-273 (-886 (-157 *4))))) (-5 *1 (-356 *4)) + (-4 *4 (-13 (-341) (-787)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-591 (-294 (-205)))) (|:| -3492 (-591 (-205))))) - (-5 *2 (-357)) (-5 *1 (-246)))) + (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) + (-5 *2 (-1172 (-632 *4))))) + ((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-394 *3 *4)) + (-4 *3 (-395 *4)))) + ((*1 *2) + (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 (-632 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-1090))) (-4 *5 (-341)) + (-5 *2 (-1172 (-632 (-385 (-886 *5))))) (-5 *1 (-1007 *5)) + (-5 *4 (-632 (-385 (-886 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-1090))) (-4 *5 (-341)) + (-5 *2 (-1172 (-632 (-886 *5)))) (-5 *1 (-1007 *5)) + (-5 *4 (-632 (-886 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-1171 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284))))) -(((*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-341)) (-5 *2 (-108))))) + (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) + (-5 *2 (-1172 (-632 *4))) (-5 *1 (-1007 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735)) + (-4 *6 (-517)) (-4 *7 (-883 *6 *5 *3)) + (-5 *1 (-439 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-967 (-385 (-525))) (-341) + (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) + (-15 -1945 (*7 $)))))))) +(((*1 *1) (-5 *1 (-146)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-943))))) +(((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-789)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *1 (-912 *3)) (-4 *3 (-976)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7)) + (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) + (-4 *1 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) + (-4 *1 (-995 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-797)))) + ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-895))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) + (-4 *2 (-408 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090)))) + ((*1 *1 *1) (-4 *1 (-149)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))) + (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-855)) (-5 *1 (-641)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-341)) (-5 *1 (-910 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) + (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) + (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) + (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) + (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) + (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) + (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-305 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-488 *3 *4)) + (-14 *4 (-525))))) +(((*1 *1 *1) (-5 *1 (-988)))) (((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) + (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1085 *4)) (-5 *1 (-335 *4)) + (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) ((*1 *1) (-4 *1 (-346))) ((*1 *2 *3) - (-12 (-5 *3 (-854)) (-5 *2 (-1171 *4)) (-5 *1 (-495 *4)) + (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) ((*1 *1 *1) (-4 *1 (-510))) ((*1 *1) (-4 *1 (-510))) - ((*1 *1 *1) (-5 *1 (-525))) ((*1 *1 *1) (-5 *1 (-712))) - ((*1 *2 *1) (-12 (-5 *2 (-838 *3)) (-5 *1 (-837 *3)) (-4 *3 (-1018)))) + ((*1 *1 *1) (-5 *1 (-525))) ((*1 *1 *1) (-5 *1 (-713))) + ((*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-5 *2 (-838 *4)) (-5 *1 (-837 *4)) - (-4 *4 (-1018)))) - ((*1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-510)) (-4 *2 (-517))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1072)) (-5 *4 (-525)) (-5 *5 (-631 (-205))) - (-5 *6 (-205)) (-5 *2 (-964)) (-5 *1 (-694))))) + (-12 (-5 *3 (-525)) (-5 *2 (-839 *4)) (-5 *1 (-838 *4)) + (-4 *4 (-1019)))) + ((*1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-510)) (-4 *2 (-517))))) +(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) + (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-591 (-525))) (-5 *2 (-631 (-525))) (-5 *1 (-1028))))) -(((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) - ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) - ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1072)) (-5 *2 (-1176)) (-5 *1 (-1172))))) + (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-771))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-797)))) (-5 *1 (-797)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-925 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-341)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-976)) + (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5)) + (-4 *7 (-218 *3 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-341)) (-4 *3 (-975)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3965 *1))) - (-4 *1 (-790 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-51)) (-5 *1 (-825 *4)) - (-4 *4 (-1018))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-712)) (-4 *3 (-1125)) (-4 *1 (-55 *3 *4 *5)) + (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *5 (-632 (-205))) (-5 *4 (-205)) + (-5 *2 (-965)) (-5 *1 (-693))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-108)) + (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-4 *3 (-13 (-27) (-1112) (-408 *6) (-10 -8 (-15 -4044 ($ *7))))) + (-4 *7 (-787)) + (-4 *8 + (-13 (-1150 *3 *7) (-341) (-1112) + (-10 -8 (-15 -1576 ($ $)) (-15 -2313 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) + (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-915 *8)) + (-14 *10 (-1090))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) + (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-592 *7) (-592 *7))) (-5 *2 (-592 *7)) + (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) + (-5 *1 (-909 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-510)))) +(((*1 *2) + (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) + ((*1 *2 *2) + (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) + (|:| |expense| (-357)) (|:| |accuracy| (-357)) + (|:| |intermediateResults| (-357)))) + (-5 *2 (-965)) (-5 *1 (-284))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1029))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-286)) + (-5 *2 (-713)) (-5 *1 (-432 *5 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1071 *4) (-1071 *4))) (-5 *2 (-1071 *4)) + (-5 *1 (-1195 *4)) (-4 *4 (-1126)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-592 (-1071 *5)) (-592 (-1071 *5)))) (-5 *4 (-525)) + (-5 *2 (-592 (-1071 *5))) (-5 *1 (-1195 *5)) (-4 *5 (-1126))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-908 *4 *5 *3 *6)) (-4 *4 (-976)) (-4 *5 (-735)) + (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-690))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1012 (-886 (-525)))) (-5 *3 (-886 (-525))) + (-5 *1 (-308)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1012 (-886 (-525)))) (-5 *1 (-308))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-976)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *2 (-517)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *3 (-990 *4 *5 *6)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *1)))) + (-4 *1 (-995 *4 *5 *6 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1126)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1019)) (-4 *5 (-1019)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) + (-4 *2 (-602 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 + (-2 (|:| |solns| (-592 *5)) + (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1045 *3 *5)) (-4 *3 (-1148 *5))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126)) + (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) + (-4 *5 (-351 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1126)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-592 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) + (-14 *4 (-525)) (-14 *5 (-713)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-713)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-713)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-713)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-713)))) + ((*1 *2 *1) + (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525)) + (-14 *4 (-713)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1090)) (-5 *2 (-225 (-1073))) (-5 *1 (-195 *4)) + (-4 *4 + (-13 (-789) + (-10 -8 (-15 -1496 ((-1073) $ *3)) (-15 -3686 ((-1177) $)) + (-15 -2460 ((-1177) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-195 *3)) + (-4 *3 + (-13 (-789) + (-10 -8 (-15 -1496 ((-1073) $ (-1090))) (-15 -3686 ((-1177) $)) + (-15 -2460 ((-1177) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-713)) (-5 *1 (-225 *4)) (-4 *4 (-789)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-789)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-789)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1148 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-1148 *2)) + (-4 *4 (-1148 (-385 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-475)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-51)) (-5 *1 (-581)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1) (-5 *1 (-159))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-367)))) - ((*1 *1) (-5 *1 (-372))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) - ((*1 *1) - (-12 (-4 *3 (-1018)) (-5 *1 (-818 *2 *3 *4)) (-4 *2 (-1018)) - (-4 *4 (-611 *3)))) - ((*1 *1) (-12 (-5 *1 (-822 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018)))) - ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-854)) (-4 *3 (-975)))) - ((*1 *1 *1) (-5 *1 (-1089))) ((*1 *1) (-5 *1 (-1089))) - ((*1 *1) (-5 *1 (-1106)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-591 (-1094))) (-5 *1 (-1051))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-712)) (-5 *1 (-110)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-592 (-826 *4))) (-5 *1 (-826 *4)) + (-4 *4 (-1019)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-837 *2)) (-4 *2 (-1019)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-975)) (-4 *3 (-788)) - (-4 *5 (-245 *3)) (-4 *6 (-734)) (-5 *2 (-712)))) + (-12 (-5 *3 (-713)) (-5 *2 (-839 *4)) (-5 *1 (-838 *4)) + (-4 *4 (-1019)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-855)) (-4 *2 (-341)) + (-5 *1 (-925 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-941 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) (-4 *2 (-976)) + (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) + (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-976)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-855)) (-4 *4 (-1019)) + (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) + (-5 *1 (-998 *4 *5 *2)) + (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-855)) (-4 *4 (-1019)) + (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) + (-5 *1 (-999 *4 *5 *2)) + (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1022 *3 *4 *5 *6 *7)) + (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) + (-4 *7 (-1019)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-525)) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) + (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)))) + ((*1 *1 *1 *1) (-4 *1 (-1059))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-385 *1)) (-4 *1 (-1148 *2)) (-4 *2 (-976)) + (-4 *2 (-341)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-385 *1)) (-4 *1 (-1148 *3)) (-4 *3 (-976)) + (-4 *3 (-517)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *2 (-965)) (-5 *1 (-694))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-695))))) +(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1086 *3))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1019)))) + ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1019))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-965)) + (-5 *1 (-689))))) +(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1086 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) ((*1 *2 *1) - (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) - (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-712)))) - ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-788)) (-5 *2 (-712))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-854)) (-5 *1 (-959 *2)) - (-4 *2 (-13 (-1018) (-10 -8 (-15 -4036 ($ $ $)))))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1018)))) - ((*1 *1 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1018))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1085 *9)) (-5 *4 (-591 *7)) (-5 *5 (-591 *8)) - (-4 *7 (-788)) (-4 *8 (-975)) (-4 *9 (-882 *8 *6 *7)) (-4 *6 (-734)) - (-5 *2 (-1085 *8)) (-5 *1 (-299 *6 *7 *8 *9))))) + (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) + (-14 *4 (-592 (-1090))))) + ((*1 *2 *1) + (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) + (-14 *4 (-592 (-1090))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) + (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789)) + (-4 *8 (-883 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-976)) + (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-855)))) + ((*1 *2 *1) + (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) + (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) + (-4 *4 (-1148 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735)) + (-4 *3 (-789)) (-5 *2 (-713)))) + ((*1 *2 *1) + (-12 (-4 *1 (-905 *3 *2 *4)) (-4 *3 (-976)) (-4 *4 (-789)) + (-4 *2 (-734)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-713)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1163 *3)) + (-5 *2 (-525)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1132 *3)) + (-5 *2 (-385 (-525))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-855))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) + (-5 *2 (-713))))) (((*1 *2 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-1176)) (-5 *1 (-799 *4 *5 *6 *7)) - (-4 *4 (-975)) (-14 *5 (-591 (-1089))) (-14 *6 (-591 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-712)) (-4 *4 (-975)) (-4 *5 (-788)) (-4 *6 (-734)) - (-14 *8 (-591 *5)) (-5 *2 (-1176)) - (-5 *1 (-1181 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-882 *4 *6 *5)) - (-14 *9 (-591 *3)) (-14 *10 *3)))) + (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-879 *4 *3)) + (-4 *3 (-1148 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-591 (-2 (|:| -1265 *3) (|:| -1568 *4)))) - (-4 *3 (-1018)) (-4 *4 (-1018)) (-4 *1 (-1102 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1102 *2 *3)) (-4 *2 (-1018)) (-4 *3 (-1018))))) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *1)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-108)))) + (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) + (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-975)) (-4 *4 (-734)) - (-4 *5 (-788)) (-5 *2 (-108)))) + (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *1 (-1119 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-734)) - (-4 *5 (-788)) (-4 *6 (-989 *3 *4 *5)) (-5 *2 (-108)))) + (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1119 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-734)) - (-4 *6 (-788)) (-4 *3 (-989 *4 *5 *6)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) - ((*1 *2 *1) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-108)) - (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-991 *4 *3)) (-4 *4 (-13 (-786) (-341))) - (-4 *3 (-1147 *4)) (-5 *2 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-898 *3)) (-4 *3 (-899))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-966 *2))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1730)))) (-5 *2 (-964)) - (-5 *1 (-688))))) + (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) + (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) + (-5 *2 (-965)) (-5 *1 (-688))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1148 *6)) + (-4 *6 (-13 (-27) (-408 *5))) + (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-4 *8 (-1148 (-385 *7))) + (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) + (-4 *3 (-320 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-517) (-788) (-966 (-525)))) (-4 *5 (-408 *4)) + (-12 (-5 *3 (-1090)) + (-5 *2 + (-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205))) + (|:| |singularities| (-1071 (-205))))) + (-5 *1 (-100))))) +(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-886 *8)))) + (-5 *5 (-713)) (-5 *6 (-1073)) (-4 *8 (-13 (-286) (-138))) + (-4 *11 (-883 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1090)))) + (-4 *10 (-735)) (-5 *2 - (-3 (|:| |overq| (-1085 (-385 (-525)))) - (|:| |overan| (-1085 (-47))) (|:| -4081 (-108)))) - (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1147 *5))))) + (-2 + (|:| |rgl| + (-592 + (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11)) + (|:| |wcond| (-592 (-886 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1172 (-385 (-886 *8)))) + (|:| -2734 (-592 (-1172 (-385 (-886 *8)))))))))) + (|:| |rgsz| (-525)))) + (-5 *1 (-858 *8 *9 *10 *11)) (-5 *7 (-525))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-592 (-957 *5 *6 *7 *3))) (-5 *1 (-957 *5 *6 *7 *3)) + (-4 *3 (-990 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-592 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-995 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-592 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) + (-4 *3 (-990 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) + (-4 *5 (-1148 *4)) + (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -3941 *5)))) + (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5)) + (-4 *6 (-602 (-385 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) + ((*1 *2 *2) + (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) + (-4 *6 (-990 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -2473 *1) (|:| |upper| *1))) + (-4 *1 (-908 *4 *5 *3 *6))))) +(((*1 *2) + (-12 (-4 *1 (-327)) + (-5 *2 (-592 (-2 (|:| -2961 (-525)) (|:| -1737 (-525)))))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-566 *2) (-160))) (-5 *2 (-825 *4)) - (-5 *1 (-158 *4 *5 *3)) (-4 *4 (-1018)) (-4 *3 (-154 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-1013 (-781 (-357))))) - (-5 *2 (-591 (-1013 (-781 (-205))))) (-5 *1 (-284)))) - ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-796)) (-5 *3 (-525)) (-5 *1 (-372)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) - (-4 *4 (-1147 *3)))) + (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4)))) + (-5 *1 (-1098 *4)) (-5 *3 (-592 (-592 *4)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1086 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -4171 (-592 *3)) (|:| -3480 (-592 *3)))) + (-5 *1 (-1127 *3)) (-4 *3 (-1019))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1043 *4 *3 *5))) (-4 *4 (-37 (-385 (-525)))) + (-4 *4 (-976)) (-4 *3 (-789)) (-5 *1 (-1043 *4 *3 *5)) + (-4 *5 (-883 *4 (-497 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1090)) (-5 *1 (-1121 *4)) + (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976))))) +(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976))))) +(((*1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3) + (-12 (-4 *4 (-429)) + (-5 *2 + (-592 + (-2 (|:| |eigval| (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4)))) + (|:| |geneigvec| (-592 (-632 (-385 (-886 *4)))))))) + (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-886 *4))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-412)) + (-5 *2 + (-592 + (-3 (|:| -3515 (-1090)) + (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))) + (-5 *1 (-1094))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) + (-5 *1 (-610 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1147 *3)) - (-5 *2 (-1171 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1171 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517)) - (-4 *3 (-788)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-975)) - (-4 *4 (-734)) (-4 *5 (-788)) (-5 *1 (-440 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-501)))) - ((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) - (-12 (-4 *3 (-160)) (-4 *1 (-666 *3 *2)) (-4 *2 (-1147 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 (-825 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1018)))) - ((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-975)) (-4 *1 (-911 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-986)))) - ((*1 *1 *2) - (-12 (-5 *2 (-885 *3)) (-4 *3 (-975)) (-4 *1 (-989 *3 *4 *5)) - (-4 *5 (-566 (-1089))) (-4 *4 (-734)) (-4 *5 (-788)))) - ((*1 *1 *2) - (-3150 - (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) - (-12 (-3389 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) - (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))) - (-12 (-5 *2 (-885 (-525))) (-4 *1 (-989 *3 *4 *5)) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089)))) - (-4 *3 (-975)) (-4 *4 (-734)) (-4 *5 (-788))))) - ((*1 *1 *2) - (-12 (-5 *2 (-885 (-385 (-525)))) (-4 *1 (-989 *3 *4 *5)) - (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-566 (-1089))) (-4 *3 (-975)) - (-4 *4 (-734)) (-4 *5 (-788)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-591 *7)) (|:| -3585 *8))) - (-4 *7 (-989 *4 *5 *6)) (-4 *8 (-994 *4 *5 *6 *7)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1072)) - (-5 *1 (-992 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1003)))) - ((*1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1021 *3 *4 *5 *6 *2)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *2 (-1018)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1021 *3 *4 *5 *2 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *5 (-1018)) (-4 *2 (-1018)) (-4 *6 (-1018)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1021 *3 *4 *2 *5 *6)) (-4 *3 (-1018)) (-4 *4 (-1018)) - (-4 *2 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1021 *3 *2 *4 *5 *6)) (-4 *3 (-1018)) (-4 *2 (-1018)) - (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1021 *2 *3 *4 *5 *6)) (-4 *2 (-1018)) (-4 *3 (-1018)) - (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *1)) (-4 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *3 (-1018)) - (-4 *4 (-1018)) (-4 *5 (-1018)) (-4 *6 (-1018)) (-4 *7 (-1018)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-591 *7)) (|:| -3585 *8))) - (-4 *7 (-989 *4 *5 *6)) (-4 *8 (-1027 *4 *5 *6 *7)) (-4 *4 (-429)) - (-4 *5 (-734)) (-4 *6 (-788)) (-5 *2 (-1072)) - (-5 *1 (-1059 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1022)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-1022)) (-5 *1 (-1094)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-796)) (-5 *3 (-525)) (-5 *1 (-1106)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-796)) (-5 *3 (-525)) (-5 *1 (-1106)))) - ((*1 *2 *3) - (-12 (-5 *3 (-721 *4 (-798 *5))) - (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *5 (-591 (-1089))) - (-5 *2 (-721 *4 (-798 *6))) (-5 *1 (-1195 *4 *5 *6)) - (-14 *6 (-591 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-885 *4)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-885 (-953 (-385 *4)))) (-5 *1 (-1195 *4 *5 *6)) - (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-721 *4 (-798 *6))) - (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *6 (-591 (-1089))) - (-5 *2 (-885 (-953 (-385 *4)))) (-5 *1 (-1195 *4 *5 *6)) - (-14 *5 (-591 (-1089))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-13 (-786) (-286) (-138) (-951))) - (-5 *2 (-1085 (-953 (-385 *4)))) (-5 *1 (-1195 *4 *5 *6)) - (-14 *5 (-591 (-1089))) (-14 *6 (-591 (-1089))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1060 *4 (-497 (-798 *6)) (-798 *6) (-721 *4 (-798 *6)))) - (-4 *4 (-13 (-786) (-286) (-138) (-951))) (-14 *6 (-591 (-1089))) - (-5 *2 (-591 (-721 *4 (-798 *6)))) (-5 *1 (-1195 *4 *5 *6)) - (-14 *5 (-591 (-1089)))))) -(((*1 *1 *1) (-5 *1 (-987)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-765)) (-5 *3 (-591 (-1089))) (-5 *1 (-766))))) + (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1190 *3 *4)) + (-4 *3 (-789)) (-4 *4 (-160))))) +(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246))))) +(((*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-592 *1)) (-4 *1 (-1051 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1089)) - (-4 *4 (-13 (-517) (-788) (-966 (-525)) (-587 (-525)))) - (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1111) (-408 *4))))) - ((*1 *1 *1) (-5 *1 (-357))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-429)) (-4 *6 (-734)) (-4 *7 (-788)) - (-4 *3 (-989 *5 *6 *7)) - (-5 *2 (-591 (-2 (|:| |val| *3) (|:| -3585 *4)))) - (-5 *1 (-717 *5 *6 *7 *3 *4)) (-4 *4 (-994 *5 *6 *7 *3))))) + (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2)) + (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-414))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) + ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-242))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-327)) - (-5 *2 (-1171 (-591 (-2 (|:| -2940 *4) (|:| -3229 (-1036)))))) - (-5 *1 (-324 *4))))) + (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) + (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) + ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) + ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1071 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-976)) + (-5 *1 (-1075 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-592 (-2 (|:| -3160 *3) (|:| -3978 *4)))) + (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *1 (-1103 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1103 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))) +(((*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-501))) ((*1 *1) (-4 *1 (-665))) + ((*1 *1) (-4 *1 (-669))) + ((*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) + ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789))))) +(((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) + ((*1 *1 *1) (-4 *1 (-985)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1090)) + (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1112) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-138)) + (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) + (-5 *2 (-294 *5)) (-5 *1 (-545 *5))))) +(((*1 *2) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-788)) (-4 *3 (-1018))))) + (-12 (-5 *3 (-632 (-385 (-886 *4)))) (-4 *4 (-429)) + (-5 *2 (-592 (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4))))) + (-5 *1 (-271 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-713)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 (-385 *2))) + (-4 *2 (-1148 *4)) (-5 *1 (-319 *3 *4 *2 *5)) + (-4 *3 (-320 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1130)) + (-4 *4 (-1148 (-385 *2))) (-4 *2 (-1148 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) + (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) + (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-108))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) + ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) + ((*1 *1 *2) + (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) + (-14 *3 (-855)) (-4 *4 (-976)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701))))) +(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108))))) (((*1 *2 *2) - (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) - (-4 *5 (-351 *3)) (-5 *1 (-630 *3 *4 *5 *2)) - (-4 *2 (-629 *3 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-712)) (-5 *1 (-794 *2)) (-4 *2 (-160))))) -(((*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1018))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-591 (-564 *5))) (-5 *3 (-1089)) (-4 *5 (-408 *4)) - (-4 *4 (-788)) (-5 *1 (-534 *4 *5))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-367))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4250)) (-4 *1 (-215 *3)) - (-4 *3 (-1018)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1072)) (-5 *2 (-525)) (-5 *1 (-1108 *4)) - (-4 *4 (-975))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2124 *3))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-796) (-796))) (-5 *1 (-110)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-796) (-591 (-796)))) (-5 *1 (-110)))) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-501))) + ((*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019))))) +(((*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1019)) + (-4 *2 (-126))))) +(((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) + (-5 *2 (-108)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-796) (-591 (-796)))) (-5 *1 (-110)))) + (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) + (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-976)))) ((*1 *2 *1) - (-12 (-5 *2 (-1176)) (-5 *1 (-195 *3)) - (-4 *3 - (-13 (-788) - (-10 -8 (-15 -1881 ((-1072) $ (-1089))) (-15 -1285 (*2 $)) - (-15 -3829 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-372)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-372)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-475)))) - ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1176)) (-5 *1 (-652)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1106)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1176)) (-5 *1 (-1106))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-396 *6)) (-4 *6 (-1147 *5)) - (-4 *5 (-975)) (-5 *2 (-591 *6)) (-5 *1 (-421 *5 *6))))) -(((*1 *1) (-5 *1 (-415)))) -(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1125)) (-4 *2 (-788)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1125)))) - ((*1 *2 *2) - (-12 (-5 *2 (-591 (-838 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1018)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-975)) (-4 *5 (-734)) (-4 *3 (-788)) - (-4 *6 (-989 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -2767 *1) (|:| |upper| *1))) - (-4 *1 (-907 *4 *5 *3 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246))))) -(((*1 *2 *1) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-905))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-1106))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-385 (-885 *5))) (-5 *4 (-1089)) - (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-273 (-294 *5)))) - (-5 *1 (-1045 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-385 (-885 *4))) (-4 *4 (-13 (-286) (-788) (-138))) - (-5 *2 (-591 (-273 (-294 *4)))) (-5 *1 (-1045 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-273 (-385 (-885 *5)))) (-5 *4 (-1089)) - (-4 *5 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-273 (-294 *5)))) - (-5 *1 (-1045 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-273 (-385 (-885 *4)))) - (-4 *4 (-13 (-286) (-788) (-138))) (-5 *2 (-591 (-273 (-294 *4)))) - (-5 *1 (-1045 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-385 (-885 *5)))) (-5 *4 (-591 (-1089))) - (-4 *5 (-13 (-286) (-788) (-138))) - (-5 *2 (-591 (-591 (-273 (-294 *5))))) (-5 *1 (-1045 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-385 (-885 *4)))) - (-4 *4 (-13 (-286) (-788) (-138))) - (-5 *2 (-591 (-591 (-273 (-294 *4))))) (-5 *1 (-1045 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-273 (-385 (-885 *5))))) (-5 *4 (-591 (-1089))) - (-4 *5 (-13 (-286) (-788) (-138))) - (-5 *2 (-591 (-591 (-273 (-294 *5))))) (-5 *1 (-1045 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 (-273 (-385 (-885 *4))))) - (-4 *4 (-13 (-286) (-788) (-138))) - (-5 *2 (-591 (-591 (-273 (-294 *4))))) (-5 *1 (-1045 *4))))) + (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4)) + (-4 *4 (-1148 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-669)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) + (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-975)) (-4 *4 (-788)) - (-4 *5 (-245 *4)) (-4 *6 (-734)) (-5 *2 (-591 *4))))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) + (-4 *5 (-351 *3)) (-5 *2 (-713)))) + ((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) + (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1090))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -2249 *4)))) + (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1013 (-781 (-205)))) (-5 *2 (-205)) (-5 *1 (-284))))) -(((*1 *2 *2) - (-12 (-4 *3 (-788)) (-5 *1 (-862 *3 *2)) (-4 *2 (-408 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1089)) (-5 *2 (-294 (-525))) (-5 *1 (-863))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-242))) (-5 *1 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 (-242))) (-5 *1 (-1172)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-242))) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-591 (-242))) (-5 *1 (-1173))))) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) + ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-975)) (-4 *2 (-1147 *4)) - (-5 *1 (-421 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-385 (-1085 (-294 *5)))) (-5 *3 (-1171 (-294 *5))) - (-5 *4 (-525)) (-4 *5 (-13 (-517) (-788))) (-5 *1 (-1046 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1788 *4))) - (-5 *1 (-901 *4 *3)) (-4 *3 (-1147 *4))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-689))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-876 (-205))) (-5 *2 (-1176)) (-5 *1 (-445))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1173))))) -(((*1 *1) (-4 *1 (-327))) + (-12 (-5 *2 (-396 (-1086 *1))) (-5 *1 (-294 *4)) (-5 *3 (-1086 *1)) + (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 *5)) (-4 *5 (-408 *4)) - (-4 *4 (-13 (-517) (-788) (-138))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-591 (-1085 *5))) - (|:| |prim| (-1085 *5)))) - (-5 *1 (-410 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-517) (-788) (-138))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1085 *3)) - (|:| |pol2| (-1085 *3)) (|:| |prim| (-1085 *3)))) - (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-885 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-341) (-138))) - (-5 *2 - (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) - (|:| |prim| (-1085 *5)))) - (-5 *1 (-892 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-885 *5))) (-5 *4 (-591 (-1089))) - (-4 *5 (-13 (-341) (-138))) - (-5 *2 - (-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 *5))) - (|:| |prim| (-1085 *5)))) - (-5 *1 (-892 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 (-885 *6))) (-5 *4 (-591 (-1089))) (-5 *5 (-1089)) - (-4 *6 (-13 (-341) (-138))) - (-5 *2 - (-2 (|:| -2976 (-591 (-525))) (|:| |poly| (-591 (-1085 *6))) - (|:| |prim| (-1085 *6)))) - (-5 *1 (-892 *6))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-668) (-25)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1085 *7)) (-4 *5 (-975)) - (-4 *7 (-975)) (-4 *2 (-1147 *5)) (-5 *1 (-474 *5 *2 *6 *7)) - (-4 *6 (-1147 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-975)) (-4 *7 (-975)) - (-4 *4 (-1147 *5)) (-5 *2 (-1085 *7)) (-5 *1 (-474 *5 *4 *6 *7)) - (-4 *6 (-1147 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1173))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1072)) (-4 *6 (-429)) (-4 *7 (-734)) (-4 *8 (-788)) - (-4 *4 (-989 *6 *7 *8)) (-5 *2 (-1176)) - (-5 *1 (-717 *6 *7 *8 *4 *5)) (-4 *5 (-994 *6 *7 *8 *4))))) + (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) + (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-886 *4))) + (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-733)) (-4 *2 (-975)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-975)) (-5 *1 (-49 *2 *3)) (-14 *3 (-591 (-1089))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-591 (-854))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5)) - (-14 *4 (-854)) (-14 *5 (-924 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) - (-4 *3 (-13 (-975) (-788))) (-14 *4 (-591 (-1089))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-126)))) + (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-108)) (-5 *1 (-1095)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1018)) (-4 *2 (-975)))) + (-12 (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-108)) (-5 *1 (-1095)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-572 *2 *4)) - (-4 *4 (-1147 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *1 (-650 *2)) (-4 *2 (-975)))) + (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1095)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-975)) (-5 *1 (-677 *2 *3)) (-4 *3 (-668)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 *5)) (-5 *3 (-591 (-712))) (-4 *1 (-682 *4 *5)) - (-4 *4 (-975)) (-4 *5 (-788)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-682 *4 *2)) (-4 *4 (-975)) - (-4 *2 (-788)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-712)) (-4 *1 (-790 *2)) (-4 *2 (-975)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 *6)) (-5 *3 (-591 (-712))) (-4 *1 (-882 *4 *5 *6)) - (-4 *4 (-975)) (-4 *5 (-734)) (-4 *6 (-788)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-712)) (-4 *1 (-882 *4 *5 *2)) (-4 *4 (-975)) - (-4 *5 (-734)) (-4 *2 (-788)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-4 *2 (-882 *4 (-497 *5) *5)) - (-5 *1 (-1042 *4 *5 *2)) (-4 *4 (-975)) (-4 *5 (-788)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-712)) (-5 *2 (-885 *4)) (-5 *1 (-1120 *4)) - (-4 *4 (-975))))) -(((*1 *1 *1) - (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-975))))) + (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1095))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-825 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1018)) - (-4 *5 (-1125)) (-5 *1 (-823 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-825 *4)) (-5 *3 (-591 (-1 (-108) *5))) (-4 *4 (-1018)) - (-4 *5 (-1125)) (-5 *1 (-823 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-825 *5)) (-5 *3 (-591 (-1089))) - (-5 *4 (-1 (-108) (-591 *6))) (-4 *5 (-1018)) (-4 *6 (-1125)) - (-5 *1 (-823 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1125)) (-4 *4 (-788)) - (-5 *1 (-870 *4 *2 *5)) (-4 *2 (-408 *4)))) + (-12 (-5 *2 (-632 *4)) (-5 *3 (-855)) (|has| *4 (-6 (-4256 "*"))) + (-4 *4 (-976)) (-5 *1 (-958 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-591 (-1 (-108) *5))) (-4 *5 (-1125)) (-4 *4 (-788)) - (-5 *1 (-870 *4 *2 *5)) (-4 *2 (-408 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1125)) - (-5 *2 (-294 (-525))) (-5 *1 (-871 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1089)) (-5 *4 (-591 (-1 (-108) *5))) (-4 *5 (-1125)) - (-5 *2 (-294 (-525))) (-5 *1 (-871 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-1089))) (-5 *3 (-1 (-108) (-591 *6))) - (-4 *6 (-13 (-408 *5) (-819 *4) (-566 (-825 *4)))) (-4 *4 (-1018)) - (-4 *5 (-13 (-975) (-819 *4) (-788) (-566 (-825 *4)))) - (-5 *1 (-997 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-591 (-885 *6))) (-5 *4 (-591 (-1089))) (-4 *6 (-429)) - (-5 *2 (-591 (-591 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341)) - (-4 *5 (-13 (-341) (-786)))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-964)) - (-5 *1 (-690))))) -(((*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1018)) (-4 *2 (-788))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-733)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-49 *3 *4)) - (-14 *4 (-591 (-1089))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) - (-14 *6 (-712)) (-4 *7 (-160)) (-4 *8 (-160)) - (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160)) - (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-975) (-788))) - (-5 *1 (-203 *3 *4)) (-14 *4 (-591 (-1089))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-712)) - (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-220 *5 *7)) - (-5 *1 (-219 *5 *6 *7)))) + (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-855)) + (|has| *4 (-6 (-4256 "*"))) (-4 *4 (-976)) (-5 *1 (-958 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1019))))) +(((*1 *2 *3) + (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) + (-4 *4 (-327))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-713)) + (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525)))))) + (-5 *1 (-226 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-592 (-886 *4))) (-5 *3 (-592 (-1090))) (-4 *4 (-429)) + (-5 *1 (-852 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-735)) (-4 *2 (-883 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2)) + (-4 *4 (-429)) (-4 *6 (-789))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *3 (-886 *6)) (-5 *4 (-1090)) + (-5 *5 (-782 *7)) + (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-4 *7 (-13 (-1112) (-29 *6))) (-5 *1 (-204 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1086 *6)) (-5 *4 (-782 *6)) + (-4 *6 (-13 (-1112) (-29 *5))) + (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-204 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *2 (-2 (|:| -3892 (-110)) (|:| |w| (-205)))) (-5 *1 (-186))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-698))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) + (|:| |genIdeal| (-477 *3 *4 *5 *6)))) + (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 (-886 *6))) (-4 *6 (-517)) + (-4 *2 (-883 (-385 (-886 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) + (-4 *5 (-735)) + (-4 *4 (-13 (-789) (-10 -8 (-15 -2923 ((-1090) $)))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) + (-4 *3 (-990 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-273 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-564 *6)) - (-4 *6 (-281)) (-4 *2 (-1125)) (-5 *1 (-276 *6 *2)))) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-592 *4)) + (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -2249 *4)))))) + (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1172 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) + (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1148 *5)) + (-5 *2 (-632 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1126))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-5 *1 (-1144 *4 *2)) + (-4 *2 (-1148 *4))))) +(((*1 *1 *1) (-5 *1 (-205))) + ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861)) + (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-564 *5)) (-4 *5 (-281)) - (-4 *2 (-281)) (-5 *1 (-277 *5 *2)))) + (-12 (-5 *4 (-1090)) (-5 *2 (-861)) (-5 *1 (-859 *3)) + (-4 *3 (-567 (-501))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-861)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-564 *1)) (-4 *1 (-281)))) + (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) + (-5 *1 (-861))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-687 *3)) (-4 *3 (-160))))) +(((*1 *2 *1) + (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517)) + (-4 *3 (-1126))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-173)) (-5 *3 (-525)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525))))) +(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286))))) +(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *2 (-965)) (-5 *1 (-695))))) +(((*1 *2 *2) + (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-592 (-2 (|:| -3347 (-385 (-525))) (|:| -3356 (-385 (-525)))))) + (-5 *2 (-592 (-205))) (-5 *1 (-284))))) +(((*1 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1175)))) + ((*1 *2 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1175))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-445))))) +(((*1 *2 *3) + (-12 (-5 *3 (-711)) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) + (-5 *1 (-526)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-631 *5)) (-4 *5 (-975)) - (-4 *6 (-975)) (-5 *2 (-631 *6)) (-5 *1 (-283 *5 *6)))) + (-12 (-5 *3 (-711)) (-5 *4 (-988)) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) + (-5 *1 (-526)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-788)) - (-4 *6 (-788)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6)))) + (-12 (-4 *1 (-729)) (-5 *3 (-988)) + (-5 *4 + (-2 (|:| |fn| (-294 (-205))) + (|:| -2853 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) + (|:| |extra| (-965)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341)) - (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) - (-4 *9 (-341)) (-4 *10 (-1147 *9)) (-4 *11 (-1147 (-385 *10))) - (-5 *2 (-314 *9 *10 *11 *12)) - (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-320 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1018)))) + (-12 (-4 *1 (-729)) (-5 *3 (-988)) + (-5 *4 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)) + (|:| |extra| (-965)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1129)) (-4 *8 (-1129)) - (-4 *6 (-1147 *5)) (-4 *7 (-1147 (-385 *6))) (-4 *9 (-1147 *8)) - (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1147 (-385 *9))))) + (-12 (-4 *1 (-742)) (-5 *3 (-988)) + (-5 *4 + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))) + (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-750)) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))))) + (-5 *1 (-747)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) - (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-975)) - (-4 *4 (-1018)))) + (-12 (-5 *3 (-750)) (-5 *4 (-988)) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))))) + (-5 *1 (-747)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517)) - (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6)))) + (-12 (-4 *1 (-778)) (-5 *3 (-988)) + (-5 *4 + (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2039 (-592 (-205))))) + (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517)) - (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6)))) + (-12 (-4 *1 (-778)) (-5 *3 (-988)) + (-5 *4 + (-2 (|:| |fn| (-294 (-205))) (|:| -2039 (-592 (-205))) + (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) + (|:| |ub| (-592 (-782 (-205)))))) + (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-780)) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))))) + (-5 *1 (-779)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286)) - (-4 *6 (-923 *5)) (-4 *7 (-1147 *6)) - (-4 *8 (-13 (-387 *6 *7) (-966 *6))) (-4 *9 (-286)) - (-4 *10 (-923 *9)) (-4 *11 (-1147 *10)) - (-5 *2 (-391 *9 *10 *11 *12)) - (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-387 *10 *11) (-966 *10))))) + (-12 (-5 *3 (-780)) (-5 *4 (-988)) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))))) + (-5 *1 (-779)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) - (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3)))) + (-12 (-4 *1 (-829)) (-5 *3 (-988)) + (-5 *4 + (-2 (|:| |pde| (-592 (-294 (-205)))) + (|:| |constraints| + (-592 + (-2 (|:| |start| (-205)) (|:| |finish| (-205)) + (|:| |grid| (-713)) (|:| |boundaryType| (-525)) + (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) + (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) + (|:| |tol| (-205)))) + (-5 *2 (-2 (|:| -1393 (-357)) (|:| |explanations| (-1073)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-832)) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))))) + (-5 *1 (-831)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-975) (-788))) - (-4 *6 (-13 (-975) (-788))) (-4 *2 (-408 *6)) - (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5)))) + (-12 (-5 *3 (-832)) (-5 *4 (-988)) + (-5 *2 + (-2 (|:| -1393 (-357)) (|:| -3515 (-1073)) + (|:| |explanations| (-592 (-1073))))) + (-5 *1 (-831))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-698))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-385 (-886 *5)) (-1080 (-1090) (-886 *5)))) + (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *5))))) + (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-886 *5))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525)))) + (-4 *2 (-160))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-771))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525)))) + (-5 *1 (-284))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-799 *5)) + (-14 *5 (-592 (-1090))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)) + (-4 *6 (-429)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1018)) (-4 *6 (-1018)) - (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1125)))) + (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-799 *5)) + (-14 *5 (-592 (-1090))) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)) + (-4 *6 (-429))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-1019)) + (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) + (-5 *1 (-53 *4 *5 *2)) + (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4))))))) +(((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-1086 (-886 *4))) (-5 *1 (-394 *3 *4)) + (-4 *3 (-395 *4)))) + ((*1 *2) + (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) + (-5 *2 (-1086 (-886 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) + (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) + (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *1) + (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-985)) (-4 *3 (-1112)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-805 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-14 *2 (-525)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-788)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341)) - (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2428 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-341)) (-4 *6 (-341)) - (-5 *2 (-2 (|:| -2428 *6) (|:| |coeff| *6))) - (-5 *1 (-541 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-341)) (-4 *6 (-341)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-591 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-541 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7)) - (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-555 *8)) - (-5 *1 (-553 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-555 *7)) - (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-1070 *8)) - (-5 *1 (-553 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1070 *7)) - (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-1070 *8)) - (-5 *1 (-553 *6 *7 *8)))) + (-12 (-5 *2 (-525)) (-14 *3 *2) (-5 *1 (-806 *3 *4)) + (-4 *4 (-803 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-525)) (-5 *1 (-806 *2 *3)) (-4 *3 (-803 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-555 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-591 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-591 *6)) (-5 *1 (-589 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-591 *6)) (-5 *5 (-591 *7)) - (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-591 *8)) - (-5 *1 (-590 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-596 *3)) (-4 *3 (-1125)))) + (-12 (-5 *2 (-525)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-976)) + (-4 *4 (-1163 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1163 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6)) + (-4 *4 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1148 *5)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) + (-5 *1 (-752 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-975)) (-4 *8 (-975)) - (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-629 *8 *9 *10)) - (-5 *1 (-627 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-629 *5 *6 *7)) - (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) + (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1148 *5)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-5 *2 (-2 (|:| -2734 (-592 (-385 *6))) (|:| -3471 (-632 *5)))) + (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-975)) - (-4 *8 (-975)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) - (-4 *2 (-629 *8 *9 *10)) (-5 *1 (-627 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-629 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) + (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1148 *5)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) + (-5 *1 (-752 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1148 *5)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-5 *2 (-2 (|:| -2734 (-592 (-385 *6))) (|:| -3471 (-632 *5)))) + (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6)))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-745))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-799 *4)) + (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5))))) +(((*1 *1) (-5 *1 (-415)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) + (-4 *2 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3)) + (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) + (-4 *2 (-1163 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138))) + (-5 *1 (-1067 *3))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) + (-5 *1 (-694))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-823 *4 *5)) (-5 *3 (-823 *4 *6)) (-4 *4 (-1019)) + (-4 *5 (-1019)) (-4 *6 (-612 *5)) (-5 *1 (-819 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1148 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-917 *4 *2 *3 *5)) + (-4 *4 (-327)) (-4 *5 (-667 *2 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-906))))) +(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1019)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517)) - (-4 *6 (-1147 *5)) (-4 *2 (-1147 (-385 *8))) - (-5 *1 (-651 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1147 (-385 *6))) - (-4 *8 (-1147 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-975)) (-4 *9 (-975)) (-4 *5 (-788)) - (-4 *6 (-734)) (-4 *2 (-882 *9 *7 *5)) - (-5 *1 (-670 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-734)) - (-4 *4 (-882 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-788)) (-4 *6 (-788)) (-4 *7 (-734)) - (-4 *9 (-975)) (-4 *2 (-882 *9 *8 *6)) - (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-734)) - (-4 *4 (-882 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-677 *5 *7)) (-4 *5 (-975)) - (-4 *6 (-975)) (-4 *7 (-668)) (-5 *2 (-677 *6 *7)) - (-5 *1 (-676 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-677 *3 *4)) - (-4 *4 (-668)))) + (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525)) + (-5 *2 (-592 *5)) (-5 *1 (-625 *5)) (-4 *5 (-1019))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-858 *4 *5 *6 *3)) + (-4 *3 (-883 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) + (-4 *4 (-13 (-789) (-517)))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-877 *5)) (-5 *3 (-713)) (-4 *5 (-976)) + (-5 *1 (-1079 *4 *5)) (-14 *4 (-855))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) + (-4 *3 (-13 (-1019) (-33)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789)) + (-4 *4 (-735)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1036)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1073)) (-5 *4 (-1037)) (-5 *2 (-108)) (-5 *1 (-763))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) + (-5 *3 (-592 (-525)))))) +(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) + ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1029))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *2) + (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) + (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-713)) (-4 *5 (-160)))) + ((*1 *1 *1) + (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) + (-4 *4 (-160)))) + ((*1 *1 *1) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) + (-4 *4 (-351 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-976)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3)) + (-4 *4 (-351 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-713)) (-4 *3 (-976))))) +(((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) + ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) + ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) + ((*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) + ((*1 *2 *1) + (-12 (-5 *2 (-385 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) + ((*1 *1 *1) (-4 *1 (-985)))) +(((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1073)) (-5 *1 (-728))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-504 *4 *2 *5 *6)) + (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1126)) (-4 *3 (-976)) + (-5 *2 (-632 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1019)) + (-5 *1 (-109 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1019)) + (-5 *1 (-109 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4)))) + (-5 *1 (-109 *4)) (-4 *4 (-1019))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) + (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1090)) + (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) + (-5 *2 (-2 (|:| -1242 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3)) + (-4 *3 (-13 (-27) (-1112) (-408 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-763))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) + (-4 *3 (-995 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1019))))) +(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) + ((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-102 *3))))) +(((*1 *1 *1) (-4 *1 (-985)))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) + (-5 *2 + (-2 (|:| -3067 *4) (|:| -2263 *4) (|:| |totalpts| (-525)) + (|:| |success| (-108)))) + (-5 *1 (-731)) (-5 *5 (-525))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-2 (|:| -2961 (-1086 *6)) (|:| -1737 (-525))))) + (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) + (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-5 *2 (-385 (-886 *4))) (-5 *1 (-858 *4 *5 *6 *3)) + (-4 *3 (-883 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-632 *7)) (-4 *7 (-883 *4 *6 *5)) + (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-5 *2 (-632 (-385 (-886 *4)))) + (-5 *1 (-858 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5)) + (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) + (-4 *6 (-735)) (-5 *2 (-592 (-385 (-886 *4)))) + (-5 *1 (-858 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7)) + (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) + (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2734 (-592 *4)))) + (-5 *1 (-748 *5 *6 *7 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-648 *3 *4)) (-4 *3 (-1126)) (-4 *4 (-1126))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) + (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5))) + (-5 *1 (-1046 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-723 *5)) (-4 *5 (-975)) - (-4 *6 (-975)) (-5 *2 (-723 *6)) (-5 *1 (-722 *5 *6)))) + (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) + (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5)))) + (-5 *1 (-1046 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6)) + (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)) + (-4 *4 (-517)) (-5 *2 (-385 (-1086 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112))) + (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) + (-5 *2 (-1086 (-385 (-1086 *3)))) (-5 *1 (-521 *6 *3 *7)) + (-5 *5 (-1086 *3)) (-4 *7 (-1019)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) - (-4 *2 (-738 *6)) (-5 *1 (-739 *4 *5 *2 *6)) (-4 *4 (-738 *5)))) + (-12 (-5 *4 (-1168 *5)) (-14 *5 (-1090)) (-4 *6 (-976)) + (-5 *2 (-1145 *5 (-886 *6))) (-5 *1 (-881 *5 *6)) (-5 *3 (-886 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *5 (-789)) (-5 *2 (-1086 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1086 *1)) + (-4 *1 (-883 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-774 *5)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-5 *2 (-774 *6)) (-5 *1 (-773 *5 *6)))) + (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976)) + (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-385 (-1086 *3))) + (-5 *1 (-884 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-341) + (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-774 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-774 *5)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *1 (-773 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-5 *2 (-781 *6)) (-5 *1 (-780 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-781 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) - (-4 *5 (-1018)) (-4 *6 (-1018)) (-5 *1 (-780 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-815 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-815 *6)) (-5 *1 (-814 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-822 *5 *6)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-4 *7 (-1018)) (-5 *2 (-822 *5 *7)) - (-5 *1 (-821 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1018)) - (-4 *6 (-1018)) (-5 *2 (-825 *6)) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-975)) - (-4 *6 (-975)) (-5 *2 (-885 *6)) (-5 *1 (-879 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-788)) - (-4 *8 (-975)) (-4 *6 (-734)) - (-4 *2 - (-13 (-1018) - (-10 -8 (-15 -4036 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-712)))))) - (-5 *1 (-884 *6 *7 *8 *5 *2)) (-4 *5 (-882 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-975)) - (-4 *6 (-975)) (-5 *2 (-876 *6)) (-5 *1 (-912 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-885 *4))) (-4 *4 (-975)) - (-4 *2 (-882 (-885 *4) *5 *6)) (-4 *5 (-734)) - (-4 *6 - (-13 (-788) - (-10 -8 (-15 -1300 ((-1089) $)) - (-15 -1592 ((-3 $ "failed") (-1089)))))) - (-5 *1 (-915 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517)) - (-4 *2 (-923 *6)) (-5 *1 (-921 *5 *6 *4 *2)) (-4 *4 (-923 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) - (-4 *2 (-927 *6)) (-5 *1 (-928 *4 *5 *2 *6)) (-4 *4 (-927 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-978 *3 *4 *5 *6 *7)) - (-4 *5 (-975)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-978 *3 *4 *5 *6 *7)) (-4 *5 (-975)) - (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-975)) (-4 *10 (-975)) - (-14 *5 (-712)) (-14 *6 (-712)) (-4 *8 (-218 *6 *7)) - (-4 *9 (-218 *5 *7)) (-4 *2 (-978 *5 *6 *10 *11 *12)) - (-5 *1 (-980 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-978 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10)) - (-4 *12 (-218 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1013 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-1013 *6)) (-5 *1 (-1009 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1013 *5)) (-4 *5 (-786)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-591 *6)) - (-5 *1 (-1009 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1011 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-1011 *6)) (-5 *1 (-1010 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1014 *4 *2)) (-4 *4 (-786)) - (-4 *2 (-1063 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-1070 *6)) (-5 *1 (-1068 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) - (-4 *6 (-1125)) (-4 *7 (-1125)) (-4 *8 (-1125)) (-5 *2 (-1070 *8)) - (-5 *1 (-1069 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-975)) - (-4 *6 (-975)) (-5 *2 (-1085 *6)) (-5 *1 (-1083 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1102 *3 *4)) (-4 *3 (-1018)) - (-4 *4 (-1018)))) + (-12 (-5 *2 (-1086 *3)) + (-4 *3 + (-13 (-341) + (-10 -8 (-15 -4044 ($ *7)) (-15 -1936 (*7 $)) (-15 -1945 (*7 $))))) + (-4 *7 (-883 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976)) + (-5 *1 (-884 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1135 *5 *7 *9)) (-4 *5 (-975)) - (-4 *6 (-975)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1135 *6 *8 *10)) (-5 *1 (-1130 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1089)))) + (-12 (-5 *4 (-1090)) (-4 *5 (-517)) + (-5 *2 (-385 (-1086 (-385 (-886 *5))))) (-5 *1 (-972 *5)) + (-5 *3 (-385 (-886 *5)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3)) + (-4 *3 (-1019))))) +(((*1 *2 *3) + (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1148 *5)) + (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1148 *6)) + (-14 *7 (-855))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-592 + (-2 + (|:| -3160 + (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) + (|:| -2853 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (|:| -3978 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1071 (-205))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2853 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-520))))) +(((*1 *2 *1) + (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) + (-5 *2 (-1086 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-592 (-2 (|:| -2961 (-1086 *6)) (|:| -1737 (-525))))) + (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) + (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-592 (-877 (-205))))) + (-5 *2 (-592 (-1014 (-205)))) (-5 *1 (-862))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-860))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-632 *1)) (-5 *4 (-1172 *1)) (-4 *1 (-588 *5)) + (-4 *5 (-976)) + (-5 *2 (-2 (|:| -3471 (-632 *5)) (|:| |vec| (-1172 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-976)) + (-5 *2 (-632 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284))))) +(((*1 *2 *1) + (-12 (-5 *2 (-797)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) + (-14 *4 (-713)) (-4 *5 (-160))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281))))) +(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1) + (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) + (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) + ((*1 *2 *3) + (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) + (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) + (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) + (-5 *2 (-632 *4)))) + ((*1 *2) + (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) + (-4 *3 (-395 *4)))) + ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9)) + (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) + (-5 *1 (-909 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-5 *2 (-1086 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108)) + (-5 *1 (-784 *4 *5)) (-14 *4 (-713))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1029))))) +(((*1 *1) (-5 *1 (-205))) ((*1 *1) (-5 *1 (-357)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126))))) +(((*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1105))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-205)) (-5 *4 (-525)) + (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1896)))) (-5 *2 (-965)) + (-5 *1 (-689))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6)))) + (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1163 *5)) (-5 *2 (-592 *6)) + (-5 *1 (-1165 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-808)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) + (-4 *4 (-789)) (-4 *5 (-990 *2 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108)) + (-5 *1 (-617 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-160)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-976))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) + (-4 *3 (-13 (-341) (-1112) (-933)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1095))))) +(((*1 *1 *1 *1) (-5 *1 (-797)))) +(((*1 *2 *3) + (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-1138 *6)) (-5 *1 (-1137 *5 *6)))) + (-12 (-5 *4 (-855)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) + (-4 *3 (-567 (-357))))) + ((*1 *2 *3) + (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357))) + (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5)) (-4 *5 (-786)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1070 *6)) - (-5 *1 (-1137 *5 *6)))) + (-12 (-5 *3 (-157 *5)) (-5 *4 (-855)) (-4 *5 (-160)) + (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-886 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) + (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1144 *5 *6)) (-14 *5 (-1089)) - (-4 *6 (-975)) (-4 *8 (-975)) (-5 *2 (-1144 *7 *8)) - (-5 *1 (-1139 *5 *6 *7 *8)) (-14 *7 (-1089)))) + (-12 (-5 *3 (-886 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-160)) + (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357))) + (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-975)) (-4 *6 (-975)) - (-4 *2 (-1147 *6)) (-5 *1 (-1145 *5 *4 *6 *2)) (-4 *4 (-1147 *5)))) + (-12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) + (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) + (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1156 *5 *7 *9)) (-4 *5 (-975)) - (-4 *6 (-975)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1156 *6 *8 *10)) (-5 *1 (-1151 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1089)))) + (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) + (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-385 (-886 (-157 *4)))) (-4 *4 (-517)) + (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-975)) (-4 *6 (-975)) - (-4 *2 (-1162 *6)) (-5 *1 (-1160 *5 *6 *4 *2)) (-4 *4 (-1162 *5)))) + (-12 (-5 *3 (-385 (-886 (-157 *5)))) (-5 *4 (-855)) (-4 *5 (-517)) + (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) + (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-1171 *6)) (-5 *1 (-1170 *5 *6)))) + (-12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) + (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) + (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1171 *5)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1171 *6)) - (-5 *1 (-1170 *5 *6)))) + (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-517)) + (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) + (-5 *1 (-727 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) + (-4 *2 (-13 (-408 *3) (-933)))))) +(((*1 *1 *1) (|partial| -4 *1 (-136))) ((*1 *1 *1) (-4 *1 (-327))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-843))))) +(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) + (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) + (-5 *2 (-761 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-976))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) + (-4 *3 (-990 *5 *6 *7)) + (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -2249 *4)))) + (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) + (-5 *3 (-592 (-525))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) + (-5 *3 (-592 (-525)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1019)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1186 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-975)))) + (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-975)) (-5 *1 (-1192 *3 *4)) - (-4 *4 (-784))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1125)) - (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-525)) (-4 *1 (-978 *4 *5 *6 *7 *2)) (-4 *6 (-975)) - (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-885 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-788) (-517))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-788) (-517))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *2)) (-5 *4 (-1089)) (-4 *2 (-408 *5)) - (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-788) (-517))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-854)) (-4 *1 (-942)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-854)) (-5 *4 (-796)) - (-4 *1 (-942)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-854)) (-4 *4 (-13 (-786) (-341))) - (-4 *1 (-991 *4 *2)) (-4 *2 (-1147 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-975)) (-4 *2 (-341))))) -(((*1 *2 *1) - (-12 (-4 *3 (-341)) (-4 *4 (-734)) (-4 *5 (-788)) (-5 *2 (-591 *6)) - (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-882 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-591 (-838 *3))) (-5 *1 (-837 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) - (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) - (-5 *2 (-964)) (-5 *1 (-695))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-105))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3081 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1148 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-242)))) + ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242))))) +(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-987)))) + ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-987))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-976)) (-4 *3 (-341)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) + (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1112))) + (-5 *1 (-540 *4 *2)) + (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-542 (-385 (-886 *4)))) + (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) + (-5 *2 (-294 *4)) (-5 *1 (-545 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1108 *3)) (-4 *3 (-975))))) -(((*1 *2) (-12 + (-5 *3 + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) + (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) + (|:| |abserr| (-205)) (|:| |relerr| (-205)))) + (-5 *2 (-357)) (-5 *1 (-187))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1092 (-385 (-525)))) + (-5 *1 (-172))))) +(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110))) + ((*1 *1 *1) (-5 *1 (-159))) ((*1 *1 *1) (-4 *1 (-510))) + ((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) + (-4 *3 (-13 (-1019) (-33)))))) +(((*1 *1) + (-12 (-4 *1 (-382)) (-2823 (|has| *1 (-6 -4245))) + (-2823 (|has| *1 (-6 -4237))))) + ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-789)))) + ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *1) (-4 *1 (-789))) ((*1 *1) (-5 *1 (-1037)))) +(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) + ((*1 *2 *3) + (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) + (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-883 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) + (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 *7))) + (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-429)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) + (-5 *2 (-396 *1)) (-4 *1 (-883 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3)) + (-5 *1 (-911 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) + (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 (-385 *7)))) + (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1086 (-385 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1130)))) + ((*1 *2 *3) + (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1151 *4 *3)) + (-4 *3 (-13 (-1148 *4) (-517) (-10 -8 (-15 -2262 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-14 *5 (-592 (-1090))) (-5 *2 - (-1171 (-591 (-2 (|:| -2940 (-843 *3)) (|:| -3229 (-1036)))))) - (-5 *1 (-329 *3 *4)) (-14 *3 (-854)) (-14 *4 (-854)))) - ((*1 *2) - (-12 (-5 *2 (-1171 (-591 (-2 (|:| -2940 *3) (|:| -3229 (-1036)))))) - (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1085 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1171 (-591 (-2 (|:| -2940 *3) (|:| -3229 (-1036)))))) - (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-854))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1125)) (-5 *2 (-712))))) -(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-788))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1070 (-525))) (-5 *1 (-934 *3)) (-14 *3 (-525))))) -(((*1 *1) (-5 *1 (-764)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-591 *6)) (-4 *6 (-989 *3 *4 *5)) (-4 *3 (-429)) - (-4 *3 (-517)) (-4 *4 (-734)) (-4 *5 (-788)) - (-5 *1 (-908 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) + (-592 (-1061 *4 (-497 (-799 *6)) (-799 *6) (-722 *4 (-799 *6))))) + (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090)))))) (((*1 *2 *1) - (-12 (-14 *3 (-591 (-1089))) (-4 *4 (-160)) - (-14 *6 - (-1 (-108) (-2 (|:| -3229 *5) (|:| -3987 *2)) - (-2 (|:| -3229 *5) (|:| -3987 *2)))) - (-4 *2 (-218 (-2028 *3) (-712))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-788)) (-4 *7 (-882 *4 *2 (-798 *3)))))) -(((*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517))))) + (-12 (-5 *2 (-877 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-160)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-761 *3)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-976)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1171 *4)) (-4 *4 (-587 (-525))) - (-5 *2 (-1171 (-525))) (-5 *1 (-1196 *4))))) + (-12 (-5 *3 (-632 *2)) (-4 *4 (-1148 *2)) + (-4 *2 (-13 (-286) (-10 -8 (-15 -1259 ((-396 $) $))))) + (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) + (-4 *5 (-218 *3 *2)) (-4 *2 (-976))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-779)) (-5 *4 (-987)) (-5 *2 (-964)) (-5 *1 (-778)))) - ((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-964)) (-5 *1 (-778)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-591 (-357))) (-5 *5 (-591 (-781 (-357)))) - (-5 *6 (-591 (-294 (-357)))) (-5 *3 (-294 (-357))) (-5 *2 (-964)) - (-5 *1 (-778)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-357))) - (-5 *5 (-591 (-781 (-357)))) (-5 *2 (-964)) (-5 *1 (-778)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-357))) (-5 *4 (-591 (-357))) (-5 *2 (-964)) - (-5 *1 (-778)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 (-294 (-357)))) (-5 *4 (-591 (-357))) - (-5 *2 (-964)) (-5 *1 (-778))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-587 (-525))) (-5 *2 (-108)) - (-5 *1 (-1196 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-650 *3)) (-5 *1 (-768 *2 *3)) (-4 *3 (-975))))) + (-12 (-5 *3 (-632 *8)) (-4 *8 (-883 *5 *7 *6)) + (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) + (-4 *7 (-735)) + (-5 *2 + (-592 + (-2 (|:| -3439 (-713)) + (|:| |eqns| + (-592 + (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) + (|:| |cols| (-592 (-525)))))) + (|:| |fgb| (-592 *8))))) + (-5 *1 (-858 *5 *6 *7 *8)) (-5 *4 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1073)) (-5 *1 (-284))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108)) + (-4 *4 (-13 (-1112) (-29 *6))) + (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) + (-5 *1 (-204 *6 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1177)) (-5 *1 (-764))))) (((*1 *1 *2) - (-12 (-5 *2 (-591 (-997 *3 *4 *5))) (-4 *3 (-1018)) - (-4 *4 (-13 (-975) (-819 *3) (-788) (-566 (-825 *3)))) - (-4 *5 (-13 (-408 *4) (-819 *3) (-566 (-825 *3)))) - (-5 *1 (-998 *3 *4 *5))))) + (-12 + (-5 *2 + (-592 + (-2 + (|:| -3160 + (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) + (|:| |fn| (-1172 (-294 (-205)))) + (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) + (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) + (|:| |relerr| (-205)))) + (|:| -3978 + (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) + (|:| |expense| (-357)) (|:| |accuracy| (-357)) + (|:| |intermediateResults| (-357))))))) + (-5 *1 (-745))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *3)) + (-4 *3 (-1126)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1126)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1120 *4 *5 *3 *2)) (-4 *4 (-517)) + (-4 *5 (-735)) (-4 *3 (-789)) (-4 *2 (-990 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-713)) (-5 *1 (-1124 *2)) (-4 *2 (-1126))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-1196 *5 *6 *7)) + (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-886 *4))) + (-4 *4 (-13 (-787) (-286) (-138) (-952))) + (-5 *2 (-592 (-973 *4 *5))) (-5 *1 (-1196 *4 *5 *6)) + (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1073)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) + (-5 *7 (-632 (-525))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-695))))) +(((*1 *1 *1) (-5 *1 (-501)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789)) + (-4 *7 (-517)) (-4 *8 (-883 *7 *5 *6)) + (-5 *2 (-2 (|:| -1737 (-713)) (|:| -2059 *9) (|:| |radicand| *9))) + (-5 *1 (-887 *5 *6 *7 *8 *9)) (-5 *4 (-713)) + (-4 *9 + (-13 (-341) + (-10 -8 (-15 -1936 (*8 $)) (-15 -1945 (*8 $)) (-15 -4044 ($ *8)))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1019)) + (-4 *3 (-1019))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-592 *6)) (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) + (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) + (-4 *3 (-517))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932)))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-255 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1162 *3)) - (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1131 *3)) - (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-914 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1075 *3)))) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-592 *3)) (-4 *3 (-883 *5 *6 *7)) (-4 *5 (-429)) + (-4 *6 (-735)) (-4 *7 (-789)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-426 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) + ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) + (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-965)) + (-5 *1 (-689))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) + (-4 *5 (-13 (-1019) (-33))) (-4 *6 (-13 (-1019) (-33))) + (-5 *2 (-108)) (-5 *1 (-1056 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-592 (-886 *4))) (-5 *3 (-592 (-1090))) (-4 *4 (-429)) + (-5 *1 (-852 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) + (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) + (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) + (-5 *2 (-2 (|:| -2158 (-713)) (|:| -2131 *8))) + (-5 *1 (-845 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) + (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4))) + (-4 *6 (-320 (-385 (-525)) *4 *5)) + (-5 *2 (-2 (|:| -2158 (-713)) (|:| -2131 *6))) + (-5 *1 (-846 *4 *5 *6))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-592 (-1086 *4))) (-5 *3 (-1086 *4)) + (-4 *4 (-843)) (-5 *1 (-609 *4))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126)) + (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4255)) (-4 *1 (-115 *3)) + (-4 *3 (-1126)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4255)) (-4 *1 (-115 *3)) + (-4 *3 (-1126)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4255)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) + (-4 *2 (-1126)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-581)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1139 (-525))) (|has| *1 (-6 -4255)) (-4 *1 (-597 *2)) + (-4 *2 (-1126)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) + (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4255)) (-4 *1 (-941 *2)) + (-4 *2 (-1126)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1103 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) + (-4 *2 (-1126)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *3)) + (-4 *3 (-1126)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) + (-4 *2 (-1126))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2)) + (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255))))))) +(((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) + ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) ((*1 *2 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-37 (-385 (-525)))) - (-5 *1 (-1076 *3))))) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *1) - (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1147 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-160)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1147 *3)) (-5 *1 (-654 *3 *2)) (-4 *3 (-975)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-657 *3 *2 *4 *5 *6)) (-4 *3 (-160)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-802 *3)) (-5 *2 (-525))))) -(((*1 *1 *2) (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-305 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-591 *3)) (-4 *3 (-1125)) (-5 *1 (-488 *3 *4)) - (-14 *4 (-525))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-290)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-525)) (-5 *5 (-157 (-205))) (-5 *6 (-1072)) - (-5 *4 (-205)) (-5 *2 (-964)) (-5 *1 (-700))))) -(((*1 *1 *1) (-4 *1 (-577))) + (-12 (-5 *2 (-2 (|:| |preimage| (-592 *3)) (|:| |image| (-592 *3)))) + (-5 *1 (-839 *3)) (-4 *3 (-1019))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) + (-4 *4 (-976))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-592 (-227 *4 *5))) (-5 *2 (-227 *4 *5)) + (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860))))) +(((*1 *1 *1) + (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) + (-4 *2 (-789)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) + (-4 *4 (-789))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-797))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))) +(((*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *1 (-829)) + (-5 *3 + (-2 (|:| |pde| (-592 (-294 (-205)))) + (|:| |constraints| + (-592 + (-2 (|:| |start| (-205)) (|:| |finish| (-205)) + (|:| |grid| (-713)) (|:| |boundaryType| (-525)) + (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) + (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) + (|:| |tol| (-205)))) + (-5 *2 (-965))))) +(((*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3))))) +(((*1 *1 *1) (-4 *1 (-510)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-126)) + (-4 *3 (-734))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))) +(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525))))) +(((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))) +(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-848 *3)) (-4 *3 (-286))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1019)) + (-5 *1 (-622 *2)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-517))) (-5 *1 (-578 *3 *2)) - (-4 *2 (-13 (-408 *3) (-932) (-1111)))))) -(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1111))))) - ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) - ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1138 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-942)) (-5 *2 (-796))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-964)) (-5 *1 (-700))))) + (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1019)) (-5 *1 (-625 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-205))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) + (-4 *2 (-408 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *3) - (-12 (-5 *2 (-591 (-1085 (-525)))) (-5 *1 (-173)) (-5 *3 (-525))))) + (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1100 (-855) (-713)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1098 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-771))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1147 *5)) - (-5 *1 (-748 *5 *2 *3 *6)) - (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) - (-4 *3 (-601 *2)) (-4 *6 (-601 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 (-385 *2))) (-4 *2 (-1147 *5)) - (-5 *1 (-748 *5 *2 *3 *6)) - (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) (-4 *3 (-601 *2)) - (-4 *6 (-601 (-385 *2)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-591 (-1072))) (-5 *1 (-372))))) -(((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-923 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3)) - (-4 *3 (-351 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-923 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5)))) + (-12 (-5 *4 (-855)) (-4 *6 (-13 (-517) (-789))) + (-5 *2 (-592 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6)) + (-4 *5 (-976)))) + ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) ((*1 *2 *3) - (-12 (-5 *3 (-631 *5)) (-4 *5 (-923 *4)) (-4 *4 (-517)) - (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) - (-5 *1 (-634 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-341) (-138) (-966 (-385 (-525))))) - (-4 *6 (-1147 *5)) - (-5 *2 (-2 (|:| -2203 *7) (|:| |rh| (-591 (-385 *6))))) - (-5 *1 (-748 *5 *6 *7 *3)) (-5 *4 (-591 (-385 *6))) - (-4 *7 (-601 *6)) (-4 *3 (-601 (-385 *6))))) + (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1112))) + (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) + (-5 *2 (-592 *5)) (-5 *1 (-540 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-517)) (-4 *5 (-923 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1140 *4 *5 *3)) - (-4 *3 (-1147 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-788) (-429))) (-5 *1 (-1117 *3 *2)) - (-4 *2 (-13 (-408 *3) (-1111)))))) -(((*1 *2) - (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) - (-4 *3 (-345 *4)))) - ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108))))) -(((*1 *2 *2) (-12 (-5 *2 (-1013 (-781 (-205)))) (-5 *1 (-284))))) -(((*1 *2 *1) - (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1070 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3)))) + (-12 (-5 *3 (-542 (-385 (-886 *4)))) + (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) + (-5 *2 (-592 (-294 *4))) (-5 *1 (-545 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-787)) (-4 *2 (-1064 *3)))) ((*1 *2 *3) - (-12 (-5 *2 (-161 (-525))) (-5 *1 (-707 *3)) (-4 *3 (-382)))) + (-12 (-5 *3 (-592 *1)) (-4 *1 (-1015 *4 *2)) (-4 *4 (-787)) + (-4 *2 (-1064 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) + (-4 *2 (-13 (-408 *3) (-1112))))) ((*1 *2 *1) - (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-804 *3)) (-14 *3 (-525)))) + (-12 (-5 *2 (-1185 (-1090) *3)) (-5 *1 (-1192 *3)) (-4 *3 (-976)))) ((*1 *2 *1) - (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525)))) - (-5 *1 (-805 *3 *4)) (-4 *4 (-802 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-712)) (-5 *1 (-98 *3)) (-4 *3 (-1018))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-525)) (-5 *4 (-631 (-205))) (-5 *2 (-964)) - (-5 *1 (-694))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *4)) (-4 *4 (-788)) (-5 *2 (-591 (-609 *4 *5))) - (-5 *1 (-575 *4 *5 *6)) (-4 *5 (-13 (-160) (-659 (-385 (-525))))) - (-14 *6 (-854))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-1018) (-33))) (-5 *1 (-1054 *3 *2)) - (-4 *3 (-13 (-1018) (-33)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-591 (-591 (-525)))) (-5 *1 (-902)) - (-5 *3 (-591 (-525)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-645 *3)) - (-4 *3 (-566 (-501))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-205) (-205) (-205))) - (-5 *1 (-645 *3)) (-4 *3 (-566 (-501)))))) -(((*1 *2) - (-12 (-5 *2 (-108)) (-5 *1 (-1070 *3)) (-4 *3 (-1018)) - (-4 *3 (-1125))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-712)) (-4 *2 (-517)) (-5 *1 (-901 *2 *4)) - (-4 *4 (-1147 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-341) (-138) (-966 (-385 (-525))))) - (-4 *5 (-1147 *4)) - (-5 *2 (-591 (-2 (|:| |deg| (-712)) (|:| -2203 *5)))) - (-5 *1 (-750 *4 *5 *3 *6)) (-4 *3 (-601 *5)) - (-4 *6 (-601 (-385 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) - (-4 *4 (-13 (-788) (-517)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-591 (-564 *6))) (-5 *4 (-1089)) (-5 *2 (-564 *6)) - (-4 *6 (-408 *5)) (-4 *5 (-788)) (-5 *1 (-534 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *9)) (-4 *8 (-989 *5 *6 *7)) - (-4 *9 (-994 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) - (-4 *7 (-788)) (-5 *2 (-712)) (-5 *1 (-992 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *8)) (-5 *4 (-591 *9)) (-4 *8 (-989 *5 *6 *7)) - (-4 *9 (-1027 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-734)) - (-4 *7 (-788)) (-5 *2 (-712)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-876 *5)) (-4 *5 (-975)) (-5 *2 (-712)) - (-5 *1 (-1078 *4 *5)) (-14 *4 (-854)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-712))) (-5 *3 (-712)) (-5 *1 (-1078 *4 *5)) - (-14 *4 (-854)) (-4 *5 (-975)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-591 (-712))) (-5 *3 (-876 *5)) (-4 *5 (-975)) - (-5 *1 (-1078 *4 *5)) (-14 *4 (-854))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-591 *11)) (-5 *5 (-591 (-1085 *9))) - (-5 *6 (-591 *9)) (-5 *7 (-591 *12)) (-5 *8 (-591 (-712))) - (-4 *11 (-788)) (-4 *9 (-286)) (-4 *12 (-882 *9 *10 *11)) - (-4 *10 (-734)) (-5 *2 (-591 (-1085 *12))) - (-5 *1 (-649 *10 *11 *9 *12)) (-5 *3 (-1085 *12))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-341) (-138) (-966 (-525)))) - (-4 *5 (-1147 *4)) - (-5 *2 (-2 (|:| -2428 (-385 *5)) (|:| |coeff| (-385 *5)))) - (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5))))) -((-1202 . 725997) (-1203 . 725666) (-1204 . 725305) (-1205 . 724885) - (-1206 . 724739) (-1207 . 724627) (-1208 . 724399) (-1209 . 724296) - (-1210 . 724206) (-1211 . 723972) (-1212 . 723879) (-1213 . 723774) - (-1214 . 723601) (-1215 . 723480) (-1216 . 723407) (-1217 . 722898) - (-1218 . 722831) (-1219 . 722673) (-1220 . 722564) (-1221 . 721695) - (-1222 . 721632) (-1223 . 721231) (-1224 . 721147) (-1225 . 721060) - (-1226 . 720998) (-1227 . 720842) (-1228 . 720676) (-1229 . 720532) - (-1230 . 720392) (-1231 . 720321) (-1232 . 720151) (-1233 . 719441) - (-1234 . 718867) (-1235 . 718760) (-1236 . 718550) (-1237 . 718472) - (-1238 . 718370) (-1239 . 717698) (-1240 . 717575) (-1241 . 717520) - (-1242 . 717236) (-1243 . 717149) (-1244 . 716987) (-1245 . 716959) - (-1246 . 716878) (-1247 . 716808) (-1248 . 716736) (-1249 . 716296) - (-1250 . 716213) (-1251 . 716043) (-1252 . 715821) (-1253 . 715748) - (-1254 . 714973) (-1255 . 714921) (-1256 . 714671) (-1257 . 700608) - (-1258 . 700534) (-1259 . 700370) (-1260 . 700176) (-1261 . 699021) - (-1262 . 698936) (-1263 . 697361) (-1264 . 697164) (-1265 . 697010) - (-1266 . 696680) (-1267 . 696595) (-1268 . 695430) (-1269 . 695271) - (-1270 . 695191) (-1271 . 695091) (-1272 . 694961) (-1273 . 694708) - (-1274 . 694468) (-1275 . 694315) (-1276 . 694067) (-1277 . 693932) - (-1278 . 692647) (-1279 . 692522) (-1280 . 692466) (-1281 . 692407) - (-1282 . 691978) (-1283 . 691950) (-1284 . 691814) (-1285 . 691060) - (-1286 . 690930) (-1287 . 690838) (-1288 . 690647) (-1289 . 690588) - (-1290 . 690463) (-1291 . 690407) (-1292 . 690334) (-1293 . 690187) - (-1294 . 690100) (-1295 . 690012) (-1296 . 689867) (-1297 . 689324) - (-1298 . 689244) (-1299 . 689213) (-1300 . 684510) (-1301 . 684271) - (-1302 . 684112) (-1303 . 684026) (-1304 . 683941) (-1305 . 683871) - (-1306 . 683573) (-1307 . 683052) (-1308 . 682850) (-1309 . 682472) - (-1310 . 682266) (-1311 . 682153) (-1312 . 681995) (-1313 . 681881) - (-1314 . 681445) (-1315 . 681366) (-1316 . 680743) (-1317 . 680639) - (-1318 . 680496) (-1319 . 680387) (-1320 . 680294) (-1321 . 680099) - (-1322 . 680012) (-1323 . 679839) (-1324 . 679749) (-1325 . 679099) - (-1326 . 679028) (-1327 . 678810) (-1328 . 678658) (-1329 . 678503) - (-1330 . 678408) (-1331 . 678335) (-1332 . 678241) (-1333 . 678132) - (-1334 . 677937) (-1335 . 677622) (-1336 . 677285) (-1337 . 677233) - (-1338 . 676707) (-1339 . 676641) (-1340 . 676506) (-1341 . 676012) - (-1342 . 675952) (-1343 . 675900) (-1344 . 675821) (-1345 . 675699) - (-1346 . 675619) (-1347 . 675551) (-1348 . 675431) (-1349 . 673669) - (-1350 . 672488) (-1351 . 672344) (-1352 . 671529) (-1353 . 671142) - (-1354 . 671026) (-1355 . 670943) (-1356 . 670369) (-1357 . 670156) - (-1358 . 670026) (-1359 . 669881) (-1360 . 669784) (-1361 . 669687) - (-1362 . 669534) (-1363 . 669378) (-1364 . 669179) (-1365 . 669106) - (-1366 . 668960) (-1367 . 668844) (-1368 . 668767) (-1369 . 668562) - (-1370 . 668479) (-1371 . 668401) (-1372 . 668252) (-1373 . 668123) - (-1374 . 667815) (-1375 . 667160) (-1376 . 667089) (-1377 . 666603) - (-1378 . 666516) (-1379 . 666450) (-1380 . 666276) (-1381 . 665902) - (-1382 . 665773) (-1383 . 665670) (-1384 . 664971) (-1385 . 664915) - (-1386 . 664797) (-1387 . 664654) (-1388 . 664559) (-1389 . 664290) - (-1390 . 664228) (-1391 . 664108) (-1392 . 663851) (-1393 . 663674) - (-1394 . 663516) (-1395 . 663373) (-1396 . 662696) (-1397 . 662386) - (-1398 . 662013) (-1399 . 661960) (-1400 . 661838) (-1401 . 661566) - (-1402 . 661383) (-1403 . 661164) (-1404 . 659868) (-1405 . 659687) - (-1406 . 659470) (-1407 . 659420) (-1408 . 659060) (-1409 . 658949) - (-1410 . 658767) (-1411 . 658738) (-1412 . 658355) (-1413 . 658303) - (-1414 . 658219) (-1415 . 658167) (-1416 . 657937) (-1417 . 657672) - (-1418 . 657414) (-1419 . 657385) (-1420 . 657312) (-1421 . 656971) - (-1422 . 655352) (-1423 . 655096) (-1424 . 654992) (-1425 . 654868) - (-1426 . 654808) (-1427 . 654725) (-1428 . 654561) (-1429 . 654454) - (-1430 . 654372) (-1431 . 654271) (-1432 . 653794) (-1433 . 653742) - (-1434 . 652881) (-1435 . 652721) (-1436 . 652668) (-1437 . 652610) - (-1438 . 652503) (-1439 . 652385) (-1440 . 652139) (-1441 . 652058) - (-1442 . 651914) (-1443 . 651843) (-1444 . 650476) (-1445 . 650189) - (-1446 . 649990) (-1447 . 649917) (-1448 . 649708) (-1449 . 649657) - (-1450 . 649574) (-1451 . 649486) (-1452 . 649319) (-1453 . 648685) - (-1454 . 648559) (-1455 . 648409) (-1456 . 648119) (-1457 . 647988) - (-1458 . 647854) (-1459 . 647716) (-1460 . 647219) (-1461 . 646967) - (-1462 . 646881) (-1463 . 646733) (-1464 . 646640) (-1465 . 646542) - (-1466 . 646252) (-1467 . 646199) (-1468 . 646114) (-1469 . 646002) - (-1470 . 645919) (-1471 . 645837) (-1472 . 645663) (-1473 . 645606) - (-1474 . 645226) (-1475 . 645102) (-1476 . 644805) (-1477 . 644750) - (-1478 . 644506) (-1479 . 644208) (-1480 . 643946) (-1481 . 643521) - (-1482 . 643193) (-1483 . 643017) (-1484 . 642894) (-1485 . 642823) - (-1486 . 642753) (-1487 . 640925) (-1488 . 640593) (-1489 . 640480) - (-1490 . 640360) (-1491 . 640251) (-1492 . 640093) (-1493 . 640056) - (-1494 . 639918) (-1495 . 639785) (-1496 . 639600) (-1497 . 638099) - (-1498 . 637996) (-1499 . 637930) (-1500 . 637531) (-1501 . 637241) - (-1502 . 634460) (-1503 . 634269) (-1504 . 634125) (-1505 . 634068) - (-1506 . 633954) (-1507 . 632414) (-1508 . 632337) (-1509 . 632236) - (-1510 . 632179) (-1511 . 632097) (-1512 . 632018) (-1513 . 631952) - (-1514 . 631899) (-1515 . 631826) (-1516 . 631792) (-1517 . 631683) - (-1518 . 631554) (-1519 . 631335) (-1520 . 628920) (-1521 . 628849) - (-1522 . 627637) (-1523 . 626901) (-1524 . 626771) (-1525 . 624992) - (-1526 . 624891) (-1527 . 624841) (-1528 . 624789) (-1529 . 624530) - (-1530 . 624445) (-1531 . 624284) (-1532 . 624126) (-1533 . 623964) - (-1534 . 623930) (-1535 . 623835) (-1536 . 623752) (-1537 . 623679) - (-1538 . 623479) (-1539 . 623344) (-1540 . 623218) (-1541 . 623121) - (-1542 . 623055) (-1543 . 622948) (-1544 . 622889) (-1545 . 622229) - (-1546 . 621949) (-1547 . 621866) (-1548 . 621228) (-1549 . 621070) - (-1550 . 620960) (-1551 . 620619) (-1552 . 620516) (-1553 . 620339) - (-1554 . 619742) (-1555 . 619604) (-1556 . 618444) (-1557 . 618321) - (-1558 . 618216) (-1559 . 618056) (-1560 . 617908) (-1561 . 617852) - (-1562 . 617710) (-1563 . 617520) (-1564 . 617406) (-1565 . 617354) - (-1566 . 617259) (-1567 . 617078) (-1568 . 615876) (-1569 . 615711) - (-1570 . 615541) (-1571 . 615323) (-1572 . 614893) (-1573 . 614677) - (-1574 . 614536) (-1575 . 613413) (-1576 . 613382) (-1577 . 613297) - (-1578 . 612976) (-1579 . 612877) (-1580 . 612766) (-1581 . 612636) - (-1582 . 612539) (-1583 . 612191) (-1584 . 612092) (-1585 . 611981) - (-1586 . 611758) (-1587 . 611675) (-1588 . 611449) (-1589 . 611300) - (-1590 . 611234) (-1591 . 611094) (-1592 . 610606) (-1593 . 610546) - (-1594 . 610468) (-1595 . 610345) (-1596 . 610278) (-1597 . 609912) - (-1598 . 609819) (-1599 . 609704) (-1600 . 609563) (-1601 . 609479) - (-1602 . 609316) (-1603 . 609066) (-1604 . 608978) (-1605 . 608891) - (-1606 . 608504) (-1607 . 608364) (-1608 . 608287) (-1609 . 608169) - (-1610 . 608060) (-1611 . 607958) (-1612 . 607886) (-1613 . 607307) - (-1614 . 607189) (-1615 . 607067) (-1616 . 606581) (-1617 . 606510) - (-1618 . 605324) (-1619 . 605020) (-1620 . 604933) (-1621 . 604829) - (-1622 . 604757) (-1623 . 604659) (-1624 . 604035) (-1625 . 603873) - (-1626 . 603759) (-1627 . 603335) (-1628 . 603237) (-1629 . 603165) - (-1630 . 603063) (-1631 . 602899) (-1632 . 602718) (-1633 . 602628) - (-1634 . 602048) (-1635 . 601950) (-1636 . 601747) (-1637 . 601565) - (-1638 . 601166) (-1639 . 600973) (-1640 . 600760) (-1641 . 600219) - (-1642 . 600146) (-1643 . 599933) (-1644 . 599806) (-1645 . 598703) - (-1646 . 598526) (-1647 . 598439) (-1648 . 598034) (-1649 . 597917) - (-1650 . 597886) (-1651 . 597746) (-1652 . 597562) (-1653 . 597475) - (-1654 . 597389) (-1655 . 597213) (-1656 . 597089) (-1657 . 596811) - (-1658 . 596734) (-1659 . 596671) (-1660 . 596619) (-1661 . 596274) - (-1662 . 595887) (-1663 . 595781) (-1664 . 595464) (-1665 . 595232) - (-1666 . 595173) (-1667 . 595044) (-1668 . 594834) (-1669 . 594692) - (-1670 . 594445) (-1671 . 593253) (-1672 . 593091) (-1673 . 592798) - (-1674 . 592507) (-1675 . 592409) (-1676 . 590162) (-1677 . 589764) - (-1678 . 589690) (-1679 . 589634) (-1680 . 589542) (-1681 . 589348) - (-1682 . 589319) (-1683 . 589025) (-1684 . 588867) (-1685 . 588787) - (-1686 . 588495) (-1687 . 588366) (-1688 . 588270) (-1689 . 588199) - (-1690 . 588130) (-1691 . 587961) (-1692 . 587663) (-1693 . 587287) - (-1694 . 586696) (-1695 . 586332) (-1696 . 586134) (-1697 . 586047) - (-1698 . 585797) (-1699 . 585671) (-1700 . 585478) (-1701 . 585423) - (-1702 . 585237) (-1703 . 584963) (-1704 . 584868) (-1705 . 584734) - (-1706 . 584601) (-1707 . 584532) (-1708 . 584204) (-1709 . 584081) - (-1710 . 583923) (-1711 . 583679) (-1712 . 583346) (-1713 . 582763) - (-1714 . 582712) (-1715 . 582415) (-1716 . 582296) (-1717 . 582119) - (-1718 . 582006) (-1719 . 581452) (-1720 . 581008) (-1721 . 580879) - (-1722 . 580765) (-1723 . 580713) (-1724 . 580658) (-1725 . 580572) - (-1726 . 580468) (-1727 . 580412) (-1728 . 580298) (-1729 . 580201) - (-1730 . 580124) (-1731 . 579942) (-1732 . 579846) (-1733 . 579793) - (-1734 . 579272) (-1735 . 578993) (-1736 . 578879) (-1737 . 578767) - (-1738 . 578680) (-1739 . 578527) (-1740 . 578403) (-1741 . 578316) - (-1742 . 578217) (-1743 . 577933) (-1744 . 577626) (-1745 . 577566) - (-1746 . 577403) (-1747 . 577262) (-1748 . 577150) (-1749 . 576926) - (-1750 . 576831) (-1751 . 576758) (-1752 . 576700) (-1753 . 576627) - (-1754 . 576574) (-1755 . 576370) (-1756 . 576215) (-1757 . 576165) - (-1758 . 576086) (-1759 . 575703) (-1760 . 575616) (-1761 . 575235) - (-1762 . 575206) (-1763 . 575094) (-1764 . 574995) (-1765 . 574961) - (-1766 . 574857) (-1767 . 574750) (-1768 . 574650) (-1769 . 572796) - (-1770 . 572598) (-1771 . 571418) (-1772 . 571303) (-1773 . 571216) - (-1774 . 571163) (-1775 . 571059) (-1776 . 570833) (-1777 . 570594) - (-1778 . 570395) (-1779 . 569987) (-1780 . 569878) (-1781 . 569798) - (-1782 . 569550) (-1783 . 569468) (-1784 . 569356) (-1785 . 569241) - (-1786 . 569076) (-1787 . 568803) (-1788 . 568422) (-1789 . 568353) - (-1790 . 568300) (-1791 . 568191) (-1792 . 568098) (-1793 . 567763) - (-1794 . 567678) (-1795 . 567499) (-1796 . 566670) (-1797 . 566587) - (-1798 . 566437) (-1799 . 566384) (-1800 . 566284) (-1801 . 565984) - (-1802 . 565881) (-1803 . 565807) (-1804 . 565613) (-1805 . 565478) - (-1806 . 565083) (-1807 . 565009) (-1808 . 564829) (-1809 . 564644) - (-1810 . 564348) (-1811 . 564188) (-1812 . 563991) (-1813 . 563920) - (-1814 . 563829) (-1815 . 563533) (-1816 . 563411) (-1817 . 563256) - (-1818 . 562677) (-1819 . 562621) (-1820 . 562289) (-1821 . 562131) - (-1822 . 562058) (-1823 . 561886) (-1824 . 561717) (-1825 . 561680) - (-1826 . 561585) (-1827 . 561342) (-1828 . 561229) (-1829 . 561035) - (-1830 . 560864) (-1831 . 560836) (-1832 . 560184) (-1833 . 560012) - (-1834 . 559640) (-1835 . 559521) (-1836 . 559419) (-1837 . 559228) - (-1838 . 559121) (-1839 . 558874) (-1840 . 558821) (-1841 . 558406) - (-1842 . 558340) (-1843 . 558226) (-1844 . 557929) (-1845 . 557880) - (-1846 . 557793) (-1847 . 557670) (-1848 . 557369) (-1849 . 557295) - (-1850 . 557201) (-1851 . 557012) (-1852 . 556946) (-1853 . 556915) - (-1854 . 556677) (-1855 . 556502) (-1856 . 556135) (-1857 . 555819) - (-1858 . 555611) (-1859 . 555556) (-1860 . 555485) (-1861 . 555286) - (-1862 . 555219) (-1863 . 555087) (-1864 . 555004) (-1865 . 554910) - (-1866 . 554773) (-1867 . 554147) (-1868 . 553938) (-1869 . 553801) - (-1870 . 553657) (-1871 . 553539) (-1872 . 553420) (-1873 . 553176) - (-1874 . 553005) (-1875 . 552815) (-1876 . 552759) (-1877 . 552626) - (-1878 . 552539) (-1879 . 552440) (-1880 . 552256) (-1881 . 547157) - (-1882 . 547062) (-1883 . 546994) (-1884 . 546878) (-1885 . 546771) - (-1886 . 546634) (-1887 . 546582) (-1888 . 546475) (-1889 . 546263) - (-1890 . 546049) (-1891 . 545737) (-1892 . 545709) (-1893 . 545219) - (-1894 . 545182) (-1895 . 542274) (-1896 . 542178) (-1897 . 542071) - (-1898 . 542019) (-1899 . 541381) (-1900 . 541299) (-1901 . 541166) - (-1902 . 541114) (-1903 . 541029) (-1904 . 540937) (-1905 . 540726) - (-1906 . 540627) (-1907 . 540543) (-1908 . 540091) (-1909 . 539958) - (-1910 . 539905) (-1911 . 539653) (-1912 . 539582) (-1913 . 539302) - (-1914 . 539229) (-1915 . 539201) (-1916 . 539148) (-1917 . 539088) - (-1918 . 538962) (-1919 . 537712) (-1920 . 537466) (-1921 . 537237) - (-1922 . 536627) (-1923 . 536348) (-1924 . 536291) (-1925 . 536048) - (-1926 . 535996) (-1927 . 535900) (-1928 . 535817) (-1929 . 535658) - (-1930 . 535520) (-1931 . 535383) (-1932 . 535303) (-1933 . 535186) - (-1934 . 535089) (-1935 . 534757) (-1936 . 534706) (-1937 . 534633) - (-1938 . 534512) (-1939 . 534460) (-1940 . 534432) (-1941 . 534277) - (-1942 . 534211) (-1943 . 534108) (-1944 . 533922) (-1945 . 533535) - (-1946 . 533464) (-1947 . 533356) (-1948 . 533325) (-1949 . 533184) - (-1950 . 532883) (-1951 . 532671) (-1952 . 532344) (-1953 . 532041) - (-1954 . 531595) (-1955 . 531299) (-1956 . 531179) (-1957 . 531078) - (-1958 . 530982) (-1959 . 530879) (-1960 . 530801) (-1961 . 530729) - (-1962 . 530652) (-1963 . 530513) (-1964 . 530479) (-1965 . 530424) - (-1966 . 530261) (-1967 . 530181) (-1968 . 529743) (-1969 . 529451) - (-1970 . 529307) (-1971 . 529273) (-1972 . 529138) (-1973 . 529036) - (-1974 . 529008) (-1975 . 528952) (-1976 . 528787) (-1977 . 528734) - (-1978 . 528493) (-1979 . 528398) (-1980 . 524410) (-1981 . 524289) - (-1982 . 524255) (-1983 . 524037) (-1984 . 523982) (-1985 . 523665) - (-1986 . 523421) (-1987 . 523280) (-1988 . 523212) (-1989 . 523146) - (-1990 . 523049) (-1991 . 522959) (-1992 . 522881) (-1993 . 522774) - (-1994 . 522391) (-1995 . 522277) (-1996 . 522121) (-1997 . 522019) - (-1998 . 521966) (-1999 . 521871) (-2000 . 521700) (-2001 . 521542) - (-2002 . 521492) (-2003 . 521334) (-2004 . 521075) (-2005 . 520877) - (-2006 . 520357) (-2007 . 520241) (-2008 . 520023) (-2009 . 519698) - (-2010 . 518997) (-2011 . 518929) (-2012 . 518713) (-2013 . 518643) - (-2014 . 518544) (-2015 . 518367) (-2016 . 518237) (-2017 . 517812) - (-2018 . 517744) (-2019 . 517641) (-2020 . 517437) (-2021 . 516946) - (-2022 . 516806) (-2023 . 516752) (-2024 . 515950) (-2025 . 515663) - (-2026 . 515543) (-2027 . 515435) (-2028 . 515119) (-2029 . 515051) - (-2030 . 514957) (-2031 . 514815) (-2032 . 514229) (-2033 . 514122) - (-2034 . 513985) (-2035 . 513930) (-2036 . 513771) (-2037 . 513505) - (-2038 . 513414) (-2039 . 513305) (-2040 . 512784) (-2041 . 512536) - (-2042 . 512428) (-2043 . 511680) (-2044 . 511525) (-2045 . 511397) - (-2046 . 511259) (-2047 . 511134) (-2048 . 510997) (-2049 . 510924) - (-2050 . 510841) (-2051 . 510758) (-2052 . 510627) (-2053 . 510548) - (-2054 . 510255) (-2055 . 510059) (-2056 . 509707) (-2057 . 509619) - (-2058 . 509567) (-2059 . 509411) (-2060 . 509189) (-2061 . 509112) - (-2062 . 509040) (-2063 . 508930) (-2064 . 508853) (-2065 . 508779) - (-2066 . 508702) (-2067 . 508522) (-2068 . 508420) (-2069 . 508330) - (-2070 . 508296) (-2071 . 508244) (-2072 . 508188) (-2073 . 507686) - (-2074 . 507563) (-2075 . 507475) (-2076 . 507447) (-2077 . 507142) - (-2078 . 506392) (-2079 . 506247) (-2080 . 506157) (-2081 . 506070) - (-2082 . 505886) (-2083 . 505812) (-2084 . 505718) (-2085 . 505638) - (-2086 . 505555) (-2087 . 505503) (-2088 . 505451) (-2089 . 505382) - (-2090 . 504934) (-2091 . 504744) (-2092 . 504243) (-2093 . 504112) - (-2094 . 503996) (-2095 . 503651) (-2096 . 503507) (-2097 . 503427) - (-2098 . 503325) (-2099 . 503227) (-2100 . 503175) (-2101 . 503029) - (-2102 . 502752) (-2103 . 502681) (-2104 . 502536) (-2105 . 502374) - (-2106 . 502198) (-2107 . 501819) (-2108 . 501641) (-2109 . 501381) - (-2110 . 501279) (-2111 . 501226) (-2112 . 501149) (-2113 . 501008) - (-2114 . 500934) (-2115 . 500892) (-2116 . 500699) (-2117 . 500543) - (-2118 . 500434) (-2119 . 500269) (-2120 . 500203) (-2121 . 499183) - (-2122 . 499152) (-2123 . 499014) (-2124 . 497914) (-2125 . 497784) - (-2126 . 497649) (-2127 . 497586) (-2128 . 497533) (-2129 . 497410) - (-2130 . 497231) (-2131 . 497020) (-2132 . 496915) (-2133 . 496817) - (-2134 . 496737) (-2135 . 496709) (-2136 . 496652) (-2137 . 496486) - (-2138 . 496066) (-2139 . 496011) (-2140 . 495796) (-2141 . 495435) - (-2142 . 495358) (-2143 . 495309) (-2144 . 495259) (-2145 . 495080) - (-2146 . 494934) (-2147 . 494061) (-2148 . 493908) (-2149 . 493308) - (-2150 . 493198) (-2151 . 493089) (-2152 . 492968) (-2153 . 492916) - (-2154 . 492837) (-2155 . 492020) (-2156 . 491954) (-2157 . 491306) - (-2158 . 491097) (-2159 . 490502) (-2160 . 490450) (-2161 . 490372) - (-2162 . 490289) (-2163 . 489738) (-2164 . 489430) (-2165 . 489376) - (-2166 . 489217) (-2167 . 489061) (-2168 . 488530) (-2169 . 488320) - (-2170 . 488157) (-2171 . 488105) (-2172 . 488055) (-2173 . 486970) - (-2174 . 486611) (-2175 . 486528) (-2176 . 485924) (-2177 . 485383) - (-2178 . 484891) (-2179 . 484674) (-2180 . 484131) (-2181 . 484080) - (-2182 . 484009) (-2183 . 483926) (-2184 . 483898) (-2185 . 483813) - (-2186 . 483758) (-2187 . 483686) (-2188 . 483634) (-2189 . 483560) - (-2190 . 483436) (-2191 . 482999) (-2192 . 482922) (-2193 . 481675) - (-2194 . 481601) (-2195 . 481401) (-2196 . 481269) (-2197 . 480929) - (-2198 . 480690) (-2199 . 480520) (-2200 . 480453) (-2201 . 480419) - (-2202 . 480349) (-2203 . 480193) (-2204 . 480079) (-2205 . 479763) - (-2206 . 479666) (-2207 . 479473) (-2208 . 479305) (-2209 . 477153) - (-2210 . 476973) (-2211 . 476899) (-2212 . 476769) (-2213 . 476660) - (-2214 . 476572) (-2215 . 476487) (-2216 . 476389) (-2217 . 476291) - (-2218 . 476190) (-2219 . 476109) (-2220 . 475982) (-2221 . 475923) - (-2222 . 475871) (-2223 . 475273) (-2224 . 475071) (-2225 . 474897) - (-2226 . 474845) (-2227 . 474684) (-2228 . 474633) (-2229 . 474520) - (-2230 . 474469) (-2231 . 474398) (-2232 . 474255) (-2233 . 474138) - (-2234 . 474082) (-2235 . 473985) (-2236 . 473873) (-2237 . 473799) - (-2238 . 473635) (-2239 . 473375) (-2240 . 473257) (-2241 . 473187) - (-2242 . 473089) (-2243 . 472972) (-2244 . 472623) (-2245 . 472482) - (-2246 . 472258) (-2247 . 472031) (-2248 . 471842) (-2249 . 471769) - (-2250 . 471695) (-2251 . 471636) (-2252 . 471552) (-2253 . 471429) - (-2254 . 471356) (-2255 . 471271) (-2256 . 471024) (-2257 . 470771) - (-2258 . 470712) (-2259 . 470646) (-2260 . 470579) (-2261 . 470485) - (-2262 . 470147) (-2263 . 470094) (-2264 . 469821) (-2265 . 469741) - (-2266 . 469311) (-2267 . 469092) (-2268 . 468988) (-2269 . 468835) - (-2270 . 468732) (-2271 . 468610) (-2272 . 468375) (-2273 . 468257) - (-2274 . 468150) (-2275 . 468076) (-2276 . 467992) (-2277 . 467582) - (-2278 . 467497) (-2279 . 467426) (-2280 . 467307) (-2281 . 467134) - (-2282 . 463849) (-2283 . 463815) (-2284 . 463744) (-2285 . 463161) - (-2286 . 463050) (-2287 . 462927) (-2288 . 461717) (-2289 . 461520) - (-2290 . 461437) (-2291 . 461382) (-2292 . 461292) (-2293 . 461214) - (-2294 . 461063) (-2295 . 460919) (-2296 . 460789) (-2297 . 460674) - (-2298 . 460323) (-2299 . 460112) (-2300 . 459695) (-2301 . 459529) - (-2302 . 459402) (-2303 . 459279) (-2304 . 459217) (-2305 . 458885) - (-2306 . 458642) (-2307 . 458533) (-2308 . 458432) (-2309 . 458404) - (-2310 . 458260) (-2311 . 457807) (-2312 . 457647) (-2313 . 457442) - (-2314 . 457216) (-2315 . 456982) (-2316 . 455536) (-2317 . 455399) - (-2318 . 454447) (-2319 . 454306) (-2320 . 454154) (-2321 . 454019) - (-2322 . 453866) (-2323 . 453808) (-2324 . 453483) (-2325 . 453225) - (-2326 . 453152) (-2327 . 452968) (-2328 . 452798) (-2329 . 452729) - (-2330 . 452631) (-2331 . 452501) (-2332 . 452371) (-2333 . 452230) - (-2334 . 452179) (-2335 . 452094) (-2336 . 451899) (-2337 . 451818) - (-2338 . 451596) (-2339 . 451455) (-2340 . 451360) (-2341 . 451245) - (-2342 . 451086) (-2343 . 450212) (-2344 . 450076) (-2345 . 449878) - (-2346 . 449807) (-2347 . 449663) (-2348 . 449419) (-2349 . 449362) - (-2350 . 448547) (-2351 . 448495) (-2352 . 448281) (-2353 . 447898) - (-2354 . 447824) (-2355 . 447687) (-2356 . 446450) (-2357 . 446067) - (-2358 . 445966) (-2359 . 445895) (-2360 . 445154) (-2361 . 444880) - (-2362 . 444782) (-2363 . 444465) (-2364 . 444218) (-2365 . 444080) - (-2366 . 443934) (-2367 . 443754) (-2368 . 443643) (-2369 . 443412) - (-2370 . 442671) (-2371 . 442612) (-2372 . 442442) (-2373 . 442338) - (-2374 . 442182) (-2375 . 442083) (-2376 . 441977) (-2377 . 441876) - (-2378 . 441739) (-2379 . 441654) (-2380 . 441562) (-2381 . 440874) - (-2382 . 440772) (-2383 . 440526) (-2384 . 440477) (-2385 . 440213) - (-2386 . 440053) (-2387 . 439953) (-2388 . 439643) (-2389 . 439562) - (-2390 . 439397) (-2391 . 438821) (-2392 . 438755) (-2393 . 438366) - (-2394 . 438311) (-2395 . 437917) (-2396 . 437678) (-2397 . 437557) - (-2398 . 437508) (-2399 . 437193) (-2400 . 436617) (-2401 . 436458) - (-2402 . 436145) (-2403 . 436068) (-2404 . 435858) (-2405 . 435651) - (-2406 . 435582) (-2407 . 435303) (-2408 . 434894) (-2409 . 434860) - (-2410 . 434284) (-2411 . 434065) (-2412 . 433805) (-2413 . 433721) - (-2414 . 433693) (-2415 . 433643) (-2416 . 433542) (-2417 . 433490) - (-2418 . 433308) (-2419 . 433256) (-2420 . 433168) (-2421 . 433109) - (-2422 . 433032) (-2423 . 432980) (-2424 . 432848) (-2425 . 432597) - (-2426 . 432481) (-2427 . 432326) (-2428 . 432271) (-2429 . 432181) - (-2430 . 432082) (-2431 . 431077) (-2432 . 430391) (-2433 . 430357) - (-2434 . 430300) (-2435 . 430147) (-2436 . 430119) (-2437 . 430034) - (-2438 . 429949) (-2439 . 429834) (-2440 . 429475) (-2441 . 429111) - (-2442 . 428944) (-2443 . 428828) (-2444 . 428142) (-2445 . 427471) - (-2446 . 427376) (** . 424299) (-2448 . 424247) (-2449 . 424041) - (-2450 . 423843) (-2451 . 423662) (-2452 . 416708) (-2453 . 416634) - (-2454 . 416411) (-2455 . 416244) (-2456 . 415796) (-2457 . 415047) - (-2458 . 414780) (-2459 . 414706) (-2460 . 414675) (-2461 . 414579) - (-2462 . 414317) (-2463 . 414264) (-2464 . 414039) (-2465 . 413868) - (-2466 . 413700) (-2467 . 413214) (-2468 . 413103) (-2469 . 412529) - (-2470 . 412417) (-2471 . 412343) (-2472 . 412137) (-2473 . 411965) - (-2474 . 411894) (-2475 . 411821) (-2476 . 411698) (-2477 . 411124) - (-2478 . 411053) (-2479 . 410676) (-2480 . 410567) (-2481 . 410401) - (-2482 . 410073) (-2483 . 409988) (-2484 . 409900) (-2485 . 409750) - (-2486 . 409684) (-2487 . 407554) (-2488 . 407480) (-2489 . 406961) - (-2490 . 406834) (-2491 . 406672) (-2492 . 406193) (-2493 . 406013) - (-2494 . 405769) (-2495 . 405195) (-2496 . 405118) (-2497 . 404768) - (-2498 . 404659) (-2499 . 404472) (-2500 . 404339) (-2501 . 404254) - (-2502 . 403850) (-2503 . 403749) (-2504 . 403687) (-2505 . 403571) - (-2506 . 403543) (-2507 . 403491) (-2508 . 403391) (-2509 . 403289) - (-2510 . 403071) (-2511 . 402949) (-2512 . 402830) (-2513 . 402655) - (-2514 . 401254) (-2515 . 401113) (-2516 . 400995) (-2517 . 400875) - (-2518 . 400681) (-2519 . 400571) (-2520 . 400486) (-2521 . 400356) - (-2522 . 399923) (-2523 . 399039) (-2524 . 398983) (-2525 . 398896) - (-2526 . 398801) (-2527 . 398730) (-2528 . 398620) (-2529 . 398290) - (-2530 . 397944) (-2531 . 397891) (-2532 . 397784) (-2533 . 397686) - (-2534 . 397561) (-2535 . 397403) (-2536 . 397348) (-2537 . 396749) - (-2538 . 396390) (-2539 . 396307) (-2540 . 396255) (-2541 . 395917) - (-2542 . 390409) (-2543 . 390375) (-2544 . 390217) (-2545 . 389967) - (-2546 . 389813) (-2547 . 389746) (-2548 . 389598) (-2549 . 389327) - (-2550 . 389091) (-2551 . 388703) (-2552 . 388366) (-2553 . 388268) - (-2554 . 388037) (-2555 . 387716) (-2556 . 387170) (-2557 . 387114) - (-2558 . 386888) (-2559 . 386829) (-2560 . 386376) (-2561 . 386224) - (-2562 . 386065) (-2563 . 385950) (-2564 . 385547) (-2565 . 385409) - (-2566 . 385324) (-2567 . 385118) (-2568 . 385034) (-2569 . 384939) - (-2570 . 384858) (-2571 . 384511) (-2572 . 384164) (-2573 . 383843) - (-2574 . 383223) (-2575 . 383170) (-2576 . 383042) (-2577 . 382803) - (-2578 . 382553) (-2579 . 382525) (-2580 . 382445) (-2581 . 382360) - (-2582 . 382273) (-2583 . 382117) (-2584 . 381851) (-2585 . 381740) - (-2586 . 380430) (-2587 . 380324) (-2588 . 380113) (-2589 . 379913) - (-2590 . 379820) (-2591 . 379754) (-2592 . 379639) (-2593 . 379544) - (-2594 . 379447) (-2595 . 379257) (-2596 . 379157) (-2597 . 379077) - (-2598 . 379003) (-2599 . 378909) (-2600 . 378696) (-2601 . 378407) - (-2602 . 378355) (-2603 . 378272) (-2604 . 378107) (-2605 . 377948) - (-2606 . 377882) (-2607 . 377810) (-2608 . 377757) (-2609 . 377586) - (-2610 . 377316) (-2611 . 377261) (-2612 . 377191) (-2613 . 376983) - (-2614 . 376874) (-2615 . 376790) (-2616 . 376707) (-2617 . 376636) - (-2618 . 376563) (-2619 . 376507) (-2620 . 376343) (-2621 . 376289) - (-2622 . 375698) (-2623 . 375553) (-2624 . 375458) (-2625 . 375267) - (-2626 . 375074) (-2627 . 374914) (-2628 . 373574) (-2629 . 373260) - (-2630 . 372982) (-2631 . 372899) (-2632 . 372264) (-2633 . 372152) - (-2634 . 372011) (-2635 . 371792) (-2636 . 371658) (-2637 . 371288) - (-2638 . 371117) (-2639 . 371061) (-2640 . 371005) (-2641 . 370634) - (-2642 . 370573) (-2643 . 370420) (-2644 . 370368) (-2645 . 370297) - (-2646 . 370163) (-2647 . 369939) (-2648 . 369867) (-2649 . 369763) - (-2650 . 369540) (-2651 . 369377) (-2652 . 369262) (-2653 . 369192) - (-2654 . 369046) (-2655 . 369015) (-2656 . 368960) (-2657 . 368853) - (-2658 . 368580) (-2659 . 368422) (-2660 . 368361) (-2661 . 368303) - (-2662 . 368158) (-2663 . 368062) (-2664 . 367910) (-2665 . 367802) - (-2666 . 367718) (-2667 . 367548) (-2668 . 367482) (-2669 . 367255) - (-2670 . 367136) (-2671 . 367081) (-2672 . 366892) (-2673 . 366806) - (-2674 . 366648) (-2675 . 366535) (-2676 . 366187) (-2677 . 366072) - (-2678 . 366018) (-2679 . 365636) (-2680 . 365361) (-2681 . 365253) - (-2682 . 365150) (-2683 . 365097) (-2684 . 365000) (-2685 . 364899) - (-2686 . 341914) (-2687 . 341840) (-2688 . 341711) (-2689 . 341369) - (-2690 . 341260) (-2691 . 341154) (-2692 . 341036) (-2693 . 340913) - (-2694 . 340751) (-2695 . 337999) (-2696 . 337847) (-2697 . 337625) - (-2698 . 337472) (-2699 . 337270) (-2700 . 337129) (-2701 . 337056) - (-2702 . 337007) (-2703 . 336831) (-2704 . 336732) (-2705 . 336625) - (-2706 . 336297) (-2707 . 336192) (-2708 . 336078) (-2709 . 335620) - (-2710 . 335424) (-2711 . 335296) (-2712 . 335211) (-2713 . 334146) - (-2714 . 334046) (-2715 . 333903) (-2716 . 333837) (-2717 . 333638) - (-2718 . 333190) (-2719 . 333138) (-2720 . 333067) (-2721 . 333011) - (-2722 . 332938) (-2723 . 332800) (-2724 . 332690) (-2725 . 332638) - (-2726 . 332586) (-2727 . 332507) (-2728 . 332379) (-2729 . 332272) - (-2730 . 332069) (-2731 . 331832) (-2732 . 331374) (-2733 . 330883) - (-2734 . 330636) (-2735 . 330372) (-2736 . 330184) (-2737 . 330067) - (-2738 . 329740) (-2739 . 329648) (-2740 . 329537) (-2741 . 329455) - (-2742 . 328861) (-2743 . 326761) (-2744 . 326689) (-2745 . 326595) - (-2746 . 326345) (-2747 . 326121) (-2748 . 325969) (-2749 . 325699) - (-2750 . 325584) (-2751 . 316054) (-2752 . 316026) (-2753 . 315795) - (-2754 . 314891) (-2755 . 314734) (-2756 . 314650) (-2757 . 314341) - (-2758 . 313526) (-2759 . 313446) (-2760 . 313347) (-2761 . 313288) - (-2762 . 313235) (-2763 . 313097) (-2764 . 313004) (-2765 . 312903) - (-2766 . 312819) (-2767 . 312720) (-2768 . 312643) (-2769 . 312487) - (-2770 . 312344) (-2771 . 312241) (-2772 . 311990) (-2773 . 310992) - (-2774 . 310869) (-2775 . 310731) (-2776 . 310678) (-2777 . 310566) - (-2778 . 310459) (-2779 . 310427) (-2780 . 310344) (-2781 . 310291) - (-2782 . 310257) (-2783 . 310095) (-2784 . 310042) (-2785 . 309965) - (-2786 . 309849) (-2787 . 309719) (-2788 . 309620) (-2789 . 309444) - (-2790 . 309082) (-2791 . 309030) (-2792 . 308899) (-2793 . 308815) - (-2794 . 308689) (-2795 . 308612) (-2796 . 308076) (-2797 . 308010) - (-2798 . 307922) (-2799 . 307856) (-2800 . 307128) (-2801 . 307033) - (-2802 . 306956) (-2803 . 306823) (-2804 . 306751) (-2805 . 306592) - (-2806 . 306515) (-2807 . 306104) (-2808 . 306018) (-2809 . 305738) - (-2810 . 305631) (-2811 . 305490) (-2812 . 305312) (-2813 . 305136) - (-2814 . 304748) (-2815 . 304430) (-2816 . 304289) (-2817 . 303838) - (-2818 . 303690) (-2819 . 303588) (-2820 . 303489) (-2821 . 303116) - (-2822 . 302644) (-2823 . 302442) (-2824 . 302294) (-2825 . 302242) - (-2826 . 302087) (-2827 . 301708) (-2828 . 301578) (-2829 . 301525) - (-2830 . 301452) (-2831 . 301305) (-2832 . 301197) (-2833 . 301144) - (-2834 . 300142) (-2835 . 299755) (-2836 . 299519) (-2837 . 299033) - (-2838 . 298965) (-2839 . 298864) (-2840 . 298805) (-2841 . 298738) - (-2842 . 298620) (-2843 . 298437) (-2844 . 298368) (-2845 . 298302) - (-2846 . 298209) (-2847 . 296908) (-2848 . 296852) (-2849 . 296685) - (-2850 . 296634) (-2851 . 296560) (-2852 . 295264) (-2853 . 295135) - (-2854 . 294982) (-2855 . 294930) (-2856 . 294660) (-2857 . 294573) - (-2858 . 293872) (-2859 . 293817) (-2860 . 293673) (-2861 . 293468) - (-2862 . 293397) (-2863 . 293330) (-2864 . 293221) (-2865 . 293061) - (-2866 . 291210) (-2867 . 291104) (-2868 . 290925) (-2869 . 290893) - (-2870 . 290865) (-2871 . 290728) (-2872 . 290116) (-2873 . 289790) - (-2874 . 289687) (-2875 . 289602) (-2876 . 288995) (-2877 . 288924) - (-2878 . 288760) (-2879 . 288532) (-2880 . 288403) (-2881 . 288257) - (-2882 . 288064) (-2883 . 287955) (-2884 . 287529) (-2885 . 287350) - (-2886 . 287291) (-2887 . 287191) (-2888 . 287119) (-2889 . 287053) - (-2890 . 286848) (-2891 . 286786) (-2892 . 286571) (-2893 . 286460) - (-2894 . 286282) (-2895 . 286156) (-2896 . 285809) (-2897 . 285722) - (-2898 . 285567) (-2899 . 285260) (-2900 . 285052) (-2901 . 284863) - (-2902 . 283900) (-2903 . 283733) (-2904 . 283422) (-2905 . 283157) - (-2906 . 283037) (-2907 . 283009) (-2908 . 282910) (-2909 . 282781) - (-2910 . 282177) (-2911 . 282097) (-2912 . 278035) (-2913 . 277894) - (-2914 . 277824) (-2915 . 277706) (-2916 . 277487) (-2917 . 277432) - (-2918 . 277314) (-2919 . 277205) (-2920 . 277082) (-2921 . 277029) - (-2922 . 276775) (-2923 . 276722) (-2924 . 276309) (-2925 . 276047) - (-2926 . 275938) (-2927 . 275100) (-2928 . 274996) (-2929 . 274909) - (-2930 . 274767) (-2931 . 274653) (-2932 . 274350) (-2933 . 274108) - (-2934 . 274003) (-2935 . 273084) (-2936 . 272778) (-2937 . 272580) - (-2938 . 272471) (-2939 . 272326) (-2940 . 272015) (-2941 . 271720) - (-2942 . 271596) (-2943 . 271379) (-2944 . 271268) (-2945 . 271135) - (-2946 . 271077) (-2947 . 270897) (-2948 . 270585) (-2949 . 270414) - (-2950 . 270288) (-2951 . 270162) (-2952 . 269952) (-2953 . 269809) - (-2954 . 269703) (-2955 . 269606) (-2956 . 269082) (-2957 . 266737) - (-2958 . 266622) (-2959 . 266563) (-2960 . 266324) (-2961 . 266246) - (-2962 . 266218) (-2963 . 265809) (-2964 . 265753) (-2965 . 265701) - (-2966 . 265592) (-2967 . 265499) (-2968 . 265312) (-2969 . 265211) - (-2970 . 265084) (-2971 . 264989) (-2972 . 264936) (-2973 . 264833) - (-2974 . 264724) (-2975 . 264619) (-2976 . 264264) (-2977 . 264174) - (-2978 . 264012) (-2979 . 263854) (-2980 . 262938) (-2981 . 262748) - (-2982 . 262596) (-2983 . 262494) (-2984 . 262424) (-2985 . 262268) - (-2986 . 262181) (-2987 . 261868) (-2988 . 261767) (-2989 . 261687) - (-2990 . 261414) (-2991 . 260656) (-2992 . 260552) (-2993 . 260372) - (-2994 . 260204) (-2995 . 260078) (-2996 . 259934) (-2997 . 259825) - (-2998 . 258283) (-2999 . 257736) (-3000 . 257681) (-3001 . 257477) - (-3002 . 257366) (-3003 . 257259) (-3004 . 257165) (-3005 . 256993) - (-3006 . 256769) (-3007 . 256303) (-3008 . 255815) (-3009 . 255735) - (-3010 . 255604) (-3011 . 255552) (-3012 . 255306) (-3013 . 255084) - (-3014 . 254912) (-3015 . 254461) (-3016 . 254280) (-3017 . 254199) - (-3018 . 254147) (-3019 . 254073) (-3020 . 254010) (-3021 . 253937) - (-3022 . 253713) (-3023 . 253651) (-3024 . 252655) (-3025 . 252575) - (-3026 . 252457) (-3027 . 251982) (-3028 . 251762) (-3029 . 251107) - (-3030 . 250995) (-3031 . 250872) (-3032 . 250841) (-3033 . 250044) - (-3034 . 249530) (-3035 . 249311) (-3036 . 249262) (-3037 . 249116) - (-3038 . 249026) (-3039 . 248952) (-3040 . 248843) (-3041 . 248699) - (-3042 . 247890) (-3043 . 247415) (-3044 . 247116) (-3045 . 246889) - (-3046 . 246736) (-3047 . 246405) (-3048 . 246353) (-3049 . 246114) - (-3050 . 245924) (-3051 . 245868) (-3052 . 245802) (-3053 . 245746) - (-3054 . 245574) (-3055 . 245467) (-3056 . 245345) (-3057 . 245275) - (-3058 . 245156) (-3059 . 245038) (-3060 . 244972) (-3061 . 244820) - (-3062 . 244747) (-3063 . 244678) (-3064 . 244599) (-3065 . 244446) - (-3066 . 244393) (-3067 . 244287) (-3068 . 244202) (-3069 . 244087) - (-3070 . 243834) (-3071 . 243537) (-3072 . 243466) (-3073 . 243435) - (-3074 . 243339) (-3075 . 243232) (-3076 . 243149) (-3077 . 243097) - (-3078 . 242973) (-3079 . 242903) (-3080 . 242234) (-3081 . 242098) - (-3082 . 241962) (-3083 . 241867) (-3084 . 241743) (-3085 . 241574) - (-3086 . 241488) (-3087 . 241409) (-3088 . 241328) (-3089 . 241157) - (-3090 . 241032) (-3091 . 240890) (-3092 . 240720) (-3093 . 240374) - (-3094 . 239990) (-3095 . 239913) (-3096 . 239788) (-3097 . 239416) - (-3098 . 239388) (-3099 . 239335) (-3100 . 239236) (-3101 . 239102) - (-3102 . 238971) (-3103 . 238889) (-3104 . 238708) (-3105 . 237954) - (-3106 . 237849) (-3107 . 237762) (-3108 . 237491) (-3109 . 236988) - (-3110 . 236797) (-3111 . 236675) (-3112 . 236381) (-3113 . 236188) - (-3114 . 236130) (-3115 . 236014) (-3116 . 235935) (-3117 . 235886) - (-3118 . 235776) (-3119 . 234978) (-3120 . 234869) (-3121 . 234814) - (-3122 . 234786) (-3123 . 234734) (-3124 . 234543) (-3125 . 234448) - (-3126 . 234218) (-3127 . 234065) (-3128 . 233987) (-3129 . 233904) - (-3130 . 233799) (-3131 . 233725) (-3132 . 233596) (-3133 . 233466) - (-3134 . 233386) (-3135 . 233185) (-3136 . 233102) (-3137 . 232602) - (-3138 . 232520) (-3139 . 232321) (-3140 . 232160) (-3141 . 232021) - (-3142 . 231777) (-3143 . 231703) (-3144 . 231637) (-3145 . 230456) - (-3146 . 230404) (-3147 . 230292) (-3148 . 230042) (-3149 . 229946) - (-3150 . 229774) (-3151 . 229618) (-3152 . 229499) (-3153 . 228908) - (-3154 . 228813) (-3155 . 228733) (-3156 . 228627) (-3157 . 228381) - (-3158 . 228130) (-3159 . 227884) (-12 . 227712) (-3161 . 227535) - (-3162 . 227504) (-3163 . 227427) (-3164 . 227051) (-3165 . 226967) - (-3166 . 226852) (-3167 . 226728) (-3168 . 226343) (-3169 . 226157) - (-3170 . 226095) (-3171 . 225440) (-3172 . 225109) (-3173 . 223645) - (-3174 . 223548) (-3175 . 223455) (-3176 . 223381) (-3177 . 223138) - (-3178 . 222801) (-3179 . 222773) (-3180 . 222571) (-3181 . 221711) - (-3182 . 221469) (-3183 . 221155) (-3184 . 220444) (-3185 . 220379) - (-3186 . 220317) (-3187 . 220214) (-3188 . 220146) (-3189 . 219778) - (-3190 . 219708) (-3191 . 219546) (-3192 . 219209) (-3193 . 219104) - (-3194 . 219010) (-3195 . 218958) (-3196 . 218715) (-3197 . 218236) - (-3198 . 218100) (-3199 . 217672) (-3200 . 217607) (-3201 . 217488) - (-3202 . 217351) (-3203 . 217261) (-3204 . 217118) (-3205 . 216743) - (-3206 . 216584) (-3207 . 216477) (-3208 . 216376) (-3209 . 216249) - (-3210 . 215394) (-3211 . 215309) (-3212 . 215257) (-3213 . 214938) - (-3214 . 214792) (-3215 . 214734) (-3216 . 214359) (-3217 . 214219) - (-3218 . 214142) (-3219 . 214047) (-3220 . 213742) (-3221 . 213665) - (-3222 . 213631) (-3223 . 213579) (-3224 . 213416) (-3225 . 213342) - (-3226 . 213186) (-3227 . 211234) (-3228 . 211022) (-3229 . 210695) - (-3230 . 210572) (-3231 . 210475) (-3232 . 210128) (-3233 . 210056) - (-3234 . 209955) (-3235 . 209885) (-3236 . 209808) (-3237 . 209493) - (-3238 . 209426) (-3239 . 209329) (-3240 . 209301) (-3241 . 209235) - (-3242 . 209132) (-3243 . 209000) (-3244 . 204840) (-3245 . 204736) - (-3246 . 204386) (-3247 . 204272) (-3248 . 204185) (-3249 . 204128) - (-3250 . 204057) (-3251 . 203989) (-3252 . 203846) (-3253 . 203660) - (-3254 . 203514) (-3255 . 202993) (-3256 . 202716) (-3257 . 202667) - (-3258 . 202451) (-3259 . 201415) (-3260 . 201265) (-3261 . 201094) - (-3262 . 200992) (-3263 . 200869) (-3264 . 200762) (-3265 . 200665) - (-3266 . 200237) (-3267 . 199945) (-3268 . 199782) (-3269 . 199551) - (-3270 . 199470) (-3271 . 199283) (-3272 . 198992) (-3273 . 198818) - (-3274 . 198671) (-3275 . 198591) (-3276 . 198539) (-3277 . 197871) - (-3278 . 197626) (-3279 . 197537) (-3280 . 197384) (-3281 . 197198) - (-3282 . 197127) (-3283 . 197098) (* . 192575) (-3285 . 192505) - (-3286 . 192394) (-3287 . 192259) (-3288 . 192159) (-3289 . 192103) - (-3290 . 192026) (-3291 . 191777) (-3292 . 191532) (-3293 . 191503) - (-3294 . 191448) (-3295 . 191187) (-3296 . 191113) (-3297 . 191057) - (-3298 . 190635) (-3299 . 190418) (-3300 . 189783) (-3301 . 189725) - (-3302 . 189582) (-3303 . 189447) (-3304 . 189322) (-3305 . 189132) - (-3306 . 188953) (-3307 . 188802) (-3308 . 188708) (-3309 . 188596) - (-3310 . 188527) (-3311 . 188370) (-3312 . 187834) (-3313 . 187765) - (-3314 . 187650) (-3315 . 187576) (-3316 . 187467) (-3317 . 187299) - (-3318 . 187247) (-3319 . 187089) (-3320 . 186982) (-3321 . 186908) - (-3322 . 186753) (-3323 . 186542) (-3324 . 186435) (-3325 . 186106) - (-3326 . 185764) (-3327 . 185612) (-3328 . 185424) (-3329 . 185387) - (-3330 . 185199) (-3331 . 184972) (-3332 . 184928) (-3333 . 184697) - (-3334 . 184610) (-3335 . 184539) (-3336 . 184386) (-3337 . 184337) - (-3338 . 184271) (-3339 . 183755) (-3340 . 183413) (-3341 . 178096) - (-3342 . 177982) (-3343 . 177881) (-3344 . 177735) (-3345 . 177650) - (-3346 . 177556) (-3347 . 177359) (-3348 . 177172) (-3349 . 177073) - (-3350 . 176977) (-3351 . 176783) (-3352 . 176675) (-3353 . 176465) - (-3354 . 176371) (-3355 . 176183) (-3356 . 175858) (-3357 . 175586) - (-3358 . 175391) (-3359 . 175239) (-3360 . 174639) (-3361 . 174536) - (-3362 . 174432) (-3363 . 174362) (-3364 . 174196) (-3365 . 174122) - (-3366 . 173693) (-3367 . 173640) (-3368 . 173303) (-3369 . 173024) - (-3370 . 172740) (-3371 . 172631) (-3372 . 172491) (-3373 . 172198) - (-3374 . 171777) (-3375 . 171725) (-3376 . 171673) (-3377 . 171586) - (-3378 . 171252) (-3379 . 171026) (-3380 . 170941) (-3381 . 170449) - (-3382 . 170364) (-3383 . 170033) (-3384 . 169897) (-3385 . 169829) - (-3386 . 169774) (-3387 . 169561) (-3388 . 169180) (-3389 . 169063) - (-3390 . 168990) (-3391 . 168962) (-3392 . 168859) (-3393 . 168660) - (-3394 . 168609) (-3395 . 168506) (-3396 . 168349) (-3397 . 168237) - (-3398 . 168093) (-3399 . 167889) (-3400 . 167830) (-3401 . 167223) - (-3402 . 166973) (-3403 . 166921) (-3404 . 166157) (-3405 . 165932) - (-3406 . 165640) (-3407 . 165557) (-3408 . 165207) (-3409 . 164651) - (-3410 . 163580) (-3411 . 163512) (-3412 . 163459) (-3413 . 163362) - (-3414 . 163082) (-3415 . 163017) (-3416 . 162874) (-3417 . 162372) - (-3418 . 162287) (-3419 . 161775) (-3420 . 161123) (-3421 . 160791) - (-3422 . 160450) (-3423 . 160201) (-3424 . 160146) (-3425 . 159290) - (-3426 . 159111) (-3427 . 159058) (-3428 . 158841) (-3429 . 158316) - (-3430 . 158125) (-3431 . 157977) (-3432 . 157922) (-3433 . 157597) - (-3434 . 157569) (-3435 . 157413) (-3436 . 157385) (-3437 . 157284) - (-3438 . 157210) (-3439 . 156895) (-3440 . 156737) (-3441 . 156425) - (-3442 . 156373) (-3443 . 156300) (-3444 . 156214) (-3445 . 156115) - (-3446 . 155893) (-3447 . 155784) (-3448 . 155666) (-3449 . 155387) - (-3450 . 155309) (-3451 . 154863) (-3452 . 154793) (-3453 . 154700) - (-3454 . 154413) (-3455 . 154364) (-3456 . 154305) (-3457 . 153880) - (-3458 . 153775) (-3459 . 153243) (-3460 . 153066) (-3461 . 152813) - (-3462 . 152718) (-3463 . 152655) (-3464 . 152315) (-3465 . 152191) - (-3466 . 152046) (-3467 . 151783) (-3468 . 151685) (-3469 . 151584) - (-3470 . 151450) (-3471 . 151376) (-3472 . 151263) (-3473 . 150718) - (-3474 . 150624) (-3475 . 150344) (-3476 . 150276) (-3477 . 150192) - (-3478 . 150074) (-3479 . 149778) (-3480 . 149741) (-3481 . 149605) - (-3482 . 149473) (-3483 . 149402) (-3484 . 149235) (-3485 . 148951) - (-3486 . 148607) (-3487 . 148521) (-3488 . 148448) (-3489 . 148201) - (-3490 . 148076) (-3491 . 147914) (-3492 . 147791) (-3493 . 147553) - (-3494 . 147472) (-3495 . 147317) (-3496 . 147265) (-3497 . 147185) - (-3498 . 147133) (-3499 . 147083) (-3500 . 147034) (-3501 . 146947) - (-3502 . 146895) (-3503 . 146679) (-3504 . 146650) (-3505 . 146543) - (-3506 . 146419) (-3507 . 146366) (-3508 . 146301) (-3509 . 146013) - (-3510 . 145964) (-3511 . 145524) (-3512 . 145401) (-3513 . 145227) - (-3514 . 145142) (-3515 . 145089) (-3516 . 145035) (-3517 . 145001) - (-3518 . 144908) (-3519 . 144785) (-3520 . 144644) (-3521 . 144509) - (-3522 . 144439) (-3523 . 144196) (-3524 . 144066) (-3525 . 143942) - (-3526 . 143890) (-3527 . 143703) (-3528 . 143618) (-3529 . 143420) - (-3530 . 143313) (-3531 . 143261) (-3532 . 143164) (-3533 . 143081) - (-3534 . 142864) (-3535 . 142712) (-3536 . 142196) (-3537 . 142029) - (-3538 . 141908) (-3539 . 141855) (-3540 . 141787) (-3541 . 141572) - (-3542 . 141503) (-3543 . 141406) (-3544 . 141302) (-3545 . 141083) - (-3546 . 140934) (-3547 . 140864) (-3548 . 140589) (-3549 . 140534) - (-3550 . 140450) (-3551 . 140286) (-3552 . 140083) (-3553 . 139899) - (-3554 . 139767) (-3555 . 139681) (-3556 . 139565) (-3557 . 139480) - (-3558 . 139373) (-3559 . 139167) (-3560 . 139139) (-3561 . 139079) - (-3562 . 138964) (-3563 . 138866) (-3564 . 138797) (-3565 . 138681) - (-3566 . 138525) (-3567 . 138374) (-3568 . 138301) (-3569 . 138157) - (-3570 . 138024) (-3571 . 137887) (-3572 . 137801) (-3573 . 137702) - (-3574 . 137585) (-3575 . 137457) (-3576 . 137022) (-3577 . 136824) - (-3578 . 136732) (-3579 . 136509) (-3580 . 136357) (-3581 . 135978) - (-3582 . 135739) (-3583 . 135614) (-3584 . 135532) (-3585 . 135470) - (-3586 . 135418) (-3587 . 135317) (-3588 . 135234) (-3589 . 135142) - (-3590 . 135086) (-3591 . 135033) (-3592 . 134938) (-3593 . 134854) - (-3594 . 134802) (-3595 . 134735) (-3596 . 134553) (-3597 . 134335) - (-3598 . 134249) (-3599 . 134142) (-3600 . 134001) (-3601 . 132432) - (-3602 . 132323) (-3603 . 132079) (-3604 . 131975) (-3605 . 131011) - (-3606 . 130904) (-3607 . 130636) (-3608 . 130351) (-3609 . 129958) - (-3610 . 129112) (-3611 . 129009) (-3612 . 128144) (-3613 . 128092) - (-3614 . 127979) (-3615 . 127821) (-3616 . 127681) (-3617 . 127647) - (-3618 . 124037) (-3619 . 123790) (-3620 . 123676) (-3621 . 123624) - (-3622 . 123348) (-3623 . 122696) (-3624 . 122582) (-3625 . 122412) - (-3626 . 122356) (-3627 . 122249) (-3628 . 122162) (-3629 . 121704) - (-3630 . 121597) (-3631 . 121417) (-3632 . 121274) (-3633 . 120823) - (-3634 . 120644) (-3635 . 120550) (-3636 . 120368) (-3637 . 120286) - (-3638 . 120226) (-3639 . 120119) (-3640 . 120028) (-3641 . 119997) - (-3642 . 119758) (-3643 . 119671) (-3644 . 119506) (-3645 . 119406) - (-3646 . 119263) (-3647 . 119142) (-3648 . 118851) (-3649 . 118736) - (-3650 . 118636) (-3651 . 118564) (-3652 . 118424) (-3653 . 117851) - (-3654 . 117291) (-3655 . 117144) (-3656 . 117037) (-3657 . 116952) - (-3658 . 116785) (-3659 . 116714) (-3660 . 116470) (-3661 . 115979) - (-3662 . 115100) (-3663 . 115019) (-3664 . 114877) (-3665 . 114819) - (-3666 . 114753) (-3667 . 114477) (-3668 . 114264) (-3669 . 114143) - (-3670 . 114088) (-3671 . 113797) (-3672 . 113701) (-3673 . 113483) - (-3674 . 113283) (-3675 . 113050) (-3676 . 112943) (-3677 . 112877) - (-3678 . 112825) (-3679 . 112742) (-3680 . 112658) (-3681 . 112603) - (-3682 . 112551) (-3683 . 112359) (-3684 . 112253) (-3685 . 112144) - (-3686 . 111977) (-3687 . 111890) (-3688 . 111614) (-3689 . 111147) - (-3690 . 111077) (-3691 . 111011) (-3692 . 110804) (-3693 . 110727) - (-3694 . 110582) (-3695 . 110307) (-3696 . 110210) (-3697 . 110016) - (-3698 . 109825) (-3699 . 109772) (-3700 . 109631) (-3701 . 109377) - (-3702 . 109172) (-3703 . 109034) (-3704 . 108950) (-3705 . 108834) - (-3706 . 108764) (-3707 . 108617) (-3708 . 108553) (-3709 . 108395) - (-3710 . 108233) (-3711 . 108089) (-3712 . 108012) (-3713 . 107874) - (-3714 . 107815) (-3715 . 107747) (-3716 . 107681) (-3717 . 107241) - (-3718 . 106854) (-3719 . 106562) (-3720 . 106483) (-3721 . 106315) - (-3722 . 106175) (-3723 . 106061) (-3724 . 105967) (-3725 . 105914) - (-3726 . 105733) (-3727 . 105664) (-3728 . 105633) (-3729 . 105272) - (-3730 . 105087) (-3731 . 104976) (-3732 . 104915) (-3733 . 104793) - (-3734 . 104190) (-3735 . 103724) (-3736 . 103019) (-3737 . 102768) - (-3738 . 102655) (-3739 . 102548) (-3740 . 101994) (-3741 . 101895) - (-3742 . 101524) (-3743 . 101452) (-3744 . 101311) (-3745 . 101198) - (-3746 . 101007) (-3747 . 100829) (-3748 . 100780) (-3749 . 100703) - (-3750 . 100424) (-3751 . 100295) (-3752 . 100210) (-3753 . 99954) - (-3754 . 99895) (-3755 . 99827) (-3756 . 99688) (-3757 . 99605) - (-3758 . 99347) (-3759 . 99062) (-3760 . 99007) (-3761 . 98909) - (-3762 . 98686) (-3763 . 98502) (-3764 . 98075) (-3765 . 97935) - (-3766 . 97786) (-3767 . 97657) (-3768 . 97536) (-3769 . 97477) - (-3770 . 97406) (-3771 . 97236) (-3772 . 97176) (-3773 . 96971) - (-3774 . 96918) (-3775 . 96862) (-3776 . 96806) (-3777 . 96697) - (-3778 . 96645) (-3779 . 96559) (-3780 . 96431) (-3781 . 96272) - (-3782 . 95912) (-3783 . 95765) (-3784 . 95701) (-3785 . 95483) - (-3786 . 95357) (-3787 . 95308) (-3788 . 95130) (-3789 . 95035) - (-3790 . 94908) (-3791 . 94800) (-3792 . 94611) (-3793 . 94555) - (-3794 . 94284) (-3795 . 94140) (-3796 . 94066) (-3797 . 93650) - (-3798 . 93558) (-3799 . 93379) (-3800 . 93267) (-3801 . 92644) - (-3802 . 92114) (-3803 . 92083) (-3804 . 91770) (-3805 . 91651) - (-3806 . 91571) (-3807 . 91150) (-3808 . 90830) (-3809 . 90775) - (-3810 . 90704) (-3811 . 90258) (-3812 . 90206) (-3813 . 89817) - (-3814 . 89377) (-3815 . 89306) (-3816 . 89221) (-3817 . 89120) - (-3818 . 88830) (-3819 . 88726) (-3820 . 88692) (-3821 . 88612) - (-3822 . 88457) (-3823 . 88354) (-3824 . 88141) (-3825 . 88089) - (-3826 . 88030) (-3827 . 87751) (-3828 . 87678) (-3829 . 87256) - (-3830 . 86961) (-3831 . 86896) (-3832 . 86772) (-3833 . 86679) - (-3834 . 86515) (-3835 . 86408) (-3836 . 86314) (-3837 . 86243) - (-3838 . 86083) (-3839 . 85996) (-3840 . 85262) (-3841 . 85150) - (-3842 . 85018) (-3843 . 84713) (-3844 . 83970) (-3845 . 83863) - (-3846 . 83794) (-3847 . 82730) (-3848 . 82600) (-3849 . 82445) - (-3850 . 82351) (-3851 . 82077) (-3852 . 81836) (-3853 . 81477) - (-3854 . 81399) (-3855 . 81222) (-3856 . 81017) (-3857 . 80923) - (-3858 . 80766) (-3859 . 80597) (-3860 . 80540) (-3861 . 80238) - (-3862 . 80133) (-3863 . 79996) (-3864 . 79923) (-3865 . 79685) - (-3866 . 79558) (-3867 . 79436) (-3868 . 79337) (-3869 . 78822) - (-3870 . 78581) (-3871 . 78403) (-3872 . 78319) (-3873 . 78239) - (-3874 . 78084) (-3875 . 77976) (-3876 . 77873) (-3877 . 77766) - (-3878 . 77696) (-3879 . 77630) (-3880 . 77559) (-3881 . 77286) - (-3882 . 77042) (-3883 . 76894) (-3884 . 76838) (-3885 . 76771) - (-3886 . 76648) (-3887 . 76490) (-3888 . 76374) (-3889 . 75803) - (-3890 . 75720) (-3891 . 75633) (-3892 . 75605) (-3893 . 75431) - (-3894 . 75403) (-3895 . 75262) (-3896 . 75143) (-3897 . 75006) - (-3898 . 73736) (-3899 . 73407) (-3900 . 73302) (-3901 . 73229) - (-3902 . 73090) (-3903 . 73035) (-3904 . 72647) (-3905 . 72254) - (-3906 . 72158) (-3907 . 72094) (-3908 . 72041) (-3909 . 71988) - (-3910 . 71729) (-3911 . 71646) (-3912 . 71563) (-3913 . 71453) - (-3914 . 71184) (-3915 . 70965) (-3916 . 70743) (-3917 . 70622) - (-3918 . 70492) (-3919 . 70236) (-3920 . 70023) (-3921 . 69877) - (-3922 . 69797) (-3923 . 69720) (-3924 . 69652) (-3925 . 69397) - (-3926 . 69310) (-3927 . 69180) (-3928 . 69114) (-3929 . 69061) - (-3930 . 68890) (-3931 . 68748) (-3932 . 68678) (-3933 . 67254) - (-3934 . 67171) (-3935 . 66287) (-3936 . 65986) (-3937 . 65643) - (-3938 . 65503) (-3939 . 65387) (-3940 . 65273) (-3941 . 65202) - (-3942 . 65128) (-3943 . 65097) (-3944 . 64829) (-3945 . 64703) - (-3946 . 64602) (-3947 . 64417) (-3948 . 64351) (-3949 . 64295) - (-3950 . 64243) (-3951 . 64010) (-3952 . 63853) (-3953 . 63779) - (-3954 . 63577) (-3955 . 63456) (-3956 . 63140) (-3957 . 63045) - (-3958 . 62972) (-3959 . 62656) (-3960 . 62277) (-3961 . 62178) - (-3962 . 62065) (-3963 . 61866) (-3964 . 61536) (-3965 . 60927) - (-3966 . 60854) (-3967 . 60683) (-3968 . 60630) (-3969 . 60283) - (-3970 . 60174) (-3971 . 59868) (-3972 . 59714) (-3973 . 59662) - (-3974 . 59607) (-3975 . 59534) (-3976 . 59439) (-3977 . 59187) - (-3978 . 59027) (-3979 . 58934) (-3980 . 58134) (-3981 . 57975) - (-3982 . 57888) (-3983 . 56778) (-3984 . 56727) (-3985 . 56653) - (-3986 . 56552) (-3987 . 56071) (-3988 . 55746) (-3989 . 55621) - (-3990 . 55105) (-3991 . 55020) (-3992 . 54901) (-3993 . 54479) - (-3994 . 54320) (-3995 . 54183) (-3996 . 53568) (-3997 . 53494) - (-3998 . 53277) (-3999 . 53119) (-4000 . 52997) (-4001 . 52650) - (-4002 . 52532) (-4003 . 52406) (-4004 . 52319) (-4005 . 52266) - (-4006 . 51820) (-4007 . 51412) (-4008 . 50807) (-4009 . 50688) - (-4010 . 50558) (-4011 . 50487) (-4012 . 50113) (-4013 . 49934) - (-4014 . 49884) (-4015 . 49801) (-4016 . 49588) (-4017 . 49488) - (-4018 . 47236) (-4019 . 47136) (-4020 . 47075) (-4021 . 46970) - (-4022 . 46781) (-4023 . 46573) (-4024 . 46500) (-4025 . 46469) - (-4026 . 46081) (-4027 . 46016) (-4028 . 45949) (-4029 . 45850) - (-4030 . 45748) (-4031 . 45621) (-4032 . 45548) (-4033 . 45361) - (-4034 . 45122) (-4035 . 44987) (-4036 . 43803) (-4037 . 43692) - (-4038 . 43636) (-4039 . 43568) (-4040 . 43465) (-4041 . 43366) - (-4042 . 43260) (-4043 . 42846) (-4044 . 42793) (-4045 . 42687) - (-4046 . 42624) (-4047 . 41446) (-4048 . 41272) (-4049 . 41056) - (-4050 . 41003) (-4051 . 40906) (-4052 . 40810) (-4053 . 40753) - (-4054 . 40533) (-4055 . 40438) (-4056 . 40212) (-4057 . 40132) - (-4058 . 39445) (-4059 . 37247) (-4060 . 37162) (-4061 . 37091) - (-4062 . 37038) (-4063 . 36738) (-4064 . 36614) (-4065 . 36559) - (-4066 . 36344) (-4067 . 36272) (-4068 . 36117) (-4069 . 36043) - (-4070 . 35819) (-4071 . 35692) (-4072 . 35522) (-4073 . 34835) - (-4074 . 34502) (-4075 . 34404) (-4076 . 34344) (-4077 . 34179) - (-4078 . 34106) (-4079 . 33719) (-4080 . 33662) (-4081 . 33494) - (-4082 . 33460) (-4083 . 33366) (-4084 . 33313) (-4085 . 31595) - (-4086 . 31567) (-4087 . 30880) (-4088 . 30801) (-4089 . 30592) - (-4090 . 30462) (-4091 . 30353) (-4092 . 30256) (-4093 . 29961) - (-4094 . 29859) (-4095 . 29792) (-4096 . 29649) (-4097 . 29528) - (-4098 . 28953) (-4099 . 28809) (-4100 . 28703) (-4101 . 28633) - (-4102 . 28480) (-4103 . 28452) (-4104 . 28330) (-4105 . 28277) - (-4106 . 28152) (-4107 . 28055) (-4108 . 27916) (-4109 . 27341) - (-4110 . 27197) (-4111 . 26840) (-4112 . 26633) (-4113 . 26555) - (-4114 . 26471) (-4115 . 26393) (-4116 . 26276) (-4117 . 26133) - (-4118 . 25684) (-4119 . 25578) (-4120 . 25529) (-4121 . 25195) - (-4122 . 24620) (-4123 . 24493) (-4124 . 24298) (-4125 . 24167) - (-4126 . 24046) (-4127 . 23802) (-4128 . 23707) (-4129 . 23453) - (-4130 . 23359) (-4131 . 23306) (-4132 . 23255) (-4133 . 23114) - (-4134 . 23062) (-4135 . 22964) (-4136 . 22778) (-4137 . 22204) - (-4138 . 21893) (-4139 . 21821) (-4140 . 21577) (-4141 . 21406) - (-4142 . 21221) (-4143 . 20968) (-4144 . 20902) (-4145 . 20380) - (-4146 . 20206) (-4147 . 20079) (-4148 . 19961) (-4149 . 19387) - (-4150 . 19292) (-4151 . 18983) (-4152 . 18888) (-4153 . 18744) - (-4154 . 18643) (-4155 . 18465) (-4156 . 18333) (-4157 . 18178) - (-4158 . 17974) (-4159 . 17910) (-4160 . 17704) (-4161 . 17621) - (-4162 . 17503) (-4163 . 16929) (-4164 . 16874) (-4165 . 16565) - (-4166 . 16509) (-4167 . 16343) (-4168 . 16248) (-4169 . 16150) - (-4170 . 16048) (-4171 . 15991) (-4172 . 15898) (-4173 . 15225) - (-4174 . 10704) (-4175 . 10565) (-4176 . 10410) (-4177 . 10304) - (-4178 . 10244) (-4179 . 9670) (-4180 . 9593) (-4181 . 9456) - (-4182 . 9074) (-4183 . 8714) (-4184 . 8545) (-4185 . 8487) - (-4186 . 8264) (-4187 . 8155) (-4188 . 6790) (-4189 . 6716) - (-4190 . 6543) (-4191 . 6339) (-4192 . 6112) (-4193 . 5538) - (-4194 . 5322) (-4195 . 5248) (-4196 . 5174) (-4197 . 5108) - (-4198 . 4717) (-4199 . 4622) (-4200 . 4549) (-4201 . 4453) - (-4202 . 4344) (-4203 . 3859) (-4204 . 3791) (-4205 . 3559) - (-4206 . 3456) (-4207 . 3283) (-4208 . 3128) (-4209 . 2962) - (-4210 . 2832) (-4211 . 2758) (-4212 . 2696) (-4213 . 2559) - (-4214 . 2431) (-4215 . 2353) (-4216 . 2301) (-4217 . 2148) - (-4218 . 2069) (-4219 . 1943) (-4220 . 1892) (-4221 . 1864) - (-4222 . 1571) (-4223 . 1513) (-4224 . 1450) (-4225 . 1258) - (-4226 . 1051) (-4227 . 907) (-4228 . 517) (-4229 . 108) (-4230 . 30))
\ No newline at end of file + (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-976))))) +((-1203 . 725379) (-1204 . 725298) (-1205 . 725230) (-1206 . 725147) + (-1207 . 725063) (-1208 . 724713) (-1209 . 724523) (-1210 . 724453) + (-1211 . 724402) (-1212 . 724345) (-1213 . 724271) (-1214 . 724216) + (-1215 . 724119) (-1216 . 724088) (-1217 . 723921) (-1218 . 723855) + (-1219 . 723427) (-1220 . 723375) (-1221 . 723278) (-1222 . 723079) + (-1223 . 722994) (-1224 . 722942) (-1225 . 722803) (-1226 . 722708) + (-1227 . 722583) (-1228 . 722352) (-1229 . 722215) (-1230 . 720914) + (-1231 . 720793) (-1232 . 720626) (-1233 . 720079) (-1234 . 719968) + (-1235 . 719791) (-1236 . 719612) (-1237 . 719511) (-1238 . 719316) + (-1239 . 719207) (-1240 . 719122) (-1241 . 718960) (-1242 . 718861) + (-1243 . 718523) (-1244 . 718492) (-1245 . 718309) (-1246 . 718238) + (-1247 . 717600) (-1248 . 717511) (-1249 . 717025) (-1250 . 716479) + (-1251 . 716408) (-1252 . 716185) (-1253 . 716117) (-1254 . 715703) + (-1255 . 715426) (-1256 . 715317) (-1257 . 714763) (-1258 . 714665) + (-1259 . 713395) (-1260 . 713116) (-1261 . 712790) (-1262 . 712696) + (-1263 . 712404) (-1264 . 712318) (-1265 . 712010) (-1266 . 711801) + (-1267 . 711719) (-1268 . 711616) (-1269 . 711514) (-1270 . 711333) + (-1271 . 711277) (-1272 . 711200) (-1273 . 710913) (-1274 . 710724) + (-1275 . 710508) (-1276 . 710339) (-1277 . 710042) (-1278 . 709971) + (-1279 . 709842) (-1280 . 709735) (-1281 . 707605) (-1282 . 707571) + (-1283 . 707363) (-1284 . 707246) (-1285 . 707055) (-1286 . 706962) + (-1287 . 706838) (-1288 . 706759) (-1289 . 706700) (-1290 . 706529) + (-1291 . 706370) (-1292 . 706316) (-1293 . 706257) (-1294 . 706187) + (-1295 . 706134) (-1296 . 706044) (-1297 . 705928) (-1298 . 705851) + (-1299 . 705624) (-1300 . 705572) (-1301 . 705313) (-1302 . 704918) + (-1303 . 704862) (-1304 . 704800) (-1305 . 704687) (-1306 . 704613) + (-1307 . 704358) (-1308 . 704292) (-1309 . 704184) (-1310 . 703924) + (-1311 . 703830) (-1312 . 702384) (-1313 . 702219) (-1314 . 702115) + (-1315 . 700714) (-1316 . 700565) (-1317 . 700240) (-1318 . 700110) + (-1319 . 699819) (-1320 . 699704) (-1321 . 699097) (-1322 . 698894) + (-1323 . 698672) (-1324 . 698614) (-1325 . 698583) (-1326 . 698509) + (-1327 . 698418) (-1328 . 698330) (-1329 . 697983) (-1330 . 697889) + (-1331 . 697836) (-1332 . 697623) (-1333 . 697464) (-1334 . 697136) + (-1335 . 697059) (-1336 . 696961) (-1337 . 696816) (-1338 . 696748) + (-1339 . 696641) (-1340 . 696585) (-1341 . 696237) (-1342 . 695751) + (-1343 . 695678) (-1344 . 695544) (-1345 . 695473) (-1346 . 695388) + (-1347 . 695298) (-1348 . 695132) (-1349 . 695035) (-1350 . 694943) + (-1351 . 694611) (-1352 . 694506) (-1353 . 694384) (-1354 . 694272) + (-1355 . 694094) (-1356 . 693889) (-1357 . 693837) (-1358 . 693781) + (-1359 . 693728) (-1360 . 693600) (-1361 . 693507) (-1362 . 693454) + (-1363 . 693308) (-1364 . 693196) (-1365 . 693147) (-1366 . 692701) + (-1367 . 692673) (-1368 . 692534) (-1369 . 692439) (-1370 . 692389) + (-1371 . 691369) (-1372 . 691229) (-1373 . 690635) (-1374 . 690503) + (-1375 . 690431) (-1376 . 690049) (-1377 . 689845) (-1378 . 689736) + (-1379 . 689680) (-1380 . 689620) (-1381 . 689535) (-1382 . 689214) + (-1383 . 689141) (-1384 . 689016) (-1385 . 688932) (-1386 . 688839) + (-1387 . 688758) (-1388 . 688673) (-1389 . 688602) (-1390 . 688496) + (-1391 . 688303) (-1392 . 688191) (-1393 . 684906) (-1394 . 684826) + (-1395 . 684711) (-1396 . 684568) (-1397 . 684415) (-1398 . 684294) + (-1399 . 684232) (-1400 . 684123) (-1401 . 684049) (-1402 . 683826) + (-1403 . 683725) (-1404 . 683652) (-1405 . 683271) (-1406 . 682884) + (-1407 . 682777) (-1408 . 682712) (-1409 . 682641) (-1410 . 682482) + (-1411 . 681926) (-1412 . 681715) (-1413 . 681479) (-1414 . 681376) + (-1415 . 681107) (-1416 . 680649) (-1417 . 680426) (-1418 . 680315) + (-1419 . 680169) (-1420 . 680075) (-1421 . 680019) (-1422 . 679766) + (-1423 . 679434) (-1424 . 679381) (-1425 . 678507) (-1426 . 678290) + (-1427 . 678153) (-1428 . 678042) (-1429 . 677827) (-1430 . 677776) + (-1431 . 677532) (-1432 . 677002) (-1433 . 676931) (-1434 . 676834) + (-1435 . 676776) (-1436 . 676605) (-1437 . 676496) (-1438 . 676425) + (-1439 . 676338) (-1440 . 675806) (-1441 . 675674) (-1442 . 675618) + (-1443 . 675343) (-1444 . 675099) (-1445 . 674941) (-1446 . 674817) + (-1447 . 674474) (-1448 . 674375) (-1449 . 674128) (-1450 . 673926) + (-1451 . 673820) (-1452 . 673625) (-1453 . 673492) (-1454 . 673361) + (-1455 . 673311) (-1456 . 673202) (-1457 . 672926) (-1458 . 672852) + (-1459 . 672793) (-1460 . 672569) (-1461 . 672492) (-1462 . 672308) + (-1463 . 672066) (-1464 . 672035) (-1465 . 671962) (-1466 . 671649) + (-1467 . 671533) (-1468 . 671380) (-1469 . 671272) (-1470 . 671193) + (-1471 . 671075) (-1472 . 670978) (-1473 . 670549) (-1474 . 670321) + (-1475 . 670287) (-1476 . 669635) (-1477 . 669015) (-1478 . 668963) + (-1479 . 668786) (-1480 . 668539) (-1481 . 668421) (-1482 . 668289) + (-1483 . 667768) (-1484 . 667685) (-1485 . 667585) (-1486 . 665485) + (-1487 . 665429) (-1488 . 665355) (-1489 . 665173) (-1490 . 665057) + (-1491 . 664988) (-1492 . 664914) (-1493 . 664840) (-1494 . 664713) + (-1495 . 664580) (-1496 . 659481) (-1497 . 659225) (-1498 . 659048) + (-1499 . 658907) (-1500 . 658786) (-1501 . 658704) (-1502 . 658631) + (-1503 . 658183) (-1504 . 658015) (-1505 . 657915) (-1506 . 657774) + (-1507 . 657505) (-1508 . 657387) (-1509 . 657309) (-1510 . 657222) + (-1511 . 657158) (-1512 . 656939) (-1513 . 656784) (-1514 . 656750) + (-1515 . 656002) (-1516 . 655511) (-1517 . 655324) (-1518 . 655188) + (-1519 . 655108) (-1520 . 654725) (-1521 . 654295) (-1522 . 654084) + (-1523 . 654017) (-1524 . 653935) (-1525 . 653802) (-1526 . 653750) + (-1527 . 653100) (-1528 . 653069) (-1529 . 652899) (-1530 . 652828) + (-1531 . 652064) (-1532 . 651870) (-1533 . 651740) (-1534 . 651518) + (-1535 . 651469) (-1536 . 651338) (-1537 . 651050) (-1538 . 650931) + (-1539 . 649745) (-1540 . 649689) (-1541 . 649623) (-1542 . 649595) + (-1543 . 649290) (-1544 . 649235) (-1545 . 648534) (-1546 . 648451) + (-1547 . 647799) (-1548 . 647692) (-1549 . 647593) (-1550 . 647470) + (-1551 . 646927) (-1552 . 646769) (-1553 . 646654) (-1554 . 646490) + (-1555 . 646387) (-1556 . 646225) (-1557 . 646148) (-1558 . 645898) + (-1559 . 645870) (-1560 . 645696) (-1561 . 645585) (-1562 . 644770) + (-1563 . 644343) (-1564 . 644018) (-1565 . 643880) (-1566 . 643806) + (-1567 . 643709) (-1568 . 643570) (-1569 . 643198) (-1570 . 643148) + (-1571 . 643085) (-1572 . 642599) (-1573 . 642534) (-1574 . 642393) + (-1575 . 642255) (-1576 . 640103) (-1577 . 639999) (-1578 . 639896) + (-1579 . 639830) (-1580 . 639516) (-1581 . 639488) (-1582 . 639191) + (-1583 . 638725) (-1584 . 638552) (-1585 . 638239) (-1586 . 638170) + (-1587 . 638093) (-1588 . 638065) (-1589 . 637884) (-1590 . 637801) + (-1591 . 637524) (-1592 . 637471) (-1593 . 637316) (-1594 . 637044) + (-1595 . 636595) (-1596 . 636536) (-1597 . 636283) (-1598 . 636168) + (-1599 . 635785) (-1600 . 635708) (-1601 . 635610) (-1602 . 635448) + (-1603 . 635390) (-1604 . 635186) (-1605 . 635056) (-1606 . 634876) + (-1607 . 634720) (-1608 . 634583) (-1609 . 634418) (-1610 . 634360) + (-1611 . 634098) (-1612 . 633997) (-1613 . 633938) (-1614 . 633730) + (-1615 . 633653) (-1616 . 633625) (-1617 . 633562) (-1618 . 633315) + (-1619 . 633093) (-1620 . 632999) (-1621 . 632719) (-1622 . 632616) + (-1623 . 632150) (-1624 . 631912) (-1625 . 630720) (-1626 . 630495) + (-1627 . 630107) (-1628 . 629920) (-1629 . 629867) (-1630 . 629796) + (-1631 . 629483) (-1632 . 629374) (-1633 . 628985) (-1634 . 628855) + (-1635 . 628771) (-1636 . 628553) (-1637 . 628253) (-1638 . 628152) + (-1639 . 628065) (-1640 . 627322) (-1641 . 627221) (-1642 . 627057) + (-1643 . 626903) (-1644 . 626718) (-1645 . 625506) (-1646 . 625413) + (-1647 . 625273) (-1648 . 625155) (-1649 . 625056) (-1650 . 624934) + (-1651 . 623932) (-1652 . 623836) (-1653 . 623807) (-1654 . 623600) + (-1655 . 623486) (-1656 . 623318) (-1657 . 623269) (-1658 . 622965) + (-1659 . 622788) (-1660 . 622682) (-1661 . 622520) (-1662 . 622350) + (-1663 . 622301) (-1664 . 622082) (-1665 . 621995) (-1666 . 621876) + (-1667 . 621805) (-1668 . 621710) (-1669 . 621573) (-1670 . 621521) + (-1671 . 621487) (-1672 . 621343) (-1673 . 620589) (-1674 . 620521) + (-1675 . 619810) (-1676 . 619666) (-1677 . 619613) (-1678 . 619468) + (-1679 . 618977) (-1680 . 618853) (-1681 . 618595) (-1682 . 618542) + (-1683 . 617930) (-1684 . 617736) (-1685 . 617672) (-1686 . 617589) + (-1687 . 617437) (-1688 . 617372) (-1689 . 616775) (-1690 . 616065) + (-1691 . 615917) (-1692 . 615427) (-1693 . 615001) (-1694 . 614948) + (-1695 . 614427) (-1696 . 614111) (-1697 . 613900) (-1698 . 613815) + (-1699 . 613744) (-1700 . 613689) (-1701 . 613616) (-1702 . 613481) + (-1703 . 613264) (-1704 . 613202) (-1705 . 613062) (-1706 . 612955) + (-1707 . 612901) (-1708 . 612327) (-1709 . 612206) (-1710 . 612103) + (-1711 . 611732) (-1712 . 611467) (-1713 . 611396) (-1714 . 611345) + (-1715 . 611311) (-1716 . 611212) (-1717 . 611111) (-1718 . 610981) + (-1719 . 610891) (-1720 . 610638) (-1721 . 610564) (-1722 . 610111) + (-1723 . 609936) (-1724 . 609870) (-1725 . 609802) (-1726 . 609735) + (-1727 . 609605) (-1728 . 609343) (-1729 . 609031) (-1730 . 608943) + (-1731 . 608679) (-1732 . 608579) (-1733 . 608489) (-1734 . 608315) + (-1735 . 608214) (-1736 . 608088) (-1737 . 607607) (-1738 . 607458) + (-1739 . 607298) (-1740 . 607179) (-1741 . 607034) (-1742 . 606850) + (-1743 . 606709) (-1744 . 606560) (-1745 . 606437) (-1746 . 606143) + (-1747 . 605937) (-1748 . 605864) (-1749 . 605646) (-1750 . 605501) + (-1751 . 605427) (-1752 . 605301) (-1753 . 605214) (-1754 . 605062) + (-1755 . 604823) (-1756 . 604607) (-1757 . 604502) (-1758 . 604450) + (-1759 . 604280) (-1760 . 604157) (-1761 . 603829) (-1762 . 603792) + (-1763 . 603087) (-1764 . 602988) (-1765 . 602740) (-1766 . 602671) + (-1767 . 602604) (-1768 . 602497) (-1769 . 602426) (-1770 . 602203) + (-1771 . 602024) (-1772 . 601833) (-1773 . 601768) (-1774 . 601686) + (-1775 . 601556) (-1776 . 601436) (-1777 . 601162) (-1778 . 601066) + (-1779 . 600997) (-1780 . 600406) (-1781 . 600304) (-1782 . 599947) + (-1783 . 599701) (-1784 . 599428) (-1785 . 599293) (-1786 . 599230) + (-1787 . 599160) (-1788 . 598926) (-1789 . 598819) (-1790 . 598498) + (-1791 . 598354) (-1792 . 598227) (-1793 . 598148) (-1794 . 598093) + (-1795 . 597784) (-1796 . 597731) (-1797 . 597515) (-1798 . 597267) + (-1799 . 597137) (-1800 . 597030) (-1801 . 596934) (-1802 . 596547) + (-1803 . 596323) (-1804 . 596014) (-1805 . 595927) (-1806 . 594076) + (-1807 . 593995) (-1808 . 593809) (-1809 . 593596) (-1810 . 592972) + (-1811 . 592891) (-1812 . 592665) (-1813 . 592438) (-1814 . 592367) + (-1815 . 592000) (-1816 . 591884) (-1817 . 591804) (-1818 . 591770) + (-1819 . 591708) (-1820 . 590891) (-1821 . 590808) (-1822 . 590678) + (-1823 . 590612) (-1824 . 590539) (-1825 . 590410) (-1826 . 589775) + (-1827 . 589646) (-1828 . 589567) (-1829 . 589469) (-1830 . 589311) + (-1831 . 588247) (-1832 . 588059) (-1833 . 587660) (-1834 . 587632) + (-1835 . 587547) (-1836 . 587384) (-1837 . 587162) (-1838 . 587059) + (-1839 . 586734) (-1840 . 586523) (-1841 . 586454) (-1842 . 586371) + (-1843 . 586101) (-1844 . 585761) (-1845 . 585660) (-1846 . 585553) + (-1847 . 585377) (-1848 . 585206) (-1849 . 584927) (-1850 . 583856) + (-1851 . 583457) (-1852 . 583239) (-1853 . 583081) (-1854 . 583011) + (-1855 . 582956) (-1856 . 582897) (-1857 . 582622) (-1858 . 582290) + (-1859 . 582074) (-1860 . 581951) (-1861 . 581846) (-1862 . 581465) + (-1863 . 581278) (-1864 . 581225) (-1865 . 581000) (-1866 . 580899) + (-1867 . 580751) (-1868 . 580552) (-1869 . 580376) (-1870 . 580278) + (-1871 . 580208) (-1872 . 579937) (-1873 . 579746) (-1874 . 579654) + (-1875 . 579509) (-1876 . 579063) (-1877 . 578856) (-1878 . 578749) + (-1879 . 577753) (-1880 . 577644) (-1881 . 577549) (-1882 . 577387) + (-1883 . 577071) (-1884 . 576972) (-1885 . 575936) (-1886 . 575881) + (-1887 . 575494) (-1888 . 575165) (-1889 . 575024) (-1890 . 574809) + (-1891 . 574743) (-1892 . 574372) (-1893 . 574266) (-1894 . 574136) + (-1895 . 573941) (-1896 . 573864) (-1897 . 573670) (-1898 . 573517) + (-1899 . 573451) (-1900 . 573232) (-1901 . 573158) (-1902 . 572737) + (-1903 . 572628) (-1904 . 572188) (-1905 . 572107) (-1906 . 571981) + (-1907 . 571860) (-1908 . 571808) (-1909 . 571648) (-1910 . 571484) + (-1911 . 571390) (-1912 . 571341) (-1913 . 571014) (-1914 . 570986) + (-1915 . 570958) (-1916 . 570809) (-1917 . 570649) (-1918 . 570398) + (-1919 . 570092) (-1920 . 569094) (-1921 . 569015) (-1922 . 568607) + (-1923 . 568351) (-1924 . 568250) (-1925 . 568134) (-1926 . 568029) + (-1927 . 567698) (-1928 . 567611) (-1929 . 567202) (-1930 . 566681) + (-1931 . 566477) (-1932 . 556947) (-1933 . 556892) (-1934 . 556768) + (-1935 . 556477) (-1936 . 555778) (-1937 . 555507) (-1938 . 555439) + (-1939 . 555410) (-1940 . 555290) (-1941 . 555114) (-1942 . 554755) + (-1943 . 554547) (-1944 . 554330) (-1945 . 553653) (-1946 . 553573) + (-1947 . 553495) (-1948 . 553178) (-1949 . 552935) (-1950 . 552645) + (-1951 . 552561) (-1952 . 552438) (-1953 . 552179) (-1954 . 552084) + (-1955 . 551879) (-1956 . 551793) (-1957 . 551597) (-1958 . 551423) + (-1959 . 551367) (-1960 . 551312) (-1961 . 551047) (-1962 . 550854) + (-1963 . 550801) (-1964 . 550678) (-1965 . 550536) (-1966 . 550463) + (-1967 . 550341) (-1968 . 550234) (-1969 . 550157) (-1970 . 549967) + (-1971 . 549915) (-1972 . 549801) (-1973 . 549556) (-1974 . 549497) + (-1975 . 549335) (-1976 . 549245) (-1977 . 548969) (-1978 . 548927) + (-1979 . 548656) (-1980 . 548603) (-1981 . 548551) (-1982 . 548422) + (-1983 . 548250) (-1984 . 548222) (-1985 . 548064) (-1986 . 547917) + (-1987 . 547794) (-1988 . 547682) (-1989 . 547572) (-1990 . 546743) + (-1991 . 546527) (-1992 . 546355) (-1993 . 546302) (-1994 . 546109) + (-1995 . 545822) (-1996 . 545515) (-1997 . 545184) (-1998 . 545077) + (-1999 . 545011) (-2000 . 544956) (-2001 . 544860) (-2002 . 544542) + (-2003 . 544370) (-2004 . 544315) (-2005 . 540253) (-2006 . 539999) + (-2007 . 539922) (-2008 . 539865) (-2009 . 539828) (-2010 . 539666) + (-2011 . 539536) (-2012 . 539456) (-2013 . 539284) (-2014 . 539232) + (-2015 . 537936) (-2016 . 537830) (-2017 . 537737) (-2018 . 537667) + (-2019 . 537584) (-2020 . 536998) (-2021 . 536046) (-2022 . 535959) + (-2023 . 535865) (-2024 . 535729) (-2025 . 535663) (-2026 . 535503) + (-2027 . 535151) (-2028 . 535077) (-2029 . 532825) (-2030 . 532727) + (-2031 . 532575) (-2032 . 532507) (-2033 . 532433) (-2034 . 532324) + (-2035 . 532186) (-2036 . 531941) (-2037 . 531811) (-2038 . 531724) + (-2039 . 531601) (-2040 . 529256) (-2041 . 529189) (-2042 . 529104) + (-2043 . 528977) (-2044 . 528833) (-2045 . 528716) (-2046 . 528558) + (-2047 . 528417) (-2048 . 528357) (-2049 . 528280) (-2050 . 528187) + (-2051 . 528062) (-2052 . 528010) (-2053 . 527513) (-2054 . 527366) + (-2055 . 527211) (-2056 . 526910) (-2057 . 526717) (-2058 . 526608) + (-2059 . 526253) (-2060 . 526015) (-2061 . 525892) (-2062 . 525822) + (-2063 . 525636) (-2064 . 525492) (-2065 . 525398) (-2066 . 525200) + (-2067 . 525126) (-2068 . 519809) (-2069 . 519420) (-2070 . 518760) + (-2071 . 518707) (-2072 . 518637) (-2073 . 518584) (-2074 . 518425) + (-2075 . 518372) (-2076 . 518302) (-2077 . 518224) (-2078 . 518124) + (-2079 . 518067) (-2080 . 517862) (-2081 . 517778) (-2082 . 517683) + (-2083 . 517627) (-2084 . 517357) (-2085 . 517199) (-2086 . 517104) + (-2087 . 516745) (-2088 . 516229) (-2089 . 516132) (-2090 . 515665) + (-2091 . 515558) (-2092 . 515438) (-2093 . 515319) (-2094 . 515245) + (-2095 . 515179) (-2096 . 515039) (-2097 . 514833) (-2098 . 514724) + (-2099 . 514617) (-2100 . 513042) (-2101 . 511702) (-2102 . 511546) + (-2103 . 511342) (-2104 . 511262) (-2105 . 511191) (-2106 . 511092) + (-2107 . 511018) (-2108 . 510966) (-2109 . 510515) (-2110 . 510371) + (-2111 . 510227) (-2112 . 510132) (-2113 . 509760) (-2114 . 509399) + (-2115 . 509325) (-2116 . 509224) (-2117 . 509136) (-2118 . 509028) + (-2119 . 508847) (-2120 . 508752) (-2121 . 508650) (-2122 . 508595) + (-2123 . 508479) (-2124 . 508199) (-2125 . 508021) (-2126 . 507726) + (-2127 . 507570) (-2128 . 507487) (-2129 . 507406) (-2130 . 506802) + (-2131 . 506356) (-2132 . 505541) (-2133 . 505429) (-2134 . 505361) + (-2135 . 505291) (-2136 . 505119) (-2137 . 504956) (-2138 . 504531) + (-2139 . 504502) (-2140 . 504409) (-2141 . 504338) (-2142 . 504286) + (-2143 . 504215) (-2144 . 504106) (-2145 . 503953) (-2146 . 503847) + (-2147 . 503411) (-2148 . 503303) (-2149 . 503220) (-2150 . 502420) + (-2151 . 502333) (-2152 . 502136) (-2153 . 502023) (-2154 . 501743) + (-2155 . 501636) (-2156 . 501432) (-2157 . 501404) (-2158 . 499157) + (-2159 . 497395) (-2160 . 497136) (-2161 . 496257) (-2162 . 495983) + (-2163 . 495592) (-2164 . 495425) (-2165 . 494905) (-2166 . 494801) + (-2167 . 494722) (-2168 . 490734) (-2169 . 490700) (-2170 . 490571) + (-2171 . 490370) (-2172 . 490172) (-2173 . 489906) (-2174 . 489823) + (-2175 . 489407) (-2176 . 489336) (-2177 . 489234) (-2178 . 489131) + (-2179 . 489036) (-2180 . 488855) (-2181 . 488616) (-2182 . 488582) + (-2183 . 487987) (-2184 . 487387) (-2185 . 487239) (-2186 . 487155) + (-2187 . 487071) (-2188 . 486962) (-2189 . 486719) (-2190 . 486564) + (-2191 . 486502) (-2192 . 486443) (-2193 . 486391) (-2194 . 486261) + (-2195 . 486194) (-2196 . 486111) (-2197 . 486004) (-2198 . 485797) + (-2199 . 485690) (-2200 . 485447) (-2201 . 485160) (-2202 . 484556) + (-2203 . 484437) (-2204 . 484293) (-2205 . 484133) (-2206 . 484065) + (-2207 . 484037) (-2208 . 483965) (-2209 . 483831) (-2210 . 483757) + (-2211 . 483617) (-2212 . 483534) (-2213 . 483456) (-2214 . 483036) + (-2215 . 482706) (-2216 . 482654) (-2217 . 482559) (-2218 . 482464) + (-2219 . 482323) (-2220 . 482183) (-2221 . 481905) (-2222 . 481784) + (-2223 . 481567) (-2224 . 481453) (-2225 . 480272) (-2226 . 480185) + (-2227 . 480104) (-2228 . 480035) (-2229 . 479817) (-2230 . 479276) + (-2231 . 478733) (-2232 . 478629) (-2233 . 478231) (-2234 . 478075) + (-2235 . 477894) (-2236 . 477766) (-2237 . 477598) (-2238 . 477387) + (-2239 . 477332) (-2240 . 477249) (-2241 . 477132) (-2242 . 477077) + (-2243 . 476975) (-2244 . 476922) (-2245 . 476839) (-2246 . 476747) + (-2247 . 476533) (-2248 . 476451) (-2249 . 476389) (-2250 . 476229) + (-2251 . 476177) (-2252 . 475606) (-2253 . 475545) (-2254 . 475426) + (-2255 . 475282) (-2256 . 475161) (-2257 . 474460) (-2258 . 474302) + (-2259 . 474159) (-2260 . 474072) (-2261 . 474019) (-2262 . 472919) + (-2263 . 472610) (-2264 . 472445) (-2265 . 472321) (-2266 . 472269) + (-2267 . 472217) (-2268 . 472108) (-2269 . 472005) (-2270 . 471783) + (-2271 . 471734) (-2272 . 471373) (-2273 . 471209) (-2274 . 470958) + (-2275 . 470799) (-2276 . 470677) (-2277 . 470430) (-2278 . 470402) + (-2279 . 470259) (-2280 . 470104) (-2281 . 468325) (-2282 . 468238) + (-2283 . 468122) (-2284 . 468094) (-2285 . 467972) (-2286 . 467762) + (-2287 . 467678) (-2288 . 467596) (-2289 . 467478) (-2290 . 467313) + (-2291 . 467281) (-2292 . 467168) (-2293 . 467083) (-2294 . 466881) + (-2295 . 466829) (-2296 . 466756) (-2297 . 466673) (-2298 . 466474) + (-2299 . 466422) (-2300 . 466278) (-2301 . 466223) (-2302 . 466143) + (-2303 . 465925) (-2304 . 465551) (-2305 . 465498) (-2306 . 465421) + (-2307 . 465314) (-2308 . 464998) (-2309 . 464886) (-2310 . 464749) + (-2311 . 464407) (-2312 . 464261) (-2313 . 457307) (-2314 . 457128) + (-2315 . 457073) (-2316 . 457021) (-2317 . 456821) (-2318 . 456438) + (-2319 . 455847) (-2320 . 455707) (-2321 . 455637) (-2322 . 455479) + (-2323 . 455380) (-2324 . 455194) (-2325 . 455111) (-2326 . 454893) + (-2327 . 454827) (-2328 . 454768) (-2329 . 454665) (-2330 . 454477) + (-2331 . 454283) (-2332 . 454209) (-2333 . 454108) (-2334 . 453770) + (-2335 . 453721) (-2336 . 453669) (-2337 . 453603) (-2338 . 453461) + (-2339 . 452969) (-2340 . 452859) (-2341 . 452806) (-2342 . 452582) + (-2343 . 452441) (-2344 . 452358) (-2345 . 452145) (-2346 . 452031) + (-2347 . 451951) (-2348 . 451881) (-2349 . 451772) (-2350 . 451511) + (-2351 . 451445) (-2352 . 451346) (-2353 . 451152) (-2354 . 450979) + (-2355 . 450723) (-2356 . 450521) (-2357 . 450444) (-2358 . 450283) + (-2359 . 450200) (-2360 . 449973) (-2361 . 449806) (-2362 . 449733) + (-2363 . 449516) (-2364 . 449450) (-2365 . 449397) (-2366 . 449203) + (-2367 . 448930) (-2368 . 448834) (-2369 . 448447) (-2370 . 448163) + (-2371 . 447490) (-2372 . 446911) (-2373 . 445801) (-2374 . 445067) + (-2375 . 444970) (-2376 . 443805) (-2377 . 443708) (-2378 . 443574) + (-2379 . 443476) (-2380 . 443320) (-2381 . 443262) (-2382 . 443058) + (-2383 . 442900) (-2384 . 442085) (-2385 . 441988) (-2386 . 441938) + (-2387 . 441829) (-2388 . 441693) (-2389 . 441526) (-2390 . 441441) + (-2391 . 441308) (-2392 . 441198) (-2393 . 440995) (-2394 . 440880) + (-2395 . 440539) (-2396 . 440397) (-2397 . 440049) (-2398 . 439972) + (-2399 . 439785) (-2400 . 439492) (-2401 . 439418) (-2402 . 439213) + (-2403 . 438590) (-2404 . 438523) (-2405 . 438449) (-2406 . 438222) + (-2407 . 438188) (-2408 . 438056) (-2409 . 437777) (-2410 . 437725) + (-2411 . 437697) (-2412 . 436460) (-2413 . 436379) (-2414 . 436006) + (-2415 . 435957) (-2416 . 435793) (-2417 . 435674) (-2418 . 435622) + (-2419 . 435571) (-2420 . 435380) (-2421 . 435306) (** . 432229) + (-2423 . 431904) (-2424 . 431570) (-2425 . 431435) (-2426 . 431363) + (-2427 . 431185) (-2428 . 431026) (-2429 . 430992) (-2430 . 430921) + (-2431 . 430762) (-2432 . 430694) (-2433 . 430599) (-2434 . 430543) + (-2435 . 430491) (-2436 . 430388) (-2437 . 430274) (-2438 . 430170) + (-2439 . 429307) (-2440 . 429223) (-2441 . 429113) (-2442 . 428802) + (-2443 . 428678) (-2444 . 428626) (-2445 . 428554) (-2446 . 428382) + (-2447 . 428309) (-2448 . 428079) (-2449 . 427993) (-2450 . 427608) + (-2451 . 427430) (-2452 . 427123) (-2453 . 426314) (-2454 . 426172) + (-2455 . 425811) (-2456 . 425758) (-2457 . 425685) (-2458 . 425574) + (-2459 . 425479) (-2460 . 425057) (-2461 . 425005) (-2462 . 424934) + (-2463 . 424541) (-2464 . 424243) (-2465 . 423906) (-2466 . 423821) + (-2467 . 423705) (-2468 . 423542) (-2469 . 423442) (-2470 . 423182) + (-2471 . 422990) (-2472 . 422872) (-2473 . 422773) (-2474 . 422630) + (-2475 . 422240) (-2476 . 422092) (-2477 . 422007) (-2478 . 421955) + (-2479 . 421841) (-2480 . 421700) (-2481 . 421434) (-2482 . 421328) + (-2483 . 421256) (-2484 . 421130) (-2485 . 421031) (-2486 . 420936) + (-2487 . 420692) (-2488 . 420358) (-2489 . 420287) (-2490 . 419997) + (-2491 . 419960) (-2492 . 419849) (-2493 . 419719) (-2494 . 419506) + (-2495 . 419435) (-2496 . 419348) (-2497 . 419179) (-2498 . 419110) + (-2499 . 418864) (-2500 . 418779) (-2501 . 414619) (-2502 . 413763) + (-2503 . 413637) (-2504 . 413547) (-2505 . 413160) (-2506 . 413097) + (-2507 . 412859) (-2508 . 412741) (-2509 . 412561) (-2510 . 412433) + (-2511 . 412318) (-2512 . 412166) (-2513 . 412113) (-2514 . 412028) + (-2515 . 411919) (-2516 . 411719) (-2517 . 411667) (-2518 . 411558) + (-2519 . 411440) (-2520 . 410769) (-2521 . 410543) (-2522 . 410403) + (-2523 . 410241) (-2524 . 410070) (-2525 . 409682) (-2526 . 409207) + (-2527 . 408796) (-2528 . 408392) (-2529 . 408332) (-2530 . 408065) + (-2531 . 407539) (-2532 . 407440) (-2533 . 407205) (-2534 . 407034) + (-2535 . 406983) (-2536 . 406931) (-2537 . 406827) (-2538 . 406761) + (-2539 . 405986) (-2540 . 405759) (-2541 . 405645) (-2542 . 405350) + (-2543 . 405272) (-2544 . 405074) (-2545 . 405008) (-2546 . 404867) + (-2547 . 404711) (-2548 . 404608) (-2549 . 404376) (-2550 . 404191) + (-2551 . 403931) (-2552 . 403882) (-2553 . 403827) (-2554 . 403273) + (-2555 . 403177) (-2556 . 403056) (-2557 . 402968) (-2558 . 402881) + (-2559 . 402784) (-2560 . 402631) (-2561 . 402575) (-2562 . 402404) + (-2563 . 402326) (-2564 . 402191) (-2565 . 402095) (-2566 . 401949) + (-2567 . 401831) (-2568 . 401607) (-2569 . 401472) (-2570 . 401249) + (-2571 . 401082) (-2572 . 400921) (-2573 . 400763) (-2574 . 400657) + (-2575 . 400604) (-2576 . 400325) (-2577 . 400248) (-2578 . 400036) + (-2579 . 399689) (-2580 . 399431) (-2581 . 399201) (-2582 . 399087) + (-2583 . 399018) (-2584 . 398837) (-2585 . 398725) (-2586 . 398618) + (-2587 . 398515) (-2588 . 398462) (-2589 . 398413) (-2590 . 398339) + (-2591 . 397740) (-2592 . 397613) (-2593 . 397561) (-2594 . 397481) + (-2595 . 396908) (-2596 . 396745) (-2597 . 396665) (-2598 . 396392) + (-2599 . 396277) (-2600 . 396139) (-2601 . 396047) (-2602 . 395748) + (-2603 . 395686) (-2604 . 395576) (-2605 . 395332) (-2606 . 395177) + (-2607 . 395056) (-2608 . 394482) (-2609 . 394451) (-2610 . 394420) + (-2611 . 394222) (-2612 . 394123) (-2613 . 394057) (-2614 . 393953) + (-2615 . 393897) (-2616 . 393376) (-2617 . 393266) (-2618 . 392945) + (-2619 . 392844) (-2620 . 392792) (-2621 . 392644) (-2622 . 392549) + (-2623 . 392463) (-2624 . 392348) (-2625 . 392292) (-2626 . 392170) + (-2627 . 392055) (-2628 . 391933) (-2629 . 391694) (-2630 . 391495) + (-2631 . 391357) (-2632 . 391271) (-2633 . 391021) (-2634 . 390519) + (-2635 . 390334) (-2636 . 389993) (-2637 . 389902) (-2638 . 389723) + (-2639 . 389650) (-2640 . 389619) (-2641 . 389488) (-2642 . 389310) + (-2643 . 388922) (-2644 . 388771) (-2645 . 388665) (-2646 . 388460) + (-2647 . 388389) (-2648 . 388338) (-2649 . 387422) (-2650 . 387158) + (-2651 . 387073) (-2652 . 386941) (-2653 . 386816) (-2654 . 386630) + (-2655 . 386089) (-2656 . 385910) (-2657 . 385809) (-2658 . 385689) + (-2659 . 385498) (-2660 . 385316) (-2661 . 385267) (-2662 . 385165) + (-2663 . 385047) (-2664 . 384763) (-2665 . 384606) (-2666 . 384456) + (-2667 . 384355) (-2668 . 384250) (-2669 . 384113) (-2670 . 384061) + (-2671 . 383976) (-2672 . 383820) (-2673 . 383525) (-2674 . 383222) + (-2675 . 382367) (-2676 . 381974) (-2677 . 381822) (-2678 . 381769) + (-2679 . 381596) (-2680 . 381487) (-2681 . 381233) (-2682 . 381096) + (-2683 . 380672) (-2684 . 380607) (-2685 . 380444) (-2686 . 380286) + (-2687 . 380133) (-2688 . 380059) (-2689 . 380001) (-2690 . 379949) + (-2691 . 379796) (-2692 . 379740) (-2693 . 379596) (-2694 . 379511) + (-2695 . 379411) (-2696 . 379220) (-2697 . 379064) (-2698 . 378767) + (-2699 . 378670) (-2700 . 378535) (-2701 . 378091) (-2702 . 378035) + (-2703 . 377942) (-2704 . 377890) (-2705 . 377828) (-2706 . 377773) + (-2707 . 377640) (-2708 . 377567) (-2709 . 377408) (-2710 . 377299) + (-2711 . 377204) (-2712 . 376024) (-2713 . 374072) (-2714 . 373792) + (-2715 . 373763) (-2716 . 373606) (-2717 . 373336) (-2718 . 372933) + (-2719 . 372574) (-2720 . 372477) (-2721 . 372306) (-2722 . 372199) + (-2723 . 371751) (-2724 . 371577) (-2725 . 371499) (-2726 . 371449) + (-2727 . 371327) (-2728 . 371232) (-2729 . 371117) (-2730 . 370878) + (-2731 . 370528) (-2732 . 370421) (-2733 . 370261) (-2734 . 369396) + (-2735 . 369326) (-2736 . 369128) (-2737 . 369028) (-2738 . 368778) + (-2739 . 368654) (-2740 . 368623) (-2741 . 368528) (-2742 . 368275) + (-2743 . 368154) (-2744 . 367996) (-2745 . 367652) (-2746 . 367164) + (-2747 . 367108) (-2748 . 367035) (-2749 . 366811) (-2750 . 366671) + (-2751 . 366530) (-2752 . 366234) (-2753 . 365992) (-2754 . 365850) + (-2755 . 365748) (-2756 . 365093) (-2757 . 364877) (-2758 . 364498) + (-2759 . 364432) (-2760 . 364347) (-2761 . 364281) (-2762 . 364174) + (-2763 . 364097) (-2764 . 363968) (-2765 . 363637) (-2766 . 363584) + (-2767 . 363506) (-2768 . 363380) (-2769 . 358859) (-2770 . 358669) + (-2771 . 358556) (-2772 . 358501) (-2773 . 358009) (-2774 . 357875) + (-2775 . 357381) (-2776 . 357313) (-2777 . 357038) (-2778 . 356900) + (-2779 . 356827) (-2780 . 355462) (-2781 . 355364) (-2782 . 355314) + (-2783 . 355171) (-2784 . 355044) (-2785 . 354704) (-2786 . 354651) + (-2787 . 354578) (-2788 . 354499) (-2789 . 354182) (-2790 . 354024) + (-2791 . 353939) (-2792 . 353815) (-2793 . 353760) (-2794 . 353689) + (-2795 . 353153) (-2796 . 353066) (-2797 . 352967) (-2798 . 352884) + (-2799 . 352798) (-2800 . 352652) (-2801 . 352485) (-2802 . 352288) + (-2803 . 352159) (-2804 . 351915) (-2805 . 351808) (-2806 . 351707) + (-2807 . 351591) (-2808 . 351504) (-2809 . 351470) (-2810 . 351345) + (-2811 . 351258) (-2812 . 351158) (-2813 . 351062) (-2814 . 350616) + (-2815 . 350545) (-2816 . 350401) (-2817 . 350289) (-2818 . 349801) + (-2819 . 349742) (-2820 . 349708) (-2821 . 349656) (-2822 . 349542) + (-2823 . 349425) (-2824 . 349373) (-2825 . 349258) (-2826 . 348806) + (-2827 . 348700) (-2828 . 348545) (-2829 . 348437) (-2830 . 348254) + (-2831 . 347890) (-2832 . 347823) (-2833 . 347771) (-2834 . 347718) + (-2835 . 347562) (-2836 . 347451) (-2837 . 347377) (-2838 . 347207) + (-2839 . 347122) (-2840 . 345912) (-2841 . 345852) (-2842 . 345735) + (-2843 . 345610) (-2844 . 345530) (-2845 . 344858) (-2846 . 344775) + (-2847 . 344708) (-2848 . 344680) (-2849 . 344614) (-2850 . 344540) + (-2851 . 344209) (-2852 . 344153) (-2853 . 344014) (-2854 . 343815) + (-2855 . 343677) (-2856 . 343603) (-2857 . 343530) (-2858 . 343458) + (-2859 . 343320) (-2860 . 343068) (-2861 . 342749) (-2862 . 342676) + (-2863 . 342568) (-2864 . 342471) (-2865 . 342031) (-2866 . 341890) + (-2867 . 340805) (-2868 . 326742) (-2869 . 326644) (-2870 . 326503) + (-2871 . 326398) (-2872 . 326321) (-2873 . 326248) (-2874 . 326007) + (-2875 . 325766) (-2876 . 325557) (-2877 . 325307) (-2878 . 325230) + (-2879 . 325108) (-2880 . 324950) (-2881 . 324756) (-2882 . 324512) + (-2883 . 324202) (-2884 . 324018) (-2885 . 323944) (-2886 . 323651) + (-2887 . 323548) (-2888 . 323474) (-2889 . 323352) (-2890 . 323280) + (-2891 . 323138) (-2892 . 323035) (-2893 . 322948) (-2894 . 322805) + (-2895 . 322667) (-2896 . 322570) (-2897 . 322502) (-2898 . 322453) + (-2899 . 322323) (-2900 . 322117) (-2901 . 321601) (-2902 . 321387) + (-2903 . 321294) (-2904 . 321263) (-2905 . 321024) (-2906 . 320785) + (-2907 . 320681) (-2908 . 320623) (-2909 . 320490) (-2910 . 320459) + (-2911 . 320406) (-2912 . 320355) (-2913 . 320218) (-2914 . 319968) + (-2915 . 319885) (-2916 . 319816) (-2917 . 319764) (-2918 . 319633) + (-2919 . 319515) (-2920 . 318996) (-2921 . 318803) (-2922 . 318687) + (-2923 . 313984) (-2924 . 313805) (-2925 . 313718) (-2926 . 313158) + (-2927 . 313042) (-2928 . 312889) (-2929 . 312700) (-2930 . 312567) + (-2931 . 312484) (-2932 . 312410) (-2933 . 312305) (-2934 . 312073) + (-2935 . 311927) (-2936 . 311800) (-2937 . 311686) (-2938 . 310262) + (-2939 . 310201) (-2940 . 310088) (-2941 . 310018) (-2942 . 309865) + (-2943 . 309801) (-2944 . 309728) (-2945 . 309611) (-2946 . 309528) + (-2947 . 309448) (-2948 . 309382) (-2949 . 309209) (-2950 . 309153) + (-2951 . 308651) (-2952 . 308593) (-2953 . 308512) (-2954 . 308306) + (-2955 . 308219) (-2956 . 308044) (-2957 . 307838) (-2958 . 307316) + (-2959 . 307158) (-2960 . 306974) (-2961 . 301466) (-2962 . 301371) + (-2963 . 301268) (-2964 . 301197) (-2965 . 301169) (-2966 . 300991) + (-2967 . 300466) (-2968 . 300301) (-2969 . 300214) (-2970 . 300106) + (-2971 . 300033) (-2972 . 299687) (-2973 . 299440) (-2974 . 299338) + (-2975 . 298950) (-2976 . 298849) (-2977 . 298726) (-2978 . 298560) + (-2979 . 298408) (-2980 . 298230) (-2981 . 298146) (-2982 . 297938) + (-2983 . 297843) (-2984 . 297688) (-2985 . 297390) (-2986 . 297232) + (-2987 . 297106) (-2988 . 297014) (-2989 . 296891) (-2990 . 296770) + (-2991 . 296590) (-2992 . 296137) (-2993 . 296071) (-2994 . 295977) + (-2995 . 295727) (-2996 . 295640) (-2997 . 295588) (-2998 . 295505) + (-2999 . 295450) (-3000 . 295358) (-3001 . 295203) (-3002 . 295090) + (-3003 . 294900) (-3004 . 294856) (-3005 . 294509) (-3006 . 294310) + (-3007 . 294207) (-3008 . 294134) (-3009 . 293997) (-3010 . 293725) + (-3011 . 293632) (-3012 . 293417) (-3013 . 293346) (-3014 . 293177) + (-3015 . 293074) (-3016 . 293046) (-3017 . 292960) (-3018 . 292881) + (-3019 . 292554) (-3020 . 292474) (-3021 . 292422) (-3022 . 292173) + (-3023 . 291590) (-3024 . 291328) (-3025 . 291201) (-3026 . 291043) + (-3027 . 290845) (-3028 . 290656) (-3029 . 290314) (-3030 . 290068) + (-3031 . 289814) (-3032 . 289758) (-3033 . 289611) (-3034 . 289500) + (-3035 . 289403) (-3036 . 289307) (-3037 . 289233) (-3038 . 288892) + (-3039 . 288818) (-3040 . 288215) (-3041 . 288095) (-3042 . 288036) + (-3043 . 287942) (-3044 . 287777) (-3045 . 287291) (-3046 . 287233) + (-3047 . 287095) (-3048 . 286714) (-3049 . 286425) (-3050 . 286353) + (-3051 . 286107) (-3052 . 285987) (-3053 . 285748) (-3054 . 285504) + (-3055 . 285340) (-3056 . 285205) (-3057 . 284972) (-3058 . 284877) + (-3059 . 284667) (-3060 . 284549) (-3061 . 284384) (-3062 . 284332) + (-3063 . 284278) (-3064 . 284080) (-3065 . 283969) (-3066 . 283869) + (-3067 . 283558) (-3068 . 283444) (-3069 . 283367) (-3070 . 283284) + (-3071 . 282935) (-3072 . 282820) (-3073 . 282695) (-3074 . 282642) + (-3075 . 282572) (-3076 . 282414) (-3077 . 282305) (-3078 . 282000) + (-3079 . 281916) (-3080 . 281854) (-3081 . 281799) (-3082 . 281610) + (-3083 . 281466) (-3084 . 281296) (-3085 . 281223) (-3086 . 280918) + (-3087 . 280626) (-3088 . 280411) (-3089 . 280382) (-3090 . 280275) + (-3091 . 279967) (-3092 . 279388) (-3093 . 279252) (-3094 . 279199) + (-3095 . 279098) (-3096 . 278977) (-3097 . 277358) (-3098 . 277270) + (-3099 . 277088) (-3100 . 276974) (-3101 . 276867) (-3102 . 276676) + (-3103 . 276481) (-3104 . 276379) (-3105 . 276238) (-3106 . 276098) + (-3107 . 275960) (-3108 . 275851) (-3109 . 275777) (-3110 . 274916) + (-3111 . 274763) (-3112 . 274669) (-3113 . 274440) (-3114 . 273337) + (-3115 . 273264) (-3116 . 273083) (-3117 . 272979) (-3118 . 272649) + (-3119 . 272576) (-3120 . 272491) (-3121 . 272233) (-3122 . 270866) + (-3123 . 270750) (-3124 . 270696) (-3125 . 270668) (-3126 . 270533) + (-3127 . 270333) (-3128 . 270262) (-3129 . 270119) (-3130 . 269574) + (-3131 . 269521) (-3132 . 269354) (-3133 . 268979) (-3134 . 268774) + (-3135 . 268589) (-3136 . 268487) (-3137 . 268414) (-3138 . 268181) + (-3139 . 268074) (-3140 . 267190) (-3141 . 267140) (-3142 . 267028) + (-3143 . 266838) (-3144 . 266668) (-3145 . 266070) (-3146 . 265991) + (-3147 . 265884) (-3148 . 265797) (-3149 . 265584) (-3150 . 265490) + (-3151 . 265390) (-3152 . 265177) (-3153 . 264626) (-3154 . 264311) + (-3155 . 264239) (-3156 . 264008) (-3157 . 263710) (-3158 . 263571) + (-3159 . 263500) (-3160 . 263346) (-3161 . 263286) (-3162 . 262971) + (-3163 . 262828) (-3164 . 262759) (-3165 . 262700) (-3166 . 262559) + (-3167 . 261762) (-3168 . 261684) (-3169 . 261432) (-3170 . 261154) + (-3171 . 261077) (-3172 . 261003) (-3173 . 260763) (-3174 . 260666) + (-3175 . 260175) (-3176 . 260080) (-3177 . 259975) (-3178 . 259718) + (-3179 . 259533) (-3180 . 259204) (-3181 . 257376) (-3182 . 257278) + (-3183 . 256928) (-3184 . 256596) (-3185 . 256524) (-3186 . 256342) + (-3187 . 256286) (-3188 . 255993) (-3189 . 254683) (-3190 . 254630) + (-3191 . 254560) (-3192 . 254380) (-3193 . 254328) (-3194 . 253365) + (-3195 . 253306) (-3196 . 253212) (-3197 . 253013) (-3198 . 252793) + (-3199 . 251292) (-3200 . 251135) (-3201 . 250912) (-3202 . 250686) + (-3203 . 250630) (-3204 . 250545) (-3205 . 250468) (-3206 . 250333) + (-3207 . 250232) (-3208 . 250152) (-3209 . 250053) (-3210 . 249757) + (-3211 . 249460) (-3212 . 249269) (-3213 . 247729) (-3214 . 247672) + (-3215 . 247500) (-3216 . 247254) (-3217 . 247188) (-3218 . 247079) + (-3219 . 246669) (-3220 . 246426) (-3221 . 246125) (-3222 . 246055) + (-3223 . 245400) (-3224 . 245348) (-3225 . 244935) (-3226 . 243971) + (-3227 . 243867) (-3228 . 243814) (-12 . 243642) (-3230 . 242892) + (-3231 . 242807) (-3232 . 242755) (-3233 . 242592) (-3234 . 242522) + (-3235 . 242466) (-3236 . 242403) (-3237 . 242298) (-3238 . 242174) + (-3239 . 242101) (-3240 . 241587) (-3241 . 241500) (-3242 . 241215) + (-3243 . 240479) (-3244 . 240356) (-3245 . 239973) (-3246 . 239843) + (-3247 . 239764) (-3248 . 239141) (-3249 . 239074) (-3250 . 239000) + (-3251 . 238917) (-3252 . 238865) (-3253 . 238778) (-3254 . 238391) + (-3255 . 238236) (-3256 . 238075) (-3257 . 237946) (-3258 . 237337) + (-3259 . 237151) (-3260 . 236987) (-3261 . 236918) (-3262 . 236773) + (-3263 . 236549) (-3264 . 236497) (-3265 . 236411) (-3266 . 236035) + (-3267 . 235909) (-3268 . 235875) (-3269 . 235716) (-3270 . 235606) + (-3271 . 235499) (-3272 . 235392) (-3273 . 235325) (-3274 . 235273) + (-3275 . 235159) (-3276 . 235034) (-3277 . 234396) (-3278 . 234326) + (-3279 . 233524) (-3280 . 233465) (-3281 . 233162) (-3282 . 232985) + (-3283 . 232932) (-3284 . 232776) (-3285 . 232702) (-3286 . 231542) + (-3287 . 231493) (-3288 . 231394) (-3289 . 231312) (-3290 . 231251) + (-3291 . 230821) (-3292 . 230211) (-3293 . 230143) (-3294 . 229509) + (-3295 . 229395) (-3296 . 228955) (-3297 . 228579) (-3298 . 228492) + (-3299 . 228440) (-3300 . 228327) (-3301 . 227949) (-3302 . 227528) + (-3303 . 227451) (-3304 . 227349) (-3305 . 227130) (-3306 . 226007) + (-3307 . 225838) (-3308 . 225761) (-3309 . 225730) (-3310 . 225251) + (-3311 . 225034) (-3312 . 224852) (-3313 . 224743) (-3314 . 224709) + (-3315 . 224530) (-3316 . 223802) (-3317 . 223693) (-3318 . 223624) + (-3319 . 223435) (-3320 . 223401) (-3321 . 223230) (-3322 . 223125) + (-3323 . 222667) (* . 218144) (-3325 . 217298) (-3326 . 217227) + (-3327 . 217075) (-3328 . 216847) (-3329 . 216795) (-3330 . 216582) + (-3331 . 216468) (-3332 . 216338) (-3333 . 216210) (-3334 . 216144) + (-3335 . 216087) (-3336 . 212477) (-3337 . 212370) (-3338 . 211501) + (-3339 . 211435) (-3340 . 211266) (-3341 . 211183) (-3342 . 211076) + (-3343 . 210977) (-3344 . 210871) (-3345 . 210640) (-3346 . 210533) + (-3347 . 210196) (-3348 . 210040) (-3349 . 209957) (-3350 . 209859) + (-3351 . 209775) (-3352 . 209656) (-3353 . 209604) (-3354 . 208806) + (-3355 . 208654) (-3356 . 208317) (-3357 . 208164) (-3358 . 208136) + (-3359 . 207974) (-3360 . 207879) (-3361 . 207830) (-3362 . 207770) + (-3363 . 207675) (-3364 . 207519) (-3365 . 207136) (-3366 . 207068) + (-3367 . 206910) (-3368 . 206828) (-3369 . 206721) (-3370 . 206627) + (-3371 . 206448) (-3372 . 206377) (-3373 . 206254) (-3374 . 206181) + (-3375 . 205962) (-3376 . 205903) (-3377 . 205819) (-3378 . 205689) + (-3379 . 205623) (-3380 . 205540) (-3381 . 205213) (-3382 . 205077) + (-3383 . 204711) (-3384 . 204659) (-3385 . 204566) (-3386 . 204370) + (-3387 . 204178) (-3388 . 203805) (-3389 . 203748) (-3390 . 203300) + (-3391 . 203147) (-3392 . 202309) (-3393 . 202183) (-3394 . 202024) + (-3395 . 201965) (-3396 . 201588) (-3397 . 200997) (-3398 . 200868) + (-3399 . 200595) (-3400 . 200542) (-3401 . 200422) (-3402 . 200298) + (-3403 . 200180) (-3404 . 200029) (-3405 . 200001) (-3406 . 199938) + (-3407 . 199885) (-3408 . 199805) (-3409 . 199709) (-3410 . 199553) + (-3411 . 199452) (-3412 . 199301) (-3413 . 199164) (-3414 . 199087) + (-3415 . 198900) (-3416 . 198674) (-3417 . 198590) (-3418 . 198466) + (-3419 . 198413) (-3420 . 198340) (-3421 . 197816) (-3422 . 197707) + (-3423 . 197328) (-3424 . 197027) (-3425 . 196841) (-3426 . 196676) + (-3427 . 196583) (-3428 . 196437) (-3429 . 196368) (-3430 . 196054) + (-3431 . 195970) (-3432 . 195800) (-3433 . 195372) (-3434 . 195135) + (-3435 . 195069) (-3436 . 194983) (-3437 . 194893) (-3438 . 194468) + (-3439 . 193221) (-3440 . 193105) (-3441 . 193042) (-3442 . 192896) + (-3443 . 192706) (-3444 . 192530) (-3445 . 192387) (-3446 . 192027) + (-3447 . 191927) (-3448 . 191599) (-3449 . 191267) (-3450 . 190736) + (-3451 . 190659) (-3452 . 190513) (-3453 . 190234) (-3454 . 190182) + (-3455 . 189914) (-3456 . 189786) (-3457 . 189729) (-3458 . 189700) + (-3459 . 189398) (-3460 . 189227) (-3461 . 189123) (-3462 . 189066) + (-3463 . 188995) (-3464 . 188699) (-3465 . 188558) (-3466 . 187951) + (-3467 . 187891) (-3468 . 187419) (-3469 . 187180) (-3470 . 186680) + (-3471 . 186576) (-3472 . 186475) (-3473 . 186360) (-3474 . 186223) + (-3475 . 186079) (-3476 . 185970) (-3477 . 185899) (-3478 . 185847) + (-3479 . 185794) (-3480 . 185737) (-3481 . 185390) (-3482 . 185183) + (-3483 . 185093) (-3484 . 184978) (-3485 . 184614) (-3486 . 184477) + (-3487 . 184037) (-3488 . 183985) (-3489 . 183883) (-3490 . 183744) + (-3491 . 182026) (-3492 . 181904) (-3493 . 181289) (-3494 . 181237) + (-3495 . 181182) (-3496 . 181117) (-3497 . 181062) (-3498 . 180953) + (-3499 . 180859) (-3500 . 180774) (-3501 . 180691) (-3502 . 180452) + (-3503 . 180299) (-3504 . 180225) (-3505 . 179710) (-3506 . 179558) + (-3507 . 179530) (-3508 . 179371) (-3509 . 179224) (-3510 . 178787) + (-3511 . 178717) (-3512 . 178612) (-3513 . 178479) (-3514 . 177978) + (-3515 . 177466) (-3516 . 177309) (-3517 . 177206) (-3518 . 177153) + (-3519 . 177097) (-3520 . 177060) (-3521 . 177009) (-3522 . 176524) + (-3523 . 176391) (-3524 . 176198) (-3525 . 176069) (-3526 . 175915) + (-3527 . 175836) (-3528 . 175751) (-3529 . 175717) (-3530 . 175689) + (-3531 . 175607) (-3532 . 175441) (-3533 . 175197) (-3534 . 175055) + (-3535 . 174745) (-3536 . 174434) (-3537 . 174355) (-3538 . 174178) + (-3539 . 173928) (-3540 . 173813) (-3541 . 173412) (-3542 . 173213) + (-3543 . 173140) (-3544 . 173053) (-3545 . 171199) (-3546 . 171090) + (-3547 . 170960) (-3548 . 170908) (-3549 . 170856) (-3550 . 170674) + (-3551 . 170294) (-3552 . 170141) (-3553 . 169811) (-3554 . 169743) + (-3555 . 169691) (-3556 . 169632) (-3557 . 169562) (-3558 . 169180) + (-3559 . 169057) (-3560 . 168970) (-3561 . 168591) (-3562 . 168306) + (-3563 . 167241) (-3564 . 167167) (-3565 . 167030) (-3566 . 166820) + (-3567 . 166726) (-3568 . 166673) (-3569 . 166589) (-3570 . 166445) + (-3571 . 166381) (-3572 . 166328) (-3573 . 166178) (-3574 . 166105) + (-3575 . 165505) (-3576 . 165232) (-3577 . 165113) (-3578 . 165047) + (-3579 . 164804) (-3580 . 164660) (-3581 . 164536) (-3582 . 164508) + (-3583 . 164361) (-3584 . 164159) (-3585 . 164087) (-3586 . 163956) + (-3587 . 163798) (-3588 . 163746) (-3589 . 163609) (-3590 . 163473) + (-3591 . 163305) (-3592 . 162009) (-3593 . 161811) (-3594 . 161589) + (-3595 . 161519) (-3596 . 161369) (-3597 . 161277) (-3598 . 161246) + (-3599 . 160611) (-3600 . 160513) (-3601 . 160168) (-3602 . 160059) + (-3603 . 159870) (-3604 . 159661) (-3605 . 159549) (-3606 . 159497) + (-3607 . 159372) (-3608 . 159044) (-3609 . 158636) (-3610 . 158546) + (-3611 . 158446) (-3612 . 158372) (-3613 . 158344) (-3614 . 157993) + (-3615 . 157633) (-3616 . 157548) (-3617 . 157463) (-3618 . 157173) + (-3619 . 156961) (-3620 . 156906) (-3621 . 156688) (-3622 . 156610) + (-3623 . 156558) (-3624 . 156213) (-3625 . 155839) (-3626 . 155737) + (-3627 . 155570) (-3628 . 155235) (-3629 . 155142) (-3630 . 154851) + (-3631 . 154746) (-3632 . 154529) (-3633 . 154392) (-3634 . 154297) + (-3635 . 154211) (-3636 . 154079) (-3637 . 153966) (-3638 . 153893) + (-3639 . 153706) (-3640 . 153576) (-3641 . 153324) (-3642 . 153296) + (-3643 . 153211) (-3644 . 152865) (-3645 . 152735) (-3646 . 152623) + (-3647 . 152524) (-3648 . 152102) (-3649 . 151740) (-3650 . 151674) + (-3651 . 151558) (-3652 . 151392) (-3653 . 151161) (-3654 . 151035) + (-3655 . 150980) (-3656 . 150893) (-3657 . 150784) (-3658 . 150714) + (-3659 . 150634) (-3660 . 150516) (-3661 . 150436) (-3662 . 150358) + (-3663 . 150187) (-3664 . 150062) (-3665 . 150003) (-3666 . 149926) + (-3667 . 149874) (-3668 . 149779) (-3669 . 149655) (-3670 . 149446) + (-3671 . 149287) (-3672 . 149231) (-3673 . 149176) (-3674 . 149096) + (-3675 . 149043) (-3676 . 148928) (-3677 . 148874) (-3678 . 148816) + (-3679 . 148500) (-3680 . 148401) (-3681 . 147898) (-3682 . 147622) + (-3683 . 147545) (-3684 . 147228) (-3685 . 147145) (-3686 . 146391) + (-3687 . 146112) (-3688 . 146014) (-3689 . 145873) (-3690 . 145805) + (-3691 . 145328) (-3692 . 145185) (-3693 . 145062) (-3694 . 145003) + (-3695 . 144851) (-3696 . 144789) (-3697 . 144737) (-3698 . 144593) + (-3699 . 144485) (-3700 . 144374) (-3701 . 144267) (-3702 . 144138) + (-3703 . 143994) (-3704 . 143853) (-3705 . 143698) (-3706 . 143563) + (-3707 . 143408) (-3708 . 143313) (-3709 . 143236) (-3710 . 143148) + (-3711 . 143074) (-3712 . 142170) (-3713 . 142099) (-3714 . 141855) + (-3715 . 141682) (-3716 . 141514) (-3717 . 141172) (-3718 . 141027) + (-3719 . 140879) (-3720 . 140827) (-3721 . 140580) (-3722 . 140378) + (-3723 . 140349) (-3724 . 140205) (-3725 . 140121) (-3726 . 139971) + (-3727 . 139879) (-3728 . 139700) (-3729 . 139627) (-3730 . 139574) + (-3731 . 139477) (-3732 . 139230) (-3733 . 139107) (-3734 . 138952) + (-3735 . 138786) (-3736 . 138612) (-3737 . 137871) (-3738 . 137551) + (-3739 . 137338) (-3740 . 137283) (-3741 . 137179) (-3742 . 137099) + (-3743 . 137014) (-3744 . 136866) (-3745 . 136814) (-3746 . 136623) + (-3747 . 136449) (-3748 . 135801) (-3749 . 135060) (-3750 . 134824) + (-3751 . 134654) (-3752 . 134570) (-3753 . 134322) (-3754 . 134227) + (-3755 . 134082) (-3756 . 132513) (-3757 . 132433) (-3758 . 132190) + (-3759 . 131898) (-3760 . 131210) (-3761 . 131103) (-3762 . 130645) + (-3763 . 130228) (-3764 . 130176) (-3765 . 130080) (-3766 . 129867) + (-3767 . 129749) (-3768 . 129503) (-3769 . 129293) (-3770 . 129162) + (-3771 . 128586) (-3772 . 128480) (-3773 . 128236) (-3774 . 127827) + (-3775 . 127793) (-3776 . 127542) (-3777 . 127445) (-3778 . 127371) + (-3779 . 127320) (-3780 . 127036) (-3781 . 126817) (-3782 . 126301) + (-3783 . 125725) (-3784 . 125672) (-3785 . 125638) (-3786 . 125559) + (-3787 . 125504) (-3788 . 125401) (-3789 . 125298) (-3790 . 125128) + (-3791 . 125026) (-3792 . 124897) (-3793 . 124726) (-3794 . 124632) + (-3795 . 124056) (-3796 . 123688) (-3797 . 123636) (-3798 . 123608) + (-3799 . 123355) (-3800 . 122980) (-3801 . 122895) (-3802 . 122754) + (-3803 . 122694) (-3804 . 122398) (-3805 . 122234) (-3806 . 121315) + (-3807 . 121194) (-3808 . 120508) (-3809 . 120423) (-3810 . 120339) + (-3811 . 120155) (-3812 . 120011) (-3813 . 119913) (-3814 . 119484) + (-3815 . 119432) (-3816 . 119279) (-3817 . 119141) (-3818 . 119090) + (-3819 . 118888) (-3820 . 118708) (-3821 . 118561) (-3822 . 118450) + (-3823 . 117764) (-3824 . 117687) (-3825 . 117557) (-3826 . 117405) + (-3827 . 117352) (-3828 . 117234) (-3829 . 116476) (-3830 . 116319) + (-3831 . 116252) (-3832 . 115989) (-3833 . 115902) (-3834 . 115807) + (-3835 . 115755) (-3836 . 115006) (-3837 . 114860) (-3838 . 113575) + (-3839 . 113473) (-3840 . 113157) (-3841 . 113014) (-3842 . 112916) + (-3843 . 112836) (-3844 . 112741) (-3845 . 112579) (-3846 . 112457) + (-3847 . 112328) (-3848 . 111754) (-3849 . 111699) (-3850 . 111667) + (-3851 . 111570) (-3852 . 111237) (-3853 . 111203) (-3854 . 110878) + (-3855 . 110494) (-3856 . 110414) (-3857 . 110190) (-3858 . 109968) + (-3859 . 109694) (-3860 . 109609) (-3861 . 109035) (-3862 . 108928) + (-3863 . 108817) (-3864 . 108643) (-3865 . 108588) (-3866 . 108522) + (-3867 . 108462) (-3868 . 108343) (-3869 . 107868) (-3870 . 107797) + (-3871 . 107740) (-3872 . 107597) (-3873 . 107023) (-3874 . 106805) + (-3875 . 106664) (-3876 . 106582) (-3877 . 106509) (-3878 . 106386) + (-3879 . 106174) (-3880 . 105827) (-3881 . 105755) (-3882 . 105643) + (-3883 . 105548) (-3884 . 105449) (-3885 . 105362) (-3886 . 104675) + (-3887 . 104597) (-3888 . 104260) (-3889 . 104097) (-3890 . 103846) + (-3891 . 103790) (-3892 . 103712) (-3893 . 103652) (-3894 . 102779) + (-3895 . 102667) (-3896 . 102522) (-3897 . 102438) (-3898 . 102366) + (-3899 . 102098) (-3900 . 101921) (-3901 . 101234) (-3902 . 101110) + (-3903 . 101040) (-3904 . 100821) (-3905 . 100743) (-3906 . 100677) + (-3907 . 100591) (-3908 . 100445) (-3909 . 100374) (-3910 . 100214) + (-3911 . 100121) (-3912 . 99642) (-3913 . 99557) (-3914 . 99354) + (-3915 . 98667) (-3916 . 98448) (-3917 . 98033) (-3918 . 97878) + (-3919 . 96697) (-3920 . 96360) (-3921 . 96247) (-3922 . 96154) + (-3923 . 96126) (-3924 . 95906) (-3925 . 95833) (-3926 . 95719) + (-3927 . 95610) (-3928 . 95304) (-3929 . 95192) (-3930 . 94617) + (-3931 . 94532) (-3932 . 94434) (-3933 . 94142) (-3934 . 93852) + (-3935 . 93743) (-3936 . 93591) (-3937 . 93482) (-3938 . 93384) + (-3939 . 93282) (-3940 . 93211) (-3941 . 93055) (-3942 . 92630) + (-3943 . 92315) (-3944 . 92228) (-3945 . 91934) (-3946 . 91359) + (-3947 . 91199) (-3948 . 91011) (-3949 . 90845) (-3950 . 90793) + (-3951 . 90614) (-3952 . 90235) (-3953 . 89802) (-3954 . 89746) + (-3955 . 89694) (-3956 . 89593) (-3957 . 89419) (-3958 . 89308) + (-3959 . 89149) (-3960 . 88574) (-3961 . 88476) (-3962 . 88396) + (-3963 . 88299) (-3964 . 88243) (-3965 . 88029) (-3966 . 87839) + (-3967 . 87713) (-3968 . 87536) (-3969 . 87463) (-3970 . 87385) + (-3971 . 87159) (-3972 . 87063) (-3973 . 86976) (-3974 . 86810) + (-3975 . 86236) (-3976 . 86139) (-3977 . 86111) (-3978 . 84909) + (-3979 . 84843) (-3980 . 84726) (-3981 . 84619) (-3982 . 84328) + (-3983 . 84248) (-3984 . 84121) (-3985 . 83998) (-3986 . 83757) + (-3987 . 83617) (-3988 . 83521) (-3989 . 82947) (-3990 . 82849) + (-3991 . 82724) (-3992 . 82669) (-3993 . 82575) (-3994 . 82170) + (-3995 . 82086) (-3996 . 82014) (-3997 . 81965) (-3998 . 81810) + (-3999 . 81730) (-4000 . 81450) (-4001 . 81378) (-4002 . 81216) + (-4003 . 81110) (-4004 . 80536) (-4005 . 80393) (-4006 . 80046) + (-4007 . 79934) (-4008 . 79862) (-4009 . 79834) (-4010 . 79716) + (-4011 . 79617) (-4012 . 79412) (-4013 . 79293) (-4014 . 78842) + (-4015 . 78785) (-4016 . 78659) (-4017 . 77475) (-4018 . 76901) + (-4019 . 76782) (-4020 . 76714) (-4021 . 76580) (-4022 . 76410) + (-4023 . 76379) (-4024 . 76256) (-4025 . 75977) (-4026 . 75807) + (-4027 . 75724) (-4028 . 75638) (-4029 . 75564) (-4030 . 75490) + (-4031 . 75400) (-4032 . 75259) (-4033 . 74081) (-4034 . 73995) + (-4035 . 73421) (-4036 . 73355) (-4037 . 73217) (-4038 . 73113) + (-4039 . 73063) (-4040 . 72959) (-4041 . 72892) (-4042 . 72757) + (-4043 . 72577) (-4044 . 49542) (-4045 . 49451) (-4046 . 49151) + (-4047 . 46953) (-4048 . 46773) (-4049 . 46589) (-4050 . 46427) + (-4051 . 46344) (-4052 . 46259) (-4053 . 46132) (-4054 . 45989) + (-4055 . 45866) (-4056 . 45750) (-4057 . 45665) (-4058 . 45564) + (-4059 . 42812) (-4060 . 42653) (-4061 . 42551) (-4062 . 42393) + (-4063 . 42265) (-4064 . 42112) (-4065 . 42075) (-4066 . 41957) + (-4067 . 41863) (-4068 . 41283) (-4069 . 41033) (-4070 . 40934) + (-4071 . 40816) (-4072 . 40722) (-4073 . 40615) (-4074 . 40528) + (-4075 . 40119) (-4076 . 39926) (-4077 . 39845) (-4078 . 39738) + (-4079 . 39686) (-4080 . 39515) (-4081 . 39347) (-4082 . 39247) + (-4083 . 38578) (-4084 . 37923) (-4085 . 37786) (-4086 . 37589) + (-4087 . 37394) (-4088 . 36858) (-4089 . 36349) (-4090 . 36318) + (-4091 . 36181) (-4092 . 36054) (-4093 . 35974) (-4094 . 35748) + (-4095 . 35640) (-4096 . 35544) (-4097 . 35368) (-4098 . 34785) + (-4099 . 34734) (-4100 . 33192) (-4101 . 32772) (-4102 . 32412) + (-4103 . 31807) (-4104 . 31730) (-4105 . 31659) (-4106 . 31569) + (-4107 . 31468) (-4108 . 31322) (-4109 . 31250) (-4110 . 31197) + (-4111 . 31087) (-4112 . 31004) (-4113 . 30952) (-4114 . 30755) + (-4115 . 30727) (-4116 . 30276) (-4117 . 30223) (-4118 . 30150) + (-4119 . 30100) (-4120 . 30047) (-4121 . 29904) (-4122 . 29821) + (-4123 . 29488) (-4124 . 29360) (-4125 . 28692) (-4126 . 28636) + (-4127 . 28277) (-4128 . 28067) (-4129 . 27958) (-4130 . 27892) + (-4131 . 27833) (-4132 . 27780) (-4133 . 27686) (-4134 . 27617) + (-4135 . 27462) (-4136 . 27328) (-4137 . 27084) (-4138 . 25620) + (-4139 . 25565) (-4140 . 25433) (-4141 . 25362) (-4142 . 25279) + (-4143 . 25152) (-4144 . 24921) (-4145 . 24810) (-4146 . 24440) + (-4147 . 24156) (-4148 . 24052) (-4149 . 23935) (-4150 . 22685) + (-4151 . 21801) (-4152 . 21695) (-4153 . 21598) (-4154 . 21160) + (-4155 . 20954) (-4156 . 20810) (-4157 . 18395) (-4158 . 18281) + (-4159 . 18168) (-4160 . 18102) (-4161 . 17863) (-4162 . 17614) + (-4163 . 17499) (-4164 . 17343) (-4165 . 17050) (-4166 . 16941) + (-4167 . 16722) (-4168 . 16569) (-4169 . 15414) (-4170 . 15301) + (-4171 . 15244) (-4172 . 14822) (-4173 . 14691) (-4174 . 14586) + (-4175 . 14488) (-4176 . 14365) (-4177 . 14210) (-4178 . 14179) + (-4179 . 14126) (-4180 . 14053) (-4181 . 13941) (-4182 . 13547) + (-4183 . 12921) (-4184 . 12820) (-4185 . 12528) (-4186 . 12425) + (-4187 . 12110) (-4188 . 11934) (-4189 . 11876) (-4190 . 11688) + (-4191 . 11622) (-4192 . 11539) (-4193 . 11505) (-4194 . 11305) + (-4195 . 11095) (-4196 . 10915) (-4197 . 10859) (-4198 . 10804) + (-4199 . 10705) (-4200 . 10634) (-4201 . 10494) (-4202 . 10413) + (-4203 . 10286) (-4204 . 9851) (-4205 . 9764) (-4206 . 6983) + (-4207 . 6932) (-4208 . 6806) (-4209 . 6572) (-4210 . 6431) + (-4211 . 6119) (-4212 . 6005) (-4213 . 5977) (-4214 . 5921) + (-4215 . 5534) (-4216 . 5439) (-4217 . 5351) (-4218 . 5039) + (-4219 . 4984) (-4220 . 4740) (-4221 . 4655) (-4222 . 4552) + (-4223 . 3900) (-4224 . 3812) (-4225 . 3732) (-4226 . 3596) + (-4227 . 3464) (-4228 . 3341) (-4229 . 3253) (-4230 . 3192) + (-4231 . 284) (-4232 . 217) (-4233 . 98) (-4234 . 30))
\ No newline at end of file |